slab: __GFP_ZERO is incompatible with a constructor
[linux-2.6-microblaze.git] / mm / ksm.c
1 /*
2  * Memory merging support.
3  *
4  * This code enables dynamic sharing of identical pages found in different
5  * memory areas, even if they are not shared by fork()
6  *
7  * Copyright (C) 2008-2009 Red Hat, Inc.
8  * Authors:
9  *      Izik Eidus
10  *      Andrea Arcangeli
11  *      Chris Wright
12  *      Hugh Dickins
13  *
14  * This work is licensed under the terms of the GNU GPL, version 2.
15  */
16
17 #include <linux/errno.h>
18 #include <linux/mm.h>
19 #include <linux/fs.h>
20 #include <linux/mman.h>
21 #include <linux/sched.h>
22 #include <linux/sched/mm.h>
23 #include <linux/sched/coredump.h>
24 #include <linux/rwsem.h>
25 #include <linux/pagemap.h>
26 #include <linux/rmap.h>
27 #include <linux/spinlock.h>
28 #include <linux/jhash.h>
29 #include <linux/delay.h>
30 #include <linux/kthread.h>
31 #include <linux/wait.h>
32 #include <linux/slab.h>
33 #include <linux/rbtree.h>
34 #include <linux/memory.h>
35 #include <linux/mmu_notifier.h>
36 #include <linux/swap.h>
37 #include <linux/ksm.h>
38 #include <linux/hashtable.h>
39 #include <linux/freezer.h>
40 #include <linux/oom.h>
41 #include <linux/numa.h>
42
43 #include <asm/tlbflush.h>
44 #include "internal.h"
45
46 #ifdef CONFIG_NUMA
47 #define NUMA(x)         (x)
48 #define DO_NUMA(x)      do { (x); } while (0)
49 #else
50 #define NUMA(x)         (0)
51 #define DO_NUMA(x)      do { } while (0)
52 #endif
53
54 /**
55  * DOC: Overview
56  *
57  * A few notes about the KSM scanning process,
58  * to make it easier to understand the data structures below:
59  *
60  * In order to reduce excessive scanning, KSM sorts the memory pages by their
61  * contents into a data structure that holds pointers to the pages' locations.
62  *
63  * Since the contents of the pages may change at any moment, KSM cannot just
64  * insert the pages into a normal sorted tree and expect it to find anything.
65  * Therefore KSM uses two data structures - the stable and the unstable tree.
66  *
67  * The stable tree holds pointers to all the merged pages (ksm pages), sorted
68  * by their contents.  Because each such page is write-protected, searching on
69  * this tree is fully assured to be working (except when pages are unmapped),
70  * and therefore this tree is called the stable tree.
71  *
72  * The stable tree node includes information required for reverse
73  * mapping from a KSM page to virtual addresses that map this page.
74  *
75  * In order to avoid large latencies of the rmap walks on KSM pages,
76  * KSM maintains two types of nodes in the stable tree:
77  *
78  * * the regular nodes that keep the reverse mapping structures in a
79  *   linked list
80  * * the "chains" that link nodes ("dups") that represent the same
81  *   write protected memory content, but each "dup" corresponds to a
82  *   different KSM page copy of that content
83  *
84  * Internally, the regular nodes, "dups" and "chains" are represented
85  * using the same :c:type:`struct stable_node` structure.
86  *
87  * In addition to the stable tree, KSM uses a second data structure called the
88  * unstable tree: this tree holds pointers to pages which have been found to
89  * be "unchanged for a period of time".  The unstable tree sorts these pages
90  * by their contents, but since they are not write-protected, KSM cannot rely
91  * upon the unstable tree to work correctly - the unstable tree is liable to
92  * be corrupted as its contents are modified, and so it is called unstable.
93  *
94  * KSM solves this problem by several techniques:
95  *
96  * 1) The unstable tree is flushed every time KSM completes scanning all
97  *    memory areas, and then the tree is rebuilt again from the beginning.
98  * 2) KSM will only insert into the unstable tree, pages whose hash value
99  *    has not changed since the previous scan of all memory areas.
100  * 3) The unstable tree is a RedBlack Tree - so its balancing is based on the
101  *    colors of the nodes and not on their contents, assuring that even when
102  *    the tree gets "corrupted" it won't get out of balance, so scanning time
103  *    remains the same (also, searching and inserting nodes in an rbtree uses
104  *    the same algorithm, so we have no overhead when we flush and rebuild).
105  * 4) KSM never flushes the stable tree, which means that even if it were to
106  *    take 10 attempts to find a page in the unstable tree, once it is found,
107  *    it is secured in the stable tree.  (When we scan a new page, we first
108  *    compare it against the stable tree, and then against the unstable tree.)
109  *
110  * If the merge_across_nodes tunable is unset, then KSM maintains multiple
111  * stable trees and multiple unstable trees: one of each for each NUMA node.
112  */
113
114 /**
115  * struct mm_slot - ksm information per mm that is being scanned
116  * @link: link to the mm_slots hash list
117  * @mm_list: link into the mm_slots list, rooted in ksm_mm_head
118  * @rmap_list: head for this mm_slot's singly-linked list of rmap_items
119  * @mm: the mm that this information is valid for
120  */
121 struct mm_slot {
122         struct hlist_node link;
123         struct list_head mm_list;
124         struct rmap_item *rmap_list;
125         struct mm_struct *mm;
126 };
127
128 /**
129  * struct ksm_scan - cursor for scanning
130  * @mm_slot: the current mm_slot we are scanning
131  * @address: the next address inside that to be scanned
132  * @rmap_list: link to the next rmap to be scanned in the rmap_list
133  * @seqnr: count of completed full scans (needed when removing unstable node)
134  *
135  * There is only the one ksm_scan instance of this cursor structure.
136  */
137 struct ksm_scan {
138         struct mm_slot *mm_slot;
139         unsigned long address;
140         struct rmap_item **rmap_list;
141         unsigned long seqnr;
142 };
143
144 /**
145  * struct stable_node - node of the stable rbtree
146  * @node: rb node of this ksm page in the stable tree
147  * @head: (overlaying parent) &migrate_nodes indicates temporarily on that list
148  * @hlist_dup: linked into the stable_node->hlist with a stable_node chain
149  * @list: linked into migrate_nodes, pending placement in the proper node tree
150  * @hlist: hlist head of rmap_items using this ksm page
151  * @kpfn: page frame number of this ksm page (perhaps temporarily on wrong nid)
152  * @chain_prune_time: time of the last full garbage collection
153  * @rmap_hlist_len: number of rmap_item entries in hlist or STABLE_NODE_CHAIN
154  * @nid: NUMA node id of stable tree in which linked (may not match kpfn)
155  */
156 struct stable_node {
157         union {
158                 struct rb_node node;    /* when node of stable tree */
159                 struct {                /* when listed for migration */
160                         struct list_head *head;
161                         struct {
162                                 struct hlist_node hlist_dup;
163                                 struct list_head list;
164                         };
165                 };
166         };
167         struct hlist_head hlist;
168         union {
169                 unsigned long kpfn;
170                 unsigned long chain_prune_time;
171         };
172         /*
173          * STABLE_NODE_CHAIN can be any negative number in
174          * rmap_hlist_len negative range, but better not -1 to be able
175          * to reliably detect underflows.
176          */
177 #define STABLE_NODE_CHAIN -1024
178         int rmap_hlist_len;
179 #ifdef CONFIG_NUMA
180         int nid;
181 #endif
182 };
183
184 /**
185  * struct rmap_item - reverse mapping item for virtual addresses
186  * @rmap_list: next rmap_item in mm_slot's singly-linked rmap_list
187  * @anon_vma: pointer to anon_vma for this mm,address, when in stable tree
188  * @nid: NUMA node id of unstable tree in which linked (may not match page)
189  * @mm: the memory structure this rmap_item is pointing into
190  * @address: the virtual address this rmap_item tracks (+ flags in low bits)
191  * @oldchecksum: previous checksum of the page at that virtual address
192  * @node: rb node of this rmap_item in the unstable tree
193  * @head: pointer to stable_node heading this list in the stable tree
194  * @hlist: link into hlist of rmap_items hanging off that stable_node
195  */
196 struct rmap_item {
197         struct rmap_item *rmap_list;
198         union {
199                 struct anon_vma *anon_vma;      /* when stable */
200 #ifdef CONFIG_NUMA
201                 int nid;                /* when node of unstable tree */
202 #endif
203         };
204         struct mm_struct *mm;
205         unsigned long address;          /* + low bits used for flags below */
206         unsigned int oldchecksum;       /* when unstable */
207         union {
208                 struct rb_node node;    /* when node of unstable tree */
209                 struct {                /* when listed from stable tree */
210                         struct stable_node *head;
211                         struct hlist_node hlist;
212                 };
213         };
214 };
215
216 #define SEQNR_MASK      0x0ff   /* low bits of unstable tree seqnr */
217 #define UNSTABLE_FLAG   0x100   /* is a node of the unstable tree */
218 #define STABLE_FLAG     0x200   /* is listed from the stable tree */
219
220 /* The stable and unstable tree heads */
221 static struct rb_root one_stable_tree[1] = { RB_ROOT };
222 static struct rb_root one_unstable_tree[1] = { RB_ROOT };
223 static struct rb_root *root_stable_tree = one_stable_tree;
224 static struct rb_root *root_unstable_tree = one_unstable_tree;
225
226 /* Recently migrated nodes of stable tree, pending proper placement */
227 static LIST_HEAD(migrate_nodes);
228 #define STABLE_NODE_DUP_HEAD ((struct list_head *)&migrate_nodes.prev)
229
230 #define MM_SLOTS_HASH_BITS 10
231 static DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
232
233 static struct mm_slot ksm_mm_head = {
234         .mm_list = LIST_HEAD_INIT(ksm_mm_head.mm_list),
235 };
236 static struct ksm_scan ksm_scan = {
237         .mm_slot = &ksm_mm_head,
238 };
239
240 static struct kmem_cache *rmap_item_cache;
241 static struct kmem_cache *stable_node_cache;
242 static struct kmem_cache *mm_slot_cache;
243
244 /* The number of nodes in the stable tree */
245 static unsigned long ksm_pages_shared;
246
247 /* The number of page slots additionally sharing those nodes */
248 static unsigned long ksm_pages_sharing;
249
250 /* The number of nodes in the unstable tree */
251 static unsigned long ksm_pages_unshared;
252
253 /* The number of rmap_items in use: to calculate pages_volatile */
254 static unsigned long ksm_rmap_items;
255
256 /* The number of stable_node chains */
257 static unsigned long ksm_stable_node_chains;
258
259 /* The number of stable_node dups linked to the stable_node chains */
260 static unsigned long ksm_stable_node_dups;
261
262 /* Delay in pruning stale stable_node_dups in the stable_node_chains */
263 static int ksm_stable_node_chains_prune_millisecs = 2000;
264
265 /* Maximum number of page slots sharing a stable node */
266 static int ksm_max_page_sharing = 256;
267
268 /* Number of pages ksmd should scan in one batch */
269 static unsigned int ksm_thread_pages_to_scan = 100;
270
271 /* Milliseconds ksmd should sleep between batches */
272 static unsigned int ksm_thread_sleep_millisecs = 20;
273
274 /* Checksum of an empty (zeroed) page */
275 static unsigned int zero_checksum __read_mostly;
276
277 /* Whether to merge empty (zeroed) pages with actual zero pages */
278 static bool ksm_use_zero_pages __read_mostly;
279
280 #ifdef CONFIG_NUMA
281 /* Zeroed when merging across nodes is not allowed */
282 static unsigned int ksm_merge_across_nodes = 1;
283 static int ksm_nr_node_ids = 1;
284 #else
285 #define ksm_merge_across_nodes  1U
286 #define ksm_nr_node_ids         1
287 #endif
288
289 #define KSM_RUN_STOP    0
290 #define KSM_RUN_MERGE   1
291 #define KSM_RUN_UNMERGE 2
292 #define KSM_RUN_OFFLINE 4
293 static unsigned long ksm_run = KSM_RUN_STOP;
294 static void wait_while_offlining(void);
295
296 static DECLARE_WAIT_QUEUE_HEAD(ksm_thread_wait);
297 static DEFINE_MUTEX(ksm_thread_mutex);
298 static DEFINE_SPINLOCK(ksm_mmlist_lock);
299
300 #define KSM_KMEM_CACHE(__struct, __flags) kmem_cache_create("ksm_"#__struct,\
301                 sizeof(struct __struct), __alignof__(struct __struct),\
302                 (__flags), NULL)
303
304 static int __init ksm_slab_init(void)
305 {
306         rmap_item_cache = KSM_KMEM_CACHE(rmap_item, 0);
307         if (!rmap_item_cache)
308                 goto out;
309
310         stable_node_cache = KSM_KMEM_CACHE(stable_node, 0);
311         if (!stable_node_cache)
312                 goto out_free1;
313
314         mm_slot_cache = KSM_KMEM_CACHE(mm_slot, 0);
315         if (!mm_slot_cache)
316                 goto out_free2;
317
318         return 0;
319
320 out_free2:
321         kmem_cache_destroy(stable_node_cache);
322 out_free1:
323         kmem_cache_destroy(rmap_item_cache);
324 out:
325         return -ENOMEM;
326 }
327
328 static void __init ksm_slab_free(void)
329 {
330         kmem_cache_destroy(mm_slot_cache);
331         kmem_cache_destroy(stable_node_cache);
332         kmem_cache_destroy(rmap_item_cache);
333         mm_slot_cache = NULL;
334 }
335
336 static __always_inline bool is_stable_node_chain(struct stable_node *chain)
337 {
338         return chain->rmap_hlist_len == STABLE_NODE_CHAIN;
339 }
340
341 static __always_inline bool is_stable_node_dup(struct stable_node *dup)
342 {
343         return dup->head == STABLE_NODE_DUP_HEAD;
344 }
345
346 static inline void stable_node_chain_add_dup(struct stable_node *dup,
347                                              struct stable_node *chain)
348 {
349         VM_BUG_ON(is_stable_node_dup(dup));
350         dup->head = STABLE_NODE_DUP_HEAD;
351         VM_BUG_ON(!is_stable_node_chain(chain));
352         hlist_add_head(&dup->hlist_dup, &chain->hlist);
353         ksm_stable_node_dups++;
354 }
355
356 static inline void __stable_node_dup_del(struct stable_node *dup)
357 {
358         VM_BUG_ON(!is_stable_node_dup(dup));
359         hlist_del(&dup->hlist_dup);
360         ksm_stable_node_dups--;
361 }
362
363 static inline void stable_node_dup_del(struct stable_node *dup)
364 {
365         VM_BUG_ON(is_stable_node_chain(dup));
366         if (is_stable_node_dup(dup))
367                 __stable_node_dup_del(dup);
368         else
369                 rb_erase(&dup->node, root_stable_tree + NUMA(dup->nid));
370 #ifdef CONFIG_DEBUG_VM
371         dup->head = NULL;
372 #endif
373 }
374
375 static inline struct rmap_item *alloc_rmap_item(void)
376 {
377         struct rmap_item *rmap_item;
378
379         rmap_item = kmem_cache_zalloc(rmap_item_cache, GFP_KERNEL |
380                                                 __GFP_NORETRY | __GFP_NOWARN);
381         if (rmap_item)
382                 ksm_rmap_items++;
383         return rmap_item;
384 }
385
386 static inline void free_rmap_item(struct rmap_item *rmap_item)
387 {
388         ksm_rmap_items--;
389         rmap_item->mm = NULL;   /* debug safety */
390         kmem_cache_free(rmap_item_cache, rmap_item);
391 }
392
393 static inline struct stable_node *alloc_stable_node(void)
394 {
395         /*
396          * The allocation can take too long with GFP_KERNEL when memory is under
397          * pressure, which may lead to hung task warnings.  Adding __GFP_HIGH
398          * grants access to memory reserves, helping to avoid this problem.
399          */
400         return kmem_cache_alloc(stable_node_cache, GFP_KERNEL | __GFP_HIGH);
401 }
402
403 static inline void free_stable_node(struct stable_node *stable_node)
404 {
405         VM_BUG_ON(stable_node->rmap_hlist_len &&
406                   !is_stable_node_chain(stable_node));
407         kmem_cache_free(stable_node_cache, stable_node);
408 }
409
410 static inline struct mm_slot *alloc_mm_slot(void)
411 {
412         if (!mm_slot_cache)     /* initialization failed */
413                 return NULL;
414         return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
415 }
416
417 static inline void free_mm_slot(struct mm_slot *mm_slot)
418 {
419         kmem_cache_free(mm_slot_cache, mm_slot);
420 }
421
422 static struct mm_slot *get_mm_slot(struct mm_struct *mm)
423 {
424         struct mm_slot *slot;
425
426         hash_for_each_possible(mm_slots_hash, slot, link, (unsigned long)mm)
427                 if (slot->mm == mm)
428                         return slot;
429
430         return NULL;
431 }
432
433 static void insert_to_mm_slots_hash(struct mm_struct *mm,
434                                     struct mm_slot *mm_slot)
435 {
436         mm_slot->mm = mm;
437         hash_add(mm_slots_hash, &mm_slot->link, (unsigned long)mm);
438 }
439
440 /*
441  * ksmd, and unmerge_and_remove_all_rmap_items(), must not touch an mm's
442  * page tables after it has passed through ksm_exit() - which, if necessary,
443  * takes mmap_sem briefly to serialize against them.  ksm_exit() does not set
444  * a special flag: they can just back out as soon as mm_users goes to zero.
445  * ksm_test_exit() is used throughout to make this test for exit: in some
446  * places for correctness, in some places just to avoid unnecessary work.
447  */
448 static inline bool ksm_test_exit(struct mm_struct *mm)
449 {
450         return atomic_read(&mm->mm_users) == 0;
451 }
452
453 /*
454  * We use break_ksm to break COW on a ksm page: it's a stripped down
455  *
456  *      if (get_user_pages(addr, 1, 1, 1, &page, NULL) == 1)
457  *              put_page(page);
458  *
459  * but taking great care only to touch a ksm page, in a VM_MERGEABLE vma,
460  * in case the application has unmapped and remapped mm,addr meanwhile.
461  * Could a ksm page appear anywhere else?  Actually yes, in a VM_PFNMAP
462  * mmap of /dev/mem or /dev/kmem, where we would not want to touch it.
463  *
464  * FAULT_FLAG/FOLL_REMOTE are because we do this outside the context
465  * of the process that owns 'vma'.  We also do not want to enforce
466  * protection keys here anyway.
467  */
468 static int break_ksm(struct vm_area_struct *vma, unsigned long addr)
469 {
470         struct page *page;
471         int ret = 0;
472
473         do {
474                 cond_resched();
475                 page = follow_page(vma, addr,
476                                 FOLL_GET | FOLL_MIGRATION | FOLL_REMOTE);
477                 if (IS_ERR_OR_NULL(page))
478                         break;
479                 if (PageKsm(page))
480                         ret = handle_mm_fault(vma, addr,
481                                         FAULT_FLAG_WRITE | FAULT_FLAG_REMOTE);
482                 else
483                         ret = VM_FAULT_WRITE;
484                 put_page(page);
485         } while (!(ret & (VM_FAULT_WRITE | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | VM_FAULT_OOM)));
486         /*
487          * We must loop because handle_mm_fault() may back out if there's
488          * any difficulty e.g. if pte accessed bit gets updated concurrently.
489          *
490          * VM_FAULT_WRITE is what we have been hoping for: it indicates that
491          * COW has been broken, even if the vma does not permit VM_WRITE;
492          * but note that a concurrent fault might break PageKsm for us.
493          *
494          * VM_FAULT_SIGBUS could occur if we race with truncation of the
495          * backing file, which also invalidates anonymous pages: that's
496          * okay, that truncation will have unmapped the PageKsm for us.
497          *
498          * VM_FAULT_OOM: at the time of writing (late July 2009), setting
499          * aside mem_cgroup limits, VM_FAULT_OOM would only be set if the
500          * current task has TIF_MEMDIE set, and will be OOM killed on return
501          * to user; and ksmd, having no mm, would never be chosen for that.
502          *
503          * But if the mm is in a limited mem_cgroup, then the fault may fail
504          * with VM_FAULT_OOM even if the current task is not TIF_MEMDIE; and
505          * even ksmd can fail in this way - though it's usually breaking ksm
506          * just to undo a merge it made a moment before, so unlikely to oom.
507          *
508          * That's a pity: we might therefore have more kernel pages allocated
509          * than we're counting as nodes in the stable tree; but ksm_do_scan
510          * will retry to break_cow on each pass, so should recover the page
511          * in due course.  The important thing is to not let VM_MERGEABLE
512          * be cleared while any such pages might remain in the area.
513          */
514         return (ret & VM_FAULT_OOM) ? -ENOMEM : 0;
515 }
516
517 static struct vm_area_struct *find_mergeable_vma(struct mm_struct *mm,
518                 unsigned long addr)
519 {
520         struct vm_area_struct *vma;
521         if (ksm_test_exit(mm))
522                 return NULL;
523         vma = find_vma(mm, addr);
524         if (!vma || vma->vm_start > addr)
525                 return NULL;
526         if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
527                 return NULL;
528         return vma;
529 }
530
531 static void break_cow(struct rmap_item *rmap_item)
532 {
533         struct mm_struct *mm = rmap_item->mm;
534         unsigned long addr = rmap_item->address;
535         struct vm_area_struct *vma;
536
537         /*
538          * It is not an accident that whenever we want to break COW
539          * to undo, we also need to drop a reference to the anon_vma.
540          */
541         put_anon_vma(rmap_item->anon_vma);
542
543         down_read(&mm->mmap_sem);
544         vma = find_mergeable_vma(mm, addr);
545         if (vma)
546                 break_ksm(vma, addr);
547         up_read(&mm->mmap_sem);
548 }
549
550 static struct page *get_mergeable_page(struct rmap_item *rmap_item)
551 {
552         struct mm_struct *mm = rmap_item->mm;
553         unsigned long addr = rmap_item->address;
554         struct vm_area_struct *vma;
555         struct page *page;
556
557         down_read(&mm->mmap_sem);
558         vma = find_mergeable_vma(mm, addr);
559         if (!vma)
560                 goto out;
561
562         page = follow_page(vma, addr, FOLL_GET);
563         if (IS_ERR_OR_NULL(page))
564                 goto out;
565         if (PageAnon(page)) {
566                 flush_anon_page(vma, page, addr);
567                 flush_dcache_page(page);
568         } else {
569                 put_page(page);
570 out:
571                 page = NULL;
572         }
573         up_read(&mm->mmap_sem);
574         return page;
575 }
576
577 /*
578  * This helper is used for getting right index into array of tree roots.
579  * When merge_across_nodes knob is set to 1, there are only two rb-trees for
580  * stable and unstable pages from all nodes with roots in index 0. Otherwise,
581  * every node has its own stable and unstable tree.
582  */
583 static inline int get_kpfn_nid(unsigned long kpfn)
584 {
585         return ksm_merge_across_nodes ? 0 : NUMA(pfn_to_nid(kpfn));
586 }
587
588 static struct stable_node *alloc_stable_node_chain(struct stable_node *dup,
589                                                    struct rb_root *root)
590 {
591         struct stable_node *chain = alloc_stable_node();
592         VM_BUG_ON(is_stable_node_chain(dup));
593         if (likely(chain)) {
594                 INIT_HLIST_HEAD(&chain->hlist);
595                 chain->chain_prune_time = jiffies;
596                 chain->rmap_hlist_len = STABLE_NODE_CHAIN;
597 #if defined (CONFIG_DEBUG_VM) && defined(CONFIG_NUMA)
598                 chain->nid = -1; /* debug */
599 #endif
600                 ksm_stable_node_chains++;
601
602                 /*
603                  * Put the stable node chain in the first dimension of
604                  * the stable tree and at the same time remove the old
605                  * stable node.
606                  */
607                 rb_replace_node(&dup->node, &chain->node, root);
608
609                 /*
610                  * Move the old stable node to the second dimension
611                  * queued in the hlist_dup. The invariant is that all
612                  * dup stable_nodes in the chain->hlist point to pages
613                  * that are wrprotected and have the exact same
614                  * content.
615                  */
616                 stable_node_chain_add_dup(dup, chain);
617         }
618         return chain;
619 }
620
621 static inline void free_stable_node_chain(struct stable_node *chain,
622                                           struct rb_root *root)
623 {
624         rb_erase(&chain->node, root);
625         free_stable_node(chain);
626         ksm_stable_node_chains--;
627 }
628
629 static void remove_node_from_stable_tree(struct stable_node *stable_node)
630 {
631         struct rmap_item *rmap_item;
632
633         /* check it's not STABLE_NODE_CHAIN or negative */
634         BUG_ON(stable_node->rmap_hlist_len < 0);
635
636         hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
637                 if (rmap_item->hlist.next)
638                         ksm_pages_sharing--;
639                 else
640                         ksm_pages_shared--;
641                 VM_BUG_ON(stable_node->rmap_hlist_len <= 0);
642                 stable_node->rmap_hlist_len--;
643                 put_anon_vma(rmap_item->anon_vma);
644                 rmap_item->address &= PAGE_MASK;
645                 cond_resched();
646         }
647
648         /*
649          * We need the second aligned pointer of the migrate_nodes
650          * list_head to stay clear from the rb_parent_color union
651          * (aligned and different than any node) and also different
652          * from &migrate_nodes. This will verify that future list.h changes
653          * don't break STABLE_NODE_DUP_HEAD.
654          */
655 #if GCC_VERSION >= 40903 /* only recent gcc can handle it */
656         BUILD_BUG_ON(STABLE_NODE_DUP_HEAD <= &migrate_nodes);
657         BUILD_BUG_ON(STABLE_NODE_DUP_HEAD >= &migrate_nodes + 1);
658 #endif
659
660         if (stable_node->head == &migrate_nodes)
661                 list_del(&stable_node->list);
662         else
663                 stable_node_dup_del(stable_node);
664         free_stable_node(stable_node);
665 }
666
667 /*
668  * get_ksm_page: checks if the page indicated by the stable node
669  * is still its ksm page, despite having held no reference to it.
670  * In which case we can trust the content of the page, and it
671  * returns the gotten page; but if the page has now been zapped,
672  * remove the stale node from the stable tree and return NULL.
673  * But beware, the stable node's page might be being migrated.
674  *
675  * You would expect the stable_node to hold a reference to the ksm page.
676  * But if it increments the page's count, swapping out has to wait for
677  * ksmd to come around again before it can free the page, which may take
678  * seconds or even minutes: much too unresponsive.  So instead we use a
679  * "keyhole reference": access to the ksm page from the stable node peeps
680  * out through its keyhole to see if that page still holds the right key,
681  * pointing back to this stable node.  This relies on freeing a PageAnon
682  * page to reset its page->mapping to NULL, and relies on no other use of
683  * a page to put something that might look like our key in page->mapping.
684  * is on its way to being freed; but it is an anomaly to bear in mind.
685  */
686 static struct page *get_ksm_page(struct stable_node *stable_node, bool lock_it)
687 {
688         struct page *page;
689         void *expected_mapping;
690         unsigned long kpfn;
691
692         expected_mapping = (void *)((unsigned long)stable_node |
693                                         PAGE_MAPPING_KSM);
694 again:
695         kpfn = READ_ONCE(stable_node->kpfn); /* Address dependency. */
696         page = pfn_to_page(kpfn);
697         if (READ_ONCE(page->mapping) != expected_mapping)
698                 goto stale;
699
700         /*
701          * We cannot do anything with the page while its refcount is 0.
702          * Usually 0 means free, or tail of a higher-order page: in which
703          * case this node is no longer referenced, and should be freed;
704          * however, it might mean that the page is under page_freeze_refs().
705          * The __remove_mapping() case is easy, again the node is now stale;
706          * but if page is swapcache in migrate_page_move_mapping(), it might
707          * still be our page, in which case it's essential to keep the node.
708          */
709         while (!get_page_unless_zero(page)) {
710                 /*
711                  * Another check for page->mapping != expected_mapping would
712                  * work here too.  We have chosen the !PageSwapCache test to
713                  * optimize the common case, when the page is or is about to
714                  * be freed: PageSwapCache is cleared (under spin_lock_irq)
715                  * in the freeze_refs section of __remove_mapping(); but Anon
716                  * page->mapping reset to NULL later, in free_pages_prepare().
717                  */
718                 if (!PageSwapCache(page))
719                         goto stale;
720                 cpu_relax();
721         }
722
723         if (READ_ONCE(page->mapping) != expected_mapping) {
724                 put_page(page);
725                 goto stale;
726         }
727
728         if (lock_it) {
729                 lock_page(page);
730                 if (READ_ONCE(page->mapping) != expected_mapping) {
731                         unlock_page(page);
732                         put_page(page);
733                         goto stale;
734                 }
735         }
736         return page;
737
738 stale:
739         /*
740          * We come here from above when page->mapping or !PageSwapCache
741          * suggests that the node is stale; but it might be under migration.
742          * We need smp_rmb(), matching the smp_wmb() in ksm_migrate_page(),
743          * before checking whether node->kpfn has been changed.
744          */
745         smp_rmb();
746         if (READ_ONCE(stable_node->kpfn) != kpfn)
747                 goto again;
748         remove_node_from_stable_tree(stable_node);
749         return NULL;
750 }
751
752 /*
753  * Removing rmap_item from stable or unstable tree.
754  * This function will clean the information from the stable/unstable tree.
755  */
756 static void remove_rmap_item_from_tree(struct rmap_item *rmap_item)
757 {
758         if (rmap_item->address & STABLE_FLAG) {
759                 struct stable_node *stable_node;
760                 struct page *page;
761
762                 stable_node = rmap_item->head;
763                 page = get_ksm_page(stable_node, true);
764                 if (!page)
765                         goto out;
766
767                 hlist_del(&rmap_item->hlist);
768                 unlock_page(page);
769                 put_page(page);
770
771                 if (!hlist_empty(&stable_node->hlist))
772                         ksm_pages_sharing--;
773                 else
774                         ksm_pages_shared--;
775                 VM_BUG_ON(stable_node->rmap_hlist_len <= 0);
776                 stable_node->rmap_hlist_len--;
777
778                 put_anon_vma(rmap_item->anon_vma);
779                 rmap_item->address &= PAGE_MASK;
780
781         } else if (rmap_item->address & UNSTABLE_FLAG) {
782                 unsigned char age;
783                 /*
784                  * Usually ksmd can and must skip the rb_erase, because
785                  * root_unstable_tree was already reset to RB_ROOT.
786                  * But be careful when an mm is exiting: do the rb_erase
787                  * if this rmap_item was inserted by this scan, rather
788                  * than left over from before.
789                  */
790                 age = (unsigned char)(ksm_scan.seqnr - rmap_item->address);
791                 BUG_ON(age > 1);
792                 if (!age)
793                         rb_erase(&rmap_item->node,
794                                  root_unstable_tree + NUMA(rmap_item->nid));
795                 ksm_pages_unshared--;
796                 rmap_item->address &= PAGE_MASK;
797         }
798 out:
799         cond_resched();         /* we're called from many long loops */
800 }
801
802 static void remove_trailing_rmap_items(struct mm_slot *mm_slot,
803                                        struct rmap_item **rmap_list)
804 {
805         while (*rmap_list) {
806                 struct rmap_item *rmap_item = *rmap_list;
807                 *rmap_list = rmap_item->rmap_list;
808                 remove_rmap_item_from_tree(rmap_item);
809                 free_rmap_item(rmap_item);
810         }
811 }
812
813 /*
814  * Though it's very tempting to unmerge rmap_items from stable tree rather
815  * than check every pte of a given vma, the locking doesn't quite work for
816  * that - an rmap_item is assigned to the stable tree after inserting ksm
817  * page and upping mmap_sem.  Nor does it fit with the way we skip dup'ing
818  * rmap_items from parent to child at fork time (so as not to waste time
819  * if exit comes before the next scan reaches it).
820  *
821  * Similarly, although we'd like to remove rmap_items (so updating counts
822  * and freeing memory) when unmerging an area, it's easier to leave that
823  * to the next pass of ksmd - consider, for example, how ksmd might be
824  * in cmp_and_merge_page on one of the rmap_items we would be removing.
825  */
826 static int unmerge_ksm_pages(struct vm_area_struct *vma,
827                              unsigned long start, unsigned long end)
828 {
829         unsigned long addr;
830         int err = 0;
831
832         for (addr = start; addr < end && !err; addr += PAGE_SIZE) {
833                 if (ksm_test_exit(vma->vm_mm))
834                         break;
835                 if (signal_pending(current))
836                         err = -ERESTARTSYS;
837                 else
838                         err = break_ksm(vma, addr);
839         }
840         return err;
841 }
842
843 #ifdef CONFIG_SYSFS
844 /*
845  * Only called through the sysfs control interface:
846  */
847 static int remove_stable_node(struct stable_node *stable_node)
848 {
849         struct page *page;
850         int err;
851
852         page = get_ksm_page(stable_node, true);
853         if (!page) {
854                 /*
855                  * get_ksm_page did remove_node_from_stable_tree itself.
856                  */
857                 return 0;
858         }
859
860         if (WARN_ON_ONCE(page_mapped(page))) {
861                 /*
862                  * This should not happen: but if it does, just refuse to let
863                  * merge_across_nodes be switched - there is no need to panic.
864                  */
865                 err = -EBUSY;
866         } else {
867                 /*
868                  * The stable node did not yet appear stale to get_ksm_page(),
869                  * since that allows for an unmapped ksm page to be recognized
870                  * right up until it is freed; but the node is safe to remove.
871                  * This page might be in a pagevec waiting to be freed,
872                  * or it might be PageSwapCache (perhaps under writeback),
873                  * or it might have been removed from swapcache a moment ago.
874                  */
875                 set_page_stable_node(page, NULL);
876                 remove_node_from_stable_tree(stable_node);
877                 err = 0;
878         }
879
880         unlock_page(page);
881         put_page(page);
882         return err;
883 }
884
885 static int remove_stable_node_chain(struct stable_node *stable_node,
886                                     struct rb_root *root)
887 {
888         struct stable_node *dup;
889         struct hlist_node *hlist_safe;
890
891         if (!is_stable_node_chain(stable_node)) {
892                 VM_BUG_ON(is_stable_node_dup(stable_node));
893                 if (remove_stable_node(stable_node))
894                         return true;
895                 else
896                         return false;
897         }
898
899         hlist_for_each_entry_safe(dup, hlist_safe,
900                                   &stable_node->hlist, hlist_dup) {
901                 VM_BUG_ON(!is_stable_node_dup(dup));
902                 if (remove_stable_node(dup))
903                         return true;
904         }
905         BUG_ON(!hlist_empty(&stable_node->hlist));
906         free_stable_node_chain(stable_node, root);
907         return false;
908 }
909
910 static int remove_all_stable_nodes(void)
911 {
912         struct stable_node *stable_node, *next;
913         int nid;
914         int err = 0;
915
916         for (nid = 0; nid < ksm_nr_node_ids; nid++) {
917                 while (root_stable_tree[nid].rb_node) {
918                         stable_node = rb_entry(root_stable_tree[nid].rb_node,
919                                                 struct stable_node, node);
920                         if (remove_stable_node_chain(stable_node,
921                                                      root_stable_tree + nid)) {
922                                 err = -EBUSY;
923                                 break;  /* proceed to next nid */
924                         }
925                         cond_resched();
926                 }
927         }
928         list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
929                 if (remove_stable_node(stable_node))
930                         err = -EBUSY;
931                 cond_resched();
932         }
933         return err;
934 }
935
936 static int unmerge_and_remove_all_rmap_items(void)
937 {
938         struct mm_slot *mm_slot;
939         struct mm_struct *mm;
940         struct vm_area_struct *vma;
941         int err = 0;
942
943         spin_lock(&ksm_mmlist_lock);
944         ksm_scan.mm_slot = list_entry(ksm_mm_head.mm_list.next,
945                                                 struct mm_slot, mm_list);
946         spin_unlock(&ksm_mmlist_lock);
947
948         for (mm_slot = ksm_scan.mm_slot;
949                         mm_slot != &ksm_mm_head; mm_slot = ksm_scan.mm_slot) {
950                 mm = mm_slot->mm;
951                 down_read(&mm->mmap_sem);
952                 for (vma = mm->mmap; vma; vma = vma->vm_next) {
953                         if (ksm_test_exit(mm))
954                                 break;
955                         if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
956                                 continue;
957                         err = unmerge_ksm_pages(vma,
958                                                 vma->vm_start, vma->vm_end);
959                         if (err)
960                                 goto error;
961                 }
962
963                 remove_trailing_rmap_items(mm_slot, &mm_slot->rmap_list);
964                 up_read(&mm->mmap_sem);
965
966                 spin_lock(&ksm_mmlist_lock);
967                 ksm_scan.mm_slot = list_entry(mm_slot->mm_list.next,
968                                                 struct mm_slot, mm_list);
969                 if (ksm_test_exit(mm)) {
970                         hash_del(&mm_slot->link);
971                         list_del(&mm_slot->mm_list);
972                         spin_unlock(&ksm_mmlist_lock);
973
974                         free_mm_slot(mm_slot);
975                         clear_bit(MMF_VM_MERGEABLE, &mm->flags);
976                         mmdrop(mm);
977                 } else
978                         spin_unlock(&ksm_mmlist_lock);
979         }
980
981         /* Clean up stable nodes, but don't worry if some are still busy */
982         remove_all_stable_nodes();
983         ksm_scan.seqnr = 0;
984         return 0;
985
986 error:
987         up_read(&mm->mmap_sem);
988         spin_lock(&ksm_mmlist_lock);
989         ksm_scan.mm_slot = &ksm_mm_head;
990         spin_unlock(&ksm_mmlist_lock);
991         return err;
992 }
993 #endif /* CONFIG_SYSFS */
994
995 static u32 calc_checksum(struct page *page)
996 {
997         u32 checksum;
998         void *addr = kmap_atomic(page);
999         checksum = jhash2(addr, PAGE_SIZE / 4, 17);
1000         kunmap_atomic(addr);
1001         return checksum;
1002 }
1003
1004 static int memcmp_pages(struct page *page1, struct page *page2)
1005 {
1006         char *addr1, *addr2;
1007         int ret;
1008
1009         addr1 = kmap_atomic(page1);
1010         addr2 = kmap_atomic(page2);
1011         ret = memcmp(addr1, addr2, PAGE_SIZE);
1012         kunmap_atomic(addr2);
1013         kunmap_atomic(addr1);
1014         return ret;
1015 }
1016
1017 static inline int pages_identical(struct page *page1, struct page *page2)
1018 {
1019         return !memcmp_pages(page1, page2);
1020 }
1021
1022 static int write_protect_page(struct vm_area_struct *vma, struct page *page,
1023                               pte_t *orig_pte)
1024 {
1025         struct mm_struct *mm = vma->vm_mm;
1026         struct page_vma_mapped_walk pvmw = {
1027                 .page = page,
1028                 .vma = vma,
1029         };
1030         int swapped;
1031         int err = -EFAULT;
1032         unsigned long mmun_start;       /* For mmu_notifiers */
1033         unsigned long mmun_end;         /* For mmu_notifiers */
1034
1035         pvmw.address = page_address_in_vma(page, vma);
1036         if (pvmw.address == -EFAULT)
1037                 goto out;
1038
1039         BUG_ON(PageTransCompound(page));
1040
1041         mmun_start = pvmw.address;
1042         mmun_end   = pvmw.address + PAGE_SIZE;
1043         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1044
1045         if (!page_vma_mapped_walk(&pvmw))
1046                 goto out_mn;
1047         if (WARN_ONCE(!pvmw.pte, "Unexpected PMD mapping?"))
1048                 goto out_unlock;
1049
1050         if (pte_write(*pvmw.pte) || pte_dirty(*pvmw.pte) ||
1051             (pte_protnone(*pvmw.pte) && pte_savedwrite(*pvmw.pte)) ||
1052                                                 mm_tlb_flush_pending(mm)) {
1053                 pte_t entry;
1054
1055                 swapped = PageSwapCache(page);
1056                 flush_cache_page(vma, pvmw.address, page_to_pfn(page));
1057                 /*
1058                  * Ok this is tricky, when get_user_pages_fast() run it doesn't
1059                  * take any lock, therefore the check that we are going to make
1060                  * with the pagecount against the mapcount is racey and
1061                  * O_DIRECT can happen right after the check.
1062                  * So we clear the pte and flush the tlb before the check
1063                  * this assure us that no O_DIRECT can happen after the check
1064                  * or in the middle of the check.
1065                  *
1066                  * No need to notify as we are downgrading page table to read
1067                  * only not changing it to point to a new page.
1068                  *
1069                  * See Documentation/vm/mmu_notifier.rst
1070                  */
1071                 entry = ptep_clear_flush(vma, pvmw.address, pvmw.pte);
1072                 /*
1073                  * Check that no O_DIRECT or similar I/O is in progress on the
1074                  * page
1075                  */
1076                 if (page_mapcount(page) + 1 + swapped != page_count(page)) {
1077                         set_pte_at(mm, pvmw.address, pvmw.pte, entry);
1078                         goto out_unlock;
1079                 }
1080                 if (pte_dirty(entry))
1081                         set_page_dirty(page);
1082
1083                 if (pte_protnone(entry))
1084                         entry = pte_mkclean(pte_clear_savedwrite(entry));
1085                 else
1086                         entry = pte_mkclean(pte_wrprotect(entry));
1087                 set_pte_at_notify(mm, pvmw.address, pvmw.pte, entry);
1088         }
1089         *orig_pte = *pvmw.pte;
1090         err = 0;
1091
1092 out_unlock:
1093         page_vma_mapped_walk_done(&pvmw);
1094 out_mn:
1095         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1096 out:
1097         return err;
1098 }
1099
1100 /**
1101  * replace_page - replace page in vma by new ksm page
1102  * @vma:      vma that holds the pte pointing to page
1103  * @page:     the page we are replacing by kpage
1104  * @kpage:    the ksm page we replace page by
1105  * @orig_pte: the original value of the pte
1106  *
1107  * Returns 0 on success, -EFAULT on failure.
1108  */
1109 static int replace_page(struct vm_area_struct *vma, struct page *page,
1110                         struct page *kpage, pte_t orig_pte)
1111 {
1112         struct mm_struct *mm = vma->vm_mm;
1113         pmd_t *pmd;
1114         pte_t *ptep;
1115         pte_t newpte;
1116         spinlock_t *ptl;
1117         unsigned long addr;
1118         int err = -EFAULT;
1119         unsigned long mmun_start;       /* For mmu_notifiers */
1120         unsigned long mmun_end;         /* For mmu_notifiers */
1121
1122         addr = page_address_in_vma(page, vma);
1123         if (addr == -EFAULT)
1124                 goto out;
1125
1126         pmd = mm_find_pmd(mm, addr);
1127         if (!pmd)
1128                 goto out;
1129
1130         mmun_start = addr;
1131         mmun_end   = addr + PAGE_SIZE;
1132         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1133
1134         ptep = pte_offset_map_lock(mm, pmd, addr, &ptl);
1135         if (!pte_same(*ptep, orig_pte)) {
1136                 pte_unmap_unlock(ptep, ptl);
1137                 goto out_mn;
1138         }
1139
1140         /*
1141          * No need to check ksm_use_zero_pages here: we can only have a
1142          * zero_page here if ksm_use_zero_pages was enabled alreaady.
1143          */
1144         if (!is_zero_pfn(page_to_pfn(kpage))) {
1145                 get_page(kpage);
1146                 page_add_anon_rmap(kpage, vma, addr, false);
1147                 newpte = mk_pte(kpage, vma->vm_page_prot);
1148         } else {
1149                 newpte = pte_mkspecial(pfn_pte(page_to_pfn(kpage),
1150                                                vma->vm_page_prot));
1151                 /*
1152                  * We're replacing an anonymous page with a zero page, which is
1153                  * not anonymous. We need to do proper accounting otherwise we
1154                  * will get wrong values in /proc, and a BUG message in dmesg
1155                  * when tearing down the mm.
1156                  */
1157                 dec_mm_counter(mm, MM_ANONPAGES);
1158         }
1159
1160         flush_cache_page(vma, addr, pte_pfn(*ptep));
1161         /*
1162          * No need to notify as we are replacing a read only page with another
1163          * read only page with the same content.
1164          *
1165          * See Documentation/vm/mmu_notifier.rst
1166          */
1167         ptep_clear_flush(vma, addr, ptep);
1168         set_pte_at_notify(mm, addr, ptep, newpte);
1169
1170         page_remove_rmap(page, false);
1171         if (!page_mapped(page))
1172                 try_to_free_swap(page);
1173         put_page(page);
1174
1175         pte_unmap_unlock(ptep, ptl);
1176         err = 0;
1177 out_mn:
1178         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1179 out:
1180         return err;
1181 }
1182
1183 /*
1184  * try_to_merge_one_page - take two pages and merge them into one
1185  * @vma: the vma that holds the pte pointing to page
1186  * @page: the PageAnon page that we want to replace with kpage
1187  * @kpage: the PageKsm page that we want to map instead of page,
1188  *         or NULL the first time when we want to use page as kpage.
1189  *
1190  * This function returns 0 if the pages were merged, -EFAULT otherwise.
1191  */
1192 static int try_to_merge_one_page(struct vm_area_struct *vma,
1193                                  struct page *page, struct page *kpage)
1194 {
1195         pte_t orig_pte = __pte(0);
1196         int err = -EFAULT;
1197
1198         if (page == kpage)                      /* ksm page forked */
1199                 return 0;
1200
1201         if (!PageAnon(page))
1202                 goto out;
1203
1204         /*
1205          * We need the page lock to read a stable PageSwapCache in
1206          * write_protect_page().  We use trylock_page() instead of
1207          * lock_page() because we don't want to wait here - we
1208          * prefer to continue scanning and merging different pages,
1209          * then come back to this page when it is unlocked.
1210          */
1211         if (!trylock_page(page))
1212                 goto out;
1213
1214         if (PageTransCompound(page)) {
1215                 if (split_huge_page(page))
1216                         goto out_unlock;
1217         }
1218
1219         /*
1220          * If this anonymous page is mapped only here, its pte may need
1221          * to be write-protected.  If it's mapped elsewhere, all of its
1222          * ptes are necessarily already write-protected.  But in either
1223          * case, we need to lock and check page_count is not raised.
1224          */
1225         if (write_protect_page(vma, page, &orig_pte) == 0) {
1226                 if (!kpage) {
1227                         /*
1228                          * While we hold page lock, upgrade page from
1229                          * PageAnon+anon_vma to PageKsm+NULL stable_node:
1230                          * stable_tree_insert() will update stable_node.
1231                          */
1232                         set_page_stable_node(page, NULL);
1233                         mark_page_accessed(page);
1234                         /*
1235                          * Page reclaim just frees a clean page with no dirty
1236                          * ptes: make sure that the ksm page would be swapped.
1237                          */
1238                         if (!PageDirty(page))
1239                                 SetPageDirty(page);
1240                         err = 0;
1241                 } else if (pages_identical(page, kpage))
1242                         err = replace_page(vma, page, kpage, orig_pte);
1243         }
1244
1245         if ((vma->vm_flags & VM_LOCKED) && kpage && !err) {
1246                 munlock_vma_page(page);
1247                 if (!PageMlocked(kpage)) {
1248                         unlock_page(page);
1249                         lock_page(kpage);
1250                         mlock_vma_page(kpage);
1251                         page = kpage;           /* for final unlock */
1252                 }
1253         }
1254
1255 out_unlock:
1256         unlock_page(page);
1257 out:
1258         return err;
1259 }
1260
1261 /*
1262  * try_to_merge_with_ksm_page - like try_to_merge_two_pages,
1263  * but no new kernel page is allocated: kpage must already be a ksm page.
1264  *
1265  * This function returns 0 if the pages were merged, -EFAULT otherwise.
1266  */
1267 static int try_to_merge_with_ksm_page(struct rmap_item *rmap_item,
1268                                       struct page *page, struct page *kpage)
1269 {
1270         struct mm_struct *mm = rmap_item->mm;
1271         struct vm_area_struct *vma;
1272         int err = -EFAULT;
1273
1274         down_read(&mm->mmap_sem);
1275         vma = find_mergeable_vma(mm, rmap_item->address);
1276         if (!vma)
1277                 goto out;
1278
1279         err = try_to_merge_one_page(vma, page, kpage);
1280         if (err)
1281                 goto out;
1282
1283         /* Unstable nid is in union with stable anon_vma: remove first */
1284         remove_rmap_item_from_tree(rmap_item);
1285
1286         /* Must get reference to anon_vma while still holding mmap_sem */
1287         rmap_item->anon_vma = vma->anon_vma;
1288         get_anon_vma(vma->anon_vma);
1289 out:
1290         up_read(&mm->mmap_sem);
1291         return err;
1292 }
1293
1294 /*
1295  * try_to_merge_two_pages - take two identical pages and prepare them
1296  * to be merged into one page.
1297  *
1298  * This function returns the kpage if we successfully merged two identical
1299  * pages into one ksm page, NULL otherwise.
1300  *
1301  * Note that this function upgrades page to ksm page: if one of the pages
1302  * is already a ksm page, try_to_merge_with_ksm_page should be used.
1303  */
1304 static struct page *try_to_merge_two_pages(struct rmap_item *rmap_item,
1305                                            struct page *page,
1306                                            struct rmap_item *tree_rmap_item,
1307                                            struct page *tree_page)
1308 {
1309         int err;
1310
1311         err = try_to_merge_with_ksm_page(rmap_item, page, NULL);
1312         if (!err) {
1313                 err = try_to_merge_with_ksm_page(tree_rmap_item,
1314                                                         tree_page, page);
1315                 /*
1316                  * If that fails, we have a ksm page with only one pte
1317                  * pointing to it: so break it.
1318                  */
1319                 if (err)
1320                         break_cow(rmap_item);
1321         }
1322         return err ? NULL : page;
1323 }
1324
1325 static __always_inline
1326 bool __is_page_sharing_candidate(struct stable_node *stable_node, int offset)
1327 {
1328         VM_BUG_ON(stable_node->rmap_hlist_len < 0);
1329         /*
1330          * Check that at least one mapping still exists, otherwise
1331          * there's no much point to merge and share with this
1332          * stable_node, as the underlying tree_page of the other
1333          * sharer is going to be freed soon.
1334          */
1335         return stable_node->rmap_hlist_len &&
1336                 stable_node->rmap_hlist_len + offset < ksm_max_page_sharing;
1337 }
1338
1339 static __always_inline
1340 bool is_page_sharing_candidate(struct stable_node *stable_node)
1341 {
1342         return __is_page_sharing_candidate(stable_node, 0);
1343 }
1344
1345 static struct page *stable_node_dup(struct stable_node **_stable_node_dup,
1346                                     struct stable_node **_stable_node,
1347                                     struct rb_root *root,
1348                                     bool prune_stale_stable_nodes)
1349 {
1350         struct stable_node *dup, *found = NULL, *stable_node = *_stable_node;
1351         struct hlist_node *hlist_safe;
1352         struct page *_tree_page, *tree_page = NULL;
1353         int nr = 0;
1354         int found_rmap_hlist_len;
1355
1356         if (!prune_stale_stable_nodes ||
1357             time_before(jiffies, stable_node->chain_prune_time +
1358                         msecs_to_jiffies(
1359                                 ksm_stable_node_chains_prune_millisecs)))
1360                 prune_stale_stable_nodes = false;
1361         else
1362                 stable_node->chain_prune_time = jiffies;
1363
1364         hlist_for_each_entry_safe(dup, hlist_safe,
1365                                   &stable_node->hlist, hlist_dup) {
1366                 cond_resched();
1367                 /*
1368                  * We must walk all stable_node_dup to prune the stale
1369                  * stable nodes during lookup.
1370                  *
1371                  * get_ksm_page can drop the nodes from the
1372                  * stable_node->hlist if they point to freed pages
1373                  * (that's why we do a _safe walk). The "dup"
1374                  * stable_node parameter itself will be freed from
1375                  * under us if it returns NULL.
1376                  */
1377                 _tree_page = get_ksm_page(dup, false);
1378                 if (!_tree_page)
1379                         continue;
1380                 nr += 1;
1381                 if (is_page_sharing_candidate(dup)) {
1382                         if (!found ||
1383                             dup->rmap_hlist_len > found_rmap_hlist_len) {
1384                                 if (found)
1385                                         put_page(tree_page);
1386                                 found = dup;
1387                                 found_rmap_hlist_len = found->rmap_hlist_len;
1388                                 tree_page = _tree_page;
1389
1390                                 /* skip put_page for found dup */
1391                                 if (!prune_stale_stable_nodes)
1392                                         break;
1393                                 continue;
1394                         }
1395                 }
1396                 put_page(_tree_page);
1397         }
1398
1399         if (found) {
1400                 /*
1401                  * nr is counting all dups in the chain only if
1402                  * prune_stale_stable_nodes is true, otherwise we may
1403                  * break the loop at nr == 1 even if there are
1404                  * multiple entries.
1405                  */
1406                 if (prune_stale_stable_nodes && nr == 1) {
1407                         /*
1408                          * If there's not just one entry it would
1409                          * corrupt memory, better BUG_ON. In KSM
1410                          * context with no lock held it's not even
1411                          * fatal.
1412                          */
1413                         BUG_ON(stable_node->hlist.first->next);
1414
1415                         /*
1416                          * There's just one entry and it is below the
1417                          * deduplication limit so drop the chain.
1418                          */
1419                         rb_replace_node(&stable_node->node, &found->node,
1420                                         root);
1421                         free_stable_node(stable_node);
1422                         ksm_stable_node_chains--;
1423                         ksm_stable_node_dups--;
1424                         /*
1425                          * NOTE: the caller depends on the stable_node
1426                          * to be equal to stable_node_dup if the chain
1427                          * was collapsed.
1428                          */
1429                         *_stable_node = found;
1430                         /*
1431                          * Just for robustneess as stable_node is
1432                          * otherwise left as a stable pointer, the
1433                          * compiler shall optimize it away at build
1434                          * time.
1435                          */
1436                         stable_node = NULL;
1437                 } else if (stable_node->hlist.first != &found->hlist_dup &&
1438                            __is_page_sharing_candidate(found, 1)) {
1439                         /*
1440                          * If the found stable_node dup can accept one
1441                          * more future merge (in addition to the one
1442                          * that is underway) and is not at the head of
1443                          * the chain, put it there so next search will
1444                          * be quicker in the !prune_stale_stable_nodes
1445                          * case.
1446                          *
1447                          * NOTE: it would be inaccurate to use nr > 1
1448                          * instead of checking the hlist.first pointer
1449                          * directly, because in the
1450                          * prune_stale_stable_nodes case "nr" isn't
1451                          * the position of the found dup in the chain,
1452                          * but the total number of dups in the chain.
1453                          */
1454                         hlist_del(&found->hlist_dup);
1455                         hlist_add_head(&found->hlist_dup,
1456                                        &stable_node->hlist);
1457                 }
1458         }
1459
1460         *_stable_node_dup = found;
1461         return tree_page;
1462 }
1463
1464 static struct stable_node *stable_node_dup_any(struct stable_node *stable_node,
1465                                                struct rb_root *root)
1466 {
1467         if (!is_stable_node_chain(stable_node))
1468                 return stable_node;
1469         if (hlist_empty(&stable_node->hlist)) {
1470                 free_stable_node_chain(stable_node, root);
1471                 return NULL;
1472         }
1473         return hlist_entry(stable_node->hlist.first,
1474                            typeof(*stable_node), hlist_dup);
1475 }
1476
1477 /*
1478  * Like for get_ksm_page, this function can free the *_stable_node and
1479  * *_stable_node_dup if the returned tree_page is NULL.
1480  *
1481  * It can also free and overwrite *_stable_node with the found
1482  * stable_node_dup if the chain is collapsed (in which case
1483  * *_stable_node will be equal to *_stable_node_dup like if the chain
1484  * never existed). It's up to the caller to verify tree_page is not
1485  * NULL before dereferencing *_stable_node or *_stable_node_dup.
1486  *
1487  * *_stable_node_dup is really a second output parameter of this
1488  * function and will be overwritten in all cases, the caller doesn't
1489  * need to initialize it.
1490  */
1491 static struct page *__stable_node_chain(struct stable_node **_stable_node_dup,
1492                                         struct stable_node **_stable_node,
1493                                         struct rb_root *root,
1494                                         bool prune_stale_stable_nodes)
1495 {
1496         struct stable_node *stable_node = *_stable_node;
1497         if (!is_stable_node_chain(stable_node)) {
1498                 if (is_page_sharing_candidate(stable_node)) {
1499                         *_stable_node_dup = stable_node;
1500                         return get_ksm_page(stable_node, false);
1501                 }
1502                 /*
1503                  * _stable_node_dup set to NULL means the stable_node
1504                  * reached the ksm_max_page_sharing limit.
1505                  */
1506                 *_stable_node_dup = NULL;
1507                 return NULL;
1508         }
1509         return stable_node_dup(_stable_node_dup, _stable_node, root,
1510                                prune_stale_stable_nodes);
1511 }
1512
1513 static __always_inline struct page *chain_prune(struct stable_node **s_n_d,
1514                                                 struct stable_node **s_n,
1515                                                 struct rb_root *root)
1516 {
1517         return __stable_node_chain(s_n_d, s_n, root, true);
1518 }
1519
1520 static __always_inline struct page *chain(struct stable_node **s_n_d,
1521                                           struct stable_node *s_n,
1522                                           struct rb_root *root)
1523 {
1524         struct stable_node *old_stable_node = s_n;
1525         struct page *tree_page;
1526
1527         tree_page = __stable_node_chain(s_n_d, &s_n, root, false);
1528         /* not pruning dups so s_n cannot have changed */
1529         VM_BUG_ON(s_n != old_stable_node);
1530         return tree_page;
1531 }
1532
1533 /*
1534  * stable_tree_search - search for page inside the stable tree
1535  *
1536  * This function checks if there is a page inside the stable tree
1537  * with identical content to the page that we are scanning right now.
1538  *
1539  * This function returns the stable tree node of identical content if found,
1540  * NULL otherwise.
1541  */
1542 static struct page *stable_tree_search(struct page *page)
1543 {
1544         int nid;
1545         struct rb_root *root;
1546         struct rb_node **new;
1547         struct rb_node *parent;
1548         struct stable_node *stable_node, *stable_node_dup, *stable_node_any;
1549         struct stable_node *page_node;
1550
1551         page_node = page_stable_node(page);
1552         if (page_node && page_node->head != &migrate_nodes) {
1553                 /* ksm page forked */
1554                 get_page(page);
1555                 return page;
1556         }
1557
1558         nid = get_kpfn_nid(page_to_pfn(page));
1559         root = root_stable_tree + nid;
1560 again:
1561         new = &root->rb_node;
1562         parent = NULL;
1563
1564         while (*new) {
1565                 struct page *tree_page;
1566                 int ret;
1567
1568                 cond_resched();
1569                 stable_node = rb_entry(*new, struct stable_node, node);
1570                 stable_node_any = NULL;
1571                 tree_page = chain_prune(&stable_node_dup, &stable_node, root);
1572                 /*
1573                  * NOTE: stable_node may have been freed by
1574                  * chain_prune() if the returned stable_node_dup is
1575                  * not NULL. stable_node_dup may have been inserted in
1576                  * the rbtree instead as a regular stable_node (in
1577                  * order to collapse the stable_node chain if a single
1578                  * stable_node dup was found in it). In such case the
1579                  * stable_node is overwritten by the calleee to point
1580                  * to the stable_node_dup that was collapsed in the
1581                  * stable rbtree and stable_node will be equal to
1582                  * stable_node_dup like if the chain never existed.
1583                  */
1584                 if (!stable_node_dup) {
1585                         /*
1586                          * Either all stable_node dups were full in
1587                          * this stable_node chain, or this chain was
1588                          * empty and should be rb_erased.
1589                          */
1590                         stable_node_any = stable_node_dup_any(stable_node,
1591                                                               root);
1592                         if (!stable_node_any) {
1593                                 /* rb_erase just run */
1594                                 goto again;
1595                         }
1596                         /*
1597                          * Take any of the stable_node dups page of
1598                          * this stable_node chain to let the tree walk
1599                          * continue. All KSM pages belonging to the
1600                          * stable_node dups in a stable_node chain
1601                          * have the same content and they're
1602                          * wrprotected at all times. Any will work
1603                          * fine to continue the walk.
1604                          */
1605                         tree_page = get_ksm_page(stable_node_any, false);
1606                 }
1607                 VM_BUG_ON(!stable_node_dup ^ !!stable_node_any);
1608                 if (!tree_page) {
1609                         /*
1610                          * If we walked over a stale stable_node,
1611                          * get_ksm_page() will call rb_erase() and it
1612                          * may rebalance the tree from under us. So
1613                          * restart the search from scratch. Returning
1614                          * NULL would be safe too, but we'd generate
1615                          * false negative insertions just because some
1616                          * stable_node was stale.
1617                          */
1618                         goto again;
1619                 }
1620
1621                 ret = memcmp_pages(page, tree_page);
1622                 put_page(tree_page);
1623
1624                 parent = *new;
1625                 if (ret < 0)
1626                         new = &parent->rb_left;
1627                 else if (ret > 0)
1628                         new = &parent->rb_right;
1629                 else {
1630                         if (page_node) {
1631                                 VM_BUG_ON(page_node->head != &migrate_nodes);
1632                                 /*
1633                                  * Test if the migrated page should be merged
1634                                  * into a stable node dup. If the mapcount is
1635                                  * 1 we can migrate it with another KSM page
1636                                  * without adding it to the chain.
1637                                  */
1638                                 if (page_mapcount(page) > 1)
1639                                         goto chain_append;
1640                         }
1641
1642                         if (!stable_node_dup) {
1643                                 /*
1644                                  * If the stable_node is a chain and
1645                                  * we got a payload match in memcmp
1646                                  * but we cannot merge the scanned
1647                                  * page in any of the existing
1648                                  * stable_node dups because they're
1649                                  * all full, we need to wait the
1650                                  * scanned page to find itself a match
1651                                  * in the unstable tree to create a
1652                                  * brand new KSM page to add later to
1653                                  * the dups of this stable_node.
1654                                  */
1655                                 return NULL;
1656                         }
1657
1658                         /*
1659                          * Lock and unlock the stable_node's page (which
1660                          * might already have been migrated) so that page
1661                          * migration is sure to notice its raised count.
1662                          * It would be more elegant to return stable_node
1663                          * than kpage, but that involves more changes.
1664                          */
1665                         tree_page = get_ksm_page(stable_node_dup, true);
1666                         if (unlikely(!tree_page))
1667                                 /*
1668                                  * The tree may have been rebalanced,
1669                                  * so re-evaluate parent and new.
1670                                  */
1671                                 goto again;
1672                         unlock_page(tree_page);
1673
1674                         if (get_kpfn_nid(stable_node_dup->kpfn) !=
1675                             NUMA(stable_node_dup->nid)) {
1676                                 put_page(tree_page);
1677                                 goto replace;
1678                         }
1679                         return tree_page;
1680                 }
1681         }
1682
1683         if (!page_node)
1684                 return NULL;
1685
1686         list_del(&page_node->list);
1687         DO_NUMA(page_node->nid = nid);
1688         rb_link_node(&page_node->node, parent, new);
1689         rb_insert_color(&page_node->node, root);
1690 out:
1691         if (is_page_sharing_candidate(page_node)) {
1692                 get_page(page);
1693                 return page;
1694         } else
1695                 return NULL;
1696
1697 replace:
1698         /*
1699          * If stable_node was a chain and chain_prune collapsed it,
1700          * stable_node has been updated to be the new regular
1701          * stable_node. A collapse of the chain is indistinguishable
1702          * from the case there was no chain in the stable
1703          * rbtree. Otherwise stable_node is the chain and
1704          * stable_node_dup is the dup to replace.
1705          */
1706         if (stable_node_dup == stable_node) {
1707                 VM_BUG_ON(is_stable_node_chain(stable_node_dup));
1708                 VM_BUG_ON(is_stable_node_dup(stable_node_dup));
1709                 /* there is no chain */
1710                 if (page_node) {
1711                         VM_BUG_ON(page_node->head != &migrate_nodes);
1712                         list_del(&page_node->list);
1713                         DO_NUMA(page_node->nid = nid);
1714                         rb_replace_node(&stable_node_dup->node,
1715                                         &page_node->node,
1716                                         root);
1717                         if (is_page_sharing_candidate(page_node))
1718                                 get_page(page);
1719                         else
1720                                 page = NULL;
1721                 } else {
1722                         rb_erase(&stable_node_dup->node, root);
1723                         page = NULL;
1724                 }
1725         } else {
1726                 VM_BUG_ON(!is_stable_node_chain(stable_node));
1727                 __stable_node_dup_del(stable_node_dup);
1728                 if (page_node) {
1729                         VM_BUG_ON(page_node->head != &migrate_nodes);
1730                         list_del(&page_node->list);
1731                         DO_NUMA(page_node->nid = nid);
1732                         stable_node_chain_add_dup(page_node, stable_node);
1733                         if (is_page_sharing_candidate(page_node))
1734                                 get_page(page);
1735                         else
1736                                 page = NULL;
1737                 } else {
1738                         page = NULL;
1739                 }
1740         }
1741         stable_node_dup->head = &migrate_nodes;
1742         list_add(&stable_node_dup->list, stable_node_dup->head);
1743         return page;
1744
1745 chain_append:
1746         /* stable_node_dup could be null if it reached the limit */
1747         if (!stable_node_dup)
1748                 stable_node_dup = stable_node_any;
1749         /*
1750          * If stable_node was a chain and chain_prune collapsed it,
1751          * stable_node has been updated to be the new regular
1752          * stable_node. A collapse of the chain is indistinguishable
1753          * from the case there was no chain in the stable
1754          * rbtree. Otherwise stable_node is the chain and
1755          * stable_node_dup is the dup to replace.
1756          */
1757         if (stable_node_dup == stable_node) {
1758                 VM_BUG_ON(is_stable_node_chain(stable_node_dup));
1759                 VM_BUG_ON(is_stable_node_dup(stable_node_dup));
1760                 /* chain is missing so create it */
1761                 stable_node = alloc_stable_node_chain(stable_node_dup,
1762                                                       root);
1763                 if (!stable_node)
1764                         return NULL;
1765         }
1766         /*
1767          * Add this stable_node dup that was
1768          * migrated to the stable_node chain
1769          * of the current nid for this page
1770          * content.
1771          */
1772         VM_BUG_ON(!is_stable_node_chain(stable_node));
1773         VM_BUG_ON(!is_stable_node_dup(stable_node_dup));
1774         VM_BUG_ON(page_node->head != &migrate_nodes);
1775         list_del(&page_node->list);
1776         DO_NUMA(page_node->nid = nid);
1777         stable_node_chain_add_dup(page_node, stable_node);
1778         goto out;
1779 }
1780
1781 /*
1782  * stable_tree_insert - insert stable tree node pointing to new ksm page
1783  * into the stable tree.
1784  *
1785  * This function returns the stable tree node just allocated on success,
1786  * NULL otherwise.
1787  */
1788 static struct stable_node *stable_tree_insert(struct page *kpage)
1789 {
1790         int nid;
1791         unsigned long kpfn;
1792         struct rb_root *root;
1793         struct rb_node **new;
1794         struct rb_node *parent;
1795         struct stable_node *stable_node, *stable_node_dup, *stable_node_any;
1796         bool need_chain = false;
1797
1798         kpfn = page_to_pfn(kpage);
1799         nid = get_kpfn_nid(kpfn);
1800         root = root_stable_tree + nid;
1801 again:
1802         parent = NULL;
1803         new = &root->rb_node;
1804
1805         while (*new) {
1806                 struct page *tree_page;
1807                 int ret;
1808
1809                 cond_resched();
1810                 stable_node = rb_entry(*new, struct stable_node, node);
1811                 stable_node_any = NULL;
1812                 tree_page = chain(&stable_node_dup, stable_node, root);
1813                 if (!stable_node_dup) {
1814                         /*
1815                          * Either all stable_node dups were full in
1816                          * this stable_node chain, or this chain was
1817                          * empty and should be rb_erased.
1818                          */
1819                         stable_node_any = stable_node_dup_any(stable_node,
1820                                                               root);
1821                         if (!stable_node_any) {
1822                                 /* rb_erase just run */
1823                                 goto again;
1824                         }
1825                         /*
1826                          * Take any of the stable_node dups page of
1827                          * this stable_node chain to let the tree walk
1828                          * continue. All KSM pages belonging to the
1829                          * stable_node dups in a stable_node chain
1830                          * have the same content and they're
1831                          * wrprotected at all times. Any will work
1832                          * fine to continue the walk.
1833                          */
1834                         tree_page = get_ksm_page(stable_node_any, false);
1835                 }
1836                 VM_BUG_ON(!stable_node_dup ^ !!stable_node_any);
1837                 if (!tree_page) {
1838                         /*
1839                          * If we walked over a stale stable_node,
1840                          * get_ksm_page() will call rb_erase() and it
1841                          * may rebalance the tree from under us. So
1842                          * restart the search from scratch. Returning
1843                          * NULL would be safe too, but we'd generate
1844                          * false negative insertions just because some
1845                          * stable_node was stale.
1846                          */
1847                         goto again;
1848                 }
1849
1850                 ret = memcmp_pages(kpage, tree_page);
1851                 put_page(tree_page);
1852
1853                 parent = *new;
1854                 if (ret < 0)
1855                         new = &parent->rb_left;
1856                 else if (ret > 0)
1857                         new = &parent->rb_right;
1858                 else {
1859                         need_chain = true;
1860                         break;
1861                 }
1862         }
1863
1864         stable_node_dup = alloc_stable_node();
1865         if (!stable_node_dup)
1866                 return NULL;
1867
1868         INIT_HLIST_HEAD(&stable_node_dup->hlist);
1869         stable_node_dup->kpfn = kpfn;
1870         set_page_stable_node(kpage, stable_node_dup);
1871         stable_node_dup->rmap_hlist_len = 0;
1872         DO_NUMA(stable_node_dup->nid = nid);
1873         if (!need_chain) {
1874                 rb_link_node(&stable_node_dup->node, parent, new);
1875                 rb_insert_color(&stable_node_dup->node, root);
1876         } else {
1877                 if (!is_stable_node_chain(stable_node)) {
1878                         struct stable_node *orig = stable_node;
1879                         /* chain is missing so create it */
1880                         stable_node = alloc_stable_node_chain(orig, root);
1881                         if (!stable_node) {
1882                                 free_stable_node(stable_node_dup);
1883                                 return NULL;
1884                         }
1885                 }
1886                 stable_node_chain_add_dup(stable_node_dup, stable_node);
1887         }
1888
1889         return stable_node_dup;
1890 }
1891
1892 /*
1893  * unstable_tree_search_insert - search for identical page,
1894  * else insert rmap_item into the unstable tree.
1895  *
1896  * This function searches for a page in the unstable tree identical to the
1897  * page currently being scanned; and if no identical page is found in the
1898  * tree, we insert rmap_item as a new object into the unstable tree.
1899  *
1900  * This function returns pointer to rmap_item found to be identical
1901  * to the currently scanned page, NULL otherwise.
1902  *
1903  * This function does both searching and inserting, because they share
1904  * the same walking algorithm in an rbtree.
1905  */
1906 static
1907 struct rmap_item *unstable_tree_search_insert(struct rmap_item *rmap_item,
1908                                               struct page *page,
1909                                               struct page **tree_pagep)
1910 {
1911         struct rb_node **new;
1912         struct rb_root *root;
1913         struct rb_node *parent = NULL;
1914         int nid;
1915
1916         nid = get_kpfn_nid(page_to_pfn(page));
1917         root = root_unstable_tree + nid;
1918         new = &root->rb_node;
1919
1920         while (*new) {
1921                 struct rmap_item *tree_rmap_item;
1922                 struct page *tree_page;
1923                 int ret;
1924
1925                 cond_resched();
1926                 tree_rmap_item = rb_entry(*new, struct rmap_item, node);
1927                 tree_page = get_mergeable_page(tree_rmap_item);
1928                 if (!tree_page)
1929                         return NULL;
1930
1931                 /*
1932                  * Don't substitute a ksm page for a forked page.
1933                  */
1934                 if (page == tree_page) {
1935                         put_page(tree_page);
1936                         return NULL;
1937                 }
1938
1939                 ret = memcmp_pages(page, tree_page);
1940
1941                 parent = *new;
1942                 if (ret < 0) {
1943                         put_page(tree_page);
1944                         new = &parent->rb_left;
1945                 } else if (ret > 0) {
1946                         put_page(tree_page);
1947                         new = &parent->rb_right;
1948                 } else if (!ksm_merge_across_nodes &&
1949                            page_to_nid(tree_page) != nid) {
1950                         /*
1951                          * If tree_page has been migrated to another NUMA node,
1952                          * it will be flushed out and put in the right unstable
1953                          * tree next time: only merge with it when across_nodes.
1954                          */
1955                         put_page(tree_page);
1956                         return NULL;
1957                 } else {
1958                         *tree_pagep = tree_page;
1959                         return tree_rmap_item;
1960                 }
1961         }
1962
1963         rmap_item->address |= UNSTABLE_FLAG;
1964         rmap_item->address |= (ksm_scan.seqnr & SEQNR_MASK);
1965         DO_NUMA(rmap_item->nid = nid);
1966         rb_link_node(&rmap_item->node, parent, new);
1967         rb_insert_color(&rmap_item->node, root);
1968
1969         ksm_pages_unshared++;
1970         return NULL;
1971 }
1972
1973 /*
1974  * stable_tree_append - add another rmap_item to the linked list of
1975  * rmap_items hanging off a given node of the stable tree, all sharing
1976  * the same ksm page.
1977  */
1978 static void stable_tree_append(struct rmap_item *rmap_item,
1979                                struct stable_node *stable_node,
1980                                bool max_page_sharing_bypass)
1981 {
1982         /*
1983          * rmap won't find this mapping if we don't insert the
1984          * rmap_item in the right stable_node
1985          * duplicate. page_migration could break later if rmap breaks,
1986          * so we can as well crash here. We really need to check for
1987          * rmap_hlist_len == STABLE_NODE_CHAIN, but we can as well check
1988          * for other negative values as an undeflow if detected here
1989          * for the first time (and not when decreasing rmap_hlist_len)
1990          * would be sign of memory corruption in the stable_node.
1991          */
1992         BUG_ON(stable_node->rmap_hlist_len < 0);
1993
1994         stable_node->rmap_hlist_len++;
1995         if (!max_page_sharing_bypass)
1996                 /* possibly non fatal but unexpected overflow, only warn */
1997                 WARN_ON_ONCE(stable_node->rmap_hlist_len >
1998                              ksm_max_page_sharing);
1999
2000         rmap_item->head = stable_node;
2001         rmap_item->address |= STABLE_FLAG;
2002         hlist_add_head(&rmap_item->hlist, &stable_node->hlist);
2003
2004         if (rmap_item->hlist.next)
2005                 ksm_pages_sharing++;
2006         else
2007                 ksm_pages_shared++;
2008 }
2009
2010 /*
2011  * cmp_and_merge_page - first see if page can be merged into the stable tree;
2012  * if not, compare checksum to previous and if it's the same, see if page can
2013  * be inserted into the unstable tree, or merged with a page already there and
2014  * both transferred to the stable tree.
2015  *
2016  * @page: the page that we are searching identical page to.
2017  * @rmap_item: the reverse mapping into the virtual address of this page
2018  */
2019 static void cmp_and_merge_page(struct page *page, struct rmap_item *rmap_item)
2020 {
2021         struct mm_struct *mm = rmap_item->mm;
2022         struct rmap_item *tree_rmap_item;
2023         struct page *tree_page = NULL;
2024         struct stable_node *stable_node;
2025         struct page *kpage;
2026         unsigned int checksum;
2027         int err;
2028         bool max_page_sharing_bypass = false;
2029
2030         stable_node = page_stable_node(page);
2031         if (stable_node) {
2032                 if (stable_node->head != &migrate_nodes &&
2033                     get_kpfn_nid(READ_ONCE(stable_node->kpfn)) !=
2034                     NUMA(stable_node->nid)) {
2035                         stable_node_dup_del(stable_node);
2036                         stable_node->head = &migrate_nodes;
2037                         list_add(&stable_node->list, stable_node->head);
2038                 }
2039                 if (stable_node->head != &migrate_nodes &&
2040                     rmap_item->head == stable_node)
2041                         return;
2042                 /*
2043                  * If it's a KSM fork, allow it to go over the sharing limit
2044                  * without warnings.
2045                  */
2046                 if (!is_page_sharing_candidate(stable_node))
2047                         max_page_sharing_bypass = true;
2048         }
2049
2050         /* We first start with searching the page inside the stable tree */
2051         kpage = stable_tree_search(page);
2052         if (kpage == page && rmap_item->head == stable_node) {
2053                 put_page(kpage);
2054                 return;
2055         }
2056
2057         remove_rmap_item_from_tree(rmap_item);
2058
2059         if (kpage) {
2060                 err = try_to_merge_with_ksm_page(rmap_item, page, kpage);
2061                 if (!err) {
2062                         /*
2063                          * The page was successfully merged:
2064                          * add its rmap_item to the stable tree.
2065                          */
2066                         lock_page(kpage);
2067                         stable_tree_append(rmap_item, page_stable_node(kpage),
2068                                            max_page_sharing_bypass);
2069                         unlock_page(kpage);
2070                 }
2071                 put_page(kpage);
2072                 return;
2073         }
2074
2075         /*
2076          * If the hash value of the page has changed from the last time
2077          * we calculated it, this page is changing frequently: therefore we
2078          * don't want to insert it in the unstable tree, and we don't want
2079          * to waste our time searching for something identical to it there.
2080          */
2081         checksum = calc_checksum(page);
2082         if (rmap_item->oldchecksum != checksum) {
2083                 rmap_item->oldchecksum = checksum;
2084                 return;
2085         }
2086
2087         /*
2088          * Same checksum as an empty page. We attempt to merge it with the
2089          * appropriate zero page if the user enabled this via sysfs.
2090          */
2091         if (ksm_use_zero_pages && (checksum == zero_checksum)) {
2092                 struct vm_area_struct *vma;
2093
2094                 down_read(&mm->mmap_sem);
2095                 vma = find_mergeable_vma(mm, rmap_item->address);
2096                 err = try_to_merge_one_page(vma, page,
2097                                             ZERO_PAGE(rmap_item->address));
2098                 up_read(&mm->mmap_sem);
2099                 /*
2100                  * In case of failure, the page was not really empty, so we
2101                  * need to continue. Otherwise we're done.
2102                  */
2103                 if (!err)
2104                         return;
2105         }
2106         tree_rmap_item =
2107                 unstable_tree_search_insert(rmap_item, page, &tree_page);
2108         if (tree_rmap_item) {
2109                 bool split;
2110
2111                 kpage = try_to_merge_two_pages(rmap_item, page,
2112                                                 tree_rmap_item, tree_page);
2113                 /*
2114                  * If both pages we tried to merge belong to the same compound
2115                  * page, then we actually ended up increasing the reference
2116                  * count of the same compound page twice, and split_huge_page
2117                  * failed.
2118                  * Here we set a flag if that happened, and we use it later to
2119                  * try split_huge_page again. Since we call put_page right
2120                  * afterwards, the reference count will be correct and
2121                  * split_huge_page should succeed.
2122                  */
2123                 split = PageTransCompound(page)
2124                         && compound_head(page) == compound_head(tree_page);
2125                 put_page(tree_page);
2126                 if (kpage) {
2127                         /*
2128                          * The pages were successfully merged: insert new
2129                          * node in the stable tree and add both rmap_items.
2130                          */
2131                         lock_page(kpage);
2132                         stable_node = stable_tree_insert(kpage);
2133                         if (stable_node) {
2134                                 stable_tree_append(tree_rmap_item, stable_node,
2135                                                    false);
2136                                 stable_tree_append(rmap_item, stable_node,
2137                                                    false);
2138                         }
2139                         unlock_page(kpage);
2140
2141                         /*
2142                          * If we fail to insert the page into the stable tree,
2143                          * we will have 2 virtual addresses that are pointing
2144                          * to a ksm page left outside the stable tree,
2145                          * in which case we need to break_cow on both.
2146                          */
2147                         if (!stable_node) {
2148                                 break_cow(tree_rmap_item);
2149                                 break_cow(rmap_item);
2150                         }
2151                 } else if (split) {
2152                         /*
2153                          * We are here if we tried to merge two pages and
2154                          * failed because they both belonged to the same
2155                          * compound page. We will split the page now, but no
2156                          * merging will take place.
2157                          * We do not want to add the cost of a full lock; if
2158                          * the page is locked, it is better to skip it and
2159                          * perhaps try again later.
2160                          */
2161                         if (!trylock_page(page))
2162                                 return;
2163                         split_huge_page(page);
2164                         unlock_page(page);
2165                 }
2166         }
2167 }
2168
2169 static struct rmap_item *get_next_rmap_item(struct mm_slot *mm_slot,
2170                                             struct rmap_item **rmap_list,
2171                                             unsigned long addr)
2172 {
2173         struct rmap_item *rmap_item;
2174
2175         while (*rmap_list) {
2176                 rmap_item = *rmap_list;
2177                 if ((rmap_item->address & PAGE_MASK) == addr)
2178                         return rmap_item;
2179                 if (rmap_item->address > addr)
2180                         break;
2181                 *rmap_list = rmap_item->rmap_list;
2182                 remove_rmap_item_from_tree(rmap_item);
2183                 free_rmap_item(rmap_item);
2184         }
2185
2186         rmap_item = alloc_rmap_item();
2187         if (rmap_item) {
2188                 /* It has already been zeroed */
2189                 rmap_item->mm = mm_slot->mm;
2190                 rmap_item->address = addr;
2191                 rmap_item->rmap_list = *rmap_list;
2192                 *rmap_list = rmap_item;
2193         }
2194         return rmap_item;
2195 }
2196
2197 static struct rmap_item *scan_get_next_rmap_item(struct page **page)
2198 {
2199         struct mm_struct *mm;
2200         struct mm_slot *slot;
2201         struct vm_area_struct *vma;
2202         struct rmap_item *rmap_item;
2203         int nid;
2204
2205         if (list_empty(&ksm_mm_head.mm_list))
2206                 return NULL;
2207
2208         slot = ksm_scan.mm_slot;
2209         if (slot == &ksm_mm_head) {
2210                 /*
2211                  * A number of pages can hang around indefinitely on per-cpu
2212                  * pagevecs, raised page count preventing write_protect_page
2213                  * from merging them.  Though it doesn't really matter much,
2214                  * it is puzzling to see some stuck in pages_volatile until
2215                  * other activity jostles them out, and they also prevented
2216                  * LTP's KSM test from succeeding deterministically; so drain
2217                  * them here (here rather than on entry to ksm_do_scan(),
2218                  * so we don't IPI too often when pages_to_scan is set low).
2219                  */
2220                 lru_add_drain_all();
2221
2222                 /*
2223                  * Whereas stale stable_nodes on the stable_tree itself
2224                  * get pruned in the regular course of stable_tree_search(),
2225                  * those moved out to the migrate_nodes list can accumulate:
2226                  * so prune them once before each full scan.
2227                  */
2228                 if (!ksm_merge_across_nodes) {
2229                         struct stable_node *stable_node, *next;
2230                         struct page *page;
2231
2232                         list_for_each_entry_safe(stable_node, next,
2233                                                  &migrate_nodes, list) {
2234                                 page = get_ksm_page(stable_node, false);
2235                                 if (page)
2236                                         put_page(page);
2237                                 cond_resched();
2238                         }
2239                 }
2240
2241                 for (nid = 0; nid < ksm_nr_node_ids; nid++)
2242                         root_unstable_tree[nid] = RB_ROOT;
2243
2244                 spin_lock(&ksm_mmlist_lock);
2245                 slot = list_entry(slot->mm_list.next, struct mm_slot, mm_list);
2246                 ksm_scan.mm_slot = slot;
2247                 spin_unlock(&ksm_mmlist_lock);
2248                 /*
2249                  * Although we tested list_empty() above, a racing __ksm_exit
2250                  * of the last mm on the list may have removed it since then.
2251                  */
2252                 if (slot == &ksm_mm_head)
2253                         return NULL;
2254 next_mm:
2255                 ksm_scan.address = 0;
2256                 ksm_scan.rmap_list = &slot->rmap_list;
2257         }
2258
2259         mm = slot->mm;
2260         down_read(&mm->mmap_sem);
2261         if (ksm_test_exit(mm))
2262                 vma = NULL;
2263         else
2264                 vma = find_vma(mm, ksm_scan.address);
2265
2266         for (; vma; vma = vma->vm_next) {
2267                 if (!(vma->vm_flags & VM_MERGEABLE))
2268                         continue;
2269                 if (ksm_scan.address < vma->vm_start)
2270                         ksm_scan.address = vma->vm_start;
2271                 if (!vma->anon_vma)
2272                         ksm_scan.address = vma->vm_end;
2273
2274                 while (ksm_scan.address < vma->vm_end) {
2275                         if (ksm_test_exit(mm))
2276                                 break;
2277                         *page = follow_page(vma, ksm_scan.address, FOLL_GET);
2278                         if (IS_ERR_OR_NULL(*page)) {
2279                                 ksm_scan.address += PAGE_SIZE;
2280                                 cond_resched();
2281                                 continue;
2282                         }
2283                         if (PageAnon(*page)) {
2284                                 flush_anon_page(vma, *page, ksm_scan.address);
2285                                 flush_dcache_page(*page);
2286                                 rmap_item = get_next_rmap_item(slot,
2287                                         ksm_scan.rmap_list, ksm_scan.address);
2288                                 if (rmap_item) {
2289                                         ksm_scan.rmap_list =
2290                                                         &rmap_item->rmap_list;
2291                                         ksm_scan.address += PAGE_SIZE;
2292                                 } else
2293                                         put_page(*page);
2294                                 up_read(&mm->mmap_sem);
2295                                 return rmap_item;
2296                         }
2297                         put_page(*page);
2298                         ksm_scan.address += PAGE_SIZE;
2299                         cond_resched();
2300                 }
2301         }
2302
2303         if (ksm_test_exit(mm)) {
2304                 ksm_scan.address = 0;
2305                 ksm_scan.rmap_list = &slot->rmap_list;
2306         }
2307         /*
2308          * Nuke all the rmap_items that are above this current rmap:
2309          * because there were no VM_MERGEABLE vmas with such addresses.
2310          */
2311         remove_trailing_rmap_items(slot, ksm_scan.rmap_list);
2312
2313         spin_lock(&ksm_mmlist_lock);
2314         ksm_scan.mm_slot = list_entry(slot->mm_list.next,
2315                                                 struct mm_slot, mm_list);
2316         if (ksm_scan.address == 0) {
2317                 /*
2318                  * We've completed a full scan of all vmas, holding mmap_sem
2319                  * throughout, and found no VM_MERGEABLE: so do the same as
2320                  * __ksm_exit does to remove this mm from all our lists now.
2321                  * This applies either when cleaning up after __ksm_exit
2322                  * (but beware: we can reach here even before __ksm_exit),
2323                  * or when all VM_MERGEABLE areas have been unmapped (and
2324                  * mmap_sem then protects against race with MADV_MERGEABLE).
2325                  */
2326                 hash_del(&slot->link);
2327                 list_del(&slot->mm_list);
2328                 spin_unlock(&ksm_mmlist_lock);
2329
2330                 free_mm_slot(slot);
2331                 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
2332                 up_read(&mm->mmap_sem);
2333                 mmdrop(mm);
2334         } else {
2335                 up_read(&mm->mmap_sem);
2336                 /*
2337                  * up_read(&mm->mmap_sem) first because after
2338                  * spin_unlock(&ksm_mmlist_lock) run, the "mm" may
2339                  * already have been freed under us by __ksm_exit()
2340                  * because the "mm_slot" is still hashed and
2341                  * ksm_scan.mm_slot doesn't point to it anymore.
2342                  */
2343                 spin_unlock(&ksm_mmlist_lock);
2344         }
2345
2346         /* Repeat until we've completed scanning the whole list */
2347         slot = ksm_scan.mm_slot;
2348         if (slot != &ksm_mm_head)
2349                 goto next_mm;
2350
2351         ksm_scan.seqnr++;
2352         return NULL;
2353 }
2354
2355 /**
2356  * ksm_do_scan  - the ksm scanner main worker function.
2357  * @scan_npages:  number of pages we want to scan before we return.
2358  */
2359 static void ksm_do_scan(unsigned int scan_npages)
2360 {
2361         struct rmap_item *rmap_item;
2362         struct page *uninitialized_var(page);
2363
2364         while (scan_npages-- && likely(!freezing(current))) {
2365                 cond_resched();
2366                 rmap_item = scan_get_next_rmap_item(&page);
2367                 if (!rmap_item)
2368                         return;
2369                 cmp_and_merge_page(page, rmap_item);
2370                 put_page(page);
2371         }
2372 }
2373
2374 static int ksmd_should_run(void)
2375 {
2376         return (ksm_run & KSM_RUN_MERGE) && !list_empty(&ksm_mm_head.mm_list);
2377 }
2378
2379 static int ksm_scan_thread(void *nothing)
2380 {
2381         set_freezable();
2382         set_user_nice(current, 5);
2383
2384         while (!kthread_should_stop()) {
2385                 mutex_lock(&ksm_thread_mutex);
2386                 wait_while_offlining();
2387                 if (ksmd_should_run())
2388                         ksm_do_scan(ksm_thread_pages_to_scan);
2389                 mutex_unlock(&ksm_thread_mutex);
2390
2391                 try_to_freeze();
2392
2393                 if (ksmd_should_run()) {
2394                         schedule_timeout_interruptible(
2395                                 msecs_to_jiffies(ksm_thread_sleep_millisecs));
2396                 } else {
2397                         wait_event_freezable(ksm_thread_wait,
2398                                 ksmd_should_run() || kthread_should_stop());
2399                 }
2400         }
2401         return 0;
2402 }
2403
2404 int ksm_madvise(struct vm_area_struct *vma, unsigned long start,
2405                 unsigned long end, int advice, unsigned long *vm_flags)
2406 {
2407         struct mm_struct *mm = vma->vm_mm;
2408         int err;
2409
2410         switch (advice) {
2411         case MADV_MERGEABLE:
2412                 /*
2413                  * Be somewhat over-protective for now!
2414                  */
2415                 if (*vm_flags & (VM_MERGEABLE | VM_SHARED  | VM_MAYSHARE   |
2416                                  VM_PFNMAP    | VM_IO      | VM_DONTEXPAND |
2417                                  VM_HUGETLB | VM_MIXEDMAP))
2418                         return 0;               /* just ignore the advice */
2419
2420 #ifdef VM_SAO
2421                 if (*vm_flags & VM_SAO)
2422                         return 0;
2423 #endif
2424 #ifdef VM_SPARC_ADI
2425                 if (*vm_flags & VM_SPARC_ADI)
2426                         return 0;
2427 #endif
2428
2429                 if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) {
2430                         err = __ksm_enter(mm);
2431                         if (err)
2432                                 return err;
2433                 }
2434
2435                 *vm_flags |= VM_MERGEABLE;
2436                 break;
2437
2438         case MADV_UNMERGEABLE:
2439                 if (!(*vm_flags & VM_MERGEABLE))
2440                         return 0;               /* just ignore the advice */
2441
2442                 if (vma->anon_vma) {
2443                         err = unmerge_ksm_pages(vma, start, end);
2444                         if (err)
2445                                 return err;
2446                 }
2447
2448                 *vm_flags &= ~VM_MERGEABLE;
2449                 break;
2450         }
2451
2452         return 0;
2453 }
2454
2455 int __ksm_enter(struct mm_struct *mm)
2456 {
2457         struct mm_slot *mm_slot;
2458         int needs_wakeup;
2459
2460         mm_slot = alloc_mm_slot();
2461         if (!mm_slot)
2462                 return -ENOMEM;
2463
2464         /* Check ksm_run too?  Would need tighter locking */
2465         needs_wakeup = list_empty(&ksm_mm_head.mm_list);
2466
2467         spin_lock(&ksm_mmlist_lock);
2468         insert_to_mm_slots_hash(mm, mm_slot);
2469         /*
2470          * When KSM_RUN_MERGE (or KSM_RUN_STOP),
2471          * insert just behind the scanning cursor, to let the area settle
2472          * down a little; when fork is followed by immediate exec, we don't
2473          * want ksmd to waste time setting up and tearing down an rmap_list.
2474          *
2475          * But when KSM_RUN_UNMERGE, it's important to insert ahead of its
2476          * scanning cursor, otherwise KSM pages in newly forked mms will be
2477          * missed: then we might as well insert at the end of the list.
2478          */
2479         if (ksm_run & KSM_RUN_UNMERGE)
2480                 list_add_tail(&mm_slot->mm_list, &ksm_mm_head.mm_list);
2481         else
2482                 list_add_tail(&mm_slot->mm_list, &ksm_scan.mm_slot->mm_list);
2483         spin_unlock(&ksm_mmlist_lock);
2484
2485         set_bit(MMF_VM_MERGEABLE, &mm->flags);
2486         mmgrab(mm);
2487
2488         if (needs_wakeup)
2489                 wake_up_interruptible(&ksm_thread_wait);
2490
2491         return 0;
2492 }
2493
2494 void __ksm_exit(struct mm_struct *mm)
2495 {
2496         struct mm_slot *mm_slot;
2497         int easy_to_free = 0;
2498
2499         /*
2500          * This process is exiting: if it's straightforward (as is the
2501          * case when ksmd was never running), free mm_slot immediately.
2502          * But if it's at the cursor or has rmap_items linked to it, use
2503          * mmap_sem to synchronize with any break_cows before pagetables
2504          * are freed, and leave the mm_slot on the list for ksmd to free.
2505          * Beware: ksm may already have noticed it exiting and freed the slot.
2506          */
2507
2508         spin_lock(&ksm_mmlist_lock);
2509         mm_slot = get_mm_slot(mm);
2510         if (mm_slot && ksm_scan.mm_slot != mm_slot) {
2511                 if (!mm_slot->rmap_list) {
2512                         hash_del(&mm_slot->link);
2513                         list_del(&mm_slot->mm_list);
2514                         easy_to_free = 1;
2515                 } else {
2516                         list_move(&mm_slot->mm_list,
2517                                   &ksm_scan.mm_slot->mm_list);
2518                 }
2519         }
2520         spin_unlock(&ksm_mmlist_lock);
2521
2522         if (easy_to_free) {
2523                 free_mm_slot(mm_slot);
2524                 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
2525                 mmdrop(mm);
2526         } else if (mm_slot) {
2527                 down_write(&mm->mmap_sem);
2528                 up_write(&mm->mmap_sem);
2529         }
2530 }
2531
2532 struct page *ksm_might_need_to_copy(struct page *page,
2533                         struct vm_area_struct *vma, unsigned long address)
2534 {
2535         struct anon_vma *anon_vma = page_anon_vma(page);
2536         struct page *new_page;
2537
2538         if (PageKsm(page)) {
2539                 if (page_stable_node(page) &&
2540                     !(ksm_run & KSM_RUN_UNMERGE))
2541                         return page;    /* no need to copy it */
2542         } else if (!anon_vma) {
2543                 return page;            /* no need to copy it */
2544         } else if (anon_vma->root == vma->anon_vma->root &&
2545                  page->index == linear_page_index(vma, address)) {
2546                 return page;            /* still no need to copy it */
2547         }
2548         if (!PageUptodate(page))
2549                 return page;            /* let do_swap_page report the error */
2550
2551         new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2552         if (new_page) {
2553                 copy_user_highpage(new_page, page, address, vma);
2554
2555                 SetPageDirty(new_page);
2556                 __SetPageUptodate(new_page);
2557                 __SetPageLocked(new_page);
2558         }
2559
2560         return new_page;
2561 }
2562
2563 void rmap_walk_ksm(struct page *page, struct rmap_walk_control *rwc)
2564 {
2565         struct stable_node *stable_node;
2566         struct rmap_item *rmap_item;
2567         int search_new_forks = 0;
2568
2569         VM_BUG_ON_PAGE(!PageKsm(page), page);
2570
2571         /*
2572          * Rely on the page lock to protect against concurrent modifications
2573          * to that page's node of the stable tree.
2574          */
2575         VM_BUG_ON_PAGE(!PageLocked(page), page);
2576
2577         stable_node = page_stable_node(page);
2578         if (!stable_node)
2579                 return;
2580 again:
2581         hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
2582                 struct anon_vma *anon_vma = rmap_item->anon_vma;
2583                 struct anon_vma_chain *vmac;
2584                 struct vm_area_struct *vma;
2585
2586                 cond_resched();
2587                 anon_vma_lock_read(anon_vma);
2588                 anon_vma_interval_tree_foreach(vmac, &anon_vma->rb_root,
2589                                                0, ULONG_MAX) {
2590                         cond_resched();
2591                         vma = vmac->vma;
2592                         if (rmap_item->address < vma->vm_start ||
2593                             rmap_item->address >= vma->vm_end)
2594                                 continue;
2595                         /*
2596                          * Initially we examine only the vma which covers this
2597                          * rmap_item; but later, if there is still work to do,
2598                          * we examine covering vmas in other mms: in case they
2599                          * were forked from the original since ksmd passed.
2600                          */
2601                         if ((rmap_item->mm == vma->vm_mm) == search_new_forks)
2602                                 continue;
2603
2604                         if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
2605                                 continue;
2606
2607                         if (!rwc->rmap_one(page, vma,
2608                                         rmap_item->address, rwc->arg)) {
2609                                 anon_vma_unlock_read(anon_vma);
2610                                 return;
2611                         }
2612                         if (rwc->done && rwc->done(page)) {
2613                                 anon_vma_unlock_read(anon_vma);
2614                                 return;
2615                         }
2616                 }
2617                 anon_vma_unlock_read(anon_vma);
2618         }
2619         if (!search_new_forks++)
2620                 goto again;
2621 }
2622
2623 #ifdef CONFIG_MIGRATION
2624 void ksm_migrate_page(struct page *newpage, struct page *oldpage)
2625 {
2626         struct stable_node *stable_node;
2627
2628         VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
2629         VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
2630         VM_BUG_ON_PAGE(newpage->mapping != oldpage->mapping, newpage);
2631
2632         stable_node = page_stable_node(newpage);
2633         if (stable_node) {
2634                 VM_BUG_ON_PAGE(stable_node->kpfn != page_to_pfn(oldpage), oldpage);
2635                 stable_node->kpfn = page_to_pfn(newpage);
2636                 /*
2637                  * newpage->mapping was set in advance; now we need smp_wmb()
2638                  * to make sure that the new stable_node->kpfn is visible
2639                  * to get_ksm_page() before it can see that oldpage->mapping
2640                  * has gone stale (or that PageSwapCache has been cleared).
2641                  */
2642                 smp_wmb();
2643                 set_page_stable_node(oldpage, NULL);
2644         }
2645 }
2646 #endif /* CONFIG_MIGRATION */
2647
2648 #ifdef CONFIG_MEMORY_HOTREMOVE
2649 static void wait_while_offlining(void)
2650 {
2651         while (ksm_run & KSM_RUN_OFFLINE) {
2652                 mutex_unlock(&ksm_thread_mutex);
2653                 wait_on_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE),
2654                             TASK_UNINTERRUPTIBLE);
2655                 mutex_lock(&ksm_thread_mutex);
2656         }
2657 }
2658
2659 static bool stable_node_dup_remove_range(struct stable_node *stable_node,
2660                                          unsigned long start_pfn,
2661                                          unsigned long end_pfn)
2662 {
2663         if (stable_node->kpfn >= start_pfn &&
2664             stable_node->kpfn < end_pfn) {
2665                 /*
2666                  * Don't get_ksm_page, page has already gone:
2667                  * which is why we keep kpfn instead of page*
2668                  */
2669                 remove_node_from_stable_tree(stable_node);
2670                 return true;
2671         }
2672         return false;
2673 }
2674
2675 static bool stable_node_chain_remove_range(struct stable_node *stable_node,
2676                                            unsigned long start_pfn,
2677                                            unsigned long end_pfn,
2678                                            struct rb_root *root)
2679 {
2680         struct stable_node *dup;
2681         struct hlist_node *hlist_safe;
2682
2683         if (!is_stable_node_chain(stable_node)) {
2684                 VM_BUG_ON(is_stable_node_dup(stable_node));
2685                 return stable_node_dup_remove_range(stable_node, start_pfn,
2686                                                     end_pfn);
2687         }
2688
2689         hlist_for_each_entry_safe(dup, hlist_safe,
2690                                   &stable_node->hlist, hlist_dup) {
2691                 VM_BUG_ON(!is_stable_node_dup(dup));
2692                 stable_node_dup_remove_range(dup, start_pfn, end_pfn);
2693         }
2694         if (hlist_empty(&stable_node->hlist)) {
2695                 free_stable_node_chain(stable_node, root);
2696                 return true; /* notify caller that tree was rebalanced */
2697         } else
2698                 return false;
2699 }
2700
2701 static void ksm_check_stable_tree(unsigned long start_pfn,
2702                                   unsigned long end_pfn)
2703 {
2704         struct stable_node *stable_node, *next;
2705         struct rb_node *node;
2706         int nid;
2707
2708         for (nid = 0; nid < ksm_nr_node_ids; nid++) {
2709                 node = rb_first(root_stable_tree + nid);
2710                 while (node) {
2711                         stable_node = rb_entry(node, struct stable_node, node);
2712                         if (stable_node_chain_remove_range(stable_node,
2713                                                            start_pfn, end_pfn,
2714                                                            root_stable_tree +
2715                                                            nid))
2716                                 node = rb_first(root_stable_tree + nid);
2717                         else
2718                                 node = rb_next(node);
2719                         cond_resched();
2720                 }
2721         }
2722         list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
2723                 if (stable_node->kpfn >= start_pfn &&
2724                     stable_node->kpfn < end_pfn)
2725                         remove_node_from_stable_tree(stable_node);
2726                 cond_resched();
2727         }
2728 }
2729
2730 static int ksm_memory_callback(struct notifier_block *self,
2731                                unsigned long action, void *arg)
2732 {
2733         struct memory_notify *mn = arg;
2734
2735         switch (action) {
2736         case MEM_GOING_OFFLINE:
2737                 /*
2738                  * Prevent ksm_do_scan(), unmerge_and_remove_all_rmap_items()
2739                  * and remove_all_stable_nodes() while memory is going offline:
2740                  * it is unsafe for them to touch the stable tree at this time.
2741                  * But unmerge_ksm_pages(), rmap lookups and other entry points
2742                  * which do not need the ksm_thread_mutex are all safe.
2743                  */
2744                 mutex_lock(&ksm_thread_mutex);
2745                 ksm_run |= KSM_RUN_OFFLINE;
2746                 mutex_unlock(&ksm_thread_mutex);
2747                 break;
2748
2749         case MEM_OFFLINE:
2750                 /*
2751                  * Most of the work is done by page migration; but there might
2752                  * be a few stable_nodes left over, still pointing to struct
2753                  * pages which have been offlined: prune those from the tree,
2754                  * otherwise get_ksm_page() might later try to access a
2755                  * non-existent struct page.
2756                  */
2757                 ksm_check_stable_tree(mn->start_pfn,
2758                                       mn->start_pfn + mn->nr_pages);
2759                 /* fallthrough */
2760
2761         case MEM_CANCEL_OFFLINE:
2762                 mutex_lock(&ksm_thread_mutex);
2763                 ksm_run &= ~KSM_RUN_OFFLINE;
2764                 mutex_unlock(&ksm_thread_mutex);
2765
2766                 smp_mb();       /* wake_up_bit advises this */
2767                 wake_up_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE));
2768                 break;
2769         }
2770         return NOTIFY_OK;
2771 }
2772 #else
2773 static void wait_while_offlining(void)
2774 {
2775 }
2776 #endif /* CONFIG_MEMORY_HOTREMOVE */
2777
2778 #ifdef CONFIG_SYSFS
2779 /*
2780  * This all compiles without CONFIG_SYSFS, but is a waste of space.
2781  */
2782
2783 #define KSM_ATTR_RO(_name) \
2784         static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2785 #define KSM_ATTR(_name) \
2786         static struct kobj_attribute _name##_attr = \
2787                 __ATTR(_name, 0644, _name##_show, _name##_store)
2788
2789 static ssize_t sleep_millisecs_show(struct kobject *kobj,
2790                                     struct kobj_attribute *attr, char *buf)
2791 {
2792         return sprintf(buf, "%u\n", ksm_thread_sleep_millisecs);
2793 }
2794
2795 static ssize_t sleep_millisecs_store(struct kobject *kobj,
2796                                      struct kobj_attribute *attr,
2797                                      const char *buf, size_t count)
2798 {
2799         unsigned long msecs;
2800         int err;
2801
2802         err = kstrtoul(buf, 10, &msecs);
2803         if (err || msecs > UINT_MAX)
2804                 return -EINVAL;
2805
2806         ksm_thread_sleep_millisecs = msecs;
2807
2808         return count;
2809 }
2810 KSM_ATTR(sleep_millisecs);
2811
2812 static ssize_t pages_to_scan_show(struct kobject *kobj,
2813                                   struct kobj_attribute *attr, char *buf)
2814 {
2815         return sprintf(buf, "%u\n", ksm_thread_pages_to_scan);
2816 }
2817
2818 static ssize_t pages_to_scan_store(struct kobject *kobj,
2819                                    struct kobj_attribute *attr,
2820                                    const char *buf, size_t count)
2821 {
2822         int err;
2823         unsigned long nr_pages;
2824
2825         err = kstrtoul(buf, 10, &nr_pages);
2826         if (err || nr_pages > UINT_MAX)
2827                 return -EINVAL;
2828
2829         ksm_thread_pages_to_scan = nr_pages;
2830
2831         return count;
2832 }
2833 KSM_ATTR(pages_to_scan);
2834
2835 static ssize_t run_show(struct kobject *kobj, struct kobj_attribute *attr,
2836                         char *buf)
2837 {
2838         return sprintf(buf, "%lu\n", ksm_run);
2839 }
2840
2841 static ssize_t run_store(struct kobject *kobj, struct kobj_attribute *attr,
2842                          const char *buf, size_t count)
2843 {
2844         int err;
2845         unsigned long flags;
2846
2847         err = kstrtoul(buf, 10, &flags);
2848         if (err || flags > UINT_MAX)
2849                 return -EINVAL;
2850         if (flags > KSM_RUN_UNMERGE)
2851                 return -EINVAL;
2852
2853         /*
2854          * KSM_RUN_MERGE sets ksmd running, and 0 stops it running.
2855          * KSM_RUN_UNMERGE stops it running and unmerges all rmap_items,
2856          * breaking COW to free the pages_shared (but leaves mm_slots
2857          * on the list for when ksmd may be set running again).
2858          */
2859
2860         mutex_lock(&ksm_thread_mutex);
2861         wait_while_offlining();
2862         if (ksm_run != flags) {
2863                 ksm_run = flags;
2864                 if (flags & KSM_RUN_UNMERGE) {
2865                         set_current_oom_origin();
2866                         err = unmerge_and_remove_all_rmap_items();
2867                         clear_current_oom_origin();
2868                         if (err) {
2869                                 ksm_run = KSM_RUN_STOP;
2870                                 count = err;
2871                         }
2872                 }
2873         }
2874         mutex_unlock(&ksm_thread_mutex);
2875
2876         if (flags & KSM_RUN_MERGE)
2877                 wake_up_interruptible(&ksm_thread_wait);
2878
2879         return count;
2880 }
2881 KSM_ATTR(run);
2882
2883 #ifdef CONFIG_NUMA
2884 static ssize_t merge_across_nodes_show(struct kobject *kobj,
2885                                 struct kobj_attribute *attr, char *buf)
2886 {
2887         return sprintf(buf, "%u\n", ksm_merge_across_nodes);
2888 }
2889
2890 static ssize_t merge_across_nodes_store(struct kobject *kobj,
2891                                    struct kobj_attribute *attr,
2892                                    const char *buf, size_t count)
2893 {
2894         int err;
2895         unsigned long knob;
2896
2897         err = kstrtoul(buf, 10, &knob);
2898         if (err)
2899                 return err;
2900         if (knob > 1)
2901                 return -EINVAL;
2902
2903         mutex_lock(&ksm_thread_mutex);
2904         wait_while_offlining();
2905         if (ksm_merge_across_nodes != knob) {
2906                 if (ksm_pages_shared || remove_all_stable_nodes())
2907                         err = -EBUSY;
2908                 else if (root_stable_tree == one_stable_tree) {
2909                         struct rb_root *buf;
2910                         /*
2911                          * This is the first time that we switch away from the
2912                          * default of merging across nodes: must now allocate
2913                          * a buffer to hold as many roots as may be needed.
2914                          * Allocate stable and unstable together:
2915                          * MAXSMP NODES_SHIFT 10 will use 16kB.
2916                          */
2917                         buf = kcalloc(nr_node_ids + nr_node_ids, sizeof(*buf),
2918                                       GFP_KERNEL);
2919                         /* Let us assume that RB_ROOT is NULL is zero */
2920                         if (!buf)
2921                                 err = -ENOMEM;
2922                         else {
2923                                 root_stable_tree = buf;
2924                                 root_unstable_tree = buf + nr_node_ids;
2925                                 /* Stable tree is empty but not the unstable */
2926                                 root_unstable_tree[0] = one_unstable_tree[0];
2927                         }
2928                 }
2929                 if (!err) {
2930                         ksm_merge_across_nodes = knob;
2931                         ksm_nr_node_ids = knob ? 1 : nr_node_ids;
2932                 }
2933         }
2934         mutex_unlock(&ksm_thread_mutex);
2935
2936         return err ? err : count;
2937 }
2938 KSM_ATTR(merge_across_nodes);
2939 #endif
2940
2941 static ssize_t use_zero_pages_show(struct kobject *kobj,
2942                                 struct kobj_attribute *attr, char *buf)
2943 {
2944         return sprintf(buf, "%u\n", ksm_use_zero_pages);
2945 }
2946 static ssize_t use_zero_pages_store(struct kobject *kobj,
2947                                    struct kobj_attribute *attr,
2948                                    const char *buf, size_t count)
2949 {
2950         int err;
2951         bool value;
2952
2953         err = kstrtobool(buf, &value);
2954         if (err)
2955                 return -EINVAL;
2956
2957         ksm_use_zero_pages = value;
2958
2959         return count;
2960 }
2961 KSM_ATTR(use_zero_pages);
2962
2963 static ssize_t max_page_sharing_show(struct kobject *kobj,
2964                                      struct kobj_attribute *attr, char *buf)
2965 {
2966         return sprintf(buf, "%u\n", ksm_max_page_sharing);
2967 }
2968
2969 static ssize_t max_page_sharing_store(struct kobject *kobj,
2970                                       struct kobj_attribute *attr,
2971                                       const char *buf, size_t count)
2972 {
2973         int err;
2974         int knob;
2975
2976         err = kstrtoint(buf, 10, &knob);
2977         if (err)
2978                 return err;
2979         /*
2980          * When a KSM page is created it is shared by 2 mappings. This
2981          * being a signed comparison, it implicitly verifies it's not
2982          * negative.
2983          */
2984         if (knob < 2)
2985                 return -EINVAL;
2986
2987         if (READ_ONCE(ksm_max_page_sharing) == knob)
2988                 return count;
2989
2990         mutex_lock(&ksm_thread_mutex);
2991         wait_while_offlining();
2992         if (ksm_max_page_sharing != knob) {
2993                 if (ksm_pages_shared || remove_all_stable_nodes())
2994                         err = -EBUSY;
2995                 else
2996                         ksm_max_page_sharing = knob;
2997         }
2998         mutex_unlock(&ksm_thread_mutex);
2999
3000         return err ? err : count;
3001 }
3002 KSM_ATTR(max_page_sharing);
3003
3004 static ssize_t pages_shared_show(struct kobject *kobj,
3005                                  struct kobj_attribute *attr, char *buf)
3006 {
3007         return sprintf(buf, "%lu\n", ksm_pages_shared);
3008 }
3009 KSM_ATTR_RO(pages_shared);
3010
3011 static ssize_t pages_sharing_show(struct kobject *kobj,
3012                                   struct kobj_attribute *attr, char *buf)
3013 {
3014         return sprintf(buf, "%lu\n", ksm_pages_sharing);
3015 }
3016 KSM_ATTR_RO(pages_sharing);
3017
3018 static ssize_t pages_unshared_show(struct kobject *kobj,
3019                                    struct kobj_attribute *attr, char *buf)
3020 {
3021         return sprintf(buf, "%lu\n", ksm_pages_unshared);
3022 }
3023 KSM_ATTR_RO(pages_unshared);
3024
3025 static ssize_t pages_volatile_show(struct kobject *kobj,
3026                                    struct kobj_attribute *attr, char *buf)
3027 {
3028         long ksm_pages_volatile;
3029
3030         ksm_pages_volatile = ksm_rmap_items - ksm_pages_shared
3031                                 - ksm_pages_sharing - ksm_pages_unshared;
3032         /*
3033          * It was not worth any locking to calculate that statistic,
3034          * but it might therefore sometimes be negative: conceal that.
3035          */
3036         if (ksm_pages_volatile < 0)
3037                 ksm_pages_volatile = 0;
3038         return sprintf(buf, "%ld\n", ksm_pages_volatile);
3039 }
3040 KSM_ATTR_RO(pages_volatile);
3041
3042 static ssize_t stable_node_dups_show(struct kobject *kobj,
3043                                      struct kobj_attribute *attr, char *buf)
3044 {
3045         return sprintf(buf, "%lu\n", ksm_stable_node_dups);
3046 }
3047 KSM_ATTR_RO(stable_node_dups);
3048
3049 static ssize_t stable_node_chains_show(struct kobject *kobj,
3050                                        struct kobj_attribute *attr, char *buf)
3051 {
3052         return sprintf(buf, "%lu\n", ksm_stable_node_chains);
3053 }
3054 KSM_ATTR_RO(stable_node_chains);
3055
3056 static ssize_t
3057 stable_node_chains_prune_millisecs_show(struct kobject *kobj,
3058                                         struct kobj_attribute *attr,
3059                                         char *buf)
3060 {
3061         return sprintf(buf, "%u\n", ksm_stable_node_chains_prune_millisecs);
3062 }
3063
3064 static ssize_t
3065 stable_node_chains_prune_millisecs_store(struct kobject *kobj,
3066                                          struct kobj_attribute *attr,
3067                                          const char *buf, size_t count)
3068 {
3069         unsigned long msecs;
3070         int err;
3071
3072         err = kstrtoul(buf, 10, &msecs);
3073         if (err || msecs > UINT_MAX)
3074                 return -EINVAL;
3075
3076         ksm_stable_node_chains_prune_millisecs = msecs;
3077
3078         return count;
3079 }
3080 KSM_ATTR(stable_node_chains_prune_millisecs);
3081
3082 static ssize_t full_scans_show(struct kobject *kobj,
3083                                struct kobj_attribute *attr, char *buf)
3084 {
3085         return sprintf(buf, "%lu\n", ksm_scan.seqnr);
3086 }
3087 KSM_ATTR_RO(full_scans);
3088
3089 static struct attribute *ksm_attrs[] = {
3090         &sleep_millisecs_attr.attr,
3091         &pages_to_scan_attr.attr,
3092         &run_attr.attr,
3093         &pages_shared_attr.attr,
3094         &pages_sharing_attr.attr,
3095         &pages_unshared_attr.attr,
3096         &pages_volatile_attr.attr,
3097         &full_scans_attr.attr,
3098 #ifdef CONFIG_NUMA
3099         &merge_across_nodes_attr.attr,
3100 #endif
3101         &max_page_sharing_attr.attr,
3102         &stable_node_chains_attr.attr,
3103         &stable_node_dups_attr.attr,
3104         &stable_node_chains_prune_millisecs_attr.attr,
3105         &use_zero_pages_attr.attr,
3106         NULL,
3107 };
3108
3109 static const struct attribute_group ksm_attr_group = {
3110         .attrs = ksm_attrs,
3111         .name = "ksm",
3112 };
3113 #endif /* CONFIG_SYSFS */
3114
3115 static int __init ksm_init(void)
3116 {
3117         struct task_struct *ksm_thread;
3118         int err;
3119
3120         /* The correct value depends on page size and endianness */
3121         zero_checksum = calc_checksum(ZERO_PAGE(0));
3122         /* Default to false for backwards compatibility */
3123         ksm_use_zero_pages = false;
3124
3125         err = ksm_slab_init();
3126         if (err)
3127                 goto out;
3128
3129         ksm_thread = kthread_run(ksm_scan_thread, NULL, "ksmd");
3130         if (IS_ERR(ksm_thread)) {
3131                 pr_err("ksm: creating kthread failed\n");
3132                 err = PTR_ERR(ksm_thread);
3133                 goto out_free;
3134         }
3135
3136 #ifdef CONFIG_SYSFS
3137         err = sysfs_create_group(mm_kobj, &ksm_attr_group);
3138         if (err) {
3139                 pr_err("ksm: register sysfs failed\n");
3140                 kthread_stop(ksm_thread);
3141                 goto out_free;
3142         }
3143 #else
3144         ksm_run = KSM_RUN_MERGE;        /* no way for user to start it */
3145
3146 #endif /* CONFIG_SYSFS */
3147
3148 #ifdef CONFIG_MEMORY_HOTREMOVE
3149         /* There is no significance to this priority 100 */
3150         hotplug_memory_notifier(ksm_memory_callback, 100);
3151 #endif
3152         return 0;
3153
3154 out_free:
3155         ksm_slab_free();
3156 out:
3157         return err;
3158 }
3159 subsys_initcall(ksm_init);