Merge tag 'mips_fixes_5.1_2' of git://git.kernel.org/pub/scm/linux/kernel/git/mips...
[linux-2.6-microblaze.git] / mm / kmemleak.c
1 /*
2  * mm/kmemleak.c
3  *
4  * Copyright (C) 2008 ARM Limited
5  * Written by Catalin Marinas <catalin.marinas@arm.com>
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, write to the Free Software
18  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
19  *
20  *
21  * For more information on the algorithm and kmemleak usage, please see
22  * Documentation/dev-tools/kmemleak.rst.
23  *
24  * Notes on locking
25  * ----------------
26  *
27  * The following locks and mutexes are used by kmemleak:
28  *
29  * - kmemleak_lock (rwlock): protects the object_list modifications and
30  *   accesses to the object_tree_root. The object_list is the main list
31  *   holding the metadata (struct kmemleak_object) for the allocated memory
32  *   blocks. The object_tree_root is a red black tree used to look-up
33  *   metadata based on a pointer to the corresponding memory block.  The
34  *   kmemleak_object structures are added to the object_list and
35  *   object_tree_root in the create_object() function called from the
36  *   kmemleak_alloc() callback and removed in delete_object() called from the
37  *   kmemleak_free() callback
38  * - kmemleak_object.lock (spinlock): protects a kmemleak_object. Accesses to
39  *   the metadata (e.g. count) are protected by this lock. Note that some
40  *   members of this structure may be protected by other means (atomic or
41  *   kmemleak_lock). This lock is also held when scanning the corresponding
42  *   memory block to avoid the kernel freeing it via the kmemleak_free()
43  *   callback. This is less heavyweight than holding a global lock like
44  *   kmemleak_lock during scanning
45  * - scan_mutex (mutex): ensures that only one thread may scan the memory for
46  *   unreferenced objects at a time. The gray_list contains the objects which
47  *   are already referenced or marked as false positives and need to be
48  *   scanned. This list is only modified during a scanning episode when the
49  *   scan_mutex is held. At the end of a scan, the gray_list is always empty.
50  *   Note that the kmemleak_object.use_count is incremented when an object is
51  *   added to the gray_list and therefore cannot be freed. This mutex also
52  *   prevents multiple users of the "kmemleak" debugfs file together with
53  *   modifications to the memory scanning parameters including the scan_thread
54  *   pointer
55  *
56  * Locks and mutexes are acquired/nested in the following order:
57  *
58  *   scan_mutex [-> object->lock] -> kmemleak_lock -> other_object->lock (SINGLE_DEPTH_NESTING)
59  *
60  * No kmemleak_lock and object->lock nesting is allowed outside scan_mutex
61  * regions.
62  *
63  * The kmemleak_object structures have a use_count incremented or decremented
64  * using the get_object()/put_object() functions. When the use_count becomes
65  * 0, this count can no longer be incremented and put_object() schedules the
66  * kmemleak_object freeing via an RCU callback. All calls to the get_object()
67  * function must be protected by rcu_read_lock() to avoid accessing a freed
68  * structure.
69  */
70
71 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
72
73 #include <linux/init.h>
74 #include <linux/kernel.h>
75 #include <linux/list.h>
76 #include <linux/sched/signal.h>
77 #include <linux/sched/task.h>
78 #include <linux/sched/task_stack.h>
79 #include <linux/jiffies.h>
80 #include <linux/delay.h>
81 #include <linux/export.h>
82 #include <linux/kthread.h>
83 #include <linux/rbtree.h>
84 #include <linux/fs.h>
85 #include <linux/debugfs.h>
86 #include <linux/seq_file.h>
87 #include <linux/cpumask.h>
88 #include <linux/spinlock.h>
89 #include <linux/module.h>
90 #include <linux/mutex.h>
91 #include <linux/rcupdate.h>
92 #include <linux/stacktrace.h>
93 #include <linux/cache.h>
94 #include <linux/percpu.h>
95 #include <linux/memblock.h>
96 #include <linux/pfn.h>
97 #include <linux/mmzone.h>
98 #include <linux/slab.h>
99 #include <linux/thread_info.h>
100 #include <linux/err.h>
101 #include <linux/uaccess.h>
102 #include <linux/string.h>
103 #include <linux/nodemask.h>
104 #include <linux/mm.h>
105 #include <linux/workqueue.h>
106 #include <linux/crc32.h>
107
108 #include <asm/sections.h>
109 #include <asm/processor.h>
110 #include <linux/atomic.h>
111
112 #include <linux/kasan.h>
113 #include <linux/kmemleak.h>
114 #include <linux/memory_hotplug.h>
115
116 /*
117  * Kmemleak configuration and common defines.
118  */
119 #define MAX_TRACE               16      /* stack trace length */
120 #define MSECS_MIN_AGE           5000    /* minimum object age for reporting */
121 #define SECS_FIRST_SCAN         60      /* delay before the first scan */
122 #define SECS_SCAN_WAIT          600     /* subsequent auto scanning delay */
123 #define MAX_SCAN_SIZE           4096    /* maximum size of a scanned block */
124
125 #define BYTES_PER_POINTER       sizeof(void *)
126
127 /* GFP bitmask for kmemleak internal allocations */
128 #define gfp_kmemleak_mask(gfp)  (((gfp) & (GFP_KERNEL | GFP_ATOMIC)) | \
129                                  __GFP_NORETRY | __GFP_NOMEMALLOC | \
130                                  __GFP_NOWARN | __GFP_NOFAIL)
131
132 /* scanning area inside a memory block */
133 struct kmemleak_scan_area {
134         struct hlist_node node;
135         unsigned long start;
136         size_t size;
137 };
138
139 #define KMEMLEAK_GREY   0
140 #define KMEMLEAK_BLACK  -1
141
142 /*
143  * Structure holding the metadata for each allocated memory block.
144  * Modifications to such objects should be made while holding the
145  * object->lock. Insertions or deletions from object_list, gray_list or
146  * rb_node are already protected by the corresponding locks or mutex (see
147  * the notes on locking above). These objects are reference-counted
148  * (use_count) and freed using the RCU mechanism.
149  */
150 struct kmemleak_object {
151         spinlock_t lock;
152         unsigned int flags;             /* object status flags */
153         struct list_head object_list;
154         struct list_head gray_list;
155         struct rb_node rb_node;
156         struct rcu_head rcu;            /* object_list lockless traversal */
157         /* object usage count; object freed when use_count == 0 */
158         atomic_t use_count;
159         unsigned long pointer;
160         size_t size;
161         /* pass surplus references to this pointer */
162         unsigned long excess_ref;
163         /* minimum number of a pointers found before it is considered leak */
164         int min_count;
165         /* the total number of pointers found pointing to this object */
166         int count;
167         /* checksum for detecting modified objects */
168         u32 checksum;
169         /* memory ranges to be scanned inside an object (empty for all) */
170         struct hlist_head area_list;
171         unsigned long trace[MAX_TRACE];
172         unsigned int trace_len;
173         unsigned long jiffies;          /* creation timestamp */
174         pid_t pid;                      /* pid of the current task */
175         char comm[TASK_COMM_LEN];       /* executable name */
176 };
177
178 /* flag representing the memory block allocation status */
179 #define OBJECT_ALLOCATED        (1 << 0)
180 /* flag set after the first reporting of an unreference object */
181 #define OBJECT_REPORTED         (1 << 1)
182 /* flag set to not scan the object */
183 #define OBJECT_NO_SCAN          (1 << 2)
184
185 #define HEX_PREFIX              "    "
186 /* number of bytes to print per line; must be 16 or 32 */
187 #define HEX_ROW_SIZE            16
188 /* number of bytes to print at a time (1, 2, 4, 8) */
189 #define HEX_GROUP_SIZE          1
190 /* include ASCII after the hex output */
191 #define HEX_ASCII               1
192 /* max number of lines to be printed */
193 #define HEX_MAX_LINES           2
194
195 /* the list of all allocated objects */
196 static LIST_HEAD(object_list);
197 /* the list of gray-colored objects (see color_gray comment below) */
198 static LIST_HEAD(gray_list);
199 /* search tree for object boundaries */
200 static struct rb_root object_tree_root = RB_ROOT;
201 /* rw_lock protecting the access to object_list and object_tree_root */
202 static DEFINE_RWLOCK(kmemleak_lock);
203
204 /* allocation caches for kmemleak internal data */
205 static struct kmem_cache *object_cache;
206 static struct kmem_cache *scan_area_cache;
207
208 /* set if tracing memory operations is enabled */
209 static int kmemleak_enabled;
210 /* same as above but only for the kmemleak_free() callback */
211 static int kmemleak_free_enabled;
212 /* set in the late_initcall if there were no errors */
213 static int kmemleak_initialized;
214 /* enables or disables early logging of the memory operations */
215 static int kmemleak_early_log = 1;
216 /* set if a kmemleak warning was issued */
217 static int kmemleak_warning;
218 /* set if a fatal kmemleak error has occurred */
219 static int kmemleak_error;
220
221 /* minimum and maximum address that may be valid pointers */
222 static unsigned long min_addr = ULONG_MAX;
223 static unsigned long max_addr;
224
225 static struct task_struct *scan_thread;
226 /* used to avoid reporting of recently allocated objects */
227 static unsigned long jiffies_min_age;
228 static unsigned long jiffies_last_scan;
229 /* delay between automatic memory scannings */
230 static signed long jiffies_scan_wait;
231 /* enables or disables the task stacks scanning */
232 static int kmemleak_stack_scan = 1;
233 /* protects the memory scanning, parameters and debug/kmemleak file access */
234 static DEFINE_MUTEX(scan_mutex);
235 /* setting kmemleak=on, will set this var, skipping the disable */
236 static int kmemleak_skip_disable;
237 /* If there are leaks that can be reported */
238 static bool kmemleak_found_leaks;
239
240 static bool kmemleak_verbose;
241 module_param_named(verbose, kmemleak_verbose, bool, 0600);
242
243 /*
244  * Early object allocation/freeing logging. Kmemleak is initialized after the
245  * kernel allocator. However, both the kernel allocator and kmemleak may
246  * allocate memory blocks which need to be tracked. Kmemleak defines an
247  * arbitrary buffer to hold the allocation/freeing information before it is
248  * fully initialized.
249  */
250
251 /* kmemleak operation type for early logging */
252 enum {
253         KMEMLEAK_ALLOC,
254         KMEMLEAK_ALLOC_PERCPU,
255         KMEMLEAK_FREE,
256         KMEMLEAK_FREE_PART,
257         KMEMLEAK_FREE_PERCPU,
258         KMEMLEAK_NOT_LEAK,
259         KMEMLEAK_IGNORE,
260         KMEMLEAK_SCAN_AREA,
261         KMEMLEAK_NO_SCAN,
262         KMEMLEAK_SET_EXCESS_REF
263 };
264
265 /*
266  * Structure holding the information passed to kmemleak callbacks during the
267  * early logging.
268  */
269 struct early_log {
270         int op_type;                    /* kmemleak operation type */
271         int min_count;                  /* minimum reference count */
272         const void *ptr;                /* allocated/freed memory block */
273         union {
274                 size_t size;            /* memory block size */
275                 unsigned long excess_ref; /* surplus reference passing */
276         };
277         unsigned long trace[MAX_TRACE]; /* stack trace */
278         unsigned int trace_len;         /* stack trace length */
279 };
280
281 /* early logging buffer and current position */
282 static struct early_log
283         early_log[CONFIG_DEBUG_KMEMLEAK_EARLY_LOG_SIZE] __initdata;
284 static int crt_early_log __initdata;
285
286 static void kmemleak_disable(void);
287
288 /*
289  * Print a warning and dump the stack trace.
290  */
291 #define kmemleak_warn(x...)     do {            \
292         pr_warn(x);                             \
293         dump_stack();                           \
294         kmemleak_warning = 1;                   \
295 } while (0)
296
297 /*
298  * Macro invoked when a serious kmemleak condition occurred and cannot be
299  * recovered from. Kmemleak will be disabled and further allocation/freeing
300  * tracing no longer available.
301  */
302 #define kmemleak_stop(x...)     do {    \
303         kmemleak_warn(x);               \
304         kmemleak_disable();             \
305 } while (0)
306
307 #define warn_or_seq_printf(seq, fmt, ...)       do {    \
308         if (seq)                                        \
309                 seq_printf(seq, fmt, ##__VA_ARGS__);    \
310         else                                            \
311                 pr_warn(fmt, ##__VA_ARGS__);            \
312 } while (0)
313
314 static void warn_or_seq_hex_dump(struct seq_file *seq, int prefix_type,
315                                  int rowsize, int groupsize, const void *buf,
316                                  size_t len, bool ascii)
317 {
318         if (seq)
319                 seq_hex_dump(seq, HEX_PREFIX, prefix_type, rowsize, groupsize,
320                              buf, len, ascii);
321         else
322                 print_hex_dump(KERN_WARNING, pr_fmt(HEX_PREFIX), prefix_type,
323                                rowsize, groupsize, buf, len, ascii);
324 }
325
326 /*
327  * Printing of the objects hex dump to the seq file. The number of lines to be
328  * printed is limited to HEX_MAX_LINES to prevent seq file spamming. The
329  * actual number of printed bytes depends on HEX_ROW_SIZE. It must be called
330  * with the object->lock held.
331  */
332 static void hex_dump_object(struct seq_file *seq,
333                             struct kmemleak_object *object)
334 {
335         const u8 *ptr = (const u8 *)object->pointer;
336         size_t len;
337
338         /* limit the number of lines to HEX_MAX_LINES */
339         len = min_t(size_t, object->size, HEX_MAX_LINES * HEX_ROW_SIZE);
340
341         warn_or_seq_printf(seq, "  hex dump (first %zu bytes):\n", len);
342         kasan_disable_current();
343         warn_or_seq_hex_dump(seq, DUMP_PREFIX_NONE, HEX_ROW_SIZE,
344                              HEX_GROUP_SIZE, ptr, len, HEX_ASCII);
345         kasan_enable_current();
346 }
347
348 /*
349  * Object colors, encoded with count and min_count:
350  * - white - orphan object, not enough references to it (count < min_count)
351  * - gray  - not orphan, not marked as false positive (min_count == 0) or
352  *              sufficient references to it (count >= min_count)
353  * - black - ignore, it doesn't contain references (e.g. text section)
354  *              (min_count == -1). No function defined for this color.
355  * Newly created objects don't have any color assigned (object->count == -1)
356  * before the next memory scan when they become white.
357  */
358 static bool color_white(const struct kmemleak_object *object)
359 {
360         return object->count != KMEMLEAK_BLACK &&
361                 object->count < object->min_count;
362 }
363
364 static bool color_gray(const struct kmemleak_object *object)
365 {
366         return object->min_count != KMEMLEAK_BLACK &&
367                 object->count >= object->min_count;
368 }
369
370 /*
371  * Objects are considered unreferenced only if their color is white, they have
372  * not be deleted and have a minimum age to avoid false positives caused by
373  * pointers temporarily stored in CPU registers.
374  */
375 static bool unreferenced_object(struct kmemleak_object *object)
376 {
377         return (color_white(object) && object->flags & OBJECT_ALLOCATED) &&
378                 time_before_eq(object->jiffies + jiffies_min_age,
379                                jiffies_last_scan);
380 }
381
382 /*
383  * Printing of the unreferenced objects information to the seq file. The
384  * print_unreferenced function must be called with the object->lock held.
385  */
386 static void print_unreferenced(struct seq_file *seq,
387                                struct kmemleak_object *object)
388 {
389         int i;
390         unsigned int msecs_age = jiffies_to_msecs(jiffies - object->jiffies);
391
392         warn_or_seq_printf(seq, "unreferenced object 0x%08lx (size %zu):\n",
393                    object->pointer, object->size);
394         warn_or_seq_printf(seq, "  comm \"%s\", pid %d, jiffies %lu (age %d.%03ds)\n",
395                    object->comm, object->pid, object->jiffies,
396                    msecs_age / 1000, msecs_age % 1000);
397         hex_dump_object(seq, object);
398         warn_or_seq_printf(seq, "  backtrace:\n");
399
400         for (i = 0; i < object->trace_len; i++) {
401                 void *ptr = (void *)object->trace[i];
402                 warn_or_seq_printf(seq, "    [<%p>] %pS\n", ptr, ptr);
403         }
404 }
405
406 /*
407  * Print the kmemleak_object information. This function is used mainly for
408  * debugging special cases when kmemleak operations. It must be called with
409  * the object->lock held.
410  */
411 static void dump_object_info(struct kmemleak_object *object)
412 {
413         struct stack_trace trace;
414
415         trace.nr_entries = object->trace_len;
416         trace.entries = object->trace;
417
418         pr_notice("Object 0x%08lx (size %zu):\n",
419                   object->pointer, object->size);
420         pr_notice("  comm \"%s\", pid %d, jiffies %lu\n",
421                   object->comm, object->pid, object->jiffies);
422         pr_notice("  min_count = %d\n", object->min_count);
423         pr_notice("  count = %d\n", object->count);
424         pr_notice("  flags = 0x%x\n", object->flags);
425         pr_notice("  checksum = %u\n", object->checksum);
426         pr_notice("  backtrace:\n");
427         print_stack_trace(&trace, 4);
428 }
429
430 /*
431  * Look-up a memory block metadata (kmemleak_object) in the object search
432  * tree based on a pointer value. If alias is 0, only values pointing to the
433  * beginning of the memory block are allowed. The kmemleak_lock must be held
434  * when calling this function.
435  */
436 static struct kmemleak_object *lookup_object(unsigned long ptr, int alias)
437 {
438         struct rb_node *rb = object_tree_root.rb_node;
439
440         while (rb) {
441                 struct kmemleak_object *object =
442                         rb_entry(rb, struct kmemleak_object, rb_node);
443                 if (ptr < object->pointer)
444                         rb = object->rb_node.rb_left;
445                 else if (object->pointer + object->size <= ptr)
446                         rb = object->rb_node.rb_right;
447                 else if (object->pointer == ptr || alias)
448                         return object;
449                 else {
450                         kmemleak_warn("Found object by alias at 0x%08lx\n",
451                                       ptr);
452                         dump_object_info(object);
453                         break;
454                 }
455         }
456         return NULL;
457 }
458
459 /*
460  * Increment the object use_count. Return 1 if successful or 0 otherwise. Note
461  * that once an object's use_count reached 0, the RCU freeing was already
462  * registered and the object should no longer be used. This function must be
463  * called under the protection of rcu_read_lock().
464  */
465 static int get_object(struct kmemleak_object *object)
466 {
467         return atomic_inc_not_zero(&object->use_count);
468 }
469
470 /*
471  * RCU callback to free a kmemleak_object.
472  */
473 static void free_object_rcu(struct rcu_head *rcu)
474 {
475         struct hlist_node *tmp;
476         struct kmemleak_scan_area *area;
477         struct kmemleak_object *object =
478                 container_of(rcu, struct kmemleak_object, rcu);
479
480         /*
481          * Once use_count is 0 (guaranteed by put_object), there is no other
482          * code accessing this object, hence no need for locking.
483          */
484         hlist_for_each_entry_safe(area, tmp, &object->area_list, node) {
485                 hlist_del(&area->node);
486                 kmem_cache_free(scan_area_cache, area);
487         }
488         kmem_cache_free(object_cache, object);
489 }
490
491 /*
492  * Decrement the object use_count. Once the count is 0, free the object using
493  * an RCU callback. Since put_object() may be called via the kmemleak_free() ->
494  * delete_object() path, the delayed RCU freeing ensures that there is no
495  * recursive call to the kernel allocator. Lock-less RCU object_list traversal
496  * is also possible.
497  */
498 static void put_object(struct kmemleak_object *object)
499 {
500         if (!atomic_dec_and_test(&object->use_count))
501                 return;
502
503         /* should only get here after delete_object was called */
504         WARN_ON(object->flags & OBJECT_ALLOCATED);
505
506         call_rcu(&object->rcu, free_object_rcu);
507 }
508
509 /*
510  * Look up an object in the object search tree and increase its use_count.
511  */
512 static struct kmemleak_object *find_and_get_object(unsigned long ptr, int alias)
513 {
514         unsigned long flags;
515         struct kmemleak_object *object;
516
517         rcu_read_lock();
518         read_lock_irqsave(&kmemleak_lock, flags);
519         object = lookup_object(ptr, alias);
520         read_unlock_irqrestore(&kmemleak_lock, flags);
521
522         /* check whether the object is still available */
523         if (object && !get_object(object))
524                 object = NULL;
525         rcu_read_unlock();
526
527         return object;
528 }
529
530 /*
531  * Look up an object in the object search tree and remove it from both
532  * object_tree_root and object_list. The returned object's use_count should be
533  * at least 1, as initially set by create_object().
534  */
535 static struct kmemleak_object *find_and_remove_object(unsigned long ptr, int alias)
536 {
537         unsigned long flags;
538         struct kmemleak_object *object;
539
540         write_lock_irqsave(&kmemleak_lock, flags);
541         object = lookup_object(ptr, alias);
542         if (object) {
543                 rb_erase(&object->rb_node, &object_tree_root);
544                 list_del_rcu(&object->object_list);
545         }
546         write_unlock_irqrestore(&kmemleak_lock, flags);
547
548         return object;
549 }
550
551 /*
552  * Save stack trace to the given array of MAX_TRACE size.
553  */
554 static int __save_stack_trace(unsigned long *trace)
555 {
556         struct stack_trace stack_trace;
557
558         stack_trace.max_entries = MAX_TRACE;
559         stack_trace.nr_entries = 0;
560         stack_trace.entries = trace;
561         stack_trace.skip = 2;
562         save_stack_trace(&stack_trace);
563
564         return stack_trace.nr_entries;
565 }
566
567 /*
568  * Create the metadata (struct kmemleak_object) corresponding to an allocated
569  * memory block and add it to the object_list and object_tree_root.
570  */
571 static struct kmemleak_object *create_object(unsigned long ptr, size_t size,
572                                              int min_count, gfp_t gfp)
573 {
574         unsigned long flags;
575         struct kmemleak_object *object, *parent;
576         struct rb_node **link, *rb_parent;
577         unsigned long untagged_ptr;
578
579         object = kmem_cache_alloc(object_cache, gfp_kmemleak_mask(gfp));
580         if (!object) {
581                 pr_warn("Cannot allocate a kmemleak_object structure\n");
582                 kmemleak_disable();
583                 return NULL;
584         }
585
586         INIT_LIST_HEAD(&object->object_list);
587         INIT_LIST_HEAD(&object->gray_list);
588         INIT_HLIST_HEAD(&object->area_list);
589         spin_lock_init(&object->lock);
590         atomic_set(&object->use_count, 1);
591         object->flags = OBJECT_ALLOCATED;
592         object->pointer = ptr;
593         object->size = size;
594         object->excess_ref = 0;
595         object->min_count = min_count;
596         object->count = 0;                      /* white color initially */
597         object->jiffies = jiffies;
598         object->checksum = 0;
599
600         /* task information */
601         if (in_irq()) {
602                 object->pid = 0;
603                 strncpy(object->comm, "hardirq", sizeof(object->comm));
604         } else if (in_softirq()) {
605                 object->pid = 0;
606                 strncpy(object->comm, "softirq", sizeof(object->comm));
607         } else {
608                 object->pid = current->pid;
609                 /*
610                  * There is a small chance of a race with set_task_comm(),
611                  * however using get_task_comm() here may cause locking
612                  * dependency issues with current->alloc_lock. In the worst
613                  * case, the command line is not correct.
614                  */
615                 strncpy(object->comm, current->comm, sizeof(object->comm));
616         }
617
618         /* kernel backtrace */
619         object->trace_len = __save_stack_trace(object->trace);
620
621         write_lock_irqsave(&kmemleak_lock, flags);
622
623         untagged_ptr = (unsigned long)kasan_reset_tag((void *)ptr);
624         min_addr = min(min_addr, untagged_ptr);
625         max_addr = max(max_addr, untagged_ptr + size);
626         link = &object_tree_root.rb_node;
627         rb_parent = NULL;
628         while (*link) {
629                 rb_parent = *link;
630                 parent = rb_entry(rb_parent, struct kmemleak_object, rb_node);
631                 if (ptr + size <= parent->pointer)
632                         link = &parent->rb_node.rb_left;
633                 else if (parent->pointer + parent->size <= ptr)
634                         link = &parent->rb_node.rb_right;
635                 else {
636                         kmemleak_stop("Cannot insert 0x%lx into the object search tree (overlaps existing)\n",
637                                       ptr);
638                         /*
639                          * No need for parent->lock here since "parent" cannot
640                          * be freed while the kmemleak_lock is held.
641                          */
642                         dump_object_info(parent);
643                         kmem_cache_free(object_cache, object);
644                         object = NULL;
645                         goto out;
646                 }
647         }
648         rb_link_node(&object->rb_node, rb_parent, link);
649         rb_insert_color(&object->rb_node, &object_tree_root);
650
651         list_add_tail_rcu(&object->object_list, &object_list);
652 out:
653         write_unlock_irqrestore(&kmemleak_lock, flags);
654         return object;
655 }
656
657 /*
658  * Mark the object as not allocated and schedule RCU freeing via put_object().
659  */
660 static void __delete_object(struct kmemleak_object *object)
661 {
662         unsigned long flags;
663
664         WARN_ON(!(object->flags & OBJECT_ALLOCATED));
665         WARN_ON(atomic_read(&object->use_count) < 1);
666
667         /*
668          * Locking here also ensures that the corresponding memory block
669          * cannot be freed when it is being scanned.
670          */
671         spin_lock_irqsave(&object->lock, flags);
672         object->flags &= ~OBJECT_ALLOCATED;
673         spin_unlock_irqrestore(&object->lock, flags);
674         put_object(object);
675 }
676
677 /*
678  * Look up the metadata (struct kmemleak_object) corresponding to ptr and
679  * delete it.
680  */
681 static void delete_object_full(unsigned long ptr)
682 {
683         struct kmemleak_object *object;
684
685         object = find_and_remove_object(ptr, 0);
686         if (!object) {
687 #ifdef DEBUG
688                 kmemleak_warn("Freeing unknown object at 0x%08lx\n",
689                               ptr);
690 #endif
691                 return;
692         }
693         __delete_object(object);
694 }
695
696 /*
697  * Look up the metadata (struct kmemleak_object) corresponding to ptr and
698  * delete it. If the memory block is partially freed, the function may create
699  * additional metadata for the remaining parts of the block.
700  */
701 static void delete_object_part(unsigned long ptr, size_t size)
702 {
703         struct kmemleak_object *object;
704         unsigned long start, end;
705
706         object = find_and_remove_object(ptr, 1);
707         if (!object) {
708 #ifdef DEBUG
709                 kmemleak_warn("Partially freeing unknown object at 0x%08lx (size %zu)\n",
710                               ptr, size);
711 #endif
712                 return;
713         }
714
715         /*
716          * Create one or two objects that may result from the memory block
717          * split. Note that partial freeing is only done by free_bootmem() and
718          * this happens before kmemleak_init() is called. The path below is
719          * only executed during early log recording in kmemleak_init(), so
720          * GFP_KERNEL is enough.
721          */
722         start = object->pointer;
723         end = object->pointer + object->size;
724         if (ptr > start)
725                 create_object(start, ptr - start, object->min_count,
726                               GFP_KERNEL);
727         if (ptr + size < end)
728                 create_object(ptr + size, end - ptr - size, object->min_count,
729                               GFP_KERNEL);
730
731         __delete_object(object);
732 }
733
734 static void __paint_it(struct kmemleak_object *object, int color)
735 {
736         object->min_count = color;
737         if (color == KMEMLEAK_BLACK)
738                 object->flags |= OBJECT_NO_SCAN;
739 }
740
741 static void paint_it(struct kmemleak_object *object, int color)
742 {
743         unsigned long flags;
744
745         spin_lock_irqsave(&object->lock, flags);
746         __paint_it(object, color);
747         spin_unlock_irqrestore(&object->lock, flags);
748 }
749
750 static void paint_ptr(unsigned long ptr, int color)
751 {
752         struct kmemleak_object *object;
753
754         object = find_and_get_object(ptr, 0);
755         if (!object) {
756                 kmemleak_warn("Trying to color unknown object at 0x%08lx as %s\n",
757                               ptr,
758                               (color == KMEMLEAK_GREY) ? "Grey" :
759                               (color == KMEMLEAK_BLACK) ? "Black" : "Unknown");
760                 return;
761         }
762         paint_it(object, color);
763         put_object(object);
764 }
765
766 /*
767  * Mark an object permanently as gray-colored so that it can no longer be
768  * reported as a leak. This is used in general to mark a false positive.
769  */
770 static void make_gray_object(unsigned long ptr)
771 {
772         paint_ptr(ptr, KMEMLEAK_GREY);
773 }
774
775 /*
776  * Mark the object as black-colored so that it is ignored from scans and
777  * reporting.
778  */
779 static void make_black_object(unsigned long ptr)
780 {
781         paint_ptr(ptr, KMEMLEAK_BLACK);
782 }
783
784 /*
785  * Add a scanning area to the object. If at least one such area is added,
786  * kmemleak will only scan these ranges rather than the whole memory block.
787  */
788 static void add_scan_area(unsigned long ptr, size_t size, gfp_t gfp)
789 {
790         unsigned long flags;
791         struct kmemleak_object *object;
792         struct kmemleak_scan_area *area;
793
794         object = find_and_get_object(ptr, 1);
795         if (!object) {
796                 kmemleak_warn("Adding scan area to unknown object at 0x%08lx\n",
797                               ptr);
798                 return;
799         }
800
801         area = kmem_cache_alloc(scan_area_cache, gfp_kmemleak_mask(gfp));
802         if (!area) {
803                 pr_warn("Cannot allocate a scan area\n");
804                 goto out;
805         }
806
807         spin_lock_irqsave(&object->lock, flags);
808         if (size == SIZE_MAX) {
809                 size = object->pointer + object->size - ptr;
810         } else if (ptr + size > object->pointer + object->size) {
811                 kmemleak_warn("Scan area larger than object 0x%08lx\n", ptr);
812                 dump_object_info(object);
813                 kmem_cache_free(scan_area_cache, area);
814                 goto out_unlock;
815         }
816
817         INIT_HLIST_NODE(&area->node);
818         area->start = ptr;
819         area->size = size;
820
821         hlist_add_head(&area->node, &object->area_list);
822 out_unlock:
823         spin_unlock_irqrestore(&object->lock, flags);
824 out:
825         put_object(object);
826 }
827
828 /*
829  * Any surplus references (object already gray) to 'ptr' are passed to
830  * 'excess_ref'. This is used in the vmalloc() case where a pointer to
831  * vm_struct may be used as an alternative reference to the vmalloc'ed object
832  * (see free_thread_stack()).
833  */
834 static void object_set_excess_ref(unsigned long ptr, unsigned long excess_ref)
835 {
836         unsigned long flags;
837         struct kmemleak_object *object;
838
839         object = find_and_get_object(ptr, 0);
840         if (!object) {
841                 kmemleak_warn("Setting excess_ref on unknown object at 0x%08lx\n",
842                               ptr);
843                 return;
844         }
845
846         spin_lock_irqsave(&object->lock, flags);
847         object->excess_ref = excess_ref;
848         spin_unlock_irqrestore(&object->lock, flags);
849         put_object(object);
850 }
851
852 /*
853  * Set the OBJECT_NO_SCAN flag for the object corresponding to the give
854  * pointer. Such object will not be scanned by kmemleak but references to it
855  * are searched.
856  */
857 static void object_no_scan(unsigned long ptr)
858 {
859         unsigned long flags;
860         struct kmemleak_object *object;
861
862         object = find_and_get_object(ptr, 0);
863         if (!object) {
864                 kmemleak_warn("Not scanning unknown object at 0x%08lx\n", ptr);
865                 return;
866         }
867
868         spin_lock_irqsave(&object->lock, flags);
869         object->flags |= OBJECT_NO_SCAN;
870         spin_unlock_irqrestore(&object->lock, flags);
871         put_object(object);
872 }
873
874 /*
875  * Log an early kmemleak_* call to the early_log buffer. These calls will be
876  * processed later once kmemleak is fully initialized.
877  */
878 static void __init log_early(int op_type, const void *ptr, size_t size,
879                              int min_count)
880 {
881         unsigned long flags;
882         struct early_log *log;
883
884         if (kmemleak_error) {
885                 /* kmemleak stopped recording, just count the requests */
886                 crt_early_log++;
887                 return;
888         }
889
890         if (crt_early_log >= ARRAY_SIZE(early_log)) {
891                 crt_early_log++;
892                 kmemleak_disable();
893                 return;
894         }
895
896         /*
897          * There is no need for locking since the kernel is still in UP mode
898          * at this stage. Disabling the IRQs is enough.
899          */
900         local_irq_save(flags);
901         log = &early_log[crt_early_log];
902         log->op_type = op_type;
903         log->ptr = ptr;
904         log->size = size;
905         log->min_count = min_count;
906         log->trace_len = __save_stack_trace(log->trace);
907         crt_early_log++;
908         local_irq_restore(flags);
909 }
910
911 /*
912  * Log an early allocated block and populate the stack trace.
913  */
914 static void early_alloc(struct early_log *log)
915 {
916         struct kmemleak_object *object;
917         unsigned long flags;
918         int i;
919
920         if (!kmemleak_enabled || !log->ptr || IS_ERR(log->ptr))
921                 return;
922
923         /*
924          * RCU locking needed to ensure object is not freed via put_object().
925          */
926         rcu_read_lock();
927         object = create_object((unsigned long)log->ptr, log->size,
928                                log->min_count, GFP_ATOMIC);
929         if (!object)
930                 goto out;
931         spin_lock_irqsave(&object->lock, flags);
932         for (i = 0; i < log->trace_len; i++)
933                 object->trace[i] = log->trace[i];
934         object->trace_len = log->trace_len;
935         spin_unlock_irqrestore(&object->lock, flags);
936 out:
937         rcu_read_unlock();
938 }
939
940 /*
941  * Log an early allocated block and populate the stack trace.
942  */
943 static void early_alloc_percpu(struct early_log *log)
944 {
945         unsigned int cpu;
946         const void __percpu *ptr = log->ptr;
947
948         for_each_possible_cpu(cpu) {
949                 log->ptr = per_cpu_ptr(ptr, cpu);
950                 early_alloc(log);
951         }
952 }
953
954 /**
955  * kmemleak_alloc - register a newly allocated object
956  * @ptr:        pointer to beginning of the object
957  * @size:       size of the object
958  * @min_count:  minimum number of references to this object. If during memory
959  *              scanning a number of references less than @min_count is found,
960  *              the object is reported as a memory leak. If @min_count is 0,
961  *              the object is never reported as a leak. If @min_count is -1,
962  *              the object is ignored (not scanned and not reported as a leak)
963  * @gfp:        kmalloc() flags used for kmemleak internal memory allocations
964  *
965  * This function is called from the kernel allocators when a new object
966  * (memory block) is allocated (kmem_cache_alloc, kmalloc etc.).
967  */
968 void __ref kmemleak_alloc(const void *ptr, size_t size, int min_count,
969                           gfp_t gfp)
970 {
971         pr_debug("%s(0x%p, %zu, %d)\n", __func__, ptr, size, min_count);
972
973         if (kmemleak_enabled && ptr && !IS_ERR(ptr))
974                 create_object((unsigned long)ptr, size, min_count, gfp);
975         else if (kmemleak_early_log)
976                 log_early(KMEMLEAK_ALLOC, ptr, size, min_count);
977 }
978 EXPORT_SYMBOL_GPL(kmemleak_alloc);
979
980 /**
981  * kmemleak_alloc_percpu - register a newly allocated __percpu object
982  * @ptr:        __percpu pointer to beginning of the object
983  * @size:       size of the object
984  * @gfp:        flags used for kmemleak internal memory allocations
985  *
986  * This function is called from the kernel percpu allocator when a new object
987  * (memory block) is allocated (alloc_percpu).
988  */
989 void __ref kmemleak_alloc_percpu(const void __percpu *ptr, size_t size,
990                                  gfp_t gfp)
991 {
992         unsigned int cpu;
993
994         pr_debug("%s(0x%p, %zu)\n", __func__, ptr, size);
995
996         /*
997          * Percpu allocations are only scanned and not reported as leaks
998          * (min_count is set to 0).
999          */
1000         if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1001                 for_each_possible_cpu(cpu)
1002                         create_object((unsigned long)per_cpu_ptr(ptr, cpu),
1003                                       size, 0, gfp);
1004         else if (kmemleak_early_log)
1005                 log_early(KMEMLEAK_ALLOC_PERCPU, ptr, size, 0);
1006 }
1007 EXPORT_SYMBOL_GPL(kmemleak_alloc_percpu);
1008
1009 /**
1010  * kmemleak_vmalloc - register a newly vmalloc'ed object
1011  * @area:       pointer to vm_struct
1012  * @size:       size of the object
1013  * @gfp:        __vmalloc() flags used for kmemleak internal memory allocations
1014  *
1015  * This function is called from the vmalloc() kernel allocator when a new
1016  * object (memory block) is allocated.
1017  */
1018 void __ref kmemleak_vmalloc(const struct vm_struct *area, size_t size, gfp_t gfp)
1019 {
1020         pr_debug("%s(0x%p, %zu)\n", __func__, area, size);
1021
1022         /*
1023          * A min_count = 2 is needed because vm_struct contains a reference to
1024          * the virtual address of the vmalloc'ed block.
1025          */
1026         if (kmemleak_enabled) {
1027                 create_object((unsigned long)area->addr, size, 2, gfp);
1028                 object_set_excess_ref((unsigned long)area,
1029                                       (unsigned long)area->addr);
1030         } else if (kmemleak_early_log) {
1031                 log_early(KMEMLEAK_ALLOC, area->addr, size, 2);
1032                 /* reusing early_log.size for storing area->addr */
1033                 log_early(KMEMLEAK_SET_EXCESS_REF,
1034                           area, (unsigned long)area->addr, 0);
1035         }
1036 }
1037 EXPORT_SYMBOL_GPL(kmemleak_vmalloc);
1038
1039 /**
1040  * kmemleak_free - unregister a previously registered object
1041  * @ptr:        pointer to beginning of the object
1042  *
1043  * This function is called from the kernel allocators when an object (memory
1044  * block) is freed (kmem_cache_free, kfree, vfree etc.).
1045  */
1046 void __ref kmemleak_free(const void *ptr)
1047 {
1048         pr_debug("%s(0x%p)\n", __func__, ptr);
1049
1050         if (kmemleak_free_enabled && ptr && !IS_ERR(ptr))
1051                 delete_object_full((unsigned long)ptr);
1052         else if (kmemleak_early_log)
1053                 log_early(KMEMLEAK_FREE, ptr, 0, 0);
1054 }
1055 EXPORT_SYMBOL_GPL(kmemleak_free);
1056
1057 /**
1058  * kmemleak_free_part - partially unregister a previously registered object
1059  * @ptr:        pointer to the beginning or inside the object. This also
1060  *              represents the start of the range to be freed
1061  * @size:       size to be unregistered
1062  *
1063  * This function is called when only a part of a memory block is freed
1064  * (usually from the bootmem allocator).
1065  */
1066 void __ref kmemleak_free_part(const void *ptr, size_t size)
1067 {
1068         pr_debug("%s(0x%p)\n", __func__, ptr);
1069
1070         if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1071                 delete_object_part((unsigned long)ptr, size);
1072         else if (kmemleak_early_log)
1073                 log_early(KMEMLEAK_FREE_PART, ptr, size, 0);
1074 }
1075 EXPORT_SYMBOL_GPL(kmemleak_free_part);
1076
1077 /**
1078  * kmemleak_free_percpu - unregister a previously registered __percpu object
1079  * @ptr:        __percpu pointer to beginning of the object
1080  *
1081  * This function is called from the kernel percpu allocator when an object
1082  * (memory block) is freed (free_percpu).
1083  */
1084 void __ref kmemleak_free_percpu(const void __percpu *ptr)
1085 {
1086         unsigned int cpu;
1087
1088         pr_debug("%s(0x%p)\n", __func__, ptr);
1089
1090         if (kmemleak_free_enabled && ptr && !IS_ERR(ptr))
1091                 for_each_possible_cpu(cpu)
1092                         delete_object_full((unsigned long)per_cpu_ptr(ptr,
1093                                                                       cpu));
1094         else if (kmemleak_early_log)
1095                 log_early(KMEMLEAK_FREE_PERCPU, ptr, 0, 0);
1096 }
1097 EXPORT_SYMBOL_GPL(kmemleak_free_percpu);
1098
1099 /**
1100  * kmemleak_update_trace - update object allocation stack trace
1101  * @ptr:        pointer to beginning of the object
1102  *
1103  * Override the object allocation stack trace for cases where the actual
1104  * allocation place is not always useful.
1105  */
1106 void __ref kmemleak_update_trace(const void *ptr)
1107 {
1108         struct kmemleak_object *object;
1109         unsigned long flags;
1110
1111         pr_debug("%s(0x%p)\n", __func__, ptr);
1112
1113         if (!kmemleak_enabled || IS_ERR_OR_NULL(ptr))
1114                 return;
1115
1116         object = find_and_get_object((unsigned long)ptr, 1);
1117         if (!object) {
1118 #ifdef DEBUG
1119                 kmemleak_warn("Updating stack trace for unknown object at %p\n",
1120                               ptr);
1121 #endif
1122                 return;
1123         }
1124
1125         spin_lock_irqsave(&object->lock, flags);
1126         object->trace_len = __save_stack_trace(object->trace);
1127         spin_unlock_irqrestore(&object->lock, flags);
1128
1129         put_object(object);
1130 }
1131 EXPORT_SYMBOL(kmemleak_update_trace);
1132
1133 /**
1134  * kmemleak_not_leak - mark an allocated object as false positive
1135  * @ptr:        pointer to beginning of the object
1136  *
1137  * Calling this function on an object will cause the memory block to no longer
1138  * be reported as leak and always be scanned.
1139  */
1140 void __ref kmemleak_not_leak(const void *ptr)
1141 {
1142         pr_debug("%s(0x%p)\n", __func__, ptr);
1143
1144         if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1145                 make_gray_object((unsigned long)ptr);
1146         else if (kmemleak_early_log)
1147                 log_early(KMEMLEAK_NOT_LEAK, ptr, 0, 0);
1148 }
1149 EXPORT_SYMBOL(kmemleak_not_leak);
1150
1151 /**
1152  * kmemleak_ignore - ignore an allocated object
1153  * @ptr:        pointer to beginning of the object
1154  *
1155  * Calling this function on an object will cause the memory block to be
1156  * ignored (not scanned and not reported as a leak). This is usually done when
1157  * it is known that the corresponding block is not a leak and does not contain
1158  * any references to other allocated memory blocks.
1159  */
1160 void __ref kmemleak_ignore(const void *ptr)
1161 {
1162         pr_debug("%s(0x%p)\n", __func__, ptr);
1163
1164         if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1165                 make_black_object((unsigned long)ptr);
1166         else if (kmemleak_early_log)
1167                 log_early(KMEMLEAK_IGNORE, ptr, 0, 0);
1168 }
1169 EXPORT_SYMBOL(kmemleak_ignore);
1170
1171 /**
1172  * kmemleak_scan_area - limit the range to be scanned in an allocated object
1173  * @ptr:        pointer to beginning or inside the object. This also
1174  *              represents the start of the scan area
1175  * @size:       size of the scan area
1176  * @gfp:        kmalloc() flags used for kmemleak internal memory allocations
1177  *
1178  * This function is used when it is known that only certain parts of an object
1179  * contain references to other objects. Kmemleak will only scan these areas
1180  * reducing the number false negatives.
1181  */
1182 void __ref kmemleak_scan_area(const void *ptr, size_t size, gfp_t gfp)
1183 {
1184         pr_debug("%s(0x%p)\n", __func__, ptr);
1185
1186         if (kmemleak_enabled && ptr && size && !IS_ERR(ptr))
1187                 add_scan_area((unsigned long)ptr, size, gfp);
1188         else if (kmemleak_early_log)
1189                 log_early(KMEMLEAK_SCAN_AREA, ptr, size, 0);
1190 }
1191 EXPORT_SYMBOL(kmemleak_scan_area);
1192
1193 /**
1194  * kmemleak_no_scan - do not scan an allocated object
1195  * @ptr:        pointer to beginning of the object
1196  *
1197  * This function notifies kmemleak not to scan the given memory block. Useful
1198  * in situations where it is known that the given object does not contain any
1199  * references to other objects. Kmemleak will not scan such objects reducing
1200  * the number of false negatives.
1201  */
1202 void __ref kmemleak_no_scan(const void *ptr)
1203 {
1204         pr_debug("%s(0x%p)\n", __func__, ptr);
1205
1206         if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1207                 object_no_scan((unsigned long)ptr);
1208         else if (kmemleak_early_log)
1209                 log_early(KMEMLEAK_NO_SCAN, ptr, 0, 0);
1210 }
1211 EXPORT_SYMBOL(kmemleak_no_scan);
1212
1213 /**
1214  * kmemleak_alloc_phys - similar to kmemleak_alloc but taking a physical
1215  *                       address argument
1216  * @phys:       physical address of the object
1217  * @size:       size of the object
1218  * @min_count:  minimum number of references to this object.
1219  *              See kmemleak_alloc()
1220  * @gfp:        kmalloc() flags used for kmemleak internal memory allocations
1221  */
1222 void __ref kmemleak_alloc_phys(phys_addr_t phys, size_t size, int min_count,
1223                                gfp_t gfp)
1224 {
1225         if (!IS_ENABLED(CONFIG_HIGHMEM) || PHYS_PFN(phys) < max_low_pfn)
1226                 kmemleak_alloc(__va(phys), size, min_count, gfp);
1227 }
1228 EXPORT_SYMBOL(kmemleak_alloc_phys);
1229
1230 /**
1231  * kmemleak_free_part_phys - similar to kmemleak_free_part but taking a
1232  *                           physical address argument
1233  * @phys:       physical address if the beginning or inside an object. This
1234  *              also represents the start of the range to be freed
1235  * @size:       size to be unregistered
1236  */
1237 void __ref kmemleak_free_part_phys(phys_addr_t phys, size_t size)
1238 {
1239         if (!IS_ENABLED(CONFIG_HIGHMEM) || PHYS_PFN(phys) < max_low_pfn)
1240                 kmemleak_free_part(__va(phys), size);
1241 }
1242 EXPORT_SYMBOL(kmemleak_free_part_phys);
1243
1244 /**
1245  * kmemleak_not_leak_phys - similar to kmemleak_not_leak but taking a physical
1246  *                          address argument
1247  * @phys:       physical address of the object
1248  */
1249 void __ref kmemleak_not_leak_phys(phys_addr_t phys)
1250 {
1251         if (!IS_ENABLED(CONFIG_HIGHMEM) || PHYS_PFN(phys) < max_low_pfn)
1252                 kmemleak_not_leak(__va(phys));
1253 }
1254 EXPORT_SYMBOL(kmemleak_not_leak_phys);
1255
1256 /**
1257  * kmemleak_ignore_phys - similar to kmemleak_ignore but taking a physical
1258  *                        address argument
1259  * @phys:       physical address of the object
1260  */
1261 void __ref kmemleak_ignore_phys(phys_addr_t phys)
1262 {
1263         if (!IS_ENABLED(CONFIG_HIGHMEM) || PHYS_PFN(phys) < max_low_pfn)
1264                 kmemleak_ignore(__va(phys));
1265 }
1266 EXPORT_SYMBOL(kmemleak_ignore_phys);
1267
1268 /*
1269  * Update an object's checksum and return true if it was modified.
1270  */
1271 static bool update_checksum(struct kmemleak_object *object)
1272 {
1273         u32 old_csum = object->checksum;
1274
1275         kasan_disable_current();
1276         object->checksum = crc32(0, (void *)object->pointer, object->size);
1277         kasan_enable_current();
1278
1279         return object->checksum != old_csum;
1280 }
1281
1282 /*
1283  * Update an object's references. object->lock must be held by the caller.
1284  */
1285 static void update_refs(struct kmemleak_object *object)
1286 {
1287         if (!color_white(object)) {
1288                 /* non-orphan, ignored or new */
1289                 return;
1290         }
1291
1292         /*
1293          * Increase the object's reference count (number of pointers to the
1294          * memory block). If this count reaches the required minimum, the
1295          * object's color will become gray and it will be added to the
1296          * gray_list.
1297          */
1298         object->count++;
1299         if (color_gray(object)) {
1300                 /* put_object() called when removing from gray_list */
1301                 WARN_ON(!get_object(object));
1302                 list_add_tail(&object->gray_list, &gray_list);
1303         }
1304 }
1305
1306 /*
1307  * Memory scanning is a long process and it needs to be interruptable. This
1308  * function checks whether such interrupt condition occurred.
1309  */
1310 static int scan_should_stop(void)
1311 {
1312         if (!kmemleak_enabled)
1313                 return 1;
1314
1315         /*
1316          * This function may be called from either process or kthread context,
1317          * hence the need to check for both stop conditions.
1318          */
1319         if (current->mm)
1320                 return signal_pending(current);
1321         else
1322                 return kthread_should_stop();
1323
1324         return 0;
1325 }
1326
1327 /*
1328  * Scan a memory block (exclusive range) for valid pointers and add those
1329  * found to the gray list.
1330  */
1331 static void scan_block(void *_start, void *_end,
1332                        struct kmemleak_object *scanned)
1333 {
1334         unsigned long *ptr;
1335         unsigned long *start = PTR_ALIGN(_start, BYTES_PER_POINTER);
1336         unsigned long *end = _end - (BYTES_PER_POINTER - 1);
1337         unsigned long flags;
1338         unsigned long untagged_ptr;
1339
1340         read_lock_irqsave(&kmemleak_lock, flags);
1341         for (ptr = start; ptr < end; ptr++) {
1342                 struct kmemleak_object *object;
1343                 unsigned long pointer;
1344                 unsigned long excess_ref;
1345
1346                 if (scan_should_stop())
1347                         break;
1348
1349                 kasan_disable_current();
1350                 pointer = *ptr;
1351                 kasan_enable_current();
1352
1353                 untagged_ptr = (unsigned long)kasan_reset_tag((void *)pointer);
1354                 if (untagged_ptr < min_addr || untagged_ptr >= max_addr)
1355                         continue;
1356
1357                 /*
1358                  * No need for get_object() here since we hold kmemleak_lock.
1359                  * object->use_count cannot be dropped to 0 while the object
1360                  * is still present in object_tree_root and object_list
1361                  * (with updates protected by kmemleak_lock).
1362                  */
1363                 object = lookup_object(pointer, 1);
1364                 if (!object)
1365                         continue;
1366                 if (object == scanned)
1367                         /* self referenced, ignore */
1368                         continue;
1369
1370                 /*
1371                  * Avoid the lockdep recursive warning on object->lock being
1372                  * previously acquired in scan_object(). These locks are
1373                  * enclosed by scan_mutex.
1374                  */
1375                 spin_lock_nested(&object->lock, SINGLE_DEPTH_NESTING);
1376                 /* only pass surplus references (object already gray) */
1377                 if (color_gray(object)) {
1378                         excess_ref = object->excess_ref;
1379                         /* no need for update_refs() if object already gray */
1380                 } else {
1381                         excess_ref = 0;
1382                         update_refs(object);
1383                 }
1384                 spin_unlock(&object->lock);
1385
1386                 if (excess_ref) {
1387                         object = lookup_object(excess_ref, 0);
1388                         if (!object)
1389                                 continue;
1390                         if (object == scanned)
1391                                 /* circular reference, ignore */
1392                                 continue;
1393                         spin_lock_nested(&object->lock, SINGLE_DEPTH_NESTING);
1394                         update_refs(object);
1395                         spin_unlock(&object->lock);
1396                 }
1397         }
1398         read_unlock_irqrestore(&kmemleak_lock, flags);
1399 }
1400
1401 /*
1402  * Scan a large memory block in MAX_SCAN_SIZE chunks to reduce the latency.
1403  */
1404 static void scan_large_block(void *start, void *end)
1405 {
1406         void *next;
1407
1408         while (start < end) {
1409                 next = min(start + MAX_SCAN_SIZE, end);
1410                 scan_block(start, next, NULL);
1411                 start = next;
1412                 cond_resched();
1413         }
1414 }
1415
1416 /*
1417  * Scan a memory block corresponding to a kmemleak_object. A condition is
1418  * that object->use_count >= 1.
1419  */
1420 static void scan_object(struct kmemleak_object *object)
1421 {
1422         struct kmemleak_scan_area *area;
1423         unsigned long flags;
1424
1425         /*
1426          * Once the object->lock is acquired, the corresponding memory block
1427          * cannot be freed (the same lock is acquired in delete_object).
1428          */
1429         spin_lock_irqsave(&object->lock, flags);
1430         if (object->flags & OBJECT_NO_SCAN)
1431                 goto out;
1432         if (!(object->flags & OBJECT_ALLOCATED))
1433                 /* already freed object */
1434                 goto out;
1435         if (hlist_empty(&object->area_list)) {
1436                 void *start = (void *)object->pointer;
1437                 void *end = (void *)(object->pointer + object->size);
1438                 void *next;
1439
1440                 do {
1441                         next = min(start + MAX_SCAN_SIZE, end);
1442                         scan_block(start, next, object);
1443
1444                         start = next;
1445                         if (start >= end)
1446                                 break;
1447
1448                         spin_unlock_irqrestore(&object->lock, flags);
1449                         cond_resched();
1450                         spin_lock_irqsave(&object->lock, flags);
1451                 } while (object->flags & OBJECT_ALLOCATED);
1452         } else
1453                 hlist_for_each_entry(area, &object->area_list, node)
1454                         scan_block((void *)area->start,
1455                                    (void *)(area->start + area->size),
1456                                    object);
1457 out:
1458         spin_unlock_irqrestore(&object->lock, flags);
1459 }
1460
1461 /*
1462  * Scan the objects already referenced (gray objects). More objects will be
1463  * referenced and, if there are no memory leaks, all the objects are scanned.
1464  */
1465 static void scan_gray_list(void)
1466 {
1467         struct kmemleak_object *object, *tmp;
1468
1469         /*
1470          * The list traversal is safe for both tail additions and removals
1471          * from inside the loop. The kmemleak objects cannot be freed from
1472          * outside the loop because their use_count was incremented.
1473          */
1474         object = list_entry(gray_list.next, typeof(*object), gray_list);
1475         while (&object->gray_list != &gray_list) {
1476                 cond_resched();
1477
1478                 /* may add new objects to the list */
1479                 if (!scan_should_stop())
1480                         scan_object(object);
1481
1482                 tmp = list_entry(object->gray_list.next, typeof(*object),
1483                                  gray_list);
1484
1485                 /* remove the object from the list and release it */
1486                 list_del(&object->gray_list);
1487                 put_object(object);
1488
1489                 object = tmp;
1490         }
1491         WARN_ON(!list_empty(&gray_list));
1492 }
1493
1494 /*
1495  * Scan data sections and all the referenced memory blocks allocated via the
1496  * kernel's standard allocators. This function must be called with the
1497  * scan_mutex held.
1498  */
1499 static void kmemleak_scan(void)
1500 {
1501         unsigned long flags;
1502         struct kmemleak_object *object;
1503         int i;
1504         int new_leaks = 0;
1505
1506         jiffies_last_scan = jiffies;
1507
1508         /* prepare the kmemleak_object's */
1509         rcu_read_lock();
1510         list_for_each_entry_rcu(object, &object_list, object_list) {
1511                 spin_lock_irqsave(&object->lock, flags);
1512 #ifdef DEBUG
1513                 /*
1514                  * With a few exceptions there should be a maximum of
1515                  * 1 reference to any object at this point.
1516                  */
1517                 if (atomic_read(&object->use_count) > 1) {
1518                         pr_debug("object->use_count = %d\n",
1519                                  atomic_read(&object->use_count));
1520                         dump_object_info(object);
1521                 }
1522 #endif
1523                 /* reset the reference count (whiten the object) */
1524                 object->count = 0;
1525                 if (color_gray(object) && get_object(object))
1526                         list_add_tail(&object->gray_list, &gray_list);
1527
1528                 spin_unlock_irqrestore(&object->lock, flags);
1529         }
1530         rcu_read_unlock();
1531
1532 #ifdef CONFIG_SMP
1533         /* per-cpu sections scanning */
1534         for_each_possible_cpu(i)
1535                 scan_large_block(__per_cpu_start + per_cpu_offset(i),
1536                                  __per_cpu_end + per_cpu_offset(i));
1537 #endif
1538
1539         /*
1540          * Struct page scanning for each node.
1541          */
1542         get_online_mems();
1543         for_each_online_node(i) {
1544                 unsigned long start_pfn = node_start_pfn(i);
1545                 unsigned long end_pfn = node_end_pfn(i);
1546                 unsigned long pfn;
1547
1548                 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
1549                         struct page *page = pfn_to_online_page(pfn);
1550
1551                         if (!page)
1552                                 continue;
1553
1554                         /* only scan pages belonging to this node */
1555                         if (page_to_nid(page) != i)
1556                                 continue;
1557                         /* only scan if page is in use */
1558                         if (page_count(page) == 0)
1559                                 continue;
1560                         scan_block(page, page + 1, NULL);
1561                         if (!(pfn & 63))
1562                                 cond_resched();
1563                 }
1564         }
1565         put_online_mems();
1566
1567         /*
1568          * Scanning the task stacks (may introduce false negatives).
1569          */
1570         if (kmemleak_stack_scan) {
1571                 struct task_struct *p, *g;
1572
1573                 read_lock(&tasklist_lock);
1574                 do_each_thread(g, p) {
1575                         void *stack = try_get_task_stack(p);
1576                         if (stack) {
1577                                 scan_block(stack, stack + THREAD_SIZE, NULL);
1578                                 put_task_stack(p);
1579                         }
1580                 } while_each_thread(g, p);
1581                 read_unlock(&tasklist_lock);
1582         }
1583
1584         /*
1585          * Scan the objects already referenced from the sections scanned
1586          * above.
1587          */
1588         scan_gray_list();
1589
1590         /*
1591          * Check for new or unreferenced objects modified since the previous
1592          * scan and color them gray until the next scan.
1593          */
1594         rcu_read_lock();
1595         list_for_each_entry_rcu(object, &object_list, object_list) {
1596                 spin_lock_irqsave(&object->lock, flags);
1597                 if (color_white(object) && (object->flags & OBJECT_ALLOCATED)
1598                     && update_checksum(object) && get_object(object)) {
1599                         /* color it gray temporarily */
1600                         object->count = object->min_count;
1601                         list_add_tail(&object->gray_list, &gray_list);
1602                 }
1603                 spin_unlock_irqrestore(&object->lock, flags);
1604         }
1605         rcu_read_unlock();
1606
1607         /*
1608          * Re-scan the gray list for modified unreferenced objects.
1609          */
1610         scan_gray_list();
1611
1612         /*
1613          * If scanning was stopped do not report any new unreferenced objects.
1614          */
1615         if (scan_should_stop())
1616                 return;
1617
1618         /*
1619          * Scanning result reporting.
1620          */
1621         rcu_read_lock();
1622         list_for_each_entry_rcu(object, &object_list, object_list) {
1623                 spin_lock_irqsave(&object->lock, flags);
1624                 if (unreferenced_object(object) &&
1625                     !(object->flags & OBJECT_REPORTED)) {
1626                         object->flags |= OBJECT_REPORTED;
1627
1628                         if (kmemleak_verbose)
1629                                 print_unreferenced(NULL, object);
1630
1631                         new_leaks++;
1632                 }
1633                 spin_unlock_irqrestore(&object->lock, flags);
1634         }
1635         rcu_read_unlock();
1636
1637         if (new_leaks) {
1638                 kmemleak_found_leaks = true;
1639
1640                 pr_info("%d new suspected memory leaks (see /sys/kernel/debug/kmemleak)\n",
1641                         new_leaks);
1642         }
1643
1644 }
1645
1646 /*
1647  * Thread function performing automatic memory scanning. Unreferenced objects
1648  * at the end of a memory scan are reported but only the first time.
1649  */
1650 static int kmemleak_scan_thread(void *arg)
1651 {
1652         static int first_run = IS_ENABLED(CONFIG_DEBUG_KMEMLEAK_AUTO_SCAN);
1653
1654         pr_info("Automatic memory scanning thread started\n");
1655         set_user_nice(current, 10);
1656
1657         /*
1658          * Wait before the first scan to allow the system to fully initialize.
1659          */
1660         if (first_run) {
1661                 signed long timeout = msecs_to_jiffies(SECS_FIRST_SCAN * 1000);
1662                 first_run = 0;
1663                 while (timeout && !kthread_should_stop())
1664                         timeout = schedule_timeout_interruptible(timeout);
1665         }
1666
1667         while (!kthread_should_stop()) {
1668                 signed long timeout = jiffies_scan_wait;
1669
1670                 mutex_lock(&scan_mutex);
1671                 kmemleak_scan();
1672                 mutex_unlock(&scan_mutex);
1673
1674                 /* wait before the next scan */
1675                 while (timeout && !kthread_should_stop())
1676                         timeout = schedule_timeout_interruptible(timeout);
1677         }
1678
1679         pr_info("Automatic memory scanning thread ended\n");
1680
1681         return 0;
1682 }
1683
1684 /*
1685  * Start the automatic memory scanning thread. This function must be called
1686  * with the scan_mutex held.
1687  */
1688 static void start_scan_thread(void)
1689 {
1690         if (scan_thread)
1691                 return;
1692         scan_thread = kthread_run(kmemleak_scan_thread, NULL, "kmemleak");
1693         if (IS_ERR(scan_thread)) {
1694                 pr_warn("Failed to create the scan thread\n");
1695                 scan_thread = NULL;
1696         }
1697 }
1698
1699 /*
1700  * Stop the automatic memory scanning thread.
1701  */
1702 static void stop_scan_thread(void)
1703 {
1704         if (scan_thread) {
1705                 kthread_stop(scan_thread);
1706                 scan_thread = NULL;
1707         }
1708 }
1709
1710 /*
1711  * Iterate over the object_list and return the first valid object at or after
1712  * the required position with its use_count incremented. The function triggers
1713  * a memory scanning when the pos argument points to the first position.
1714  */
1715 static void *kmemleak_seq_start(struct seq_file *seq, loff_t *pos)
1716 {
1717         struct kmemleak_object *object;
1718         loff_t n = *pos;
1719         int err;
1720
1721         err = mutex_lock_interruptible(&scan_mutex);
1722         if (err < 0)
1723                 return ERR_PTR(err);
1724
1725         rcu_read_lock();
1726         list_for_each_entry_rcu(object, &object_list, object_list) {
1727                 if (n-- > 0)
1728                         continue;
1729                 if (get_object(object))
1730                         goto out;
1731         }
1732         object = NULL;
1733 out:
1734         return object;
1735 }
1736
1737 /*
1738  * Return the next object in the object_list. The function decrements the
1739  * use_count of the previous object and increases that of the next one.
1740  */
1741 static void *kmemleak_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1742 {
1743         struct kmemleak_object *prev_obj = v;
1744         struct kmemleak_object *next_obj = NULL;
1745         struct kmemleak_object *obj = prev_obj;
1746
1747         ++(*pos);
1748
1749         list_for_each_entry_continue_rcu(obj, &object_list, object_list) {
1750                 if (get_object(obj)) {
1751                         next_obj = obj;
1752                         break;
1753                 }
1754         }
1755
1756         put_object(prev_obj);
1757         return next_obj;
1758 }
1759
1760 /*
1761  * Decrement the use_count of the last object required, if any.
1762  */
1763 static void kmemleak_seq_stop(struct seq_file *seq, void *v)
1764 {
1765         if (!IS_ERR(v)) {
1766                 /*
1767                  * kmemleak_seq_start may return ERR_PTR if the scan_mutex
1768                  * waiting was interrupted, so only release it if !IS_ERR.
1769                  */
1770                 rcu_read_unlock();
1771                 mutex_unlock(&scan_mutex);
1772                 if (v)
1773                         put_object(v);
1774         }
1775 }
1776
1777 /*
1778  * Print the information for an unreferenced object to the seq file.
1779  */
1780 static int kmemleak_seq_show(struct seq_file *seq, void *v)
1781 {
1782         struct kmemleak_object *object = v;
1783         unsigned long flags;
1784
1785         spin_lock_irqsave(&object->lock, flags);
1786         if ((object->flags & OBJECT_REPORTED) && unreferenced_object(object))
1787                 print_unreferenced(seq, object);
1788         spin_unlock_irqrestore(&object->lock, flags);
1789         return 0;
1790 }
1791
1792 static const struct seq_operations kmemleak_seq_ops = {
1793         .start = kmemleak_seq_start,
1794         .next  = kmemleak_seq_next,
1795         .stop  = kmemleak_seq_stop,
1796         .show  = kmemleak_seq_show,
1797 };
1798
1799 static int kmemleak_open(struct inode *inode, struct file *file)
1800 {
1801         return seq_open(file, &kmemleak_seq_ops);
1802 }
1803
1804 static int dump_str_object_info(const char *str)
1805 {
1806         unsigned long flags;
1807         struct kmemleak_object *object;
1808         unsigned long addr;
1809
1810         if (kstrtoul(str, 0, &addr))
1811                 return -EINVAL;
1812         object = find_and_get_object(addr, 0);
1813         if (!object) {
1814                 pr_info("Unknown object at 0x%08lx\n", addr);
1815                 return -EINVAL;
1816         }
1817
1818         spin_lock_irqsave(&object->lock, flags);
1819         dump_object_info(object);
1820         spin_unlock_irqrestore(&object->lock, flags);
1821
1822         put_object(object);
1823         return 0;
1824 }
1825
1826 /*
1827  * We use grey instead of black to ensure we can do future scans on the same
1828  * objects. If we did not do future scans these black objects could
1829  * potentially contain references to newly allocated objects in the future and
1830  * we'd end up with false positives.
1831  */
1832 static void kmemleak_clear(void)
1833 {
1834         struct kmemleak_object *object;
1835         unsigned long flags;
1836
1837         rcu_read_lock();
1838         list_for_each_entry_rcu(object, &object_list, object_list) {
1839                 spin_lock_irqsave(&object->lock, flags);
1840                 if ((object->flags & OBJECT_REPORTED) &&
1841                     unreferenced_object(object))
1842                         __paint_it(object, KMEMLEAK_GREY);
1843                 spin_unlock_irqrestore(&object->lock, flags);
1844         }
1845         rcu_read_unlock();
1846
1847         kmemleak_found_leaks = false;
1848 }
1849
1850 static void __kmemleak_do_cleanup(void);
1851
1852 /*
1853  * File write operation to configure kmemleak at run-time. The following
1854  * commands can be written to the /sys/kernel/debug/kmemleak file:
1855  *   off        - disable kmemleak (irreversible)
1856  *   stack=on   - enable the task stacks scanning
1857  *   stack=off  - disable the tasks stacks scanning
1858  *   scan=on    - start the automatic memory scanning thread
1859  *   scan=off   - stop the automatic memory scanning thread
1860  *   scan=...   - set the automatic memory scanning period in seconds (0 to
1861  *                disable it)
1862  *   scan       - trigger a memory scan
1863  *   clear      - mark all current reported unreferenced kmemleak objects as
1864  *                grey to ignore printing them, or free all kmemleak objects
1865  *                if kmemleak has been disabled.
1866  *   dump=...   - dump information about the object found at the given address
1867  */
1868 static ssize_t kmemleak_write(struct file *file, const char __user *user_buf,
1869                               size_t size, loff_t *ppos)
1870 {
1871         char buf[64];
1872         int buf_size;
1873         int ret;
1874
1875         buf_size = min(size, (sizeof(buf) - 1));
1876         if (strncpy_from_user(buf, user_buf, buf_size) < 0)
1877                 return -EFAULT;
1878         buf[buf_size] = 0;
1879
1880         ret = mutex_lock_interruptible(&scan_mutex);
1881         if (ret < 0)
1882                 return ret;
1883
1884         if (strncmp(buf, "clear", 5) == 0) {
1885                 if (kmemleak_enabled)
1886                         kmemleak_clear();
1887                 else
1888                         __kmemleak_do_cleanup();
1889                 goto out;
1890         }
1891
1892         if (!kmemleak_enabled) {
1893                 ret = -EBUSY;
1894                 goto out;
1895         }
1896
1897         if (strncmp(buf, "off", 3) == 0)
1898                 kmemleak_disable();
1899         else if (strncmp(buf, "stack=on", 8) == 0)
1900                 kmemleak_stack_scan = 1;
1901         else if (strncmp(buf, "stack=off", 9) == 0)
1902                 kmemleak_stack_scan = 0;
1903         else if (strncmp(buf, "scan=on", 7) == 0)
1904                 start_scan_thread();
1905         else if (strncmp(buf, "scan=off", 8) == 0)
1906                 stop_scan_thread();
1907         else if (strncmp(buf, "scan=", 5) == 0) {
1908                 unsigned long secs;
1909
1910                 ret = kstrtoul(buf + 5, 0, &secs);
1911                 if (ret < 0)
1912                         goto out;
1913                 stop_scan_thread();
1914                 if (secs) {
1915                         jiffies_scan_wait = msecs_to_jiffies(secs * 1000);
1916                         start_scan_thread();
1917                 }
1918         } else if (strncmp(buf, "scan", 4) == 0)
1919                 kmemleak_scan();
1920         else if (strncmp(buf, "dump=", 5) == 0)
1921                 ret = dump_str_object_info(buf + 5);
1922         else
1923                 ret = -EINVAL;
1924
1925 out:
1926         mutex_unlock(&scan_mutex);
1927         if (ret < 0)
1928                 return ret;
1929
1930         /* ignore the rest of the buffer, only one command at a time */
1931         *ppos += size;
1932         return size;
1933 }
1934
1935 static const struct file_operations kmemleak_fops = {
1936         .owner          = THIS_MODULE,
1937         .open           = kmemleak_open,
1938         .read           = seq_read,
1939         .write          = kmemleak_write,
1940         .llseek         = seq_lseek,
1941         .release        = seq_release,
1942 };
1943
1944 static void __kmemleak_do_cleanup(void)
1945 {
1946         struct kmemleak_object *object;
1947
1948         rcu_read_lock();
1949         list_for_each_entry_rcu(object, &object_list, object_list)
1950                 delete_object_full(object->pointer);
1951         rcu_read_unlock();
1952 }
1953
1954 /*
1955  * Stop the memory scanning thread and free the kmemleak internal objects if
1956  * no previous scan thread (otherwise, kmemleak may still have some useful
1957  * information on memory leaks).
1958  */
1959 static void kmemleak_do_cleanup(struct work_struct *work)
1960 {
1961         stop_scan_thread();
1962
1963         mutex_lock(&scan_mutex);
1964         /*
1965          * Once it is made sure that kmemleak_scan has stopped, it is safe to no
1966          * longer track object freeing. Ordering of the scan thread stopping and
1967          * the memory accesses below is guaranteed by the kthread_stop()
1968          * function.
1969          */
1970         kmemleak_free_enabled = 0;
1971         mutex_unlock(&scan_mutex);
1972
1973         if (!kmemleak_found_leaks)
1974                 __kmemleak_do_cleanup();
1975         else
1976                 pr_info("Kmemleak disabled without freeing internal data. Reclaim the memory with \"echo clear > /sys/kernel/debug/kmemleak\".\n");
1977 }
1978
1979 static DECLARE_WORK(cleanup_work, kmemleak_do_cleanup);
1980
1981 /*
1982  * Disable kmemleak. No memory allocation/freeing will be traced once this
1983  * function is called. Disabling kmemleak is an irreversible operation.
1984  */
1985 static void kmemleak_disable(void)
1986 {
1987         /* atomically check whether it was already invoked */
1988         if (cmpxchg(&kmemleak_error, 0, 1))
1989                 return;
1990
1991         /* stop any memory operation tracing */
1992         kmemleak_enabled = 0;
1993
1994         /* check whether it is too early for a kernel thread */
1995         if (kmemleak_initialized)
1996                 schedule_work(&cleanup_work);
1997         else
1998                 kmemleak_free_enabled = 0;
1999
2000         pr_info("Kernel memory leak detector disabled\n");
2001 }
2002
2003 /*
2004  * Allow boot-time kmemleak disabling (enabled by default).
2005  */
2006 static int __init kmemleak_boot_config(char *str)
2007 {
2008         if (!str)
2009                 return -EINVAL;
2010         if (strcmp(str, "off") == 0)
2011                 kmemleak_disable();
2012         else if (strcmp(str, "on") == 0)
2013                 kmemleak_skip_disable = 1;
2014         else
2015                 return -EINVAL;
2016         return 0;
2017 }
2018 early_param("kmemleak", kmemleak_boot_config);
2019
2020 static void __init print_log_trace(struct early_log *log)
2021 {
2022         struct stack_trace trace;
2023
2024         trace.nr_entries = log->trace_len;
2025         trace.entries = log->trace;
2026
2027         pr_notice("Early log backtrace:\n");
2028         print_stack_trace(&trace, 2);
2029 }
2030
2031 /*
2032  * Kmemleak initialization.
2033  */
2034 void __init kmemleak_init(void)
2035 {
2036         int i;
2037         unsigned long flags;
2038
2039 #ifdef CONFIG_DEBUG_KMEMLEAK_DEFAULT_OFF
2040         if (!kmemleak_skip_disable) {
2041                 kmemleak_early_log = 0;
2042                 kmemleak_disable();
2043                 return;
2044         }
2045 #endif
2046
2047         jiffies_min_age = msecs_to_jiffies(MSECS_MIN_AGE);
2048         jiffies_scan_wait = msecs_to_jiffies(SECS_SCAN_WAIT * 1000);
2049
2050         object_cache = KMEM_CACHE(kmemleak_object, SLAB_NOLEAKTRACE);
2051         scan_area_cache = KMEM_CACHE(kmemleak_scan_area, SLAB_NOLEAKTRACE);
2052
2053         if (crt_early_log > ARRAY_SIZE(early_log))
2054                 pr_warn("Early log buffer exceeded (%d), please increase DEBUG_KMEMLEAK_EARLY_LOG_SIZE\n",
2055                         crt_early_log);
2056
2057         /* the kernel is still in UP mode, so disabling the IRQs is enough */
2058         local_irq_save(flags);
2059         kmemleak_early_log = 0;
2060         if (kmemleak_error) {
2061                 local_irq_restore(flags);
2062                 return;
2063         } else {
2064                 kmemleak_enabled = 1;
2065                 kmemleak_free_enabled = 1;
2066         }
2067         local_irq_restore(flags);
2068
2069         /* register the data/bss sections */
2070         create_object((unsigned long)_sdata, _edata - _sdata,
2071                       KMEMLEAK_GREY, GFP_ATOMIC);
2072         create_object((unsigned long)__bss_start, __bss_stop - __bss_start,
2073                       KMEMLEAK_GREY, GFP_ATOMIC);
2074         /* only register .data..ro_after_init if not within .data */
2075         if (__start_ro_after_init < _sdata || __end_ro_after_init > _edata)
2076                 create_object((unsigned long)__start_ro_after_init,
2077                               __end_ro_after_init - __start_ro_after_init,
2078                               KMEMLEAK_GREY, GFP_ATOMIC);
2079
2080         /*
2081          * This is the point where tracking allocations is safe. Automatic
2082          * scanning is started during the late initcall. Add the early logged
2083          * callbacks to the kmemleak infrastructure.
2084          */
2085         for (i = 0; i < crt_early_log; i++) {
2086                 struct early_log *log = &early_log[i];
2087
2088                 switch (log->op_type) {
2089                 case KMEMLEAK_ALLOC:
2090                         early_alloc(log);
2091                         break;
2092                 case KMEMLEAK_ALLOC_PERCPU:
2093                         early_alloc_percpu(log);
2094                         break;
2095                 case KMEMLEAK_FREE:
2096                         kmemleak_free(log->ptr);
2097                         break;
2098                 case KMEMLEAK_FREE_PART:
2099                         kmemleak_free_part(log->ptr, log->size);
2100                         break;
2101                 case KMEMLEAK_FREE_PERCPU:
2102                         kmemleak_free_percpu(log->ptr);
2103                         break;
2104                 case KMEMLEAK_NOT_LEAK:
2105                         kmemleak_not_leak(log->ptr);
2106                         break;
2107                 case KMEMLEAK_IGNORE:
2108                         kmemleak_ignore(log->ptr);
2109                         break;
2110                 case KMEMLEAK_SCAN_AREA:
2111                         kmemleak_scan_area(log->ptr, log->size, GFP_KERNEL);
2112                         break;
2113                 case KMEMLEAK_NO_SCAN:
2114                         kmemleak_no_scan(log->ptr);
2115                         break;
2116                 case KMEMLEAK_SET_EXCESS_REF:
2117                         object_set_excess_ref((unsigned long)log->ptr,
2118                                               log->excess_ref);
2119                         break;
2120                 default:
2121                         kmemleak_warn("Unknown early log operation: %d\n",
2122                                       log->op_type);
2123                 }
2124
2125                 if (kmemleak_warning) {
2126                         print_log_trace(log);
2127                         kmemleak_warning = 0;
2128                 }
2129         }
2130 }
2131
2132 /*
2133  * Late initialization function.
2134  */
2135 static int __init kmemleak_late_init(void)
2136 {
2137         struct dentry *dentry;
2138
2139         kmemleak_initialized = 1;
2140
2141         dentry = debugfs_create_file("kmemleak", 0644, NULL, NULL,
2142                                      &kmemleak_fops);
2143         if (!dentry)
2144                 pr_warn("Failed to create the debugfs kmemleak file\n");
2145
2146         if (kmemleak_error) {
2147                 /*
2148                  * Some error occurred and kmemleak was disabled. There is a
2149                  * small chance that kmemleak_disable() was called immediately
2150                  * after setting kmemleak_initialized and we may end up with
2151                  * two clean-up threads but serialized by scan_mutex.
2152                  */
2153                 schedule_work(&cleanup_work);
2154                 return -ENOMEM;
2155         }
2156
2157         if (IS_ENABLED(CONFIG_DEBUG_KMEMLEAK_AUTO_SCAN)) {
2158                 mutex_lock(&scan_mutex);
2159                 start_scan_thread();
2160                 mutex_unlock(&scan_mutex);
2161         }
2162
2163         pr_info("Kernel memory leak detector initialized\n");
2164
2165         return 0;
2166 }
2167 late_initcall(kmemleak_late_init);