Merge tag 'mips_6.7' of git://git.kernel.org/pub/scm/linux/kernel/git/mips/linux
[linux-2.6-microblaze.git] / mm / kmemleak.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * mm/kmemleak.c
4  *
5  * Copyright (C) 2008 ARM Limited
6  * Written by Catalin Marinas <catalin.marinas@arm.com>
7  *
8  * For more information on the algorithm and kmemleak usage, please see
9  * Documentation/dev-tools/kmemleak.rst.
10  *
11  * Notes on locking
12  * ----------------
13  *
14  * The following locks and mutexes are used by kmemleak:
15  *
16  * - kmemleak_lock (raw_spinlock_t): protects the object_list as well as
17  *   del_state modifications and accesses to the object_tree_root (or
18  *   object_phys_tree_root). The object_list is the main list holding the
19  *   metadata (struct kmemleak_object) for the allocated memory blocks.
20  *   The object_tree_root and object_phys_tree_root are red
21  *   black trees used to look-up metadata based on a pointer to the
22  *   corresponding memory block. The object_phys_tree_root is for objects
23  *   allocated with physical address. The kmemleak_object structures are
24  *   added to the object_list and object_tree_root (or object_phys_tree_root)
25  *   in the create_object() function called from the kmemleak_alloc() (or
26  *   kmemleak_alloc_phys()) callback and removed in delete_object() called from
27  *   the kmemleak_free() callback
28  * - kmemleak_object.lock (raw_spinlock_t): protects a kmemleak_object.
29  *   Accesses to the metadata (e.g. count) are protected by this lock. Note
30  *   that some members of this structure may be protected by other means
31  *   (atomic or kmemleak_lock). This lock is also held when scanning the
32  *   corresponding memory block to avoid the kernel freeing it via the
33  *   kmemleak_free() callback. This is less heavyweight than holding a global
34  *   lock like kmemleak_lock during scanning.
35  * - scan_mutex (mutex): ensures that only one thread may scan the memory for
36  *   unreferenced objects at a time. The gray_list contains the objects which
37  *   are already referenced or marked as false positives and need to be
38  *   scanned. This list is only modified during a scanning episode when the
39  *   scan_mutex is held. At the end of a scan, the gray_list is always empty.
40  *   Note that the kmemleak_object.use_count is incremented when an object is
41  *   added to the gray_list and therefore cannot be freed. This mutex also
42  *   prevents multiple users of the "kmemleak" debugfs file together with
43  *   modifications to the memory scanning parameters including the scan_thread
44  *   pointer
45  *
46  * Locks and mutexes are acquired/nested in the following order:
47  *
48  *   scan_mutex [-> object->lock] -> kmemleak_lock -> other_object->lock (SINGLE_DEPTH_NESTING)
49  *
50  * No kmemleak_lock and object->lock nesting is allowed outside scan_mutex
51  * regions.
52  *
53  * The kmemleak_object structures have a use_count incremented or decremented
54  * using the get_object()/put_object() functions. When the use_count becomes
55  * 0, this count can no longer be incremented and put_object() schedules the
56  * kmemleak_object freeing via an RCU callback. All calls to the get_object()
57  * function must be protected by rcu_read_lock() to avoid accessing a freed
58  * structure.
59  */
60
61 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
62
63 #include <linux/init.h>
64 #include <linux/kernel.h>
65 #include <linux/list.h>
66 #include <linux/sched/signal.h>
67 #include <linux/sched/task.h>
68 #include <linux/sched/task_stack.h>
69 #include <linux/jiffies.h>
70 #include <linux/delay.h>
71 #include <linux/export.h>
72 #include <linux/kthread.h>
73 #include <linux/rbtree.h>
74 #include <linux/fs.h>
75 #include <linux/debugfs.h>
76 #include <linux/seq_file.h>
77 #include <linux/cpumask.h>
78 #include <linux/spinlock.h>
79 #include <linux/module.h>
80 #include <linux/mutex.h>
81 #include <linux/rcupdate.h>
82 #include <linux/stacktrace.h>
83 #include <linux/stackdepot.h>
84 #include <linux/cache.h>
85 #include <linux/percpu.h>
86 #include <linux/memblock.h>
87 #include <linux/pfn.h>
88 #include <linux/mmzone.h>
89 #include <linux/slab.h>
90 #include <linux/thread_info.h>
91 #include <linux/err.h>
92 #include <linux/uaccess.h>
93 #include <linux/string.h>
94 #include <linux/nodemask.h>
95 #include <linux/mm.h>
96 #include <linux/workqueue.h>
97 #include <linux/crc32.h>
98
99 #include <asm/sections.h>
100 #include <asm/processor.h>
101 #include <linux/atomic.h>
102
103 #include <linux/kasan.h>
104 #include <linux/kfence.h>
105 #include <linux/kmemleak.h>
106 #include <linux/memory_hotplug.h>
107
108 /*
109  * Kmemleak configuration and common defines.
110  */
111 #define MAX_TRACE               16      /* stack trace length */
112 #define MSECS_MIN_AGE           5000    /* minimum object age for reporting */
113 #define SECS_FIRST_SCAN         60      /* delay before the first scan */
114 #define SECS_SCAN_WAIT          600     /* subsequent auto scanning delay */
115 #define MAX_SCAN_SIZE           4096    /* maximum size of a scanned block */
116
117 #define BYTES_PER_POINTER       sizeof(void *)
118
119 /* GFP bitmask for kmemleak internal allocations */
120 #define gfp_kmemleak_mask(gfp)  (((gfp) & (GFP_KERNEL | GFP_ATOMIC | \
121                                            __GFP_NOLOCKDEP)) | \
122                                  __GFP_NORETRY | __GFP_NOMEMALLOC | \
123                                  __GFP_NOWARN)
124
125 /* scanning area inside a memory block */
126 struct kmemleak_scan_area {
127         struct hlist_node node;
128         unsigned long start;
129         size_t size;
130 };
131
132 #define KMEMLEAK_GREY   0
133 #define KMEMLEAK_BLACK  -1
134
135 /*
136  * Structure holding the metadata for each allocated memory block.
137  * Modifications to such objects should be made while holding the
138  * object->lock. Insertions or deletions from object_list, gray_list or
139  * rb_node are already protected by the corresponding locks or mutex (see
140  * the notes on locking above). These objects are reference-counted
141  * (use_count) and freed using the RCU mechanism.
142  */
143 struct kmemleak_object {
144         raw_spinlock_t lock;
145         unsigned int flags;             /* object status flags */
146         struct list_head object_list;
147         struct list_head gray_list;
148         struct rb_node rb_node;
149         struct rcu_head rcu;            /* object_list lockless traversal */
150         /* object usage count; object freed when use_count == 0 */
151         atomic_t use_count;
152         unsigned int del_state;         /* deletion state */
153         unsigned long pointer;
154         size_t size;
155         /* pass surplus references to this pointer */
156         unsigned long excess_ref;
157         /* minimum number of a pointers found before it is considered leak */
158         int min_count;
159         /* the total number of pointers found pointing to this object */
160         int count;
161         /* checksum for detecting modified objects */
162         u32 checksum;
163         /* memory ranges to be scanned inside an object (empty for all) */
164         struct hlist_head area_list;
165         depot_stack_handle_t trace_handle;
166         unsigned long jiffies;          /* creation timestamp */
167         pid_t pid;                      /* pid of the current task */
168         char comm[TASK_COMM_LEN];       /* executable name */
169 };
170
171 /* flag representing the memory block allocation status */
172 #define OBJECT_ALLOCATED        (1 << 0)
173 /* flag set after the first reporting of an unreference object */
174 #define OBJECT_REPORTED         (1 << 1)
175 /* flag set to not scan the object */
176 #define OBJECT_NO_SCAN          (1 << 2)
177 /* flag set to fully scan the object when scan_area allocation failed */
178 #define OBJECT_FULL_SCAN        (1 << 3)
179 /* flag set for object allocated with physical address */
180 #define OBJECT_PHYS             (1 << 4)
181
182 /* set when __remove_object() called */
183 #define DELSTATE_REMOVED        (1 << 0)
184 /* set to temporarily prevent deletion from object_list */
185 #define DELSTATE_NO_DELETE      (1 << 1)
186
187 #define HEX_PREFIX              "    "
188 /* number of bytes to print per line; must be 16 or 32 */
189 #define HEX_ROW_SIZE            16
190 /* number of bytes to print at a time (1, 2, 4, 8) */
191 #define HEX_GROUP_SIZE          1
192 /* include ASCII after the hex output */
193 #define HEX_ASCII               1
194 /* max number of lines to be printed */
195 #define HEX_MAX_LINES           2
196
197 /* the list of all allocated objects */
198 static LIST_HEAD(object_list);
199 /* the list of gray-colored objects (see color_gray comment below) */
200 static LIST_HEAD(gray_list);
201 /* memory pool allocation */
202 static struct kmemleak_object mem_pool[CONFIG_DEBUG_KMEMLEAK_MEM_POOL_SIZE];
203 static int mem_pool_free_count = ARRAY_SIZE(mem_pool);
204 static LIST_HEAD(mem_pool_free_list);
205 /* search tree for object boundaries */
206 static struct rb_root object_tree_root = RB_ROOT;
207 /* search tree for object (with OBJECT_PHYS flag) boundaries */
208 static struct rb_root object_phys_tree_root = RB_ROOT;
209 /* protecting the access to object_list, object_tree_root (or object_phys_tree_root) */
210 static DEFINE_RAW_SPINLOCK(kmemleak_lock);
211
212 /* allocation caches for kmemleak internal data */
213 static struct kmem_cache *object_cache;
214 static struct kmem_cache *scan_area_cache;
215
216 /* set if tracing memory operations is enabled */
217 static int kmemleak_enabled = 1;
218 /* same as above but only for the kmemleak_free() callback */
219 static int kmemleak_free_enabled = 1;
220 /* set in the late_initcall if there were no errors */
221 static int kmemleak_late_initialized;
222 /* set if a kmemleak warning was issued */
223 static int kmemleak_warning;
224 /* set if a fatal kmemleak error has occurred */
225 static int kmemleak_error;
226
227 /* minimum and maximum address that may be valid pointers */
228 static unsigned long min_addr = ULONG_MAX;
229 static unsigned long max_addr;
230
231 static struct task_struct *scan_thread;
232 /* used to avoid reporting of recently allocated objects */
233 static unsigned long jiffies_min_age;
234 static unsigned long jiffies_last_scan;
235 /* delay between automatic memory scannings */
236 static unsigned long jiffies_scan_wait;
237 /* enables or disables the task stacks scanning */
238 static int kmemleak_stack_scan = 1;
239 /* protects the memory scanning, parameters and debug/kmemleak file access */
240 static DEFINE_MUTEX(scan_mutex);
241 /* setting kmemleak=on, will set this var, skipping the disable */
242 static int kmemleak_skip_disable;
243 /* If there are leaks that can be reported */
244 static bool kmemleak_found_leaks;
245
246 static bool kmemleak_verbose;
247 module_param_named(verbose, kmemleak_verbose, bool, 0600);
248
249 static void kmemleak_disable(void);
250
251 /*
252  * Print a warning and dump the stack trace.
253  */
254 #define kmemleak_warn(x...)     do {            \
255         pr_warn(x);                             \
256         dump_stack();                           \
257         kmemleak_warning = 1;                   \
258 } while (0)
259
260 /*
261  * Macro invoked when a serious kmemleak condition occurred and cannot be
262  * recovered from. Kmemleak will be disabled and further allocation/freeing
263  * tracing no longer available.
264  */
265 #define kmemleak_stop(x...)     do {    \
266         kmemleak_warn(x);               \
267         kmemleak_disable();             \
268 } while (0)
269
270 #define warn_or_seq_printf(seq, fmt, ...)       do {    \
271         if (seq)                                        \
272                 seq_printf(seq, fmt, ##__VA_ARGS__);    \
273         else                                            \
274                 pr_warn(fmt, ##__VA_ARGS__);            \
275 } while (0)
276
277 static void warn_or_seq_hex_dump(struct seq_file *seq, int prefix_type,
278                                  int rowsize, int groupsize, const void *buf,
279                                  size_t len, bool ascii)
280 {
281         if (seq)
282                 seq_hex_dump(seq, HEX_PREFIX, prefix_type, rowsize, groupsize,
283                              buf, len, ascii);
284         else
285                 print_hex_dump(KERN_WARNING, pr_fmt(HEX_PREFIX), prefix_type,
286                                rowsize, groupsize, buf, len, ascii);
287 }
288
289 /*
290  * Printing of the objects hex dump to the seq file. The number of lines to be
291  * printed is limited to HEX_MAX_LINES to prevent seq file spamming. The
292  * actual number of printed bytes depends on HEX_ROW_SIZE. It must be called
293  * with the object->lock held.
294  */
295 static void hex_dump_object(struct seq_file *seq,
296                             struct kmemleak_object *object)
297 {
298         const u8 *ptr = (const u8 *)object->pointer;
299         size_t len;
300
301         if (WARN_ON_ONCE(object->flags & OBJECT_PHYS))
302                 return;
303
304         /* limit the number of lines to HEX_MAX_LINES */
305         len = min_t(size_t, object->size, HEX_MAX_LINES * HEX_ROW_SIZE);
306
307         warn_or_seq_printf(seq, "  hex dump (first %zu bytes):\n", len);
308         kasan_disable_current();
309         warn_or_seq_hex_dump(seq, DUMP_PREFIX_NONE, HEX_ROW_SIZE,
310                              HEX_GROUP_SIZE, kasan_reset_tag((void *)ptr), len, HEX_ASCII);
311         kasan_enable_current();
312 }
313
314 /*
315  * Object colors, encoded with count and min_count:
316  * - white - orphan object, not enough references to it (count < min_count)
317  * - gray  - not orphan, not marked as false positive (min_count == 0) or
318  *              sufficient references to it (count >= min_count)
319  * - black - ignore, it doesn't contain references (e.g. text section)
320  *              (min_count == -1). No function defined for this color.
321  * Newly created objects don't have any color assigned (object->count == -1)
322  * before the next memory scan when they become white.
323  */
324 static bool color_white(const struct kmemleak_object *object)
325 {
326         return object->count != KMEMLEAK_BLACK &&
327                 object->count < object->min_count;
328 }
329
330 static bool color_gray(const struct kmemleak_object *object)
331 {
332         return object->min_count != KMEMLEAK_BLACK &&
333                 object->count >= object->min_count;
334 }
335
336 /*
337  * Objects are considered unreferenced only if their color is white, they have
338  * not be deleted and have a minimum age to avoid false positives caused by
339  * pointers temporarily stored in CPU registers.
340  */
341 static bool unreferenced_object(struct kmemleak_object *object)
342 {
343         return (color_white(object) && object->flags & OBJECT_ALLOCATED) &&
344                 time_before_eq(object->jiffies + jiffies_min_age,
345                                jiffies_last_scan);
346 }
347
348 /*
349  * Printing of the unreferenced objects information to the seq file. The
350  * print_unreferenced function must be called with the object->lock held.
351  */
352 static void print_unreferenced(struct seq_file *seq,
353                                struct kmemleak_object *object)
354 {
355         int i;
356         unsigned long *entries;
357         unsigned int nr_entries;
358         unsigned int msecs_age = jiffies_to_msecs(jiffies - object->jiffies);
359
360         nr_entries = stack_depot_fetch(object->trace_handle, &entries);
361         warn_or_seq_printf(seq, "unreferenced object 0x%08lx (size %zu):\n",
362                           object->pointer, object->size);
363         warn_or_seq_printf(seq, "  comm \"%s\", pid %d, jiffies %lu (age %d.%03ds)\n",
364                            object->comm, object->pid, object->jiffies,
365                            msecs_age / 1000, msecs_age % 1000);
366         hex_dump_object(seq, object);
367         warn_or_seq_printf(seq, "  backtrace:\n");
368
369         for (i = 0; i < nr_entries; i++) {
370                 void *ptr = (void *)entries[i];
371                 warn_or_seq_printf(seq, "    [<%pK>] %pS\n", ptr, ptr);
372         }
373 }
374
375 /*
376  * Print the kmemleak_object information. This function is used mainly for
377  * debugging special cases when kmemleak operations. It must be called with
378  * the object->lock held.
379  */
380 static void dump_object_info(struct kmemleak_object *object)
381 {
382         pr_notice("Object 0x%08lx (size %zu):\n",
383                         object->pointer, object->size);
384         pr_notice("  comm \"%s\", pid %d, jiffies %lu\n",
385                         object->comm, object->pid, object->jiffies);
386         pr_notice("  min_count = %d\n", object->min_count);
387         pr_notice("  count = %d\n", object->count);
388         pr_notice("  flags = 0x%x\n", object->flags);
389         pr_notice("  checksum = %u\n", object->checksum);
390         pr_notice("  backtrace:\n");
391         if (object->trace_handle)
392                 stack_depot_print(object->trace_handle);
393 }
394
395 /*
396  * Look-up a memory block metadata (kmemleak_object) in the object search
397  * tree based on a pointer value. If alias is 0, only values pointing to the
398  * beginning of the memory block are allowed. The kmemleak_lock must be held
399  * when calling this function.
400  */
401 static struct kmemleak_object *__lookup_object(unsigned long ptr, int alias,
402                                                bool is_phys)
403 {
404         struct rb_node *rb = is_phys ? object_phys_tree_root.rb_node :
405                              object_tree_root.rb_node;
406         unsigned long untagged_ptr = (unsigned long)kasan_reset_tag((void *)ptr);
407
408         while (rb) {
409                 struct kmemleak_object *object;
410                 unsigned long untagged_objp;
411
412                 object = rb_entry(rb, struct kmemleak_object, rb_node);
413                 untagged_objp = (unsigned long)kasan_reset_tag((void *)object->pointer);
414
415                 if (untagged_ptr < untagged_objp)
416                         rb = object->rb_node.rb_left;
417                 else if (untagged_objp + object->size <= untagged_ptr)
418                         rb = object->rb_node.rb_right;
419                 else if (untagged_objp == untagged_ptr || alias)
420                         return object;
421                 else {
422                         kmemleak_warn("Found object by alias at 0x%08lx\n",
423                                       ptr);
424                         dump_object_info(object);
425                         break;
426                 }
427         }
428         return NULL;
429 }
430
431 /* Look-up a kmemleak object which allocated with virtual address. */
432 static struct kmemleak_object *lookup_object(unsigned long ptr, int alias)
433 {
434         return __lookup_object(ptr, alias, false);
435 }
436
437 /*
438  * Increment the object use_count. Return 1 if successful or 0 otherwise. Note
439  * that once an object's use_count reached 0, the RCU freeing was already
440  * registered and the object should no longer be used. This function must be
441  * called under the protection of rcu_read_lock().
442  */
443 static int get_object(struct kmemleak_object *object)
444 {
445         return atomic_inc_not_zero(&object->use_count);
446 }
447
448 /*
449  * Memory pool allocation and freeing. kmemleak_lock must not be held.
450  */
451 static struct kmemleak_object *mem_pool_alloc(gfp_t gfp)
452 {
453         unsigned long flags;
454         struct kmemleak_object *object;
455
456         /* try the slab allocator first */
457         if (object_cache) {
458                 object = kmem_cache_alloc(object_cache, gfp_kmemleak_mask(gfp));
459                 if (object)
460                         return object;
461         }
462
463         /* slab allocation failed, try the memory pool */
464         raw_spin_lock_irqsave(&kmemleak_lock, flags);
465         object = list_first_entry_or_null(&mem_pool_free_list,
466                                           typeof(*object), object_list);
467         if (object)
468                 list_del(&object->object_list);
469         else if (mem_pool_free_count)
470                 object = &mem_pool[--mem_pool_free_count];
471         else
472                 pr_warn_once("Memory pool empty, consider increasing CONFIG_DEBUG_KMEMLEAK_MEM_POOL_SIZE\n");
473         raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
474
475         return object;
476 }
477
478 /*
479  * Return the object to either the slab allocator or the memory pool.
480  */
481 static void mem_pool_free(struct kmemleak_object *object)
482 {
483         unsigned long flags;
484
485         if (object < mem_pool || object >= mem_pool + ARRAY_SIZE(mem_pool)) {
486                 kmem_cache_free(object_cache, object);
487                 return;
488         }
489
490         /* add the object to the memory pool free list */
491         raw_spin_lock_irqsave(&kmemleak_lock, flags);
492         list_add(&object->object_list, &mem_pool_free_list);
493         raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
494 }
495
496 /*
497  * RCU callback to free a kmemleak_object.
498  */
499 static void free_object_rcu(struct rcu_head *rcu)
500 {
501         struct hlist_node *tmp;
502         struct kmemleak_scan_area *area;
503         struct kmemleak_object *object =
504                 container_of(rcu, struct kmemleak_object, rcu);
505
506         /*
507          * Once use_count is 0 (guaranteed by put_object), there is no other
508          * code accessing this object, hence no need for locking.
509          */
510         hlist_for_each_entry_safe(area, tmp, &object->area_list, node) {
511                 hlist_del(&area->node);
512                 kmem_cache_free(scan_area_cache, area);
513         }
514         mem_pool_free(object);
515 }
516
517 /*
518  * Decrement the object use_count. Once the count is 0, free the object using
519  * an RCU callback. Since put_object() may be called via the kmemleak_free() ->
520  * delete_object() path, the delayed RCU freeing ensures that there is no
521  * recursive call to the kernel allocator. Lock-less RCU object_list traversal
522  * is also possible.
523  */
524 static void put_object(struct kmemleak_object *object)
525 {
526         if (!atomic_dec_and_test(&object->use_count))
527                 return;
528
529         /* should only get here after delete_object was called */
530         WARN_ON(object->flags & OBJECT_ALLOCATED);
531
532         /*
533          * It may be too early for the RCU callbacks, however, there is no
534          * concurrent object_list traversal when !object_cache and all objects
535          * came from the memory pool. Free the object directly.
536          */
537         if (object_cache)
538                 call_rcu(&object->rcu, free_object_rcu);
539         else
540                 free_object_rcu(&object->rcu);
541 }
542
543 /*
544  * Look up an object in the object search tree and increase its use_count.
545  */
546 static struct kmemleak_object *__find_and_get_object(unsigned long ptr, int alias,
547                                                      bool is_phys)
548 {
549         unsigned long flags;
550         struct kmemleak_object *object;
551
552         rcu_read_lock();
553         raw_spin_lock_irqsave(&kmemleak_lock, flags);
554         object = __lookup_object(ptr, alias, is_phys);
555         raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
556
557         /* check whether the object is still available */
558         if (object && !get_object(object))
559                 object = NULL;
560         rcu_read_unlock();
561
562         return object;
563 }
564
565 /* Look up and get an object which allocated with virtual address. */
566 static struct kmemleak_object *find_and_get_object(unsigned long ptr, int alias)
567 {
568         return __find_and_get_object(ptr, alias, false);
569 }
570
571 /*
572  * Remove an object from the object_tree_root (or object_phys_tree_root)
573  * and object_list. Must be called with the kmemleak_lock held _if_ kmemleak
574  * is still enabled.
575  */
576 static void __remove_object(struct kmemleak_object *object)
577 {
578         rb_erase(&object->rb_node, object->flags & OBJECT_PHYS ?
579                                    &object_phys_tree_root :
580                                    &object_tree_root);
581         if (!(object->del_state & DELSTATE_NO_DELETE))
582                 list_del_rcu(&object->object_list);
583         object->del_state |= DELSTATE_REMOVED;
584 }
585
586 static struct kmemleak_object *__find_and_remove_object(unsigned long ptr,
587                                                         int alias,
588                                                         bool is_phys)
589 {
590         struct kmemleak_object *object;
591
592         object = __lookup_object(ptr, alias, is_phys);
593         if (object)
594                 __remove_object(object);
595
596         return object;
597 }
598
599 /*
600  * Look up an object in the object search tree and remove it from both
601  * object_tree_root (or object_phys_tree_root) and object_list. The
602  * returned object's use_count should be at least 1, as initially set
603  * by create_object().
604  */
605 static struct kmemleak_object *find_and_remove_object(unsigned long ptr, int alias,
606                                                       bool is_phys)
607 {
608         unsigned long flags;
609         struct kmemleak_object *object;
610
611         raw_spin_lock_irqsave(&kmemleak_lock, flags);
612         object = __find_and_remove_object(ptr, alias, is_phys);
613         raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
614
615         return object;
616 }
617
618 static noinline depot_stack_handle_t set_track_prepare(void)
619 {
620         depot_stack_handle_t trace_handle;
621         unsigned long entries[MAX_TRACE];
622         unsigned int nr_entries;
623
624         /*
625          * Use object_cache to determine whether kmemleak_init() has
626          * been invoked. stack_depot_early_init() is called before
627          * kmemleak_init() in mm_core_init().
628          */
629         if (!object_cache)
630                 return 0;
631         nr_entries = stack_trace_save(entries, ARRAY_SIZE(entries), 3);
632         trace_handle = stack_depot_save(entries, nr_entries, GFP_NOWAIT);
633
634         return trace_handle;
635 }
636
637 static struct kmemleak_object *__alloc_object(gfp_t gfp)
638 {
639         struct kmemleak_object *object;
640
641         object = mem_pool_alloc(gfp);
642         if (!object) {
643                 pr_warn("Cannot allocate a kmemleak_object structure\n");
644                 kmemleak_disable();
645         }
646
647         return object;
648 }
649
650 static int __link_object(struct kmemleak_object *object, unsigned long ptr,
651                          size_t size, int min_count, bool is_phys)
652 {
653
654         struct kmemleak_object *parent;
655         struct rb_node **link, *rb_parent;
656         unsigned long untagged_ptr;
657         unsigned long untagged_objp;
658
659         INIT_LIST_HEAD(&object->object_list);
660         INIT_LIST_HEAD(&object->gray_list);
661         INIT_HLIST_HEAD(&object->area_list);
662         raw_spin_lock_init(&object->lock);
663         atomic_set(&object->use_count, 1);
664         object->flags = OBJECT_ALLOCATED | (is_phys ? OBJECT_PHYS : 0);
665         object->pointer = ptr;
666         object->size = kfence_ksize((void *)ptr) ?: size;
667         object->excess_ref = 0;
668         object->min_count = min_count;
669         object->count = 0;                      /* white color initially */
670         object->jiffies = jiffies;
671         object->checksum = 0;
672         object->del_state = 0;
673
674         /* task information */
675         if (in_hardirq()) {
676                 object->pid = 0;
677                 strncpy(object->comm, "hardirq", sizeof(object->comm));
678         } else if (in_serving_softirq()) {
679                 object->pid = 0;
680                 strncpy(object->comm, "softirq", sizeof(object->comm));
681         } else {
682                 object->pid = current->pid;
683                 /*
684                  * There is a small chance of a race with set_task_comm(),
685                  * however using get_task_comm() here may cause locking
686                  * dependency issues with current->alloc_lock. In the worst
687                  * case, the command line is not correct.
688                  */
689                 strncpy(object->comm, current->comm, sizeof(object->comm));
690         }
691
692         /* kernel backtrace */
693         object->trace_handle = set_track_prepare();
694
695         untagged_ptr = (unsigned long)kasan_reset_tag((void *)ptr);
696         /*
697          * Only update min_addr and max_addr with object
698          * storing virtual address.
699          */
700         if (!is_phys) {
701                 min_addr = min(min_addr, untagged_ptr);
702                 max_addr = max(max_addr, untagged_ptr + size);
703         }
704         link = is_phys ? &object_phys_tree_root.rb_node :
705                 &object_tree_root.rb_node;
706         rb_parent = NULL;
707         while (*link) {
708                 rb_parent = *link;
709                 parent = rb_entry(rb_parent, struct kmemleak_object, rb_node);
710                 untagged_objp = (unsigned long)kasan_reset_tag((void *)parent->pointer);
711                 if (untagged_ptr + size <= untagged_objp)
712                         link = &parent->rb_node.rb_left;
713                 else if (untagged_objp + parent->size <= untagged_ptr)
714                         link = &parent->rb_node.rb_right;
715                 else {
716                         kmemleak_stop("Cannot insert 0x%lx into the object search tree (overlaps existing)\n",
717                                       ptr);
718                         /*
719                          * No need for parent->lock here since "parent" cannot
720                          * be freed while the kmemleak_lock is held.
721                          */
722                         dump_object_info(parent);
723                         return -EEXIST;
724                 }
725         }
726         rb_link_node(&object->rb_node, rb_parent, link);
727         rb_insert_color(&object->rb_node, is_phys ? &object_phys_tree_root :
728                                           &object_tree_root);
729         list_add_tail_rcu(&object->object_list, &object_list);
730
731         return 0;
732 }
733
734 /*
735  * Create the metadata (struct kmemleak_object) corresponding to an allocated
736  * memory block and add it to the object_list and object_tree_root (or
737  * object_phys_tree_root).
738  */
739 static void __create_object(unsigned long ptr, size_t size,
740                                 int min_count, gfp_t gfp, bool is_phys)
741 {
742         struct kmemleak_object *object;
743         unsigned long flags;
744         int ret;
745
746         object = __alloc_object(gfp);
747         if (!object)
748                 return;
749
750         raw_spin_lock_irqsave(&kmemleak_lock, flags);
751         ret = __link_object(object, ptr, size, min_count, is_phys);
752         raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
753         if (ret)
754                 mem_pool_free(object);
755 }
756
757 /* Create kmemleak object which allocated with virtual address. */
758 static void create_object(unsigned long ptr, size_t size,
759                           int min_count, gfp_t gfp)
760 {
761         __create_object(ptr, size, min_count, gfp, false);
762 }
763
764 /* Create kmemleak object which allocated with physical address. */
765 static void create_object_phys(unsigned long ptr, size_t size,
766                                int min_count, gfp_t gfp)
767 {
768         __create_object(ptr, size, min_count, gfp, true);
769 }
770
771 /*
772  * Mark the object as not allocated and schedule RCU freeing via put_object().
773  */
774 static void __delete_object(struct kmemleak_object *object)
775 {
776         unsigned long flags;
777
778         WARN_ON(!(object->flags & OBJECT_ALLOCATED));
779         WARN_ON(atomic_read(&object->use_count) < 1);
780
781         /*
782          * Locking here also ensures that the corresponding memory block
783          * cannot be freed when it is being scanned.
784          */
785         raw_spin_lock_irqsave(&object->lock, flags);
786         object->flags &= ~OBJECT_ALLOCATED;
787         raw_spin_unlock_irqrestore(&object->lock, flags);
788         put_object(object);
789 }
790
791 /*
792  * Look up the metadata (struct kmemleak_object) corresponding to ptr and
793  * delete it.
794  */
795 static void delete_object_full(unsigned long ptr)
796 {
797         struct kmemleak_object *object;
798
799         object = find_and_remove_object(ptr, 0, false);
800         if (!object) {
801 #ifdef DEBUG
802                 kmemleak_warn("Freeing unknown object at 0x%08lx\n",
803                               ptr);
804 #endif
805                 return;
806         }
807         __delete_object(object);
808 }
809
810 /*
811  * Look up the metadata (struct kmemleak_object) corresponding to ptr and
812  * delete it. If the memory block is partially freed, the function may create
813  * additional metadata for the remaining parts of the block.
814  */
815 static void delete_object_part(unsigned long ptr, size_t size, bool is_phys)
816 {
817         struct kmemleak_object *object, *object_l, *object_r;
818         unsigned long start, end, flags;
819
820         object_l = __alloc_object(GFP_KERNEL);
821         if (!object_l)
822                 return;
823
824         object_r = __alloc_object(GFP_KERNEL);
825         if (!object_r)
826                 goto out;
827
828         raw_spin_lock_irqsave(&kmemleak_lock, flags);
829         object = __find_and_remove_object(ptr, 1, is_phys);
830         if (!object) {
831 #ifdef DEBUG
832                 kmemleak_warn("Partially freeing unknown object at 0x%08lx (size %zu)\n",
833                               ptr, size);
834 #endif
835                 goto unlock;
836         }
837
838         /*
839          * Create one or two objects that may result from the memory block
840          * split. Note that partial freeing is only done by free_bootmem() and
841          * this happens before kmemleak_init() is called.
842          */
843         start = object->pointer;
844         end = object->pointer + object->size;
845         if ((ptr > start) &&
846             !__link_object(object_l, start, ptr - start,
847                            object->min_count, is_phys))
848                 object_l = NULL;
849         if ((ptr + size < end) &&
850             !__link_object(object_r, ptr + size, end - ptr - size,
851                            object->min_count, is_phys))
852                 object_r = NULL;
853
854 unlock:
855         raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
856         if (object)
857                 __delete_object(object);
858
859 out:
860         if (object_l)
861                 mem_pool_free(object_l);
862         if (object_r)
863                 mem_pool_free(object_r);
864 }
865
866 static void __paint_it(struct kmemleak_object *object, int color)
867 {
868         object->min_count = color;
869         if (color == KMEMLEAK_BLACK)
870                 object->flags |= OBJECT_NO_SCAN;
871 }
872
873 static void paint_it(struct kmemleak_object *object, int color)
874 {
875         unsigned long flags;
876
877         raw_spin_lock_irqsave(&object->lock, flags);
878         __paint_it(object, color);
879         raw_spin_unlock_irqrestore(&object->lock, flags);
880 }
881
882 static void paint_ptr(unsigned long ptr, int color, bool is_phys)
883 {
884         struct kmemleak_object *object;
885
886         object = __find_and_get_object(ptr, 0, is_phys);
887         if (!object) {
888                 kmemleak_warn("Trying to color unknown object at 0x%08lx as %s\n",
889                               ptr,
890                               (color == KMEMLEAK_GREY) ? "Grey" :
891                               (color == KMEMLEAK_BLACK) ? "Black" : "Unknown");
892                 return;
893         }
894         paint_it(object, color);
895         put_object(object);
896 }
897
898 /*
899  * Mark an object permanently as gray-colored so that it can no longer be
900  * reported as a leak. This is used in general to mark a false positive.
901  */
902 static void make_gray_object(unsigned long ptr)
903 {
904         paint_ptr(ptr, KMEMLEAK_GREY, false);
905 }
906
907 /*
908  * Mark the object as black-colored so that it is ignored from scans and
909  * reporting.
910  */
911 static void make_black_object(unsigned long ptr, bool is_phys)
912 {
913         paint_ptr(ptr, KMEMLEAK_BLACK, is_phys);
914 }
915
916 /*
917  * Add a scanning area to the object. If at least one such area is added,
918  * kmemleak will only scan these ranges rather than the whole memory block.
919  */
920 static void add_scan_area(unsigned long ptr, size_t size, gfp_t gfp)
921 {
922         unsigned long flags;
923         struct kmemleak_object *object;
924         struct kmemleak_scan_area *area = NULL;
925         unsigned long untagged_ptr;
926         unsigned long untagged_objp;
927
928         object = find_and_get_object(ptr, 1);
929         if (!object) {
930                 kmemleak_warn("Adding scan area to unknown object at 0x%08lx\n",
931                               ptr);
932                 return;
933         }
934
935         untagged_ptr = (unsigned long)kasan_reset_tag((void *)ptr);
936         untagged_objp = (unsigned long)kasan_reset_tag((void *)object->pointer);
937
938         if (scan_area_cache)
939                 area = kmem_cache_alloc(scan_area_cache, gfp_kmemleak_mask(gfp));
940
941         raw_spin_lock_irqsave(&object->lock, flags);
942         if (!area) {
943                 pr_warn_once("Cannot allocate a scan area, scanning the full object\n");
944                 /* mark the object for full scan to avoid false positives */
945                 object->flags |= OBJECT_FULL_SCAN;
946                 goto out_unlock;
947         }
948         if (size == SIZE_MAX) {
949                 size = untagged_objp + object->size - untagged_ptr;
950         } else if (untagged_ptr + size > untagged_objp + object->size) {
951                 kmemleak_warn("Scan area larger than object 0x%08lx\n", ptr);
952                 dump_object_info(object);
953                 kmem_cache_free(scan_area_cache, area);
954                 goto out_unlock;
955         }
956
957         INIT_HLIST_NODE(&area->node);
958         area->start = ptr;
959         area->size = size;
960
961         hlist_add_head(&area->node, &object->area_list);
962 out_unlock:
963         raw_spin_unlock_irqrestore(&object->lock, flags);
964         put_object(object);
965 }
966
967 /*
968  * Any surplus references (object already gray) to 'ptr' are passed to
969  * 'excess_ref'. This is used in the vmalloc() case where a pointer to
970  * vm_struct may be used as an alternative reference to the vmalloc'ed object
971  * (see free_thread_stack()).
972  */
973 static void object_set_excess_ref(unsigned long ptr, unsigned long excess_ref)
974 {
975         unsigned long flags;
976         struct kmemleak_object *object;
977
978         object = find_and_get_object(ptr, 0);
979         if (!object) {
980                 kmemleak_warn("Setting excess_ref on unknown object at 0x%08lx\n",
981                               ptr);
982                 return;
983         }
984
985         raw_spin_lock_irqsave(&object->lock, flags);
986         object->excess_ref = excess_ref;
987         raw_spin_unlock_irqrestore(&object->lock, flags);
988         put_object(object);
989 }
990
991 /*
992  * Set the OBJECT_NO_SCAN flag for the object corresponding to the give
993  * pointer. Such object will not be scanned by kmemleak but references to it
994  * are searched.
995  */
996 static void object_no_scan(unsigned long ptr)
997 {
998         unsigned long flags;
999         struct kmemleak_object *object;
1000
1001         object = find_and_get_object(ptr, 0);
1002         if (!object) {
1003                 kmemleak_warn("Not scanning unknown object at 0x%08lx\n", ptr);
1004                 return;
1005         }
1006
1007         raw_spin_lock_irqsave(&object->lock, flags);
1008         object->flags |= OBJECT_NO_SCAN;
1009         raw_spin_unlock_irqrestore(&object->lock, flags);
1010         put_object(object);
1011 }
1012
1013 /**
1014  * kmemleak_alloc - register a newly allocated object
1015  * @ptr:        pointer to beginning of the object
1016  * @size:       size of the object
1017  * @min_count:  minimum number of references to this object. If during memory
1018  *              scanning a number of references less than @min_count is found,
1019  *              the object is reported as a memory leak. If @min_count is 0,
1020  *              the object is never reported as a leak. If @min_count is -1,
1021  *              the object is ignored (not scanned and not reported as a leak)
1022  * @gfp:        kmalloc() flags used for kmemleak internal memory allocations
1023  *
1024  * This function is called from the kernel allocators when a new object
1025  * (memory block) is allocated (kmem_cache_alloc, kmalloc etc.).
1026  */
1027 void __ref kmemleak_alloc(const void *ptr, size_t size, int min_count,
1028                           gfp_t gfp)
1029 {
1030         pr_debug("%s(0x%px, %zu, %d)\n", __func__, ptr, size, min_count);
1031
1032         if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1033                 create_object((unsigned long)ptr, size, min_count, gfp);
1034 }
1035 EXPORT_SYMBOL_GPL(kmemleak_alloc);
1036
1037 /**
1038  * kmemleak_alloc_percpu - register a newly allocated __percpu object
1039  * @ptr:        __percpu pointer to beginning of the object
1040  * @size:       size of the object
1041  * @gfp:        flags used for kmemleak internal memory allocations
1042  *
1043  * This function is called from the kernel percpu allocator when a new object
1044  * (memory block) is allocated (alloc_percpu).
1045  */
1046 void __ref kmemleak_alloc_percpu(const void __percpu *ptr, size_t size,
1047                                  gfp_t gfp)
1048 {
1049         unsigned int cpu;
1050
1051         pr_debug("%s(0x%px, %zu)\n", __func__, ptr, size);
1052
1053         /*
1054          * Percpu allocations are only scanned and not reported as leaks
1055          * (min_count is set to 0).
1056          */
1057         if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1058                 for_each_possible_cpu(cpu)
1059                         create_object((unsigned long)per_cpu_ptr(ptr, cpu),
1060                                       size, 0, gfp);
1061 }
1062 EXPORT_SYMBOL_GPL(kmemleak_alloc_percpu);
1063
1064 /**
1065  * kmemleak_vmalloc - register a newly vmalloc'ed object
1066  * @area:       pointer to vm_struct
1067  * @size:       size of the object
1068  * @gfp:        __vmalloc() flags used for kmemleak internal memory allocations
1069  *
1070  * This function is called from the vmalloc() kernel allocator when a new
1071  * object (memory block) is allocated.
1072  */
1073 void __ref kmemleak_vmalloc(const struct vm_struct *area, size_t size, gfp_t gfp)
1074 {
1075         pr_debug("%s(0x%px, %zu)\n", __func__, area, size);
1076
1077         /*
1078          * A min_count = 2 is needed because vm_struct contains a reference to
1079          * the virtual address of the vmalloc'ed block.
1080          */
1081         if (kmemleak_enabled) {
1082                 create_object((unsigned long)area->addr, size, 2, gfp);
1083                 object_set_excess_ref((unsigned long)area,
1084                                       (unsigned long)area->addr);
1085         }
1086 }
1087 EXPORT_SYMBOL_GPL(kmemleak_vmalloc);
1088
1089 /**
1090  * kmemleak_free - unregister a previously registered object
1091  * @ptr:        pointer to beginning of the object
1092  *
1093  * This function is called from the kernel allocators when an object (memory
1094  * block) is freed (kmem_cache_free, kfree, vfree etc.).
1095  */
1096 void __ref kmemleak_free(const void *ptr)
1097 {
1098         pr_debug("%s(0x%px)\n", __func__, ptr);
1099
1100         if (kmemleak_free_enabled && ptr && !IS_ERR(ptr))
1101                 delete_object_full((unsigned long)ptr);
1102 }
1103 EXPORT_SYMBOL_GPL(kmemleak_free);
1104
1105 /**
1106  * kmemleak_free_part - partially unregister a previously registered object
1107  * @ptr:        pointer to the beginning or inside the object. This also
1108  *              represents the start of the range to be freed
1109  * @size:       size to be unregistered
1110  *
1111  * This function is called when only a part of a memory block is freed
1112  * (usually from the bootmem allocator).
1113  */
1114 void __ref kmemleak_free_part(const void *ptr, size_t size)
1115 {
1116         pr_debug("%s(0x%px)\n", __func__, ptr);
1117
1118         if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1119                 delete_object_part((unsigned long)ptr, size, false);
1120 }
1121 EXPORT_SYMBOL_GPL(kmemleak_free_part);
1122
1123 /**
1124  * kmemleak_free_percpu - unregister a previously registered __percpu object
1125  * @ptr:        __percpu pointer to beginning of the object
1126  *
1127  * This function is called from the kernel percpu allocator when an object
1128  * (memory block) is freed (free_percpu).
1129  */
1130 void __ref kmemleak_free_percpu(const void __percpu *ptr)
1131 {
1132         unsigned int cpu;
1133
1134         pr_debug("%s(0x%px)\n", __func__, ptr);
1135
1136         if (kmemleak_free_enabled && ptr && !IS_ERR(ptr))
1137                 for_each_possible_cpu(cpu)
1138                         delete_object_full((unsigned long)per_cpu_ptr(ptr,
1139                                                                       cpu));
1140 }
1141 EXPORT_SYMBOL_GPL(kmemleak_free_percpu);
1142
1143 /**
1144  * kmemleak_update_trace - update object allocation stack trace
1145  * @ptr:        pointer to beginning of the object
1146  *
1147  * Override the object allocation stack trace for cases where the actual
1148  * allocation place is not always useful.
1149  */
1150 void __ref kmemleak_update_trace(const void *ptr)
1151 {
1152         struct kmemleak_object *object;
1153         unsigned long flags;
1154
1155         pr_debug("%s(0x%px)\n", __func__, ptr);
1156
1157         if (!kmemleak_enabled || IS_ERR_OR_NULL(ptr))
1158                 return;
1159
1160         object = find_and_get_object((unsigned long)ptr, 1);
1161         if (!object) {
1162 #ifdef DEBUG
1163                 kmemleak_warn("Updating stack trace for unknown object at %p\n",
1164                               ptr);
1165 #endif
1166                 return;
1167         }
1168
1169         raw_spin_lock_irqsave(&object->lock, flags);
1170         object->trace_handle = set_track_prepare();
1171         raw_spin_unlock_irqrestore(&object->lock, flags);
1172
1173         put_object(object);
1174 }
1175 EXPORT_SYMBOL(kmemleak_update_trace);
1176
1177 /**
1178  * kmemleak_not_leak - mark an allocated object as false positive
1179  * @ptr:        pointer to beginning of the object
1180  *
1181  * Calling this function on an object will cause the memory block to no longer
1182  * be reported as leak and always be scanned.
1183  */
1184 void __ref kmemleak_not_leak(const void *ptr)
1185 {
1186         pr_debug("%s(0x%px)\n", __func__, ptr);
1187
1188         if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1189                 make_gray_object((unsigned long)ptr);
1190 }
1191 EXPORT_SYMBOL(kmemleak_not_leak);
1192
1193 /**
1194  * kmemleak_ignore - ignore an allocated object
1195  * @ptr:        pointer to beginning of the object
1196  *
1197  * Calling this function on an object will cause the memory block to be
1198  * ignored (not scanned and not reported as a leak). This is usually done when
1199  * it is known that the corresponding block is not a leak and does not contain
1200  * any references to other allocated memory blocks.
1201  */
1202 void __ref kmemleak_ignore(const void *ptr)
1203 {
1204         pr_debug("%s(0x%px)\n", __func__, ptr);
1205
1206         if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1207                 make_black_object((unsigned long)ptr, false);
1208 }
1209 EXPORT_SYMBOL(kmemleak_ignore);
1210
1211 /**
1212  * kmemleak_scan_area - limit the range to be scanned in an allocated object
1213  * @ptr:        pointer to beginning or inside the object. This also
1214  *              represents the start of the scan area
1215  * @size:       size of the scan area
1216  * @gfp:        kmalloc() flags used for kmemleak internal memory allocations
1217  *
1218  * This function is used when it is known that only certain parts of an object
1219  * contain references to other objects. Kmemleak will only scan these areas
1220  * reducing the number false negatives.
1221  */
1222 void __ref kmemleak_scan_area(const void *ptr, size_t size, gfp_t gfp)
1223 {
1224         pr_debug("%s(0x%px)\n", __func__, ptr);
1225
1226         if (kmemleak_enabled && ptr && size && !IS_ERR(ptr))
1227                 add_scan_area((unsigned long)ptr, size, gfp);
1228 }
1229 EXPORT_SYMBOL(kmemleak_scan_area);
1230
1231 /**
1232  * kmemleak_no_scan - do not scan an allocated object
1233  * @ptr:        pointer to beginning of the object
1234  *
1235  * This function notifies kmemleak not to scan the given memory block. Useful
1236  * in situations where it is known that the given object does not contain any
1237  * references to other objects. Kmemleak will not scan such objects reducing
1238  * the number of false negatives.
1239  */
1240 void __ref kmemleak_no_scan(const void *ptr)
1241 {
1242         pr_debug("%s(0x%px)\n", __func__, ptr);
1243
1244         if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1245                 object_no_scan((unsigned long)ptr);
1246 }
1247 EXPORT_SYMBOL(kmemleak_no_scan);
1248
1249 /**
1250  * kmemleak_alloc_phys - similar to kmemleak_alloc but taking a physical
1251  *                       address argument
1252  * @phys:       physical address of the object
1253  * @size:       size of the object
1254  * @gfp:        kmalloc() flags used for kmemleak internal memory allocations
1255  */
1256 void __ref kmemleak_alloc_phys(phys_addr_t phys, size_t size, gfp_t gfp)
1257 {
1258         pr_debug("%s(0x%px, %zu)\n", __func__, &phys, size);
1259
1260         if (kmemleak_enabled)
1261                 /*
1262                  * Create object with OBJECT_PHYS flag and
1263                  * assume min_count 0.
1264                  */
1265                 create_object_phys((unsigned long)phys, size, 0, gfp);
1266 }
1267 EXPORT_SYMBOL(kmemleak_alloc_phys);
1268
1269 /**
1270  * kmemleak_free_part_phys - similar to kmemleak_free_part but taking a
1271  *                           physical address argument
1272  * @phys:       physical address if the beginning or inside an object. This
1273  *              also represents the start of the range to be freed
1274  * @size:       size to be unregistered
1275  */
1276 void __ref kmemleak_free_part_phys(phys_addr_t phys, size_t size)
1277 {
1278         pr_debug("%s(0x%px)\n", __func__, &phys);
1279
1280         if (kmemleak_enabled)
1281                 delete_object_part((unsigned long)phys, size, true);
1282 }
1283 EXPORT_SYMBOL(kmemleak_free_part_phys);
1284
1285 /**
1286  * kmemleak_ignore_phys - similar to kmemleak_ignore but taking a physical
1287  *                        address argument
1288  * @phys:       physical address of the object
1289  */
1290 void __ref kmemleak_ignore_phys(phys_addr_t phys)
1291 {
1292         pr_debug("%s(0x%px)\n", __func__, &phys);
1293
1294         if (kmemleak_enabled)
1295                 make_black_object((unsigned long)phys, true);
1296 }
1297 EXPORT_SYMBOL(kmemleak_ignore_phys);
1298
1299 /*
1300  * Update an object's checksum and return true if it was modified.
1301  */
1302 static bool update_checksum(struct kmemleak_object *object)
1303 {
1304         u32 old_csum = object->checksum;
1305
1306         if (WARN_ON_ONCE(object->flags & OBJECT_PHYS))
1307                 return false;
1308
1309         kasan_disable_current();
1310         kcsan_disable_current();
1311         object->checksum = crc32(0, kasan_reset_tag((void *)object->pointer), object->size);
1312         kasan_enable_current();
1313         kcsan_enable_current();
1314
1315         return object->checksum != old_csum;
1316 }
1317
1318 /*
1319  * Update an object's references. object->lock must be held by the caller.
1320  */
1321 static void update_refs(struct kmemleak_object *object)
1322 {
1323         if (!color_white(object)) {
1324                 /* non-orphan, ignored or new */
1325                 return;
1326         }
1327
1328         /*
1329          * Increase the object's reference count (number of pointers to the
1330          * memory block). If this count reaches the required minimum, the
1331          * object's color will become gray and it will be added to the
1332          * gray_list.
1333          */
1334         object->count++;
1335         if (color_gray(object)) {
1336                 /* put_object() called when removing from gray_list */
1337                 WARN_ON(!get_object(object));
1338                 list_add_tail(&object->gray_list, &gray_list);
1339         }
1340 }
1341
1342 /*
1343  * Memory scanning is a long process and it needs to be interruptible. This
1344  * function checks whether such interrupt condition occurred.
1345  */
1346 static int scan_should_stop(void)
1347 {
1348         if (!kmemleak_enabled)
1349                 return 1;
1350
1351         /*
1352          * This function may be called from either process or kthread context,
1353          * hence the need to check for both stop conditions.
1354          */
1355         if (current->mm)
1356                 return signal_pending(current);
1357         else
1358                 return kthread_should_stop();
1359
1360         return 0;
1361 }
1362
1363 /*
1364  * Scan a memory block (exclusive range) for valid pointers and add those
1365  * found to the gray list.
1366  */
1367 static void scan_block(void *_start, void *_end,
1368                        struct kmemleak_object *scanned)
1369 {
1370         unsigned long *ptr;
1371         unsigned long *start = PTR_ALIGN(_start, BYTES_PER_POINTER);
1372         unsigned long *end = _end - (BYTES_PER_POINTER - 1);
1373         unsigned long flags;
1374         unsigned long untagged_ptr;
1375
1376         raw_spin_lock_irqsave(&kmemleak_lock, flags);
1377         for (ptr = start; ptr < end; ptr++) {
1378                 struct kmemleak_object *object;
1379                 unsigned long pointer;
1380                 unsigned long excess_ref;
1381
1382                 if (scan_should_stop())
1383                         break;
1384
1385                 kasan_disable_current();
1386                 pointer = *(unsigned long *)kasan_reset_tag((void *)ptr);
1387                 kasan_enable_current();
1388
1389                 untagged_ptr = (unsigned long)kasan_reset_tag((void *)pointer);
1390                 if (untagged_ptr < min_addr || untagged_ptr >= max_addr)
1391                         continue;
1392
1393                 /*
1394                  * No need for get_object() here since we hold kmemleak_lock.
1395                  * object->use_count cannot be dropped to 0 while the object
1396                  * is still present in object_tree_root and object_list
1397                  * (with updates protected by kmemleak_lock).
1398                  */
1399                 object = lookup_object(pointer, 1);
1400                 if (!object)
1401                         continue;
1402                 if (object == scanned)
1403                         /* self referenced, ignore */
1404                         continue;
1405
1406                 /*
1407                  * Avoid the lockdep recursive warning on object->lock being
1408                  * previously acquired in scan_object(). These locks are
1409                  * enclosed by scan_mutex.
1410                  */
1411                 raw_spin_lock_nested(&object->lock, SINGLE_DEPTH_NESTING);
1412                 /* only pass surplus references (object already gray) */
1413                 if (color_gray(object)) {
1414                         excess_ref = object->excess_ref;
1415                         /* no need for update_refs() if object already gray */
1416                 } else {
1417                         excess_ref = 0;
1418                         update_refs(object);
1419                 }
1420                 raw_spin_unlock(&object->lock);
1421
1422                 if (excess_ref) {
1423                         object = lookup_object(excess_ref, 0);
1424                         if (!object)
1425                                 continue;
1426                         if (object == scanned)
1427                                 /* circular reference, ignore */
1428                                 continue;
1429                         raw_spin_lock_nested(&object->lock, SINGLE_DEPTH_NESTING);
1430                         update_refs(object);
1431                         raw_spin_unlock(&object->lock);
1432                 }
1433         }
1434         raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
1435 }
1436
1437 /*
1438  * Scan a large memory block in MAX_SCAN_SIZE chunks to reduce the latency.
1439  */
1440 #ifdef CONFIG_SMP
1441 static void scan_large_block(void *start, void *end)
1442 {
1443         void *next;
1444
1445         while (start < end) {
1446                 next = min(start + MAX_SCAN_SIZE, end);
1447                 scan_block(start, next, NULL);
1448                 start = next;
1449                 cond_resched();
1450         }
1451 }
1452 #endif
1453
1454 /*
1455  * Scan a memory block corresponding to a kmemleak_object. A condition is
1456  * that object->use_count >= 1.
1457  */
1458 static void scan_object(struct kmemleak_object *object)
1459 {
1460         struct kmemleak_scan_area *area;
1461         unsigned long flags;
1462         void *obj_ptr;
1463
1464         /*
1465          * Once the object->lock is acquired, the corresponding memory block
1466          * cannot be freed (the same lock is acquired in delete_object).
1467          */
1468         raw_spin_lock_irqsave(&object->lock, flags);
1469         if (object->flags & OBJECT_NO_SCAN)
1470                 goto out;
1471         if (!(object->flags & OBJECT_ALLOCATED))
1472                 /* already freed object */
1473                 goto out;
1474
1475         obj_ptr = object->flags & OBJECT_PHYS ?
1476                   __va((phys_addr_t)object->pointer) :
1477                   (void *)object->pointer;
1478
1479         if (hlist_empty(&object->area_list) ||
1480             object->flags & OBJECT_FULL_SCAN) {
1481                 void *start = obj_ptr;
1482                 void *end = obj_ptr + object->size;
1483                 void *next;
1484
1485                 do {
1486                         next = min(start + MAX_SCAN_SIZE, end);
1487                         scan_block(start, next, object);
1488
1489                         start = next;
1490                         if (start >= end)
1491                                 break;
1492
1493                         raw_spin_unlock_irqrestore(&object->lock, flags);
1494                         cond_resched();
1495                         raw_spin_lock_irqsave(&object->lock, flags);
1496                 } while (object->flags & OBJECT_ALLOCATED);
1497         } else
1498                 hlist_for_each_entry(area, &object->area_list, node)
1499                         scan_block((void *)area->start,
1500                                    (void *)(area->start + area->size),
1501                                    object);
1502 out:
1503         raw_spin_unlock_irqrestore(&object->lock, flags);
1504 }
1505
1506 /*
1507  * Scan the objects already referenced (gray objects). More objects will be
1508  * referenced and, if there are no memory leaks, all the objects are scanned.
1509  */
1510 static void scan_gray_list(void)
1511 {
1512         struct kmemleak_object *object, *tmp;
1513
1514         /*
1515          * The list traversal is safe for both tail additions and removals
1516          * from inside the loop. The kmemleak objects cannot be freed from
1517          * outside the loop because their use_count was incremented.
1518          */
1519         object = list_entry(gray_list.next, typeof(*object), gray_list);
1520         while (&object->gray_list != &gray_list) {
1521                 cond_resched();
1522
1523                 /* may add new objects to the list */
1524                 if (!scan_should_stop())
1525                         scan_object(object);
1526
1527                 tmp = list_entry(object->gray_list.next, typeof(*object),
1528                                  gray_list);
1529
1530                 /* remove the object from the list and release it */
1531                 list_del(&object->gray_list);
1532                 put_object(object);
1533
1534                 object = tmp;
1535         }
1536         WARN_ON(!list_empty(&gray_list));
1537 }
1538
1539 /*
1540  * Conditionally call resched() in an object iteration loop while making sure
1541  * that the given object won't go away without RCU read lock by performing a
1542  * get_object() if necessaary.
1543  */
1544 static void kmemleak_cond_resched(struct kmemleak_object *object)
1545 {
1546         if (!get_object(object))
1547                 return; /* Try next object */
1548
1549         raw_spin_lock_irq(&kmemleak_lock);
1550         if (object->del_state & DELSTATE_REMOVED)
1551                 goto unlock_put;        /* Object removed */
1552         object->del_state |= DELSTATE_NO_DELETE;
1553         raw_spin_unlock_irq(&kmemleak_lock);
1554
1555         rcu_read_unlock();
1556         cond_resched();
1557         rcu_read_lock();
1558
1559         raw_spin_lock_irq(&kmemleak_lock);
1560         if (object->del_state & DELSTATE_REMOVED)
1561                 list_del_rcu(&object->object_list);
1562         object->del_state &= ~DELSTATE_NO_DELETE;
1563 unlock_put:
1564         raw_spin_unlock_irq(&kmemleak_lock);
1565         put_object(object);
1566 }
1567
1568 /*
1569  * Scan data sections and all the referenced memory blocks allocated via the
1570  * kernel's standard allocators. This function must be called with the
1571  * scan_mutex held.
1572  */
1573 static void kmemleak_scan(void)
1574 {
1575         struct kmemleak_object *object;
1576         struct zone *zone;
1577         int __maybe_unused i;
1578         int new_leaks = 0;
1579
1580         jiffies_last_scan = jiffies;
1581
1582         /* prepare the kmemleak_object's */
1583         rcu_read_lock();
1584         list_for_each_entry_rcu(object, &object_list, object_list) {
1585                 raw_spin_lock_irq(&object->lock);
1586 #ifdef DEBUG
1587                 /*
1588                  * With a few exceptions there should be a maximum of
1589                  * 1 reference to any object at this point.
1590                  */
1591                 if (atomic_read(&object->use_count) > 1) {
1592                         pr_debug("object->use_count = %d\n",
1593                                  atomic_read(&object->use_count));
1594                         dump_object_info(object);
1595                 }
1596 #endif
1597
1598                 /* ignore objects outside lowmem (paint them black) */
1599                 if ((object->flags & OBJECT_PHYS) &&
1600                    !(object->flags & OBJECT_NO_SCAN)) {
1601                         unsigned long phys = object->pointer;
1602
1603                         if (PHYS_PFN(phys) < min_low_pfn ||
1604                             PHYS_PFN(phys + object->size) >= max_low_pfn)
1605                                 __paint_it(object, KMEMLEAK_BLACK);
1606                 }
1607
1608                 /* reset the reference count (whiten the object) */
1609                 object->count = 0;
1610                 if (color_gray(object) && get_object(object))
1611                         list_add_tail(&object->gray_list, &gray_list);
1612
1613                 raw_spin_unlock_irq(&object->lock);
1614
1615                 if (need_resched())
1616                         kmemleak_cond_resched(object);
1617         }
1618         rcu_read_unlock();
1619
1620 #ifdef CONFIG_SMP
1621         /* per-cpu sections scanning */
1622         for_each_possible_cpu(i)
1623                 scan_large_block(__per_cpu_start + per_cpu_offset(i),
1624                                  __per_cpu_end + per_cpu_offset(i));
1625 #endif
1626
1627         /*
1628          * Struct page scanning for each node.
1629          */
1630         get_online_mems();
1631         for_each_populated_zone(zone) {
1632                 unsigned long start_pfn = zone->zone_start_pfn;
1633                 unsigned long end_pfn = zone_end_pfn(zone);
1634                 unsigned long pfn;
1635
1636                 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
1637                         struct page *page = pfn_to_online_page(pfn);
1638
1639                         if (!(pfn & 63))
1640                                 cond_resched();
1641
1642                         if (!page)
1643                                 continue;
1644
1645                         /* only scan pages belonging to this zone */
1646                         if (page_zone(page) != zone)
1647                                 continue;
1648                         /* only scan if page is in use */
1649                         if (page_count(page) == 0)
1650                                 continue;
1651                         scan_block(page, page + 1, NULL);
1652                 }
1653         }
1654         put_online_mems();
1655
1656         /*
1657          * Scanning the task stacks (may introduce false negatives).
1658          */
1659         if (kmemleak_stack_scan) {
1660                 struct task_struct *p, *g;
1661
1662                 rcu_read_lock();
1663                 for_each_process_thread(g, p) {
1664                         void *stack = try_get_task_stack(p);
1665                         if (stack) {
1666                                 scan_block(stack, stack + THREAD_SIZE, NULL);
1667                                 put_task_stack(p);
1668                         }
1669                 }
1670                 rcu_read_unlock();
1671         }
1672
1673         /*
1674          * Scan the objects already referenced from the sections scanned
1675          * above.
1676          */
1677         scan_gray_list();
1678
1679         /*
1680          * Check for new or unreferenced objects modified since the previous
1681          * scan and color them gray until the next scan.
1682          */
1683         rcu_read_lock();
1684         list_for_each_entry_rcu(object, &object_list, object_list) {
1685                 if (need_resched())
1686                         kmemleak_cond_resched(object);
1687
1688                 /*
1689                  * This is racy but we can save the overhead of lock/unlock
1690                  * calls. The missed objects, if any, should be caught in
1691                  * the next scan.
1692                  */
1693                 if (!color_white(object))
1694                         continue;
1695                 raw_spin_lock_irq(&object->lock);
1696                 if (color_white(object) && (object->flags & OBJECT_ALLOCATED)
1697                     && update_checksum(object) && get_object(object)) {
1698                         /* color it gray temporarily */
1699                         object->count = object->min_count;
1700                         list_add_tail(&object->gray_list, &gray_list);
1701                 }
1702                 raw_spin_unlock_irq(&object->lock);
1703         }
1704         rcu_read_unlock();
1705
1706         /*
1707          * Re-scan the gray list for modified unreferenced objects.
1708          */
1709         scan_gray_list();
1710
1711         /*
1712          * If scanning was stopped do not report any new unreferenced objects.
1713          */
1714         if (scan_should_stop())
1715                 return;
1716
1717         /*
1718          * Scanning result reporting.
1719          */
1720         rcu_read_lock();
1721         list_for_each_entry_rcu(object, &object_list, object_list) {
1722                 if (need_resched())
1723                         kmemleak_cond_resched(object);
1724
1725                 /*
1726                  * This is racy but we can save the overhead of lock/unlock
1727                  * calls. The missed objects, if any, should be caught in
1728                  * the next scan.
1729                  */
1730                 if (!color_white(object))
1731                         continue;
1732                 raw_spin_lock_irq(&object->lock);
1733                 if (unreferenced_object(object) &&
1734                     !(object->flags & OBJECT_REPORTED)) {
1735                         object->flags |= OBJECT_REPORTED;
1736
1737                         if (kmemleak_verbose)
1738                                 print_unreferenced(NULL, object);
1739
1740                         new_leaks++;
1741                 }
1742                 raw_spin_unlock_irq(&object->lock);
1743         }
1744         rcu_read_unlock();
1745
1746         if (new_leaks) {
1747                 kmemleak_found_leaks = true;
1748
1749                 pr_info("%d new suspected memory leaks (see /sys/kernel/debug/kmemleak)\n",
1750                         new_leaks);
1751         }
1752
1753 }
1754
1755 /*
1756  * Thread function performing automatic memory scanning. Unreferenced objects
1757  * at the end of a memory scan are reported but only the first time.
1758  */
1759 static int kmemleak_scan_thread(void *arg)
1760 {
1761         static int first_run = IS_ENABLED(CONFIG_DEBUG_KMEMLEAK_AUTO_SCAN);
1762
1763         pr_info("Automatic memory scanning thread started\n");
1764         set_user_nice(current, 10);
1765
1766         /*
1767          * Wait before the first scan to allow the system to fully initialize.
1768          */
1769         if (first_run) {
1770                 signed long timeout = msecs_to_jiffies(SECS_FIRST_SCAN * 1000);
1771                 first_run = 0;
1772                 while (timeout && !kthread_should_stop())
1773                         timeout = schedule_timeout_interruptible(timeout);
1774         }
1775
1776         while (!kthread_should_stop()) {
1777                 signed long timeout = READ_ONCE(jiffies_scan_wait);
1778
1779                 mutex_lock(&scan_mutex);
1780                 kmemleak_scan();
1781                 mutex_unlock(&scan_mutex);
1782
1783                 /* wait before the next scan */
1784                 while (timeout && !kthread_should_stop())
1785                         timeout = schedule_timeout_interruptible(timeout);
1786         }
1787
1788         pr_info("Automatic memory scanning thread ended\n");
1789
1790         return 0;
1791 }
1792
1793 /*
1794  * Start the automatic memory scanning thread. This function must be called
1795  * with the scan_mutex held.
1796  */
1797 static void start_scan_thread(void)
1798 {
1799         if (scan_thread)
1800                 return;
1801         scan_thread = kthread_run(kmemleak_scan_thread, NULL, "kmemleak");
1802         if (IS_ERR(scan_thread)) {
1803                 pr_warn("Failed to create the scan thread\n");
1804                 scan_thread = NULL;
1805         }
1806 }
1807
1808 /*
1809  * Stop the automatic memory scanning thread.
1810  */
1811 static void stop_scan_thread(void)
1812 {
1813         if (scan_thread) {
1814                 kthread_stop(scan_thread);
1815                 scan_thread = NULL;
1816         }
1817 }
1818
1819 /*
1820  * Iterate over the object_list and return the first valid object at or after
1821  * the required position with its use_count incremented. The function triggers
1822  * a memory scanning when the pos argument points to the first position.
1823  */
1824 static void *kmemleak_seq_start(struct seq_file *seq, loff_t *pos)
1825 {
1826         struct kmemleak_object *object;
1827         loff_t n = *pos;
1828         int err;
1829
1830         err = mutex_lock_interruptible(&scan_mutex);
1831         if (err < 0)
1832                 return ERR_PTR(err);
1833
1834         rcu_read_lock();
1835         list_for_each_entry_rcu(object, &object_list, object_list) {
1836                 if (n-- > 0)
1837                         continue;
1838                 if (get_object(object))
1839                         goto out;
1840         }
1841         object = NULL;
1842 out:
1843         return object;
1844 }
1845
1846 /*
1847  * Return the next object in the object_list. The function decrements the
1848  * use_count of the previous object and increases that of the next one.
1849  */
1850 static void *kmemleak_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1851 {
1852         struct kmemleak_object *prev_obj = v;
1853         struct kmemleak_object *next_obj = NULL;
1854         struct kmemleak_object *obj = prev_obj;
1855
1856         ++(*pos);
1857
1858         list_for_each_entry_continue_rcu(obj, &object_list, object_list) {
1859                 if (get_object(obj)) {
1860                         next_obj = obj;
1861                         break;
1862                 }
1863         }
1864
1865         put_object(prev_obj);
1866         return next_obj;
1867 }
1868
1869 /*
1870  * Decrement the use_count of the last object required, if any.
1871  */
1872 static void kmemleak_seq_stop(struct seq_file *seq, void *v)
1873 {
1874         if (!IS_ERR(v)) {
1875                 /*
1876                  * kmemleak_seq_start may return ERR_PTR if the scan_mutex
1877                  * waiting was interrupted, so only release it if !IS_ERR.
1878                  */
1879                 rcu_read_unlock();
1880                 mutex_unlock(&scan_mutex);
1881                 if (v)
1882                         put_object(v);
1883         }
1884 }
1885
1886 /*
1887  * Print the information for an unreferenced object to the seq file.
1888  */
1889 static int kmemleak_seq_show(struct seq_file *seq, void *v)
1890 {
1891         struct kmemleak_object *object = v;
1892         unsigned long flags;
1893
1894         raw_spin_lock_irqsave(&object->lock, flags);
1895         if ((object->flags & OBJECT_REPORTED) && unreferenced_object(object))
1896                 print_unreferenced(seq, object);
1897         raw_spin_unlock_irqrestore(&object->lock, flags);
1898         return 0;
1899 }
1900
1901 static const struct seq_operations kmemleak_seq_ops = {
1902         .start = kmemleak_seq_start,
1903         .next  = kmemleak_seq_next,
1904         .stop  = kmemleak_seq_stop,
1905         .show  = kmemleak_seq_show,
1906 };
1907
1908 static int kmemleak_open(struct inode *inode, struct file *file)
1909 {
1910         return seq_open(file, &kmemleak_seq_ops);
1911 }
1912
1913 static int dump_str_object_info(const char *str)
1914 {
1915         unsigned long flags;
1916         struct kmemleak_object *object;
1917         unsigned long addr;
1918
1919         if (kstrtoul(str, 0, &addr))
1920                 return -EINVAL;
1921         object = find_and_get_object(addr, 0);
1922         if (!object) {
1923                 pr_info("Unknown object at 0x%08lx\n", addr);
1924                 return -EINVAL;
1925         }
1926
1927         raw_spin_lock_irqsave(&object->lock, flags);
1928         dump_object_info(object);
1929         raw_spin_unlock_irqrestore(&object->lock, flags);
1930
1931         put_object(object);
1932         return 0;
1933 }
1934
1935 /*
1936  * We use grey instead of black to ensure we can do future scans on the same
1937  * objects. If we did not do future scans these black objects could
1938  * potentially contain references to newly allocated objects in the future and
1939  * we'd end up with false positives.
1940  */
1941 static void kmemleak_clear(void)
1942 {
1943         struct kmemleak_object *object;
1944
1945         rcu_read_lock();
1946         list_for_each_entry_rcu(object, &object_list, object_list) {
1947                 raw_spin_lock_irq(&object->lock);
1948                 if ((object->flags & OBJECT_REPORTED) &&
1949                     unreferenced_object(object))
1950                         __paint_it(object, KMEMLEAK_GREY);
1951                 raw_spin_unlock_irq(&object->lock);
1952         }
1953         rcu_read_unlock();
1954
1955         kmemleak_found_leaks = false;
1956 }
1957
1958 static void __kmemleak_do_cleanup(void);
1959
1960 /*
1961  * File write operation to configure kmemleak at run-time. The following
1962  * commands can be written to the /sys/kernel/debug/kmemleak file:
1963  *   off        - disable kmemleak (irreversible)
1964  *   stack=on   - enable the task stacks scanning
1965  *   stack=off  - disable the tasks stacks scanning
1966  *   scan=on    - start the automatic memory scanning thread
1967  *   scan=off   - stop the automatic memory scanning thread
1968  *   scan=...   - set the automatic memory scanning period in seconds (0 to
1969  *                disable it)
1970  *   scan       - trigger a memory scan
1971  *   clear      - mark all current reported unreferenced kmemleak objects as
1972  *                grey to ignore printing them, or free all kmemleak objects
1973  *                if kmemleak has been disabled.
1974  *   dump=...   - dump information about the object found at the given address
1975  */
1976 static ssize_t kmemleak_write(struct file *file, const char __user *user_buf,
1977                               size_t size, loff_t *ppos)
1978 {
1979         char buf[64];
1980         int buf_size;
1981         int ret;
1982
1983         buf_size = min(size, (sizeof(buf) - 1));
1984         if (strncpy_from_user(buf, user_buf, buf_size) < 0)
1985                 return -EFAULT;
1986         buf[buf_size] = 0;
1987
1988         ret = mutex_lock_interruptible(&scan_mutex);
1989         if (ret < 0)
1990                 return ret;
1991
1992         if (strncmp(buf, "clear", 5) == 0) {
1993                 if (kmemleak_enabled)
1994                         kmemleak_clear();
1995                 else
1996                         __kmemleak_do_cleanup();
1997                 goto out;
1998         }
1999
2000         if (!kmemleak_enabled) {
2001                 ret = -EPERM;
2002                 goto out;
2003         }
2004
2005         if (strncmp(buf, "off", 3) == 0)
2006                 kmemleak_disable();
2007         else if (strncmp(buf, "stack=on", 8) == 0)
2008                 kmemleak_stack_scan = 1;
2009         else if (strncmp(buf, "stack=off", 9) == 0)
2010                 kmemleak_stack_scan = 0;
2011         else if (strncmp(buf, "scan=on", 7) == 0)
2012                 start_scan_thread();
2013         else if (strncmp(buf, "scan=off", 8) == 0)
2014                 stop_scan_thread();
2015         else if (strncmp(buf, "scan=", 5) == 0) {
2016                 unsigned secs;
2017                 unsigned long msecs;
2018
2019                 ret = kstrtouint(buf + 5, 0, &secs);
2020                 if (ret < 0)
2021                         goto out;
2022
2023                 msecs = secs * MSEC_PER_SEC;
2024                 if (msecs > UINT_MAX)
2025                         msecs = UINT_MAX;
2026
2027                 stop_scan_thread();
2028                 if (msecs) {
2029                         WRITE_ONCE(jiffies_scan_wait, msecs_to_jiffies(msecs));
2030                         start_scan_thread();
2031                 }
2032         } else if (strncmp(buf, "scan", 4) == 0)
2033                 kmemleak_scan();
2034         else if (strncmp(buf, "dump=", 5) == 0)
2035                 ret = dump_str_object_info(buf + 5);
2036         else
2037                 ret = -EINVAL;
2038
2039 out:
2040         mutex_unlock(&scan_mutex);
2041         if (ret < 0)
2042                 return ret;
2043
2044         /* ignore the rest of the buffer, only one command at a time */
2045         *ppos += size;
2046         return size;
2047 }
2048
2049 static const struct file_operations kmemleak_fops = {
2050         .owner          = THIS_MODULE,
2051         .open           = kmemleak_open,
2052         .read           = seq_read,
2053         .write          = kmemleak_write,
2054         .llseek         = seq_lseek,
2055         .release        = seq_release,
2056 };
2057
2058 static void __kmemleak_do_cleanup(void)
2059 {
2060         struct kmemleak_object *object, *tmp;
2061
2062         /*
2063          * Kmemleak has already been disabled, no need for RCU list traversal
2064          * or kmemleak_lock held.
2065          */
2066         list_for_each_entry_safe(object, tmp, &object_list, object_list) {
2067                 __remove_object(object);
2068                 __delete_object(object);
2069         }
2070 }
2071
2072 /*
2073  * Stop the memory scanning thread and free the kmemleak internal objects if
2074  * no previous scan thread (otherwise, kmemleak may still have some useful
2075  * information on memory leaks).
2076  */
2077 static void kmemleak_do_cleanup(struct work_struct *work)
2078 {
2079         stop_scan_thread();
2080
2081         mutex_lock(&scan_mutex);
2082         /*
2083          * Once it is made sure that kmemleak_scan has stopped, it is safe to no
2084          * longer track object freeing. Ordering of the scan thread stopping and
2085          * the memory accesses below is guaranteed by the kthread_stop()
2086          * function.
2087          */
2088         kmemleak_free_enabled = 0;
2089         mutex_unlock(&scan_mutex);
2090
2091         if (!kmemleak_found_leaks)
2092                 __kmemleak_do_cleanup();
2093         else
2094                 pr_info("Kmemleak disabled without freeing internal data. Reclaim the memory with \"echo clear > /sys/kernel/debug/kmemleak\".\n");
2095 }
2096
2097 static DECLARE_WORK(cleanup_work, kmemleak_do_cleanup);
2098
2099 /*
2100  * Disable kmemleak. No memory allocation/freeing will be traced once this
2101  * function is called. Disabling kmemleak is an irreversible operation.
2102  */
2103 static void kmemleak_disable(void)
2104 {
2105         /* atomically check whether it was already invoked */
2106         if (cmpxchg(&kmemleak_error, 0, 1))
2107                 return;
2108
2109         /* stop any memory operation tracing */
2110         kmemleak_enabled = 0;
2111
2112         /* check whether it is too early for a kernel thread */
2113         if (kmemleak_late_initialized)
2114                 schedule_work(&cleanup_work);
2115         else
2116                 kmemleak_free_enabled = 0;
2117
2118         pr_info("Kernel memory leak detector disabled\n");
2119 }
2120
2121 /*
2122  * Allow boot-time kmemleak disabling (enabled by default).
2123  */
2124 static int __init kmemleak_boot_config(char *str)
2125 {
2126         if (!str)
2127                 return -EINVAL;
2128         if (strcmp(str, "off") == 0)
2129                 kmemleak_disable();
2130         else if (strcmp(str, "on") == 0) {
2131                 kmemleak_skip_disable = 1;
2132                 stack_depot_request_early_init();
2133         }
2134         else
2135                 return -EINVAL;
2136         return 0;
2137 }
2138 early_param("kmemleak", kmemleak_boot_config);
2139
2140 /*
2141  * Kmemleak initialization.
2142  */
2143 void __init kmemleak_init(void)
2144 {
2145 #ifdef CONFIG_DEBUG_KMEMLEAK_DEFAULT_OFF
2146         if (!kmemleak_skip_disable) {
2147                 kmemleak_disable();
2148                 return;
2149         }
2150 #endif
2151
2152         if (kmemleak_error)
2153                 return;
2154
2155         jiffies_min_age = msecs_to_jiffies(MSECS_MIN_AGE);
2156         jiffies_scan_wait = msecs_to_jiffies(SECS_SCAN_WAIT * 1000);
2157
2158         object_cache = KMEM_CACHE(kmemleak_object, SLAB_NOLEAKTRACE);
2159         scan_area_cache = KMEM_CACHE(kmemleak_scan_area, SLAB_NOLEAKTRACE);
2160
2161         /* register the data/bss sections */
2162         create_object((unsigned long)_sdata, _edata - _sdata,
2163                       KMEMLEAK_GREY, GFP_ATOMIC);
2164         create_object((unsigned long)__bss_start, __bss_stop - __bss_start,
2165                       KMEMLEAK_GREY, GFP_ATOMIC);
2166         /* only register .data..ro_after_init if not within .data */
2167         if (&__start_ro_after_init < &_sdata || &__end_ro_after_init > &_edata)
2168                 create_object((unsigned long)__start_ro_after_init,
2169                               __end_ro_after_init - __start_ro_after_init,
2170                               KMEMLEAK_GREY, GFP_ATOMIC);
2171 }
2172
2173 /*
2174  * Late initialization function.
2175  */
2176 static int __init kmemleak_late_init(void)
2177 {
2178         kmemleak_late_initialized = 1;
2179
2180         debugfs_create_file("kmemleak", 0644, NULL, NULL, &kmemleak_fops);
2181
2182         if (kmemleak_error) {
2183                 /*
2184                  * Some error occurred and kmemleak was disabled. There is a
2185                  * small chance that kmemleak_disable() was called immediately
2186                  * after setting kmemleak_late_initialized and we may end up with
2187                  * two clean-up threads but serialized by scan_mutex.
2188                  */
2189                 schedule_work(&cleanup_work);
2190                 return -ENOMEM;
2191         }
2192
2193         if (IS_ENABLED(CONFIG_DEBUG_KMEMLEAK_AUTO_SCAN)) {
2194                 mutex_lock(&scan_mutex);
2195                 start_scan_thread();
2196                 mutex_unlock(&scan_mutex);
2197         }
2198
2199         pr_info("Kernel memory leak detector initialized (mem pool available: %d)\n",
2200                 mem_pool_free_count);
2201
2202         return 0;
2203 }
2204 late_initcall(kmemleak_late_init);