kfence: alloc kfence_pool after system startup
[linux-2.6-microblaze.git] / mm / kfence / core.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * KFENCE guarded object allocator and fault handling.
4  *
5  * Copyright (C) 2020, Google LLC.
6  */
7
8 #define pr_fmt(fmt) "kfence: " fmt
9
10 #include <linux/atomic.h>
11 #include <linux/bug.h>
12 #include <linux/debugfs.h>
13 #include <linux/hash.h>
14 #include <linux/irq_work.h>
15 #include <linux/jhash.h>
16 #include <linux/kcsan-checks.h>
17 #include <linux/kfence.h>
18 #include <linux/kmemleak.h>
19 #include <linux/list.h>
20 #include <linux/lockdep.h>
21 #include <linux/log2.h>
22 #include <linux/memblock.h>
23 #include <linux/moduleparam.h>
24 #include <linux/random.h>
25 #include <linux/rcupdate.h>
26 #include <linux/sched/clock.h>
27 #include <linux/sched/sysctl.h>
28 #include <linux/seq_file.h>
29 #include <linux/slab.h>
30 #include <linux/spinlock.h>
31 #include <linux/string.h>
32
33 #include <asm/kfence.h>
34
35 #include "kfence.h"
36
37 /* Disables KFENCE on the first warning assuming an irrecoverable error. */
38 #define KFENCE_WARN_ON(cond)                                                   \
39         ({                                                                     \
40                 const bool __cond = WARN_ON(cond);                             \
41                 if (unlikely(__cond)) {                                        \
42                         WRITE_ONCE(kfence_enabled, false);                     \
43                         disabled_by_warn = true;                               \
44                 }                                                              \
45                 __cond;                                                        \
46         })
47
48 /* === Data ================================================================= */
49
50 static bool kfence_enabled __read_mostly;
51 static bool disabled_by_warn __read_mostly;
52
53 unsigned long kfence_sample_interval __read_mostly = CONFIG_KFENCE_SAMPLE_INTERVAL;
54 EXPORT_SYMBOL_GPL(kfence_sample_interval); /* Export for test modules. */
55
56 #ifdef MODULE_PARAM_PREFIX
57 #undef MODULE_PARAM_PREFIX
58 #endif
59 #define MODULE_PARAM_PREFIX "kfence."
60
61 static int kfence_enable_late(void);
62 static int param_set_sample_interval(const char *val, const struct kernel_param *kp)
63 {
64         unsigned long num;
65         int ret = kstrtoul(val, 0, &num);
66
67         if (ret < 0)
68                 return ret;
69
70         if (!num) /* Using 0 to indicate KFENCE is disabled. */
71                 WRITE_ONCE(kfence_enabled, false);
72
73         *((unsigned long *)kp->arg) = num;
74
75         if (num && !READ_ONCE(kfence_enabled) && system_state != SYSTEM_BOOTING)
76                 return disabled_by_warn ? -EINVAL : kfence_enable_late();
77         return 0;
78 }
79
80 static int param_get_sample_interval(char *buffer, const struct kernel_param *kp)
81 {
82         if (!READ_ONCE(kfence_enabled))
83                 return sprintf(buffer, "0\n");
84
85         return param_get_ulong(buffer, kp);
86 }
87
88 static const struct kernel_param_ops sample_interval_param_ops = {
89         .set = param_set_sample_interval,
90         .get = param_get_sample_interval,
91 };
92 module_param_cb(sample_interval, &sample_interval_param_ops, &kfence_sample_interval, 0600);
93
94 /* Pool usage% threshold when currently covered allocations are skipped. */
95 static unsigned long kfence_skip_covered_thresh __read_mostly = 75;
96 module_param_named(skip_covered_thresh, kfence_skip_covered_thresh, ulong, 0644);
97
98 /* The pool of pages used for guard pages and objects. */
99 char *__kfence_pool __read_mostly;
100 EXPORT_SYMBOL(__kfence_pool); /* Export for test modules. */
101
102 /*
103  * Per-object metadata, with one-to-one mapping of object metadata to
104  * backing pages (in __kfence_pool).
105  */
106 static_assert(CONFIG_KFENCE_NUM_OBJECTS > 0);
107 struct kfence_metadata kfence_metadata[CONFIG_KFENCE_NUM_OBJECTS];
108
109 /* Freelist with available objects. */
110 static struct list_head kfence_freelist = LIST_HEAD_INIT(kfence_freelist);
111 static DEFINE_RAW_SPINLOCK(kfence_freelist_lock); /* Lock protecting freelist. */
112
113 /*
114  * The static key to set up a KFENCE allocation; or if static keys are not used
115  * to gate allocations, to avoid a load and compare if KFENCE is disabled.
116  */
117 DEFINE_STATIC_KEY_FALSE(kfence_allocation_key);
118
119 /* Gates the allocation, ensuring only one succeeds in a given period. */
120 atomic_t kfence_allocation_gate = ATOMIC_INIT(1);
121
122 /*
123  * A Counting Bloom filter of allocation coverage: limits currently covered
124  * allocations of the same source filling up the pool.
125  *
126  * Assuming a range of 15%-85% unique allocations in the pool at any point in
127  * time, the below parameters provide a probablity of 0.02-0.33 for false
128  * positive hits respectively:
129  *
130  *      P(alloc_traces) = (1 - e^(-HNUM * (alloc_traces / SIZE)) ^ HNUM
131  */
132 #define ALLOC_COVERED_HNUM      2
133 #define ALLOC_COVERED_ORDER     (const_ilog2(CONFIG_KFENCE_NUM_OBJECTS) + 2)
134 #define ALLOC_COVERED_SIZE      (1 << ALLOC_COVERED_ORDER)
135 #define ALLOC_COVERED_HNEXT(h)  hash_32(h, ALLOC_COVERED_ORDER)
136 #define ALLOC_COVERED_MASK      (ALLOC_COVERED_SIZE - 1)
137 static atomic_t alloc_covered[ALLOC_COVERED_SIZE];
138
139 /* Stack depth used to determine uniqueness of an allocation. */
140 #define UNIQUE_ALLOC_STACK_DEPTH ((size_t)8)
141
142 /*
143  * Randomness for stack hashes, making the same collisions across reboots and
144  * different machines less likely.
145  */
146 static u32 stack_hash_seed __ro_after_init;
147
148 /* Statistics counters for debugfs. */
149 enum kfence_counter_id {
150         KFENCE_COUNTER_ALLOCATED,
151         KFENCE_COUNTER_ALLOCS,
152         KFENCE_COUNTER_FREES,
153         KFENCE_COUNTER_ZOMBIES,
154         KFENCE_COUNTER_BUGS,
155         KFENCE_COUNTER_SKIP_INCOMPAT,
156         KFENCE_COUNTER_SKIP_CAPACITY,
157         KFENCE_COUNTER_SKIP_COVERED,
158         KFENCE_COUNTER_COUNT,
159 };
160 static atomic_long_t counters[KFENCE_COUNTER_COUNT];
161 static const char *const counter_names[] = {
162         [KFENCE_COUNTER_ALLOCATED]      = "currently allocated",
163         [KFENCE_COUNTER_ALLOCS]         = "total allocations",
164         [KFENCE_COUNTER_FREES]          = "total frees",
165         [KFENCE_COUNTER_ZOMBIES]        = "zombie allocations",
166         [KFENCE_COUNTER_BUGS]           = "total bugs",
167         [KFENCE_COUNTER_SKIP_INCOMPAT]  = "skipped allocations (incompatible)",
168         [KFENCE_COUNTER_SKIP_CAPACITY]  = "skipped allocations (capacity)",
169         [KFENCE_COUNTER_SKIP_COVERED]   = "skipped allocations (covered)",
170 };
171 static_assert(ARRAY_SIZE(counter_names) == KFENCE_COUNTER_COUNT);
172
173 /* === Internals ============================================================ */
174
175 static inline bool should_skip_covered(void)
176 {
177         unsigned long thresh = (CONFIG_KFENCE_NUM_OBJECTS * kfence_skip_covered_thresh) / 100;
178
179         return atomic_long_read(&counters[KFENCE_COUNTER_ALLOCATED]) > thresh;
180 }
181
182 static u32 get_alloc_stack_hash(unsigned long *stack_entries, size_t num_entries)
183 {
184         num_entries = min(num_entries, UNIQUE_ALLOC_STACK_DEPTH);
185         num_entries = filter_irq_stacks(stack_entries, num_entries);
186         return jhash(stack_entries, num_entries * sizeof(stack_entries[0]), stack_hash_seed);
187 }
188
189 /*
190  * Adds (or subtracts) count @val for allocation stack trace hash
191  * @alloc_stack_hash from Counting Bloom filter.
192  */
193 static void alloc_covered_add(u32 alloc_stack_hash, int val)
194 {
195         int i;
196
197         for (i = 0; i < ALLOC_COVERED_HNUM; i++) {
198                 atomic_add(val, &alloc_covered[alloc_stack_hash & ALLOC_COVERED_MASK]);
199                 alloc_stack_hash = ALLOC_COVERED_HNEXT(alloc_stack_hash);
200         }
201 }
202
203 /*
204  * Returns true if the allocation stack trace hash @alloc_stack_hash is
205  * currently contained (non-zero count) in Counting Bloom filter.
206  */
207 static bool alloc_covered_contains(u32 alloc_stack_hash)
208 {
209         int i;
210
211         for (i = 0; i < ALLOC_COVERED_HNUM; i++) {
212                 if (!atomic_read(&alloc_covered[alloc_stack_hash & ALLOC_COVERED_MASK]))
213                         return false;
214                 alloc_stack_hash = ALLOC_COVERED_HNEXT(alloc_stack_hash);
215         }
216
217         return true;
218 }
219
220 static bool kfence_protect(unsigned long addr)
221 {
222         return !KFENCE_WARN_ON(!kfence_protect_page(ALIGN_DOWN(addr, PAGE_SIZE), true));
223 }
224
225 static bool kfence_unprotect(unsigned long addr)
226 {
227         return !KFENCE_WARN_ON(!kfence_protect_page(ALIGN_DOWN(addr, PAGE_SIZE), false));
228 }
229
230 static inline struct kfence_metadata *addr_to_metadata(unsigned long addr)
231 {
232         long index;
233
234         /* The checks do not affect performance; only called from slow-paths. */
235
236         if (!is_kfence_address((void *)addr))
237                 return NULL;
238
239         /*
240          * May be an invalid index if called with an address at the edge of
241          * __kfence_pool, in which case we would report an "invalid access"
242          * error.
243          */
244         index = (addr - (unsigned long)__kfence_pool) / (PAGE_SIZE * 2) - 1;
245         if (index < 0 || index >= CONFIG_KFENCE_NUM_OBJECTS)
246                 return NULL;
247
248         return &kfence_metadata[index];
249 }
250
251 static inline unsigned long metadata_to_pageaddr(const struct kfence_metadata *meta)
252 {
253         unsigned long offset = (meta - kfence_metadata + 1) * PAGE_SIZE * 2;
254         unsigned long pageaddr = (unsigned long)&__kfence_pool[offset];
255
256         /* The checks do not affect performance; only called from slow-paths. */
257
258         /* Only call with a pointer into kfence_metadata. */
259         if (KFENCE_WARN_ON(meta < kfence_metadata ||
260                            meta >= kfence_metadata + CONFIG_KFENCE_NUM_OBJECTS))
261                 return 0;
262
263         /*
264          * This metadata object only ever maps to 1 page; verify that the stored
265          * address is in the expected range.
266          */
267         if (KFENCE_WARN_ON(ALIGN_DOWN(meta->addr, PAGE_SIZE) != pageaddr))
268                 return 0;
269
270         return pageaddr;
271 }
272
273 /*
274  * Update the object's metadata state, including updating the alloc/free stacks
275  * depending on the state transition.
276  */
277 static noinline void
278 metadata_update_state(struct kfence_metadata *meta, enum kfence_object_state next,
279                       unsigned long *stack_entries, size_t num_stack_entries)
280 {
281         struct kfence_track *track =
282                 next == KFENCE_OBJECT_FREED ? &meta->free_track : &meta->alloc_track;
283
284         lockdep_assert_held(&meta->lock);
285
286         if (stack_entries) {
287                 memcpy(track->stack_entries, stack_entries,
288                        num_stack_entries * sizeof(stack_entries[0]));
289         } else {
290                 /*
291                  * Skip over 1 (this) functions; noinline ensures we do not
292                  * accidentally skip over the caller by never inlining.
293                  */
294                 num_stack_entries = stack_trace_save(track->stack_entries, KFENCE_STACK_DEPTH, 1);
295         }
296         track->num_stack_entries = num_stack_entries;
297         track->pid = task_pid_nr(current);
298         track->cpu = raw_smp_processor_id();
299         track->ts_nsec = local_clock(); /* Same source as printk timestamps. */
300
301         /*
302          * Pairs with READ_ONCE() in
303          *      kfence_shutdown_cache(),
304          *      kfence_handle_page_fault().
305          */
306         WRITE_ONCE(meta->state, next);
307 }
308
309 /* Write canary byte to @addr. */
310 static inline bool set_canary_byte(u8 *addr)
311 {
312         *addr = KFENCE_CANARY_PATTERN(addr);
313         return true;
314 }
315
316 /* Check canary byte at @addr. */
317 static inline bool check_canary_byte(u8 *addr)
318 {
319         struct kfence_metadata *meta;
320         unsigned long flags;
321
322         if (likely(*addr == KFENCE_CANARY_PATTERN(addr)))
323                 return true;
324
325         atomic_long_inc(&counters[KFENCE_COUNTER_BUGS]);
326
327         meta = addr_to_metadata((unsigned long)addr);
328         raw_spin_lock_irqsave(&meta->lock, flags);
329         kfence_report_error((unsigned long)addr, false, NULL, meta, KFENCE_ERROR_CORRUPTION);
330         raw_spin_unlock_irqrestore(&meta->lock, flags);
331
332         return false;
333 }
334
335 /* __always_inline this to ensure we won't do an indirect call to fn. */
336 static __always_inline void for_each_canary(const struct kfence_metadata *meta, bool (*fn)(u8 *))
337 {
338         const unsigned long pageaddr = ALIGN_DOWN(meta->addr, PAGE_SIZE);
339         unsigned long addr;
340
341         /*
342          * We'll iterate over each canary byte per-side until fn() returns
343          * false. However, we'll still iterate over the canary bytes to the
344          * right of the object even if there was an error in the canary bytes to
345          * the left of the object. Specifically, if check_canary_byte()
346          * generates an error, showing both sides might give more clues as to
347          * what the error is about when displaying which bytes were corrupted.
348          */
349
350         /* Apply to left of object. */
351         for (addr = pageaddr; addr < meta->addr; addr++) {
352                 if (!fn((u8 *)addr))
353                         break;
354         }
355
356         /* Apply to right of object. */
357         for (addr = meta->addr + meta->size; addr < pageaddr + PAGE_SIZE; addr++) {
358                 if (!fn((u8 *)addr))
359                         break;
360         }
361 }
362
363 static void *kfence_guarded_alloc(struct kmem_cache *cache, size_t size, gfp_t gfp,
364                                   unsigned long *stack_entries, size_t num_stack_entries,
365                                   u32 alloc_stack_hash)
366 {
367         struct kfence_metadata *meta = NULL;
368         unsigned long flags;
369         struct slab *slab;
370         void *addr;
371
372         /* Try to obtain a free object. */
373         raw_spin_lock_irqsave(&kfence_freelist_lock, flags);
374         if (!list_empty(&kfence_freelist)) {
375                 meta = list_entry(kfence_freelist.next, struct kfence_metadata, list);
376                 list_del_init(&meta->list);
377         }
378         raw_spin_unlock_irqrestore(&kfence_freelist_lock, flags);
379         if (!meta) {
380                 atomic_long_inc(&counters[KFENCE_COUNTER_SKIP_CAPACITY]);
381                 return NULL;
382         }
383
384         if (unlikely(!raw_spin_trylock_irqsave(&meta->lock, flags))) {
385                 /*
386                  * This is extremely unlikely -- we are reporting on a
387                  * use-after-free, which locked meta->lock, and the reporting
388                  * code via printk calls kmalloc() which ends up in
389                  * kfence_alloc() and tries to grab the same object that we're
390                  * reporting on. While it has never been observed, lockdep does
391                  * report that there is a possibility of deadlock. Fix it by
392                  * using trylock and bailing out gracefully.
393                  */
394                 raw_spin_lock_irqsave(&kfence_freelist_lock, flags);
395                 /* Put the object back on the freelist. */
396                 list_add_tail(&meta->list, &kfence_freelist);
397                 raw_spin_unlock_irqrestore(&kfence_freelist_lock, flags);
398
399                 return NULL;
400         }
401
402         meta->addr = metadata_to_pageaddr(meta);
403         /* Unprotect if we're reusing this page. */
404         if (meta->state == KFENCE_OBJECT_FREED)
405                 kfence_unprotect(meta->addr);
406
407         /*
408          * Note: for allocations made before RNG initialization, will always
409          * return zero. We still benefit from enabling KFENCE as early as
410          * possible, even when the RNG is not yet available, as this will allow
411          * KFENCE to detect bugs due to earlier allocations. The only downside
412          * is that the out-of-bounds accesses detected are deterministic for
413          * such allocations.
414          */
415         if (prandom_u32_max(2)) {
416                 /* Allocate on the "right" side, re-calculate address. */
417                 meta->addr += PAGE_SIZE - size;
418                 meta->addr = ALIGN_DOWN(meta->addr, cache->align);
419         }
420
421         addr = (void *)meta->addr;
422
423         /* Update remaining metadata. */
424         metadata_update_state(meta, KFENCE_OBJECT_ALLOCATED, stack_entries, num_stack_entries);
425         /* Pairs with READ_ONCE() in kfence_shutdown_cache(). */
426         WRITE_ONCE(meta->cache, cache);
427         meta->size = size;
428         meta->alloc_stack_hash = alloc_stack_hash;
429         raw_spin_unlock_irqrestore(&meta->lock, flags);
430
431         alloc_covered_add(alloc_stack_hash, 1);
432
433         /* Set required slab fields. */
434         slab = virt_to_slab((void *)meta->addr);
435         slab->slab_cache = cache;
436 #if defined(CONFIG_SLUB)
437         slab->objects = 1;
438 #elif defined(CONFIG_SLAB)
439         slab->s_mem = addr;
440 #endif
441
442         /* Memory initialization. */
443         for_each_canary(meta, set_canary_byte);
444
445         /*
446          * We check slab_want_init_on_alloc() ourselves, rather than letting
447          * SL*B do the initialization, as otherwise we might overwrite KFENCE's
448          * redzone.
449          */
450         if (unlikely(slab_want_init_on_alloc(gfp, cache)))
451                 memzero_explicit(addr, size);
452         if (cache->ctor)
453                 cache->ctor(addr);
454
455         if (CONFIG_KFENCE_STRESS_TEST_FAULTS && !prandom_u32_max(CONFIG_KFENCE_STRESS_TEST_FAULTS))
456                 kfence_protect(meta->addr); /* Random "faults" by protecting the object. */
457
458         atomic_long_inc(&counters[KFENCE_COUNTER_ALLOCATED]);
459         atomic_long_inc(&counters[KFENCE_COUNTER_ALLOCS]);
460
461         return addr;
462 }
463
464 static void kfence_guarded_free(void *addr, struct kfence_metadata *meta, bool zombie)
465 {
466         struct kcsan_scoped_access assert_page_exclusive;
467         unsigned long flags;
468         bool init;
469
470         raw_spin_lock_irqsave(&meta->lock, flags);
471
472         if (meta->state != KFENCE_OBJECT_ALLOCATED || meta->addr != (unsigned long)addr) {
473                 /* Invalid or double-free, bail out. */
474                 atomic_long_inc(&counters[KFENCE_COUNTER_BUGS]);
475                 kfence_report_error((unsigned long)addr, false, NULL, meta,
476                                     KFENCE_ERROR_INVALID_FREE);
477                 raw_spin_unlock_irqrestore(&meta->lock, flags);
478                 return;
479         }
480
481         /* Detect racy use-after-free, or incorrect reallocation of this page by KFENCE. */
482         kcsan_begin_scoped_access((void *)ALIGN_DOWN((unsigned long)addr, PAGE_SIZE), PAGE_SIZE,
483                                   KCSAN_ACCESS_SCOPED | KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ASSERT,
484                                   &assert_page_exclusive);
485
486         if (CONFIG_KFENCE_STRESS_TEST_FAULTS)
487                 kfence_unprotect((unsigned long)addr); /* To check canary bytes. */
488
489         /* Restore page protection if there was an OOB access. */
490         if (meta->unprotected_page) {
491                 memzero_explicit((void *)ALIGN_DOWN(meta->unprotected_page, PAGE_SIZE), PAGE_SIZE);
492                 kfence_protect(meta->unprotected_page);
493                 meta->unprotected_page = 0;
494         }
495
496         /* Mark the object as freed. */
497         metadata_update_state(meta, KFENCE_OBJECT_FREED, NULL, 0);
498         init = slab_want_init_on_free(meta->cache);
499         raw_spin_unlock_irqrestore(&meta->lock, flags);
500
501         alloc_covered_add(meta->alloc_stack_hash, -1);
502
503         /* Check canary bytes for memory corruption. */
504         for_each_canary(meta, check_canary_byte);
505
506         /*
507          * Clear memory if init-on-free is set. While we protect the page, the
508          * data is still there, and after a use-after-free is detected, we
509          * unprotect the page, so the data is still accessible.
510          */
511         if (!zombie && unlikely(init))
512                 memzero_explicit(addr, meta->size);
513
514         /* Protect to detect use-after-frees. */
515         kfence_protect((unsigned long)addr);
516
517         kcsan_end_scoped_access(&assert_page_exclusive);
518         if (!zombie) {
519                 /* Add it to the tail of the freelist for reuse. */
520                 raw_spin_lock_irqsave(&kfence_freelist_lock, flags);
521                 KFENCE_WARN_ON(!list_empty(&meta->list));
522                 list_add_tail(&meta->list, &kfence_freelist);
523                 raw_spin_unlock_irqrestore(&kfence_freelist_lock, flags);
524
525                 atomic_long_dec(&counters[KFENCE_COUNTER_ALLOCATED]);
526                 atomic_long_inc(&counters[KFENCE_COUNTER_FREES]);
527         } else {
528                 /* See kfence_shutdown_cache(). */
529                 atomic_long_inc(&counters[KFENCE_COUNTER_ZOMBIES]);
530         }
531 }
532
533 static void rcu_guarded_free(struct rcu_head *h)
534 {
535         struct kfence_metadata *meta = container_of(h, struct kfence_metadata, rcu_head);
536
537         kfence_guarded_free((void *)meta->addr, meta, false);
538 }
539
540 /*
541  * Initialization of the KFENCE pool after its allocation.
542  * Returns 0 on success; otherwise returns the address up to
543  * which partial initialization succeeded.
544  */
545 static unsigned long kfence_init_pool(void)
546 {
547         unsigned long addr = (unsigned long)__kfence_pool;
548         struct page *pages;
549         int i;
550
551         if (!arch_kfence_init_pool())
552                 return addr;
553
554         pages = virt_to_page(addr);
555
556         /*
557          * Set up object pages: they must have PG_slab set, to avoid freeing
558          * these as real pages.
559          *
560          * We also want to avoid inserting kfence_free() in the kfree()
561          * fast-path in SLUB, and therefore need to ensure kfree() correctly
562          * enters __slab_free() slow-path.
563          */
564         for (i = 0; i < KFENCE_POOL_SIZE / PAGE_SIZE; i++) {
565                 if (!i || (i % 2))
566                         continue;
567
568                 /* Verify we do not have a compound head page. */
569                 if (WARN_ON(compound_head(&pages[i]) != &pages[i]))
570                         return addr;
571
572                 __SetPageSlab(&pages[i]);
573         }
574
575         /*
576          * Protect the first 2 pages. The first page is mostly unnecessary, and
577          * merely serves as an extended guard page. However, adding one
578          * additional page in the beginning gives us an even number of pages,
579          * which simplifies the mapping of address to metadata index.
580          */
581         for (i = 0; i < 2; i++) {
582                 if (unlikely(!kfence_protect(addr)))
583                         return addr;
584
585                 addr += PAGE_SIZE;
586         }
587
588         for (i = 0; i < CONFIG_KFENCE_NUM_OBJECTS; i++) {
589                 struct kfence_metadata *meta = &kfence_metadata[i];
590
591                 /* Initialize metadata. */
592                 INIT_LIST_HEAD(&meta->list);
593                 raw_spin_lock_init(&meta->lock);
594                 meta->state = KFENCE_OBJECT_UNUSED;
595                 meta->addr = addr; /* Initialize for validation in metadata_to_pageaddr(). */
596                 list_add_tail(&meta->list, &kfence_freelist);
597
598                 /* Protect the right redzone. */
599                 if (unlikely(!kfence_protect(addr + PAGE_SIZE)))
600                         return addr;
601
602                 addr += 2 * PAGE_SIZE;
603         }
604
605         /*
606          * The pool is live and will never be deallocated from this point on.
607          * Remove the pool object from the kmemleak object tree, as it would
608          * otherwise overlap with allocations returned by kfence_alloc(), which
609          * are registered with kmemleak through the slab post-alloc hook.
610          */
611         kmemleak_free(__kfence_pool);
612
613         return 0;
614 }
615
616 static bool __init kfence_init_pool_early(void)
617 {
618         unsigned long addr;
619
620         if (!__kfence_pool)
621                 return false;
622
623         addr = kfence_init_pool();
624
625         if (!addr)
626                 return true;
627
628         /*
629          * Only release unprotected pages, and do not try to go back and change
630          * page attributes due to risk of failing to do so as well. If changing
631          * page attributes for some pages fails, it is very likely that it also
632          * fails for the first page, and therefore expect addr==__kfence_pool in
633          * most failure cases.
634          */
635         memblock_free_late(__pa(addr), KFENCE_POOL_SIZE - (addr - (unsigned long)__kfence_pool));
636         __kfence_pool = NULL;
637         return false;
638 }
639
640 static bool kfence_init_pool_late(void)
641 {
642         unsigned long addr, free_size;
643
644         addr = kfence_init_pool();
645
646         if (!addr)
647                 return true;
648
649         /* Same as above. */
650         free_size = KFENCE_POOL_SIZE - (addr - (unsigned long)__kfence_pool);
651 #ifdef CONFIG_CONTIG_ALLOC
652         free_contig_range(page_to_pfn(virt_to_page(addr)), free_size / PAGE_SIZE);
653 #else
654         free_pages_exact((void *)addr, free_size);
655 #endif
656         __kfence_pool = NULL;
657         return false;
658 }
659
660 /* === DebugFS Interface ==================================================== */
661
662 static int stats_show(struct seq_file *seq, void *v)
663 {
664         int i;
665
666         seq_printf(seq, "enabled: %i\n", READ_ONCE(kfence_enabled));
667         for (i = 0; i < KFENCE_COUNTER_COUNT; i++)
668                 seq_printf(seq, "%s: %ld\n", counter_names[i], atomic_long_read(&counters[i]));
669
670         return 0;
671 }
672 DEFINE_SHOW_ATTRIBUTE(stats);
673
674 /*
675  * debugfs seq_file operations for /sys/kernel/debug/kfence/objects.
676  * start_object() and next_object() return the object index + 1, because NULL is used
677  * to stop iteration.
678  */
679 static void *start_object(struct seq_file *seq, loff_t *pos)
680 {
681         if (*pos < CONFIG_KFENCE_NUM_OBJECTS)
682                 return (void *)((long)*pos + 1);
683         return NULL;
684 }
685
686 static void stop_object(struct seq_file *seq, void *v)
687 {
688 }
689
690 static void *next_object(struct seq_file *seq, void *v, loff_t *pos)
691 {
692         ++*pos;
693         if (*pos < CONFIG_KFENCE_NUM_OBJECTS)
694                 return (void *)((long)*pos + 1);
695         return NULL;
696 }
697
698 static int show_object(struct seq_file *seq, void *v)
699 {
700         struct kfence_metadata *meta = &kfence_metadata[(long)v - 1];
701         unsigned long flags;
702
703         raw_spin_lock_irqsave(&meta->lock, flags);
704         kfence_print_object(seq, meta);
705         raw_spin_unlock_irqrestore(&meta->lock, flags);
706         seq_puts(seq, "---------------------------------\n");
707
708         return 0;
709 }
710
711 static const struct seq_operations object_seqops = {
712         .start = start_object,
713         .next = next_object,
714         .stop = stop_object,
715         .show = show_object,
716 };
717
718 static int open_objects(struct inode *inode, struct file *file)
719 {
720         return seq_open(file, &object_seqops);
721 }
722
723 static const struct file_operations objects_fops = {
724         .open = open_objects,
725         .read = seq_read,
726         .llseek = seq_lseek,
727         .release = seq_release,
728 };
729
730 static int __init kfence_debugfs_init(void)
731 {
732         struct dentry *kfence_dir = debugfs_create_dir("kfence", NULL);
733
734         debugfs_create_file("stats", 0444, kfence_dir, NULL, &stats_fops);
735         debugfs_create_file("objects", 0400, kfence_dir, NULL, &objects_fops);
736         return 0;
737 }
738
739 late_initcall(kfence_debugfs_init);
740
741 /* === Allocation Gate Timer ================================================ */
742
743 #ifdef CONFIG_KFENCE_STATIC_KEYS
744 /* Wait queue to wake up allocation-gate timer task. */
745 static DECLARE_WAIT_QUEUE_HEAD(allocation_wait);
746
747 static void wake_up_kfence_timer(struct irq_work *work)
748 {
749         wake_up(&allocation_wait);
750 }
751 static DEFINE_IRQ_WORK(wake_up_kfence_timer_work, wake_up_kfence_timer);
752 #endif
753
754 /*
755  * Set up delayed work, which will enable and disable the static key. We need to
756  * use a work queue (rather than a simple timer), since enabling and disabling a
757  * static key cannot be done from an interrupt.
758  *
759  * Note: Toggling a static branch currently causes IPIs, and here we'll end up
760  * with a total of 2 IPIs to all CPUs. If this ends up a problem in future (with
761  * more aggressive sampling intervals), we could get away with a variant that
762  * avoids IPIs, at the cost of not immediately capturing allocations if the
763  * instructions remain cached.
764  */
765 static struct delayed_work kfence_timer;
766 static void toggle_allocation_gate(struct work_struct *work)
767 {
768         if (!READ_ONCE(kfence_enabled))
769                 return;
770
771         atomic_set(&kfence_allocation_gate, 0);
772 #ifdef CONFIG_KFENCE_STATIC_KEYS
773         /* Enable static key, and await allocation to happen. */
774         static_branch_enable(&kfence_allocation_key);
775
776         if (sysctl_hung_task_timeout_secs) {
777                 /*
778                  * During low activity with no allocations we might wait a
779                  * while; let's avoid the hung task warning.
780                  */
781                 wait_event_idle_timeout(allocation_wait, atomic_read(&kfence_allocation_gate),
782                                         sysctl_hung_task_timeout_secs * HZ / 2);
783         } else {
784                 wait_event_idle(allocation_wait, atomic_read(&kfence_allocation_gate));
785         }
786
787         /* Disable static key and reset timer. */
788         static_branch_disable(&kfence_allocation_key);
789 #endif
790         queue_delayed_work(system_unbound_wq, &kfence_timer,
791                            msecs_to_jiffies(kfence_sample_interval));
792 }
793 static DECLARE_DELAYED_WORK(kfence_timer, toggle_allocation_gate);
794
795 /* === Public interface ===================================================== */
796
797 void __init kfence_alloc_pool(void)
798 {
799         if (!kfence_sample_interval)
800                 return;
801
802         __kfence_pool = memblock_alloc(KFENCE_POOL_SIZE, PAGE_SIZE);
803
804         if (!__kfence_pool)
805                 pr_err("failed to allocate pool\n");
806 }
807
808 static void kfence_init_enable(void)
809 {
810         if (!IS_ENABLED(CONFIG_KFENCE_STATIC_KEYS))
811                 static_branch_enable(&kfence_allocation_key);
812         WRITE_ONCE(kfence_enabled, true);
813         queue_delayed_work(system_unbound_wq, &kfence_timer, 0);
814         pr_info("initialized - using %lu bytes for %d objects at 0x%p-0x%p\n", KFENCE_POOL_SIZE,
815                 CONFIG_KFENCE_NUM_OBJECTS, (void *)__kfence_pool,
816                 (void *)(__kfence_pool + KFENCE_POOL_SIZE));
817 }
818
819 void __init kfence_init(void)
820 {
821         stack_hash_seed = (u32)random_get_entropy();
822
823         /* Setting kfence_sample_interval to 0 on boot disables KFENCE. */
824         if (!kfence_sample_interval)
825                 return;
826
827         if (!kfence_init_pool_early()) {
828                 pr_err("%s failed\n", __func__);
829                 return;
830         }
831
832         kfence_init_enable();
833 }
834
835 static int kfence_init_late(void)
836 {
837         const unsigned long nr_pages = KFENCE_POOL_SIZE / PAGE_SIZE;
838 #ifdef CONFIG_CONTIG_ALLOC
839         struct page *pages;
840
841         pages = alloc_contig_pages(nr_pages, GFP_KERNEL, first_online_node, NULL);
842         if (!pages)
843                 return -ENOMEM;
844         __kfence_pool = page_to_virt(pages);
845 #else
846         if (nr_pages > MAX_ORDER_NR_PAGES) {
847                 pr_warn("KFENCE_NUM_OBJECTS too large for buddy allocator\n");
848                 return -EINVAL;
849         }
850         __kfence_pool = alloc_pages_exact(KFENCE_POOL_SIZE, GFP_KERNEL);
851         if (!__kfence_pool)
852                 return -ENOMEM;
853 #endif
854
855         if (!kfence_init_pool_late()) {
856                 pr_err("%s failed\n", __func__);
857                 return -EBUSY;
858         }
859
860         kfence_init_enable();
861         return 0;
862 }
863
864 static int kfence_enable_late(void)
865 {
866         if (!__kfence_pool)
867                 return kfence_init_late();
868
869         WRITE_ONCE(kfence_enabled, true);
870         queue_delayed_work(system_unbound_wq, &kfence_timer, 0);
871         return 0;
872 }
873
874 void kfence_shutdown_cache(struct kmem_cache *s)
875 {
876         unsigned long flags;
877         struct kfence_metadata *meta;
878         int i;
879
880         for (i = 0; i < CONFIG_KFENCE_NUM_OBJECTS; i++) {
881                 bool in_use;
882
883                 meta = &kfence_metadata[i];
884
885                 /*
886                  * If we observe some inconsistent cache and state pair where we
887                  * should have returned false here, cache destruction is racing
888                  * with either kmem_cache_alloc() or kmem_cache_free(). Taking
889                  * the lock will not help, as different critical section
890                  * serialization will have the same outcome.
891                  */
892                 if (READ_ONCE(meta->cache) != s ||
893                     READ_ONCE(meta->state) != KFENCE_OBJECT_ALLOCATED)
894                         continue;
895
896                 raw_spin_lock_irqsave(&meta->lock, flags);
897                 in_use = meta->cache == s && meta->state == KFENCE_OBJECT_ALLOCATED;
898                 raw_spin_unlock_irqrestore(&meta->lock, flags);
899
900                 if (in_use) {
901                         /*
902                          * This cache still has allocations, and we should not
903                          * release them back into the freelist so they can still
904                          * safely be used and retain the kernel's default
905                          * behaviour of keeping the allocations alive (leak the
906                          * cache); however, they effectively become "zombie
907                          * allocations" as the KFENCE objects are the only ones
908                          * still in use and the owning cache is being destroyed.
909                          *
910                          * We mark them freed, so that any subsequent use shows
911                          * more useful error messages that will include stack
912                          * traces of the user of the object, the original
913                          * allocation, and caller to shutdown_cache().
914                          */
915                         kfence_guarded_free((void *)meta->addr, meta, /*zombie=*/true);
916                 }
917         }
918
919         for (i = 0; i < CONFIG_KFENCE_NUM_OBJECTS; i++) {
920                 meta = &kfence_metadata[i];
921
922                 /* See above. */
923                 if (READ_ONCE(meta->cache) != s || READ_ONCE(meta->state) != KFENCE_OBJECT_FREED)
924                         continue;
925
926                 raw_spin_lock_irqsave(&meta->lock, flags);
927                 if (meta->cache == s && meta->state == KFENCE_OBJECT_FREED)
928                         meta->cache = NULL;
929                 raw_spin_unlock_irqrestore(&meta->lock, flags);
930         }
931 }
932
933 void *__kfence_alloc(struct kmem_cache *s, size_t size, gfp_t flags)
934 {
935         unsigned long stack_entries[KFENCE_STACK_DEPTH];
936         size_t num_stack_entries;
937         u32 alloc_stack_hash;
938
939         /*
940          * Perform size check before switching kfence_allocation_gate, so that
941          * we don't disable KFENCE without making an allocation.
942          */
943         if (size > PAGE_SIZE) {
944                 atomic_long_inc(&counters[KFENCE_COUNTER_SKIP_INCOMPAT]);
945                 return NULL;
946         }
947
948         /*
949          * Skip allocations from non-default zones, including DMA. We cannot
950          * guarantee that pages in the KFENCE pool will have the requested
951          * properties (e.g. reside in DMAable memory).
952          */
953         if ((flags & GFP_ZONEMASK) ||
954             (s->flags & (SLAB_CACHE_DMA | SLAB_CACHE_DMA32))) {
955                 atomic_long_inc(&counters[KFENCE_COUNTER_SKIP_INCOMPAT]);
956                 return NULL;
957         }
958
959         if (atomic_inc_return(&kfence_allocation_gate) > 1)
960                 return NULL;
961 #ifdef CONFIG_KFENCE_STATIC_KEYS
962         /*
963          * waitqueue_active() is fully ordered after the update of
964          * kfence_allocation_gate per atomic_inc_return().
965          */
966         if (waitqueue_active(&allocation_wait)) {
967                 /*
968                  * Calling wake_up() here may deadlock when allocations happen
969                  * from within timer code. Use an irq_work to defer it.
970                  */
971                 irq_work_queue(&wake_up_kfence_timer_work);
972         }
973 #endif
974
975         if (!READ_ONCE(kfence_enabled))
976                 return NULL;
977
978         num_stack_entries = stack_trace_save(stack_entries, KFENCE_STACK_DEPTH, 0);
979
980         /*
981          * Do expensive check for coverage of allocation in slow-path after
982          * allocation_gate has already become non-zero, even though it might
983          * mean not making any allocation within a given sample interval.
984          *
985          * This ensures reasonable allocation coverage when the pool is almost
986          * full, including avoiding long-lived allocations of the same source
987          * filling up the pool (e.g. pagecache allocations).
988          */
989         alloc_stack_hash = get_alloc_stack_hash(stack_entries, num_stack_entries);
990         if (should_skip_covered() && alloc_covered_contains(alloc_stack_hash)) {
991                 atomic_long_inc(&counters[KFENCE_COUNTER_SKIP_COVERED]);
992                 return NULL;
993         }
994
995         return kfence_guarded_alloc(s, size, flags, stack_entries, num_stack_entries,
996                                     alloc_stack_hash);
997 }
998
999 size_t kfence_ksize(const void *addr)
1000 {
1001         const struct kfence_metadata *meta = addr_to_metadata((unsigned long)addr);
1002
1003         /*
1004          * Read locklessly -- if there is a race with __kfence_alloc(), this is
1005          * either a use-after-free or invalid access.
1006          */
1007         return meta ? meta->size : 0;
1008 }
1009
1010 void *kfence_object_start(const void *addr)
1011 {
1012         const struct kfence_metadata *meta = addr_to_metadata((unsigned long)addr);
1013
1014         /*
1015          * Read locklessly -- if there is a race with __kfence_alloc(), this is
1016          * either a use-after-free or invalid access.
1017          */
1018         return meta ? (void *)meta->addr : NULL;
1019 }
1020
1021 void __kfence_free(void *addr)
1022 {
1023         struct kfence_metadata *meta = addr_to_metadata((unsigned long)addr);
1024
1025         /*
1026          * If the objects of the cache are SLAB_TYPESAFE_BY_RCU, defer freeing
1027          * the object, as the object page may be recycled for other-typed
1028          * objects once it has been freed. meta->cache may be NULL if the cache
1029          * was destroyed.
1030          */
1031         if (unlikely(meta->cache && (meta->cache->flags & SLAB_TYPESAFE_BY_RCU)))
1032                 call_rcu(&meta->rcu_head, rcu_guarded_free);
1033         else
1034                 kfence_guarded_free(addr, meta, false);
1035 }
1036
1037 bool kfence_handle_page_fault(unsigned long addr, bool is_write, struct pt_regs *regs)
1038 {
1039         const int page_index = (addr - (unsigned long)__kfence_pool) / PAGE_SIZE;
1040         struct kfence_metadata *to_report = NULL;
1041         enum kfence_error_type error_type;
1042         unsigned long flags;
1043
1044         if (!is_kfence_address((void *)addr))
1045                 return false;
1046
1047         if (!READ_ONCE(kfence_enabled)) /* If disabled at runtime ... */
1048                 return kfence_unprotect(addr); /* ... unprotect and proceed. */
1049
1050         atomic_long_inc(&counters[KFENCE_COUNTER_BUGS]);
1051
1052         if (page_index % 2) {
1053                 /* This is a redzone, report a buffer overflow. */
1054                 struct kfence_metadata *meta;
1055                 int distance = 0;
1056
1057                 meta = addr_to_metadata(addr - PAGE_SIZE);
1058                 if (meta && READ_ONCE(meta->state) == KFENCE_OBJECT_ALLOCATED) {
1059                         to_report = meta;
1060                         /* Data race ok; distance calculation approximate. */
1061                         distance = addr - data_race(meta->addr + meta->size);
1062                 }
1063
1064                 meta = addr_to_metadata(addr + PAGE_SIZE);
1065                 if (meta && READ_ONCE(meta->state) == KFENCE_OBJECT_ALLOCATED) {
1066                         /* Data race ok; distance calculation approximate. */
1067                         if (!to_report || distance > data_race(meta->addr) - addr)
1068                                 to_report = meta;
1069                 }
1070
1071                 if (!to_report)
1072                         goto out;
1073
1074                 raw_spin_lock_irqsave(&to_report->lock, flags);
1075                 to_report->unprotected_page = addr;
1076                 error_type = KFENCE_ERROR_OOB;
1077
1078                 /*
1079                  * If the object was freed before we took the look we can still
1080                  * report this as an OOB -- the report will simply show the
1081                  * stacktrace of the free as well.
1082                  */
1083         } else {
1084                 to_report = addr_to_metadata(addr);
1085                 if (!to_report)
1086                         goto out;
1087
1088                 raw_spin_lock_irqsave(&to_report->lock, flags);
1089                 error_type = KFENCE_ERROR_UAF;
1090                 /*
1091                  * We may race with __kfence_alloc(), and it is possible that a
1092                  * freed object may be reallocated. We simply report this as a
1093                  * use-after-free, with the stack trace showing the place where
1094                  * the object was re-allocated.
1095                  */
1096         }
1097
1098 out:
1099         if (to_report) {
1100                 kfence_report_error(addr, is_write, regs, to_report, error_type);
1101                 raw_spin_unlock_irqrestore(&to_report->lock, flags);
1102         } else {
1103                 /* This may be a UAF or OOB access, but we can't be sure. */
1104                 kfence_report_error(addr, is_write, regs, NULL, KFENCE_ERROR_INVALID);
1105         }
1106
1107         return kfence_unprotect(addr); /* Unprotect and let access proceed. */
1108 }