1 // SPDX-License-Identifier: GPL-2.0
5 * Copyright (C) 1999 Linus Torvalds
6 * Copyright (C) 2002 Christoph Hellwig
9 #include <linux/mman.h>
10 #include <linux/pagemap.h>
11 #include <linux/syscalls.h>
12 #include <linux/mempolicy.h>
13 #include <linux/page-isolation.h>
14 #include <linux/page_idle.h>
15 #include <linux/userfaultfd_k.h>
16 #include <linux/hugetlb.h>
17 #include <linux/falloc.h>
18 #include <linux/fadvise.h>
19 #include <linux/sched.h>
20 #include <linux/ksm.h>
22 #include <linux/file.h>
23 #include <linux/blkdev.h>
24 #include <linux/backing-dev.h>
25 #include <linux/pagewalk.h>
26 #include <linux/swap.h>
27 #include <linux/swapops.h>
28 #include <linux/shmem_fs.h>
29 #include <linux/mmu_notifier.h>
35 struct madvise_walk_private {
36 struct mmu_gather *tlb;
41 * Any behaviour which results in changes to the vma->vm_flags needs to
42 * take mmap_sem for writing. Others, which simply traverse vmas, need
43 * to only take it for reading.
45 static int madvise_need_mmap_write(int behavior)
56 /* be safe, default to 1. list exceptions explicitly */
62 * We can potentially split a vm area into separate
63 * areas, each area with its own behavior.
65 static long madvise_behavior(struct vm_area_struct *vma,
66 struct vm_area_struct **prev,
67 unsigned long start, unsigned long end, int behavior)
69 struct mm_struct *mm = vma->vm_mm;
72 unsigned long new_flags = vma->vm_flags;
76 new_flags = new_flags & ~VM_RAND_READ & ~VM_SEQ_READ;
79 new_flags = (new_flags & ~VM_RAND_READ) | VM_SEQ_READ;
82 new_flags = (new_flags & ~VM_SEQ_READ) | VM_RAND_READ;
85 new_flags |= VM_DONTCOPY;
88 if (vma->vm_flags & VM_IO) {
92 new_flags &= ~VM_DONTCOPY;
95 /* MADV_WIPEONFORK is only supported on anonymous memory. */
96 if (vma->vm_file || vma->vm_flags & VM_SHARED) {
100 new_flags |= VM_WIPEONFORK;
102 case MADV_KEEPONFORK:
103 new_flags &= ~VM_WIPEONFORK;
106 new_flags |= VM_DONTDUMP;
109 if (!is_vm_hugetlb_page(vma) && new_flags & VM_SPECIAL) {
113 new_flags &= ~VM_DONTDUMP;
116 case MADV_UNMERGEABLE:
117 error = ksm_madvise(vma, start, end, behavior, &new_flags);
119 goto out_convert_errno;
122 case MADV_NOHUGEPAGE:
123 error = hugepage_madvise(vma, &new_flags, behavior);
125 goto out_convert_errno;
129 if (new_flags == vma->vm_flags) {
134 pgoff = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT);
135 *prev = vma_merge(mm, *prev, start, end, new_flags, vma->anon_vma,
136 vma->vm_file, pgoff, vma_policy(vma),
137 vma->vm_userfaultfd_ctx);
145 if (start != vma->vm_start) {
146 if (unlikely(mm->map_count >= sysctl_max_map_count)) {
150 error = __split_vma(mm, vma, start, 1);
152 goto out_convert_errno;
155 if (end != vma->vm_end) {
156 if (unlikely(mm->map_count >= sysctl_max_map_count)) {
160 error = __split_vma(mm, vma, end, 0);
162 goto out_convert_errno;
167 * vm_flags is protected by the mmap_sem held in write mode.
169 vma->vm_flags = new_flags;
173 * madvise() returns EAGAIN if kernel resources, such as
174 * slab, are temporarily unavailable.
176 if (error == -ENOMEM)
183 static int swapin_walk_pmd_entry(pmd_t *pmd, unsigned long start,
184 unsigned long end, struct mm_walk *walk)
187 struct vm_area_struct *vma = walk->private;
190 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
193 for (index = start; index != end; index += PAGE_SIZE) {
199 orig_pte = pte_offset_map_lock(vma->vm_mm, pmd, start, &ptl);
200 pte = *(orig_pte + ((index - start) / PAGE_SIZE));
201 pte_unmap_unlock(orig_pte, ptl);
203 if (pte_present(pte) || pte_none(pte))
205 entry = pte_to_swp_entry(pte);
206 if (unlikely(non_swap_entry(entry)))
209 page = read_swap_cache_async(entry, GFP_HIGHUSER_MOVABLE,
218 static const struct mm_walk_ops swapin_walk_ops = {
219 .pmd_entry = swapin_walk_pmd_entry,
222 static void force_shm_swapin_readahead(struct vm_area_struct *vma,
223 unsigned long start, unsigned long end,
224 struct address_space *mapping)
230 for (; start < end; start += PAGE_SIZE) {
231 index = ((start - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
233 page = find_get_entry(mapping, index);
234 if (!xa_is_value(page)) {
239 swap = radix_to_swp_entry(page);
240 page = read_swap_cache_async(swap, GFP_HIGHUSER_MOVABLE,
246 lru_add_drain(); /* Push any new pages onto the LRU now */
248 #endif /* CONFIG_SWAP */
251 * Schedule all required I/O operations. Do not wait for completion.
253 static long madvise_willneed(struct vm_area_struct *vma,
254 struct vm_area_struct **prev,
255 unsigned long start, unsigned long end)
257 struct file *file = vma->vm_file;
263 walk_page_range(vma->vm_mm, start, end, &swapin_walk_ops, vma);
264 lru_add_drain(); /* Push any new pages onto the LRU now */
268 if (shmem_mapping(file->f_mapping)) {
269 force_shm_swapin_readahead(vma, start, end,
278 if (IS_DAX(file_inode(file))) {
279 /* no bad return value, but ignore advice */
284 * Filesystem's fadvise may need to take various locks. We need to
285 * explicitly grab a reference because the vma (and hence the
286 * vma's reference to the file) can go away as soon as we drop
289 *prev = NULL; /* tell sys_madvise we drop mmap_sem */
291 up_read(¤t->mm->mmap_sem);
292 offset = (loff_t)(start - vma->vm_start)
293 + ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
294 vfs_fadvise(file, offset, end - start, POSIX_FADV_WILLNEED);
296 down_read(¤t->mm->mmap_sem);
300 static int madvise_cold_or_pageout_pte_range(pmd_t *pmd,
301 unsigned long addr, unsigned long end,
302 struct mm_walk *walk)
304 struct madvise_walk_private *private = walk->private;
305 struct mmu_gather *tlb = private->tlb;
306 bool pageout = private->pageout;
307 struct mm_struct *mm = tlb->mm;
308 struct vm_area_struct *vma = walk->vma;
309 pte_t *orig_pte, *pte, ptent;
311 struct page *page = NULL;
312 LIST_HEAD(page_list);
314 if (fatal_signal_pending(current))
317 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
318 if (pmd_trans_huge(*pmd)) {
320 unsigned long next = pmd_addr_end(addr, end);
322 tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
323 ptl = pmd_trans_huge_lock(pmd, vma);
328 if (is_huge_zero_pmd(orig_pmd))
331 if (unlikely(!pmd_present(orig_pmd))) {
332 VM_BUG_ON(thp_migration_supported() &&
333 !is_pmd_migration_entry(orig_pmd));
337 page = pmd_page(orig_pmd);
338 if (next - addr != HPAGE_PMD_SIZE) {
341 if (page_mapcount(page) != 1)
347 err = split_huge_page(page);
355 if (pmd_young(orig_pmd)) {
356 pmdp_invalidate(vma, addr, pmd);
357 orig_pmd = pmd_mkold(orig_pmd);
359 set_pmd_at(mm, addr, pmd, orig_pmd);
360 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
363 ClearPageReferenced(page);
364 test_and_clear_page_young(page);
366 if (!isolate_lru_page(page))
367 list_add(&page->lru, &page_list);
369 deactivate_page(page);
373 reclaim_pages(&page_list);
377 if (pmd_trans_unstable(pmd))
381 tlb_change_page_size(tlb, PAGE_SIZE);
382 orig_pte = pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
383 flush_tlb_batched_pending(mm);
384 arch_enter_lazy_mmu_mode();
385 for (; addr < end; pte++, addr += PAGE_SIZE) {
391 if (!pte_present(ptent))
394 page = vm_normal_page(vma, addr, ptent);
399 * Creating a THP page is expensive so split it only if we
400 * are sure it's worth. Split it if we are only owner.
402 if (PageTransCompound(page)) {
403 if (page_mapcount(page) != 1)
406 if (!trylock_page(page)) {
410 pte_unmap_unlock(orig_pte, ptl);
411 if (split_huge_page(page)) {
414 pte_offset_map_lock(mm, pmd, addr, &ptl);
419 pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
425 VM_BUG_ON_PAGE(PageTransCompound(page), page);
427 if (pte_young(ptent)) {
428 ptent = ptep_get_and_clear_full(mm, addr, pte,
430 ptent = pte_mkold(ptent);
431 set_pte_at(mm, addr, pte, ptent);
432 tlb_remove_tlb_entry(tlb, pte, addr);
436 * We are deactivating a page for accelerating reclaiming.
437 * VM couldn't reclaim the page unless we clear PG_young.
438 * As a side effect, it makes confuse idle-page tracking
439 * because they will miss recent referenced history.
441 ClearPageReferenced(page);
442 test_and_clear_page_young(page);
444 if (!isolate_lru_page(page))
445 list_add(&page->lru, &page_list);
447 deactivate_page(page);
450 arch_leave_lazy_mmu_mode();
451 pte_unmap_unlock(orig_pte, ptl);
453 reclaim_pages(&page_list);
459 static const struct mm_walk_ops cold_walk_ops = {
460 .pmd_entry = madvise_cold_or_pageout_pte_range,
463 static void madvise_cold_page_range(struct mmu_gather *tlb,
464 struct vm_area_struct *vma,
465 unsigned long addr, unsigned long end)
467 struct madvise_walk_private walk_private = {
472 tlb_start_vma(tlb, vma);
473 walk_page_range(vma->vm_mm, addr, end, &cold_walk_ops, &walk_private);
474 tlb_end_vma(tlb, vma);
477 static long madvise_cold(struct vm_area_struct *vma,
478 struct vm_area_struct **prev,
479 unsigned long start_addr, unsigned long end_addr)
481 struct mm_struct *mm = vma->vm_mm;
482 struct mmu_gather tlb;
485 if (!can_madv_lru_vma(vma))
489 tlb_gather_mmu(&tlb, mm, start_addr, end_addr);
490 madvise_cold_page_range(&tlb, vma, start_addr, end_addr);
491 tlb_finish_mmu(&tlb, start_addr, end_addr);
496 static void madvise_pageout_page_range(struct mmu_gather *tlb,
497 struct vm_area_struct *vma,
498 unsigned long addr, unsigned long end)
500 struct madvise_walk_private walk_private = {
505 tlb_start_vma(tlb, vma);
506 walk_page_range(vma->vm_mm, addr, end, &cold_walk_ops, &walk_private);
507 tlb_end_vma(tlb, vma);
510 static inline bool can_do_pageout(struct vm_area_struct *vma)
512 if (vma_is_anonymous(vma))
517 * paging out pagecache only for non-anonymous mappings that correspond
518 * to the files the calling process could (if tried) open for writing;
519 * otherwise we'd be including shared non-exclusive mappings, which
520 * opens a side channel.
522 return inode_owner_or_capable(file_inode(vma->vm_file)) ||
523 inode_permission(file_inode(vma->vm_file), MAY_WRITE) == 0;
526 static long madvise_pageout(struct vm_area_struct *vma,
527 struct vm_area_struct **prev,
528 unsigned long start_addr, unsigned long end_addr)
530 struct mm_struct *mm = vma->vm_mm;
531 struct mmu_gather tlb;
534 if (!can_madv_lru_vma(vma))
537 if (!can_do_pageout(vma))
541 tlb_gather_mmu(&tlb, mm, start_addr, end_addr);
542 madvise_pageout_page_range(&tlb, vma, start_addr, end_addr);
543 tlb_finish_mmu(&tlb, start_addr, end_addr);
548 static int madvise_free_pte_range(pmd_t *pmd, unsigned long addr,
549 unsigned long end, struct mm_walk *walk)
552 struct mmu_gather *tlb = walk->private;
553 struct mm_struct *mm = tlb->mm;
554 struct vm_area_struct *vma = walk->vma;
556 pte_t *orig_pte, *pte, ptent;
561 next = pmd_addr_end(addr, end);
562 if (pmd_trans_huge(*pmd))
563 if (madvise_free_huge_pmd(tlb, vma, pmd, addr, next))
566 if (pmd_trans_unstable(pmd))
569 tlb_change_page_size(tlb, PAGE_SIZE);
570 orig_pte = pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
571 flush_tlb_batched_pending(mm);
572 arch_enter_lazy_mmu_mode();
573 for (; addr != end; pte++, addr += PAGE_SIZE) {
579 * If the pte has swp_entry, just clear page table to
580 * prevent swap-in which is more expensive rather than
581 * (page allocation + zeroing).
583 if (!pte_present(ptent)) {
586 entry = pte_to_swp_entry(ptent);
587 if (non_swap_entry(entry))
590 free_swap_and_cache(entry);
591 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
595 page = vm_normal_page(vma, addr, ptent);
600 * If pmd isn't transhuge but the page is THP and
601 * is owned by only this process, split it and
602 * deactivate all pages.
604 if (PageTransCompound(page)) {
605 if (page_mapcount(page) != 1)
608 if (!trylock_page(page)) {
612 pte_unmap_unlock(orig_pte, ptl);
613 if (split_huge_page(page)) {
616 pte_offset_map_lock(mm, pmd, addr, &ptl);
621 pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
627 VM_BUG_ON_PAGE(PageTransCompound(page), page);
629 if (PageSwapCache(page) || PageDirty(page)) {
630 if (!trylock_page(page))
633 * If page is shared with others, we couldn't clear
634 * PG_dirty of the page.
636 if (page_mapcount(page) != 1) {
641 if (PageSwapCache(page) && !try_to_free_swap(page)) {
646 ClearPageDirty(page);
650 if (pte_young(ptent) || pte_dirty(ptent)) {
652 * Some of architecture(ex, PPC) don't update TLB
653 * with set_pte_at and tlb_remove_tlb_entry so for
654 * the portability, remap the pte with old|clean
655 * after pte clearing.
657 ptent = ptep_get_and_clear_full(mm, addr, pte,
660 ptent = pte_mkold(ptent);
661 ptent = pte_mkclean(ptent);
662 set_pte_at(mm, addr, pte, ptent);
663 tlb_remove_tlb_entry(tlb, pte, addr);
665 mark_page_lazyfree(page);
669 if (current->mm == mm)
672 add_mm_counter(mm, MM_SWAPENTS, nr_swap);
674 arch_leave_lazy_mmu_mode();
675 pte_unmap_unlock(orig_pte, ptl);
681 static const struct mm_walk_ops madvise_free_walk_ops = {
682 .pmd_entry = madvise_free_pte_range,
685 static int madvise_free_single_vma(struct vm_area_struct *vma,
686 unsigned long start_addr, unsigned long end_addr)
688 struct mm_struct *mm = vma->vm_mm;
689 struct mmu_notifier_range range;
690 struct mmu_gather tlb;
692 /* MADV_FREE works for only anon vma at the moment */
693 if (!vma_is_anonymous(vma))
696 range.start = max(vma->vm_start, start_addr);
697 if (range.start >= vma->vm_end)
699 range.end = min(vma->vm_end, end_addr);
700 if (range.end <= vma->vm_start)
702 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
703 range.start, range.end);
706 tlb_gather_mmu(&tlb, mm, range.start, range.end);
707 update_hiwater_rss(mm);
709 mmu_notifier_invalidate_range_start(&range);
710 tlb_start_vma(&tlb, vma);
711 walk_page_range(vma->vm_mm, range.start, range.end,
712 &madvise_free_walk_ops, &tlb);
713 tlb_end_vma(&tlb, vma);
714 mmu_notifier_invalidate_range_end(&range);
715 tlb_finish_mmu(&tlb, range.start, range.end);
721 * Application no longer needs these pages. If the pages are dirty,
722 * it's OK to just throw them away. The app will be more careful about
723 * data it wants to keep. Be sure to free swap resources too. The
724 * zap_page_range call sets things up for shrink_active_list to actually free
725 * these pages later if no one else has touched them in the meantime,
726 * although we could add these pages to a global reuse list for
727 * shrink_active_list to pick up before reclaiming other pages.
729 * NB: This interface discards data rather than pushes it out to swap,
730 * as some implementations do. This has performance implications for
731 * applications like large transactional databases which want to discard
732 * pages in anonymous maps after committing to backing store the data
733 * that was kept in them. There is no reason to write this data out to
734 * the swap area if the application is discarding it.
736 * An interface that causes the system to free clean pages and flush
737 * dirty pages is already available as msync(MS_INVALIDATE).
739 static long madvise_dontneed_single_vma(struct vm_area_struct *vma,
740 unsigned long start, unsigned long end)
742 zap_page_range(vma, start, end - start);
746 static long madvise_dontneed_free(struct vm_area_struct *vma,
747 struct vm_area_struct **prev,
748 unsigned long start, unsigned long end,
752 if (!can_madv_lru_vma(vma))
755 if (!userfaultfd_remove(vma, start, end)) {
756 *prev = NULL; /* mmap_sem has been dropped, prev is stale */
758 down_read(¤t->mm->mmap_sem);
759 vma = find_vma(current->mm, start);
762 if (start < vma->vm_start) {
764 * This "vma" under revalidation is the one
765 * with the lowest vma->vm_start where start
766 * is also < vma->vm_end. If start <
767 * vma->vm_start it means an hole materialized
768 * in the user address space within the
769 * virtual range passed to MADV_DONTNEED
774 if (!can_madv_lru_vma(vma))
776 if (end > vma->vm_end) {
778 * Don't fail if end > vma->vm_end. If the old
779 * vma was splitted while the mmap_sem was
780 * released the effect of the concurrent
781 * operation may not cause madvise() to
782 * have an undefined result. There may be an
783 * adjacent next vma that we'll walk
784 * next. userfaultfd_remove() will generate an
785 * UFFD_EVENT_REMOVE repetition on the
786 * end-vma->vm_end range, but the manager can
787 * handle a repetition fine.
791 VM_WARN_ON(start >= end);
794 if (behavior == MADV_DONTNEED)
795 return madvise_dontneed_single_vma(vma, start, end);
796 else if (behavior == MADV_FREE)
797 return madvise_free_single_vma(vma, start, end);
803 * Application wants to free up the pages and associated backing store.
804 * This is effectively punching a hole into the middle of a file.
806 static long madvise_remove(struct vm_area_struct *vma,
807 struct vm_area_struct **prev,
808 unsigned long start, unsigned long end)
814 *prev = NULL; /* tell sys_madvise we drop mmap_sem */
816 if (vma->vm_flags & VM_LOCKED)
821 if (!f || !f->f_mapping || !f->f_mapping->host) {
825 if ((vma->vm_flags & (VM_SHARED|VM_WRITE)) != (VM_SHARED|VM_WRITE))
828 offset = (loff_t)(start - vma->vm_start)
829 + ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
832 * Filesystem's fallocate may need to take i_mutex. We need to
833 * explicitly grab a reference because the vma (and hence the
834 * vma's reference to the file) can go away as soon as we drop
838 if (userfaultfd_remove(vma, start, end)) {
839 /* mmap_sem was not released by userfaultfd_remove() */
840 up_read(¤t->mm->mmap_sem);
842 error = vfs_fallocate(f,
843 FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE,
844 offset, end - start);
846 down_read(¤t->mm->mmap_sem);
850 #ifdef CONFIG_MEMORY_FAILURE
852 * Error injection support for memory error handling.
854 static int madvise_inject_error(int behavior,
855 unsigned long start, unsigned long end)
861 if (!capable(CAP_SYS_ADMIN))
865 for (; start < end; start += PAGE_SIZE << order) {
869 ret = get_user_pages_fast(start, 1, 0, &page);
872 pfn = page_to_pfn(page);
875 * When soft offlining hugepages, after migrating the page
876 * we dissolve it, therefore in the second loop "page" will
877 * no longer be a compound page, and order will be 0.
879 order = compound_order(compound_head(page));
881 if (PageHWPoison(page)) {
886 if (behavior == MADV_SOFT_OFFLINE) {
887 pr_info("Soft offlining pfn %#lx at process virtual address %#lx\n",
890 ret = soft_offline_page(page, MF_COUNT_INCREASED);
896 pr_info("Injecting memory failure for pfn %#lx at process virtual address %#lx\n",
900 * Drop the page reference taken by get_user_pages_fast(). In
901 * the absence of MF_COUNT_INCREASED the memory_failure()
902 * routine is responsible for pinning the page to prevent it
903 * from being released back to the page allocator.
906 ret = memory_failure(pfn, 0);
911 /* Ensure that all poisoned pages are removed from per-cpu lists */
912 for_each_populated_zone(zone)
913 drain_all_pages(zone);
920 madvise_vma(struct vm_area_struct *vma, struct vm_area_struct **prev,
921 unsigned long start, unsigned long end, int behavior)
925 return madvise_remove(vma, prev, start, end);
927 return madvise_willneed(vma, prev, start, end);
929 return madvise_cold(vma, prev, start, end);
931 return madvise_pageout(vma, prev, start, end);
934 return madvise_dontneed_free(vma, prev, start, end, behavior);
936 return madvise_behavior(vma, prev, start, end, behavior);
941 madvise_behavior_valid(int behavior)
947 case MADV_SEQUENTIAL:
957 case MADV_UNMERGEABLE:
959 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
961 case MADV_NOHUGEPAGE:
965 case MADV_WIPEONFORK:
966 case MADV_KEEPONFORK:
967 #ifdef CONFIG_MEMORY_FAILURE
968 case MADV_SOFT_OFFLINE:
979 * The madvise(2) system call.
981 * Applications can use madvise() to advise the kernel how it should
982 * handle paging I/O in this VM area. The idea is to help the kernel
983 * use appropriate read-ahead and caching techniques. The information
984 * provided is advisory only, and can be safely disregarded by the
985 * kernel without affecting the correct operation of the application.
988 * MADV_NORMAL - the default behavior is to read clusters. This
989 * results in some read-ahead and read-behind.
990 * MADV_RANDOM - the system should read the minimum amount of data
991 * on any access, since it is unlikely that the appli-
992 * cation will need more than what it asks for.
993 * MADV_SEQUENTIAL - pages in the given range will probably be accessed
994 * once, so they can be aggressively read ahead, and
995 * can be freed soon after they are accessed.
996 * MADV_WILLNEED - the application is notifying the system to read
998 * MADV_DONTNEED - the application is finished with the given range,
999 * so the kernel can free resources associated with it.
1000 * MADV_FREE - the application marks pages in the given range as lazy free,
1001 * where actual purges are postponed until memory pressure happens.
1002 * MADV_REMOVE - the application wants to free up the given range of
1003 * pages and associated backing store.
1004 * MADV_DONTFORK - omit this area from child's address space when forking:
1005 * typically, to avoid COWing pages pinned by get_user_pages().
1006 * MADV_DOFORK - cancel MADV_DONTFORK: no longer omit this area when forking.
1007 * MADV_WIPEONFORK - present the child process with zero-filled memory in this
1008 * range after a fork.
1009 * MADV_KEEPONFORK - undo the effect of MADV_WIPEONFORK
1010 * MADV_HWPOISON - trigger memory error handler as if the given memory range
1011 * were corrupted by unrecoverable hardware memory failure.
1012 * MADV_SOFT_OFFLINE - try to soft-offline the given range of memory.
1013 * MADV_MERGEABLE - the application recommends that KSM try to merge pages in
1014 * this area with pages of identical content from other such areas.
1015 * MADV_UNMERGEABLE- cancel MADV_MERGEABLE: no longer merge pages with others.
1016 * MADV_HUGEPAGE - the application wants to back the given range by transparent
1017 * huge pages in the future. Existing pages might be coalesced and
1018 * new pages might be allocated as THP.
1019 * MADV_NOHUGEPAGE - mark the given range as not worth being backed by
1020 * transparent huge pages so the existing pages will not be
1021 * coalesced into THP and new pages will not be allocated as THP.
1022 * MADV_DONTDUMP - the application wants to prevent pages in the given range
1023 * from being included in its core dump.
1024 * MADV_DODUMP - cancel MADV_DONTDUMP: no longer exclude from core dump.
1028 * -EINVAL - start + len < 0, start is not page-aligned,
1029 * "behavior" is not a valid value, or application
1030 * is attempting to release locked or shared pages,
1031 * or the specified address range includes file, Huge TLB,
1032 * MAP_SHARED or VMPFNMAP range.
1033 * -ENOMEM - addresses in the specified range are not currently
1034 * mapped, or are outside the AS of the process.
1035 * -EIO - an I/O error occurred while paging in data.
1036 * -EBADF - map exists, but area maps something that isn't a file.
1037 * -EAGAIN - a kernel resource was temporarily unavailable.
1039 SYSCALL_DEFINE3(madvise, unsigned long, start, size_t, len_in, int, behavior)
1041 unsigned long end, tmp;
1042 struct vm_area_struct *vma, *prev;
1043 int unmapped_error = 0;
1044 int error = -EINVAL;
1047 struct blk_plug plug;
1049 start = untagged_addr(start);
1051 if (!madvise_behavior_valid(behavior))
1054 if (start & ~PAGE_MASK)
1056 len = (len_in + ~PAGE_MASK) & PAGE_MASK;
1058 /* Check to see whether len was rounded up from small -ve to zero */
1070 #ifdef CONFIG_MEMORY_FAILURE
1071 if (behavior == MADV_HWPOISON || behavior == MADV_SOFT_OFFLINE)
1072 return madvise_inject_error(behavior, start, start + len_in);
1075 write = madvise_need_mmap_write(behavior);
1077 if (down_write_killable(¤t->mm->mmap_sem))
1080 down_read(¤t->mm->mmap_sem);
1084 * If the interval [start,end) covers some unmapped address
1085 * ranges, just ignore them, but return -ENOMEM at the end.
1086 * - different from the way of handling in mlock etc.
1088 vma = find_vma_prev(current->mm, start, &prev);
1089 if (vma && start > vma->vm_start)
1092 blk_start_plug(&plug);
1094 /* Still start < end. */
1099 /* Here start < (end|vma->vm_end). */
1100 if (start < vma->vm_start) {
1101 unmapped_error = -ENOMEM;
1102 start = vma->vm_start;
1107 /* Here vma->vm_start <= start < (end|vma->vm_end) */
1112 /* Here vma->vm_start <= start < tmp <= (end|vma->vm_end). */
1113 error = madvise_vma(vma, &prev, start, tmp, behavior);
1117 if (prev && start < prev->vm_end)
1118 start = prev->vm_end;
1119 error = unmapped_error;
1123 vma = prev->vm_next;
1124 else /* madvise_remove dropped mmap_sem */
1125 vma = find_vma(current->mm, start);
1128 blk_finish_plug(&plug);
1130 up_write(¤t->mm->mmap_sem);
1132 up_read(¤t->mm->mmap_sem);