Merge git://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf
[linux-2.6-microblaze.git] / mm / madvise.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *      linux/mm/madvise.c
4  *
5  * Copyright (C) 1999  Linus Torvalds
6  * Copyright (C) 2002  Christoph Hellwig
7  */
8
9 #include <linux/mman.h>
10 #include <linux/pagemap.h>
11 #include <linux/syscalls.h>
12 #include <linux/mempolicy.h>
13 #include <linux/page-isolation.h>
14 #include <linux/page_idle.h>
15 #include <linux/userfaultfd_k.h>
16 #include <linux/hugetlb.h>
17 #include <linux/falloc.h>
18 #include <linux/fadvise.h>
19 #include <linux/sched.h>
20 #include <linux/ksm.h>
21 #include <linux/fs.h>
22 #include <linux/file.h>
23 #include <linux/blkdev.h>
24 #include <linux/backing-dev.h>
25 #include <linux/pagewalk.h>
26 #include <linux/swap.h>
27 #include <linux/swapops.h>
28 #include <linux/shmem_fs.h>
29 #include <linux/mmu_notifier.h>
30
31 #include <asm/tlb.h>
32
33 #include "internal.h"
34
35 struct madvise_walk_private {
36         struct mmu_gather *tlb;
37         bool pageout;
38 };
39
40 /*
41  * Any behaviour which results in changes to the vma->vm_flags needs to
42  * take mmap_sem for writing. Others, which simply traverse vmas, need
43  * to only take it for reading.
44  */
45 static int madvise_need_mmap_write(int behavior)
46 {
47         switch (behavior) {
48         case MADV_REMOVE:
49         case MADV_WILLNEED:
50         case MADV_DONTNEED:
51         case MADV_COLD:
52         case MADV_PAGEOUT:
53         case MADV_FREE:
54                 return 0;
55         default:
56                 /* be safe, default to 1. list exceptions explicitly */
57                 return 1;
58         }
59 }
60
61 /*
62  * We can potentially split a vm area into separate
63  * areas, each area with its own behavior.
64  */
65 static long madvise_behavior(struct vm_area_struct *vma,
66                      struct vm_area_struct **prev,
67                      unsigned long start, unsigned long end, int behavior)
68 {
69         struct mm_struct *mm = vma->vm_mm;
70         int error = 0;
71         pgoff_t pgoff;
72         unsigned long new_flags = vma->vm_flags;
73
74         switch (behavior) {
75         case MADV_NORMAL:
76                 new_flags = new_flags & ~VM_RAND_READ & ~VM_SEQ_READ;
77                 break;
78         case MADV_SEQUENTIAL:
79                 new_flags = (new_flags & ~VM_RAND_READ) | VM_SEQ_READ;
80                 break;
81         case MADV_RANDOM:
82                 new_flags = (new_flags & ~VM_SEQ_READ) | VM_RAND_READ;
83                 break;
84         case MADV_DONTFORK:
85                 new_flags |= VM_DONTCOPY;
86                 break;
87         case MADV_DOFORK:
88                 if (vma->vm_flags & VM_IO) {
89                         error = -EINVAL;
90                         goto out;
91                 }
92                 new_flags &= ~VM_DONTCOPY;
93                 break;
94         case MADV_WIPEONFORK:
95                 /* MADV_WIPEONFORK is only supported on anonymous memory. */
96                 if (vma->vm_file || vma->vm_flags & VM_SHARED) {
97                         error = -EINVAL;
98                         goto out;
99                 }
100                 new_flags |= VM_WIPEONFORK;
101                 break;
102         case MADV_KEEPONFORK:
103                 new_flags &= ~VM_WIPEONFORK;
104                 break;
105         case MADV_DONTDUMP:
106                 new_flags |= VM_DONTDUMP;
107                 break;
108         case MADV_DODUMP:
109                 if (!is_vm_hugetlb_page(vma) && new_flags & VM_SPECIAL) {
110                         error = -EINVAL;
111                         goto out;
112                 }
113                 new_flags &= ~VM_DONTDUMP;
114                 break;
115         case MADV_MERGEABLE:
116         case MADV_UNMERGEABLE:
117                 error = ksm_madvise(vma, start, end, behavior, &new_flags);
118                 if (error)
119                         goto out_convert_errno;
120                 break;
121         case MADV_HUGEPAGE:
122         case MADV_NOHUGEPAGE:
123                 error = hugepage_madvise(vma, &new_flags, behavior);
124                 if (error)
125                         goto out_convert_errno;
126                 break;
127         }
128
129         if (new_flags == vma->vm_flags) {
130                 *prev = vma;
131                 goto out;
132         }
133
134         pgoff = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT);
135         *prev = vma_merge(mm, *prev, start, end, new_flags, vma->anon_vma,
136                           vma->vm_file, pgoff, vma_policy(vma),
137                           vma->vm_userfaultfd_ctx);
138         if (*prev) {
139                 vma = *prev;
140                 goto success;
141         }
142
143         *prev = vma;
144
145         if (start != vma->vm_start) {
146                 if (unlikely(mm->map_count >= sysctl_max_map_count)) {
147                         error = -ENOMEM;
148                         goto out;
149                 }
150                 error = __split_vma(mm, vma, start, 1);
151                 if (error)
152                         goto out_convert_errno;
153         }
154
155         if (end != vma->vm_end) {
156                 if (unlikely(mm->map_count >= sysctl_max_map_count)) {
157                         error = -ENOMEM;
158                         goto out;
159                 }
160                 error = __split_vma(mm, vma, end, 0);
161                 if (error)
162                         goto out_convert_errno;
163         }
164
165 success:
166         /*
167          * vm_flags is protected by the mmap_sem held in write mode.
168          */
169         vma->vm_flags = new_flags;
170
171 out_convert_errno:
172         /*
173          * madvise() returns EAGAIN if kernel resources, such as
174          * slab, are temporarily unavailable.
175          */
176         if (error == -ENOMEM)
177                 error = -EAGAIN;
178 out:
179         return error;
180 }
181
182 #ifdef CONFIG_SWAP
183 static int swapin_walk_pmd_entry(pmd_t *pmd, unsigned long start,
184         unsigned long end, struct mm_walk *walk)
185 {
186         pte_t *orig_pte;
187         struct vm_area_struct *vma = walk->private;
188         unsigned long index;
189
190         if (pmd_none_or_trans_huge_or_clear_bad(pmd))
191                 return 0;
192
193         for (index = start; index != end; index += PAGE_SIZE) {
194                 pte_t pte;
195                 swp_entry_t entry;
196                 struct page *page;
197                 spinlock_t *ptl;
198
199                 orig_pte = pte_offset_map_lock(vma->vm_mm, pmd, start, &ptl);
200                 pte = *(orig_pte + ((index - start) / PAGE_SIZE));
201                 pte_unmap_unlock(orig_pte, ptl);
202
203                 if (pte_present(pte) || pte_none(pte))
204                         continue;
205                 entry = pte_to_swp_entry(pte);
206                 if (unlikely(non_swap_entry(entry)))
207                         continue;
208
209                 page = read_swap_cache_async(entry, GFP_HIGHUSER_MOVABLE,
210                                                         vma, index, false);
211                 if (page)
212                         put_page(page);
213         }
214
215         return 0;
216 }
217
218 static const struct mm_walk_ops swapin_walk_ops = {
219         .pmd_entry              = swapin_walk_pmd_entry,
220 };
221
222 static void force_shm_swapin_readahead(struct vm_area_struct *vma,
223                 unsigned long start, unsigned long end,
224                 struct address_space *mapping)
225 {
226         pgoff_t index;
227         struct page *page;
228         swp_entry_t swap;
229
230         for (; start < end; start += PAGE_SIZE) {
231                 index = ((start - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
232
233                 page = find_get_entry(mapping, index);
234                 if (!xa_is_value(page)) {
235                         if (page)
236                                 put_page(page);
237                         continue;
238                 }
239                 swap = radix_to_swp_entry(page);
240                 page = read_swap_cache_async(swap, GFP_HIGHUSER_MOVABLE,
241                                                         NULL, 0, false);
242                 if (page)
243                         put_page(page);
244         }
245
246         lru_add_drain();        /* Push any new pages onto the LRU now */
247 }
248 #endif          /* CONFIG_SWAP */
249
250 /*
251  * Schedule all required I/O operations.  Do not wait for completion.
252  */
253 static long madvise_willneed(struct vm_area_struct *vma,
254                              struct vm_area_struct **prev,
255                              unsigned long start, unsigned long end)
256 {
257         struct file *file = vma->vm_file;
258         loff_t offset;
259
260         *prev = vma;
261 #ifdef CONFIG_SWAP
262         if (!file) {
263                 walk_page_range(vma->vm_mm, start, end, &swapin_walk_ops, vma);
264                 lru_add_drain(); /* Push any new pages onto the LRU now */
265                 return 0;
266         }
267
268         if (shmem_mapping(file->f_mapping)) {
269                 force_shm_swapin_readahead(vma, start, end,
270                                         file->f_mapping);
271                 return 0;
272         }
273 #else
274         if (!file)
275                 return -EBADF;
276 #endif
277
278         if (IS_DAX(file_inode(file))) {
279                 /* no bad return value, but ignore advice */
280                 return 0;
281         }
282
283         /*
284          * Filesystem's fadvise may need to take various locks.  We need to
285          * explicitly grab a reference because the vma (and hence the
286          * vma's reference to the file) can go away as soon as we drop
287          * mmap_sem.
288          */
289         *prev = NULL;   /* tell sys_madvise we drop mmap_sem */
290         get_file(file);
291         up_read(&current->mm->mmap_sem);
292         offset = (loff_t)(start - vma->vm_start)
293                         + ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
294         vfs_fadvise(file, offset, end - start, POSIX_FADV_WILLNEED);
295         fput(file);
296         down_read(&current->mm->mmap_sem);
297         return 0;
298 }
299
300 static int madvise_cold_or_pageout_pte_range(pmd_t *pmd,
301                                 unsigned long addr, unsigned long end,
302                                 struct mm_walk *walk)
303 {
304         struct madvise_walk_private *private = walk->private;
305         struct mmu_gather *tlb = private->tlb;
306         bool pageout = private->pageout;
307         struct mm_struct *mm = tlb->mm;
308         struct vm_area_struct *vma = walk->vma;
309         pte_t *orig_pte, *pte, ptent;
310         spinlock_t *ptl;
311         struct page *page = NULL;
312         LIST_HEAD(page_list);
313
314         if (fatal_signal_pending(current))
315                 return -EINTR;
316
317 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
318         if (pmd_trans_huge(*pmd)) {
319                 pmd_t orig_pmd;
320                 unsigned long next = pmd_addr_end(addr, end);
321
322                 tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
323                 ptl = pmd_trans_huge_lock(pmd, vma);
324                 if (!ptl)
325                         return 0;
326
327                 orig_pmd = *pmd;
328                 if (is_huge_zero_pmd(orig_pmd))
329                         goto huge_unlock;
330
331                 if (unlikely(!pmd_present(orig_pmd))) {
332                         VM_BUG_ON(thp_migration_supported() &&
333                                         !is_pmd_migration_entry(orig_pmd));
334                         goto huge_unlock;
335                 }
336
337                 page = pmd_page(orig_pmd);
338                 if (next - addr != HPAGE_PMD_SIZE) {
339                         int err;
340
341                         if (page_mapcount(page) != 1)
342                                 goto huge_unlock;
343
344                         get_page(page);
345                         spin_unlock(ptl);
346                         lock_page(page);
347                         err = split_huge_page(page);
348                         unlock_page(page);
349                         put_page(page);
350                         if (!err)
351                                 goto regular_page;
352                         return 0;
353                 }
354
355                 if (pmd_young(orig_pmd)) {
356                         pmdp_invalidate(vma, addr, pmd);
357                         orig_pmd = pmd_mkold(orig_pmd);
358
359                         set_pmd_at(mm, addr, pmd, orig_pmd);
360                         tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
361                 }
362
363                 ClearPageReferenced(page);
364                 test_and_clear_page_young(page);
365                 if (pageout) {
366                         if (!isolate_lru_page(page))
367                                 list_add(&page->lru, &page_list);
368                 } else
369                         deactivate_page(page);
370 huge_unlock:
371                 spin_unlock(ptl);
372                 if (pageout)
373                         reclaim_pages(&page_list);
374                 return 0;
375         }
376
377         if (pmd_trans_unstable(pmd))
378                 return 0;
379 regular_page:
380 #endif
381         tlb_change_page_size(tlb, PAGE_SIZE);
382         orig_pte = pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
383         flush_tlb_batched_pending(mm);
384         arch_enter_lazy_mmu_mode();
385         for (; addr < end; pte++, addr += PAGE_SIZE) {
386                 ptent = *pte;
387
388                 if (pte_none(ptent))
389                         continue;
390
391                 if (!pte_present(ptent))
392                         continue;
393
394                 page = vm_normal_page(vma, addr, ptent);
395                 if (!page)
396                         continue;
397
398                 /*
399                  * Creating a THP page is expensive so split it only if we
400                  * are sure it's worth. Split it if we are only owner.
401                  */
402                 if (PageTransCompound(page)) {
403                         if (page_mapcount(page) != 1)
404                                 break;
405                         get_page(page);
406                         if (!trylock_page(page)) {
407                                 put_page(page);
408                                 break;
409                         }
410                         pte_unmap_unlock(orig_pte, ptl);
411                         if (split_huge_page(page)) {
412                                 unlock_page(page);
413                                 put_page(page);
414                                 pte_offset_map_lock(mm, pmd, addr, &ptl);
415                                 break;
416                         }
417                         unlock_page(page);
418                         put_page(page);
419                         pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
420                         pte--;
421                         addr -= PAGE_SIZE;
422                         continue;
423                 }
424
425                 VM_BUG_ON_PAGE(PageTransCompound(page), page);
426
427                 if (pte_young(ptent)) {
428                         ptent = ptep_get_and_clear_full(mm, addr, pte,
429                                                         tlb->fullmm);
430                         ptent = pte_mkold(ptent);
431                         set_pte_at(mm, addr, pte, ptent);
432                         tlb_remove_tlb_entry(tlb, pte, addr);
433                 }
434
435                 /*
436                  * We are deactivating a page for accelerating reclaiming.
437                  * VM couldn't reclaim the page unless we clear PG_young.
438                  * As a side effect, it makes confuse idle-page tracking
439                  * because they will miss recent referenced history.
440                  */
441                 ClearPageReferenced(page);
442                 test_and_clear_page_young(page);
443                 if (pageout) {
444                         if (!isolate_lru_page(page))
445                                 list_add(&page->lru, &page_list);
446                 } else
447                         deactivate_page(page);
448         }
449
450         arch_leave_lazy_mmu_mode();
451         pte_unmap_unlock(orig_pte, ptl);
452         if (pageout)
453                 reclaim_pages(&page_list);
454         cond_resched();
455
456         return 0;
457 }
458
459 static const struct mm_walk_ops cold_walk_ops = {
460         .pmd_entry = madvise_cold_or_pageout_pte_range,
461 };
462
463 static void madvise_cold_page_range(struct mmu_gather *tlb,
464                              struct vm_area_struct *vma,
465                              unsigned long addr, unsigned long end)
466 {
467         struct madvise_walk_private walk_private = {
468                 .pageout = false,
469                 .tlb = tlb,
470         };
471
472         tlb_start_vma(tlb, vma);
473         walk_page_range(vma->vm_mm, addr, end, &cold_walk_ops, &walk_private);
474         tlb_end_vma(tlb, vma);
475 }
476
477 static long madvise_cold(struct vm_area_struct *vma,
478                         struct vm_area_struct **prev,
479                         unsigned long start_addr, unsigned long end_addr)
480 {
481         struct mm_struct *mm = vma->vm_mm;
482         struct mmu_gather tlb;
483
484         *prev = vma;
485         if (!can_madv_lru_vma(vma))
486                 return -EINVAL;
487
488         lru_add_drain();
489         tlb_gather_mmu(&tlb, mm, start_addr, end_addr);
490         madvise_cold_page_range(&tlb, vma, start_addr, end_addr);
491         tlb_finish_mmu(&tlb, start_addr, end_addr);
492
493         return 0;
494 }
495
496 static void madvise_pageout_page_range(struct mmu_gather *tlb,
497                              struct vm_area_struct *vma,
498                              unsigned long addr, unsigned long end)
499 {
500         struct madvise_walk_private walk_private = {
501                 .pageout = true,
502                 .tlb = tlb,
503         };
504
505         tlb_start_vma(tlb, vma);
506         walk_page_range(vma->vm_mm, addr, end, &cold_walk_ops, &walk_private);
507         tlb_end_vma(tlb, vma);
508 }
509
510 static inline bool can_do_pageout(struct vm_area_struct *vma)
511 {
512         if (vma_is_anonymous(vma))
513                 return true;
514         if (!vma->vm_file)
515                 return false;
516         /*
517          * paging out pagecache only for non-anonymous mappings that correspond
518          * to the files the calling process could (if tried) open for writing;
519          * otherwise we'd be including shared non-exclusive mappings, which
520          * opens a side channel.
521          */
522         return inode_owner_or_capable(file_inode(vma->vm_file)) ||
523                 inode_permission(file_inode(vma->vm_file), MAY_WRITE) == 0;
524 }
525
526 static long madvise_pageout(struct vm_area_struct *vma,
527                         struct vm_area_struct **prev,
528                         unsigned long start_addr, unsigned long end_addr)
529 {
530         struct mm_struct *mm = vma->vm_mm;
531         struct mmu_gather tlb;
532
533         *prev = vma;
534         if (!can_madv_lru_vma(vma))
535                 return -EINVAL;
536
537         if (!can_do_pageout(vma))
538                 return 0;
539
540         lru_add_drain();
541         tlb_gather_mmu(&tlb, mm, start_addr, end_addr);
542         madvise_pageout_page_range(&tlb, vma, start_addr, end_addr);
543         tlb_finish_mmu(&tlb, start_addr, end_addr);
544
545         return 0;
546 }
547
548 static int madvise_free_pte_range(pmd_t *pmd, unsigned long addr,
549                                 unsigned long end, struct mm_walk *walk)
550
551 {
552         struct mmu_gather *tlb = walk->private;
553         struct mm_struct *mm = tlb->mm;
554         struct vm_area_struct *vma = walk->vma;
555         spinlock_t *ptl;
556         pte_t *orig_pte, *pte, ptent;
557         struct page *page;
558         int nr_swap = 0;
559         unsigned long next;
560
561         next = pmd_addr_end(addr, end);
562         if (pmd_trans_huge(*pmd))
563                 if (madvise_free_huge_pmd(tlb, vma, pmd, addr, next))
564                         goto next;
565
566         if (pmd_trans_unstable(pmd))
567                 return 0;
568
569         tlb_change_page_size(tlb, PAGE_SIZE);
570         orig_pte = pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
571         flush_tlb_batched_pending(mm);
572         arch_enter_lazy_mmu_mode();
573         for (; addr != end; pte++, addr += PAGE_SIZE) {
574                 ptent = *pte;
575
576                 if (pte_none(ptent))
577                         continue;
578                 /*
579                  * If the pte has swp_entry, just clear page table to
580                  * prevent swap-in which is more expensive rather than
581                  * (page allocation + zeroing).
582                  */
583                 if (!pte_present(ptent)) {
584                         swp_entry_t entry;
585
586                         entry = pte_to_swp_entry(ptent);
587                         if (non_swap_entry(entry))
588                                 continue;
589                         nr_swap--;
590                         free_swap_and_cache(entry);
591                         pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
592                         continue;
593                 }
594
595                 page = vm_normal_page(vma, addr, ptent);
596                 if (!page)
597                         continue;
598
599                 /*
600                  * If pmd isn't transhuge but the page is THP and
601                  * is owned by only this process, split it and
602                  * deactivate all pages.
603                  */
604                 if (PageTransCompound(page)) {
605                         if (page_mapcount(page) != 1)
606                                 goto out;
607                         get_page(page);
608                         if (!trylock_page(page)) {
609                                 put_page(page);
610                                 goto out;
611                         }
612                         pte_unmap_unlock(orig_pte, ptl);
613                         if (split_huge_page(page)) {
614                                 unlock_page(page);
615                                 put_page(page);
616                                 pte_offset_map_lock(mm, pmd, addr, &ptl);
617                                 goto out;
618                         }
619                         unlock_page(page);
620                         put_page(page);
621                         pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
622                         pte--;
623                         addr -= PAGE_SIZE;
624                         continue;
625                 }
626
627                 VM_BUG_ON_PAGE(PageTransCompound(page), page);
628
629                 if (PageSwapCache(page) || PageDirty(page)) {
630                         if (!trylock_page(page))
631                                 continue;
632                         /*
633                          * If page is shared with others, we couldn't clear
634                          * PG_dirty of the page.
635                          */
636                         if (page_mapcount(page) != 1) {
637                                 unlock_page(page);
638                                 continue;
639                         }
640
641                         if (PageSwapCache(page) && !try_to_free_swap(page)) {
642                                 unlock_page(page);
643                                 continue;
644                         }
645
646                         ClearPageDirty(page);
647                         unlock_page(page);
648                 }
649
650                 if (pte_young(ptent) || pte_dirty(ptent)) {
651                         /*
652                          * Some of architecture(ex, PPC) don't update TLB
653                          * with set_pte_at and tlb_remove_tlb_entry so for
654                          * the portability, remap the pte with old|clean
655                          * after pte clearing.
656                          */
657                         ptent = ptep_get_and_clear_full(mm, addr, pte,
658                                                         tlb->fullmm);
659
660                         ptent = pte_mkold(ptent);
661                         ptent = pte_mkclean(ptent);
662                         set_pte_at(mm, addr, pte, ptent);
663                         tlb_remove_tlb_entry(tlb, pte, addr);
664                 }
665                 mark_page_lazyfree(page);
666         }
667 out:
668         if (nr_swap) {
669                 if (current->mm == mm)
670                         sync_mm_rss(mm);
671
672                 add_mm_counter(mm, MM_SWAPENTS, nr_swap);
673         }
674         arch_leave_lazy_mmu_mode();
675         pte_unmap_unlock(orig_pte, ptl);
676         cond_resched();
677 next:
678         return 0;
679 }
680
681 static const struct mm_walk_ops madvise_free_walk_ops = {
682         .pmd_entry              = madvise_free_pte_range,
683 };
684
685 static int madvise_free_single_vma(struct vm_area_struct *vma,
686                         unsigned long start_addr, unsigned long end_addr)
687 {
688         struct mm_struct *mm = vma->vm_mm;
689         struct mmu_notifier_range range;
690         struct mmu_gather tlb;
691
692         /* MADV_FREE works for only anon vma at the moment */
693         if (!vma_is_anonymous(vma))
694                 return -EINVAL;
695
696         range.start = max(vma->vm_start, start_addr);
697         if (range.start >= vma->vm_end)
698                 return -EINVAL;
699         range.end = min(vma->vm_end, end_addr);
700         if (range.end <= vma->vm_start)
701                 return -EINVAL;
702         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
703                                 range.start, range.end);
704
705         lru_add_drain();
706         tlb_gather_mmu(&tlb, mm, range.start, range.end);
707         update_hiwater_rss(mm);
708
709         mmu_notifier_invalidate_range_start(&range);
710         tlb_start_vma(&tlb, vma);
711         walk_page_range(vma->vm_mm, range.start, range.end,
712                         &madvise_free_walk_ops, &tlb);
713         tlb_end_vma(&tlb, vma);
714         mmu_notifier_invalidate_range_end(&range);
715         tlb_finish_mmu(&tlb, range.start, range.end);
716
717         return 0;
718 }
719
720 /*
721  * Application no longer needs these pages.  If the pages are dirty,
722  * it's OK to just throw them away.  The app will be more careful about
723  * data it wants to keep.  Be sure to free swap resources too.  The
724  * zap_page_range call sets things up for shrink_active_list to actually free
725  * these pages later if no one else has touched them in the meantime,
726  * although we could add these pages to a global reuse list for
727  * shrink_active_list to pick up before reclaiming other pages.
728  *
729  * NB: This interface discards data rather than pushes it out to swap,
730  * as some implementations do.  This has performance implications for
731  * applications like large transactional databases which want to discard
732  * pages in anonymous maps after committing to backing store the data
733  * that was kept in them.  There is no reason to write this data out to
734  * the swap area if the application is discarding it.
735  *
736  * An interface that causes the system to free clean pages and flush
737  * dirty pages is already available as msync(MS_INVALIDATE).
738  */
739 static long madvise_dontneed_single_vma(struct vm_area_struct *vma,
740                                         unsigned long start, unsigned long end)
741 {
742         zap_page_range(vma, start, end - start);
743         return 0;
744 }
745
746 static long madvise_dontneed_free(struct vm_area_struct *vma,
747                                   struct vm_area_struct **prev,
748                                   unsigned long start, unsigned long end,
749                                   int behavior)
750 {
751         *prev = vma;
752         if (!can_madv_lru_vma(vma))
753                 return -EINVAL;
754
755         if (!userfaultfd_remove(vma, start, end)) {
756                 *prev = NULL; /* mmap_sem has been dropped, prev is stale */
757
758                 down_read(&current->mm->mmap_sem);
759                 vma = find_vma(current->mm, start);
760                 if (!vma)
761                         return -ENOMEM;
762                 if (start < vma->vm_start) {
763                         /*
764                          * This "vma" under revalidation is the one
765                          * with the lowest vma->vm_start where start
766                          * is also < vma->vm_end. If start <
767                          * vma->vm_start it means an hole materialized
768                          * in the user address space within the
769                          * virtual range passed to MADV_DONTNEED
770                          * or MADV_FREE.
771                          */
772                         return -ENOMEM;
773                 }
774                 if (!can_madv_lru_vma(vma))
775                         return -EINVAL;
776                 if (end > vma->vm_end) {
777                         /*
778                          * Don't fail if end > vma->vm_end. If the old
779                          * vma was splitted while the mmap_sem was
780                          * released the effect of the concurrent
781                          * operation may not cause madvise() to
782                          * have an undefined result. There may be an
783                          * adjacent next vma that we'll walk
784                          * next. userfaultfd_remove() will generate an
785                          * UFFD_EVENT_REMOVE repetition on the
786                          * end-vma->vm_end range, but the manager can
787                          * handle a repetition fine.
788                          */
789                         end = vma->vm_end;
790                 }
791                 VM_WARN_ON(start >= end);
792         }
793
794         if (behavior == MADV_DONTNEED)
795                 return madvise_dontneed_single_vma(vma, start, end);
796         else if (behavior == MADV_FREE)
797                 return madvise_free_single_vma(vma, start, end);
798         else
799                 return -EINVAL;
800 }
801
802 /*
803  * Application wants to free up the pages and associated backing store.
804  * This is effectively punching a hole into the middle of a file.
805  */
806 static long madvise_remove(struct vm_area_struct *vma,
807                                 struct vm_area_struct **prev,
808                                 unsigned long start, unsigned long end)
809 {
810         loff_t offset;
811         int error;
812         struct file *f;
813
814         *prev = NULL;   /* tell sys_madvise we drop mmap_sem */
815
816         if (vma->vm_flags & VM_LOCKED)
817                 return -EINVAL;
818
819         f = vma->vm_file;
820
821         if (!f || !f->f_mapping || !f->f_mapping->host) {
822                         return -EINVAL;
823         }
824
825         if ((vma->vm_flags & (VM_SHARED|VM_WRITE)) != (VM_SHARED|VM_WRITE))
826                 return -EACCES;
827
828         offset = (loff_t)(start - vma->vm_start)
829                         + ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
830
831         /*
832          * Filesystem's fallocate may need to take i_mutex.  We need to
833          * explicitly grab a reference because the vma (and hence the
834          * vma's reference to the file) can go away as soon as we drop
835          * mmap_sem.
836          */
837         get_file(f);
838         if (userfaultfd_remove(vma, start, end)) {
839                 /* mmap_sem was not released by userfaultfd_remove() */
840                 up_read(&current->mm->mmap_sem);
841         }
842         error = vfs_fallocate(f,
843                                 FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE,
844                                 offset, end - start);
845         fput(f);
846         down_read(&current->mm->mmap_sem);
847         return error;
848 }
849
850 #ifdef CONFIG_MEMORY_FAILURE
851 /*
852  * Error injection support for memory error handling.
853  */
854 static int madvise_inject_error(int behavior,
855                 unsigned long start, unsigned long end)
856 {
857         struct page *page;
858         struct zone *zone;
859         unsigned int order;
860
861         if (!capable(CAP_SYS_ADMIN))
862                 return -EPERM;
863
864
865         for (; start < end; start += PAGE_SIZE << order) {
866                 unsigned long pfn;
867                 int ret;
868
869                 ret = get_user_pages_fast(start, 1, 0, &page);
870                 if (ret != 1)
871                         return ret;
872                 pfn = page_to_pfn(page);
873
874                 /*
875                  * When soft offlining hugepages, after migrating the page
876                  * we dissolve it, therefore in the second loop "page" will
877                  * no longer be a compound page, and order will be 0.
878                  */
879                 order = compound_order(compound_head(page));
880
881                 if (PageHWPoison(page)) {
882                         put_page(page);
883                         continue;
884                 }
885
886                 if (behavior == MADV_SOFT_OFFLINE) {
887                         pr_info("Soft offlining pfn %#lx at process virtual address %#lx\n",
888                                         pfn, start);
889
890                         ret = soft_offline_page(page, MF_COUNT_INCREASED);
891                         if (ret)
892                                 return ret;
893                         continue;
894                 }
895
896                 pr_info("Injecting memory failure for pfn %#lx at process virtual address %#lx\n",
897                                 pfn, start);
898
899                 /*
900                  * Drop the page reference taken by get_user_pages_fast(). In
901                  * the absence of MF_COUNT_INCREASED the memory_failure()
902                  * routine is responsible for pinning the page to prevent it
903                  * from being released back to the page allocator.
904                  */
905                 put_page(page);
906                 ret = memory_failure(pfn, 0);
907                 if (ret)
908                         return ret;
909         }
910
911         /* Ensure that all poisoned pages are removed from per-cpu lists */
912         for_each_populated_zone(zone)
913                 drain_all_pages(zone);
914
915         return 0;
916 }
917 #endif
918
919 static long
920 madvise_vma(struct vm_area_struct *vma, struct vm_area_struct **prev,
921                 unsigned long start, unsigned long end, int behavior)
922 {
923         switch (behavior) {
924         case MADV_REMOVE:
925                 return madvise_remove(vma, prev, start, end);
926         case MADV_WILLNEED:
927                 return madvise_willneed(vma, prev, start, end);
928         case MADV_COLD:
929                 return madvise_cold(vma, prev, start, end);
930         case MADV_PAGEOUT:
931                 return madvise_pageout(vma, prev, start, end);
932         case MADV_FREE:
933         case MADV_DONTNEED:
934                 return madvise_dontneed_free(vma, prev, start, end, behavior);
935         default:
936                 return madvise_behavior(vma, prev, start, end, behavior);
937         }
938 }
939
940 static bool
941 madvise_behavior_valid(int behavior)
942 {
943         switch (behavior) {
944         case MADV_DOFORK:
945         case MADV_DONTFORK:
946         case MADV_NORMAL:
947         case MADV_SEQUENTIAL:
948         case MADV_RANDOM:
949         case MADV_REMOVE:
950         case MADV_WILLNEED:
951         case MADV_DONTNEED:
952         case MADV_FREE:
953         case MADV_COLD:
954         case MADV_PAGEOUT:
955 #ifdef CONFIG_KSM
956         case MADV_MERGEABLE:
957         case MADV_UNMERGEABLE:
958 #endif
959 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
960         case MADV_HUGEPAGE:
961         case MADV_NOHUGEPAGE:
962 #endif
963         case MADV_DONTDUMP:
964         case MADV_DODUMP:
965         case MADV_WIPEONFORK:
966         case MADV_KEEPONFORK:
967 #ifdef CONFIG_MEMORY_FAILURE
968         case MADV_SOFT_OFFLINE:
969         case MADV_HWPOISON:
970 #endif
971                 return true;
972
973         default:
974                 return false;
975         }
976 }
977
978 /*
979  * The madvise(2) system call.
980  *
981  * Applications can use madvise() to advise the kernel how it should
982  * handle paging I/O in this VM area.  The idea is to help the kernel
983  * use appropriate read-ahead and caching techniques.  The information
984  * provided is advisory only, and can be safely disregarded by the
985  * kernel without affecting the correct operation of the application.
986  *
987  * behavior values:
988  *  MADV_NORMAL - the default behavior is to read clusters.  This
989  *              results in some read-ahead and read-behind.
990  *  MADV_RANDOM - the system should read the minimum amount of data
991  *              on any access, since it is unlikely that the appli-
992  *              cation will need more than what it asks for.
993  *  MADV_SEQUENTIAL - pages in the given range will probably be accessed
994  *              once, so they can be aggressively read ahead, and
995  *              can be freed soon after they are accessed.
996  *  MADV_WILLNEED - the application is notifying the system to read
997  *              some pages ahead.
998  *  MADV_DONTNEED - the application is finished with the given range,
999  *              so the kernel can free resources associated with it.
1000  *  MADV_FREE - the application marks pages in the given range as lazy free,
1001  *              where actual purges are postponed until memory pressure happens.
1002  *  MADV_REMOVE - the application wants to free up the given range of
1003  *              pages and associated backing store.
1004  *  MADV_DONTFORK - omit this area from child's address space when forking:
1005  *              typically, to avoid COWing pages pinned by get_user_pages().
1006  *  MADV_DOFORK - cancel MADV_DONTFORK: no longer omit this area when forking.
1007  *  MADV_WIPEONFORK - present the child process with zero-filled memory in this
1008  *              range after a fork.
1009  *  MADV_KEEPONFORK - undo the effect of MADV_WIPEONFORK
1010  *  MADV_HWPOISON - trigger memory error handler as if the given memory range
1011  *              were corrupted by unrecoverable hardware memory failure.
1012  *  MADV_SOFT_OFFLINE - try to soft-offline the given range of memory.
1013  *  MADV_MERGEABLE - the application recommends that KSM try to merge pages in
1014  *              this area with pages of identical content from other such areas.
1015  *  MADV_UNMERGEABLE- cancel MADV_MERGEABLE: no longer merge pages with others.
1016  *  MADV_HUGEPAGE - the application wants to back the given range by transparent
1017  *              huge pages in the future. Existing pages might be coalesced and
1018  *              new pages might be allocated as THP.
1019  *  MADV_NOHUGEPAGE - mark the given range as not worth being backed by
1020  *              transparent huge pages so the existing pages will not be
1021  *              coalesced into THP and new pages will not be allocated as THP.
1022  *  MADV_DONTDUMP - the application wants to prevent pages in the given range
1023  *              from being included in its core dump.
1024  *  MADV_DODUMP - cancel MADV_DONTDUMP: no longer exclude from core dump.
1025  *
1026  * return values:
1027  *  zero    - success
1028  *  -EINVAL - start + len < 0, start is not page-aligned,
1029  *              "behavior" is not a valid value, or application
1030  *              is attempting to release locked or shared pages,
1031  *              or the specified address range includes file, Huge TLB,
1032  *              MAP_SHARED or VMPFNMAP range.
1033  *  -ENOMEM - addresses in the specified range are not currently
1034  *              mapped, or are outside the AS of the process.
1035  *  -EIO    - an I/O error occurred while paging in data.
1036  *  -EBADF  - map exists, but area maps something that isn't a file.
1037  *  -EAGAIN - a kernel resource was temporarily unavailable.
1038  */
1039 SYSCALL_DEFINE3(madvise, unsigned long, start, size_t, len_in, int, behavior)
1040 {
1041         unsigned long end, tmp;
1042         struct vm_area_struct *vma, *prev;
1043         int unmapped_error = 0;
1044         int error = -EINVAL;
1045         int write;
1046         size_t len;
1047         struct blk_plug plug;
1048
1049         start = untagged_addr(start);
1050
1051         if (!madvise_behavior_valid(behavior))
1052                 return error;
1053
1054         if (start & ~PAGE_MASK)
1055                 return error;
1056         len = (len_in + ~PAGE_MASK) & PAGE_MASK;
1057
1058         /* Check to see whether len was rounded up from small -ve to zero */
1059         if (len_in && !len)
1060                 return error;
1061
1062         end = start + len;
1063         if (end < start)
1064                 return error;
1065
1066         error = 0;
1067         if (end == start)
1068                 return error;
1069
1070 #ifdef CONFIG_MEMORY_FAILURE
1071         if (behavior == MADV_HWPOISON || behavior == MADV_SOFT_OFFLINE)
1072                 return madvise_inject_error(behavior, start, start + len_in);
1073 #endif
1074
1075         write = madvise_need_mmap_write(behavior);
1076         if (write) {
1077                 if (down_write_killable(&current->mm->mmap_sem))
1078                         return -EINTR;
1079         } else {
1080                 down_read(&current->mm->mmap_sem);
1081         }
1082
1083         /*
1084          * If the interval [start,end) covers some unmapped address
1085          * ranges, just ignore them, but return -ENOMEM at the end.
1086          * - different from the way of handling in mlock etc.
1087          */
1088         vma = find_vma_prev(current->mm, start, &prev);
1089         if (vma && start > vma->vm_start)
1090                 prev = vma;
1091
1092         blk_start_plug(&plug);
1093         for (;;) {
1094                 /* Still start < end. */
1095                 error = -ENOMEM;
1096                 if (!vma)
1097                         goto out;
1098
1099                 /* Here start < (end|vma->vm_end). */
1100                 if (start < vma->vm_start) {
1101                         unmapped_error = -ENOMEM;
1102                         start = vma->vm_start;
1103                         if (start >= end)
1104                                 goto out;
1105                 }
1106
1107                 /* Here vma->vm_start <= start < (end|vma->vm_end) */
1108                 tmp = vma->vm_end;
1109                 if (end < tmp)
1110                         tmp = end;
1111
1112                 /* Here vma->vm_start <= start < tmp <= (end|vma->vm_end). */
1113                 error = madvise_vma(vma, &prev, start, tmp, behavior);
1114                 if (error)
1115                         goto out;
1116                 start = tmp;
1117                 if (prev && start < prev->vm_end)
1118                         start = prev->vm_end;
1119                 error = unmapped_error;
1120                 if (start >= end)
1121                         goto out;
1122                 if (prev)
1123                         vma = prev->vm_next;
1124                 else    /* madvise_remove dropped mmap_sem */
1125                         vma = find_vma(current->mm, start);
1126         }
1127 out:
1128         blk_finish_plug(&plug);
1129         if (write)
1130                 up_write(&current->mm->mmap_sem);
1131         else
1132                 up_read(&current->mm->mmap_sem);
1133
1134         return error;
1135 }