Merge tag 'for-5.19/dm-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/device...
[linux-2.6-microblaze.git] / mm / kfence / core.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * KFENCE guarded object allocator and fault handling.
4  *
5  * Copyright (C) 2020, Google LLC.
6  */
7
8 #define pr_fmt(fmt) "kfence: " fmt
9
10 #include <linux/atomic.h>
11 #include <linux/bug.h>
12 #include <linux/debugfs.h>
13 #include <linux/hash.h>
14 #include <linux/irq_work.h>
15 #include <linux/jhash.h>
16 #include <linux/kcsan-checks.h>
17 #include <linux/kfence.h>
18 #include <linux/kmemleak.h>
19 #include <linux/list.h>
20 #include <linux/lockdep.h>
21 #include <linux/log2.h>
22 #include <linux/memblock.h>
23 #include <linux/moduleparam.h>
24 #include <linux/notifier.h>
25 #include <linux/panic_notifier.h>
26 #include <linux/random.h>
27 #include <linux/rcupdate.h>
28 #include <linux/sched/clock.h>
29 #include <linux/sched/sysctl.h>
30 #include <linux/seq_file.h>
31 #include <linux/slab.h>
32 #include <linux/spinlock.h>
33 #include <linux/string.h>
34
35 #include <asm/kfence.h>
36
37 #include "kfence.h"
38
39 /* Disables KFENCE on the first warning assuming an irrecoverable error. */
40 #define KFENCE_WARN_ON(cond)                                                   \
41         ({                                                                     \
42                 const bool __cond = WARN_ON(cond);                             \
43                 if (unlikely(__cond)) {                                        \
44                         WRITE_ONCE(kfence_enabled, false);                     \
45                         disabled_by_warn = true;                               \
46                 }                                                              \
47                 __cond;                                                        \
48         })
49
50 /* === Data ================================================================= */
51
52 static bool kfence_enabled __read_mostly;
53 static bool disabled_by_warn __read_mostly;
54
55 unsigned long kfence_sample_interval __read_mostly = CONFIG_KFENCE_SAMPLE_INTERVAL;
56 EXPORT_SYMBOL_GPL(kfence_sample_interval); /* Export for test modules. */
57
58 #ifdef MODULE_PARAM_PREFIX
59 #undef MODULE_PARAM_PREFIX
60 #endif
61 #define MODULE_PARAM_PREFIX "kfence."
62
63 static int kfence_enable_late(void);
64 static int param_set_sample_interval(const char *val, const struct kernel_param *kp)
65 {
66         unsigned long num;
67         int ret = kstrtoul(val, 0, &num);
68
69         if (ret < 0)
70                 return ret;
71
72         /* Using 0 to indicate KFENCE is disabled. */
73         if (!num && READ_ONCE(kfence_enabled)) {
74                 pr_info("disabled\n");
75                 WRITE_ONCE(kfence_enabled, false);
76         }
77
78         *((unsigned long *)kp->arg) = num;
79
80         if (num && !READ_ONCE(kfence_enabled) && system_state != SYSTEM_BOOTING)
81                 return disabled_by_warn ? -EINVAL : kfence_enable_late();
82         return 0;
83 }
84
85 static int param_get_sample_interval(char *buffer, const struct kernel_param *kp)
86 {
87         if (!READ_ONCE(kfence_enabled))
88                 return sprintf(buffer, "0\n");
89
90         return param_get_ulong(buffer, kp);
91 }
92
93 static const struct kernel_param_ops sample_interval_param_ops = {
94         .set = param_set_sample_interval,
95         .get = param_get_sample_interval,
96 };
97 module_param_cb(sample_interval, &sample_interval_param_ops, &kfence_sample_interval, 0600);
98
99 /* Pool usage% threshold when currently covered allocations are skipped. */
100 static unsigned long kfence_skip_covered_thresh __read_mostly = 75;
101 module_param_named(skip_covered_thresh, kfence_skip_covered_thresh, ulong, 0644);
102
103 /* If true, use a deferrable timer. */
104 static bool kfence_deferrable __read_mostly = IS_ENABLED(CONFIG_KFENCE_DEFERRABLE);
105 module_param_named(deferrable, kfence_deferrable, bool, 0444);
106
107 /* If true, check all canary bytes on panic. */
108 static bool kfence_check_on_panic __read_mostly;
109 module_param_named(check_on_panic, kfence_check_on_panic, bool, 0444);
110
111 /* The pool of pages used for guard pages and objects. */
112 char *__kfence_pool __read_mostly;
113 EXPORT_SYMBOL(__kfence_pool); /* Export for test modules. */
114
115 /*
116  * Per-object metadata, with one-to-one mapping of object metadata to
117  * backing pages (in __kfence_pool).
118  */
119 static_assert(CONFIG_KFENCE_NUM_OBJECTS > 0);
120 struct kfence_metadata kfence_metadata[CONFIG_KFENCE_NUM_OBJECTS];
121
122 /* Freelist with available objects. */
123 static struct list_head kfence_freelist = LIST_HEAD_INIT(kfence_freelist);
124 static DEFINE_RAW_SPINLOCK(kfence_freelist_lock); /* Lock protecting freelist. */
125
126 /*
127  * The static key to set up a KFENCE allocation; or if static keys are not used
128  * to gate allocations, to avoid a load and compare if KFENCE is disabled.
129  */
130 DEFINE_STATIC_KEY_FALSE(kfence_allocation_key);
131
132 /* Gates the allocation, ensuring only one succeeds in a given period. */
133 atomic_t kfence_allocation_gate = ATOMIC_INIT(1);
134
135 /*
136  * A Counting Bloom filter of allocation coverage: limits currently covered
137  * allocations of the same source filling up the pool.
138  *
139  * Assuming a range of 15%-85% unique allocations in the pool at any point in
140  * time, the below parameters provide a probablity of 0.02-0.33 for false
141  * positive hits respectively:
142  *
143  *      P(alloc_traces) = (1 - e^(-HNUM * (alloc_traces / SIZE)) ^ HNUM
144  */
145 #define ALLOC_COVERED_HNUM      2
146 #define ALLOC_COVERED_ORDER     (const_ilog2(CONFIG_KFENCE_NUM_OBJECTS) + 2)
147 #define ALLOC_COVERED_SIZE      (1 << ALLOC_COVERED_ORDER)
148 #define ALLOC_COVERED_HNEXT(h)  hash_32(h, ALLOC_COVERED_ORDER)
149 #define ALLOC_COVERED_MASK      (ALLOC_COVERED_SIZE - 1)
150 static atomic_t alloc_covered[ALLOC_COVERED_SIZE];
151
152 /* Stack depth used to determine uniqueness of an allocation. */
153 #define UNIQUE_ALLOC_STACK_DEPTH ((size_t)8)
154
155 /*
156  * Randomness for stack hashes, making the same collisions across reboots and
157  * different machines less likely.
158  */
159 static u32 stack_hash_seed __ro_after_init;
160
161 /* Statistics counters for debugfs. */
162 enum kfence_counter_id {
163         KFENCE_COUNTER_ALLOCATED,
164         KFENCE_COUNTER_ALLOCS,
165         KFENCE_COUNTER_FREES,
166         KFENCE_COUNTER_ZOMBIES,
167         KFENCE_COUNTER_BUGS,
168         KFENCE_COUNTER_SKIP_INCOMPAT,
169         KFENCE_COUNTER_SKIP_CAPACITY,
170         KFENCE_COUNTER_SKIP_COVERED,
171         KFENCE_COUNTER_COUNT,
172 };
173 static atomic_long_t counters[KFENCE_COUNTER_COUNT];
174 static const char *const counter_names[] = {
175         [KFENCE_COUNTER_ALLOCATED]      = "currently allocated",
176         [KFENCE_COUNTER_ALLOCS]         = "total allocations",
177         [KFENCE_COUNTER_FREES]          = "total frees",
178         [KFENCE_COUNTER_ZOMBIES]        = "zombie allocations",
179         [KFENCE_COUNTER_BUGS]           = "total bugs",
180         [KFENCE_COUNTER_SKIP_INCOMPAT]  = "skipped allocations (incompatible)",
181         [KFENCE_COUNTER_SKIP_CAPACITY]  = "skipped allocations (capacity)",
182         [KFENCE_COUNTER_SKIP_COVERED]   = "skipped allocations (covered)",
183 };
184 static_assert(ARRAY_SIZE(counter_names) == KFENCE_COUNTER_COUNT);
185
186 /* === Internals ============================================================ */
187
188 static inline bool should_skip_covered(void)
189 {
190         unsigned long thresh = (CONFIG_KFENCE_NUM_OBJECTS * kfence_skip_covered_thresh) / 100;
191
192         return atomic_long_read(&counters[KFENCE_COUNTER_ALLOCATED]) > thresh;
193 }
194
195 static u32 get_alloc_stack_hash(unsigned long *stack_entries, size_t num_entries)
196 {
197         num_entries = min(num_entries, UNIQUE_ALLOC_STACK_DEPTH);
198         num_entries = filter_irq_stacks(stack_entries, num_entries);
199         return jhash(stack_entries, num_entries * sizeof(stack_entries[0]), stack_hash_seed);
200 }
201
202 /*
203  * Adds (or subtracts) count @val for allocation stack trace hash
204  * @alloc_stack_hash from Counting Bloom filter.
205  */
206 static void alloc_covered_add(u32 alloc_stack_hash, int val)
207 {
208         int i;
209
210         for (i = 0; i < ALLOC_COVERED_HNUM; i++) {
211                 atomic_add(val, &alloc_covered[alloc_stack_hash & ALLOC_COVERED_MASK]);
212                 alloc_stack_hash = ALLOC_COVERED_HNEXT(alloc_stack_hash);
213         }
214 }
215
216 /*
217  * Returns true if the allocation stack trace hash @alloc_stack_hash is
218  * currently contained (non-zero count) in Counting Bloom filter.
219  */
220 static bool alloc_covered_contains(u32 alloc_stack_hash)
221 {
222         int i;
223
224         for (i = 0; i < ALLOC_COVERED_HNUM; i++) {
225                 if (!atomic_read(&alloc_covered[alloc_stack_hash & ALLOC_COVERED_MASK]))
226                         return false;
227                 alloc_stack_hash = ALLOC_COVERED_HNEXT(alloc_stack_hash);
228         }
229
230         return true;
231 }
232
233 static bool kfence_protect(unsigned long addr)
234 {
235         return !KFENCE_WARN_ON(!kfence_protect_page(ALIGN_DOWN(addr, PAGE_SIZE), true));
236 }
237
238 static bool kfence_unprotect(unsigned long addr)
239 {
240         return !KFENCE_WARN_ON(!kfence_protect_page(ALIGN_DOWN(addr, PAGE_SIZE), false));
241 }
242
243 static inline unsigned long metadata_to_pageaddr(const struct kfence_metadata *meta)
244 {
245         unsigned long offset = (meta - kfence_metadata + 1) * PAGE_SIZE * 2;
246         unsigned long pageaddr = (unsigned long)&__kfence_pool[offset];
247
248         /* The checks do not affect performance; only called from slow-paths. */
249
250         /* Only call with a pointer into kfence_metadata. */
251         if (KFENCE_WARN_ON(meta < kfence_metadata ||
252                            meta >= kfence_metadata + CONFIG_KFENCE_NUM_OBJECTS))
253                 return 0;
254
255         /*
256          * This metadata object only ever maps to 1 page; verify that the stored
257          * address is in the expected range.
258          */
259         if (KFENCE_WARN_ON(ALIGN_DOWN(meta->addr, PAGE_SIZE) != pageaddr))
260                 return 0;
261
262         return pageaddr;
263 }
264
265 /*
266  * Update the object's metadata state, including updating the alloc/free stacks
267  * depending on the state transition.
268  */
269 static noinline void
270 metadata_update_state(struct kfence_metadata *meta, enum kfence_object_state next,
271                       unsigned long *stack_entries, size_t num_stack_entries)
272 {
273         struct kfence_track *track =
274                 next == KFENCE_OBJECT_FREED ? &meta->free_track : &meta->alloc_track;
275
276         lockdep_assert_held(&meta->lock);
277
278         if (stack_entries) {
279                 memcpy(track->stack_entries, stack_entries,
280                        num_stack_entries * sizeof(stack_entries[0]));
281         } else {
282                 /*
283                  * Skip over 1 (this) functions; noinline ensures we do not
284                  * accidentally skip over the caller by never inlining.
285                  */
286                 num_stack_entries = stack_trace_save(track->stack_entries, KFENCE_STACK_DEPTH, 1);
287         }
288         track->num_stack_entries = num_stack_entries;
289         track->pid = task_pid_nr(current);
290         track->cpu = raw_smp_processor_id();
291         track->ts_nsec = local_clock(); /* Same source as printk timestamps. */
292
293         /*
294          * Pairs with READ_ONCE() in
295          *      kfence_shutdown_cache(),
296          *      kfence_handle_page_fault().
297          */
298         WRITE_ONCE(meta->state, next);
299 }
300
301 /* Write canary byte to @addr. */
302 static inline bool set_canary_byte(u8 *addr)
303 {
304         *addr = KFENCE_CANARY_PATTERN(addr);
305         return true;
306 }
307
308 /* Check canary byte at @addr. */
309 static inline bool check_canary_byte(u8 *addr)
310 {
311         struct kfence_metadata *meta;
312         unsigned long flags;
313
314         if (likely(*addr == KFENCE_CANARY_PATTERN(addr)))
315                 return true;
316
317         atomic_long_inc(&counters[KFENCE_COUNTER_BUGS]);
318
319         meta = addr_to_metadata((unsigned long)addr);
320         raw_spin_lock_irqsave(&meta->lock, flags);
321         kfence_report_error((unsigned long)addr, false, NULL, meta, KFENCE_ERROR_CORRUPTION);
322         raw_spin_unlock_irqrestore(&meta->lock, flags);
323
324         return false;
325 }
326
327 /* __always_inline this to ensure we won't do an indirect call to fn. */
328 static __always_inline void for_each_canary(const struct kfence_metadata *meta, bool (*fn)(u8 *))
329 {
330         const unsigned long pageaddr = ALIGN_DOWN(meta->addr, PAGE_SIZE);
331         unsigned long addr;
332
333         /*
334          * We'll iterate over each canary byte per-side until fn() returns
335          * false. However, we'll still iterate over the canary bytes to the
336          * right of the object even if there was an error in the canary bytes to
337          * the left of the object. Specifically, if check_canary_byte()
338          * generates an error, showing both sides might give more clues as to
339          * what the error is about when displaying which bytes were corrupted.
340          */
341
342         /* Apply to left of object. */
343         for (addr = pageaddr; addr < meta->addr; addr++) {
344                 if (!fn((u8 *)addr))
345                         break;
346         }
347
348         /* Apply to right of object. */
349         for (addr = meta->addr + meta->size; addr < pageaddr + PAGE_SIZE; addr++) {
350                 if (!fn((u8 *)addr))
351                         break;
352         }
353 }
354
355 static void *kfence_guarded_alloc(struct kmem_cache *cache, size_t size, gfp_t gfp,
356                                   unsigned long *stack_entries, size_t num_stack_entries,
357                                   u32 alloc_stack_hash)
358 {
359         struct kfence_metadata *meta = NULL;
360         unsigned long flags;
361         struct slab *slab;
362         void *addr;
363
364         /* Try to obtain a free object. */
365         raw_spin_lock_irqsave(&kfence_freelist_lock, flags);
366         if (!list_empty(&kfence_freelist)) {
367                 meta = list_entry(kfence_freelist.next, struct kfence_metadata, list);
368                 list_del_init(&meta->list);
369         }
370         raw_spin_unlock_irqrestore(&kfence_freelist_lock, flags);
371         if (!meta) {
372                 atomic_long_inc(&counters[KFENCE_COUNTER_SKIP_CAPACITY]);
373                 return NULL;
374         }
375
376         if (unlikely(!raw_spin_trylock_irqsave(&meta->lock, flags))) {
377                 /*
378                  * This is extremely unlikely -- we are reporting on a
379                  * use-after-free, which locked meta->lock, and the reporting
380                  * code via printk calls kmalloc() which ends up in
381                  * kfence_alloc() and tries to grab the same object that we're
382                  * reporting on. While it has never been observed, lockdep does
383                  * report that there is a possibility of deadlock. Fix it by
384                  * using trylock and bailing out gracefully.
385                  */
386                 raw_spin_lock_irqsave(&kfence_freelist_lock, flags);
387                 /* Put the object back on the freelist. */
388                 list_add_tail(&meta->list, &kfence_freelist);
389                 raw_spin_unlock_irqrestore(&kfence_freelist_lock, flags);
390
391                 return NULL;
392         }
393
394         meta->addr = metadata_to_pageaddr(meta);
395         /* Unprotect if we're reusing this page. */
396         if (meta->state == KFENCE_OBJECT_FREED)
397                 kfence_unprotect(meta->addr);
398
399         /*
400          * Note: for allocations made before RNG initialization, will always
401          * return zero. We still benefit from enabling KFENCE as early as
402          * possible, even when the RNG is not yet available, as this will allow
403          * KFENCE to detect bugs due to earlier allocations. The only downside
404          * is that the out-of-bounds accesses detected are deterministic for
405          * such allocations.
406          */
407         if (prandom_u32_max(2)) {
408                 /* Allocate on the "right" side, re-calculate address. */
409                 meta->addr += PAGE_SIZE - size;
410                 meta->addr = ALIGN_DOWN(meta->addr, cache->align);
411         }
412
413         addr = (void *)meta->addr;
414
415         /* Update remaining metadata. */
416         metadata_update_state(meta, KFENCE_OBJECT_ALLOCATED, stack_entries, num_stack_entries);
417         /* Pairs with READ_ONCE() in kfence_shutdown_cache(). */
418         WRITE_ONCE(meta->cache, cache);
419         meta->size = size;
420         meta->alloc_stack_hash = alloc_stack_hash;
421         raw_spin_unlock_irqrestore(&meta->lock, flags);
422
423         alloc_covered_add(alloc_stack_hash, 1);
424
425         /* Set required slab fields. */
426         slab = virt_to_slab((void *)meta->addr);
427         slab->slab_cache = cache;
428 #if defined(CONFIG_SLUB)
429         slab->objects = 1;
430 #elif defined(CONFIG_SLAB)
431         slab->s_mem = addr;
432 #endif
433
434         /* Memory initialization. */
435         for_each_canary(meta, set_canary_byte);
436
437         /*
438          * We check slab_want_init_on_alloc() ourselves, rather than letting
439          * SL*B do the initialization, as otherwise we might overwrite KFENCE's
440          * redzone.
441          */
442         if (unlikely(slab_want_init_on_alloc(gfp, cache)))
443                 memzero_explicit(addr, size);
444         if (cache->ctor)
445                 cache->ctor(addr);
446
447         if (CONFIG_KFENCE_STRESS_TEST_FAULTS && !prandom_u32_max(CONFIG_KFENCE_STRESS_TEST_FAULTS))
448                 kfence_protect(meta->addr); /* Random "faults" by protecting the object. */
449
450         atomic_long_inc(&counters[KFENCE_COUNTER_ALLOCATED]);
451         atomic_long_inc(&counters[KFENCE_COUNTER_ALLOCS]);
452
453         return addr;
454 }
455
456 static void kfence_guarded_free(void *addr, struct kfence_metadata *meta, bool zombie)
457 {
458         struct kcsan_scoped_access assert_page_exclusive;
459         unsigned long flags;
460         bool init;
461
462         raw_spin_lock_irqsave(&meta->lock, flags);
463
464         if (meta->state != KFENCE_OBJECT_ALLOCATED || meta->addr != (unsigned long)addr) {
465                 /* Invalid or double-free, bail out. */
466                 atomic_long_inc(&counters[KFENCE_COUNTER_BUGS]);
467                 kfence_report_error((unsigned long)addr, false, NULL, meta,
468                                     KFENCE_ERROR_INVALID_FREE);
469                 raw_spin_unlock_irqrestore(&meta->lock, flags);
470                 return;
471         }
472
473         /* Detect racy use-after-free, or incorrect reallocation of this page by KFENCE. */
474         kcsan_begin_scoped_access((void *)ALIGN_DOWN((unsigned long)addr, PAGE_SIZE), PAGE_SIZE,
475                                   KCSAN_ACCESS_SCOPED | KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ASSERT,
476                                   &assert_page_exclusive);
477
478         if (CONFIG_KFENCE_STRESS_TEST_FAULTS)
479                 kfence_unprotect((unsigned long)addr); /* To check canary bytes. */
480
481         /* Restore page protection if there was an OOB access. */
482         if (meta->unprotected_page) {
483                 memzero_explicit((void *)ALIGN_DOWN(meta->unprotected_page, PAGE_SIZE), PAGE_SIZE);
484                 kfence_protect(meta->unprotected_page);
485                 meta->unprotected_page = 0;
486         }
487
488         /* Mark the object as freed. */
489         metadata_update_state(meta, KFENCE_OBJECT_FREED, NULL, 0);
490         init = slab_want_init_on_free(meta->cache);
491         raw_spin_unlock_irqrestore(&meta->lock, flags);
492
493         alloc_covered_add(meta->alloc_stack_hash, -1);
494
495         /* Check canary bytes for memory corruption. */
496         for_each_canary(meta, check_canary_byte);
497
498         /*
499          * Clear memory if init-on-free is set. While we protect the page, the
500          * data is still there, and after a use-after-free is detected, we
501          * unprotect the page, so the data is still accessible.
502          */
503         if (!zombie && unlikely(init))
504                 memzero_explicit(addr, meta->size);
505
506         /* Protect to detect use-after-frees. */
507         kfence_protect((unsigned long)addr);
508
509         kcsan_end_scoped_access(&assert_page_exclusive);
510         if (!zombie) {
511                 /* Add it to the tail of the freelist for reuse. */
512                 raw_spin_lock_irqsave(&kfence_freelist_lock, flags);
513                 KFENCE_WARN_ON(!list_empty(&meta->list));
514                 list_add_tail(&meta->list, &kfence_freelist);
515                 raw_spin_unlock_irqrestore(&kfence_freelist_lock, flags);
516
517                 atomic_long_dec(&counters[KFENCE_COUNTER_ALLOCATED]);
518                 atomic_long_inc(&counters[KFENCE_COUNTER_FREES]);
519         } else {
520                 /* See kfence_shutdown_cache(). */
521                 atomic_long_inc(&counters[KFENCE_COUNTER_ZOMBIES]);
522         }
523 }
524
525 static void rcu_guarded_free(struct rcu_head *h)
526 {
527         struct kfence_metadata *meta = container_of(h, struct kfence_metadata, rcu_head);
528
529         kfence_guarded_free((void *)meta->addr, meta, false);
530 }
531
532 /*
533  * Initialization of the KFENCE pool after its allocation.
534  * Returns 0 on success; otherwise returns the address up to
535  * which partial initialization succeeded.
536  */
537 static unsigned long kfence_init_pool(void)
538 {
539         unsigned long addr = (unsigned long)__kfence_pool;
540         struct page *pages;
541         int i;
542
543         if (!arch_kfence_init_pool())
544                 return addr;
545
546         pages = virt_to_page(addr);
547
548         /*
549          * Set up object pages: they must have PG_slab set, to avoid freeing
550          * these as real pages.
551          *
552          * We also want to avoid inserting kfence_free() in the kfree()
553          * fast-path in SLUB, and therefore need to ensure kfree() correctly
554          * enters __slab_free() slow-path.
555          */
556         for (i = 0; i < KFENCE_POOL_SIZE / PAGE_SIZE; i++) {
557                 struct slab *slab = page_slab(&pages[i]);
558
559                 if (!i || (i % 2))
560                         continue;
561
562                 /* Verify we do not have a compound head page. */
563                 if (WARN_ON(compound_head(&pages[i]) != &pages[i]))
564                         return addr;
565
566                 __folio_set_slab(slab_folio(slab));
567 #ifdef CONFIG_MEMCG
568                 slab->memcg_data = (unsigned long)&kfence_metadata[i / 2 - 1].objcg |
569                                    MEMCG_DATA_OBJCGS;
570 #endif
571         }
572
573         /*
574          * Protect the first 2 pages. The first page is mostly unnecessary, and
575          * merely serves as an extended guard page. However, adding one
576          * additional page in the beginning gives us an even number of pages,
577          * which simplifies the mapping of address to metadata index.
578          */
579         for (i = 0; i < 2; i++) {
580                 if (unlikely(!kfence_protect(addr)))
581                         return addr;
582
583                 addr += PAGE_SIZE;
584         }
585
586         for (i = 0; i < CONFIG_KFENCE_NUM_OBJECTS; i++) {
587                 struct kfence_metadata *meta = &kfence_metadata[i];
588
589                 /* Initialize metadata. */
590                 INIT_LIST_HEAD(&meta->list);
591                 raw_spin_lock_init(&meta->lock);
592                 meta->state = KFENCE_OBJECT_UNUSED;
593                 meta->addr = addr; /* Initialize for validation in metadata_to_pageaddr(). */
594                 list_add_tail(&meta->list, &kfence_freelist);
595
596                 /* Protect the right redzone. */
597                 if (unlikely(!kfence_protect(addr + PAGE_SIZE)))
598                         return addr;
599
600                 addr += 2 * PAGE_SIZE;
601         }
602
603         /*
604          * The pool is live and will never be deallocated from this point on.
605          * Remove the pool object from the kmemleak object tree, as it would
606          * otherwise overlap with allocations returned by kfence_alloc(), which
607          * are registered with kmemleak through the slab post-alloc hook.
608          */
609         kmemleak_free(__kfence_pool);
610
611         return 0;
612 }
613
614 static bool __init kfence_init_pool_early(void)
615 {
616         unsigned long addr;
617
618         if (!__kfence_pool)
619                 return false;
620
621         addr = kfence_init_pool();
622
623         if (!addr)
624                 return true;
625
626         /*
627          * Only release unprotected pages, and do not try to go back and change
628          * page attributes due to risk of failing to do so as well. If changing
629          * page attributes for some pages fails, it is very likely that it also
630          * fails for the first page, and therefore expect addr==__kfence_pool in
631          * most failure cases.
632          */
633         for (char *p = (char *)addr; p < __kfence_pool + KFENCE_POOL_SIZE; p += PAGE_SIZE) {
634                 struct slab *slab = virt_to_slab(p);
635
636                 if (!slab)
637                         continue;
638 #ifdef CONFIG_MEMCG
639                 slab->memcg_data = 0;
640 #endif
641                 __folio_clear_slab(slab_folio(slab));
642         }
643         memblock_free_late(__pa(addr), KFENCE_POOL_SIZE - (addr - (unsigned long)__kfence_pool));
644         __kfence_pool = NULL;
645         return false;
646 }
647
648 static bool kfence_init_pool_late(void)
649 {
650         unsigned long addr, free_size;
651
652         addr = kfence_init_pool();
653
654         if (!addr)
655                 return true;
656
657         /* Same as above. */
658         free_size = KFENCE_POOL_SIZE - (addr - (unsigned long)__kfence_pool);
659 #ifdef CONFIG_CONTIG_ALLOC
660         free_contig_range(page_to_pfn(virt_to_page(addr)), free_size / PAGE_SIZE);
661 #else
662         free_pages_exact((void *)addr, free_size);
663 #endif
664         __kfence_pool = NULL;
665         return false;
666 }
667
668 /* === DebugFS Interface ==================================================== */
669
670 static int stats_show(struct seq_file *seq, void *v)
671 {
672         int i;
673
674         seq_printf(seq, "enabled: %i\n", READ_ONCE(kfence_enabled));
675         for (i = 0; i < KFENCE_COUNTER_COUNT; i++)
676                 seq_printf(seq, "%s: %ld\n", counter_names[i], atomic_long_read(&counters[i]));
677
678         return 0;
679 }
680 DEFINE_SHOW_ATTRIBUTE(stats);
681
682 /*
683  * debugfs seq_file operations for /sys/kernel/debug/kfence/objects.
684  * start_object() and next_object() return the object index + 1, because NULL is used
685  * to stop iteration.
686  */
687 static void *start_object(struct seq_file *seq, loff_t *pos)
688 {
689         if (*pos < CONFIG_KFENCE_NUM_OBJECTS)
690                 return (void *)((long)*pos + 1);
691         return NULL;
692 }
693
694 static void stop_object(struct seq_file *seq, void *v)
695 {
696 }
697
698 static void *next_object(struct seq_file *seq, void *v, loff_t *pos)
699 {
700         ++*pos;
701         if (*pos < CONFIG_KFENCE_NUM_OBJECTS)
702                 return (void *)((long)*pos + 1);
703         return NULL;
704 }
705
706 static int show_object(struct seq_file *seq, void *v)
707 {
708         struct kfence_metadata *meta = &kfence_metadata[(long)v - 1];
709         unsigned long flags;
710
711         raw_spin_lock_irqsave(&meta->lock, flags);
712         kfence_print_object(seq, meta);
713         raw_spin_unlock_irqrestore(&meta->lock, flags);
714         seq_puts(seq, "---------------------------------\n");
715
716         return 0;
717 }
718
719 static const struct seq_operations object_seqops = {
720         .start = start_object,
721         .next = next_object,
722         .stop = stop_object,
723         .show = show_object,
724 };
725
726 static int open_objects(struct inode *inode, struct file *file)
727 {
728         return seq_open(file, &object_seqops);
729 }
730
731 static const struct file_operations objects_fops = {
732         .open = open_objects,
733         .read = seq_read,
734         .llseek = seq_lseek,
735         .release = seq_release,
736 };
737
738 static int __init kfence_debugfs_init(void)
739 {
740         struct dentry *kfence_dir = debugfs_create_dir("kfence", NULL);
741
742         debugfs_create_file("stats", 0444, kfence_dir, NULL, &stats_fops);
743         debugfs_create_file("objects", 0400, kfence_dir, NULL, &objects_fops);
744         return 0;
745 }
746
747 late_initcall(kfence_debugfs_init);
748
749 /* === Panic Notifier ====================================================== */
750
751 static void kfence_check_all_canary(void)
752 {
753         int i;
754
755         for (i = 0; i < CONFIG_KFENCE_NUM_OBJECTS; i++) {
756                 struct kfence_metadata *meta = &kfence_metadata[i];
757
758                 if (meta->state == KFENCE_OBJECT_ALLOCATED)
759                         for_each_canary(meta, check_canary_byte);
760         }
761 }
762
763 static int kfence_check_canary_callback(struct notifier_block *nb,
764                                         unsigned long reason, void *arg)
765 {
766         kfence_check_all_canary();
767         return NOTIFY_OK;
768 }
769
770 static struct notifier_block kfence_check_canary_notifier = {
771         .notifier_call = kfence_check_canary_callback,
772 };
773
774 /* === Allocation Gate Timer ================================================ */
775
776 static struct delayed_work kfence_timer;
777
778 #ifdef CONFIG_KFENCE_STATIC_KEYS
779 /* Wait queue to wake up allocation-gate timer task. */
780 static DECLARE_WAIT_QUEUE_HEAD(allocation_wait);
781
782 static void wake_up_kfence_timer(struct irq_work *work)
783 {
784         wake_up(&allocation_wait);
785 }
786 static DEFINE_IRQ_WORK(wake_up_kfence_timer_work, wake_up_kfence_timer);
787 #endif
788
789 /*
790  * Set up delayed work, which will enable and disable the static key. We need to
791  * use a work queue (rather than a simple timer), since enabling and disabling a
792  * static key cannot be done from an interrupt.
793  *
794  * Note: Toggling a static branch currently causes IPIs, and here we'll end up
795  * with a total of 2 IPIs to all CPUs. If this ends up a problem in future (with
796  * more aggressive sampling intervals), we could get away with a variant that
797  * avoids IPIs, at the cost of not immediately capturing allocations if the
798  * instructions remain cached.
799  */
800 static void toggle_allocation_gate(struct work_struct *work)
801 {
802         if (!READ_ONCE(kfence_enabled))
803                 return;
804
805         atomic_set(&kfence_allocation_gate, 0);
806 #ifdef CONFIG_KFENCE_STATIC_KEYS
807         /* Enable static key, and await allocation to happen. */
808         static_branch_enable(&kfence_allocation_key);
809
810         if (sysctl_hung_task_timeout_secs) {
811                 /*
812                  * During low activity with no allocations we might wait a
813                  * while; let's avoid the hung task warning.
814                  */
815                 wait_event_idle_timeout(allocation_wait, atomic_read(&kfence_allocation_gate),
816                                         sysctl_hung_task_timeout_secs * HZ / 2);
817         } else {
818                 wait_event_idle(allocation_wait, atomic_read(&kfence_allocation_gate));
819         }
820
821         /* Disable static key and reset timer. */
822         static_branch_disable(&kfence_allocation_key);
823 #endif
824         queue_delayed_work(system_unbound_wq, &kfence_timer,
825                            msecs_to_jiffies(kfence_sample_interval));
826 }
827
828 /* === Public interface ===================================================== */
829
830 void __init kfence_alloc_pool(void)
831 {
832         if (!kfence_sample_interval)
833                 return;
834
835         __kfence_pool = memblock_alloc(KFENCE_POOL_SIZE, PAGE_SIZE);
836
837         if (!__kfence_pool)
838                 pr_err("failed to allocate pool\n");
839 }
840
841 static void kfence_init_enable(void)
842 {
843         if (!IS_ENABLED(CONFIG_KFENCE_STATIC_KEYS))
844                 static_branch_enable(&kfence_allocation_key);
845
846         if (kfence_deferrable)
847                 INIT_DEFERRABLE_WORK(&kfence_timer, toggle_allocation_gate);
848         else
849                 INIT_DELAYED_WORK(&kfence_timer, toggle_allocation_gate);
850
851         if (kfence_check_on_panic)
852                 atomic_notifier_chain_register(&panic_notifier_list, &kfence_check_canary_notifier);
853
854         WRITE_ONCE(kfence_enabled, true);
855         queue_delayed_work(system_unbound_wq, &kfence_timer, 0);
856
857         pr_info("initialized - using %lu bytes for %d objects at 0x%p-0x%p\n", KFENCE_POOL_SIZE,
858                 CONFIG_KFENCE_NUM_OBJECTS, (void *)__kfence_pool,
859                 (void *)(__kfence_pool + KFENCE_POOL_SIZE));
860 }
861
862 void __init kfence_init(void)
863 {
864         stack_hash_seed = (u32)random_get_entropy();
865
866         /* Setting kfence_sample_interval to 0 on boot disables KFENCE. */
867         if (!kfence_sample_interval)
868                 return;
869
870         if (!kfence_init_pool_early()) {
871                 pr_err("%s failed\n", __func__);
872                 return;
873         }
874
875         kfence_init_enable();
876 }
877
878 static int kfence_init_late(void)
879 {
880         const unsigned long nr_pages = KFENCE_POOL_SIZE / PAGE_SIZE;
881 #ifdef CONFIG_CONTIG_ALLOC
882         struct page *pages;
883
884         pages = alloc_contig_pages(nr_pages, GFP_KERNEL, first_online_node, NULL);
885         if (!pages)
886                 return -ENOMEM;
887         __kfence_pool = page_to_virt(pages);
888 #else
889         if (nr_pages > MAX_ORDER_NR_PAGES) {
890                 pr_warn("KFENCE_NUM_OBJECTS too large for buddy allocator\n");
891                 return -EINVAL;
892         }
893         __kfence_pool = alloc_pages_exact(KFENCE_POOL_SIZE, GFP_KERNEL);
894         if (!__kfence_pool)
895                 return -ENOMEM;
896 #endif
897
898         if (!kfence_init_pool_late()) {
899                 pr_err("%s failed\n", __func__);
900                 return -EBUSY;
901         }
902
903         kfence_init_enable();
904         return 0;
905 }
906
907 static int kfence_enable_late(void)
908 {
909         if (!__kfence_pool)
910                 return kfence_init_late();
911
912         WRITE_ONCE(kfence_enabled, true);
913         queue_delayed_work(system_unbound_wq, &kfence_timer, 0);
914         pr_info("re-enabled\n");
915         return 0;
916 }
917
918 void kfence_shutdown_cache(struct kmem_cache *s)
919 {
920         unsigned long flags;
921         struct kfence_metadata *meta;
922         int i;
923
924         for (i = 0; i < CONFIG_KFENCE_NUM_OBJECTS; i++) {
925                 bool in_use;
926
927                 meta = &kfence_metadata[i];
928
929                 /*
930                  * If we observe some inconsistent cache and state pair where we
931                  * should have returned false here, cache destruction is racing
932                  * with either kmem_cache_alloc() or kmem_cache_free(). Taking
933                  * the lock will not help, as different critical section
934                  * serialization will have the same outcome.
935                  */
936                 if (READ_ONCE(meta->cache) != s ||
937                     READ_ONCE(meta->state) != KFENCE_OBJECT_ALLOCATED)
938                         continue;
939
940                 raw_spin_lock_irqsave(&meta->lock, flags);
941                 in_use = meta->cache == s && meta->state == KFENCE_OBJECT_ALLOCATED;
942                 raw_spin_unlock_irqrestore(&meta->lock, flags);
943
944                 if (in_use) {
945                         /*
946                          * This cache still has allocations, and we should not
947                          * release them back into the freelist so they can still
948                          * safely be used and retain the kernel's default
949                          * behaviour of keeping the allocations alive (leak the
950                          * cache); however, they effectively become "zombie
951                          * allocations" as the KFENCE objects are the only ones
952                          * still in use and the owning cache is being destroyed.
953                          *
954                          * We mark them freed, so that any subsequent use shows
955                          * more useful error messages that will include stack
956                          * traces of the user of the object, the original
957                          * allocation, and caller to shutdown_cache().
958                          */
959                         kfence_guarded_free((void *)meta->addr, meta, /*zombie=*/true);
960                 }
961         }
962
963         for (i = 0; i < CONFIG_KFENCE_NUM_OBJECTS; i++) {
964                 meta = &kfence_metadata[i];
965
966                 /* See above. */
967                 if (READ_ONCE(meta->cache) != s || READ_ONCE(meta->state) != KFENCE_OBJECT_FREED)
968                         continue;
969
970                 raw_spin_lock_irqsave(&meta->lock, flags);
971                 if (meta->cache == s && meta->state == KFENCE_OBJECT_FREED)
972                         meta->cache = NULL;
973                 raw_spin_unlock_irqrestore(&meta->lock, flags);
974         }
975 }
976
977 void *__kfence_alloc(struct kmem_cache *s, size_t size, gfp_t flags)
978 {
979         unsigned long stack_entries[KFENCE_STACK_DEPTH];
980         size_t num_stack_entries;
981         u32 alloc_stack_hash;
982
983         /*
984          * Perform size check before switching kfence_allocation_gate, so that
985          * we don't disable KFENCE without making an allocation.
986          */
987         if (size > PAGE_SIZE) {
988                 atomic_long_inc(&counters[KFENCE_COUNTER_SKIP_INCOMPAT]);
989                 return NULL;
990         }
991
992         /*
993          * Skip allocations from non-default zones, including DMA. We cannot
994          * guarantee that pages in the KFENCE pool will have the requested
995          * properties (e.g. reside in DMAable memory).
996          */
997         if ((flags & GFP_ZONEMASK) ||
998             (s->flags & (SLAB_CACHE_DMA | SLAB_CACHE_DMA32))) {
999                 atomic_long_inc(&counters[KFENCE_COUNTER_SKIP_INCOMPAT]);
1000                 return NULL;
1001         }
1002
1003         if (atomic_inc_return(&kfence_allocation_gate) > 1)
1004                 return NULL;
1005 #ifdef CONFIG_KFENCE_STATIC_KEYS
1006         /*
1007          * waitqueue_active() is fully ordered after the update of
1008          * kfence_allocation_gate per atomic_inc_return().
1009          */
1010         if (waitqueue_active(&allocation_wait)) {
1011                 /*
1012                  * Calling wake_up() here may deadlock when allocations happen
1013                  * from within timer code. Use an irq_work to defer it.
1014                  */
1015                 irq_work_queue(&wake_up_kfence_timer_work);
1016         }
1017 #endif
1018
1019         if (!READ_ONCE(kfence_enabled))
1020                 return NULL;
1021
1022         num_stack_entries = stack_trace_save(stack_entries, KFENCE_STACK_DEPTH, 0);
1023
1024         /*
1025          * Do expensive check for coverage of allocation in slow-path after
1026          * allocation_gate has already become non-zero, even though it might
1027          * mean not making any allocation within a given sample interval.
1028          *
1029          * This ensures reasonable allocation coverage when the pool is almost
1030          * full, including avoiding long-lived allocations of the same source
1031          * filling up the pool (e.g. pagecache allocations).
1032          */
1033         alloc_stack_hash = get_alloc_stack_hash(stack_entries, num_stack_entries);
1034         if (should_skip_covered() && alloc_covered_contains(alloc_stack_hash)) {
1035                 atomic_long_inc(&counters[KFENCE_COUNTER_SKIP_COVERED]);
1036                 return NULL;
1037         }
1038
1039         return kfence_guarded_alloc(s, size, flags, stack_entries, num_stack_entries,
1040                                     alloc_stack_hash);
1041 }
1042
1043 size_t kfence_ksize(const void *addr)
1044 {
1045         const struct kfence_metadata *meta = addr_to_metadata((unsigned long)addr);
1046
1047         /*
1048          * Read locklessly -- if there is a race with __kfence_alloc(), this is
1049          * either a use-after-free or invalid access.
1050          */
1051         return meta ? meta->size : 0;
1052 }
1053
1054 void *kfence_object_start(const void *addr)
1055 {
1056         const struct kfence_metadata *meta = addr_to_metadata((unsigned long)addr);
1057
1058         /*
1059          * Read locklessly -- if there is a race with __kfence_alloc(), this is
1060          * either a use-after-free or invalid access.
1061          */
1062         return meta ? (void *)meta->addr : NULL;
1063 }
1064
1065 void __kfence_free(void *addr)
1066 {
1067         struct kfence_metadata *meta = addr_to_metadata((unsigned long)addr);
1068
1069 #ifdef CONFIG_MEMCG
1070         KFENCE_WARN_ON(meta->objcg);
1071 #endif
1072         /*
1073          * If the objects of the cache are SLAB_TYPESAFE_BY_RCU, defer freeing
1074          * the object, as the object page may be recycled for other-typed
1075          * objects once it has been freed. meta->cache may be NULL if the cache
1076          * was destroyed.
1077          */
1078         if (unlikely(meta->cache && (meta->cache->flags & SLAB_TYPESAFE_BY_RCU)))
1079                 call_rcu(&meta->rcu_head, rcu_guarded_free);
1080         else
1081                 kfence_guarded_free(addr, meta, false);
1082 }
1083
1084 bool kfence_handle_page_fault(unsigned long addr, bool is_write, struct pt_regs *regs)
1085 {
1086         const int page_index = (addr - (unsigned long)__kfence_pool) / PAGE_SIZE;
1087         struct kfence_metadata *to_report = NULL;
1088         enum kfence_error_type error_type;
1089         unsigned long flags;
1090
1091         if (!is_kfence_address((void *)addr))
1092                 return false;
1093
1094         if (!READ_ONCE(kfence_enabled)) /* If disabled at runtime ... */
1095                 return kfence_unprotect(addr); /* ... unprotect and proceed. */
1096
1097         atomic_long_inc(&counters[KFENCE_COUNTER_BUGS]);
1098
1099         if (page_index % 2) {
1100                 /* This is a redzone, report a buffer overflow. */
1101                 struct kfence_metadata *meta;
1102                 int distance = 0;
1103
1104                 meta = addr_to_metadata(addr - PAGE_SIZE);
1105                 if (meta && READ_ONCE(meta->state) == KFENCE_OBJECT_ALLOCATED) {
1106                         to_report = meta;
1107                         /* Data race ok; distance calculation approximate. */
1108                         distance = addr - data_race(meta->addr + meta->size);
1109                 }
1110
1111                 meta = addr_to_metadata(addr + PAGE_SIZE);
1112                 if (meta && READ_ONCE(meta->state) == KFENCE_OBJECT_ALLOCATED) {
1113                         /* Data race ok; distance calculation approximate. */
1114                         if (!to_report || distance > data_race(meta->addr) - addr)
1115                                 to_report = meta;
1116                 }
1117
1118                 if (!to_report)
1119                         goto out;
1120
1121                 raw_spin_lock_irqsave(&to_report->lock, flags);
1122                 to_report->unprotected_page = addr;
1123                 error_type = KFENCE_ERROR_OOB;
1124
1125                 /*
1126                  * If the object was freed before we took the look we can still
1127                  * report this as an OOB -- the report will simply show the
1128                  * stacktrace of the free as well.
1129                  */
1130         } else {
1131                 to_report = addr_to_metadata(addr);
1132                 if (!to_report)
1133                         goto out;
1134
1135                 raw_spin_lock_irqsave(&to_report->lock, flags);
1136                 error_type = KFENCE_ERROR_UAF;
1137                 /*
1138                  * We may race with __kfence_alloc(), and it is possible that a
1139                  * freed object may be reallocated. We simply report this as a
1140                  * use-after-free, with the stack trace showing the place where
1141                  * the object was re-allocated.
1142                  */
1143         }
1144
1145 out:
1146         if (to_report) {
1147                 kfence_report_error(addr, is_write, regs, to_report, error_type);
1148                 raw_spin_unlock_irqrestore(&to_report->lock, flags);
1149         } else {
1150                 /* This may be a UAF or OOB access, but we can't be sure. */
1151                 kfence_report_error(addr, is_write, regs, NULL, KFENCE_ERROR_INVALID);
1152         }
1153
1154         return kfence_unprotect(addr); /* Unprotect and let access proceed. */
1155 }