mm/vmscan.c: remove 7th argument of isolate_lru_pages()
[linux-2.6-microblaze.git] / mm / ksm.c
1 /*
2  * Memory merging support.
3  *
4  * This code enables dynamic sharing of identical pages found in different
5  * memory areas, even if they are not shared by fork()
6  *
7  * Copyright (C) 2008-2009 Red Hat, Inc.
8  * Authors:
9  *      Izik Eidus
10  *      Andrea Arcangeli
11  *      Chris Wright
12  *      Hugh Dickins
13  *
14  * This work is licensed under the terms of the GNU GPL, version 2.
15  */
16
17 #include <linux/errno.h>
18 #include <linux/mm.h>
19 #include <linux/fs.h>
20 #include <linux/mman.h>
21 #include <linux/sched.h>
22 #include <linux/sched/mm.h>
23 #include <linux/sched/coredump.h>
24 #include <linux/rwsem.h>
25 #include <linux/pagemap.h>
26 #include <linux/rmap.h>
27 #include <linux/spinlock.h>
28 #include <linux/xxhash.h>
29 #include <linux/delay.h>
30 #include <linux/kthread.h>
31 #include <linux/wait.h>
32 #include <linux/slab.h>
33 #include <linux/rbtree.h>
34 #include <linux/memory.h>
35 #include <linux/mmu_notifier.h>
36 #include <linux/swap.h>
37 #include <linux/ksm.h>
38 #include <linux/hashtable.h>
39 #include <linux/freezer.h>
40 #include <linux/oom.h>
41 #include <linux/numa.h>
42
43 #include <asm/tlbflush.h>
44 #include "internal.h"
45
46 #ifdef CONFIG_NUMA
47 #define NUMA(x)         (x)
48 #define DO_NUMA(x)      do { (x); } while (0)
49 #else
50 #define NUMA(x)         (0)
51 #define DO_NUMA(x)      do { } while (0)
52 #endif
53
54 /**
55  * DOC: Overview
56  *
57  * A few notes about the KSM scanning process,
58  * to make it easier to understand the data structures below:
59  *
60  * In order to reduce excessive scanning, KSM sorts the memory pages by their
61  * contents into a data structure that holds pointers to the pages' locations.
62  *
63  * Since the contents of the pages may change at any moment, KSM cannot just
64  * insert the pages into a normal sorted tree and expect it to find anything.
65  * Therefore KSM uses two data structures - the stable and the unstable tree.
66  *
67  * The stable tree holds pointers to all the merged pages (ksm pages), sorted
68  * by their contents.  Because each such page is write-protected, searching on
69  * this tree is fully assured to be working (except when pages are unmapped),
70  * and therefore this tree is called the stable tree.
71  *
72  * The stable tree node includes information required for reverse
73  * mapping from a KSM page to virtual addresses that map this page.
74  *
75  * In order to avoid large latencies of the rmap walks on KSM pages,
76  * KSM maintains two types of nodes in the stable tree:
77  *
78  * * the regular nodes that keep the reverse mapping structures in a
79  *   linked list
80  * * the "chains" that link nodes ("dups") that represent the same
81  *   write protected memory content, but each "dup" corresponds to a
82  *   different KSM page copy of that content
83  *
84  * Internally, the regular nodes, "dups" and "chains" are represented
85  * using the same :c:type:`struct stable_node` structure.
86  *
87  * In addition to the stable tree, KSM uses a second data structure called the
88  * unstable tree: this tree holds pointers to pages which have been found to
89  * be "unchanged for a period of time".  The unstable tree sorts these pages
90  * by their contents, but since they are not write-protected, KSM cannot rely
91  * upon the unstable tree to work correctly - the unstable tree is liable to
92  * be corrupted as its contents are modified, and so it is called unstable.
93  *
94  * KSM solves this problem by several techniques:
95  *
96  * 1) The unstable tree is flushed every time KSM completes scanning all
97  *    memory areas, and then the tree is rebuilt again from the beginning.
98  * 2) KSM will only insert into the unstable tree, pages whose hash value
99  *    has not changed since the previous scan of all memory areas.
100  * 3) The unstable tree is a RedBlack Tree - so its balancing is based on the
101  *    colors of the nodes and not on their contents, assuring that even when
102  *    the tree gets "corrupted" it won't get out of balance, so scanning time
103  *    remains the same (also, searching and inserting nodes in an rbtree uses
104  *    the same algorithm, so we have no overhead when we flush and rebuild).
105  * 4) KSM never flushes the stable tree, which means that even if it were to
106  *    take 10 attempts to find a page in the unstable tree, once it is found,
107  *    it is secured in the stable tree.  (When we scan a new page, we first
108  *    compare it against the stable tree, and then against the unstable tree.)
109  *
110  * If the merge_across_nodes tunable is unset, then KSM maintains multiple
111  * stable trees and multiple unstable trees: one of each for each NUMA node.
112  */
113
114 /**
115  * struct mm_slot - ksm information per mm that is being scanned
116  * @link: link to the mm_slots hash list
117  * @mm_list: link into the mm_slots list, rooted in ksm_mm_head
118  * @rmap_list: head for this mm_slot's singly-linked list of rmap_items
119  * @mm: the mm that this information is valid for
120  */
121 struct mm_slot {
122         struct hlist_node link;
123         struct list_head mm_list;
124         struct rmap_item *rmap_list;
125         struct mm_struct *mm;
126 };
127
128 /**
129  * struct ksm_scan - cursor for scanning
130  * @mm_slot: the current mm_slot we are scanning
131  * @address: the next address inside that to be scanned
132  * @rmap_list: link to the next rmap to be scanned in the rmap_list
133  * @seqnr: count of completed full scans (needed when removing unstable node)
134  *
135  * There is only the one ksm_scan instance of this cursor structure.
136  */
137 struct ksm_scan {
138         struct mm_slot *mm_slot;
139         unsigned long address;
140         struct rmap_item **rmap_list;
141         unsigned long seqnr;
142 };
143
144 /**
145  * struct stable_node - node of the stable rbtree
146  * @node: rb node of this ksm page in the stable tree
147  * @head: (overlaying parent) &migrate_nodes indicates temporarily on that list
148  * @hlist_dup: linked into the stable_node->hlist with a stable_node chain
149  * @list: linked into migrate_nodes, pending placement in the proper node tree
150  * @hlist: hlist head of rmap_items using this ksm page
151  * @kpfn: page frame number of this ksm page (perhaps temporarily on wrong nid)
152  * @chain_prune_time: time of the last full garbage collection
153  * @rmap_hlist_len: number of rmap_item entries in hlist or STABLE_NODE_CHAIN
154  * @nid: NUMA node id of stable tree in which linked (may not match kpfn)
155  */
156 struct stable_node {
157         union {
158                 struct rb_node node;    /* when node of stable tree */
159                 struct {                /* when listed for migration */
160                         struct list_head *head;
161                         struct {
162                                 struct hlist_node hlist_dup;
163                                 struct list_head list;
164                         };
165                 };
166         };
167         struct hlist_head hlist;
168         union {
169                 unsigned long kpfn;
170                 unsigned long chain_prune_time;
171         };
172         /*
173          * STABLE_NODE_CHAIN can be any negative number in
174          * rmap_hlist_len negative range, but better not -1 to be able
175          * to reliably detect underflows.
176          */
177 #define STABLE_NODE_CHAIN -1024
178         int rmap_hlist_len;
179 #ifdef CONFIG_NUMA
180         int nid;
181 #endif
182 };
183
184 /**
185  * struct rmap_item - reverse mapping item for virtual addresses
186  * @rmap_list: next rmap_item in mm_slot's singly-linked rmap_list
187  * @anon_vma: pointer to anon_vma for this mm,address, when in stable tree
188  * @nid: NUMA node id of unstable tree in which linked (may not match page)
189  * @mm: the memory structure this rmap_item is pointing into
190  * @address: the virtual address this rmap_item tracks (+ flags in low bits)
191  * @oldchecksum: previous checksum of the page at that virtual address
192  * @node: rb node of this rmap_item in the unstable tree
193  * @head: pointer to stable_node heading this list in the stable tree
194  * @hlist: link into hlist of rmap_items hanging off that stable_node
195  */
196 struct rmap_item {
197         struct rmap_item *rmap_list;
198         union {
199                 struct anon_vma *anon_vma;      /* when stable */
200 #ifdef CONFIG_NUMA
201                 int nid;                /* when node of unstable tree */
202 #endif
203         };
204         struct mm_struct *mm;
205         unsigned long address;          /* + low bits used for flags below */
206         unsigned int oldchecksum;       /* when unstable */
207         union {
208                 struct rb_node node;    /* when node of unstable tree */
209                 struct {                /* when listed from stable tree */
210                         struct stable_node *head;
211                         struct hlist_node hlist;
212                 };
213         };
214 };
215
216 #define SEQNR_MASK      0x0ff   /* low bits of unstable tree seqnr */
217 #define UNSTABLE_FLAG   0x100   /* is a node of the unstable tree */
218 #define STABLE_FLAG     0x200   /* is listed from the stable tree */
219 #define KSM_FLAG_MASK   (SEQNR_MASK|UNSTABLE_FLAG|STABLE_FLAG)
220                                 /* to mask all the flags */
221
222 /* The stable and unstable tree heads */
223 static struct rb_root one_stable_tree[1] = { RB_ROOT };
224 static struct rb_root one_unstable_tree[1] = { RB_ROOT };
225 static struct rb_root *root_stable_tree = one_stable_tree;
226 static struct rb_root *root_unstable_tree = one_unstable_tree;
227
228 /* Recently migrated nodes of stable tree, pending proper placement */
229 static LIST_HEAD(migrate_nodes);
230 #define STABLE_NODE_DUP_HEAD ((struct list_head *)&migrate_nodes.prev)
231
232 #define MM_SLOTS_HASH_BITS 10
233 static DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
234
235 static struct mm_slot ksm_mm_head = {
236         .mm_list = LIST_HEAD_INIT(ksm_mm_head.mm_list),
237 };
238 static struct ksm_scan ksm_scan = {
239         .mm_slot = &ksm_mm_head,
240 };
241
242 static struct kmem_cache *rmap_item_cache;
243 static struct kmem_cache *stable_node_cache;
244 static struct kmem_cache *mm_slot_cache;
245
246 /* The number of nodes in the stable tree */
247 static unsigned long ksm_pages_shared;
248
249 /* The number of page slots additionally sharing those nodes */
250 static unsigned long ksm_pages_sharing;
251
252 /* The number of nodes in the unstable tree */
253 static unsigned long ksm_pages_unshared;
254
255 /* The number of rmap_items in use: to calculate pages_volatile */
256 static unsigned long ksm_rmap_items;
257
258 /* The number of stable_node chains */
259 static unsigned long ksm_stable_node_chains;
260
261 /* The number of stable_node dups linked to the stable_node chains */
262 static unsigned long ksm_stable_node_dups;
263
264 /* Delay in pruning stale stable_node_dups in the stable_node_chains */
265 static int ksm_stable_node_chains_prune_millisecs = 2000;
266
267 /* Maximum number of page slots sharing a stable node */
268 static int ksm_max_page_sharing = 256;
269
270 /* Number of pages ksmd should scan in one batch */
271 static unsigned int ksm_thread_pages_to_scan = 100;
272
273 /* Milliseconds ksmd should sleep between batches */
274 static unsigned int ksm_thread_sleep_millisecs = 20;
275
276 /* Checksum of an empty (zeroed) page */
277 static unsigned int zero_checksum __read_mostly;
278
279 /* Whether to merge empty (zeroed) pages with actual zero pages */
280 static bool ksm_use_zero_pages __read_mostly;
281
282 #ifdef CONFIG_NUMA
283 /* Zeroed when merging across nodes is not allowed */
284 static unsigned int ksm_merge_across_nodes = 1;
285 static int ksm_nr_node_ids = 1;
286 #else
287 #define ksm_merge_across_nodes  1U
288 #define ksm_nr_node_ids         1
289 #endif
290
291 #define KSM_RUN_STOP    0
292 #define KSM_RUN_MERGE   1
293 #define KSM_RUN_UNMERGE 2
294 #define KSM_RUN_OFFLINE 4
295 static unsigned long ksm_run = KSM_RUN_STOP;
296 static void wait_while_offlining(void);
297
298 static DECLARE_WAIT_QUEUE_HEAD(ksm_thread_wait);
299 static DECLARE_WAIT_QUEUE_HEAD(ksm_iter_wait);
300 static DEFINE_MUTEX(ksm_thread_mutex);
301 static DEFINE_SPINLOCK(ksm_mmlist_lock);
302
303 #define KSM_KMEM_CACHE(__struct, __flags) kmem_cache_create("ksm_"#__struct,\
304                 sizeof(struct __struct), __alignof__(struct __struct),\
305                 (__flags), NULL)
306
307 static int __init ksm_slab_init(void)
308 {
309         rmap_item_cache = KSM_KMEM_CACHE(rmap_item, 0);
310         if (!rmap_item_cache)
311                 goto out;
312
313         stable_node_cache = KSM_KMEM_CACHE(stable_node, 0);
314         if (!stable_node_cache)
315                 goto out_free1;
316
317         mm_slot_cache = KSM_KMEM_CACHE(mm_slot, 0);
318         if (!mm_slot_cache)
319                 goto out_free2;
320
321         return 0;
322
323 out_free2:
324         kmem_cache_destroy(stable_node_cache);
325 out_free1:
326         kmem_cache_destroy(rmap_item_cache);
327 out:
328         return -ENOMEM;
329 }
330
331 static void __init ksm_slab_free(void)
332 {
333         kmem_cache_destroy(mm_slot_cache);
334         kmem_cache_destroy(stable_node_cache);
335         kmem_cache_destroy(rmap_item_cache);
336         mm_slot_cache = NULL;
337 }
338
339 static __always_inline bool is_stable_node_chain(struct stable_node *chain)
340 {
341         return chain->rmap_hlist_len == STABLE_NODE_CHAIN;
342 }
343
344 static __always_inline bool is_stable_node_dup(struct stable_node *dup)
345 {
346         return dup->head == STABLE_NODE_DUP_HEAD;
347 }
348
349 static inline void stable_node_chain_add_dup(struct stable_node *dup,
350                                              struct stable_node *chain)
351 {
352         VM_BUG_ON(is_stable_node_dup(dup));
353         dup->head = STABLE_NODE_DUP_HEAD;
354         VM_BUG_ON(!is_stable_node_chain(chain));
355         hlist_add_head(&dup->hlist_dup, &chain->hlist);
356         ksm_stable_node_dups++;
357 }
358
359 static inline void __stable_node_dup_del(struct stable_node *dup)
360 {
361         VM_BUG_ON(!is_stable_node_dup(dup));
362         hlist_del(&dup->hlist_dup);
363         ksm_stable_node_dups--;
364 }
365
366 static inline void stable_node_dup_del(struct stable_node *dup)
367 {
368         VM_BUG_ON(is_stable_node_chain(dup));
369         if (is_stable_node_dup(dup))
370                 __stable_node_dup_del(dup);
371         else
372                 rb_erase(&dup->node, root_stable_tree + NUMA(dup->nid));
373 #ifdef CONFIG_DEBUG_VM
374         dup->head = NULL;
375 #endif
376 }
377
378 static inline struct rmap_item *alloc_rmap_item(void)
379 {
380         struct rmap_item *rmap_item;
381
382         rmap_item = kmem_cache_zalloc(rmap_item_cache, GFP_KERNEL |
383                                                 __GFP_NORETRY | __GFP_NOWARN);
384         if (rmap_item)
385                 ksm_rmap_items++;
386         return rmap_item;
387 }
388
389 static inline void free_rmap_item(struct rmap_item *rmap_item)
390 {
391         ksm_rmap_items--;
392         rmap_item->mm = NULL;   /* debug safety */
393         kmem_cache_free(rmap_item_cache, rmap_item);
394 }
395
396 static inline struct stable_node *alloc_stable_node(void)
397 {
398         /*
399          * The allocation can take too long with GFP_KERNEL when memory is under
400          * pressure, which may lead to hung task warnings.  Adding __GFP_HIGH
401          * grants access to memory reserves, helping to avoid this problem.
402          */
403         return kmem_cache_alloc(stable_node_cache, GFP_KERNEL | __GFP_HIGH);
404 }
405
406 static inline void free_stable_node(struct stable_node *stable_node)
407 {
408         VM_BUG_ON(stable_node->rmap_hlist_len &&
409                   !is_stable_node_chain(stable_node));
410         kmem_cache_free(stable_node_cache, stable_node);
411 }
412
413 static inline struct mm_slot *alloc_mm_slot(void)
414 {
415         if (!mm_slot_cache)     /* initialization failed */
416                 return NULL;
417         return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
418 }
419
420 static inline void free_mm_slot(struct mm_slot *mm_slot)
421 {
422         kmem_cache_free(mm_slot_cache, mm_slot);
423 }
424
425 static struct mm_slot *get_mm_slot(struct mm_struct *mm)
426 {
427         struct mm_slot *slot;
428
429         hash_for_each_possible(mm_slots_hash, slot, link, (unsigned long)mm)
430                 if (slot->mm == mm)
431                         return slot;
432
433         return NULL;
434 }
435
436 static void insert_to_mm_slots_hash(struct mm_struct *mm,
437                                     struct mm_slot *mm_slot)
438 {
439         mm_slot->mm = mm;
440         hash_add(mm_slots_hash, &mm_slot->link, (unsigned long)mm);
441 }
442
443 /*
444  * ksmd, and unmerge_and_remove_all_rmap_items(), must not touch an mm's
445  * page tables after it has passed through ksm_exit() - which, if necessary,
446  * takes mmap_sem briefly to serialize against them.  ksm_exit() does not set
447  * a special flag: they can just back out as soon as mm_users goes to zero.
448  * ksm_test_exit() is used throughout to make this test for exit: in some
449  * places for correctness, in some places just to avoid unnecessary work.
450  */
451 static inline bool ksm_test_exit(struct mm_struct *mm)
452 {
453         return atomic_read(&mm->mm_users) == 0;
454 }
455
456 /*
457  * We use break_ksm to break COW on a ksm page: it's a stripped down
458  *
459  *      if (get_user_pages(addr, 1, 1, 1, &page, NULL) == 1)
460  *              put_page(page);
461  *
462  * but taking great care only to touch a ksm page, in a VM_MERGEABLE vma,
463  * in case the application has unmapped and remapped mm,addr meanwhile.
464  * Could a ksm page appear anywhere else?  Actually yes, in a VM_PFNMAP
465  * mmap of /dev/mem or /dev/kmem, where we would not want to touch it.
466  *
467  * FAULT_FLAG/FOLL_REMOTE are because we do this outside the context
468  * of the process that owns 'vma'.  We also do not want to enforce
469  * protection keys here anyway.
470  */
471 static int break_ksm(struct vm_area_struct *vma, unsigned long addr)
472 {
473         struct page *page;
474         vm_fault_t ret = 0;
475
476         do {
477                 cond_resched();
478                 page = follow_page(vma, addr,
479                                 FOLL_GET | FOLL_MIGRATION | FOLL_REMOTE);
480                 if (IS_ERR_OR_NULL(page))
481                         break;
482                 if (PageKsm(page))
483                         ret = handle_mm_fault(vma, addr,
484                                         FAULT_FLAG_WRITE | FAULT_FLAG_REMOTE);
485                 else
486                         ret = VM_FAULT_WRITE;
487                 put_page(page);
488         } while (!(ret & (VM_FAULT_WRITE | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | VM_FAULT_OOM)));
489         /*
490          * We must loop because handle_mm_fault() may back out if there's
491          * any difficulty e.g. if pte accessed bit gets updated concurrently.
492          *
493          * VM_FAULT_WRITE is what we have been hoping for: it indicates that
494          * COW has been broken, even if the vma does not permit VM_WRITE;
495          * but note that a concurrent fault might break PageKsm for us.
496          *
497          * VM_FAULT_SIGBUS could occur if we race with truncation of the
498          * backing file, which also invalidates anonymous pages: that's
499          * okay, that truncation will have unmapped the PageKsm for us.
500          *
501          * VM_FAULT_OOM: at the time of writing (late July 2009), setting
502          * aside mem_cgroup limits, VM_FAULT_OOM would only be set if the
503          * current task has TIF_MEMDIE set, and will be OOM killed on return
504          * to user; and ksmd, having no mm, would never be chosen for that.
505          *
506          * But if the mm is in a limited mem_cgroup, then the fault may fail
507          * with VM_FAULT_OOM even if the current task is not TIF_MEMDIE; and
508          * even ksmd can fail in this way - though it's usually breaking ksm
509          * just to undo a merge it made a moment before, so unlikely to oom.
510          *
511          * That's a pity: we might therefore have more kernel pages allocated
512          * than we're counting as nodes in the stable tree; but ksm_do_scan
513          * will retry to break_cow on each pass, so should recover the page
514          * in due course.  The important thing is to not let VM_MERGEABLE
515          * be cleared while any such pages might remain in the area.
516          */
517         return (ret & VM_FAULT_OOM) ? -ENOMEM : 0;
518 }
519
520 static struct vm_area_struct *find_mergeable_vma(struct mm_struct *mm,
521                 unsigned long addr)
522 {
523         struct vm_area_struct *vma;
524         if (ksm_test_exit(mm))
525                 return NULL;
526         vma = find_vma(mm, addr);
527         if (!vma || vma->vm_start > addr)
528                 return NULL;
529         if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
530                 return NULL;
531         return vma;
532 }
533
534 static void break_cow(struct rmap_item *rmap_item)
535 {
536         struct mm_struct *mm = rmap_item->mm;
537         unsigned long addr = rmap_item->address;
538         struct vm_area_struct *vma;
539
540         /*
541          * It is not an accident that whenever we want to break COW
542          * to undo, we also need to drop a reference to the anon_vma.
543          */
544         put_anon_vma(rmap_item->anon_vma);
545
546         down_read(&mm->mmap_sem);
547         vma = find_mergeable_vma(mm, addr);
548         if (vma)
549                 break_ksm(vma, addr);
550         up_read(&mm->mmap_sem);
551 }
552
553 static struct page *get_mergeable_page(struct rmap_item *rmap_item)
554 {
555         struct mm_struct *mm = rmap_item->mm;
556         unsigned long addr = rmap_item->address;
557         struct vm_area_struct *vma;
558         struct page *page;
559
560         down_read(&mm->mmap_sem);
561         vma = find_mergeable_vma(mm, addr);
562         if (!vma)
563                 goto out;
564
565         page = follow_page(vma, addr, FOLL_GET);
566         if (IS_ERR_OR_NULL(page))
567                 goto out;
568         if (PageAnon(page)) {
569                 flush_anon_page(vma, page, addr);
570                 flush_dcache_page(page);
571         } else {
572                 put_page(page);
573 out:
574                 page = NULL;
575         }
576         up_read(&mm->mmap_sem);
577         return page;
578 }
579
580 /*
581  * This helper is used for getting right index into array of tree roots.
582  * When merge_across_nodes knob is set to 1, there are only two rb-trees for
583  * stable and unstable pages from all nodes with roots in index 0. Otherwise,
584  * every node has its own stable and unstable tree.
585  */
586 static inline int get_kpfn_nid(unsigned long kpfn)
587 {
588         return ksm_merge_across_nodes ? 0 : NUMA(pfn_to_nid(kpfn));
589 }
590
591 static struct stable_node *alloc_stable_node_chain(struct stable_node *dup,
592                                                    struct rb_root *root)
593 {
594         struct stable_node *chain = alloc_stable_node();
595         VM_BUG_ON(is_stable_node_chain(dup));
596         if (likely(chain)) {
597                 INIT_HLIST_HEAD(&chain->hlist);
598                 chain->chain_prune_time = jiffies;
599                 chain->rmap_hlist_len = STABLE_NODE_CHAIN;
600 #if defined (CONFIG_DEBUG_VM) && defined(CONFIG_NUMA)
601                 chain->nid = NUMA_NO_NODE; /* debug */
602 #endif
603                 ksm_stable_node_chains++;
604
605                 /*
606                  * Put the stable node chain in the first dimension of
607                  * the stable tree and at the same time remove the old
608                  * stable node.
609                  */
610                 rb_replace_node(&dup->node, &chain->node, root);
611
612                 /*
613                  * Move the old stable node to the second dimension
614                  * queued in the hlist_dup. The invariant is that all
615                  * dup stable_nodes in the chain->hlist point to pages
616                  * that are wrprotected and have the exact same
617                  * content.
618                  */
619                 stable_node_chain_add_dup(dup, chain);
620         }
621         return chain;
622 }
623
624 static inline void free_stable_node_chain(struct stable_node *chain,
625                                           struct rb_root *root)
626 {
627         rb_erase(&chain->node, root);
628         free_stable_node(chain);
629         ksm_stable_node_chains--;
630 }
631
632 static void remove_node_from_stable_tree(struct stable_node *stable_node)
633 {
634         struct rmap_item *rmap_item;
635
636         /* check it's not STABLE_NODE_CHAIN or negative */
637         BUG_ON(stable_node->rmap_hlist_len < 0);
638
639         hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
640                 if (rmap_item->hlist.next)
641                         ksm_pages_sharing--;
642                 else
643                         ksm_pages_shared--;
644                 VM_BUG_ON(stable_node->rmap_hlist_len <= 0);
645                 stable_node->rmap_hlist_len--;
646                 put_anon_vma(rmap_item->anon_vma);
647                 rmap_item->address &= PAGE_MASK;
648                 cond_resched();
649         }
650
651         /*
652          * We need the second aligned pointer of the migrate_nodes
653          * list_head to stay clear from the rb_parent_color union
654          * (aligned and different than any node) and also different
655          * from &migrate_nodes. This will verify that future list.h changes
656          * don't break STABLE_NODE_DUP_HEAD. Only recent gcc can handle it.
657          */
658 #if defined(GCC_VERSION) && GCC_VERSION >= 40903
659         BUILD_BUG_ON(STABLE_NODE_DUP_HEAD <= &migrate_nodes);
660         BUILD_BUG_ON(STABLE_NODE_DUP_HEAD >= &migrate_nodes + 1);
661 #endif
662
663         if (stable_node->head == &migrate_nodes)
664                 list_del(&stable_node->list);
665         else
666                 stable_node_dup_del(stable_node);
667         free_stable_node(stable_node);
668 }
669
670 /*
671  * get_ksm_page: checks if the page indicated by the stable node
672  * is still its ksm page, despite having held no reference to it.
673  * In which case we can trust the content of the page, and it
674  * returns the gotten page; but if the page has now been zapped,
675  * remove the stale node from the stable tree and return NULL.
676  * But beware, the stable node's page might be being migrated.
677  *
678  * You would expect the stable_node to hold a reference to the ksm page.
679  * But if it increments the page's count, swapping out has to wait for
680  * ksmd to come around again before it can free the page, which may take
681  * seconds or even minutes: much too unresponsive.  So instead we use a
682  * "keyhole reference": access to the ksm page from the stable node peeps
683  * out through its keyhole to see if that page still holds the right key,
684  * pointing back to this stable node.  This relies on freeing a PageAnon
685  * page to reset its page->mapping to NULL, and relies on no other use of
686  * a page to put something that might look like our key in page->mapping.
687  * is on its way to being freed; but it is an anomaly to bear in mind.
688  */
689 static struct page *get_ksm_page(struct stable_node *stable_node, bool lock_it)
690 {
691         struct page *page;
692         void *expected_mapping;
693         unsigned long kpfn;
694
695         expected_mapping = (void *)((unsigned long)stable_node |
696                                         PAGE_MAPPING_KSM);
697 again:
698         kpfn = READ_ONCE(stable_node->kpfn); /* Address dependency. */
699         page = pfn_to_page(kpfn);
700         if (READ_ONCE(page->mapping) != expected_mapping)
701                 goto stale;
702
703         /*
704          * We cannot do anything with the page while its refcount is 0.
705          * Usually 0 means free, or tail of a higher-order page: in which
706          * case this node is no longer referenced, and should be freed;
707          * however, it might mean that the page is under page_ref_freeze().
708          * The __remove_mapping() case is easy, again the node is now stale;
709          * the same is in reuse_ksm_page() case; but if page is swapcache
710          * in migrate_page_move_mapping(), it might still be our page,
711          * in which case it's essential to keep the node.
712          */
713         while (!get_page_unless_zero(page)) {
714                 /*
715                  * Another check for page->mapping != expected_mapping would
716                  * work here too.  We have chosen the !PageSwapCache test to
717                  * optimize the common case, when the page is or is about to
718                  * be freed: PageSwapCache is cleared (under spin_lock_irq)
719                  * in the ref_freeze section of __remove_mapping(); but Anon
720                  * page->mapping reset to NULL later, in free_pages_prepare().
721                  */
722                 if (!PageSwapCache(page))
723                         goto stale;
724                 cpu_relax();
725         }
726
727         if (READ_ONCE(page->mapping) != expected_mapping) {
728                 put_page(page);
729                 goto stale;
730         }
731
732         if (lock_it) {
733                 lock_page(page);
734                 if (READ_ONCE(page->mapping) != expected_mapping) {
735                         unlock_page(page);
736                         put_page(page);
737                         goto stale;
738                 }
739         }
740         return page;
741
742 stale:
743         /*
744          * We come here from above when page->mapping or !PageSwapCache
745          * suggests that the node is stale; but it might be under migration.
746          * We need smp_rmb(), matching the smp_wmb() in ksm_migrate_page(),
747          * before checking whether node->kpfn has been changed.
748          */
749         smp_rmb();
750         if (READ_ONCE(stable_node->kpfn) != kpfn)
751                 goto again;
752         remove_node_from_stable_tree(stable_node);
753         return NULL;
754 }
755
756 /*
757  * Removing rmap_item from stable or unstable tree.
758  * This function will clean the information from the stable/unstable tree.
759  */
760 static void remove_rmap_item_from_tree(struct rmap_item *rmap_item)
761 {
762         if (rmap_item->address & STABLE_FLAG) {
763                 struct stable_node *stable_node;
764                 struct page *page;
765
766                 stable_node = rmap_item->head;
767                 page = get_ksm_page(stable_node, true);
768                 if (!page)
769                         goto out;
770
771                 hlist_del(&rmap_item->hlist);
772                 unlock_page(page);
773                 put_page(page);
774
775                 if (!hlist_empty(&stable_node->hlist))
776                         ksm_pages_sharing--;
777                 else
778                         ksm_pages_shared--;
779                 VM_BUG_ON(stable_node->rmap_hlist_len <= 0);
780                 stable_node->rmap_hlist_len--;
781
782                 put_anon_vma(rmap_item->anon_vma);
783                 rmap_item->address &= PAGE_MASK;
784
785         } else if (rmap_item->address & UNSTABLE_FLAG) {
786                 unsigned char age;
787                 /*
788                  * Usually ksmd can and must skip the rb_erase, because
789                  * root_unstable_tree was already reset to RB_ROOT.
790                  * But be careful when an mm is exiting: do the rb_erase
791                  * if this rmap_item was inserted by this scan, rather
792                  * than left over from before.
793                  */
794                 age = (unsigned char)(ksm_scan.seqnr - rmap_item->address);
795                 BUG_ON(age > 1);
796                 if (!age)
797                         rb_erase(&rmap_item->node,
798                                  root_unstable_tree + NUMA(rmap_item->nid));
799                 ksm_pages_unshared--;
800                 rmap_item->address &= PAGE_MASK;
801         }
802 out:
803         cond_resched();         /* we're called from many long loops */
804 }
805
806 static void remove_trailing_rmap_items(struct mm_slot *mm_slot,
807                                        struct rmap_item **rmap_list)
808 {
809         while (*rmap_list) {
810                 struct rmap_item *rmap_item = *rmap_list;
811                 *rmap_list = rmap_item->rmap_list;
812                 remove_rmap_item_from_tree(rmap_item);
813                 free_rmap_item(rmap_item);
814         }
815 }
816
817 /*
818  * Though it's very tempting to unmerge rmap_items from stable tree rather
819  * than check every pte of a given vma, the locking doesn't quite work for
820  * that - an rmap_item is assigned to the stable tree after inserting ksm
821  * page and upping mmap_sem.  Nor does it fit with the way we skip dup'ing
822  * rmap_items from parent to child at fork time (so as not to waste time
823  * if exit comes before the next scan reaches it).
824  *
825  * Similarly, although we'd like to remove rmap_items (so updating counts
826  * and freeing memory) when unmerging an area, it's easier to leave that
827  * to the next pass of ksmd - consider, for example, how ksmd might be
828  * in cmp_and_merge_page on one of the rmap_items we would be removing.
829  */
830 static int unmerge_ksm_pages(struct vm_area_struct *vma,
831                              unsigned long start, unsigned long end)
832 {
833         unsigned long addr;
834         int err = 0;
835
836         for (addr = start; addr < end && !err; addr += PAGE_SIZE) {
837                 if (ksm_test_exit(vma->vm_mm))
838                         break;
839                 if (signal_pending(current))
840                         err = -ERESTARTSYS;
841                 else
842                         err = break_ksm(vma, addr);
843         }
844         return err;
845 }
846
847 static inline struct stable_node *page_stable_node(struct page *page)
848 {
849         return PageKsm(page) ? page_rmapping(page) : NULL;
850 }
851
852 static inline void set_page_stable_node(struct page *page,
853                                         struct stable_node *stable_node)
854 {
855         page->mapping = (void *)((unsigned long)stable_node | PAGE_MAPPING_KSM);
856 }
857
858 #ifdef CONFIG_SYSFS
859 /*
860  * Only called through the sysfs control interface:
861  */
862 static int remove_stable_node(struct stable_node *stable_node)
863 {
864         struct page *page;
865         int err;
866
867         page = get_ksm_page(stable_node, true);
868         if (!page) {
869                 /*
870                  * get_ksm_page did remove_node_from_stable_tree itself.
871                  */
872                 return 0;
873         }
874
875         if (WARN_ON_ONCE(page_mapped(page))) {
876                 /*
877                  * This should not happen: but if it does, just refuse to let
878                  * merge_across_nodes be switched - there is no need to panic.
879                  */
880                 err = -EBUSY;
881         } else {
882                 /*
883                  * The stable node did not yet appear stale to get_ksm_page(),
884                  * since that allows for an unmapped ksm page to be recognized
885                  * right up until it is freed; but the node is safe to remove.
886                  * This page might be in a pagevec waiting to be freed,
887                  * or it might be PageSwapCache (perhaps under writeback),
888                  * or it might have been removed from swapcache a moment ago.
889                  */
890                 set_page_stable_node(page, NULL);
891                 remove_node_from_stable_tree(stable_node);
892                 err = 0;
893         }
894
895         unlock_page(page);
896         put_page(page);
897         return err;
898 }
899
900 static int remove_stable_node_chain(struct stable_node *stable_node,
901                                     struct rb_root *root)
902 {
903         struct stable_node *dup;
904         struct hlist_node *hlist_safe;
905
906         if (!is_stable_node_chain(stable_node)) {
907                 VM_BUG_ON(is_stable_node_dup(stable_node));
908                 if (remove_stable_node(stable_node))
909                         return true;
910                 else
911                         return false;
912         }
913
914         hlist_for_each_entry_safe(dup, hlist_safe,
915                                   &stable_node->hlist, hlist_dup) {
916                 VM_BUG_ON(!is_stable_node_dup(dup));
917                 if (remove_stable_node(dup))
918                         return true;
919         }
920         BUG_ON(!hlist_empty(&stable_node->hlist));
921         free_stable_node_chain(stable_node, root);
922         return false;
923 }
924
925 static int remove_all_stable_nodes(void)
926 {
927         struct stable_node *stable_node, *next;
928         int nid;
929         int err = 0;
930
931         for (nid = 0; nid < ksm_nr_node_ids; nid++) {
932                 while (root_stable_tree[nid].rb_node) {
933                         stable_node = rb_entry(root_stable_tree[nid].rb_node,
934                                                 struct stable_node, node);
935                         if (remove_stable_node_chain(stable_node,
936                                                      root_stable_tree + nid)) {
937                                 err = -EBUSY;
938                                 break;  /* proceed to next nid */
939                         }
940                         cond_resched();
941                 }
942         }
943         list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
944                 if (remove_stable_node(stable_node))
945                         err = -EBUSY;
946                 cond_resched();
947         }
948         return err;
949 }
950
951 static int unmerge_and_remove_all_rmap_items(void)
952 {
953         struct mm_slot *mm_slot;
954         struct mm_struct *mm;
955         struct vm_area_struct *vma;
956         int err = 0;
957
958         spin_lock(&ksm_mmlist_lock);
959         ksm_scan.mm_slot = list_entry(ksm_mm_head.mm_list.next,
960                                                 struct mm_slot, mm_list);
961         spin_unlock(&ksm_mmlist_lock);
962
963         for (mm_slot = ksm_scan.mm_slot;
964                         mm_slot != &ksm_mm_head; mm_slot = ksm_scan.mm_slot) {
965                 mm = mm_slot->mm;
966                 down_read(&mm->mmap_sem);
967                 for (vma = mm->mmap; vma; vma = vma->vm_next) {
968                         if (ksm_test_exit(mm))
969                                 break;
970                         if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
971                                 continue;
972                         err = unmerge_ksm_pages(vma,
973                                                 vma->vm_start, vma->vm_end);
974                         if (err)
975                                 goto error;
976                 }
977
978                 remove_trailing_rmap_items(mm_slot, &mm_slot->rmap_list);
979                 up_read(&mm->mmap_sem);
980
981                 spin_lock(&ksm_mmlist_lock);
982                 ksm_scan.mm_slot = list_entry(mm_slot->mm_list.next,
983                                                 struct mm_slot, mm_list);
984                 if (ksm_test_exit(mm)) {
985                         hash_del(&mm_slot->link);
986                         list_del(&mm_slot->mm_list);
987                         spin_unlock(&ksm_mmlist_lock);
988
989                         free_mm_slot(mm_slot);
990                         clear_bit(MMF_VM_MERGEABLE, &mm->flags);
991                         mmdrop(mm);
992                 } else
993                         spin_unlock(&ksm_mmlist_lock);
994         }
995
996         /* Clean up stable nodes, but don't worry if some are still busy */
997         remove_all_stable_nodes();
998         ksm_scan.seqnr = 0;
999         return 0;
1000
1001 error:
1002         up_read(&mm->mmap_sem);
1003         spin_lock(&ksm_mmlist_lock);
1004         ksm_scan.mm_slot = &ksm_mm_head;
1005         spin_unlock(&ksm_mmlist_lock);
1006         return err;
1007 }
1008 #endif /* CONFIG_SYSFS */
1009
1010 static u32 calc_checksum(struct page *page)
1011 {
1012         u32 checksum;
1013         void *addr = kmap_atomic(page);
1014         checksum = xxhash(addr, PAGE_SIZE, 0);
1015         kunmap_atomic(addr);
1016         return checksum;
1017 }
1018
1019 static int memcmp_pages(struct page *page1, struct page *page2)
1020 {
1021         char *addr1, *addr2;
1022         int ret;
1023
1024         addr1 = kmap_atomic(page1);
1025         addr2 = kmap_atomic(page2);
1026         ret = memcmp(addr1, addr2, PAGE_SIZE);
1027         kunmap_atomic(addr2);
1028         kunmap_atomic(addr1);
1029         return ret;
1030 }
1031
1032 static inline int pages_identical(struct page *page1, struct page *page2)
1033 {
1034         return !memcmp_pages(page1, page2);
1035 }
1036
1037 static int write_protect_page(struct vm_area_struct *vma, struct page *page,
1038                               pte_t *orig_pte)
1039 {
1040         struct mm_struct *mm = vma->vm_mm;
1041         struct page_vma_mapped_walk pvmw = {
1042                 .page = page,
1043                 .vma = vma,
1044         };
1045         int swapped;
1046         int err = -EFAULT;
1047         struct mmu_notifier_range range;
1048
1049         pvmw.address = page_address_in_vma(page, vma);
1050         if (pvmw.address == -EFAULT)
1051                 goto out;
1052
1053         BUG_ON(PageTransCompound(page));
1054
1055         mmu_notifier_range_init(&range, mm, pvmw.address,
1056                                 pvmw.address + PAGE_SIZE);
1057         mmu_notifier_invalidate_range_start(&range);
1058
1059         if (!page_vma_mapped_walk(&pvmw))
1060                 goto out_mn;
1061         if (WARN_ONCE(!pvmw.pte, "Unexpected PMD mapping?"))
1062                 goto out_unlock;
1063
1064         if (pte_write(*pvmw.pte) || pte_dirty(*pvmw.pte) ||
1065             (pte_protnone(*pvmw.pte) && pte_savedwrite(*pvmw.pte)) ||
1066                                                 mm_tlb_flush_pending(mm)) {
1067                 pte_t entry;
1068
1069                 swapped = PageSwapCache(page);
1070                 flush_cache_page(vma, pvmw.address, page_to_pfn(page));
1071                 /*
1072                  * Ok this is tricky, when get_user_pages_fast() run it doesn't
1073                  * take any lock, therefore the check that we are going to make
1074                  * with the pagecount against the mapcount is racey and
1075                  * O_DIRECT can happen right after the check.
1076                  * So we clear the pte and flush the tlb before the check
1077                  * this assure us that no O_DIRECT can happen after the check
1078                  * or in the middle of the check.
1079                  *
1080                  * No need to notify as we are downgrading page table to read
1081                  * only not changing it to point to a new page.
1082                  *
1083                  * See Documentation/vm/mmu_notifier.rst
1084                  */
1085                 entry = ptep_clear_flush(vma, pvmw.address, pvmw.pte);
1086                 /*
1087                  * Check that no O_DIRECT or similar I/O is in progress on the
1088                  * page
1089                  */
1090                 if (page_mapcount(page) + 1 + swapped != page_count(page)) {
1091                         set_pte_at(mm, pvmw.address, pvmw.pte, entry);
1092                         goto out_unlock;
1093                 }
1094                 if (pte_dirty(entry))
1095                         set_page_dirty(page);
1096
1097                 if (pte_protnone(entry))
1098                         entry = pte_mkclean(pte_clear_savedwrite(entry));
1099                 else
1100                         entry = pte_mkclean(pte_wrprotect(entry));
1101                 set_pte_at_notify(mm, pvmw.address, pvmw.pte, entry);
1102         }
1103         *orig_pte = *pvmw.pte;
1104         err = 0;
1105
1106 out_unlock:
1107         page_vma_mapped_walk_done(&pvmw);
1108 out_mn:
1109         mmu_notifier_invalidate_range_end(&range);
1110 out:
1111         return err;
1112 }
1113
1114 /**
1115  * replace_page - replace page in vma by new ksm page
1116  * @vma:      vma that holds the pte pointing to page
1117  * @page:     the page we are replacing by kpage
1118  * @kpage:    the ksm page we replace page by
1119  * @orig_pte: the original value of the pte
1120  *
1121  * Returns 0 on success, -EFAULT on failure.
1122  */
1123 static int replace_page(struct vm_area_struct *vma, struct page *page,
1124                         struct page *kpage, pte_t orig_pte)
1125 {
1126         struct mm_struct *mm = vma->vm_mm;
1127         pmd_t *pmd;
1128         pte_t *ptep;
1129         pte_t newpte;
1130         spinlock_t *ptl;
1131         unsigned long addr;
1132         int err = -EFAULT;
1133         struct mmu_notifier_range range;
1134
1135         addr = page_address_in_vma(page, vma);
1136         if (addr == -EFAULT)
1137                 goto out;
1138
1139         pmd = mm_find_pmd(mm, addr);
1140         if (!pmd)
1141                 goto out;
1142
1143         mmu_notifier_range_init(&range, mm, addr, addr + PAGE_SIZE);
1144         mmu_notifier_invalidate_range_start(&range);
1145
1146         ptep = pte_offset_map_lock(mm, pmd, addr, &ptl);
1147         if (!pte_same(*ptep, orig_pte)) {
1148                 pte_unmap_unlock(ptep, ptl);
1149                 goto out_mn;
1150         }
1151
1152         /*
1153          * No need to check ksm_use_zero_pages here: we can only have a
1154          * zero_page here if ksm_use_zero_pages was enabled alreaady.
1155          */
1156         if (!is_zero_pfn(page_to_pfn(kpage))) {
1157                 get_page(kpage);
1158                 page_add_anon_rmap(kpage, vma, addr, false);
1159                 newpte = mk_pte(kpage, vma->vm_page_prot);
1160         } else {
1161                 newpte = pte_mkspecial(pfn_pte(page_to_pfn(kpage),
1162                                                vma->vm_page_prot));
1163                 /*
1164                  * We're replacing an anonymous page with a zero page, which is
1165                  * not anonymous. We need to do proper accounting otherwise we
1166                  * will get wrong values in /proc, and a BUG message in dmesg
1167                  * when tearing down the mm.
1168                  */
1169                 dec_mm_counter(mm, MM_ANONPAGES);
1170         }
1171
1172         flush_cache_page(vma, addr, pte_pfn(*ptep));
1173         /*
1174          * No need to notify as we are replacing a read only page with another
1175          * read only page with the same content.
1176          *
1177          * See Documentation/vm/mmu_notifier.rst
1178          */
1179         ptep_clear_flush(vma, addr, ptep);
1180         set_pte_at_notify(mm, addr, ptep, newpte);
1181
1182         page_remove_rmap(page, false);
1183         if (!page_mapped(page))
1184                 try_to_free_swap(page);
1185         put_page(page);
1186
1187         pte_unmap_unlock(ptep, ptl);
1188         err = 0;
1189 out_mn:
1190         mmu_notifier_invalidate_range_end(&range);
1191 out:
1192         return err;
1193 }
1194
1195 /*
1196  * try_to_merge_one_page - take two pages and merge them into one
1197  * @vma: the vma that holds the pte pointing to page
1198  * @page: the PageAnon page that we want to replace with kpage
1199  * @kpage: the PageKsm page that we want to map instead of page,
1200  *         or NULL the first time when we want to use page as kpage.
1201  *
1202  * This function returns 0 if the pages were merged, -EFAULT otherwise.
1203  */
1204 static int try_to_merge_one_page(struct vm_area_struct *vma,
1205                                  struct page *page, struct page *kpage)
1206 {
1207         pte_t orig_pte = __pte(0);
1208         int err = -EFAULT;
1209
1210         if (page == kpage)                      /* ksm page forked */
1211                 return 0;
1212
1213         if (!PageAnon(page))
1214                 goto out;
1215
1216         /*
1217          * We need the page lock to read a stable PageSwapCache in
1218          * write_protect_page().  We use trylock_page() instead of
1219          * lock_page() because we don't want to wait here - we
1220          * prefer to continue scanning and merging different pages,
1221          * then come back to this page when it is unlocked.
1222          */
1223         if (!trylock_page(page))
1224                 goto out;
1225
1226         if (PageTransCompound(page)) {
1227                 if (split_huge_page(page))
1228                         goto out_unlock;
1229         }
1230
1231         /*
1232          * If this anonymous page is mapped only here, its pte may need
1233          * to be write-protected.  If it's mapped elsewhere, all of its
1234          * ptes are necessarily already write-protected.  But in either
1235          * case, we need to lock and check page_count is not raised.
1236          */
1237         if (write_protect_page(vma, page, &orig_pte) == 0) {
1238                 if (!kpage) {
1239                         /*
1240                          * While we hold page lock, upgrade page from
1241                          * PageAnon+anon_vma to PageKsm+NULL stable_node:
1242                          * stable_tree_insert() will update stable_node.
1243                          */
1244                         set_page_stable_node(page, NULL);
1245                         mark_page_accessed(page);
1246                         /*
1247                          * Page reclaim just frees a clean page with no dirty
1248                          * ptes: make sure that the ksm page would be swapped.
1249                          */
1250                         if (!PageDirty(page))
1251                                 SetPageDirty(page);
1252                         err = 0;
1253                 } else if (pages_identical(page, kpage))
1254                         err = replace_page(vma, page, kpage, orig_pte);
1255         }
1256
1257         if ((vma->vm_flags & VM_LOCKED) && kpage && !err) {
1258                 munlock_vma_page(page);
1259                 if (!PageMlocked(kpage)) {
1260                         unlock_page(page);
1261                         lock_page(kpage);
1262                         mlock_vma_page(kpage);
1263                         page = kpage;           /* for final unlock */
1264                 }
1265         }
1266
1267 out_unlock:
1268         unlock_page(page);
1269 out:
1270         return err;
1271 }
1272
1273 /*
1274  * try_to_merge_with_ksm_page - like try_to_merge_two_pages,
1275  * but no new kernel page is allocated: kpage must already be a ksm page.
1276  *
1277  * This function returns 0 if the pages were merged, -EFAULT otherwise.
1278  */
1279 static int try_to_merge_with_ksm_page(struct rmap_item *rmap_item,
1280                                       struct page *page, struct page *kpage)
1281 {
1282         struct mm_struct *mm = rmap_item->mm;
1283         struct vm_area_struct *vma;
1284         int err = -EFAULT;
1285
1286         down_read(&mm->mmap_sem);
1287         vma = find_mergeable_vma(mm, rmap_item->address);
1288         if (!vma)
1289                 goto out;
1290
1291         err = try_to_merge_one_page(vma, page, kpage);
1292         if (err)
1293                 goto out;
1294
1295         /* Unstable nid is in union with stable anon_vma: remove first */
1296         remove_rmap_item_from_tree(rmap_item);
1297
1298         /* Must get reference to anon_vma while still holding mmap_sem */
1299         rmap_item->anon_vma = vma->anon_vma;
1300         get_anon_vma(vma->anon_vma);
1301 out:
1302         up_read(&mm->mmap_sem);
1303         return err;
1304 }
1305
1306 /*
1307  * try_to_merge_two_pages - take two identical pages and prepare them
1308  * to be merged into one page.
1309  *
1310  * This function returns the kpage if we successfully merged two identical
1311  * pages into one ksm page, NULL otherwise.
1312  *
1313  * Note that this function upgrades page to ksm page: if one of the pages
1314  * is already a ksm page, try_to_merge_with_ksm_page should be used.
1315  */
1316 static struct page *try_to_merge_two_pages(struct rmap_item *rmap_item,
1317                                            struct page *page,
1318                                            struct rmap_item *tree_rmap_item,
1319                                            struct page *tree_page)
1320 {
1321         int err;
1322
1323         err = try_to_merge_with_ksm_page(rmap_item, page, NULL);
1324         if (!err) {
1325                 err = try_to_merge_with_ksm_page(tree_rmap_item,
1326                                                         tree_page, page);
1327                 /*
1328                  * If that fails, we have a ksm page with only one pte
1329                  * pointing to it: so break it.
1330                  */
1331                 if (err)
1332                         break_cow(rmap_item);
1333         }
1334         return err ? NULL : page;
1335 }
1336
1337 static __always_inline
1338 bool __is_page_sharing_candidate(struct stable_node *stable_node, int offset)
1339 {
1340         VM_BUG_ON(stable_node->rmap_hlist_len < 0);
1341         /*
1342          * Check that at least one mapping still exists, otherwise
1343          * there's no much point to merge and share with this
1344          * stable_node, as the underlying tree_page of the other
1345          * sharer is going to be freed soon.
1346          */
1347         return stable_node->rmap_hlist_len &&
1348                 stable_node->rmap_hlist_len + offset < ksm_max_page_sharing;
1349 }
1350
1351 static __always_inline
1352 bool is_page_sharing_candidate(struct stable_node *stable_node)
1353 {
1354         return __is_page_sharing_candidate(stable_node, 0);
1355 }
1356
1357 static struct page *stable_node_dup(struct stable_node **_stable_node_dup,
1358                                     struct stable_node **_stable_node,
1359                                     struct rb_root *root,
1360                                     bool prune_stale_stable_nodes)
1361 {
1362         struct stable_node *dup, *found = NULL, *stable_node = *_stable_node;
1363         struct hlist_node *hlist_safe;
1364         struct page *_tree_page, *tree_page = NULL;
1365         int nr = 0;
1366         int found_rmap_hlist_len;
1367
1368         if (!prune_stale_stable_nodes ||
1369             time_before(jiffies, stable_node->chain_prune_time +
1370                         msecs_to_jiffies(
1371                                 ksm_stable_node_chains_prune_millisecs)))
1372                 prune_stale_stable_nodes = false;
1373         else
1374                 stable_node->chain_prune_time = jiffies;
1375
1376         hlist_for_each_entry_safe(dup, hlist_safe,
1377                                   &stable_node->hlist, hlist_dup) {
1378                 cond_resched();
1379                 /*
1380                  * We must walk all stable_node_dup to prune the stale
1381                  * stable nodes during lookup.
1382                  *
1383                  * get_ksm_page can drop the nodes from the
1384                  * stable_node->hlist if they point to freed pages
1385                  * (that's why we do a _safe walk). The "dup"
1386                  * stable_node parameter itself will be freed from
1387                  * under us if it returns NULL.
1388                  */
1389                 _tree_page = get_ksm_page(dup, false);
1390                 if (!_tree_page)
1391                         continue;
1392                 nr += 1;
1393                 if (is_page_sharing_candidate(dup)) {
1394                         if (!found ||
1395                             dup->rmap_hlist_len > found_rmap_hlist_len) {
1396                                 if (found)
1397                                         put_page(tree_page);
1398                                 found = dup;
1399                                 found_rmap_hlist_len = found->rmap_hlist_len;
1400                                 tree_page = _tree_page;
1401
1402                                 /* skip put_page for found dup */
1403                                 if (!prune_stale_stable_nodes)
1404                                         break;
1405                                 continue;
1406                         }
1407                 }
1408                 put_page(_tree_page);
1409         }
1410
1411         if (found) {
1412                 /*
1413                  * nr is counting all dups in the chain only if
1414                  * prune_stale_stable_nodes is true, otherwise we may
1415                  * break the loop at nr == 1 even if there are
1416                  * multiple entries.
1417                  */
1418                 if (prune_stale_stable_nodes && nr == 1) {
1419                         /*
1420                          * If there's not just one entry it would
1421                          * corrupt memory, better BUG_ON. In KSM
1422                          * context with no lock held it's not even
1423                          * fatal.
1424                          */
1425                         BUG_ON(stable_node->hlist.first->next);
1426
1427                         /*
1428                          * There's just one entry and it is below the
1429                          * deduplication limit so drop the chain.
1430                          */
1431                         rb_replace_node(&stable_node->node, &found->node,
1432                                         root);
1433                         free_stable_node(stable_node);
1434                         ksm_stable_node_chains--;
1435                         ksm_stable_node_dups--;
1436                         /*
1437                          * NOTE: the caller depends on the stable_node
1438                          * to be equal to stable_node_dup if the chain
1439                          * was collapsed.
1440                          */
1441                         *_stable_node = found;
1442                         /*
1443                          * Just for robustneess as stable_node is
1444                          * otherwise left as a stable pointer, the
1445                          * compiler shall optimize it away at build
1446                          * time.
1447                          */
1448                         stable_node = NULL;
1449                 } else if (stable_node->hlist.first != &found->hlist_dup &&
1450                            __is_page_sharing_candidate(found, 1)) {
1451                         /*
1452                          * If the found stable_node dup can accept one
1453                          * more future merge (in addition to the one
1454                          * that is underway) and is not at the head of
1455                          * the chain, put it there so next search will
1456                          * be quicker in the !prune_stale_stable_nodes
1457                          * case.
1458                          *
1459                          * NOTE: it would be inaccurate to use nr > 1
1460                          * instead of checking the hlist.first pointer
1461                          * directly, because in the
1462                          * prune_stale_stable_nodes case "nr" isn't
1463                          * the position of the found dup in the chain,
1464                          * but the total number of dups in the chain.
1465                          */
1466                         hlist_del(&found->hlist_dup);
1467                         hlist_add_head(&found->hlist_dup,
1468                                        &stable_node->hlist);
1469                 }
1470         }
1471
1472         *_stable_node_dup = found;
1473         return tree_page;
1474 }
1475
1476 static struct stable_node *stable_node_dup_any(struct stable_node *stable_node,
1477                                                struct rb_root *root)
1478 {
1479         if (!is_stable_node_chain(stable_node))
1480                 return stable_node;
1481         if (hlist_empty(&stable_node->hlist)) {
1482                 free_stable_node_chain(stable_node, root);
1483                 return NULL;
1484         }
1485         return hlist_entry(stable_node->hlist.first,
1486                            typeof(*stable_node), hlist_dup);
1487 }
1488
1489 /*
1490  * Like for get_ksm_page, this function can free the *_stable_node and
1491  * *_stable_node_dup if the returned tree_page is NULL.
1492  *
1493  * It can also free and overwrite *_stable_node with the found
1494  * stable_node_dup if the chain is collapsed (in which case
1495  * *_stable_node will be equal to *_stable_node_dup like if the chain
1496  * never existed). It's up to the caller to verify tree_page is not
1497  * NULL before dereferencing *_stable_node or *_stable_node_dup.
1498  *
1499  * *_stable_node_dup is really a second output parameter of this
1500  * function and will be overwritten in all cases, the caller doesn't
1501  * need to initialize it.
1502  */
1503 static struct page *__stable_node_chain(struct stable_node **_stable_node_dup,
1504                                         struct stable_node **_stable_node,
1505                                         struct rb_root *root,
1506                                         bool prune_stale_stable_nodes)
1507 {
1508         struct stable_node *stable_node = *_stable_node;
1509         if (!is_stable_node_chain(stable_node)) {
1510                 if (is_page_sharing_candidate(stable_node)) {
1511                         *_stable_node_dup = stable_node;
1512                         return get_ksm_page(stable_node, false);
1513                 }
1514                 /*
1515                  * _stable_node_dup set to NULL means the stable_node
1516                  * reached the ksm_max_page_sharing limit.
1517                  */
1518                 *_stable_node_dup = NULL;
1519                 return NULL;
1520         }
1521         return stable_node_dup(_stable_node_dup, _stable_node, root,
1522                                prune_stale_stable_nodes);
1523 }
1524
1525 static __always_inline struct page *chain_prune(struct stable_node **s_n_d,
1526                                                 struct stable_node **s_n,
1527                                                 struct rb_root *root)
1528 {
1529         return __stable_node_chain(s_n_d, s_n, root, true);
1530 }
1531
1532 static __always_inline struct page *chain(struct stable_node **s_n_d,
1533                                           struct stable_node *s_n,
1534                                           struct rb_root *root)
1535 {
1536         struct stable_node *old_stable_node = s_n;
1537         struct page *tree_page;
1538
1539         tree_page = __stable_node_chain(s_n_d, &s_n, root, false);
1540         /* not pruning dups so s_n cannot have changed */
1541         VM_BUG_ON(s_n != old_stable_node);
1542         return tree_page;
1543 }
1544
1545 /*
1546  * stable_tree_search - search for page inside the stable tree
1547  *
1548  * This function checks if there is a page inside the stable tree
1549  * with identical content to the page that we are scanning right now.
1550  *
1551  * This function returns the stable tree node of identical content if found,
1552  * NULL otherwise.
1553  */
1554 static struct page *stable_tree_search(struct page *page)
1555 {
1556         int nid;
1557         struct rb_root *root;
1558         struct rb_node **new;
1559         struct rb_node *parent;
1560         struct stable_node *stable_node, *stable_node_dup, *stable_node_any;
1561         struct stable_node *page_node;
1562
1563         page_node = page_stable_node(page);
1564         if (page_node && page_node->head != &migrate_nodes) {
1565                 /* ksm page forked */
1566                 get_page(page);
1567                 return page;
1568         }
1569
1570         nid = get_kpfn_nid(page_to_pfn(page));
1571         root = root_stable_tree + nid;
1572 again:
1573         new = &root->rb_node;
1574         parent = NULL;
1575
1576         while (*new) {
1577                 struct page *tree_page;
1578                 int ret;
1579
1580                 cond_resched();
1581                 stable_node = rb_entry(*new, struct stable_node, node);
1582                 stable_node_any = NULL;
1583                 tree_page = chain_prune(&stable_node_dup, &stable_node, root);
1584                 /*
1585                  * NOTE: stable_node may have been freed by
1586                  * chain_prune() if the returned stable_node_dup is
1587                  * not NULL. stable_node_dup may have been inserted in
1588                  * the rbtree instead as a regular stable_node (in
1589                  * order to collapse the stable_node chain if a single
1590                  * stable_node dup was found in it). In such case the
1591                  * stable_node is overwritten by the calleee to point
1592                  * to the stable_node_dup that was collapsed in the
1593                  * stable rbtree and stable_node will be equal to
1594                  * stable_node_dup like if the chain never existed.
1595                  */
1596                 if (!stable_node_dup) {
1597                         /*
1598                          * Either all stable_node dups were full in
1599                          * this stable_node chain, or this chain was
1600                          * empty and should be rb_erased.
1601                          */
1602                         stable_node_any = stable_node_dup_any(stable_node,
1603                                                               root);
1604                         if (!stable_node_any) {
1605                                 /* rb_erase just run */
1606                                 goto again;
1607                         }
1608                         /*
1609                          * Take any of the stable_node dups page of
1610                          * this stable_node chain to let the tree walk
1611                          * continue. All KSM pages belonging to the
1612                          * stable_node dups in a stable_node chain
1613                          * have the same content and they're
1614                          * wrprotected at all times. Any will work
1615                          * fine to continue the walk.
1616                          */
1617                         tree_page = get_ksm_page(stable_node_any, false);
1618                 }
1619                 VM_BUG_ON(!stable_node_dup ^ !!stable_node_any);
1620                 if (!tree_page) {
1621                         /*
1622                          * If we walked over a stale stable_node,
1623                          * get_ksm_page() will call rb_erase() and it
1624                          * may rebalance the tree from under us. So
1625                          * restart the search from scratch. Returning
1626                          * NULL would be safe too, but we'd generate
1627                          * false negative insertions just because some
1628                          * stable_node was stale.
1629                          */
1630                         goto again;
1631                 }
1632
1633                 ret = memcmp_pages(page, tree_page);
1634                 put_page(tree_page);
1635
1636                 parent = *new;
1637                 if (ret < 0)
1638                         new = &parent->rb_left;
1639                 else if (ret > 0)
1640                         new = &parent->rb_right;
1641                 else {
1642                         if (page_node) {
1643                                 VM_BUG_ON(page_node->head != &migrate_nodes);
1644                                 /*
1645                                  * Test if the migrated page should be merged
1646                                  * into a stable node dup. If the mapcount is
1647                                  * 1 we can migrate it with another KSM page
1648                                  * without adding it to the chain.
1649                                  */
1650                                 if (page_mapcount(page) > 1)
1651                                         goto chain_append;
1652                         }
1653
1654                         if (!stable_node_dup) {
1655                                 /*
1656                                  * If the stable_node is a chain and
1657                                  * we got a payload match in memcmp
1658                                  * but we cannot merge the scanned
1659                                  * page in any of the existing
1660                                  * stable_node dups because they're
1661                                  * all full, we need to wait the
1662                                  * scanned page to find itself a match
1663                                  * in the unstable tree to create a
1664                                  * brand new KSM page to add later to
1665                                  * the dups of this stable_node.
1666                                  */
1667                                 return NULL;
1668                         }
1669
1670                         /*
1671                          * Lock and unlock the stable_node's page (which
1672                          * might already have been migrated) so that page
1673                          * migration is sure to notice its raised count.
1674                          * It would be more elegant to return stable_node
1675                          * than kpage, but that involves more changes.
1676                          */
1677                         tree_page = get_ksm_page(stable_node_dup, true);
1678                         if (unlikely(!tree_page))
1679                                 /*
1680                                  * The tree may have been rebalanced,
1681                                  * so re-evaluate parent and new.
1682                                  */
1683                                 goto again;
1684                         unlock_page(tree_page);
1685
1686                         if (get_kpfn_nid(stable_node_dup->kpfn) !=
1687                             NUMA(stable_node_dup->nid)) {
1688                                 put_page(tree_page);
1689                                 goto replace;
1690                         }
1691                         return tree_page;
1692                 }
1693         }
1694
1695         if (!page_node)
1696                 return NULL;
1697
1698         list_del(&page_node->list);
1699         DO_NUMA(page_node->nid = nid);
1700         rb_link_node(&page_node->node, parent, new);
1701         rb_insert_color(&page_node->node, root);
1702 out:
1703         if (is_page_sharing_candidate(page_node)) {
1704                 get_page(page);
1705                 return page;
1706         } else
1707                 return NULL;
1708
1709 replace:
1710         /*
1711          * If stable_node was a chain and chain_prune collapsed it,
1712          * stable_node has been updated to be the new regular
1713          * stable_node. A collapse of the chain is indistinguishable
1714          * from the case there was no chain in the stable
1715          * rbtree. Otherwise stable_node is the chain and
1716          * stable_node_dup is the dup to replace.
1717          */
1718         if (stable_node_dup == stable_node) {
1719                 VM_BUG_ON(is_stable_node_chain(stable_node_dup));
1720                 VM_BUG_ON(is_stable_node_dup(stable_node_dup));
1721                 /* there is no chain */
1722                 if (page_node) {
1723                         VM_BUG_ON(page_node->head != &migrate_nodes);
1724                         list_del(&page_node->list);
1725                         DO_NUMA(page_node->nid = nid);
1726                         rb_replace_node(&stable_node_dup->node,
1727                                         &page_node->node,
1728                                         root);
1729                         if (is_page_sharing_candidate(page_node))
1730                                 get_page(page);
1731                         else
1732                                 page = NULL;
1733                 } else {
1734                         rb_erase(&stable_node_dup->node, root);
1735                         page = NULL;
1736                 }
1737         } else {
1738                 VM_BUG_ON(!is_stable_node_chain(stable_node));
1739                 __stable_node_dup_del(stable_node_dup);
1740                 if (page_node) {
1741                         VM_BUG_ON(page_node->head != &migrate_nodes);
1742                         list_del(&page_node->list);
1743                         DO_NUMA(page_node->nid = nid);
1744                         stable_node_chain_add_dup(page_node, stable_node);
1745                         if (is_page_sharing_candidate(page_node))
1746                                 get_page(page);
1747                         else
1748                                 page = NULL;
1749                 } else {
1750                         page = NULL;
1751                 }
1752         }
1753         stable_node_dup->head = &migrate_nodes;
1754         list_add(&stable_node_dup->list, stable_node_dup->head);
1755         return page;
1756
1757 chain_append:
1758         /* stable_node_dup could be null if it reached the limit */
1759         if (!stable_node_dup)
1760                 stable_node_dup = stable_node_any;
1761         /*
1762          * If stable_node was a chain and chain_prune collapsed it,
1763          * stable_node has been updated to be the new regular
1764          * stable_node. A collapse of the chain is indistinguishable
1765          * from the case there was no chain in the stable
1766          * rbtree. Otherwise stable_node is the chain and
1767          * stable_node_dup is the dup to replace.
1768          */
1769         if (stable_node_dup == stable_node) {
1770                 VM_BUG_ON(is_stable_node_chain(stable_node_dup));
1771                 VM_BUG_ON(is_stable_node_dup(stable_node_dup));
1772                 /* chain is missing so create it */
1773                 stable_node = alloc_stable_node_chain(stable_node_dup,
1774                                                       root);
1775                 if (!stable_node)
1776                         return NULL;
1777         }
1778         /*
1779          * Add this stable_node dup that was
1780          * migrated to the stable_node chain
1781          * of the current nid for this page
1782          * content.
1783          */
1784         VM_BUG_ON(!is_stable_node_chain(stable_node));
1785         VM_BUG_ON(!is_stable_node_dup(stable_node_dup));
1786         VM_BUG_ON(page_node->head != &migrate_nodes);
1787         list_del(&page_node->list);
1788         DO_NUMA(page_node->nid = nid);
1789         stable_node_chain_add_dup(page_node, stable_node);
1790         goto out;
1791 }
1792
1793 /*
1794  * stable_tree_insert - insert stable tree node pointing to new ksm page
1795  * into the stable tree.
1796  *
1797  * This function returns the stable tree node just allocated on success,
1798  * NULL otherwise.
1799  */
1800 static struct stable_node *stable_tree_insert(struct page *kpage)
1801 {
1802         int nid;
1803         unsigned long kpfn;
1804         struct rb_root *root;
1805         struct rb_node **new;
1806         struct rb_node *parent;
1807         struct stable_node *stable_node, *stable_node_dup, *stable_node_any;
1808         bool need_chain = false;
1809
1810         kpfn = page_to_pfn(kpage);
1811         nid = get_kpfn_nid(kpfn);
1812         root = root_stable_tree + nid;
1813 again:
1814         parent = NULL;
1815         new = &root->rb_node;
1816
1817         while (*new) {
1818                 struct page *tree_page;
1819                 int ret;
1820
1821                 cond_resched();
1822                 stable_node = rb_entry(*new, struct stable_node, node);
1823                 stable_node_any = NULL;
1824                 tree_page = chain(&stable_node_dup, stable_node, root);
1825                 if (!stable_node_dup) {
1826                         /*
1827                          * Either all stable_node dups were full in
1828                          * this stable_node chain, or this chain was
1829                          * empty and should be rb_erased.
1830                          */
1831                         stable_node_any = stable_node_dup_any(stable_node,
1832                                                               root);
1833                         if (!stable_node_any) {
1834                                 /* rb_erase just run */
1835                                 goto again;
1836                         }
1837                         /*
1838                          * Take any of the stable_node dups page of
1839                          * this stable_node chain to let the tree walk
1840                          * continue. All KSM pages belonging to the
1841                          * stable_node dups in a stable_node chain
1842                          * have the same content and they're
1843                          * wrprotected at all times. Any will work
1844                          * fine to continue the walk.
1845                          */
1846                         tree_page = get_ksm_page(stable_node_any, false);
1847                 }
1848                 VM_BUG_ON(!stable_node_dup ^ !!stable_node_any);
1849                 if (!tree_page) {
1850                         /*
1851                          * If we walked over a stale stable_node,
1852                          * get_ksm_page() will call rb_erase() and it
1853                          * may rebalance the tree from under us. So
1854                          * restart the search from scratch. Returning
1855                          * NULL would be safe too, but we'd generate
1856                          * false negative insertions just because some
1857                          * stable_node was stale.
1858                          */
1859                         goto again;
1860                 }
1861
1862                 ret = memcmp_pages(kpage, tree_page);
1863                 put_page(tree_page);
1864
1865                 parent = *new;
1866                 if (ret < 0)
1867                         new = &parent->rb_left;
1868                 else if (ret > 0)
1869                         new = &parent->rb_right;
1870                 else {
1871                         need_chain = true;
1872                         break;
1873                 }
1874         }
1875
1876         stable_node_dup = alloc_stable_node();
1877         if (!stable_node_dup)
1878                 return NULL;
1879
1880         INIT_HLIST_HEAD(&stable_node_dup->hlist);
1881         stable_node_dup->kpfn = kpfn;
1882         set_page_stable_node(kpage, stable_node_dup);
1883         stable_node_dup->rmap_hlist_len = 0;
1884         DO_NUMA(stable_node_dup->nid = nid);
1885         if (!need_chain) {
1886                 rb_link_node(&stable_node_dup->node, parent, new);
1887                 rb_insert_color(&stable_node_dup->node, root);
1888         } else {
1889                 if (!is_stable_node_chain(stable_node)) {
1890                         struct stable_node *orig = stable_node;
1891                         /* chain is missing so create it */
1892                         stable_node = alloc_stable_node_chain(orig, root);
1893                         if (!stable_node) {
1894                                 free_stable_node(stable_node_dup);
1895                                 return NULL;
1896                         }
1897                 }
1898                 stable_node_chain_add_dup(stable_node_dup, stable_node);
1899         }
1900
1901         return stable_node_dup;
1902 }
1903
1904 /*
1905  * unstable_tree_search_insert - search for identical page,
1906  * else insert rmap_item into the unstable tree.
1907  *
1908  * This function searches for a page in the unstable tree identical to the
1909  * page currently being scanned; and if no identical page is found in the
1910  * tree, we insert rmap_item as a new object into the unstable tree.
1911  *
1912  * This function returns pointer to rmap_item found to be identical
1913  * to the currently scanned page, NULL otherwise.
1914  *
1915  * This function does both searching and inserting, because they share
1916  * the same walking algorithm in an rbtree.
1917  */
1918 static
1919 struct rmap_item *unstable_tree_search_insert(struct rmap_item *rmap_item,
1920                                               struct page *page,
1921                                               struct page **tree_pagep)
1922 {
1923         struct rb_node **new;
1924         struct rb_root *root;
1925         struct rb_node *parent = NULL;
1926         int nid;
1927
1928         nid = get_kpfn_nid(page_to_pfn(page));
1929         root = root_unstable_tree + nid;
1930         new = &root->rb_node;
1931
1932         while (*new) {
1933                 struct rmap_item *tree_rmap_item;
1934                 struct page *tree_page;
1935                 int ret;
1936
1937                 cond_resched();
1938                 tree_rmap_item = rb_entry(*new, struct rmap_item, node);
1939                 tree_page = get_mergeable_page(tree_rmap_item);
1940                 if (!tree_page)
1941                         return NULL;
1942
1943                 /*
1944                  * Don't substitute a ksm page for a forked page.
1945                  */
1946                 if (page == tree_page) {
1947                         put_page(tree_page);
1948                         return NULL;
1949                 }
1950
1951                 ret = memcmp_pages(page, tree_page);
1952
1953                 parent = *new;
1954                 if (ret < 0) {
1955                         put_page(tree_page);
1956                         new = &parent->rb_left;
1957                 } else if (ret > 0) {
1958                         put_page(tree_page);
1959                         new = &parent->rb_right;
1960                 } else if (!ksm_merge_across_nodes &&
1961                            page_to_nid(tree_page) != nid) {
1962                         /*
1963                          * If tree_page has been migrated to another NUMA node,
1964                          * it will be flushed out and put in the right unstable
1965                          * tree next time: only merge with it when across_nodes.
1966                          */
1967                         put_page(tree_page);
1968                         return NULL;
1969                 } else {
1970                         *tree_pagep = tree_page;
1971                         return tree_rmap_item;
1972                 }
1973         }
1974
1975         rmap_item->address |= UNSTABLE_FLAG;
1976         rmap_item->address |= (ksm_scan.seqnr & SEQNR_MASK);
1977         DO_NUMA(rmap_item->nid = nid);
1978         rb_link_node(&rmap_item->node, parent, new);
1979         rb_insert_color(&rmap_item->node, root);
1980
1981         ksm_pages_unshared++;
1982         return NULL;
1983 }
1984
1985 /*
1986  * stable_tree_append - add another rmap_item to the linked list of
1987  * rmap_items hanging off a given node of the stable tree, all sharing
1988  * the same ksm page.
1989  */
1990 static void stable_tree_append(struct rmap_item *rmap_item,
1991                                struct stable_node *stable_node,
1992                                bool max_page_sharing_bypass)
1993 {
1994         /*
1995          * rmap won't find this mapping if we don't insert the
1996          * rmap_item in the right stable_node
1997          * duplicate. page_migration could break later if rmap breaks,
1998          * so we can as well crash here. We really need to check for
1999          * rmap_hlist_len == STABLE_NODE_CHAIN, but we can as well check
2000          * for other negative values as an undeflow if detected here
2001          * for the first time (and not when decreasing rmap_hlist_len)
2002          * would be sign of memory corruption in the stable_node.
2003          */
2004         BUG_ON(stable_node->rmap_hlist_len < 0);
2005
2006         stable_node->rmap_hlist_len++;
2007         if (!max_page_sharing_bypass)
2008                 /* possibly non fatal but unexpected overflow, only warn */
2009                 WARN_ON_ONCE(stable_node->rmap_hlist_len >
2010                              ksm_max_page_sharing);
2011
2012         rmap_item->head = stable_node;
2013         rmap_item->address |= STABLE_FLAG;
2014         hlist_add_head(&rmap_item->hlist, &stable_node->hlist);
2015
2016         if (rmap_item->hlist.next)
2017                 ksm_pages_sharing++;
2018         else
2019                 ksm_pages_shared++;
2020 }
2021
2022 /*
2023  * cmp_and_merge_page - first see if page can be merged into the stable tree;
2024  * if not, compare checksum to previous and if it's the same, see if page can
2025  * be inserted into the unstable tree, or merged with a page already there and
2026  * both transferred to the stable tree.
2027  *
2028  * @page: the page that we are searching identical page to.
2029  * @rmap_item: the reverse mapping into the virtual address of this page
2030  */
2031 static void cmp_and_merge_page(struct page *page, struct rmap_item *rmap_item)
2032 {
2033         struct mm_struct *mm = rmap_item->mm;
2034         struct rmap_item *tree_rmap_item;
2035         struct page *tree_page = NULL;
2036         struct stable_node *stable_node;
2037         struct page *kpage;
2038         unsigned int checksum;
2039         int err;
2040         bool max_page_sharing_bypass = false;
2041
2042         stable_node = page_stable_node(page);
2043         if (stable_node) {
2044                 if (stable_node->head != &migrate_nodes &&
2045                     get_kpfn_nid(READ_ONCE(stable_node->kpfn)) !=
2046                     NUMA(stable_node->nid)) {
2047                         stable_node_dup_del(stable_node);
2048                         stable_node->head = &migrate_nodes;
2049                         list_add(&stable_node->list, stable_node->head);
2050                 }
2051                 if (stable_node->head != &migrate_nodes &&
2052                     rmap_item->head == stable_node)
2053                         return;
2054                 /*
2055                  * If it's a KSM fork, allow it to go over the sharing limit
2056                  * without warnings.
2057                  */
2058                 if (!is_page_sharing_candidate(stable_node))
2059                         max_page_sharing_bypass = true;
2060         }
2061
2062         /* We first start with searching the page inside the stable tree */
2063         kpage = stable_tree_search(page);
2064         if (kpage == page && rmap_item->head == stable_node) {
2065                 put_page(kpage);
2066                 return;
2067         }
2068
2069         remove_rmap_item_from_tree(rmap_item);
2070
2071         if (kpage) {
2072                 err = try_to_merge_with_ksm_page(rmap_item, page, kpage);
2073                 if (!err) {
2074                         /*
2075                          * The page was successfully merged:
2076                          * add its rmap_item to the stable tree.
2077                          */
2078                         lock_page(kpage);
2079                         stable_tree_append(rmap_item, page_stable_node(kpage),
2080                                            max_page_sharing_bypass);
2081                         unlock_page(kpage);
2082                 }
2083                 put_page(kpage);
2084                 return;
2085         }
2086
2087         /*
2088          * If the hash value of the page has changed from the last time
2089          * we calculated it, this page is changing frequently: therefore we
2090          * don't want to insert it in the unstable tree, and we don't want
2091          * to waste our time searching for something identical to it there.
2092          */
2093         checksum = calc_checksum(page);
2094         if (rmap_item->oldchecksum != checksum) {
2095                 rmap_item->oldchecksum = checksum;
2096                 return;
2097         }
2098
2099         /*
2100          * Same checksum as an empty page. We attempt to merge it with the
2101          * appropriate zero page if the user enabled this via sysfs.
2102          */
2103         if (ksm_use_zero_pages && (checksum == zero_checksum)) {
2104                 struct vm_area_struct *vma;
2105
2106                 down_read(&mm->mmap_sem);
2107                 vma = find_mergeable_vma(mm, rmap_item->address);
2108                 err = try_to_merge_one_page(vma, page,
2109                                             ZERO_PAGE(rmap_item->address));
2110                 up_read(&mm->mmap_sem);
2111                 /*
2112                  * In case of failure, the page was not really empty, so we
2113                  * need to continue. Otherwise we're done.
2114                  */
2115                 if (!err)
2116                         return;
2117         }
2118         tree_rmap_item =
2119                 unstable_tree_search_insert(rmap_item, page, &tree_page);
2120         if (tree_rmap_item) {
2121                 bool split;
2122
2123                 kpage = try_to_merge_two_pages(rmap_item, page,
2124                                                 tree_rmap_item, tree_page);
2125                 /*
2126                  * If both pages we tried to merge belong to the same compound
2127                  * page, then we actually ended up increasing the reference
2128                  * count of the same compound page twice, and split_huge_page
2129                  * failed.
2130                  * Here we set a flag if that happened, and we use it later to
2131                  * try split_huge_page again. Since we call put_page right
2132                  * afterwards, the reference count will be correct and
2133                  * split_huge_page should succeed.
2134                  */
2135                 split = PageTransCompound(page)
2136                         && compound_head(page) == compound_head(tree_page);
2137                 put_page(tree_page);
2138                 if (kpage) {
2139                         /*
2140                          * The pages were successfully merged: insert new
2141                          * node in the stable tree and add both rmap_items.
2142                          */
2143                         lock_page(kpage);
2144                         stable_node = stable_tree_insert(kpage);
2145                         if (stable_node) {
2146                                 stable_tree_append(tree_rmap_item, stable_node,
2147                                                    false);
2148                                 stable_tree_append(rmap_item, stable_node,
2149                                                    false);
2150                         }
2151                         unlock_page(kpage);
2152
2153                         /*
2154                          * If we fail to insert the page into the stable tree,
2155                          * we will have 2 virtual addresses that are pointing
2156                          * to a ksm page left outside the stable tree,
2157                          * in which case we need to break_cow on both.
2158                          */
2159                         if (!stable_node) {
2160                                 break_cow(tree_rmap_item);
2161                                 break_cow(rmap_item);
2162                         }
2163                 } else if (split) {
2164                         /*
2165                          * We are here if we tried to merge two pages and
2166                          * failed because they both belonged to the same
2167                          * compound page. We will split the page now, but no
2168                          * merging will take place.
2169                          * We do not want to add the cost of a full lock; if
2170                          * the page is locked, it is better to skip it and
2171                          * perhaps try again later.
2172                          */
2173                         if (!trylock_page(page))
2174                                 return;
2175                         split_huge_page(page);
2176                         unlock_page(page);
2177                 }
2178         }
2179 }
2180
2181 static struct rmap_item *get_next_rmap_item(struct mm_slot *mm_slot,
2182                                             struct rmap_item **rmap_list,
2183                                             unsigned long addr)
2184 {
2185         struct rmap_item *rmap_item;
2186
2187         while (*rmap_list) {
2188                 rmap_item = *rmap_list;
2189                 if ((rmap_item->address & PAGE_MASK) == addr)
2190                         return rmap_item;
2191                 if (rmap_item->address > addr)
2192                         break;
2193                 *rmap_list = rmap_item->rmap_list;
2194                 remove_rmap_item_from_tree(rmap_item);
2195                 free_rmap_item(rmap_item);
2196         }
2197
2198         rmap_item = alloc_rmap_item();
2199         if (rmap_item) {
2200                 /* It has already been zeroed */
2201                 rmap_item->mm = mm_slot->mm;
2202                 rmap_item->address = addr;
2203                 rmap_item->rmap_list = *rmap_list;
2204                 *rmap_list = rmap_item;
2205         }
2206         return rmap_item;
2207 }
2208
2209 static struct rmap_item *scan_get_next_rmap_item(struct page **page)
2210 {
2211         struct mm_struct *mm;
2212         struct mm_slot *slot;
2213         struct vm_area_struct *vma;
2214         struct rmap_item *rmap_item;
2215         int nid;
2216
2217         if (list_empty(&ksm_mm_head.mm_list))
2218                 return NULL;
2219
2220         slot = ksm_scan.mm_slot;
2221         if (slot == &ksm_mm_head) {
2222                 /*
2223                  * A number of pages can hang around indefinitely on per-cpu
2224                  * pagevecs, raised page count preventing write_protect_page
2225                  * from merging them.  Though it doesn't really matter much,
2226                  * it is puzzling to see some stuck in pages_volatile until
2227                  * other activity jostles them out, and they also prevented
2228                  * LTP's KSM test from succeeding deterministically; so drain
2229                  * them here (here rather than on entry to ksm_do_scan(),
2230                  * so we don't IPI too often when pages_to_scan is set low).
2231                  */
2232                 lru_add_drain_all();
2233
2234                 /*
2235                  * Whereas stale stable_nodes on the stable_tree itself
2236                  * get pruned in the regular course of stable_tree_search(),
2237                  * those moved out to the migrate_nodes list can accumulate:
2238                  * so prune them once before each full scan.
2239                  */
2240                 if (!ksm_merge_across_nodes) {
2241                         struct stable_node *stable_node, *next;
2242                         struct page *page;
2243
2244                         list_for_each_entry_safe(stable_node, next,
2245                                                  &migrate_nodes, list) {
2246                                 page = get_ksm_page(stable_node, false);
2247                                 if (page)
2248                                         put_page(page);
2249                                 cond_resched();
2250                         }
2251                 }
2252
2253                 for (nid = 0; nid < ksm_nr_node_ids; nid++)
2254                         root_unstable_tree[nid] = RB_ROOT;
2255
2256                 spin_lock(&ksm_mmlist_lock);
2257                 slot = list_entry(slot->mm_list.next, struct mm_slot, mm_list);
2258                 ksm_scan.mm_slot = slot;
2259                 spin_unlock(&ksm_mmlist_lock);
2260                 /*
2261                  * Although we tested list_empty() above, a racing __ksm_exit
2262                  * of the last mm on the list may have removed it since then.
2263                  */
2264                 if (slot == &ksm_mm_head)
2265                         return NULL;
2266 next_mm:
2267                 ksm_scan.address = 0;
2268                 ksm_scan.rmap_list = &slot->rmap_list;
2269         }
2270
2271         mm = slot->mm;
2272         down_read(&mm->mmap_sem);
2273         if (ksm_test_exit(mm))
2274                 vma = NULL;
2275         else
2276                 vma = find_vma(mm, ksm_scan.address);
2277
2278         for (; vma; vma = vma->vm_next) {
2279                 if (!(vma->vm_flags & VM_MERGEABLE))
2280                         continue;
2281                 if (ksm_scan.address < vma->vm_start)
2282                         ksm_scan.address = vma->vm_start;
2283                 if (!vma->anon_vma)
2284                         ksm_scan.address = vma->vm_end;
2285
2286                 while (ksm_scan.address < vma->vm_end) {
2287                         if (ksm_test_exit(mm))
2288                                 break;
2289                         *page = follow_page(vma, ksm_scan.address, FOLL_GET);
2290                         if (IS_ERR_OR_NULL(*page)) {
2291                                 ksm_scan.address += PAGE_SIZE;
2292                                 cond_resched();
2293                                 continue;
2294                         }
2295                         if (PageAnon(*page)) {
2296                                 flush_anon_page(vma, *page, ksm_scan.address);
2297                                 flush_dcache_page(*page);
2298                                 rmap_item = get_next_rmap_item(slot,
2299                                         ksm_scan.rmap_list, ksm_scan.address);
2300                                 if (rmap_item) {
2301                                         ksm_scan.rmap_list =
2302                                                         &rmap_item->rmap_list;
2303                                         ksm_scan.address += PAGE_SIZE;
2304                                 } else
2305                                         put_page(*page);
2306                                 up_read(&mm->mmap_sem);
2307                                 return rmap_item;
2308                         }
2309                         put_page(*page);
2310                         ksm_scan.address += PAGE_SIZE;
2311                         cond_resched();
2312                 }
2313         }
2314
2315         if (ksm_test_exit(mm)) {
2316                 ksm_scan.address = 0;
2317                 ksm_scan.rmap_list = &slot->rmap_list;
2318         }
2319         /*
2320          * Nuke all the rmap_items that are above this current rmap:
2321          * because there were no VM_MERGEABLE vmas with such addresses.
2322          */
2323         remove_trailing_rmap_items(slot, ksm_scan.rmap_list);
2324
2325         spin_lock(&ksm_mmlist_lock);
2326         ksm_scan.mm_slot = list_entry(slot->mm_list.next,
2327                                                 struct mm_slot, mm_list);
2328         if (ksm_scan.address == 0) {
2329                 /*
2330                  * We've completed a full scan of all vmas, holding mmap_sem
2331                  * throughout, and found no VM_MERGEABLE: so do the same as
2332                  * __ksm_exit does to remove this mm from all our lists now.
2333                  * This applies either when cleaning up after __ksm_exit
2334                  * (but beware: we can reach here even before __ksm_exit),
2335                  * or when all VM_MERGEABLE areas have been unmapped (and
2336                  * mmap_sem then protects against race with MADV_MERGEABLE).
2337                  */
2338                 hash_del(&slot->link);
2339                 list_del(&slot->mm_list);
2340                 spin_unlock(&ksm_mmlist_lock);
2341
2342                 free_mm_slot(slot);
2343                 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
2344                 up_read(&mm->mmap_sem);
2345                 mmdrop(mm);
2346         } else {
2347                 up_read(&mm->mmap_sem);
2348                 /*
2349                  * up_read(&mm->mmap_sem) first because after
2350                  * spin_unlock(&ksm_mmlist_lock) run, the "mm" may
2351                  * already have been freed under us by __ksm_exit()
2352                  * because the "mm_slot" is still hashed and
2353                  * ksm_scan.mm_slot doesn't point to it anymore.
2354                  */
2355                 spin_unlock(&ksm_mmlist_lock);
2356         }
2357
2358         /* Repeat until we've completed scanning the whole list */
2359         slot = ksm_scan.mm_slot;
2360         if (slot != &ksm_mm_head)
2361                 goto next_mm;
2362
2363         ksm_scan.seqnr++;
2364         return NULL;
2365 }
2366
2367 /**
2368  * ksm_do_scan  - the ksm scanner main worker function.
2369  * @scan_npages:  number of pages we want to scan before we return.
2370  */
2371 static void ksm_do_scan(unsigned int scan_npages)
2372 {
2373         struct rmap_item *rmap_item;
2374         struct page *uninitialized_var(page);
2375
2376         while (scan_npages-- && likely(!freezing(current))) {
2377                 cond_resched();
2378                 rmap_item = scan_get_next_rmap_item(&page);
2379                 if (!rmap_item)
2380                         return;
2381                 cmp_and_merge_page(page, rmap_item);
2382                 put_page(page);
2383         }
2384 }
2385
2386 static int ksmd_should_run(void)
2387 {
2388         return (ksm_run & KSM_RUN_MERGE) && !list_empty(&ksm_mm_head.mm_list);
2389 }
2390
2391 static int ksm_scan_thread(void *nothing)
2392 {
2393         unsigned int sleep_ms;
2394
2395         set_freezable();
2396         set_user_nice(current, 5);
2397
2398         while (!kthread_should_stop()) {
2399                 mutex_lock(&ksm_thread_mutex);
2400                 wait_while_offlining();
2401                 if (ksmd_should_run())
2402                         ksm_do_scan(ksm_thread_pages_to_scan);
2403                 mutex_unlock(&ksm_thread_mutex);
2404
2405                 try_to_freeze();
2406
2407                 if (ksmd_should_run()) {
2408                         sleep_ms = READ_ONCE(ksm_thread_sleep_millisecs);
2409                         wait_event_interruptible_timeout(ksm_iter_wait,
2410                                 sleep_ms != READ_ONCE(ksm_thread_sleep_millisecs),
2411                                 msecs_to_jiffies(sleep_ms));
2412                 } else {
2413                         wait_event_freezable(ksm_thread_wait,
2414                                 ksmd_should_run() || kthread_should_stop());
2415                 }
2416         }
2417         return 0;
2418 }
2419
2420 int ksm_madvise(struct vm_area_struct *vma, unsigned long start,
2421                 unsigned long end, int advice, unsigned long *vm_flags)
2422 {
2423         struct mm_struct *mm = vma->vm_mm;
2424         int err;
2425
2426         switch (advice) {
2427         case MADV_MERGEABLE:
2428                 /*
2429                  * Be somewhat over-protective for now!
2430                  */
2431                 if (*vm_flags & (VM_MERGEABLE | VM_SHARED  | VM_MAYSHARE   |
2432                                  VM_PFNMAP    | VM_IO      | VM_DONTEXPAND |
2433                                  VM_HUGETLB | VM_MIXEDMAP))
2434                         return 0;               /* just ignore the advice */
2435
2436                 if (vma_is_dax(vma))
2437                         return 0;
2438
2439 #ifdef VM_SAO
2440                 if (*vm_flags & VM_SAO)
2441                         return 0;
2442 #endif
2443 #ifdef VM_SPARC_ADI
2444                 if (*vm_flags & VM_SPARC_ADI)
2445                         return 0;
2446 #endif
2447
2448                 if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) {
2449                         err = __ksm_enter(mm);
2450                         if (err)
2451                                 return err;
2452                 }
2453
2454                 *vm_flags |= VM_MERGEABLE;
2455                 break;
2456
2457         case MADV_UNMERGEABLE:
2458                 if (!(*vm_flags & VM_MERGEABLE))
2459                         return 0;               /* just ignore the advice */
2460
2461                 if (vma->anon_vma) {
2462                         err = unmerge_ksm_pages(vma, start, end);
2463                         if (err)
2464                                 return err;
2465                 }
2466
2467                 *vm_flags &= ~VM_MERGEABLE;
2468                 break;
2469         }
2470
2471         return 0;
2472 }
2473
2474 int __ksm_enter(struct mm_struct *mm)
2475 {
2476         struct mm_slot *mm_slot;
2477         int needs_wakeup;
2478
2479         mm_slot = alloc_mm_slot();
2480         if (!mm_slot)
2481                 return -ENOMEM;
2482
2483         /* Check ksm_run too?  Would need tighter locking */
2484         needs_wakeup = list_empty(&ksm_mm_head.mm_list);
2485
2486         spin_lock(&ksm_mmlist_lock);
2487         insert_to_mm_slots_hash(mm, mm_slot);
2488         /*
2489          * When KSM_RUN_MERGE (or KSM_RUN_STOP),
2490          * insert just behind the scanning cursor, to let the area settle
2491          * down a little; when fork is followed by immediate exec, we don't
2492          * want ksmd to waste time setting up and tearing down an rmap_list.
2493          *
2494          * But when KSM_RUN_UNMERGE, it's important to insert ahead of its
2495          * scanning cursor, otherwise KSM pages in newly forked mms will be
2496          * missed: then we might as well insert at the end of the list.
2497          */
2498         if (ksm_run & KSM_RUN_UNMERGE)
2499                 list_add_tail(&mm_slot->mm_list, &ksm_mm_head.mm_list);
2500         else
2501                 list_add_tail(&mm_slot->mm_list, &ksm_scan.mm_slot->mm_list);
2502         spin_unlock(&ksm_mmlist_lock);
2503
2504         set_bit(MMF_VM_MERGEABLE, &mm->flags);
2505         mmgrab(mm);
2506
2507         if (needs_wakeup)
2508                 wake_up_interruptible(&ksm_thread_wait);
2509
2510         return 0;
2511 }
2512
2513 void __ksm_exit(struct mm_struct *mm)
2514 {
2515         struct mm_slot *mm_slot;
2516         int easy_to_free = 0;
2517
2518         /*
2519          * This process is exiting: if it's straightforward (as is the
2520          * case when ksmd was never running), free mm_slot immediately.
2521          * But if it's at the cursor or has rmap_items linked to it, use
2522          * mmap_sem to synchronize with any break_cows before pagetables
2523          * are freed, and leave the mm_slot on the list for ksmd to free.
2524          * Beware: ksm may already have noticed it exiting and freed the slot.
2525          */
2526
2527         spin_lock(&ksm_mmlist_lock);
2528         mm_slot = get_mm_slot(mm);
2529         if (mm_slot && ksm_scan.mm_slot != mm_slot) {
2530                 if (!mm_slot->rmap_list) {
2531                         hash_del(&mm_slot->link);
2532                         list_del(&mm_slot->mm_list);
2533                         easy_to_free = 1;
2534                 } else {
2535                         list_move(&mm_slot->mm_list,
2536                                   &ksm_scan.mm_slot->mm_list);
2537                 }
2538         }
2539         spin_unlock(&ksm_mmlist_lock);
2540
2541         if (easy_to_free) {
2542                 free_mm_slot(mm_slot);
2543                 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
2544                 mmdrop(mm);
2545         } else if (mm_slot) {
2546                 down_write(&mm->mmap_sem);
2547                 up_write(&mm->mmap_sem);
2548         }
2549 }
2550
2551 struct page *ksm_might_need_to_copy(struct page *page,
2552                         struct vm_area_struct *vma, unsigned long address)
2553 {
2554         struct anon_vma *anon_vma = page_anon_vma(page);
2555         struct page *new_page;
2556
2557         if (PageKsm(page)) {
2558                 if (page_stable_node(page) &&
2559                     !(ksm_run & KSM_RUN_UNMERGE))
2560                         return page;    /* no need to copy it */
2561         } else if (!anon_vma) {
2562                 return page;            /* no need to copy it */
2563         } else if (anon_vma->root == vma->anon_vma->root &&
2564                  page->index == linear_page_index(vma, address)) {
2565                 return page;            /* still no need to copy it */
2566         }
2567         if (!PageUptodate(page))
2568                 return page;            /* let do_swap_page report the error */
2569
2570         new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2571         if (new_page) {
2572                 copy_user_highpage(new_page, page, address, vma);
2573
2574                 SetPageDirty(new_page);
2575                 __SetPageUptodate(new_page);
2576                 __SetPageLocked(new_page);
2577         }
2578
2579         return new_page;
2580 }
2581
2582 void rmap_walk_ksm(struct page *page, struct rmap_walk_control *rwc)
2583 {
2584         struct stable_node *stable_node;
2585         struct rmap_item *rmap_item;
2586         int search_new_forks = 0;
2587
2588         VM_BUG_ON_PAGE(!PageKsm(page), page);
2589
2590         /*
2591          * Rely on the page lock to protect against concurrent modifications
2592          * to that page's node of the stable tree.
2593          */
2594         VM_BUG_ON_PAGE(!PageLocked(page), page);
2595
2596         stable_node = page_stable_node(page);
2597         if (!stable_node)
2598                 return;
2599 again:
2600         hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
2601                 struct anon_vma *anon_vma = rmap_item->anon_vma;
2602                 struct anon_vma_chain *vmac;
2603                 struct vm_area_struct *vma;
2604
2605                 cond_resched();
2606                 anon_vma_lock_read(anon_vma);
2607                 anon_vma_interval_tree_foreach(vmac, &anon_vma->rb_root,
2608                                                0, ULONG_MAX) {
2609                         unsigned long addr;
2610
2611                         cond_resched();
2612                         vma = vmac->vma;
2613
2614                         /* Ignore the stable/unstable/sqnr flags */
2615                         addr = rmap_item->address & ~KSM_FLAG_MASK;
2616
2617                         if (addr < vma->vm_start || addr >= vma->vm_end)
2618                                 continue;
2619                         /*
2620                          * Initially we examine only the vma which covers this
2621                          * rmap_item; but later, if there is still work to do,
2622                          * we examine covering vmas in other mms: in case they
2623                          * were forked from the original since ksmd passed.
2624                          */
2625                         if ((rmap_item->mm == vma->vm_mm) == search_new_forks)
2626                                 continue;
2627
2628                         if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
2629                                 continue;
2630
2631                         if (!rwc->rmap_one(page, vma, addr, rwc->arg)) {
2632                                 anon_vma_unlock_read(anon_vma);
2633                                 return;
2634                         }
2635                         if (rwc->done && rwc->done(page)) {
2636                                 anon_vma_unlock_read(anon_vma);
2637                                 return;
2638                         }
2639                 }
2640                 anon_vma_unlock_read(anon_vma);
2641         }
2642         if (!search_new_forks++)
2643                 goto again;
2644 }
2645
2646 bool reuse_ksm_page(struct page *page,
2647                     struct vm_area_struct *vma,
2648                     unsigned long address)
2649 {
2650 #ifdef CONFIG_DEBUG_VM
2651         if (WARN_ON(is_zero_pfn(page_to_pfn(page))) ||
2652                         WARN_ON(!page_mapped(page)) ||
2653                         WARN_ON(!PageLocked(page))) {
2654                 dump_page(page, "reuse_ksm_page");
2655                 return false;
2656         }
2657 #endif
2658
2659         if (PageSwapCache(page) || !page_stable_node(page))
2660                 return false;
2661         /* Prohibit parallel get_ksm_page() */
2662         if (!page_ref_freeze(page, 1))
2663                 return false;
2664
2665         page_move_anon_rmap(page, vma);
2666         page->index = linear_page_index(vma, address);
2667         page_ref_unfreeze(page, 1);
2668
2669         return true;
2670 }
2671 #ifdef CONFIG_MIGRATION
2672 void ksm_migrate_page(struct page *newpage, struct page *oldpage)
2673 {
2674         struct stable_node *stable_node;
2675
2676         VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
2677         VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
2678         VM_BUG_ON_PAGE(newpage->mapping != oldpage->mapping, newpage);
2679
2680         stable_node = page_stable_node(newpage);
2681         if (stable_node) {
2682                 VM_BUG_ON_PAGE(stable_node->kpfn != page_to_pfn(oldpage), oldpage);
2683                 stable_node->kpfn = page_to_pfn(newpage);
2684                 /*
2685                  * newpage->mapping was set in advance; now we need smp_wmb()
2686                  * to make sure that the new stable_node->kpfn is visible
2687                  * to get_ksm_page() before it can see that oldpage->mapping
2688                  * has gone stale (or that PageSwapCache has been cleared).
2689                  */
2690                 smp_wmb();
2691                 set_page_stable_node(oldpage, NULL);
2692         }
2693 }
2694 #endif /* CONFIG_MIGRATION */
2695
2696 #ifdef CONFIG_MEMORY_HOTREMOVE
2697 static void wait_while_offlining(void)
2698 {
2699         while (ksm_run & KSM_RUN_OFFLINE) {
2700                 mutex_unlock(&ksm_thread_mutex);
2701                 wait_on_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE),
2702                             TASK_UNINTERRUPTIBLE);
2703                 mutex_lock(&ksm_thread_mutex);
2704         }
2705 }
2706
2707 static bool stable_node_dup_remove_range(struct stable_node *stable_node,
2708                                          unsigned long start_pfn,
2709                                          unsigned long end_pfn)
2710 {
2711         if (stable_node->kpfn >= start_pfn &&
2712             stable_node->kpfn < end_pfn) {
2713                 /*
2714                  * Don't get_ksm_page, page has already gone:
2715                  * which is why we keep kpfn instead of page*
2716                  */
2717                 remove_node_from_stable_tree(stable_node);
2718                 return true;
2719         }
2720         return false;
2721 }
2722
2723 static bool stable_node_chain_remove_range(struct stable_node *stable_node,
2724                                            unsigned long start_pfn,
2725                                            unsigned long end_pfn,
2726                                            struct rb_root *root)
2727 {
2728         struct stable_node *dup;
2729         struct hlist_node *hlist_safe;
2730
2731         if (!is_stable_node_chain(stable_node)) {
2732                 VM_BUG_ON(is_stable_node_dup(stable_node));
2733                 return stable_node_dup_remove_range(stable_node, start_pfn,
2734                                                     end_pfn);
2735         }
2736
2737         hlist_for_each_entry_safe(dup, hlist_safe,
2738                                   &stable_node->hlist, hlist_dup) {
2739                 VM_BUG_ON(!is_stable_node_dup(dup));
2740                 stable_node_dup_remove_range(dup, start_pfn, end_pfn);
2741         }
2742         if (hlist_empty(&stable_node->hlist)) {
2743                 free_stable_node_chain(stable_node, root);
2744                 return true; /* notify caller that tree was rebalanced */
2745         } else
2746                 return false;
2747 }
2748
2749 static void ksm_check_stable_tree(unsigned long start_pfn,
2750                                   unsigned long end_pfn)
2751 {
2752         struct stable_node *stable_node, *next;
2753         struct rb_node *node;
2754         int nid;
2755
2756         for (nid = 0; nid < ksm_nr_node_ids; nid++) {
2757                 node = rb_first(root_stable_tree + nid);
2758                 while (node) {
2759                         stable_node = rb_entry(node, struct stable_node, node);
2760                         if (stable_node_chain_remove_range(stable_node,
2761                                                            start_pfn, end_pfn,
2762                                                            root_stable_tree +
2763                                                            nid))
2764                                 node = rb_first(root_stable_tree + nid);
2765                         else
2766                                 node = rb_next(node);
2767                         cond_resched();
2768                 }
2769         }
2770         list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
2771                 if (stable_node->kpfn >= start_pfn &&
2772                     stable_node->kpfn < end_pfn)
2773                         remove_node_from_stable_tree(stable_node);
2774                 cond_resched();
2775         }
2776 }
2777
2778 static int ksm_memory_callback(struct notifier_block *self,
2779                                unsigned long action, void *arg)
2780 {
2781         struct memory_notify *mn = arg;
2782
2783         switch (action) {
2784         case MEM_GOING_OFFLINE:
2785                 /*
2786                  * Prevent ksm_do_scan(), unmerge_and_remove_all_rmap_items()
2787                  * and remove_all_stable_nodes() while memory is going offline:
2788                  * it is unsafe for them to touch the stable tree at this time.
2789                  * But unmerge_ksm_pages(), rmap lookups and other entry points
2790                  * which do not need the ksm_thread_mutex are all safe.
2791                  */
2792                 mutex_lock(&ksm_thread_mutex);
2793                 ksm_run |= KSM_RUN_OFFLINE;
2794                 mutex_unlock(&ksm_thread_mutex);
2795                 break;
2796
2797         case MEM_OFFLINE:
2798                 /*
2799                  * Most of the work is done by page migration; but there might
2800                  * be a few stable_nodes left over, still pointing to struct
2801                  * pages which have been offlined: prune those from the tree,
2802                  * otherwise get_ksm_page() might later try to access a
2803                  * non-existent struct page.
2804                  */
2805                 ksm_check_stable_tree(mn->start_pfn,
2806                                       mn->start_pfn + mn->nr_pages);
2807                 /* fallthrough */
2808
2809         case MEM_CANCEL_OFFLINE:
2810                 mutex_lock(&ksm_thread_mutex);
2811                 ksm_run &= ~KSM_RUN_OFFLINE;
2812                 mutex_unlock(&ksm_thread_mutex);
2813
2814                 smp_mb();       /* wake_up_bit advises this */
2815                 wake_up_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE));
2816                 break;
2817         }
2818         return NOTIFY_OK;
2819 }
2820 #else
2821 static void wait_while_offlining(void)
2822 {
2823 }
2824 #endif /* CONFIG_MEMORY_HOTREMOVE */
2825
2826 #ifdef CONFIG_SYSFS
2827 /*
2828  * This all compiles without CONFIG_SYSFS, but is a waste of space.
2829  */
2830
2831 #define KSM_ATTR_RO(_name) \
2832         static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2833 #define KSM_ATTR(_name) \
2834         static struct kobj_attribute _name##_attr = \
2835                 __ATTR(_name, 0644, _name##_show, _name##_store)
2836
2837 static ssize_t sleep_millisecs_show(struct kobject *kobj,
2838                                     struct kobj_attribute *attr, char *buf)
2839 {
2840         return sprintf(buf, "%u\n", ksm_thread_sleep_millisecs);
2841 }
2842
2843 static ssize_t sleep_millisecs_store(struct kobject *kobj,
2844                                      struct kobj_attribute *attr,
2845                                      const char *buf, size_t count)
2846 {
2847         unsigned long msecs;
2848         int err;
2849
2850         err = kstrtoul(buf, 10, &msecs);
2851         if (err || msecs > UINT_MAX)
2852                 return -EINVAL;
2853
2854         ksm_thread_sleep_millisecs = msecs;
2855         wake_up_interruptible(&ksm_iter_wait);
2856
2857         return count;
2858 }
2859 KSM_ATTR(sleep_millisecs);
2860
2861 static ssize_t pages_to_scan_show(struct kobject *kobj,
2862                                   struct kobj_attribute *attr, char *buf)
2863 {
2864         return sprintf(buf, "%u\n", ksm_thread_pages_to_scan);
2865 }
2866
2867 static ssize_t pages_to_scan_store(struct kobject *kobj,
2868                                    struct kobj_attribute *attr,
2869                                    const char *buf, size_t count)
2870 {
2871         int err;
2872         unsigned long nr_pages;
2873
2874         err = kstrtoul(buf, 10, &nr_pages);
2875         if (err || nr_pages > UINT_MAX)
2876                 return -EINVAL;
2877
2878         ksm_thread_pages_to_scan = nr_pages;
2879
2880         return count;
2881 }
2882 KSM_ATTR(pages_to_scan);
2883
2884 static ssize_t run_show(struct kobject *kobj, struct kobj_attribute *attr,
2885                         char *buf)
2886 {
2887         return sprintf(buf, "%lu\n", ksm_run);
2888 }
2889
2890 static ssize_t run_store(struct kobject *kobj, struct kobj_attribute *attr,
2891                          const char *buf, size_t count)
2892 {
2893         int err;
2894         unsigned long flags;
2895
2896         err = kstrtoul(buf, 10, &flags);
2897         if (err || flags > UINT_MAX)
2898                 return -EINVAL;
2899         if (flags > KSM_RUN_UNMERGE)
2900                 return -EINVAL;
2901
2902         /*
2903          * KSM_RUN_MERGE sets ksmd running, and 0 stops it running.
2904          * KSM_RUN_UNMERGE stops it running and unmerges all rmap_items,
2905          * breaking COW to free the pages_shared (but leaves mm_slots
2906          * on the list for when ksmd may be set running again).
2907          */
2908
2909         mutex_lock(&ksm_thread_mutex);
2910         wait_while_offlining();
2911         if (ksm_run != flags) {
2912                 ksm_run = flags;
2913                 if (flags & KSM_RUN_UNMERGE) {
2914                         set_current_oom_origin();
2915                         err = unmerge_and_remove_all_rmap_items();
2916                         clear_current_oom_origin();
2917                         if (err) {
2918                                 ksm_run = KSM_RUN_STOP;
2919                                 count = err;
2920                         }
2921                 }
2922         }
2923         mutex_unlock(&ksm_thread_mutex);
2924
2925         if (flags & KSM_RUN_MERGE)
2926                 wake_up_interruptible(&ksm_thread_wait);
2927
2928         return count;
2929 }
2930 KSM_ATTR(run);
2931
2932 #ifdef CONFIG_NUMA
2933 static ssize_t merge_across_nodes_show(struct kobject *kobj,
2934                                 struct kobj_attribute *attr, char *buf)
2935 {
2936         return sprintf(buf, "%u\n", ksm_merge_across_nodes);
2937 }
2938
2939 static ssize_t merge_across_nodes_store(struct kobject *kobj,
2940                                    struct kobj_attribute *attr,
2941                                    const char *buf, size_t count)
2942 {
2943         int err;
2944         unsigned long knob;
2945
2946         err = kstrtoul(buf, 10, &knob);
2947         if (err)
2948                 return err;
2949         if (knob > 1)
2950                 return -EINVAL;
2951
2952         mutex_lock(&ksm_thread_mutex);
2953         wait_while_offlining();
2954         if (ksm_merge_across_nodes != knob) {
2955                 if (ksm_pages_shared || remove_all_stable_nodes())
2956                         err = -EBUSY;
2957                 else if (root_stable_tree == one_stable_tree) {
2958                         struct rb_root *buf;
2959                         /*
2960                          * This is the first time that we switch away from the
2961                          * default of merging across nodes: must now allocate
2962                          * a buffer to hold as many roots as may be needed.
2963                          * Allocate stable and unstable together:
2964                          * MAXSMP NODES_SHIFT 10 will use 16kB.
2965                          */
2966                         buf = kcalloc(nr_node_ids + nr_node_ids, sizeof(*buf),
2967                                       GFP_KERNEL);
2968                         /* Let us assume that RB_ROOT is NULL is zero */
2969                         if (!buf)
2970                                 err = -ENOMEM;
2971                         else {
2972                                 root_stable_tree = buf;
2973                                 root_unstable_tree = buf + nr_node_ids;
2974                                 /* Stable tree is empty but not the unstable */
2975                                 root_unstable_tree[0] = one_unstable_tree[0];
2976                         }
2977                 }
2978                 if (!err) {
2979                         ksm_merge_across_nodes = knob;
2980                         ksm_nr_node_ids = knob ? 1 : nr_node_ids;
2981                 }
2982         }
2983         mutex_unlock(&ksm_thread_mutex);
2984
2985         return err ? err : count;
2986 }
2987 KSM_ATTR(merge_across_nodes);
2988 #endif
2989
2990 static ssize_t use_zero_pages_show(struct kobject *kobj,
2991                                 struct kobj_attribute *attr, char *buf)
2992 {
2993         return sprintf(buf, "%u\n", ksm_use_zero_pages);
2994 }
2995 static ssize_t use_zero_pages_store(struct kobject *kobj,
2996                                    struct kobj_attribute *attr,
2997                                    const char *buf, size_t count)
2998 {
2999         int err;
3000         bool value;
3001
3002         err = kstrtobool(buf, &value);
3003         if (err)
3004                 return -EINVAL;
3005
3006         ksm_use_zero_pages = value;
3007
3008         return count;
3009 }
3010 KSM_ATTR(use_zero_pages);
3011
3012 static ssize_t max_page_sharing_show(struct kobject *kobj,
3013                                      struct kobj_attribute *attr, char *buf)
3014 {
3015         return sprintf(buf, "%u\n", ksm_max_page_sharing);
3016 }
3017
3018 static ssize_t max_page_sharing_store(struct kobject *kobj,
3019                                       struct kobj_attribute *attr,
3020                                       const char *buf, size_t count)
3021 {
3022         int err;
3023         int knob;
3024
3025         err = kstrtoint(buf, 10, &knob);
3026         if (err)
3027                 return err;
3028         /*
3029          * When a KSM page is created it is shared by 2 mappings. This
3030          * being a signed comparison, it implicitly verifies it's not
3031          * negative.
3032          */
3033         if (knob < 2)
3034                 return -EINVAL;
3035
3036         if (READ_ONCE(ksm_max_page_sharing) == knob)
3037                 return count;
3038
3039         mutex_lock(&ksm_thread_mutex);
3040         wait_while_offlining();
3041         if (ksm_max_page_sharing != knob) {
3042                 if (ksm_pages_shared || remove_all_stable_nodes())
3043                         err = -EBUSY;
3044                 else
3045                         ksm_max_page_sharing = knob;
3046         }
3047         mutex_unlock(&ksm_thread_mutex);
3048
3049         return err ? err : count;
3050 }
3051 KSM_ATTR(max_page_sharing);
3052
3053 static ssize_t pages_shared_show(struct kobject *kobj,
3054                                  struct kobj_attribute *attr, char *buf)
3055 {
3056         return sprintf(buf, "%lu\n", ksm_pages_shared);
3057 }
3058 KSM_ATTR_RO(pages_shared);
3059
3060 static ssize_t pages_sharing_show(struct kobject *kobj,
3061                                   struct kobj_attribute *attr, char *buf)
3062 {
3063         return sprintf(buf, "%lu\n", ksm_pages_sharing);
3064 }
3065 KSM_ATTR_RO(pages_sharing);
3066
3067 static ssize_t pages_unshared_show(struct kobject *kobj,
3068                                    struct kobj_attribute *attr, char *buf)
3069 {
3070         return sprintf(buf, "%lu\n", ksm_pages_unshared);
3071 }
3072 KSM_ATTR_RO(pages_unshared);
3073
3074 static ssize_t pages_volatile_show(struct kobject *kobj,
3075                                    struct kobj_attribute *attr, char *buf)
3076 {
3077         long ksm_pages_volatile;
3078
3079         ksm_pages_volatile = ksm_rmap_items - ksm_pages_shared
3080                                 - ksm_pages_sharing - ksm_pages_unshared;
3081         /*
3082          * It was not worth any locking to calculate that statistic,
3083          * but it might therefore sometimes be negative: conceal that.
3084          */
3085         if (ksm_pages_volatile < 0)
3086                 ksm_pages_volatile = 0;
3087         return sprintf(buf, "%ld\n", ksm_pages_volatile);
3088 }
3089 KSM_ATTR_RO(pages_volatile);
3090
3091 static ssize_t stable_node_dups_show(struct kobject *kobj,
3092                                      struct kobj_attribute *attr, char *buf)
3093 {
3094         return sprintf(buf, "%lu\n", ksm_stable_node_dups);
3095 }
3096 KSM_ATTR_RO(stable_node_dups);
3097
3098 static ssize_t stable_node_chains_show(struct kobject *kobj,
3099                                        struct kobj_attribute *attr, char *buf)
3100 {
3101         return sprintf(buf, "%lu\n", ksm_stable_node_chains);
3102 }
3103 KSM_ATTR_RO(stable_node_chains);
3104
3105 static ssize_t
3106 stable_node_chains_prune_millisecs_show(struct kobject *kobj,
3107                                         struct kobj_attribute *attr,
3108                                         char *buf)
3109 {
3110         return sprintf(buf, "%u\n", ksm_stable_node_chains_prune_millisecs);
3111 }
3112
3113 static ssize_t
3114 stable_node_chains_prune_millisecs_store(struct kobject *kobj,
3115                                          struct kobj_attribute *attr,
3116                                          const char *buf, size_t count)
3117 {
3118         unsigned long msecs;
3119         int err;
3120
3121         err = kstrtoul(buf, 10, &msecs);
3122         if (err || msecs > UINT_MAX)
3123                 return -EINVAL;
3124
3125         ksm_stable_node_chains_prune_millisecs = msecs;
3126
3127         return count;
3128 }
3129 KSM_ATTR(stable_node_chains_prune_millisecs);
3130
3131 static ssize_t full_scans_show(struct kobject *kobj,
3132                                struct kobj_attribute *attr, char *buf)
3133 {
3134         return sprintf(buf, "%lu\n", ksm_scan.seqnr);
3135 }
3136 KSM_ATTR_RO(full_scans);
3137
3138 static struct attribute *ksm_attrs[] = {
3139         &sleep_millisecs_attr.attr,
3140         &pages_to_scan_attr.attr,
3141         &run_attr.attr,
3142         &pages_shared_attr.attr,
3143         &pages_sharing_attr.attr,
3144         &pages_unshared_attr.attr,
3145         &pages_volatile_attr.attr,
3146         &full_scans_attr.attr,
3147 #ifdef CONFIG_NUMA
3148         &merge_across_nodes_attr.attr,
3149 #endif
3150         &max_page_sharing_attr.attr,
3151         &stable_node_chains_attr.attr,
3152         &stable_node_dups_attr.attr,
3153         &stable_node_chains_prune_millisecs_attr.attr,
3154         &use_zero_pages_attr.attr,
3155         NULL,
3156 };
3157
3158 static const struct attribute_group ksm_attr_group = {
3159         .attrs = ksm_attrs,
3160         .name = "ksm",
3161 };
3162 #endif /* CONFIG_SYSFS */
3163
3164 static int __init ksm_init(void)
3165 {
3166         struct task_struct *ksm_thread;
3167         int err;
3168
3169         /* The correct value depends on page size and endianness */
3170         zero_checksum = calc_checksum(ZERO_PAGE(0));
3171         /* Default to false for backwards compatibility */
3172         ksm_use_zero_pages = false;
3173
3174         err = ksm_slab_init();
3175         if (err)
3176                 goto out;
3177
3178         ksm_thread = kthread_run(ksm_scan_thread, NULL, "ksmd");
3179         if (IS_ERR(ksm_thread)) {
3180                 pr_err("ksm: creating kthread failed\n");
3181                 err = PTR_ERR(ksm_thread);
3182                 goto out_free;
3183         }
3184
3185 #ifdef CONFIG_SYSFS
3186         err = sysfs_create_group(mm_kobj, &ksm_attr_group);
3187         if (err) {
3188                 pr_err("ksm: register sysfs failed\n");
3189                 kthread_stop(ksm_thread);
3190                 goto out_free;
3191         }
3192 #else
3193         ksm_run = KSM_RUN_MERGE;        /* no way for user to start it */
3194
3195 #endif /* CONFIG_SYSFS */
3196
3197 #ifdef CONFIG_MEMORY_HOTREMOVE
3198         /* There is no significance to this priority 100 */
3199         hotplug_memory_notifier(ksm_memory_callback, 100);
3200 #endif
3201         return 0;
3202
3203 out_free:
3204         ksm_slab_free();
3205 out:
3206         return err;
3207 }
3208 subsys_initcall(ksm_init);