mm: kmemleak: add __find_and_remove_object()
[linux-2.6-microblaze.git] / mm / kmemleak.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * mm/kmemleak.c
4  *
5  * Copyright (C) 2008 ARM Limited
6  * Written by Catalin Marinas <catalin.marinas@arm.com>
7  *
8  * For more information on the algorithm and kmemleak usage, please see
9  * Documentation/dev-tools/kmemleak.rst.
10  *
11  * Notes on locking
12  * ----------------
13  *
14  * The following locks and mutexes are used by kmemleak:
15  *
16  * - kmemleak_lock (raw_spinlock_t): protects the object_list as well as
17  *   del_state modifications and accesses to the object_tree_root (or
18  *   object_phys_tree_root). The object_list is the main list holding the
19  *   metadata (struct kmemleak_object) for the allocated memory blocks.
20  *   The object_tree_root and object_phys_tree_root are red
21  *   black trees used to look-up metadata based on a pointer to the
22  *   corresponding memory block. The object_phys_tree_root is for objects
23  *   allocated with physical address. The kmemleak_object structures are
24  *   added to the object_list and object_tree_root (or object_phys_tree_root)
25  *   in the create_object() function called from the kmemleak_alloc() (or
26  *   kmemleak_alloc_phys()) callback and removed in delete_object() called from
27  *   the kmemleak_free() callback
28  * - kmemleak_object.lock (raw_spinlock_t): protects a kmemleak_object.
29  *   Accesses to the metadata (e.g. count) are protected by this lock. Note
30  *   that some members of this structure may be protected by other means
31  *   (atomic or kmemleak_lock). This lock is also held when scanning the
32  *   corresponding memory block to avoid the kernel freeing it via the
33  *   kmemleak_free() callback. This is less heavyweight than holding a global
34  *   lock like kmemleak_lock during scanning.
35  * - scan_mutex (mutex): ensures that only one thread may scan the memory for
36  *   unreferenced objects at a time. The gray_list contains the objects which
37  *   are already referenced or marked as false positives and need to be
38  *   scanned. This list is only modified during a scanning episode when the
39  *   scan_mutex is held. At the end of a scan, the gray_list is always empty.
40  *   Note that the kmemleak_object.use_count is incremented when an object is
41  *   added to the gray_list and therefore cannot be freed. This mutex also
42  *   prevents multiple users of the "kmemleak" debugfs file together with
43  *   modifications to the memory scanning parameters including the scan_thread
44  *   pointer
45  *
46  * Locks and mutexes are acquired/nested in the following order:
47  *
48  *   scan_mutex [-> object->lock] -> kmemleak_lock -> other_object->lock (SINGLE_DEPTH_NESTING)
49  *
50  * No kmemleak_lock and object->lock nesting is allowed outside scan_mutex
51  * regions.
52  *
53  * The kmemleak_object structures have a use_count incremented or decremented
54  * using the get_object()/put_object() functions. When the use_count becomes
55  * 0, this count can no longer be incremented and put_object() schedules the
56  * kmemleak_object freeing via an RCU callback. All calls to the get_object()
57  * function must be protected by rcu_read_lock() to avoid accessing a freed
58  * structure.
59  */
60
61 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
62
63 #include <linux/init.h>
64 #include <linux/kernel.h>
65 #include <linux/list.h>
66 #include <linux/sched/signal.h>
67 #include <linux/sched/task.h>
68 #include <linux/sched/task_stack.h>
69 #include <linux/jiffies.h>
70 #include <linux/delay.h>
71 #include <linux/export.h>
72 #include <linux/kthread.h>
73 #include <linux/rbtree.h>
74 #include <linux/fs.h>
75 #include <linux/debugfs.h>
76 #include <linux/seq_file.h>
77 #include <linux/cpumask.h>
78 #include <linux/spinlock.h>
79 #include <linux/module.h>
80 #include <linux/mutex.h>
81 #include <linux/rcupdate.h>
82 #include <linux/stacktrace.h>
83 #include <linux/stackdepot.h>
84 #include <linux/cache.h>
85 #include <linux/percpu.h>
86 #include <linux/memblock.h>
87 #include <linux/pfn.h>
88 #include <linux/mmzone.h>
89 #include <linux/slab.h>
90 #include <linux/thread_info.h>
91 #include <linux/err.h>
92 #include <linux/uaccess.h>
93 #include <linux/string.h>
94 #include <linux/nodemask.h>
95 #include <linux/mm.h>
96 #include <linux/workqueue.h>
97 #include <linux/crc32.h>
98
99 #include <asm/sections.h>
100 #include <asm/processor.h>
101 #include <linux/atomic.h>
102
103 #include <linux/kasan.h>
104 #include <linux/kfence.h>
105 #include <linux/kmemleak.h>
106 #include <linux/memory_hotplug.h>
107
108 /*
109  * Kmemleak configuration and common defines.
110  */
111 #define MAX_TRACE               16      /* stack trace length */
112 #define MSECS_MIN_AGE           5000    /* minimum object age for reporting */
113 #define SECS_FIRST_SCAN         60      /* delay before the first scan */
114 #define SECS_SCAN_WAIT          600     /* subsequent auto scanning delay */
115 #define MAX_SCAN_SIZE           4096    /* maximum size of a scanned block */
116
117 #define BYTES_PER_POINTER       sizeof(void *)
118
119 /* GFP bitmask for kmemleak internal allocations */
120 #define gfp_kmemleak_mask(gfp)  (((gfp) & (GFP_KERNEL | GFP_ATOMIC | \
121                                            __GFP_NOLOCKDEP)) | \
122                                  __GFP_NORETRY | __GFP_NOMEMALLOC | \
123                                  __GFP_NOWARN)
124
125 /* scanning area inside a memory block */
126 struct kmemleak_scan_area {
127         struct hlist_node node;
128         unsigned long start;
129         size_t size;
130 };
131
132 #define KMEMLEAK_GREY   0
133 #define KMEMLEAK_BLACK  -1
134
135 /*
136  * Structure holding the metadata for each allocated memory block.
137  * Modifications to such objects should be made while holding the
138  * object->lock. Insertions or deletions from object_list, gray_list or
139  * rb_node are already protected by the corresponding locks or mutex (see
140  * the notes on locking above). These objects are reference-counted
141  * (use_count) and freed using the RCU mechanism.
142  */
143 struct kmemleak_object {
144         raw_spinlock_t lock;
145         unsigned int flags;             /* object status flags */
146         struct list_head object_list;
147         struct list_head gray_list;
148         struct rb_node rb_node;
149         struct rcu_head rcu;            /* object_list lockless traversal */
150         /* object usage count; object freed when use_count == 0 */
151         atomic_t use_count;
152         unsigned int del_state;         /* deletion state */
153         unsigned long pointer;
154         size_t size;
155         /* pass surplus references to this pointer */
156         unsigned long excess_ref;
157         /* minimum number of a pointers found before it is considered leak */
158         int min_count;
159         /* the total number of pointers found pointing to this object */
160         int count;
161         /* checksum for detecting modified objects */
162         u32 checksum;
163         /* memory ranges to be scanned inside an object (empty for all) */
164         struct hlist_head area_list;
165         depot_stack_handle_t trace_handle;
166         unsigned long jiffies;          /* creation timestamp */
167         pid_t pid;                      /* pid of the current task */
168         char comm[TASK_COMM_LEN];       /* executable name */
169 };
170
171 /* flag representing the memory block allocation status */
172 #define OBJECT_ALLOCATED        (1 << 0)
173 /* flag set after the first reporting of an unreference object */
174 #define OBJECT_REPORTED         (1 << 1)
175 /* flag set to not scan the object */
176 #define OBJECT_NO_SCAN          (1 << 2)
177 /* flag set to fully scan the object when scan_area allocation failed */
178 #define OBJECT_FULL_SCAN        (1 << 3)
179 /* flag set for object allocated with physical address */
180 #define OBJECT_PHYS             (1 << 4)
181
182 /* set when __remove_object() called */
183 #define DELSTATE_REMOVED        (1 << 0)
184 /* set to temporarily prevent deletion from object_list */
185 #define DELSTATE_NO_DELETE      (1 << 1)
186
187 #define HEX_PREFIX              "    "
188 /* number of bytes to print per line; must be 16 or 32 */
189 #define HEX_ROW_SIZE            16
190 /* number of bytes to print at a time (1, 2, 4, 8) */
191 #define HEX_GROUP_SIZE          1
192 /* include ASCII after the hex output */
193 #define HEX_ASCII               1
194 /* max number of lines to be printed */
195 #define HEX_MAX_LINES           2
196
197 /* the list of all allocated objects */
198 static LIST_HEAD(object_list);
199 /* the list of gray-colored objects (see color_gray comment below) */
200 static LIST_HEAD(gray_list);
201 /* memory pool allocation */
202 static struct kmemleak_object mem_pool[CONFIG_DEBUG_KMEMLEAK_MEM_POOL_SIZE];
203 static int mem_pool_free_count = ARRAY_SIZE(mem_pool);
204 static LIST_HEAD(mem_pool_free_list);
205 /* search tree for object boundaries */
206 static struct rb_root object_tree_root = RB_ROOT;
207 /* search tree for object (with OBJECT_PHYS flag) boundaries */
208 static struct rb_root object_phys_tree_root = RB_ROOT;
209 /* protecting the access to object_list, object_tree_root (or object_phys_tree_root) */
210 static DEFINE_RAW_SPINLOCK(kmemleak_lock);
211
212 /* allocation caches for kmemleak internal data */
213 static struct kmem_cache *object_cache;
214 static struct kmem_cache *scan_area_cache;
215
216 /* set if tracing memory operations is enabled */
217 static int kmemleak_enabled = 1;
218 /* same as above but only for the kmemleak_free() callback */
219 static int kmemleak_free_enabled = 1;
220 /* set in the late_initcall if there were no errors */
221 static int kmemleak_late_initialized;
222 /* set if a kmemleak warning was issued */
223 static int kmemleak_warning;
224 /* set if a fatal kmemleak error has occurred */
225 static int kmemleak_error;
226
227 /* minimum and maximum address that may be valid pointers */
228 static unsigned long min_addr = ULONG_MAX;
229 static unsigned long max_addr;
230
231 static struct task_struct *scan_thread;
232 /* used to avoid reporting of recently allocated objects */
233 static unsigned long jiffies_min_age;
234 static unsigned long jiffies_last_scan;
235 /* delay between automatic memory scannings */
236 static unsigned long jiffies_scan_wait;
237 /* enables or disables the task stacks scanning */
238 static int kmemleak_stack_scan = 1;
239 /* protects the memory scanning, parameters and debug/kmemleak file access */
240 static DEFINE_MUTEX(scan_mutex);
241 /* setting kmemleak=on, will set this var, skipping the disable */
242 static int kmemleak_skip_disable;
243 /* If there are leaks that can be reported */
244 static bool kmemleak_found_leaks;
245
246 static bool kmemleak_verbose;
247 module_param_named(verbose, kmemleak_verbose, bool, 0600);
248
249 static void kmemleak_disable(void);
250
251 /*
252  * Print a warning and dump the stack trace.
253  */
254 #define kmemleak_warn(x...)     do {            \
255         pr_warn(x);                             \
256         dump_stack();                           \
257         kmemleak_warning = 1;                   \
258 } while (0)
259
260 /*
261  * Macro invoked when a serious kmemleak condition occurred and cannot be
262  * recovered from. Kmemleak will be disabled and further allocation/freeing
263  * tracing no longer available.
264  */
265 #define kmemleak_stop(x...)     do {    \
266         kmemleak_warn(x);               \
267         kmemleak_disable();             \
268 } while (0)
269
270 #define warn_or_seq_printf(seq, fmt, ...)       do {    \
271         if (seq)                                        \
272                 seq_printf(seq, fmt, ##__VA_ARGS__);    \
273         else                                            \
274                 pr_warn(fmt, ##__VA_ARGS__);            \
275 } while (0)
276
277 static void warn_or_seq_hex_dump(struct seq_file *seq, int prefix_type,
278                                  int rowsize, int groupsize, const void *buf,
279                                  size_t len, bool ascii)
280 {
281         if (seq)
282                 seq_hex_dump(seq, HEX_PREFIX, prefix_type, rowsize, groupsize,
283                              buf, len, ascii);
284         else
285                 print_hex_dump(KERN_WARNING, pr_fmt(HEX_PREFIX), prefix_type,
286                                rowsize, groupsize, buf, len, ascii);
287 }
288
289 /*
290  * Printing of the objects hex dump to the seq file. The number of lines to be
291  * printed is limited to HEX_MAX_LINES to prevent seq file spamming. The
292  * actual number of printed bytes depends on HEX_ROW_SIZE. It must be called
293  * with the object->lock held.
294  */
295 static void hex_dump_object(struct seq_file *seq,
296                             struct kmemleak_object *object)
297 {
298         const u8 *ptr = (const u8 *)object->pointer;
299         size_t len;
300
301         if (WARN_ON_ONCE(object->flags & OBJECT_PHYS))
302                 return;
303
304         /* limit the number of lines to HEX_MAX_LINES */
305         len = min_t(size_t, object->size, HEX_MAX_LINES * HEX_ROW_SIZE);
306
307         warn_or_seq_printf(seq, "  hex dump (first %zu bytes):\n", len);
308         kasan_disable_current();
309         warn_or_seq_hex_dump(seq, DUMP_PREFIX_NONE, HEX_ROW_SIZE,
310                              HEX_GROUP_SIZE, kasan_reset_tag((void *)ptr), len, HEX_ASCII);
311         kasan_enable_current();
312 }
313
314 /*
315  * Object colors, encoded with count and min_count:
316  * - white - orphan object, not enough references to it (count < min_count)
317  * - gray  - not orphan, not marked as false positive (min_count == 0) or
318  *              sufficient references to it (count >= min_count)
319  * - black - ignore, it doesn't contain references (e.g. text section)
320  *              (min_count == -1). No function defined for this color.
321  * Newly created objects don't have any color assigned (object->count == -1)
322  * before the next memory scan when they become white.
323  */
324 static bool color_white(const struct kmemleak_object *object)
325 {
326         return object->count != KMEMLEAK_BLACK &&
327                 object->count < object->min_count;
328 }
329
330 static bool color_gray(const struct kmemleak_object *object)
331 {
332         return object->min_count != KMEMLEAK_BLACK &&
333                 object->count >= object->min_count;
334 }
335
336 /*
337  * Objects are considered unreferenced only if their color is white, they have
338  * not be deleted and have a minimum age to avoid false positives caused by
339  * pointers temporarily stored in CPU registers.
340  */
341 static bool unreferenced_object(struct kmemleak_object *object)
342 {
343         return (color_white(object) && object->flags & OBJECT_ALLOCATED) &&
344                 time_before_eq(object->jiffies + jiffies_min_age,
345                                jiffies_last_scan);
346 }
347
348 /*
349  * Printing of the unreferenced objects information to the seq file. The
350  * print_unreferenced function must be called with the object->lock held.
351  */
352 static void print_unreferenced(struct seq_file *seq,
353                                struct kmemleak_object *object)
354 {
355         int i;
356         unsigned long *entries;
357         unsigned int nr_entries;
358         unsigned int msecs_age = jiffies_to_msecs(jiffies - object->jiffies);
359
360         nr_entries = stack_depot_fetch(object->trace_handle, &entries);
361         warn_or_seq_printf(seq, "unreferenced object 0x%08lx (size %zu):\n",
362                           object->pointer, object->size);
363         warn_or_seq_printf(seq, "  comm \"%s\", pid %d, jiffies %lu (age %d.%03ds)\n",
364                            object->comm, object->pid, object->jiffies,
365                            msecs_age / 1000, msecs_age % 1000);
366         hex_dump_object(seq, object);
367         warn_or_seq_printf(seq, "  backtrace:\n");
368
369         for (i = 0; i < nr_entries; i++) {
370                 void *ptr = (void *)entries[i];
371                 warn_or_seq_printf(seq, "    [<%pK>] %pS\n", ptr, ptr);
372         }
373 }
374
375 /*
376  * Print the kmemleak_object information. This function is used mainly for
377  * debugging special cases when kmemleak operations. It must be called with
378  * the object->lock held.
379  */
380 static void dump_object_info(struct kmemleak_object *object)
381 {
382         pr_notice("Object 0x%08lx (size %zu):\n",
383                         object->pointer, object->size);
384         pr_notice("  comm \"%s\", pid %d, jiffies %lu\n",
385                         object->comm, object->pid, object->jiffies);
386         pr_notice("  min_count = %d\n", object->min_count);
387         pr_notice("  count = %d\n", object->count);
388         pr_notice("  flags = 0x%x\n", object->flags);
389         pr_notice("  checksum = %u\n", object->checksum);
390         pr_notice("  backtrace:\n");
391         if (object->trace_handle)
392                 stack_depot_print(object->trace_handle);
393 }
394
395 /*
396  * Look-up a memory block metadata (kmemleak_object) in the object search
397  * tree based on a pointer value. If alias is 0, only values pointing to the
398  * beginning of the memory block are allowed. The kmemleak_lock must be held
399  * when calling this function.
400  */
401 static struct kmemleak_object *__lookup_object(unsigned long ptr, int alias,
402                                                bool is_phys)
403 {
404         struct rb_node *rb = is_phys ? object_phys_tree_root.rb_node :
405                              object_tree_root.rb_node;
406         unsigned long untagged_ptr = (unsigned long)kasan_reset_tag((void *)ptr);
407
408         while (rb) {
409                 struct kmemleak_object *object;
410                 unsigned long untagged_objp;
411
412                 object = rb_entry(rb, struct kmemleak_object, rb_node);
413                 untagged_objp = (unsigned long)kasan_reset_tag((void *)object->pointer);
414
415                 if (untagged_ptr < untagged_objp)
416                         rb = object->rb_node.rb_left;
417                 else if (untagged_objp + object->size <= untagged_ptr)
418                         rb = object->rb_node.rb_right;
419                 else if (untagged_objp == untagged_ptr || alias)
420                         return object;
421                 else {
422                         kmemleak_warn("Found object by alias at 0x%08lx\n",
423                                       ptr);
424                         dump_object_info(object);
425                         break;
426                 }
427         }
428         return NULL;
429 }
430
431 /* Look-up a kmemleak object which allocated with virtual address. */
432 static struct kmemleak_object *lookup_object(unsigned long ptr, int alias)
433 {
434         return __lookup_object(ptr, alias, false);
435 }
436
437 /*
438  * Increment the object use_count. Return 1 if successful or 0 otherwise. Note
439  * that once an object's use_count reached 0, the RCU freeing was already
440  * registered and the object should no longer be used. This function must be
441  * called under the protection of rcu_read_lock().
442  */
443 static int get_object(struct kmemleak_object *object)
444 {
445         return atomic_inc_not_zero(&object->use_count);
446 }
447
448 /*
449  * Memory pool allocation and freeing. kmemleak_lock must not be held.
450  */
451 static struct kmemleak_object *mem_pool_alloc(gfp_t gfp)
452 {
453         unsigned long flags;
454         struct kmemleak_object *object;
455
456         /* try the slab allocator first */
457         if (object_cache) {
458                 object = kmem_cache_alloc(object_cache, gfp_kmemleak_mask(gfp));
459                 if (object)
460                         return object;
461         }
462
463         /* slab allocation failed, try the memory pool */
464         raw_spin_lock_irqsave(&kmemleak_lock, flags);
465         object = list_first_entry_or_null(&mem_pool_free_list,
466                                           typeof(*object), object_list);
467         if (object)
468                 list_del(&object->object_list);
469         else if (mem_pool_free_count)
470                 object = &mem_pool[--mem_pool_free_count];
471         else
472                 pr_warn_once("Memory pool empty, consider increasing CONFIG_DEBUG_KMEMLEAK_MEM_POOL_SIZE\n");
473         raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
474
475         return object;
476 }
477
478 /*
479  * Return the object to either the slab allocator or the memory pool.
480  */
481 static void mem_pool_free(struct kmemleak_object *object)
482 {
483         unsigned long flags;
484
485         if (object < mem_pool || object >= mem_pool + ARRAY_SIZE(mem_pool)) {
486                 kmem_cache_free(object_cache, object);
487                 return;
488         }
489
490         /* add the object to the memory pool free list */
491         raw_spin_lock_irqsave(&kmemleak_lock, flags);
492         list_add(&object->object_list, &mem_pool_free_list);
493         raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
494 }
495
496 /*
497  * RCU callback to free a kmemleak_object.
498  */
499 static void free_object_rcu(struct rcu_head *rcu)
500 {
501         struct hlist_node *tmp;
502         struct kmemleak_scan_area *area;
503         struct kmemleak_object *object =
504                 container_of(rcu, struct kmemleak_object, rcu);
505
506         /*
507          * Once use_count is 0 (guaranteed by put_object), there is no other
508          * code accessing this object, hence no need for locking.
509          */
510         hlist_for_each_entry_safe(area, tmp, &object->area_list, node) {
511                 hlist_del(&area->node);
512                 kmem_cache_free(scan_area_cache, area);
513         }
514         mem_pool_free(object);
515 }
516
517 /*
518  * Decrement the object use_count. Once the count is 0, free the object using
519  * an RCU callback. Since put_object() may be called via the kmemleak_free() ->
520  * delete_object() path, the delayed RCU freeing ensures that there is no
521  * recursive call to the kernel allocator. Lock-less RCU object_list traversal
522  * is also possible.
523  */
524 static void put_object(struct kmemleak_object *object)
525 {
526         if (!atomic_dec_and_test(&object->use_count))
527                 return;
528
529         /* should only get here after delete_object was called */
530         WARN_ON(object->flags & OBJECT_ALLOCATED);
531
532         /*
533          * It may be too early for the RCU callbacks, however, there is no
534          * concurrent object_list traversal when !object_cache and all objects
535          * came from the memory pool. Free the object directly.
536          */
537         if (object_cache)
538                 call_rcu(&object->rcu, free_object_rcu);
539         else
540                 free_object_rcu(&object->rcu);
541 }
542
543 /*
544  * Look up an object in the object search tree and increase its use_count.
545  */
546 static struct kmemleak_object *__find_and_get_object(unsigned long ptr, int alias,
547                                                      bool is_phys)
548 {
549         unsigned long flags;
550         struct kmemleak_object *object;
551
552         rcu_read_lock();
553         raw_spin_lock_irqsave(&kmemleak_lock, flags);
554         object = __lookup_object(ptr, alias, is_phys);
555         raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
556
557         /* check whether the object is still available */
558         if (object && !get_object(object))
559                 object = NULL;
560         rcu_read_unlock();
561
562         return object;
563 }
564
565 /* Look up and get an object which allocated with virtual address. */
566 static struct kmemleak_object *find_and_get_object(unsigned long ptr, int alias)
567 {
568         return __find_and_get_object(ptr, alias, false);
569 }
570
571 /*
572  * Remove an object from the object_tree_root (or object_phys_tree_root)
573  * and object_list. Must be called with the kmemleak_lock held _if_ kmemleak
574  * is still enabled.
575  */
576 static void __remove_object(struct kmemleak_object *object)
577 {
578         rb_erase(&object->rb_node, object->flags & OBJECT_PHYS ?
579                                    &object_phys_tree_root :
580                                    &object_tree_root);
581         if (!(object->del_state & DELSTATE_NO_DELETE))
582                 list_del_rcu(&object->object_list);
583         object->del_state |= DELSTATE_REMOVED;
584 }
585
586 static struct kmemleak_object *__find_and_remove_object(unsigned long ptr,
587                                                         int alias,
588                                                         bool is_phys)
589 {
590         struct kmemleak_object *object;
591
592         object = __lookup_object(ptr, alias, is_phys);
593         if (object)
594                 __remove_object(object);
595
596         return object;
597 }
598
599 /*
600  * Look up an object in the object search tree and remove it from both
601  * object_tree_root (or object_phys_tree_root) and object_list. The
602  * returned object's use_count should be at least 1, as initially set
603  * by create_object().
604  */
605 static struct kmemleak_object *find_and_remove_object(unsigned long ptr, int alias,
606                                                       bool is_phys)
607 {
608         unsigned long flags;
609         struct kmemleak_object *object;
610
611         raw_spin_lock_irqsave(&kmemleak_lock, flags);
612         object = __find_and_remove_object(ptr, alias, is_phys);
613         raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
614
615         return object;
616 }
617
618 static noinline depot_stack_handle_t set_track_prepare(void)
619 {
620         depot_stack_handle_t trace_handle;
621         unsigned long entries[MAX_TRACE];
622         unsigned int nr_entries;
623
624         /*
625          * Use object_cache to determine whether kmemleak_init() has
626          * been invoked. stack_depot_early_init() is called before
627          * kmemleak_init() in mm_core_init().
628          */
629         if (!object_cache)
630                 return 0;
631         nr_entries = stack_trace_save(entries, ARRAY_SIZE(entries), 3);
632         trace_handle = stack_depot_save(entries, nr_entries, GFP_NOWAIT);
633
634         return trace_handle;
635 }
636
637 static struct kmemleak_object *__alloc_object(gfp_t gfp)
638 {
639         struct kmemleak_object *object;
640
641         object = mem_pool_alloc(gfp);
642         if (!object) {
643                 pr_warn("Cannot allocate a kmemleak_object structure\n");
644                 kmemleak_disable();
645                 return NULL;
646         }
647
648         INIT_LIST_HEAD(&object->object_list);
649         INIT_LIST_HEAD(&object->gray_list);
650         INIT_HLIST_HEAD(&object->area_list);
651         raw_spin_lock_init(&object->lock);
652         atomic_set(&object->use_count, 1);
653         object->excess_ref = 0;
654         object->count = 0;                      /* white color initially */
655         object->checksum = 0;
656         object->del_state = 0;
657
658         /* task information */
659         if (in_hardirq()) {
660                 object->pid = 0;
661                 strncpy(object->comm, "hardirq", sizeof(object->comm));
662         } else if (in_serving_softirq()) {
663                 object->pid = 0;
664                 strncpy(object->comm, "softirq", sizeof(object->comm));
665         } else {
666                 object->pid = current->pid;
667                 /*
668                  * There is a small chance of a race with set_task_comm(),
669                  * however using get_task_comm() here may cause locking
670                  * dependency issues with current->alloc_lock. In the worst
671                  * case, the command line is not correct.
672                  */
673                 strncpy(object->comm, current->comm, sizeof(object->comm));
674         }
675
676         /* kernel backtrace */
677         object->trace_handle = set_track_prepare();
678
679         return object;
680 }
681
682 static int __link_object(struct kmemleak_object *object, unsigned long ptr,
683                          size_t size, int min_count, bool is_phys)
684 {
685
686         struct kmemleak_object *parent;
687         struct rb_node **link, *rb_parent;
688         unsigned long untagged_ptr;
689         unsigned long untagged_objp;
690
691         object->flags = OBJECT_ALLOCATED | (is_phys ? OBJECT_PHYS : 0);
692         object->pointer = ptr;
693         object->size = kfence_ksize((void *)ptr) ?: size;
694         object->min_count = min_count;
695         object->jiffies = jiffies;
696
697         untagged_ptr = (unsigned long)kasan_reset_tag((void *)ptr);
698         /*
699          * Only update min_addr and max_addr with object
700          * storing virtual address.
701          */
702         if (!is_phys) {
703                 min_addr = min(min_addr, untagged_ptr);
704                 max_addr = max(max_addr, untagged_ptr + size);
705         }
706         link = is_phys ? &object_phys_tree_root.rb_node :
707                 &object_tree_root.rb_node;
708         rb_parent = NULL;
709         while (*link) {
710                 rb_parent = *link;
711                 parent = rb_entry(rb_parent, struct kmemleak_object, rb_node);
712                 untagged_objp = (unsigned long)kasan_reset_tag((void *)parent->pointer);
713                 if (untagged_ptr + size <= untagged_objp)
714                         link = &parent->rb_node.rb_left;
715                 else if (untagged_objp + parent->size <= untagged_ptr)
716                         link = &parent->rb_node.rb_right;
717                 else {
718                         kmemleak_stop("Cannot insert 0x%lx into the object search tree (overlaps existing)\n",
719                                       ptr);
720                         /*
721                          * No need for parent->lock here since "parent" cannot
722                          * be freed while the kmemleak_lock is held.
723                          */
724                         dump_object_info(parent);
725                         return -EEXIST;
726                 }
727         }
728         rb_link_node(&object->rb_node, rb_parent, link);
729         rb_insert_color(&object->rb_node, is_phys ? &object_phys_tree_root :
730                                           &object_tree_root);
731         list_add_tail_rcu(&object->object_list, &object_list);
732
733         return 0;
734 }
735
736 /*
737  * Create the metadata (struct kmemleak_object) corresponding to an allocated
738  * memory block and add it to the object_list and object_tree_root (or
739  * object_phys_tree_root).
740  */
741 static void __create_object(unsigned long ptr, size_t size,
742                                 int min_count, gfp_t gfp, bool is_phys)
743 {
744         struct kmemleak_object *object;
745         unsigned long flags;
746         int ret;
747
748         object = __alloc_object(gfp);
749         if (!object)
750                 return;
751
752         raw_spin_lock_irqsave(&kmemleak_lock, flags);
753         ret = __link_object(object, ptr, size, min_count, is_phys);
754         raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
755         if (ret)
756                 mem_pool_free(object);
757 }
758
759 /* Create kmemleak object which allocated with virtual address. */
760 static void create_object(unsigned long ptr, size_t size,
761                           int min_count, gfp_t gfp)
762 {
763         __create_object(ptr, size, min_count, gfp, false);
764 }
765
766 /* Create kmemleak object which allocated with physical address. */
767 static void create_object_phys(unsigned long ptr, size_t size,
768                                int min_count, gfp_t gfp)
769 {
770         __create_object(ptr, size, min_count, gfp, true);
771 }
772
773 /*
774  * Mark the object as not allocated and schedule RCU freeing via put_object().
775  */
776 static void __delete_object(struct kmemleak_object *object)
777 {
778         unsigned long flags;
779
780         WARN_ON(!(object->flags & OBJECT_ALLOCATED));
781         WARN_ON(atomic_read(&object->use_count) < 1);
782
783         /*
784          * Locking here also ensures that the corresponding memory block
785          * cannot be freed when it is being scanned.
786          */
787         raw_spin_lock_irqsave(&object->lock, flags);
788         object->flags &= ~OBJECT_ALLOCATED;
789         raw_spin_unlock_irqrestore(&object->lock, flags);
790         put_object(object);
791 }
792
793 /*
794  * Look up the metadata (struct kmemleak_object) corresponding to ptr and
795  * delete it.
796  */
797 static void delete_object_full(unsigned long ptr)
798 {
799         struct kmemleak_object *object;
800
801         object = find_and_remove_object(ptr, 0, false);
802         if (!object) {
803 #ifdef DEBUG
804                 kmemleak_warn("Freeing unknown object at 0x%08lx\n",
805                               ptr);
806 #endif
807                 return;
808         }
809         __delete_object(object);
810 }
811
812 /*
813  * Look up the metadata (struct kmemleak_object) corresponding to ptr and
814  * delete it. If the memory block is partially freed, the function may create
815  * additional metadata for the remaining parts of the block.
816  */
817 static void delete_object_part(unsigned long ptr, size_t size, bool is_phys)
818 {
819         struct kmemleak_object *object;
820         unsigned long start, end;
821
822         object = find_and_remove_object(ptr, 1, is_phys);
823         if (!object) {
824 #ifdef DEBUG
825                 kmemleak_warn("Partially freeing unknown object at 0x%08lx (size %zu)\n",
826                               ptr, size);
827 #endif
828                 return;
829         }
830
831         /*
832          * Create one or two objects that may result from the memory block
833          * split. Note that partial freeing is only done by free_bootmem() and
834          * this happens before kmemleak_init() is called.
835          */
836         start = object->pointer;
837         end = object->pointer + object->size;
838         if (ptr > start)
839                 __create_object(start, ptr - start, object->min_count,
840                               GFP_KERNEL, is_phys);
841         if (ptr + size < end)
842                 __create_object(ptr + size, end - ptr - size, object->min_count,
843                               GFP_KERNEL, is_phys);
844
845         __delete_object(object);
846 }
847
848 static void __paint_it(struct kmemleak_object *object, int color)
849 {
850         object->min_count = color;
851         if (color == KMEMLEAK_BLACK)
852                 object->flags |= OBJECT_NO_SCAN;
853 }
854
855 static void paint_it(struct kmemleak_object *object, int color)
856 {
857         unsigned long flags;
858
859         raw_spin_lock_irqsave(&object->lock, flags);
860         __paint_it(object, color);
861         raw_spin_unlock_irqrestore(&object->lock, flags);
862 }
863
864 static void paint_ptr(unsigned long ptr, int color, bool is_phys)
865 {
866         struct kmemleak_object *object;
867
868         object = __find_and_get_object(ptr, 0, is_phys);
869         if (!object) {
870                 kmemleak_warn("Trying to color unknown object at 0x%08lx as %s\n",
871                               ptr,
872                               (color == KMEMLEAK_GREY) ? "Grey" :
873                               (color == KMEMLEAK_BLACK) ? "Black" : "Unknown");
874                 return;
875         }
876         paint_it(object, color);
877         put_object(object);
878 }
879
880 /*
881  * Mark an object permanently as gray-colored so that it can no longer be
882  * reported as a leak. This is used in general to mark a false positive.
883  */
884 static void make_gray_object(unsigned long ptr)
885 {
886         paint_ptr(ptr, KMEMLEAK_GREY, false);
887 }
888
889 /*
890  * Mark the object as black-colored so that it is ignored from scans and
891  * reporting.
892  */
893 static void make_black_object(unsigned long ptr, bool is_phys)
894 {
895         paint_ptr(ptr, KMEMLEAK_BLACK, is_phys);
896 }
897
898 /*
899  * Add a scanning area to the object. If at least one such area is added,
900  * kmemleak will only scan these ranges rather than the whole memory block.
901  */
902 static void add_scan_area(unsigned long ptr, size_t size, gfp_t gfp)
903 {
904         unsigned long flags;
905         struct kmemleak_object *object;
906         struct kmemleak_scan_area *area = NULL;
907         unsigned long untagged_ptr;
908         unsigned long untagged_objp;
909
910         object = find_and_get_object(ptr, 1);
911         if (!object) {
912                 kmemleak_warn("Adding scan area to unknown object at 0x%08lx\n",
913                               ptr);
914                 return;
915         }
916
917         untagged_ptr = (unsigned long)kasan_reset_tag((void *)ptr);
918         untagged_objp = (unsigned long)kasan_reset_tag((void *)object->pointer);
919
920         if (scan_area_cache)
921                 area = kmem_cache_alloc(scan_area_cache, gfp_kmemleak_mask(gfp));
922
923         raw_spin_lock_irqsave(&object->lock, flags);
924         if (!area) {
925                 pr_warn_once("Cannot allocate a scan area, scanning the full object\n");
926                 /* mark the object for full scan to avoid false positives */
927                 object->flags |= OBJECT_FULL_SCAN;
928                 goto out_unlock;
929         }
930         if (size == SIZE_MAX) {
931                 size = untagged_objp + object->size - untagged_ptr;
932         } else if (untagged_ptr + size > untagged_objp + object->size) {
933                 kmemleak_warn("Scan area larger than object 0x%08lx\n", ptr);
934                 dump_object_info(object);
935                 kmem_cache_free(scan_area_cache, area);
936                 goto out_unlock;
937         }
938
939         INIT_HLIST_NODE(&area->node);
940         area->start = ptr;
941         area->size = size;
942
943         hlist_add_head(&area->node, &object->area_list);
944 out_unlock:
945         raw_spin_unlock_irqrestore(&object->lock, flags);
946         put_object(object);
947 }
948
949 /*
950  * Any surplus references (object already gray) to 'ptr' are passed to
951  * 'excess_ref'. This is used in the vmalloc() case where a pointer to
952  * vm_struct may be used as an alternative reference to the vmalloc'ed object
953  * (see free_thread_stack()).
954  */
955 static void object_set_excess_ref(unsigned long ptr, unsigned long excess_ref)
956 {
957         unsigned long flags;
958         struct kmemleak_object *object;
959
960         object = find_and_get_object(ptr, 0);
961         if (!object) {
962                 kmemleak_warn("Setting excess_ref on unknown object at 0x%08lx\n",
963                               ptr);
964                 return;
965         }
966
967         raw_spin_lock_irqsave(&object->lock, flags);
968         object->excess_ref = excess_ref;
969         raw_spin_unlock_irqrestore(&object->lock, flags);
970         put_object(object);
971 }
972
973 /*
974  * Set the OBJECT_NO_SCAN flag for the object corresponding to the give
975  * pointer. Such object will not be scanned by kmemleak but references to it
976  * are searched.
977  */
978 static void object_no_scan(unsigned long ptr)
979 {
980         unsigned long flags;
981         struct kmemleak_object *object;
982
983         object = find_and_get_object(ptr, 0);
984         if (!object) {
985                 kmemleak_warn("Not scanning unknown object at 0x%08lx\n", ptr);
986                 return;
987         }
988
989         raw_spin_lock_irqsave(&object->lock, flags);
990         object->flags |= OBJECT_NO_SCAN;
991         raw_spin_unlock_irqrestore(&object->lock, flags);
992         put_object(object);
993 }
994
995 /**
996  * kmemleak_alloc - register a newly allocated object
997  * @ptr:        pointer to beginning of the object
998  * @size:       size of the object
999  * @min_count:  minimum number of references to this object. If during memory
1000  *              scanning a number of references less than @min_count is found,
1001  *              the object is reported as a memory leak. If @min_count is 0,
1002  *              the object is never reported as a leak. If @min_count is -1,
1003  *              the object is ignored (not scanned and not reported as a leak)
1004  * @gfp:        kmalloc() flags used for kmemleak internal memory allocations
1005  *
1006  * This function is called from the kernel allocators when a new object
1007  * (memory block) is allocated (kmem_cache_alloc, kmalloc etc.).
1008  */
1009 void __ref kmemleak_alloc(const void *ptr, size_t size, int min_count,
1010                           gfp_t gfp)
1011 {
1012         pr_debug("%s(0x%px, %zu, %d)\n", __func__, ptr, size, min_count);
1013
1014         if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1015                 create_object((unsigned long)ptr, size, min_count, gfp);
1016 }
1017 EXPORT_SYMBOL_GPL(kmemleak_alloc);
1018
1019 /**
1020  * kmemleak_alloc_percpu - register a newly allocated __percpu object
1021  * @ptr:        __percpu pointer to beginning of the object
1022  * @size:       size of the object
1023  * @gfp:        flags used for kmemleak internal memory allocations
1024  *
1025  * This function is called from the kernel percpu allocator when a new object
1026  * (memory block) is allocated (alloc_percpu).
1027  */
1028 void __ref kmemleak_alloc_percpu(const void __percpu *ptr, size_t size,
1029                                  gfp_t gfp)
1030 {
1031         unsigned int cpu;
1032
1033         pr_debug("%s(0x%px, %zu)\n", __func__, ptr, size);
1034
1035         /*
1036          * Percpu allocations are only scanned and not reported as leaks
1037          * (min_count is set to 0).
1038          */
1039         if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1040                 for_each_possible_cpu(cpu)
1041                         create_object((unsigned long)per_cpu_ptr(ptr, cpu),
1042                                       size, 0, gfp);
1043 }
1044 EXPORT_SYMBOL_GPL(kmemleak_alloc_percpu);
1045
1046 /**
1047  * kmemleak_vmalloc - register a newly vmalloc'ed object
1048  * @area:       pointer to vm_struct
1049  * @size:       size of the object
1050  * @gfp:        __vmalloc() flags used for kmemleak internal memory allocations
1051  *
1052  * This function is called from the vmalloc() kernel allocator when a new
1053  * object (memory block) is allocated.
1054  */
1055 void __ref kmemleak_vmalloc(const struct vm_struct *area, size_t size, gfp_t gfp)
1056 {
1057         pr_debug("%s(0x%px, %zu)\n", __func__, area, size);
1058
1059         /*
1060          * A min_count = 2 is needed because vm_struct contains a reference to
1061          * the virtual address of the vmalloc'ed block.
1062          */
1063         if (kmemleak_enabled) {
1064                 create_object((unsigned long)area->addr, size, 2, gfp);
1065                 object_set_excess_ref((unsigned long)area,
1066                                       (unsigned long)area->addr);
1067         }
1068 }
1069 EXPORT_SYMBOL_GPL(kmemleak_vmalloc);
1070
1071 /**
1072  * kmemleak_free - unregister a previously registered object
1073  * @ptr:        pointer to beginning of the object
1074  *
1075  * This function is called from the kernel allocators when an object (memory
1076  * block) is freed (kmem_cache_free, kfree, vfree etc.).
1077  */
1078 void __ref kmemleak_free(const void *ptr)
1079 {
1080         pr_debug("%s(0x%px)\n", __func__, ptr);
1081
1082         if (kmemleak_free_enabled && ptr && !IS_ERR(ptr))
1083                 delete_object_full((unsigned long)ptr);
1084 }
1085 EXPORT_SYMBOL_GPL(kmemleak_free);
1086
1087 /**
1088  * kmemleak_free_part - partially unregister a previously registered object
1089  * @ptr:        pointer to the beginning or inside the object. This also
1090  *              represents the start of the range to be freed
1091  * @size:       size to be unregistered
1092  *
1093  * This function is called when only a part of a memory block is freed
1094  * (usually from the bootmem allocator).
1095  */
1096 void __ref kmemleak_free_part(const void *ptr, size_t size)
1097 {
1098         pr_debug("%s(0x%px)\n", __func__, ptr);
1099
1100         if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1101                 delete_object_part((unsigned long)ptr, size, false);
1102 }
1103 EXPORT_SYMBOL_GPL(kmemleak_free_part);
1104
1105 /**
1106  * kmemleak_free_percpu - unregister a previously registered __percpu object
1107  * @ptr:        __percpu pointer to beginning of the object
1108  *
1109  * This function is called from the kernel percpu allocator when an object
1110  * (memory block) is freed (free_percpu).
1111  */
1112 void __ref kmemleak_free_percpu(const void __percpu *ptr)
1113 {
1114         unsigned int cpu;
1115
1116         pr_debug("%s(0x%px)\n", __func__, ptr);
1117
1118         if (kmemleak_free_enabled && ptr && !IS_ERR(ptr))
1119                 for_each_possible_cpu(cpu)
1120                         delete_object_full((unsigned long)per_cpu_ptr(ptr,
1121                                                                       cpu));
1122 }
1123 EXPORT_SYMBOL_GPL(kmemleak_free_percpu);
1124
1125 /**
1126  * kmemleak_update_trace - update object allocation stack trace
1127  * @ptr:        pointer to beginning of the object
1128  *
1129  * Override the object allocation stack trace for cases where the actual
1130  * allocation place is not always useful.
1131  */
1132 void __ref kmemleak_update_trace(const void *ptr)
1133 {
1134         struct kmemleak_object *object;
1135         unsigned long flags;
1136
1137         pr_debug("%s(0x%px)\n", __func__, ptr);
1138
1139         if (!kmemleak_enabled || IS_ERR_OR_NULL(ptr))
1140                 return;
1141
1142         object = find_and_get_object((unsigned long)ptr, 1);
1143         if (!object) {
1144 #ifdef DEBUG
1145                 kmemleak_warn("Updating stack trace for unknown object at %p\n",
1146                               ptr);
1147 #endif
1148                 return;
1149         }
1150
1151         raw_spin_lock_irqsave(&object->lock, flags);
1152         object->trace_handle = set_track_prepare();
1153         raw_spin_unlock_irqrestore(&object->lock, flags);
1154
1155         put_object(object);
1156 }
1157 EXPORT_SYMBOL(kmemleak_update_trace);
1158
1159 /**
1160  * kmemleak_not_leak - mark an allocated object as false positive
1161  * @ptr:        pointer to beginning of the object
1162  *
1163  * Calling this function on an object will cause the memory block to no longer
1164  * be reported as leak and always be scanned.
1165  */
1166 void __ref kmemleak_not_leak(const void *ptr)
1167 {
1168         pr_debug("%s(0x%px)\n", __func__, ptr);
1169
1170         if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1171                 make_gray_object((unsigned long)ptr);
1172 }
1173 EXPORT_SYMBOL(kmemleak_not_leak);
1174
1175 /**
1176  * kmemleak_ignore - ignore an allocated object
1177  * @ptr:        pointer to beginning of the object
1178  *
1179  * Calling this function on an object will cause the memory block to be
1180  * ignored (not scanned and not reported as a leak). This is usually done when
1181  * it is known that the corresponding block is not a leak and does not contain
1182  * any references to other allocated memory blocks.
1183  */
1184 void __ref kmemleak_ignore(const void *ptr)
1185 {
1186         pr_debug("%s(0x%px)\n", __func__, ptr);
1187
1188         if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1189                 make_black_object((unsigned long)ptr, false);
1190 }
1191 EXPORT_SYMBOL(kmemleak_ignore);
1192
1193 /**
1194  * kmemleak_scan_area - limit the range to be scanned in an allocated object
1195  * @ptr:        pointer to beginning or inside the object. This also
1196  *              represents the start of the scan area
1197  * @size:       size of the scan area
1198  * @gfp:        kmalloc() flags used for kmemleak internal memory allocations
1199  *
1200  * This function is used when it is known that only certain parts of an object
1201  * contain references to other objects. Kmemleak will only scan these areas
1202  * reducing the number false negatives.
1203  */
1204 void __ref kmemleak_scan_area(const void *ptr, size_t size, gfp_t gfp)
1205 {
1206         pr_debug("%s(0x%px)\n", __func__, ptr);
1207
1208         if (kmemleak_enabled && ptr && size && !IS_ERR(ptr))
1209                 add_scan_area((unsigned long)ptr, size, gfp);
1210 }
1211 EXPORT_SYMBOL(kmemleak_scan_area);
1212
1213 /**
1214  * kmemleak_no_scan - do not scan an allocated object
1215  * @ptr:        pointer to beginning of the object
1216  *
1217  * This function notifies kmemleak not to scan the given memory block. Useful
1218  * in situations where it is known that the given object does not contain any
1219  * references to other objects. Kmemleak will not scan such objects reducing
1220  * the number of false negatives.
1221  */
1222 void __ref kmemleak_no_scan(const void *ptr)
1223 {
1224         pr_debug("%s(0x%px)\n", __func__, ptr);
1225
1226         if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1227                 object_no_scan((unsigned long)ptr);
1228 }
1229 EXPORT_SYMBOL(kmemleak_no_scan);
1230
1231 /**
1232  * kmemleak_alloc_phys - similar to kmemleak_alloc but taking a physical
1233  *                       address argument
1234  * @phys:       physical address of the object
1235  * @size:       size of the object
1236  * @gfp:        kmalloc() flags used for kmemleak internal memory allocations
1237  */
1238 void __ref kmemleak_alloc_phys(phys_addr_t phys, size_t size, gfp_t gfp)
1239 {
1240         pr_debug("%s(0x%px, %zu)\n", __func__, &phys, size);
1241
1242         if (kmemleak_enabled)
1243                 /*
1244                  * Create object with OBJECT_PHYS flag and
1245                  * assume min_count 0.
1246                  */
1247                 create_object_phys((unsigned long)phys, size, 0, gfp);
1248 }
1249 EXPORT_SYMBOL(kmemleak_alloc_phys);
1250
1251 /**
1252  * kmemleak_free_part_phys - similar to kmemleak_free_part but taking a
1253  *                           physical address argument
1254  * @phys:       physical address if the beginning or inside an object. This
1255  *              also represents the start of the range to be freed
1256  * @size:       size to be unregistered
1257  */
1258 void __ref kmemleak_free_part_phys(phys_addr_t phys, size_t size)
1259 {
1260         pr_debug("%s(0x%px)\n", __func__, &phys);
1261
1262         if (kmemleak_enabled)
1263                 delete_object_part((unsigned long)phys, size, true);
1264 }
1265 EXPORT_SYMBOL(kmemleak_free_part_phys);
1266
1267 /**
1268  * kmemleak_ignore_phys - similar to kmemleak_ignore but taking a physical
1269  *                        address argument
1270  * @phys:       physical address of the object
1271  */
1272 void __ref kmemleak_ignore_phys(phys_addr_t phys)
1273 {
1274         pr_debug("%s(0x%px)\n", __func__, &phys);
1275
1276         if (kmemleak_enabled)
1277                 make_black_object((unsigned long)phys, true);
1278 }
1279 EXPORT_SYMBOL(kmemleak_ignore_phys);
1280
1281 /*
1282  * Update an object's checksum and return true if it was modified.
1283  */
1284 static bool update_checksum(struct kmemleak_object *object)
1285 {
1286         u32 old_csum = object->checksum;
1287
1288         if (WARN_ON_ONCE(object->flags & OBJECT_PHYS))
1289                 return false;
1290
1291         kasan_disable_current();
1292         kcsan_disable_current();
1293         object->checksum = crc32(0, kasan_reset_tag((void *)object->pointer), object->size);
1294         kasan_enable_current();
1295         kcsan_enable_current();
1296
1297         return object->checksum != old_csum;
1298 }
1299
1300 /*
1301  * Update an object's references. object->lock must be held by the caller.
1302  */
1303 static void update_refs(struct kmemleak_object *object)
1304 {
1305         if (!color_white(object)) {
1306                 /* non-orphan, ignored or new */
1307                 return;
1308         }
1309
1310         /*
1311          * Increase the object's reference count (number of pointers to the
1312          * memory block). If this count reaches the required minimum, the
1313          * object's color will become gray and it will be added to the
1314          * gray_list.
1315          */
1316         object->count++;
1317         if (color_gray(object)) {
1318                 /* put_object() called when removing from gray_list */
1319                 WARN_ON(!get_object(object));
1320                 list_add_tail(&object->gray_list, &gray_list);
1321         }
1322 }
1323
1324 /*
1325  * Memory scanning is a long process and it needs to be interruptible. This
1326  * function checks whether such interrupt condition occurred.
1327  */
1328 static int scan_should_stop(void)
1329 {
1330         if (!kmemleak_enabled)
1331                 return 1;
1332
1333         /*
1334          * This function may be called from either process or kthread context,
1335          * hence the need to check for both stop conditions.
1336          */
1337         if (current->mm)
1338                 return signal_pending(current);
1339         else
1340                 return kthread_should_stop();
1341
1342         return 0;
1343 }
1344
1345 /*
1346  * Scan a memory block (exclusive range) for valid pointers and add those
1347  * found to the gray list.
1348  */
1349 static void scan_block(void *_start, void *_end,
1350                        struct kmemleak_object *scanned)
1351 {
1352         unsigned long *ptr;
1353         unsigned long *start = PTR_ALIGN(_start, BYTES_PER_POINTER);
1354         unsigned long *end = _end - (BYTES_PER_POINTER - 1);
1355         unsigned long flags;
1356         unsigned long untagged_ptr;
1357
1358         raw_spin_lock_irqsave(&kmemleak_lock, flags);
1359         for (ptr = start; ptr < end; ptr++) {
1360                 struct kmemleak_object *object;
1361                 unsigned long pointer;
1362                 unsigned long excess_ref;
1363
1364                 if (scan_should_stop())
1365                         break;
1366
1367                 kasan_disable_current();
1368                 pointer = *(unsigned long *)kasan_reset_tag((void *)ptr);
1369                 kasan_enable_current();
1370
1371                 untagged_ptr = (unsigned long)kasan_reset_tag((void *)pointer);
1372                 if (untagged_ptr < min_addr || untagged_ptr >= max_addr)
1373                         continue;
1374
1375                 /*
1376                  * No need for get_object() here since we hold kmemleak_lock.
1377                  * object->use_count cannot be dropped to 0 while the object
1378                  * is still present in object_tree_root and object_list
1379                  * (with updates protected by kmemleak_lock).
1380                  */
1381                 object = lookup_object(pointer, 1);
1382                 if (!object)
1383                         continue;
1384                 if (object == scanned)
1385                         /* self referenced, ignore */
1386                         continue;
1387
1388                 /*
1389                  * Avoid the lockdep recursive warning on object->lock being
1390                  * previously acquired in scan_object(). These locks are
1391                  * enclosed by scan_mutex.
1392                  */
1393                 raw_spin_lock_nested(&object->lock, SINGLE_DEPTH_NESTING);
1394                 /* only pass surplus references (object already gray) */
1395                 if (color_gray(object)) {
1396                         excess_ref = object->excess_ref;
1397                         /* no need for update_refs() if object already gray */
1398                 } else {
1399                         excess_ref = 0;
1400                         update_refs(object);
1401                 }
1402                 raw_spin_unlock(&object->lock);
1403
1404                 if (excess_ref) {
1405                         object = lookup_object(excess_ref, 0);
1406                         if (!object)
1407                                 continue;
1408                         if (object == scanned)
1409                                 /* circular reference, ignore */
1410                                 continue;
1411                         raw_spin_lock_nested(&object->lock, SINGLE_DEPTH_NESTING);
1412                         update_refs(object);
1413                         raw_spin_unlock(&object->lock);
1414                 }
1415         }
1416         raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
1417 }
1418
1419 /*
1420  * Scan a large memory block in MAX_SCAN_SIZE chunks to reduce the latency.
1421  */
1422 #ifdef CONFIG_SMP
1423 static void scan_large_block(void *start, void *end)
1424 {
1425         void *next;
1426
1427         while (start < end) {
1428                 next = min(start + MAX_SCAN_SIZE, end);
1429                 scan_block(start, next, NULL);
1430                 start = next;
1431                 cond_resched();
1432         }
1433 }
1434 #endif
1435
1436 /*
1437  * Scan a memory block corresponding to a kmemleak_object. A condition is
1438  * that object->use_count >= 1.
1439  */
1440 static void scan_object(struct kmemleak_object *object)
1441 {
1442         struct kmemleak_scan_area *area;
1443         unsigned long flags;
1444         void *obj_ptr;
1445
1446         /*
1447          * Once the object->lock is acquired, the corresponding memory block
1448          * cannot be freed (the same lock is acquired in delete_object).
1449          */
1450         raw_spin_lock_irqsave(&object->lock, flags);
1451         if (object->flags & OBJECT_NO_SCAN)
1452                 goto out;
1453         if (!(object->flags & OBJECT_ALLOCATED))
1454                 /* already freed object */
1455                 goto out;
1456
1457         obj_ptr = object->flags & OBJECT_PHYS ?
1458                   __va((phys_addr_t)object->pointer) :
1459                   (void *)object->pointer;
1460
1461         if (hlist_empty(&object->area_list) ||
1462             object->flags & OBJECT_FULL_SCAN) {
1463                 void *start = obj_ptr;
1464                 void *end = obj_ptr + object->size;
1465                 void *next;
1466
1467                 do {
1468                         next = min(start + MAX_SCAN_SIZE, end);
1469                         scan_block(start, next, object);
1470
1471                         start = next;
1472                         if (start >= end)
1473                                 break;
1474
1475                         raw_spin_unlock_irqrestore(&object->lock, flags);
1476                         cond_resched();
1477                         raw_spin_lock_irqsave(&object->lock, flags);
1478                 } while (object->flags & OBJECT_ALLOCATED);
1479         } else
1480                 hlist_for_each_entry(area, &object->area_list, node)
1481                         scan_block((void *)area->start,
1482                                    (void *)(area->start + area->size),
1483                                    object);
1484 out:
1485         raw_spin_unlock_irqrestore(&object->lock, flags);
1486 }
1487
1488 /*
1489  * Scan the objects already referenced (gray objects). More objects will be
1490  * referenced and, if there are no memory leaks, all the objects are scanned.
1491  */
1492 static void scan_gray_list(void)
1493 {
1494         struct kmemleak_object *object, *tmp;
1495
1496         /*
1497          * The list traversal is safe for both tail additions and removals
1498          * from inside the loop. The kmemleak objects cannot be freed from
1499          * outside the loop because their use_count was incremented.
1500          */
1501         object = list_entry(gray_list.next, typeof(*object), gray_list);
1502         while (&object->gray_list != &gray_list) {
1503                 cond_resched();
1504
1505                 /* may add new objects to the list */
1506                 if (!scan_should_stop())
1507                         scan_object(object);
1508
1509                 tmp = list_entry(object->gray_list.next, typeof(*object),
1510                                  gray_list);
1511
1512                 /* remove the object from the list and release it */
1513                 list_del(&object->gray_list);
1514                 put_object(object);
1515
1516                 object = tmp;
1517         }
1518         WARN_ON(!list_empty(&gray_list));
1519 }
1520
1521 /*
1522  * Conditionally call resched() in an object iteration loop while making sure
1523  * that the given object won't go away without RCU read lock by performing a
1524  * get_object() if necessaary.
1525  */
1526 static void kmemleak_cond_resched(struct kmemleak_object *object)
1527 {
1528         if (!get_object(object))
1529                 return; /* Try next object */
1530
1531         raw_spin_lock_irq(&kmemleak_lock);
1532         if (object->del_state & DELSTATE_REMOVED)
1533                 goto unlock_put;        /* Object removed */
1534         object->del_state |= DELSTATE_NO_DELETE;
1535         raw_spin_unlock_irq(&kmemleak_lock);
1536
1537         rcu_read_unlock();
1538         cond_resched();
1539         rcu_read_lock();
1540
1541         raw_spin_lock_irq(&kmemleak_lock);
1542         if (object->del_state & DELSTATE_REMOVED)
1543                 list_del_rcu(&object->object_list);
1544         object->del_state &= ~DELSTATE_NO_DELETE;
1545 unlock_put:
1546         raw_spin_unlock_irq(&kmemleak_lock);
1547         put_object(object);
1548 }
1549
1550 /*
1551  * Scan data sections and all the referenced memory blocks allocated via the
1552  * kernel's standard allocators. This function must be called with the
1553  * scan_mutex held.
1554  */
1555 static void kmemleak_scan(void)
1556 {
1557         struct kmemleak_object *object;
1558         struct zone *zone;
1559         int __maybe_unused i;
1560         int new_leaks = 0;
1561
1562         jiffies_last_scan = jiffies;
1563
1564         /* prepare the kmemleak_object's */
1565         rcu_read_lock();
1566         list_for_each_entry_rcu(object, &object_list, object_list) {
1567                 raw_spin_lock_irq(&object->lock);
1568 #ifdef DEBUG
1569                 /*
1570                  * With a few exceptions there should be a maximum of
1571                  * 1 reference to any object at this point.
1572                  */
1573                 if (atomic_read(&object->use_count) > 1) {
1574                         pr_debug("object->use_count = %d\n",
1575                                  atomic_read(&object->use_count));
1576                         dump_object_info(object);
1577                 }
1578 #endif
1579
1580                 /* ignore objects outside lowmem (paint them black) */
1581                 if ((object->flags & OBJECT_PHYS) &&
1582                    !(object->flags & OBJECT_NO_SCAN)) {
1583                         unsigned long phys = object->pointer;
1584
1585                         if (PHYS_PFN(phys) < min_low_pfn ||
1586                             PHYS_PFN(phys + object->size) >= max_low_pfn)
1587                                 __paint_it(object, KMEMLEAK_BLACK);
1588                 }
1589
1590                 /* reset the reference count (whiten the object) */
1591                 object->count = 0;
1592                 if (color_gray(object) && get_object(object))
1593                         list_add_tail(&object->gray_list, &gray_list);
1594
1595                 raw_spin_unlock_irq(&object->lock);
1596
1597                 if (need_resched())
1598                         kmemleak_cond_resched(object);
1599         }
1600         rcu_read_unlock();
1601
1602 #ifdef CONFIG_SMP
1603         /* per-cpu sections scanning */
1604         for_each_possible_cpu(i)
1605                 scan_large_block(__per_cpu_start + per_cpu_offset(i),
1606                                  __per_cpu_end + per_cpu_offset(i));
1607 #endif
1608
1609         /*
1610          * Struct page scanning for each node.
1611          */
1612         get_online_mems();
1613         for_each_populated_zone(zone) {
1614                 unsigned long start_pfn = zone->zone_start_pfn;
1615                 unsigned long end_pfn = zone_end_pfn(zone);
1616                 unsigned long pfn;
1617
1618                 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
1619                         struct page *page = pfn_to_online_page(pfn);
1620
1621                         if (!(pfn & 63))
1622                                 cond_resched();
1623
1624                         if (!page)
1625                                 continue;
1626
1627                         /* only scan pages belonging to this zone */
1628                         if (page_zone(page) != zone)
1629                                 continue;
1630                         /* only scan if page is in use */
1631                         if (page_count(page) == 0)
1632                                 continue;
1633                         scan_block(page, page + 1, NULL);
1634                 }
1635         }
1636         put_online_mems();
1637
1638         /*
1639          * Scanning the task stacks (may introduce false negatives).
1640          */
1641         if (kmemleak_stack_scan) {
1642                 struct task_struct *p, *g;
1643
1644                 rcu_read_lock();
1645                 for_each_process_thread(g, p) {
1646                         void *stack = try_get_task_stack(p);
1647                         if (stack) {
1648                                 scan_block(stack, stack + THREAD_SIZE, NULL);
1649                                 put_task_stack(p);
1650                         }
1651                 }
1652                 rcu_read_unlock();
1653         }
1654
1655         /*
1656          * Scan the objects already referenced from the sections scanned
1657          * above.
1658          */
1659         scan_gray_list();
1660
1661         /*
1662          * Check for new or unreferenced objects modified since the previous
1663          * scan and color them gray until the next scan.
1664          */
1665         rcu_read_lock();
1666         list_for_each_entry_rcu(object, &object_list, object_list) {
1667                 if (need_resched())
1668                         kmemleak_cond_resched(object);
1669
1670                 /*
1671                  * This is racy but we can save the overhead of lock/unlock
1672                  * calls. The missed objects, if any, should be caught in
1673                  * the next scan.
1674                  */
1675                 if (!color_white(object))
1676                         continue;
1677                 raw_spin_lock_irq(&object->lock);
1678                 if (color_white(object) && (object->flags & OBJECT_ALLOCATED)
1679                     && update_checksum(object) && get_object(object)) {
1680                         /* color it gray temporarily */
1681                         object->count = object->min_count;
1682                         list_add_tail(&object->gray_list, &gray_list);
1683                 }
1684                 raw_spin_unlock_irq(&object->lock);
1685         }
1686         rcu_read_unlock();
1687
1688         /*
1689          * Re-scan the gray list for modified unreferenced objects.
1690          */
1691         scan_gray_list();
1692
1693         /*
1694          * If scanning was stopped do not report any new unreferenced objects.
1695          */
1696         if (scan_should_stop())
1697                 return;
1698
1699         /*
1700          * Scanning result reporting.
1701          */
1702         rcu_read_lock();
1703         list_for_each_entry_rcu(object, &object_list, object_list) {
1704                 if (need_resched())
1705                         kmemleak_cond_resched(object);
1706
1707                 /*
1708                  * This is racy but we can save the overhead of lock/unlock
1709                  * calls. The missed objects, if any, should be caught in
1710                  * the next scan.
1711                  */
1712                 if (!color_white(object))
1713                         continue;
1714                 raw_spin_lock_irq(&object->lock);
1715                 if (unreferenced_object(object) &&
1716                     !(object->flags & OBJECT_REPORTED)) {
1717                         object->flags |= OBJECT_REPORTED;
1718
1719                         if (kmemleak_verbose)
1720                                 print_unreferenced(NULL, object);
1721
1722                         new_leaks++;
1723                 }
1724                 raw_spin_unlock_irq(&object->lock);
1725         }
1726         rcu_read_unlock();
1727
1728         if (new_leaks) {
1729                 kmemleak_found_leaks = true;
1730
1731                 pr_info("%d new suspected memory leaks (see /sys/kernel/debug/kmemleak)\n",
1732                         new_leaks);
1733         }
1734
1735 }
1736
1737 /*
1738  * Thread function performing automatic memory scanning. Unreferenced objects
1739  * at the end of a memory scan are reported but only the first time.
1740  */
1741 static int kmemleak_scan_thread(void *arg)
1742 {
1743         static int first_run = IS_ENABLED(CONFIG_DEBUG_KMEMLEAK_AUTO_SCAN);
1744
1745         pr_info("Automatic memory scanning thread started\n");
1746         set_user_nice(current, 10);
1747
1748         /*
1749          * Wait before the first scan to allow the system to fully initialize.
1750          */
1751         if (first_run) {
1752                 signed long timeout = msecs_to_jiffies(SECS_FIRST_SCAN * 1000);
1753                 first_run = 0;
1754                 while (timeout && !kthread_should_stop())
1755                         timeout = schedule_timeout_interruptible(timeout);
1756         }
1757
1758         while (!kthread_should_stop()) {
1759                 signed long timeout = READ_ONCE(jiffies_scan_wait);
1760
1761                 mutex_lock(&scan_mutex);
1762                 kmemleak_scan();
1763                 mutex_unlock(&scan_mutex);
1764
1765                 /* wait before the next scan */
1766                 while (timeout && !kthread_should_stop())
1767                         timeout = schedule_timeout_interruptible(timeout);
1768         }
1769
1770         pr_info("Automatic memory scanning thread ended\n");
1771
1772         return 0;
1773 }
1774
1775 /*
1776  * Start the automatic memory scanning thread. This function must be called
1777  * with the scan_mutex held.
1778  */
1779 static void start_scan_thread(void)
1780 {
1781         if (scan_thread)
1782                 return;
1783         scan_thread = kthread_run(kmemleak_scan_thread, NULL, "kmemleak");
1784         if (IS_ERR(scan_thread)) {
1785                 pr_warn("Failed to create the scan thread\n");
1786                 scan_thread = NULL;
1787         }
1788 }
1789
1790 /*
1791  * Stop the automatic memory scanning thread.
1792  */
1793 static void stop_scan_thread(void)
1794 {
1795         if (scan_thread) {
1796                 kthread_stop(scan_thread);
1797                 scan_thread = NULL;
1798         }
1799 }
1800
1801 /*
1802  * Iterate over the object_list and return the first valid object at or after
1803  * the required position with its use_count incremented. The function triggers
1804  * a memory scanning when the pos argument points to the first position.
1805  */
1806 static void *kmemleak_seq_start(struct seq_file *seq, loff_t *pos)
1807 {
1808         struct kmemleak_object *object;
1809         loff_t n = *pos;
1810         int err;
1811
1812         err = mutex_lock_interruptible(&scan_mutex);
1813         if (err < 0)
1814                 return ERR_PTR(err);
1815
1816         rcu_read_lock();
1817         list_for_each_entry_rcu(object, &object_list, object_list) {
1818                 if (n-- > 0)
1819                         continue;
1820                 if (get_object(object))
1821                         goto out;
1822         }
1823         object = NULL;
1824 out:
1825         return object;
1826 }
1827
1828 /*
1829  * Return the next object in the object_list. The function decrements the
1830  * use_count of the previous object and increases that of the next one.
1831  */
1832 static void *kmemleak_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1833 {
1834         struct kmemleak_object *prev_obj = v;
1835         struct kmemleak_object *next_obj = NULL;
1836         struct kmemleak_object *obj = prev_obj;
1837
1838         ++(*pos);
1839
1840         list_for_each_entry_continue_rcu(obj, &object_list, object_list) {
1841                 if (get_object(obj)) {
1842                         next_obj = obj;
1843                         break;
1844                 }
1845         }
1846
1847         put_object(prev_obj);
1848         return next_obj;
1849 }
1850
1851 /*
1852  * Decrement the use_count of the last object required, if any.
1853  */
1854 static void kmemleak_seq_stop(struct seq_file *seq, void *v)
1855 {
1856         if (!IS_ERR(v)) {
1857                 /*
1858                  * kmemleak_seq_start may return ERR_PTR if the scan_mutex
1859                  * waiting was interrupted, so only release it if !IS_ERR.
1860                  */
1861                 rcu_read_unlock();
1862                 mutex_unlock(&scan_mutex);
1863                 if (v)
1864                         put_object(v);
1865         }
1866 }
1867
1868 /*
1869  * Print the information for an unreferenced object to the seq file.
1870  */
1871 static int kmemleak_seq_show(struct seq_file *seq, void *v)
1872 {
1873         struct kmemleak_object *object = v;
1874         unsigned long flags;
1875
1876         raw_spin_lock_irqsave(&object->lock, flags);
1877         if ((object->flags & OBJECT_REPORTED) && unreferenced_object(object))
1878                 print_unreferenced(seq, object);
1879         raw_spin_unlock_irqrestore(&object->lock, flags);
1880         return 0;
1881 }
1882
1883 static const struct seq_operations kmemleak_seq_ops = {
1884         .start = kmemleak_seq_start,
1885         .next  = kmemleak_seq_next,
1886         .stop  = kmemleak_seq_stop,
1887         .show  = kmemleak_seq_show,
1888 };
1889
1890 static int kmemleak_open(struct inode *inode, struct file *file)
1891 {
1892         return seq_open(file, &kmemleak_seq_ops);
1893 }
1894
1895 static int dump_str_object_info(const char *str)
1896 {
1897         unsigned long flags;
1898         struct kmemleak_object *object;
1899         unsigned long addr;
1900
1901         if (kstrtoul(str, 0, &addr))
1902                 return -EINVAL;
1903         object = find_and_get_object(addr, 0);
1904         if (!object) {
1905                 pr_info("Unknown object at 0x%08lx\n", addr);
1906                 return -EINVAL;
1907         }
1908
1909         raw_spin_lock_irqsave(&object->lock, flags);
1910         dump_object_info(object);
1911         raw_spin_unlock_irqrestore(&object->lock, flags);
1912
1913         put_object(object);
1914         return 0;
1915 }
1916
1917 /*
1918  * We use grey instead of black to ensure we can do future scans on the same
1919  * objects. If we did not do future scans these black objects could
1920  * potentially contain references to newly allocated objects in the future and
1921  * we'd end up with false positives.
1922  */
1923 static void kmemleak_clear(void)
1924 {
1925         struct kmemleak_object *object;
1926
1927         rcu_read_lock();
1928         list_for_each_entry_rcu(object, &object_list, object_list) {
1929                 raw_spin_lock_irq(&object->lock);
1930                 if ((object->flags & OBJECT_REPORTED) &&
1931                     unreferenced_object(object))
1932                         __paint_it(object, KMEMLEAK_GREY);
1933                 raw_spin_unlock_irq(&object->lock);
1934         }
1935         rcu_read_unlock();
1936
1937         kmemleak_found_leaks = false;
1938 }
1939
1940 static void __kmemleak_do_cleanup(void);
1941
1942 /*
1943  * File write operation to configure kmemleak at run-time. The following
1944  * commands can be written to the /sys/kernel/debug/kmemleak file:
1945  *   off        - disable kmemleak (irreversible)
1946  *   stack=on   - enable the task stacks scanning
1947  *   stack=off  - disable the tasks stacks scanning
1948  *   scan=on    - start the automatic memory scanning thread
1949  *   scan=off   - stop the automatic memory scanning thread
1950  *   scan=...   - set the automatic memory scanning period in seconds (0 to
1951  *                disable it)
1952  *   scan       - trigger a memory scan
1953  *   clear      - mark all current reported unreferenced kmemleak objects as
1954  *                grey to ignore printing them, or free all kmemleak objects
1955  *                if kmemleak has been disabled.
1956  *   dump=...   - dump information about the object found at the given address
1957  */
1958 static ssize_t kmemleak_write(struct file *file, const char __user *user_buf,
1959                               size_t size, loff_t *ppos)
1960 {
1961         char buf[64];
1962         int buf_size;
1963         int ret;
1964
1965         buf_size = min(size, (sizeof(buf) - 1));
1966         if (strncpy_from_user(buf, user_buf, buf_size) < 0)
1967                 return -EFAULT;
1968         buf[buf_size] = 0;
1969
1970         ret = mutex_lock_interruptible(&scan_mutex);
1971         if (ret < 0)
1972                 return ret;
1973
1974         if (strncmp(buf, "clear", 5) == 0) {
1975                 if (kmemleak_enabled)
1976                         kmemleak_clear();
1977                 else
1978                         __kmemleak_do_cleanup();
1979                 goto out;
1980         }
1981
1982         if (!kmemleak_enabled) {
1983                 ret = -EPERM;
1984                 goto out;
1985         }
1986
1987         if (strncmp(buf, "off", 3) == 0)
1988                 kmemleak_disable();
1989         else if (strncmp(buf, "stack=on", 8) == 0)
1990                 kmemleak_stack_scan = 1;
1991         else if (strncmp(buf, "stack=off", 9) == 0)
1992                 kmemleak_stack_scan = 0;
1993         else if (strncmp(buf, "scan=on", 7) == 0)
1994                 start_scan_thread();
1995         else if (strncmp(buf, "scan=off", 8) == 0)
1996                 stop_scan_thread();
1997         else if (strncmp(buf, "scan=", 5) == 0) {
1998                 unsigned secs;
1999                 unsigned long msecs;
2000
2001                 ret = kstrtouint(buf + 5, 0, &secs);
2002                 if (ret < 0)
2003                         goto out;
2004
2005                 msecs = secs * MSEC_PER_SEC;
2006                 if (msecs > UINT_MAX)
2007                         msecs = UINT_MAX;
2008
2009                 stop_scan_thread();
2010                 if (msecs) {
2011                         WRITE_ONCE(jiffies_scan_wait, msecs_to_jiffies(msecs));
2012                         start_scan_thread();
2013                 }
2014         } else if (strncmp(buf, "scan", 4) == 0)
2015                 kmemleak_scan();
2016         else if (strncmp(buf, "dump=", 5) == 0)
2017                 ret = dump_str_object_info(buf + 5);
2018         else
2019                 ret = -EINVAL;
2020
2021 out:
2022         mutex_unlock(&scan_mutex);
2023         if (ret < 0)
2024                 return ret;
2025
2026         /* ignore the rest of the buffer, only one command at a time */
2027         *ppos += size;
2028         return size;
2029 }
2030
2031 static const struct file_operations kmemleak_fops = {
2032         .owner          = THIS_MODULE,
2033         .open           = kmemleak_open,
2034         .read           = seq_read,
2035         .write          = kmemleak_write,
2036         .llseek         = seq_lseek,
2037         .release        = seq_release,
2038 };
2039
2040 static void __kmemleak_do_cleanup(void)
2041 {
2042         struct kmemleak_object *object, *tmp;
2043
2044         /*
2045          * Kmemleak has already been disabled, no need for RCU list traversal
2046          * or kmemleak_lock held.
2047          */
2048         list_for_each_entry_safe(object, tmp, &object_list, object_list) {
2049                 __remove_object(object);
2050                 __delete_object(object);
2051         }
2052 }
2053
2054 /*
2055  * Stop the memory scanning thread and free the kmemleak internal objects if
2056  * no previous scan thread (otherwise, kmemleak may still have some useful
2057  * information on memory leaks).
2058  */
2059 static void kmemleak_do_cleanup(struct work_struct *work)
2060 {
2061         stop_scan_thread();
2062
2063         mutex_lock(&scan_mutex);
2064         /*
2065          * Once it is made sure that kmemleak_scan has stopped, it is safe to no
2066          * longer track object freeing. Ordering of the scan thread stopping and
2067          * the memory accesses below is guaranteed by the kthread_stop()
2068          * function.
2069          */
2070         kmemleak_free_enabled = 0;
2071         mutex_unlock(&scan_mutex);
2072
2073         if (!kmemleak_found_leaks)
2074                 __kmemleak_do_cleanup();
2075         else
2076                 pr_info("Kmemleak disabled without freeing internal data. Reclaim the memory with \"echo clear > /sys/kernel/debug/kmemleak\".\n");
2077 }
2078
2079 static DECLARE_WORK(cleanup_work, kmemleak_do_cleanup);
2080
2081 /*
2082  * Disable kmemleak. No memory allocation/freeing will be traced once this
2083  * function is called. Disabling kmemleak is an irreversible operation.
2084  */
2085 static void kmemleak_disable(void)
2086 {
2087         /* atomically check whether it was already invoked */
2088         if (cmpxchg(&kmemleak_error, 0, 1))
2089                 return;
2090
2091         /* stop any memory operation tracing */
2092         kmemleak_enabled = 0;
2093
2094         /* check whether it is too early for a kernel thread */
2095         if (kmemleak_late_initialized)
2096                 schedule_work(&cleanup_work);
2097         else
2098                 kmemleak_free_enabled = 0;
2099
2100         pr_info("Kernel memory leak detector disabled\n");
2101 }
2102
2103 /*
2104  * Allow boot-time kmemleak disabling (enabled by default).
2105  */
2106 static int __init kmemleak_boot_config(char *str)
2107 {
2108         if (!str)
2109                 return -EINVAL;
2110         if (strcmp(str, "off") == 0)
2111                 kmemleak_disable();
2112         else if (strcmp(str, "on") == 0) {
2113                 kmemleak_skip_disable = 1;
2114                 stack_depot_request_early_init();
2115         }
2116         else
2117                 return -EINVAL;
2118         return 0;
2119 }
2120 early_param("kmemleak", kmemleak_boot_config);
2121
2122 /*
2123  * Kmemleak initialization.
2124  */
2125 void __init kmemleak_init(void)
2126 {
2127 #ifdef CONFIG_DEBUG_KMEMLEAK_DEFAULT_OFF
2128         if (!kmemleak_skip_disable) {
2129                 kmemleak_disable();
2130                 return;
2131         }
2132 #endif
2133
2134         if (kmemleak_error)
2135                 return;
2136
2137         jiffies_min_age = msecs_to_jiffies(MSECS_MIN_AGE);
2138         jiffies_scan_wait = msecs_to_jiffies(SECS_SCAN_WAIT * 1000);
2139
2140         object_cache = KMEM_CACHE(kmemleak_object, SLAB_NOLEAKTRACE);
2141         scan_area_cache = KMEM_CACHE(kmemleak_scan_area, SLAB_NOLEAKTRACE);
2142
2143         /* register the data/bss sections */
2144         create_object((unsigned long)_sdata, _edata - _sdata,
2145                       KMEMLEAK_GREY, GFP_ATOMIC);
2146         create_object((unsigned long)__bss_start, __bss_stop - __bss_start,
2147                       KMEMLEAK_GREY, GFP_ATOMIC);
2148         /* only register .data..ro_after_init if not within .data */
2149         if (&__start_ro_after_init < &_sdata || &__end_ro_after_init > &_edata)
2150                 create_object((unsigned long)__start_ro_after_init,
2151                               __end_ro_after_init - __start_ro_after_init,
2152                               KMEMLEAK_GREY, GFP_ATOMIC);
2153 }
2154
2155 /*
2156  * Late initialization function.
2157  */
2158 static int __init kmemleak_late_init(void)
2159 {
2160         kmemleak_late_initialized = 1;
2161
2162         debugfs_create_file("kmemleak", 0644, NULL, NULL, &kmemleak_fops);
2163
2164         if (kmemleak_error) {
2165                 /*
2166                  * Some error occurred and kmemleak was disabled. There is a
2167                  * small chance that kmemleak_disable() was called immediately
2168                  * after setting kmemleak_late_initialized and we may end up with
2169                  * two clean-up threads but serialized by scan_mutex.
2170                  */
2171                 schedule_work(&cleanup_work);
2172                 return -ENOMEM;
2173         }
2174
2175         if (IS_ENABLED(CONFIG_DEBUG_KMEMLEAK_AUTO_SCAN)) {
2176                 mutex_lock(&scan_mutex);
2177                 start_scan_thread();
2178                 mutex_unlock(&scan_mutex);
2179         }
2180
2181         pr_info("Kernel memory leak detector initialized (mem pool available: %d)\n",
2182                 mem_pool_free_count);
2183
2184         return 0;
2185 }
2186 late_initcall(kmemleak_late_init);