Merge tag 'ext4_for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tytso...
[linux-2.6-microblaze.git] / mm / khugepaged.c
1 // SPDX-License-Identifier: GPL-2.0
2 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
3
4 #include <linux/mm.h>
5 #include <linux/sched.h>
6 #include <linux/sched/mm.h>
7 #include <linux/sched/coredump.h>
8 #include <linux/mmu_notifier.h>
9 #include <linux/rmap.h>
10 #include <linux/swap.h>
11 #include <linux/mm_inline.h>
12 #include <linux/kthread.h>
13 #include <linux/khugepaged.h>
14 #include <linux/freezer.h>
15 #include <linux/mman.h>
16 #include <linux/hashtable.h>
17 #include <linux/userfaultfd_k.h>
18 #include <linux/page_idle.h>
19 #include <linux/swapops.h>
20 #include <linux/shmem_fs.h>
21
22 #include <asm/tlb.h>
23 #include <asm/pgalloc.h>
24 #include "internal.h"
25
26 enum scan_result {
27         SCAN_FAIL,
28         SCAN_SUCCEED,
29         SCAN_PMD_NULL,
30         SCAN_EXCEED_NONE_PTE,
31         SCAN_PTE_NON_PRESENT,
32         SCAN_PAGE_RO,
33         SCAN_LACK_REFERENCED_PAGE,
34         SCAN_PAGE_NULL,
35         SCAN_SCAN_ABORT,
36         SCAN_PAGE_COUNT,
37         SCAN_PAGE_LRU,
38         SCAN_PAGE_LOCK,
39         SCAN_PAGE_ANON,
40         SCAN_PAGE_COMPOUND,
41         SCAN_ANY_PROCESS,
42         SCAN_VMA_NULL,
43         SCAN_VMA_CHECK,
44         SCAN_ADDRESS_RANGE,
45         SCAN_SWAP_CACHE_PAGE,
46         SCAN_DEL_PAGE_LRU,
47         SCAN_ALLOC_HUGE_PAGE_FAIL,
48         SCAN_CGROUP_CHARGE_FAIL,
49         SCAN_EXCEED_SWAP_PTE,
50         SCAN_TRUNCATED,
51         SCAN_PAGE_HAS_PRIVATE,
52 };
53
54 #define CREATE_TRACE_POINTS
55 #include <trace/events/huge_memory.h>
56
57 /* default scan 8*512 pte (or vmas) every 30 second */
58 static unsigned int khugepaged_pages_to_scan __read_mostly;
59 static unsigned int khugepaged_pages_collapsed;
60 static unsigned int khugepaged_full_scans;
61 static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000;
62 /* during fragmentation poll the hugepage allocator once every minute */
63 static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000;
64 static unsigned long khugepaged_sleep_expire;
65 static DEFINE_SPINLOCK(khugepaged_mm_lock);
66 static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait);
67 /*
68  * default collapse hugepages if there is at least one pte mapped like
69  * it would have happened if the vma was large enough during page
70  * fault.
71  */
72 static unsigned int khugepaged_max_ptes_none __read_mostly;
73 static unsigned int khugepaged_max_ptes_swap __read_mostly;
74
75 #define MM_SLOTS_HASH_BITS 10
76 static __read_mostly DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
77
78 static struct kmem_cache *mm_slot_cache __read_mostly;
79
80 #define MAX_PTE_MAPPED_THP 8
81
82 /**
83  * struct mm_slot - hash lookup from mm to mm_slot
84  * @hash: hash collision list
85  * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head
86  * @mm: the mm that this information is valid for
87  */
88 struct mm_slot {
89         struct hlist_node hash;
90         struct list_head mm_node;
91         struct mm_struct *mm;
92
93         /* pte-mapped THP in this mm */
94         int nr_pte_mapped_thp;
95         unsigned long pte_mapped_thp[MAX_PTE_MAPPED_THP];
96 };
97
98 /**
99  * struct khugepaged_scan - cursor for scanning
100  * @mm_head: the head of the mm list to scan
101  * @mm_slot: the current mm_slot we are scanning
102  * @address: the next address inside that to be scanned
103  *
104  * There is only the one khugepaged_scan instance of this cursor structure.
105  */
106 struct khugepaged_scan {
107         struct list_head mm_head;
108         struct mm_slot *mm_slot;
109         unsigned long address;
110 };
111
112 static struct khugepaged_scan khugepaged_scan = {
113         .mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head),
114 };
115
116 #ifdef CONFIG_SYSFS
117 static ssize_t scan_sleep_millisecs_show(struct kobject *kobj,
118                                          struct kobj_attribute *attr,
119                                          char *buf)
120 {
121         return sprintf(buf, "%u\n", khugepaged_scan_sleep_millisecs);
122 }
123
124 static ssize_t scan_sleep_millisecs_store(struct kobject *kobj,
125                                           struct kobj_attribute *attr,
126                                           const char *buf, size_t count)
127 {
128         unsigned long msecs;
129         int err;
130
131         err = kstrtoul(buf, 10, &msecs);
132         if (err || msecs > UINT_MAX)
133                 return -EINVAL;
134
135         khugepaged_scan_sleep_millisecs = msecs;
136         khugepaged_sleep_expire = 0;
137         wake_up_interruptible(&khugepaged_wait);
138
139         return count;
140 }
141 static struct kobj_attribute scan_sleep_millisecs_attr =
142         __ATTR(scan_sleep_millisecs, 0644, scan_sleep_millisecs_show,
143                scan_sleep_millisecs_store);
144
145 static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj,
146                                           struct kobj_attribute *attr,
147                                           char *buf)
148 {
149         return sprintf(buf, "%u\n", khugepaged_alloc_sleep_millisecs);
150 }
151
152 static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj,
153                                            struct kobj_attribute *attr,
154                                            const char *buf, size_t count)
155 {
156         unsigned long msecs;
157         int err;
158
159         err = kstrtoul(buf, 10, &msecs);
160         if (err || msecs > UINT_MAX)
161                 return -EINVAL;
162
163         khugepaged_alloc_sleep_millisecs = msecs;
164         khugepaged_sleep_expire = 0;
165         wake_up_interruptible(&khugepaged_wait);
166
167         return count;
168 }
169 static struct kobj_attribute alloc_sleep_millisecs_attr =
170         __ATTR(alloc_sleep_millisecs, 0644, alloc_sleep_millisecs_show,
171                alloc_sleep_millisecs_store);
172
173 static ssize_t pages_to_scan_show(struct kobject *kobj,
174                                   struct kobj_attribute *attr,
175                                   char *buf)
176 {
177         return sprintf(buf, "%u\n", khugepaged_pages_to_scan);
178 }
179 static ssize_t pages_to_scan_store(struct kobject *kobj,
180                                    struct kobj_attribute *attr,
181                                    const char *buf, size_t count)
182 {
183         int err;
184         unsigned long pages;
185
186         err = kstrtoul(buf, 10, &pages);
187         if (err || !pages || pages > UINT_MAX)
188                 return -EINVAL;
189
190         khugepaged_pages_to_scan = pages;
191
192         return count;
193 }
194 static struct kobj_attribute pages_to_scan_attr =
195         __ATTR(pages_to_scan, 0644, pages_to_scan_show,
196                pages_to_scan_store);
197
198 static ssize_t pages_collapsed_show(struct kobject *kobj,
199                                     struct kobj_attribute *attr,
200                                     char *buf)
201 {
202         return sprintf(buf, "%u\n", khugepaged_pages_collapsed);
203 }
204 static struct kobj_attribute pages_collapsed_attr =
205         __ATTR_RO(pages_collapsed);
206
207 static ssize_t full_scans_show(struct kobject *kobj,
208                                struct kobj_attribute *attr,
209                                char *buf)
210 {
211         return sprintf(buf, "%u\n", khugepaged_full_scans);
212 }
213 static struct kobj_attribute full_scans_attr =
214         __ATTR_RO(full_scans);
215
216 static ssize_t khugepaged_defrag_show(struct kobject *kobj,
217                                       struct kobj_attribute *attr, char *buf)
218 {
219         return single_hugepage_flag_show(kobj, attr, buf,
220                                 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
221 }
222 static ssize_t khugepaged_defrag_store(struct kobject *kobj,
223                                        struct kobj_attribute *attr,
224                                        const char *buf, size_t count)
225 {
226         return single_hugepage_flag_store(kobj, attr, buf, count,
227                                  TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
228 }
229 static struct kobj_attribute khugepaged_defrag_attr =
230         __ATTR(defrag, 0644, khugepaged_defrag_show,
231                khugepaged_defrag_store);
232
233 /*
234  * max_ptes_none controls if khugepaged should collapse hugepages over
235  * any unmapped ptes in turn potentially increasing the memory
236  * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
237  * reduce the available free memory in the system as it
238  * runs. Increasing max_ptes_none will instead potentially reduce the
239  * free memory in the system during the khugepaged scan.
240  */
241 static ssize_t khugepaged_max_ptes_none_show(struct kobject *kobj,
242                                              struct kobj_attribute *attr,
243                                              char *buf)
244 {
245         return sprintf(buf, "%u\n", khugepaged_max_ptes_none);
246 }
247 static ssize_t khugepaged_max_ptes_none_store(struct kobject *kobj,
248                                               struct kobj_attribute *attr,
249                                               const char *buf, size_t count)
250 {
251         int err;
252         unsigned long max_ptes_none;
253
254         err = kstrtoul(buf, 10, &max_ptes_none);
255         if (err || max_ptes_none > HPAGE_PMD_NR-1)
256                 return -EINVAL;
257
258         khugepaged_max_ptes_none = max_ptes_none;
259
260         return count;
261 }
262 static struct kobj_attribute khugepaged_max_ptes_none_attr =
263         __ATTR(max_ptes_none, 0644, khugepaged_max_ptes_none_show,
264                khugepaged_max_ptes_none_store);
265
266 static ssize_t khugepaged_max_ptes_swap_show(struct kobject *kobj,
267                                              struct kobj_attribute *attr,
268                                              char *buf)
269 {
270         return sprintf(buf, "%u\n", khugepaged_max_ptes_swap);
271 }
272
273 static ssize_t khugepaged_max_ptes_swap_store(struct kobject *kobj,
274                                               struct kobj_attribute *attr,
275                                               const char *buf, size_t count)
276 {
277         int err;
278         unsigned long max_ptes_swap;
279
280         err  = kstrtoul(buf, 10, &max_ptes_swap);
281         if (err || max_ptes_swap > HPAGE_PMD_NR-1)
282                 return -EINVAL;
283
284         khugepaged_max_ptes_swap = max_ptes_swap;
285
286         return count;
287 }
288
289 static struct kobj_attribute khugepaged_max_ptes_swap_attr =
290         __ATTR(max_ptes_swap, 0644, khugepaged_max_ptes_swap_show,
291                khugepaged_max_ptes_swap_store);
292
293 static struct attribute *khugepaged_attr[] = {
294         &khugepaged_defrag_attr.attr,
295         &khugepaged_max_ptes_none_attr.attr,
296         &pages_to_scan_attr.attr,
297         &pages_collapsed_attr.attr,
298         &full_scans_attr.attr,
299         &scan_sleep_millisecs_attr.attr,
300         &alloc_sleep_millisecs_attr.attr,
301         &khugepaged_max_ptes_swap_attr.attr,
302         NULL,
303 };
304
305 struct attribute_group khugepaged_attr_group = {
306         .attrs = khugepaged_attr,
307         .name = "khugepaged",
308 };
309 #endif /* CONFIG_SYSFS */
310
311 int hugepage_madvise(struct vm_area_struct *vma,
312                      unsigned long *vm_flags, int advice)
313 {
314         switch (advice) {
315         case MADV_HUGEPAGE:
316 #ifdef CONFIG_S390
317                 /*
318                  * qemu blindly sets MADV_HUGEPAGE on all allocations, but s390
319                  * can't handle this properly after s390_enable_sie, so we simply
320                  * ignore the madvise to prevent qemu from causing a SIGSEGV.
321                  */
322                 if (mm_has_pgste(vma->vm_mm))
323                         return 0;
324 #endif
325                 *vm_flags &= ~VM_NOHUGEPAGE;
326                 *vm_flags |= VM_HUGEPAGE;
327                 /*
328                  * If the vma become good for khugepaged to scan,
329                  * register it here without waiting a page fault that
330                  * may not happen any time soon.
331                  */
332                 if (!(*vm_flags & VM_NO_KHUGEPAGED) &&
333                                 khugepaged_enter_vma_merge(vma, *vm_flags))
334                         return -ENOMEM;
335                 break;
336         case MADV_NOHUGEPAGE:
337                 *vm_flags &= ~VM_HUGEPAGE;
338                 *vm_flags |= VM_NOHUGEPAGE;
339                 /*
340                  * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
341                  * this vma even if we leave the mm registered in khugepaged if
342                  * it got registered before VM_NOHUGEPAGE was set.
343                  */
344                 break;
345         }
346
347         return 0;
348 }
349
350 int __init khugepaged_init(void)
351 {
352         mm_slot_cache = kmem_cache_create("khugepaged_mm_slot",
353                                           sizeof(struct mm_slot),
354                                           __alignof__(struct mm_slot), 0, NULL);
355         if (!mm_slot_cache)
356                 return -ENOMEM;
357
358         khugepaged_pages_to_scan = HPAGE_PMD_NR * 8;
359         khugepaged_max_ptes_none = HPAGE_PMD_NR - 1;
360         khugepaged_max_ptes_swap = HPAGE_PMD_NR / 8;
361
362         return 0;
363 }
364
365 void __init khugepaged_destroy(void)
366 {
367         kmem_cache_destroy(mm_slot_cache);
368 }
369
370 static inline struct mm_slot *alloc_mm_slot(void)
371 {
372         if (!mm_slot_cache)     /* initialization failed */
373                 return NULL;
374         return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
375 }
376
377 static inline void free_mm_slot(struct mm_slot *mm_slot)
378 {
379         kmem_cache_free(mm_slot_cache, mm_slot);
380 }
381
382 static struct mm_slot *get_mm_slot(struct mm_struct *mm)
383 {
384         struct mm_slot *mm_slot;
385
386         hash_for_each_possible(mm_slots_hash, mm_slot, hash, (unsigned long)mm)
387                 if (mm == mm_slot->mm)
388                         return mm_slot;
389
390         return NULL;
391 }
392
393 static void insert_to_mm_slots_hash(struct mm_struct *mm,
394                                     struct mm_slot *mm_slot)
395 {
396         mm_slot->mm = mm;
397         hash_add(mm_slots_hash, &mm_slot->hash, (long)mm);
398 }
399
400 static inline int khugepaged_test_exit(struct mm_struct *mm)
401 {
402         return atomic_read(&mm->mm_users) == 0;
403 }
404
405 static bool hugepage_vma_check(struct vm_area_struct *vma,
406                                unsigned long vm_flags)
407 {
408         if ((!(vm_flags & VM_HUGEPAGE) && !khugepaged_always()) ||
409             (vm_flags & VM_NOHUGEPAGE) ||
410             test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags))
411                 return false;
412
413         if (shmem_file(vma->vm_file) ||
414             (IS_ENABLED(CONFIG_READ_ONLY_THP_FOR_FS) &&
415              vma->vm_file &&
416              (vm_flags & VM_DENYWRITE))) {
417                 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
418                         return false;
419                 return IS_ALIGNED((vma->vm_start >> PAGE_SHIFT) - vma->vm_pgoff,
420                                 HPAGE_PMD_NR);
421         }
422         if (!vma->anon_vma || vma->vm_ops)
423                 return false;
424         if (vma_is_temporary_stack(vma))
425                 return false;
426         return !(vm_flags & VM_NO_KHUGEPAGED);
427 }
428
429 int __khugepaged_enter(struct mm_struct *mm)
430 {
431         struct mm_slot *mm_slot;
432         int wakeup;
433
434         mm_slot = alloc_mm_slot();
435         if (!mm_slot)
436                 return -ENOMEM;
437
438         /* __khugepaged_exit() must not run from under us */
439         VM_BUG_ON_MM(khugepaged_test_exit(mm), mm);
440         if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) {
441                 free_mm_slot(mm_slot);
442                 return 0;
443         }
444
445         spin_lock(&khugepaged_mm_lock);
446         insert_to_mm_slots_hash(mm, mm_slot);
447         /*
448          * Insert just behind the scanning cursor, to let the area settle
449          * down a little.
450          */
451         wakeup = list_empty(&khugepaged_scan.mm_head);
452         list_add_tail(&mm_slot->mm_node, &khugepaged_scan.mm_head);
453         spin_unlock(&khugepaged_mm_lock);
454
455         mmgrab(mm);
456         if (wakeup)
457                 wake_up_interruptible(&khugepaged_wait);
458
459         return 0;
460 }
461
462 int khugepaged_enter_vma_merge(struct vm_area_struct *vma,
463                                unsigned long vm_flags)
464 {
465         unsigned long hstart, hend;
466
467         /*
468          * khugepaged only supports read-only files for non-shmem files.
469          * khugepaged does not yet work on special mappings. And
470          * file-private shmem THP is not supported.
471          */
472         if (!hugepage_vma_check(vma, vm_flags))
473                 return 0;
474
475         hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
476         hend = vma->vm_end & HPAGE_PMD_MASK;
477         if (hstart < hend)
478                 return khugepaged_enter(vma, vm_flags);
479         return 0;
480 }
481
482 void __khugepaged_exit(struct mm_struct *mm)
483 {
484         struct mm_slot *mm_slot;
485         int free = 0;
486
487         spin_lock(&khugepaged_mm_lock);
488         mm_slot = get_mm_slot(mm);
489         if (mm_slot && khugepaged_scan.mm_slot != mm_slot) {
490                 hash_del(&mm_slot->hash);
491                 list_del(&mm_slot->mm_node);
492                 free = 1;
493         }
494         spin_unlock(&khugepaged_mm_lock);
495
496         if (free) {
497                 clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
498                 free_mm_slot(mm_slot);
499                 mmdrop(mm);
500         } else if (mm_slot) {
501                 /*
502                  * This is required to serialize against
503                  * khugepaged_test_exit() (which is guaranteed to run
504                  * under mmap sem read mode). Stop here (after we
505                  * return all pagetables will be destroyed) until
506                  * khugepaged has finished working on the pagetables
507                  * under the mmap_sem.
508                  */
509                 down_write(&mm->mmap_sem);
510                 up_write(&mm->mmap_sem);
511         }
512 }
513
514 static void release_pte_page(struct page *page)
515 {
516         dec_node_page_state(page, NR_ISOLATED_ANON + page_is_file_cache(page));
517         unlock_page(page);
518         putback_lru_page(page);
519 }
520
521 static void release_pte_pages(pte_t *pte, pte_t *_pte)
522 {
523         while (--_pte >= pte) {
524                 pte_t pteval = *_pte;
525                 if (!pte_none(pteval) && !is_zero_pfn(pte_pfn(pteval)))
526                         release_pte_page(pte_page(pteval));
527         }
528 }
529
530 static int __collapse_huge_page_isolate(struct vm_area_struct *vma,
531                                         unsigned long address,
532                                         pte_t *pte)
533 {
534         struct page *page = NULL;
535         pte_t *_pte;
536         int none_or_zero = 0, result = 0, referenced = 0;
537         bool writable = false;
538
539         for (_pte = pte; _pte < pte+HPAGE_PMD_NR;
540              _pte++, address += PAGE_SIZE) {
541                 pte_t pteval = *_pte;
542                 if (pte_none(pteval) || (pte_present(pteval) &&
543                                 is_zero_pfn(pte_pfn(pteval)))) {
544                         if (!userfaultfd_armed(vma) &&
545                             ++none_or_zero <= khugepaged_max_ptes_none) {
546                                 continue;
547                         } else {
548                                 result = SCAN_EXCEED_NONE_PTE;
549                                 goto out;
550                         }
551                 }
552                 if (!pte_present(pteval)) {
553                         result = SCAN_PTE_NON_PRESENT;
554                         goto out;
555                 }
556                 page = vm_normal_page(vma, address, pteval);
557                 if (unlikely(!page)) {
558                         result = SCAN_PAGE_NULL;
559                         goto out;
560                 }
561
562                 /* TODO: teach khugepaged to collapse THP mapped with pte */
563                 if (PageCompound(page)) {
564                         result = SCAN_PAGE_COMPOUND;
565                         goto out;
566                 }
567
568                 VM_BUG_ON_PAGE(!PageAnon(page), page);
569
570                 /*
571                  * We can do it before isolate_lru_page because the
572                  * page can't be freed from under us. NOTE: PG_lock
573                  * is needed to serialize against split_huge_page
574                  * when invoked from the VM.
575                  */
576                 if (!trylock_page(page)) {
577                         result = SCAN_PAGE_LOCK;
578                         goto out;
579                 }
580
581                 /*
582                  * cannot use mapcount: can't collapse if there's a gup pin.
583                  * The page must only be referenced by the scanned process
584                  * and page swap cache.
585                  */
586                 if (page_count(page) != 1 + PageSwapCache(page)) {
587                         unlock_page(page);
588                         result = SCAN_PAGE_COUNT;
589                         goto out;
590                 }
591                 if (pte_write(pteval)) {
592                         writable = true;
593                 } else {
594                         if (PageSwapCache(page) &&
595                             !reuse_swap_page(page, NULL)) {
596                                 unlock_page(page);
597                                 result = SCAN_SWAP_CACHE_PAGE;
598                                 goto out;
599                         }
600                         /*
601                          * Page is not in the swap cache. It can be collapsed
602                          * into a THP.
603                          */
604                 }
605
606                 /*
607                  * Isolate the page to avoid collapsing an hugepage
608                  * currently in use by the VM.
609                  */
610                 if (isolate_lru_page(page)) {
611                         unlock_page(page);
612                         result = SCAN_DEL_PAGE_LRU;
613                         goto out;
614                 }
615                 inc_node_page_state(page,
616                                 NR_ISOLATED_ANON + page_is_file_cache(page));
617                 VM_BUG_ON_PAGE(!PageLocked(page), page);
618                 VM_BUG_ON_PAGE(PageLRU(page), page);
619
620                 /* There should be enough young pte to collapse the page */
621                 if (pte_young(pteval) ||
622                     page_is_young(page) || PageReferenced(page) ||
623                     mmu_notifier_test_young(vma->vm_mm, address))
624                         referenced++;
625         }
626         if (likely(writable)) {
627                 if (likely(referenced)) {
628                         result = SCAN_SUCCEED;
629                         trace_mm_collapse_huge_page_isolate(page, none_or_zero,
630                                                             referenced, writable, result);
631                         return 1;
632                 }
633         } else {
634                 result = SCAN_PAGE_RO;
635         }
636
637 out:
638         release_pte_pages(pte, _pte);
639         trace_mm_collapse_huge_page_isolate(page, none_or_zero,
640                                             referenced, writable, result);
641         return 0;
642 }
643
644 static void __collapse_huge_page_copy(pte_t *pte, struct page *page,
645                                       struct vm_area_struct *vma,
646                                       unsigned long address,
647                                       spinlock_t *ptl)
648 {
649         pte_t *_pte;
650         for (_pte = pte; _pte < pte + HPAGE_PMD_NR;
651                                 _pte++, page++, address += PAGE_SIZE) {
652                 pte_t pteval = *_pte;
653                 struct page *src_page;
654
655                 if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
656                         clear_user_highpage(page, address);
657                         add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1);
658                         if (is_zero_pfn(pte_pfn(pteval))) {
659                                 /*
660                                  * ptl mostly unnecessary.
661                                  */
662                                 spin_lock(ptl);
663                                 /*
664                                  * paravirt calls inside pte_clear here are
665                                  * superfluous.
666                                  */
667                                 pte_clear(vma->vm_mm, address, _pte);
668                                 spin_unlock(ptl);
669                         }
670                 } else {
671                         src_page = pte_page(pteval);
672                         copy_user_highpage(page, src_page, address, vma);
673                         VM_BUG_ON_PAGE(page_mapcount(src_page) != 1, src_page);
674                         release_pte_page(src_page);
675                         /*
676                          * ptl mostly unnecessary, but preempt has to
677                          * be disabled to update the per-cpu stats
678                          * inside page_remove_rmap().
679                          */
680                         spin_lock(ptl);
681                         /*
682                          * paravirt calls inside pte_clear here are
683                          * superfluous.
684                          */
685                         pte_clear(vma->vm_mm, address, _pte);
686                         page_remove_rmap(src_page, false);
687                         spin_unlock(ptl);
688                         free_page_and_swap_cache(src_page);
689                 }
690         }
691 }
692
693 static void khugepaged_alloc_sleep(void)
694 {
695         DEFINE_WAIT(wait);
696
697         add_wait_queue(&khugepaged_wait, &wait);
698         freezable_schedule_timeout_interruptible(
699                 msecs_to_jiffies(khugepaged_alloc_sleep_millisecs));
700         remove_wait_queue(&khugepaged_wait, &wait);
701 }
702
703 static int khugepaged_node_load[MAX_NUMNODES];
704
705 static bool khugepaged_scan_abort(int nid)
706 {
707         int i;
708
709         /*
710          * If node_reclaim_mode is disabled, then no extra effort is made to
711          * allocate memory locally.
712          */
713         if (!node_reclaim_mode)
714                 return false;
715
716         /* If there is a count for this node already, it must be acceptable */
717         if (khugepaged_node_load[nid])
718                 return false;
719
720         for (i = 0; i < MAX_NUMNODES; i++) {
721                 if (!khugepaged_node_load[i])
722                         continue;
723                 if (node_distance(nid, i) > node_reclaim_distance)
724                         return true;
725         }
726         return false;
727 }
728
729 /* Defrag for khugepaged will enter direct reclaim/compaction if necessary */
730 static inline gfp_t alloc_hugepage_khugepaged_gfpmask(void)
731 {
732         return khugepaged_defrag() ? GFP_TRANSHUGE : GFP_TRANSHUGE_LIGHT;
733 }
734
735 #ifdef CONFIG_NUMA
736 static int khugepaged_find_target_node(void)
737 {
738         static int last_khugepaged_target_node = NUMA_NO_NODE;
739         int nid, target_node = 0, max_value = 0;
740
741         /* find first node with max normal pages hit */
742         for (nid = 0; nid < MAX_NUMNODES; nid++)
743                 if (khugepaged_node_load[nid] > max_value) {
744                         max_value = khugepaged_node_load[nid];
745                         target_node = nid;
746                 }
747
748         /* do some balance if several nodes have the same hit record */
749         if (target_node <= last_khugepaged_target_node)
750                 for (nid = last_khugepaged_target_node + 1; nid < MAX_NUMNODES;
751                                 nid++)
752                         if (max_value == khugepaged_node_load[nid]) {
753                                 target_node = nid;
754                                 break;
755                         }
756
757         last_khugepaged_target_node = target_node;
758         return target_node;
759 }
760
761 static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
762 {
763         if (IS_ERR(*hpage)) {
764                 if (!*wait)
765                         return false;
766
767                 *wait = false;
768                 *hpage = NULL;
769                 khugepaged_alloc_sleep();
770         } else if (*hpage) {
771                 put_page(*hpage);
772                 *hpage = NULL;
773         }
774
775         return true;
776 }
777
778 static struct page *
779 khugepaged_alloc_page(struct page **hpage, gfp_t gfp, int node)
780 {
781         VM_BUG_ON_PAGE(*hpage, *hpage);
782
783         *hpage = __alloc_pages_node(node, gfp, HPAGE_PMD_ORDER);
784         if (unlikely(!*hpage)) {
785                 count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
786                 *hpage = ERR_PTR(-ENOMEM);
787                 return NULL;
788         }
789
790         prep_transhuge_page(*hpage);
791         count_vm_event(THP_COLLAPSE_ALLOC);
792         return *hpage;
793 }
794 #else
795 static int khugepaged_find_target_node(void)
796 {
797         return 0;
798 }
799
800 static inline struct page *alloc_khugepaged_hugepage(void)
801 {
802         struct page *page;
803
804         page = alloc_pages(alloc_hugepage_khugepaged_gfpmask(),
805                            HPAGE_PMD_ORDER);
806         if (page)
807                 prep_transhuge_page(page);
808         return page;
809 }
810
811 static struct page *khugepaged_alloc_hugepage(bool *wait)
812 {
813         struct page *hpage;
814
815         do {
816                 hpage = alloc_khugepaged_hugepage();
817                 if (!hpage) {
818                         count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
819                         if (!*wait)
820                                 return NULL;
821
822                         *wait = false;
823                         khugepaged_alloc_sleep();
824                 } else
825                         count_vm_event(THP_COLLAPSE_ALLOC);
826         } while (unlikely(!hpage) && likely(khugepaged_enabled()));
827
828         return hpage;
829 }
830
831 static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
832 {
833         if (!*hpage)
834                 *hpage = khugepaged_alloc_hugepage(wait);
835
836         if (unlikely(!*hpage))
837                 return false;
838
839         return true;
840 }
841
842 static struct page *
843 khugepaged_alloc_page(struct page **hpage, gfp_t gfp, int node)
844 {
845         VM_BUG_ON(!*hpage);
846
847         return  *hpage;
848 }
849 #endif
850
851 /*
852  * If mmap_sem temporarily dropped, revalidate vma
853  * before taking mmap_sem.
854  * Return 0 if succeeds, otherwise return none-zero
855  * value (scan code).
856  */
857
858 static int hugepage_vma_revalidate(struct mm_struct *mm, unsigned long address,
859                 struct vm_area_struct **vmap)
860 {
861         struct vm_area_struct *vma;
862         unsigned long hstart, hend;
863
864         if (unlikely(khugepaged_test_exit(mm)))
865                 return SCAN_ANY_PROCESS;
866
867         *vmap = vma = find_vma(mm, address);
868         if (!vma)
869                 return SCAN_VMA_NULL;
870
871         hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
872         hend = vma->vm_end & HPAGE_PMD_MASK;
873         if (address < hstart || address + HPAGE_PMD_SIZE > hend)
874                 return SCAN_ADDRESS_RANGE;
875         if (!hugepage_vma_check(vma, vma->vm_flags))
876                 return SCAN_VMA_CHECK;
877         return 0;
878 }
879
880 /*
881  * Bring missing pages in from swap, to complete THP collapse.
882  * Only done if khugepaged_scan_pmd believes it is worthwhile.
883  *
884  * Called and returns without pte mapped or spinlocks held,
885  * but with mmap_sem held to protect against vma changes.
886  */
887
888 static bool __collapse_huge_page_swapin(struct mm_struct *mm,
889                                         struct vm_area_struct *vma,
890                                         unsigned long address, pmd_t *pmd,
891                                         int referenced)
892 {
893         int swapped_in = 0;
894         vm_fault_t ret = 0;
895         struct vm_fault vmf = {
896                 .vma = vma,
897                 .address = address,
898                 .flags = FAULT_FLAG_ALLOW_RETRY,
899                 .pmd = pmd,
900                 .pgoff = linear_page_index(vma, address),
901         };
902
903         /* we only decide to swapin, if there is enough young ptes */
904         if (referenced < HPAGE_PMD_NR/2) {
905                 trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 0);
906                 return false;
907         }
908         vmf.pte = pte_offset_map(pmd, address);
909         for (; vmf.address < address + HPAGE_PMD_NR*PAGE_SIZE;
910                         vmf.pte++, vmf.address += PAGE_SIZE) {
911                 vmf.orig_pte = *vmf.pte;
912                 if (!is_swap_pte(vmf.orig_pte))
913                         continue;
914                 swapped_in++;
915                 ret = do_swap_page(&vmf);
916
917                 /* do_swap_page returns VM_FAULT_RETRY with released mmap_sem */
918                 if (ret & VM_FAULT_RETRY) {
919                         down_read(&mm->mmap_sem);
920                         if (hugepage_vma_revalidate(mm, address, &vmf.vma)) {
921                                 /* vma is no longer available, don't continue to swapin */
922                                 trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 0);
923                                 return false;
924                         }
925                         /* check if the pmd is still valid */
926                         if (mm_find_pmd(mm, address) != pmd) {
927                                 trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 0);
928                                 return false;
929                         }
930                 }
931                 if (ret & VM_FAULT_ERROR) {
932                         trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 0);
933                         return false;
934                 }
935                 /* pte is unmapped now, we need to map it */
936                 vmf.pte = pte_offset_map(pmd, vmf.address);
937         }
938         vmf.pte--;
939         pte_unmap(vmf.pte);
940         trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 1);
941         return true;
942 }
943
944 static void collapse_huge_page(struct mm_struct *mm,
945                                    unsigned long address,
946                                    struct page **hpage,
947                                    int node, int referenced)
948 {
949         pmd_t *pmd, _pmd;
950         pte_t *pte;
951         pgtable_t pgtable;
952         struct page *new_page;
953         spinlock_t *pmd_ptl, *pte_ptl;
954         int isolated = 0, result = 0;
955         struct mem_cgroup *memcg;
956         struct vm_area_struct *vma;
957         struct mmu_notifier_range range;
958         gfp_t gfp;
959
960         VM_BUG_ON(address & ~HPAGE_PMD_MASK);
961
962         /* Only allocate from the target node */
963         gfp = alloc_hugepage_khugepaged_gfpmask() | __GFP_THISNODE;
964
965         /*
966          * Before allocating the hugepage, release the mmap_sem read lock.
967          * The allocation can take potentially a long time if it involves
968          * sync compaction, and we do not need to hold the mmap_sem during
969          * that. We will recheck the vma after taking it again in write mode.
970          */
971         up_read(&mm->mmap_sem);
972         new_page = khugepaged_alloc_page(hpage, gfp, node);
973         if (!new_page) {
974                 result = SCAN_ALLOC_HUGE_PAGE_FAIL;
975                 goto out_nolock;
976         }
977
978         if (unlikely(mem_cgroup_try_charge(new_page, mm, gfp, &memcg, true))) {
979                 result = SCAN_CGROUP_CHARGE_FAIL;
980                 goto out_nolock;
981         }
982
983         down_read(&mm->mmap_sem);
984         result = hugepage_vma_revalidate(mm, address, &vma);
985         if (result) {
986                 mem_cgroup_cancel_charge(new_page, memcg, true);
987                 up_read(&mm->mmap_sem);
988                 goto out_nolock;
989         }
990
991         pmd = mm_find_pmd(mm, address);
992         if (!pmd) {
993                 result = SCAN_PMD_NULL;
994                 mem_cgroup_cancel_charge(new_page, memcg, true);
995                 up_read(&mm->mmap_sem);
996                 goto out_nolock;
997         }
998
999         /*
1000          * __collapse_huge_page_swapin always returns with mmap_sem locked.
1001          * If it fails, we release mmap_sem and jump out_nolock.
1002          * Continuing to collapse causes inconsistency.
1003          */
1004         if (!__collapse_huge_page_swapin(mm, vma, address, pmd, referenced)) {
1005                 mem_cgroup_cancel_charge(new_page, memcg, true);
1006                 up_read(&mm->mmap_sem);
1007                 goto out_nolock;
1008         }
1009
1010         up_read(&mm->mmap_sem);
1011         /*
1012          * Prevent all access to pagetables with the exception of
1013          * gup_fast later handled by the ptep_clear_flush and the VM
1014          * handled by the anon_vma lock + PG_lock.
1015          */
1016         down_write(&mm->mmap_sem);
1017         result = SCAN_ANY_PROCESS;
1018         if (!mmget_still_valid(mm))
1019                 goto out;
1020         result = hugepage_vma_revalidate(mm, address, &vma);
1021         if (result)
1022                 goto out;
1023         /* check if the pmd is still valid */
1024         if (mm_find_pmd(mm, address) != pmd)
1025                 goto out;
1026
1027         anon_vma_lock_write(vma->anon_vma);
1028
1029         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, NULL, mm,
1030                                 address, address + HPAGE_PMD_SIZE);
1031         mmu_notifier_invalidate_range_start(&range);
1032
1033         pte = pte_offset_map(pmd, address);
1034         pte_ptl = pte_lockptr(mm, pmd);
1035
1036         pmd_ptl = pmd_lock(mm, pmd); /* probably unnecessary */
1037         /*
1038          * After this gup_fast can't run anymore. This also removes
1039          * any huge TLB entry from the CPU so we won't allow
1040          * huge and small TLB entries for the same virtual address
1041          * to avoid the risk of CPU bugs in that area.
1042          */
1043         _pmd = pmdp_collapse_flush(vma, address, pmd);
1044         spin_unlock(pmd_ptl);
1045         mmu_notifier_invalidate_range_end(&range);
1046
1047         spin_lock(pte_ptl);
1048         isolated = __collapse_huge_page_isolate(vma, address, pte);
1049         spin_unlock(pte_ptl);
1050
1051         if (unlikely(!isolated)) {
1052                 pte_unmap(pte);
1053                 spin_lock(pmd_ptl);
1054                 BUG_ON(!pmd_none(*pmd));
1055                 /*
1056                  * We can only use set_pmd_at when establishing
1057                  * hugepmds and never for establishing regular pmds that
1058                  * points to regular pagetables. Use pmd_populate for that
1059                  */
1060                 pmd_populate(mm, pmd, pmd_pgtable(_pmd));
1061                 spin_unlock(pmd_ptl);
1062                 anon_vma_unlock_write(vma->anon_vma);
1063                 result = SCAN_FAIL;
1064                 goto out;
1065         }
1066
1067         /*
1068          * All pages are isolated and locked so anon_vma rmap
1069          * can't run anymore.
1070          */
1071         anon_vma_unlock_write(vma->anon_vma);
1072
1073         __collapse_huge_page_copy(pte, new_page, vma, address, pte_ptl);
1074         pte_unmap(pte);
1075         __SetPageUptodate(new_page);
1076         pgtable = pmd_pgtable(_pmd);
1077
1078         _pmd = mk_huge_pmd(new_page, vma->vm_page_prot);
1079         _pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma);
1080
1081         /*
1082          * spin_lock() below is not the equivalent of smp_wmb(), so
1083          * this is needed to avoid the copy_huge_page writes to become
1084          * visible after the set_pmd_at() write.
1085          */
1086         smp_wmb();
1087
1088         spin_lock(pmd_ptl);
1089         BUG_ON(!pmd_none(*pmd));
1090         page_add_new_anon_rmap(new_page, vma, address, true);
1091         mem_cgroup_commit_charge(new_page, memcg, false, true);
1092         count_memcg_events(memcg, THP_COLLAPSE_ALLOC, 1);
1093         lru_cache_add_active_or_unevictable(new_page, vma);
1094         pgtable_trans_huge_deposit(mm, pmd, pgtable);
1095         set_pmd_at(mm, address, pmd, _pmd);
1096         update_mmu_cache_pmd(vma, address, pmd);
1097         spin_unlock(pmd_ptl);
1098
1099         *hpage = NULL;
1100
1101         khugepaged_pages_collapsed++;
1102         result = SCAN_SUCCEED;
1103 out_up_write:
1104         up_write(&mm->mmap_sem);
1105 out_nolock:
1106         trace_mm_collapse_huge_page(mm, isolated, result);
1107         return;
1108 out:
1109         mem_cgroup_cancel_charge(new_page, memcg, true);
1110         goto out_up_write;
1111 }
1112
1113 static int khugepaged_scan_pmd(struct mm_struct *mm,
1114                                struct vm_area_struct *vma,
1115                                unsigned long address,
1116                                struct page **hpage)
1117 {
1118         pmd_t *pmd;
1119         pte_t *pte, *_pte;
1120         int ret = 0, none_or_zero = 0, result = 0, referenced = 0;
1121         struct page *page = NULL;
1122         unsigned long _address;
1123         spinlock_t *ptl;
1124         int node = NUMA_NO_NODE, unmapped = 0;
1125         bool writable = false;
1126
1127         VM_BUG_ON(address & ~HPAGE_PMD_MASK);
1128
1129         pmd = mm_find_pmd(mm, address);
1130         if (!pmd) {
1131                 result = SCAN_PMD_NULL;
1132                 goto out;
1133         }
1134
1135         memset(khugepaged_node_load, 0, sizeof(khugepaged_node_load));
1136         pte = pte_offset_map_lock(mm, pmd, address, &ptl);
1137         for (_address = address, _pte = pte; _pte < pte+HPAGE_PMD_NR;
1138              _pte++, _address += PAGE_SIZE) {
1139                 pte_t pteval = *_pte;
1140                 if (is_swap_pte(pteval)) {
1141                         if (++unmapped <= khugepaged_max_ptes_swap) {
1142                                 continue;
1143                         } else {
1144                                 result = SCAN_EXCEED_SWAP_PTE;
1145                                 goto out_unmap;
1146                         }
1147                 }
1148                 if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
1149                         if (!userfaultfd_armed(vma) &&
1150                             ++none_or_zero <= khugepaged_max_ptes_none) {
1151                                 continue;
1152                         } else {
1153                                 result = SCAN_EXCEED_NONE_PTE;
1154                                 goto out_unmap;
1155                         }
1156                 }
1157                 if (!pte_present(pteval)) {
1158                         result = SCAN_PTE_NON_PRESENT;
1159                         goto out_unmap;
1160                 }
1161                 if (pte_write(pteval))
1162                         writable = true;
1163
1164                 page = vm_normal_page(vma, _address, pteval);
1165                 if (unlikely(!page)) {
1166                         result = SCAN_PAGE_NULL;
1167                         goto out_unmap;
1168                 }
1169
1170                 /* TODO: teach khugepaged to collapse THP mapped with pte */
1171                 if (PageCompound(page)) {
1172                         result = SCAN_PAGE_COMPOUND;
1173                         goto out_unmap;
1174                 }
1175
1176                 /*
1177                  * Record which node the original page is from and save this
1178                  * information to khugepaged_node_load[].
1179                  * Khupaged will allocate hugepage from the node has the max
1180                  * hit record.
1181                  */
1182                 node = page_to_nid(page);
1183                 if (khugepaged_scan_abort(node)) {
1184                         result = SCAN_SCAN_ABORT;
1185                         goto out_unmap;
1186                 }
1187                 khugepaged_node_load[node]++;
1188                 if (!PageLRU(page)) {
1189                         result = SCAN_PAGE_LRU;
1190                         goto out_unmap;
1191                 }
1192                 if (PageLocked(page)) {
1193                         result = SCAN_PAGE_LOCK;
1194                         goto out_unmap;
1195                 }
1196                 if (!PageAnon(page)) {
1197                         result = SCAN_PAGE_ANON;
1198                         goto out_unmap;
1199                 }
1200
1201                 /*
1202                  * cannot use mapcount: can't collapse if there's a gup pin.
1203                  * The page must only be referenced by the scanned process
1204                  * and page swap cache.
1205                  */
1206                 if (page_count(page) != 1 + PageSwapCache(page)) {
1207                         result = SCAN_PAGE_COUNT;
1208                         goto out_unmap;
1209                 }
1210                 if (pte_young(pteval) ||
1211                     page_is_young(page) || PageReferenced(page) ||
1212                     mmu_notifier_test_young(vma->vm_mm, address))
1213                         referenced++;
1214         }
1215         if (writable) {
1216                 if (referenced) {
1217                         result = SCAN_SUCCEED;
1218                         ret = 1;
1219                 } else {
1220                         result = SCAN_LACK_REFERENCED_PAGE;
1221                 }
1222         } else {
1223                 result = SCAN_PAGE_RO;
1224         }
1225 out_unmap:
1226         pte_unmap_unlock(pte, ptl);
1227         if (ret) {
1228                 node = khugepaged_find_target_node();
1229                 /* collapse_huge_page will return with the mmap_sem released */
1230                 collapse_huge_page(mm, address, hpage, node, referenced);
1231         }
1232 out:
1233         trace_mm_khugepaged_scan_pmd(mm, page, writable, referenced,
1234                                      none_or_zero, result, unmapped);
1235         return ret;
1236 }
1237
1238 static void collect_mm_slot(struct mm_slot *mm_slot)
1239 {
1240         struct mm_struct *mm = mm_slot->mm;
1241
1242         lockdep_assert_held(&khugepaged_mm_lock);
1243
1244         if (khugepaged_test_exit(mm)) {
1245                 /* free mm_slot */
1246                 hash_del(&mm_slot->hash);
1247                 list_del(&mm_slot->mm_node);
1248
1249                 /*
1250                  * Not strictly needed because the mm exited already.
1251                  *
1252                  * clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
1253                  */
1254
1255                 /* khugepaged_mm_lock actually not necessary for the below */
1256                 free_mm_slot(mm_slot);
1257                 mmdrop(mm);
1258         }
1259 }
1260
1261 #if defined(CONFIG_SHMEM) && defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE)
1262 /*
1263  * Notify khugepaged that given addr of the mm is pte-mapped THP. Then
1264  * khugepaged should try to collapse the page table.
1265  */
1266 static int khugepaged_add_pte_mapped_thp(struct mm_struct *mm,
1267                                          unsigned long addr)
1268 {
1269         struct mm_slot *mm_slot;
1270
1271         VM_BUG_ON(addr & ~HPAGE_PMD_MASK);
1272
1273         spin_lock(&khugepaged_mm_lock);
1274         mm_slot = get_mm_slot(mm);
1275         if (likely(mm_slot && mm_slot->nr_pte_mapped_thp < MAX_PTE_MAPPED_THP))
1276                 mm_slot->pte_mapped_thp[mm_slot->nr_pte_mapped_thp++] = addr;
1277         spin_unlock(&khugepaged_mm_lock);
1278         return 0;
1279 }
1280
1281 /**
1282  * Try to collapse a pte-mapped THP for mm at address haddr.
1283  *
1284  * This function checks whether all the PTEs in the PMD are pointing to the
1285  * right THP. If so, retract the page table so the THP can refault in with
1286  * as pmd-mapped.
1287  */
1288 void collapse_pte_mapped_thp(struct mm_struct *mm, unsigned long addr)
1289 {
1290         unsigned long haddr = addr & HPAGE_PMD_MASK;
1291         struct vm_area_struct *vma = find_vma(mm, haddr);
1292         struct page *hpage = NULL;
1293         pte_t *start_pte, *pte;
1294         pmd_t *pmd, _pmd;
1295         spinlock_t *ptl;
1296         int count = 0;
1297         int i;
1298
1299         if (!vma || !vma->vm_file ||
1300             vma->vm_start > haddr || vma->vm_end < haddr + HPAGE_PMD_SIZE)
1301                 return;
1302
1303         /*
1304          * This vm_flags may not have VM_HUGEPAGE if the page was not
1305          * collapsed by this mm. But we can still collapse if the page is
1306          * the valid THP. Add extra VM_HUGEPAGE so hugepage_vma_check()
1307          * will not fail the vma for missing VM_HUGEPAGE
1308          */
1309         if (!hugepage_vma_check(vma, vma->vm_flags | VM_HUGEPAGE))
1310                 return;
1311
1312         pmd = mm_find_pmd(mm, haddr);
1313         if (!pmd)
1314                 return;
1315
1316         start_pte = pte_offset_map_lock(mm, pmd, haddr, &ptl);
1317
1318         /* step 1: check all mapped PTEs are to the right huge page */
1319         for (i = 0, addr = haddr, pte = start_pte;
1320              i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE, pte++) {
1321                 struct page *page;
1322
1323                 /* empty pte, skip */
1324                 if (pte_none(*pte))
1325                         continue;
1326
1327                 /* page swapped out, abort */
1328                 if (!pte_present(*pte))
1329                         goto abort;
1330
1331                 page = vm_normal_page(vma, addr, *pte);
1332
1333                 if (!page || !PageCompound(page))
1334                         goto abort;
1335
1336                 if (!hpage) {
1337                         hpage = compound_head(page);
1338                         /*
1339                          * The mapping of the THP should not change.
1340                          *
1341                          * Note that uprobe, debugger, or MAP_PRIVATE may
1342                          * change the page table, but the new page will
1343                          * not pass PageCompound() check.
1344                          */
1345                         if (WARN_ON(hpage->mapping != vma->vm_file->f_mapping))
1346                                 goto abort;
1347                 }
1348
1349                 /*
1350                  * Confirm the page maps to the correct subpage.
1351                  *
1352                  * Note that uprobe, debugger, or MAP_PRIVATE may change
1353                  * the page table, but the new page will not pass
1354                  * PageCompound() check.
1355                  */
1356                 if (WARN_ON(hpage + i != page))
1357                         goto abort;
1358                 count++;
1359         }
1360
1361         /* step 2: adjust rmap */
1362         for (i = 0, addr = haddr, pte = start_pte;
1363              i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE, pte++) {
1364                 struct page *page;
1365
1366                 if (pte_none(*pte))
1367                         continue;
1368                 page = vm_normal_page(vma, addr, *pte);
1369                 page_remove_rmap(page, false);
1370         }
1371
1372         pte_unmap_unlock(start_pte, ptl);
1373
1374         /* step 3: set proper refcount and mm_counters. */
1375         if (hpage) {
1376                 page_ref_sub(hpage, count);
1377                 add_mm_counter(vma->vm_mm, mm_counter_file(hpage), -count);
1378         }
1379
1380         /* step 4: collapse pmd */
1381         ptl = pmd_lock(vma->vm_mm, pmd);
1382         _pmd = pmdp_collapse_flush(vma, addr, pmd);
1383         spin_unlock(ptl);
1384         mm_dec_nr_ptes(mm);
1385         pte_free(mm, pmd_pgtable(_pmd));
1386         return;
1387
1388 abort:
1389         pte_unmap_unlock(start_pte, ptl);
1390 }
1391
1392 static int khugepaged_collapse_pte_mapped_thps(struct mm_slot *mm_slot)
1393 {
1394         struct mm_struct *mm = mm_slot->mm;
1395         int i;
1396
1397         if (likely(mm_slot->nr_pte_mapped_thp == 0))
1398                 return 0;
1399
1400         if (!down_write_trylock(&mm->mmap_sem))
1401                 return -EBUSY;
1402
1403         if (unlikely(khugepaged_test_exit(mm)))
1404                 goto out;
1405
1406         for (i = 0; i < mm_slot->nr_pte_mapped_thp; i++)
1407                 collapse_pte_mapped_thp(mm, mm_slot->pte_mapped_thp[i]);
1408
1409 out:
1410         mm_slot->nr_pte_mapped_thp = 0;
1411         up_write(&mm->mmap_sem);
1412         return 0;
1413 }
1414
1415 static void retract_page_tables(struct address_space *mapping, pgoff_t pgoff)
1416 {
1417         struct vm_area_struct *vma;
1418         unsigned long addr;
1419         pmd_t *pmd, _pmd;
1420
1421         i_mmap_lock_write(mapping);
1422         vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
1423                 /*
1424                  * Check vma->anon_vma to exclude MAP_PRIVATE mappings that
1425                  * got written to. These VMAs are likely not worth investing
1426                  * down_write(mmap_sem) as PMD-mapping is likely to be split
1427                  * later.
1428                  *
1429                  * Not that vma->anon_vma check is racy: it can be set up after
1430                  * the check but before we took mmap_sem by the fault path.
1431                  * But page lock would prevent establishing any new ptes of the
1432                  * page, so we are safe.
1433                  *
1434                  * An alternative would be drop the check, but check that page
1435                  * table is clear before calling pmdp_collapse_flush() under
1436                  * ptl. It has higher chance to recover THP for the VMA, but
1437                  * has higher cost too.
1438                  */
1439                 if (vma->anon_vma)
1440                         continue;
1441                 addr = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
1442                 if (addr & ~HPAGE_PMD_MASK)
1443                         continue;
1444                 if (vma->vm_end < addr + HPAGE_PMD_SIZE)
1445                         continue;
1446                 pmd = mm_find_pmd(vma->vm_mm, addr);
1447                 if (!pmd)
1448                         continue;
1449                 /*
1450                  * We need exclusive mmap_sem to retract page table.
1451                  *
1452                  * We use trylock due to lock inversion: we need to acquire
1453                  * mmap_sem while holding page lock. Fault path does it in
1454                  * reverse order. Trylock is a way to avoid deadlock.
1455                  */
1456                 if (down_write_trylock(&vma->vm_mm->mmap_sem)) {
1457                         spinlock_t *ptl = pmd_lock(vma->vm_mm, pmd);
1458                         /* assume page table is clear */
1459                         _pmd = pmdp_collapse_flush(vma, addr, pmd);
1460                         spin_unlock(ptl);
1461                         up_write(&vma->vm_mm->mmap_sem);
1462                         mm_dec_nr_ptes(vma->vm_mm);
1463                         pte_free(vma->vm_mm, pmd_pgtable(_pmd));
1464                 } else {
1465                         /* Try again later */
1466                         khugepaged_add_pte_mapped_thp(vma->vm_mm, addr);
1467                 }
1468         }
1469         i_mmap_unlock_write(mapping);
1470 }
1471
1472 /**
1473  * collapse_file - collapse filemap/tmpfs/shmem pages into huge one.
1474  *
1475  * Basic scheme is simple, details are more complex:
1476  *  - allocate and lock a new huge page;
1477  *  - scan page cache replacing old pages with the new one
1478  *    + swap/gup in pages if necessary;
1479  *    + fill in gaps;
1480  *    + keep old pages around in case rollback is required;
1481  *  - if replacing succeeds:
1482  *    + copy data over;
1483  *    + free old pages;
1484  *    + unlock huge page;
1485  *  - if replacing failed;
1486  *    + put all pages back and unfreeze them;
1487  *    + restore gaps in the page cache;
1488  *    + unlock and free huge page;
1489  */
1490 static void collapse_file(struct mm_struct *mm,
1491                 struct file *file, pgoff_t start,
1492                 struct page **hpage, int node)
1493 {
1494         struct address_space *mapping = file->f_mapping;
1495         gfp_t gfp;
1496         struct page *new_page;
1497         struct mem_cgroup *memcg;
1498         pgoff_t index, end = start + HPAGE_PMD_NR;
1499         LIST_HEAD(pagelist);
1500         XA_STATE_ORDER(xas, &mapping->i_pages, start, HPAGE_PMD_ORDER);
1501         int nr_none = 0, result = SCAN_SUCCEED;
1502         bool is_shmem = shmem_file(file);
1503
1504         VM_BUG_ON(!IS_ENABLED(CONFIG_READ_ONLY_THP_FOR_FS) && !is_shmem);
1505         VM_BUG_ON(start & (HPAGE_PMD_NR - 1));
1506
1507         /* Only allocate from the target node */
1508         gfp = alloc_hugepage_khugepaged_gfpmask() | __GFP_THISNODE;
1509
1510         new_page = khugepaged_alloc_page(hpage, gfp, node);
1511         if (!new_page) {
1512                 result = SCAN_ALLOC_HUGE_PAGE_FAIL;
1513                 goto out;
1514         }
1515
1516         if (unlikely(mem_cgroup_try_charge(new_page, mm, gfp, &memcg, true))) {
1517                 result = SCAN_CGROUP_CHARGE_FAIL;
1518                 goto out;
1519         }
1520
1521         /* This will be less messy when we use multi-index entries */
1522         do {
1523                 xas_lock_irq(&xas);
1524                 xas_create_range(&xas);
1525                 if (!xas_error(&xas))
1526                         break;
1527                 xas_unlock_irq(&xas);
1528                 if (!xas_nomem(&xas, GFP_KERNEL)) {
1529                         mem_cgroup_cancel_charge(new_page, memcg, true);
1530                         result = SCAN_FAIL;
1531                         goto out;
1532                 }
1533         } while (1);
1534
1535         __SetPageLocked(new_page);
1536         if (is_shmem)
1537                 __SetPageSwapBacked(new_page);
1538         new_page->index = start;
1539         new_page->mapping = mapping;
1540
1541         /*
1542          * At this point the new_page is locked and not up-to-date.
1543          * It's safe to insert it into the page cache, because nobody would
1544          * be able to map it or use it in another way until we unlock it.
1545          */
1546
1547         xas_set(&xas, start);
1548         for (index = start; index < end; index++) {
1549                 struct page *page = xas_next(&xas);
1550
1551                 VM_BUG_ON(index != xas.xa_index);
1552                 if (is_shmem) {
1553                         if (!page) {
1554                                 /*
1555                                  * Stop if extent has been truncated or
1556                                  * hole-punched, and is now completely
1557                                  * empty.
1558                                  */
1559                                 if (index == start) {
1560                                         if (!xas_next_entry(&xas, end - 1)) {
1561                                                 result = SCAN_TRUNCATED;
1562                                                 goto xa_locked;
1563                                         }
1564                                         xas_set(&xas, index);
1565                                 }
1566                                 if (!shmem_charge(mapping->host, 1)) {
1567                                         result = SCAN_FAIL;
1568                                         goto xa_locked;
1569                                 }
1570                                 xas_store(&xas, new_page);
1571                                 nr_none++;
1572                                 continue;
1573                         }
1574
1575                         if (xa_is_value(page) || !PageUptodate(page)) {
1576                                 xas_unlock_irq(&xas);
1577                                 /* swap in or instantiate fallocated page */
1578                                 if (shmem_getpage(mapping->host, index, &page,
1579                                                   SGP_NOHUGE)) {
1580                                         result = SCAN_FAIL;
1581                                         goto xa_unlocked;
1582                                 }
1583                         } else if (trylock_page(page)) {
1584                                 get_page(page);
1585                                 xas_unlock_irq(&xas);
1586                         } else {
1587                                 result = SCAN_PAGE_LOCK;
1588                                 goto xa_locked;
1589                         }
1590                 } else {        /* !is_shmem */
1591                         if (!page || xa_is_value(page)) {
1592                                 xas_unlock_irq(&xas);
1593                                 page_cache_sync_readahead(mapping, &file->f_ra,
1594                                                           file, index,
1595                                                           PAGE_SIZE);
1596                                 /* drain pagevecs to help isolate_lru_page() */
1597                                 lru_add_drain();
1598                                 page = find_lock_page(mapping, index);
1599                                 if (unlikely(page == NULL)) {
1600                                         result = SCAN_FAIL;
1601                                         goto xa_unlocked;
1602                                 }
1603                         } else if (PageDirty(page)) {
1604                                 /*
1605                                  * khugepaged only works on read-only fd,
1606                                  * so this page is dirty because it hasn't
1607                                  * been flushed since first write. There
1608                                  * won't be new dirty pages.
1609                                  *
1610                                  * Trigger async flush here and hope the
1611                                  * writeback is done when khugepaged
1612                                  * revisits this page.
1613                                  *
1614                                  * This is a one-off situation. We are not
1615                                  * forcing writeback in loop.
1616                                  */
1617                                 xas_unlock_irq(&xas);
1618                                 filemap_flush(mapping);
1619                                 result = SCAN_FAIL;
1620                                 goto xa_unlocked;
1621                         } else if (trylock_page(page)) {
1622                                 get_page(page);
1623                                 xas_unlock_irq(&xas);
1624                         } else {
1625                                 result = SCAN_PAGE_LOCK;
1626                                 goto xa_locked;
1627                         }
1628                 }
1629
1630                 /*
1631                  * The page must be locked, so we can drop the i_pages lock
1632                  * without racing with truncate.
1633                  */
1634                 VM_BUG_ON_PAGE(!PageLocked(page), page);
1635
1636                 /* make sure the page is up to date */
1637                 if (unlikely(!PageUptodate(page))) {
1638                         result = SCAN_FAIL;
1639                         goto out_unlock;
1640                 }
1641
1642                 /*
1643                  * If file was truncated then extended, or hole-punched, before
1644                  * we locked the first page, then a THP might be there already.
1645                  */
1646                 if (PageTransCompound(page)) {
1647                         result = SCAN_PAGE_COMPOUND;
1648                         goto out_unlock;
1649                 }
1650
1651                 if (page_mapping(page) != mapping) {
1652                         result = SCAN_TRUNCATED;
1653                         goto out_unlock;
1654                 }
1655
1656                 if (!is_shmem && PageDirty(page)) {
1657                         /*
1658                          * khugepaged only works on read-only fd, so this
1659                          * page is dirty because it hasn't been flushed
1660                          * since first write.
1661                          */
1662                         result = SCAN_FAIL;
1663                         goto out_unlock;
1664                 }
1665
1666                 if (isolate_lru_page(page)) {
1667                         result = SCAN_DEL_PAGE_LRU;
1668                         goto out_unlock;
1669                 }
1670
1671                 if (page_has_private(page) &&
1672                     !try_to_release_page(page, GFP_KERNEL)) {
1673                         result = SCAN_PAGE_HAS_PRIVATE;
1674                         goto out_unlock;
1675                 }
1676
1677                 if (page_mapped(page))
1678                         unmap_mapping_pages(mapping, index, 1, false);
1679
1680                 xas_lock_irq(&xas);
1681                 xas_set(&xas, index);
1682
1683                 VM_BUG_ON_PAGE(page != xas_load(&xas), page);
1684                 VM_BUG_ON_PAGE(page_mapped(page), page);
1685
1686                 /*
1687                  * The page is expected to have page_count() == 3:
1688                  *  - we hold a pin on it;
1689                  *  - one reference from page cache;
1690                  *  - one from isolate_lru_page;
1691                  */
1692                 if (!page_ref_freeze(page, 3)) {
1693                         result = SCAN_PAGE_COUNT;
1694                         xas_unlock_irq(&xas);
1695                         putback_lru_page(page);
1696                         goto out_unlock;
1697                 }
1698
1699                 /*
1700                  * Add the page to the list to be able to undo the collapse if
1701                  * something go wrong.
1702                  */
1703                 list_add_tail(&page->lru, &pagelist);
1704
1705                 /* Finally, replace with the new page. */
1706                 xas_store(&xas, new_page);
1707                 continue;
1708 out_unlock:
1709                 unlock_page(page);
1710                 put_page(page);
1711                 goto xa_unlocked;
1712         }
1713
1714         if (is_shmem)
1715                 __inc_node_page_state(new_page, NR_SHMEM_THPS);
1716         else {
1717                 __inc_node_page_state(new_page, NR_FILE_THPS);
1718                 filemap_nr_thps_inc(mapping);
1719         }
1720
1721         if (nr_none) {
1722                 struct zone *zone = page_zone(new_page);
1723
1724                 __mod_node_page_state(zone->zone_pgdat, NR_FILE_PAGES, nr_none);
1725                 if (is_shmem)
1726                         __mod_node_page_state(zone->zone_pgdat,
1727                                               NR_SHMEM, nr_none);
1728         }
1729
1730 xa_locked:
1731         xas_unlock_irq(&xas);
1732 xa_unlocked:
1733
1734         if (result == SCAN_SUCCEED) {
1735                 struct page *page, *tmp;
1736
1737                 /*
1738                  * Replacing old pages with new one has succeeded, now we
1739                  * need to copy the content and free the old pages.
1740                  */
1741                 index = start;
1742                 list_for_each_entry_safe(page, tmp, &pagelist, lru) {
1743                         while (index < page->index) {
1744                                 clear_highpage(new_page + (index % HPAGE_PMD_NR));
1745                                 index++;
1746                         }
1747                         copy_highpage(new_page + (page->index % HPAGE_PMD_NR),
1748                                         page);
1749                         list_del(&page->lru);
1750                         page->mapping = NULL;
1751                         page_ref_unfreeze(page, 1);
1752                         ClearPageActive(page);
1753                         ClearPageUnevictable(page);
1754                         unlock_page(page);
1755                         put_page(page);
1756                         index++;
1757                 }
1758                 while (index < end) {
1759                         clear_highpage(new_page + (index % HPAGE_PMD_NR));
1760                         index++;
1761                 }
1762
1763                 SetPageUptodate(new_page);
1764                 page_ref_add(new_page, HPAGE_PMD_NR - 1);
1765                 mem_cgroup_commit_charge(new_page, memcg, false, true);
1766
1767                 if (is_shmem) {
1768                         set_page_dirty(new_page);
1769                         lru_cache_add_anon(new_page);
1770                 } else {
1771                         lru_cache_add_file(new_page);
1772                 }
1773                 count_memcg_events(memcg, THP_COLLAPSE_ALLOC, 1);
1774
1775                 /*
1776                  * Remove pte page tables, so we can re-fault the page as huge.
1777                  */
1778                 retract_page_tables(mapping, start);
1779                 *hpage = NULL;
1780
1781                 khugepaged_pages_collapsed++;
1782         } else {
1783                 struct page *page;
1784
1785                 /* Something went wrong: roll back page cache changes */
1786                 xas_lock_irq(&xas);
1787                 mapping->nrpages -= nr_none;
1788
1789                 if (is_shmem)
1790                         shmem_uncharge(mapping->host, nr_none);
1791
1792                 xas_set(&xas, start);
1793                 xas_for_each(&xas, page, end - 1) {
1794                         page = list_first_entry_or_null(&pagelist,
1795                                         struct page, lru);
1796                         if (!page || xas.xa_index < page->index) {
1797                                 if (!nr_none)
1798                                         break;
1799                                 nr_none--;
1800                                 /* Put holes back where they were */
1801                                 xas_store(&xas, NULL);
1802                                 continue;
1803                         }
1804
1805                         VM_BUG_ON_PAGE(page->index != xas.xa_index, page);
1806
1807                         /* Unfreeze the page. */
1808                         list_del(&page->lru);
1809                         page_ref_unfreeze(page, 2);
1810                         xas_store(&xas, page);
1811                         xas_pause(&xas);
1812                         xas_unlock_irq(&xas);
1813                         unlock_page(page);
1814                         putback_lru_page(page);
1815                         xas_lock_irq(&xas);
1816                 }
1817                 VM_BUG_ON(nr_none);
1818                 xas_unlock_irq(&xas);
1819
1820                 mem_cgroup_cancel_charge(new_page, memcg, true);
1821                 new_page->mapping = NULL;
1822         }
1823
1824         unlock_page(new_page);
1825 out:
1826         VM_BUG_ON(!list_empty(&pagelist));
1827         /* TODO: tracepoints */
1828 }
1829
1830 static void khugepaged_scan_file(struct mm_struct *mm,
1831                 struct file *file, pgoff_t start, struct page **hpage)
1832 {
1833         struct page *page = NULL;
1834         struct address_space *mapping = file->f_mapping;
1835         XA_STATE(xas, &mapping->i_pages, start);
1836         int present, swap;
1837         int node = NUMA_NO_NODE;
1838         int result = SCAN_SUCCEED;
1839
1840         present = 0;
1841         swap = 0;
1842         memset(khugepaged_node_load, 0, sizeof(khugepaged_node_load));
1843         rcu_read_lock();
1844         xas_for_each(&xas, page, start + HPAGE_PMD_NR - 1) {
1845                 if (xas_retry(&xas, page))
1846                         continue;
1847
1848                 if (xa_is_value(page)) {
1849                         if (++swap > khugepaged_max_ptes_swap) {
1850                                 result = SCAN_EXCEED_SWAP_PTE;
1851                                 break;
1852                         }
1853                         continue;
1854                 }
1855
1856                 if (PageTransCompound(page)) {
1857                         result = SCAN_PAGE_COMPOUND;
1858                         break;
1859                 }
1860
1861                 node = page_to_nid(page);
1862                 if (khugepaged_scan_abort(node)) {
1863                         result = SCAN_SCAN_ABORT;
1864                         break;
1865                 }
1866                 khugepaged_node_load[node]++;
1867
1868                 if (!PageLRU(page)) {
1869                         result = SCAN_PAGE_LRU;
1870                         break;
1871                 }
1872
1873                 if (page_count(page) !=
1874                     1 + page_mapcount(page) + page_has_private(page)) {
1875                         result = SCAN_PAGE_COUNT;
1876                         break;
1877                 }
1878
1879                 /*
1880                  * We probably should check if the page is referenced here, but
1881                  * nobody would transfer pte_young() to PageReferenced() for us.
1882                  * And rmap walk here is just too costly...
1883                  */
1884
1885                 present++;
1886
1887                 if (need_resched()) {
1888                         xas_pause(&xas);
1889                         cond_resched_rcu();
1890                 }
1891         }
1892         rcu_read_unlock();
1893
1894         if (result == SCAN_SUCCEED) {
1895                 if (present < HPAGE_PMD_NR - khugepaged_max_ptes_none) {
1896                         result = SCAN_EXCEED_NONE_PTE;
1897                 } else {
1898                         node = khugepaged_find_target_node();
1899                         collapse_file(mm, file, start, hpage, node);
1900                 }
1901         }
1902
1903         /* TODO: tracepoints */
1904 }
1905 #else
1906 static void khugepaged_scan_file(struct mm_struct *mm,
1907                 struct file *file, pgoff_t start, struct page **hpage)
1908 {
1909         BUILD_BUG();
1910 }
1911
1912 static int khugepaged_collapse_pte_mapped_thps(struct mm_slot *mm_slot)
1913 {
1914         return 0;
1915 }
1916 #endif
1917
1918 static unsigned int khugepaged_scan_mm_slot(unsigned int pages,
1919                                             struct page **hpage)
1920         __releases(&khugepaged_mm_lock)
1921         __acquires(&khugepaged_mm_lock)
1922 {
1923         struct mm_slot *mm_slot;
1924         struct mm_struct *mm;
1925         struct vm_area_struct *vma;
1926         int progress = 0;
1927
1928         VM_BUG_ON(!pages);
1929         lockdep_assert_held(&khugepaged_mm_lock);
1930
1931         if (khugepaged_scan.mm_slot)
1932                 mm_slot = khugepaged_scan.mm_slot;
1933         else {
1934                 mm_slot = list_entry(khugepaged_scan.mm_head.next,
1935                                      struct mm_slot, mm_node);
1936                 khugepaged_scan.address = 0;
1937                 khugepaged_scan.mm_slot = mm_slot;
1938         }
1939         spin_unlock(&khugepaged_mm_lock);
1940         khugepaged_collapse_pte_mapped_thps(mm_slot);
1941
1942         mm = mm_slot->mm;
1943         /*
1944          * Don't wait for semaphore (to avoid long wait times).  Just move to
1945          * the next mm on the list.
1946          */
1947         vma = NULL;
1948         if (unlikely(!down_read_trylock(&mm->mmap_sem)))
1949                 goto breakouterloop_mmap_sem;
1950         if (likely(!khugepaged_test_exit(mm)))
1951                 vma = find_vma(mm, khugepaged_scan.address);
1952
1953         progress++;
1954         for (; vma; vma = vma->vm_next) {
1955                 unsigned long hstart, hend;
1956
1957                 cond_resched();
1958                 if (unlikely(khugepaged_test_exit(mm))) {
1959                         progress++;
1960                         break;
1961                 }
1962                 if (!hugepage_vma_check(vma, vma->vm_flags)) {
1963 skip:
1964                         progress++;
1965                         continue;
1966                 }
1967                 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
1968                 hend = vma->vm_end & HPAGE_PMD_MASK;
1969                 if (hstart >= hend)
1970                         goto skip;
1971                 if (khugepaged_scan.address > hend)
1972                         goto skip;
1973                 if (khugepaged_scan.address < hstart)
1974                         khugepaged_scan.address = hstart;
1975                 VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK);
1976
1977                 while (khugepaged_scan.address < hend) {
1978                         int ret;
1979                         cond_resched();
1980                         if (unlikely(khugepaged_test_exit(mm)))
1981                                 goto breakouterloop;
1982
1983                         VM_BUG_ON(khugepaged_scan.address < hstart ||
1984                                   khugepaged_scan.address + HPAGE_PMD_SIZE >
1985                                   hend);
1986                         if (IS_ENABLED(CONFIG_SHMEM) && vma->vm_file) {
1987                                 struct file *file;
1988                                 pgoff_t pgoff = linear_page_index(vma,
1989                                                 khugepaged_scan.address);
1990
1991                                 if (shmem_file(vma->vm_file)
1992                                     && !shmem_huge_enabled(vma))
1993                                         goto skip;
1994                                 file = get_file(vma->vm_file);
1995                                 up_read(&mm->mmap_sem);
1996                                 ret = 1;
1997                                 khugepaged_scan_file(mm, file, pgoff, hpage);
1998                                 fput(file);
1999                         } else {
2000                                 ret = khugepaged_scan_pmd(mm, vma,
2001                                                 khugepaged_scan.address,
2002                                                 hpage);
2003                         }
2004                         /* move to next address */
2005                         khugepaged_scan.address += HPAGE_PMD_SIZE;
2006                         progress += HPAGE_PMD_NR;
2007                         if (ret)
2008                                 /* we released mmap_sem so break loop */
2009                                 goto breakouterloop_mmap_sem;
2010                         if (progress >= pages)
2011                                 goto breakouterloop;
2012                 }
2013         }
2014 breakouterloop:
2015         up_read(&mm->mmap_sem); /* exit_mmap will destroy ptes after this */
2016 breakouterloop_mmap_sem:
2017
2018         spin_lock(&khugepaged_mm_lock);
2019         VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot);
2020         /*
2021          * Release the current mm_slot if this mm is about to die, or
2022          * if we scanned all vmas of this mm.
2023          */
2024         if (khugepaged_test_exit(mm) || !vma) {
2025                 /*
2026                  * Make sure that if mm_users is reaching zero while
2027                  * khugepaged runs here, khugepaged_exit will find
2028                  * mm_slot not pointing to the exiting mm.
2029                  */
2030                 if (mm_slot->mm_node.next != &khugepaged_scan.mm_head) {
2031                         khugepaged_scan.mm_slot = list_entry(
2032                                 mm_slot->mm_node.next,
2033                                 struct mm_slot, mm_node);
2034                         khugepaged_scan.address = 0;
2035                 } else {
2036                         khugepaged_scan.mm_slot = NULL;
2037                         khugepaged_full_scans++;
2038                 }
2039
2040                 collect_mm_slot(mm_slot);
2041         }
2042
2043         return progress;
2044 }
2045
2046 static int khugepaged_has_work(void)
2047 {
2048         return !list_empty(&khugepaged_scan.mm_head) &&
2049                 khugepaged_enabled();
2050 }
2051
2052 static int khugepaged_wait_event(void)
2053 {
2054         return !list_empty(&khugepaged_scan.mm_head) ||
2055                 kthread_should_stop();
2056 }
2057
2058 static void khugepaged_do_scan(void)
2059 {
2060         struct page *hpage = NULL;
2061         unsigned int progress = 0, pass_through_head = 0;
2062         unsigned int pages = khugepaged_pages_to_scan;
2063         bool wait = true;
2064
2065         barrier(); /* write khugepaged_pages_to_scan to local stack */
2066
2067         while (progress < pages) {
2068                 if (!khugepaged_prealloc_page(&hpage, &wait))
2069                         break;
2070
2071                 cond_resched();
2072
2073                 if (unlikely(kthread_should_stop() || try_to_freeze()))
2074                         break;
2075
2076                 spin_lock(&khugepaged_mm_lock);
2077                 if (!khugepaged_scan.mm_slot)
2078                         pass_through_head++;
2079                 if (khugepaged_has_work() &&
2080                     pass_through_head < 2)
2081                         progress += khugepaged_scan_mm_slot(pages - progress,
2082                                                             &hpage);
2083                 else
2084                         progress = pages;
2085                 spin_unlock(&khugepaged_mm_lock);
2086         }
2087
2088         if (!IS_ERR_OR_NULL(hpage))
2089                 put_page(hpage);
2090 }
2091
2092 static bool khugepaged_should_wakeup(void)
2093 {
2094         return kthread_should_stop() ||
2095                time_after_eq(jiffies, khugepaged_sleep_expire);
2096 }
2097
2098 static void khugepaged_wait_work(void)
2099 {
2100         if (khugepaged_has_work()) {
2101                 const unsigned long scan_sleep_jiffies =
2102                         msecs_to_jiffies(khugepaged_scan_sleep_millisecs);
2103
2104                 if (!scan_sleep_jiffies)
2105                         return;
2106
2107                 khugepaged_sleep_expire = jiffies + scan_sleep_jiffies;
2108                 wait_event_freezable_timeout(khugepaged_wait,
2109                                              khugepaged_should_wakeup(),
2110                                              scan_sleep_jiffies);
2111                 return;
2112         }
2113
2114         if (khugepaged_enabled())
2115                 wait_event_freezable(khugepaged_wait, khugepaged_wait_event());
2116 }
2117
2118 static int khugepaged(void *none)
2119 {
2120         struct mm_slot *mm_slot;
2121
2122         set_freezable();
2123         set_user_nice(current, MAX_NICE);
2124
2125         while (!kthread_should_stop()) {
2126                 khugepaged_do_scan();
2127                 khugepaged_wait_work();
2128         }
2129
2130         spin_lock(&khugepaged_mm_lock);
2131         mm_slot = khugepaged_scan.mm_slot;
2132         khugepaged_scan.mm_slot = NULL;
2133         if (mm_slot)
2134                 collect_mm_slot(mm_slot);
2135         spin_unlock(&khugepaged_mm_lock);
2136         return 0;
2137 }
2138
2139 static void set_recommended_min_free_kbytes(void)
2140 {
2141         struct zone *zone;
2142         int nr_zones = 0;
2143         unsigned long recommended_min;
2144
2145         for_each_populated_zone(zone) {
2146                 /*
2147                  * We don't need to worry about fragmentation of
2148                  * ZONE_MOVABLE since it only has movable pages.
2149                  */
2150                 if (zone_idx(zone) > gfp_zone(GFP_USER))
2151                         continue;
2152
2153                 nr_zones++;
2154         }
2155
2156         /* Ensure 2 pageblocks are free to assist fragmentation avoidance */
2157         recommended_min = pageblock_nr_pages * nr_zones * 2;
2158
2159         /*
2160          * Make sure that on average at least two pageblocks are almost free
2161          * of another type, one for a migratetype to fall back to and a
2162          * second to avoid subsequent fallbacks of other types There are 3
2163          * MIGRATE_TYPES we care about.
2164          */
2165         recommended_min += pageblock_nr_pages * nr_zones *
2166                            MIGRATE_PCPTYPES * MIGRATE_PCPTYPES;
2167
2168         /* don't ever allow to reserve more than 5% of the lowmem */
2169         recommended_min = min(recommended_min,
2170                               (unsigned long) nr_free_buffer_pages() / 20);
2171         recommended_min <<= (PAGE_SHIFT-10);
2172
2173         if (recommended_min > min_free_kbytes) {
2174                 if (user_min_free_kbytes >= 0)
2175                         pr_info("raising min_free_kbytes from %d to %lu to help transparent hugepage allocations\n",
2176                                 min_free_kbytes, recommended_min);
2177
2178                 min_free_kbytes = recommended_min;
2179         }
2180         setup_per_zone_wmarks();
2181 }
2182
2183 int start_stop_khugepaged(void)
2184 {
2185         static struct task_struct *khugepaged_thread __read_mostly;
2186         static DEFINE_MUTEX(khugepaged_mutex);
2187         int err = 0;
2188
2189         mutex_lock(&khugepaged_mutex);
2190         if (khugepaged_enabled()) {
2191                 if (!khugepaged_thread)
2192                         khugepaged_thread = kthread_run(khugepaged, NULL,
2193                                                         "khugepaged");
2194                 if (IS_ERR(khugepaged_thread)) {
2195                         pr_err("khugepaged: kthread_run(khugepaged) failed\n");
2196                         err = PTR_ERR(khugepaged_thread);
2197                         khugepaged_thread = NULL;
2198                         goto fail;
2199                 }
2200
2201                 if (!list_empty(&khugepaged_scan.mm_head))
2202                         wake_up_interruptible(&khugepaged_wait);
2203
2204                 set_recommended_min_free_kbytes();
2205         } else if (khugepaged_thread) {
2206                 kthread_stop(khugepaged_thread);
2207                 khugepaged_thread = NULL;
2208         }
2209 fail:
2210         mutex_unlock(&khugepaged_mutex);
2211         return err;
2212 }