Merge tag 'spi-fix-v5.17-rc2' of git://git.kernel.org/pub/scm/linux/kernel/git/brooni...
[linux-2.6-microblaze.git] / mm / kfence / core.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * KFENCE guarded object allocator and fault handling.
4  *
5  * Copyright (C) 2020, Google LLC.
6  */
7
8 #define pr_fmt(fmt) "kfence: " fmt
9
10 #include <linux/atomic.h>
11 #include <linux/bug.h>
12 #include <linux/debugfs.h>
13 #include <linux/hash.h>
14 #include <linux/irq_work.h>
15 #include <linux/jhash.h>
16 #include <linux/kcsan-checks.h>
17 #include <linux/kfence.h>
18 #include <linux/kmemleak.h>
19 #include <linux/list.h>
20 #include <linux/lockdep.h>
21 #include <linux/log2.h>
22 #include <linux/memblock.h>
23 #include <linux/moduleparam.h>
24 #include <linux/random.h>
25 #include <linux/rcupdate.h>
26 #include <linux/sched/clock.h>
27 #include <linux/sched/sysctl.h>
28 #include <linux/seq_file.h>
29 #include <linux/slab.h>
30 #include <linux/spinlock.h>
31 #include <linux/string.h>
32
33 #include <asm/kfence.h>
34
35 #include "kfence.h"
36
37 /* Disables KFENCE on the first warning assuming an irrecoverable error. */
38 #define KFENCE_WARN_ON(cond)                                                   \
39         ({                                                                     \
40                 const bool __cond = WARN_ON(cond);                             \
41                 if (unlikely(__cond))                                          \
42                         WRITE_ONCE(kfence_enabled, false);                     \
43                 __cond;                                                        \
44         })
45
46 /* === Data ================================================================= */
47
48 static bool kfence_enabled __read_mostly;
49
50 static unsigned long kfence_sample_interval __read_mostly = CONFIG_KFENCE_SAMPLE_INTERVAL;
51
52 #ifdef MODULE_PARAM_PREFIX
53 #undef MODULE_PARAM_PREFIX
54 #endif
55 #define MODULE_PARAM_PREFIX "kfence."
56
57 static int param_set_sample_interval(const char *val, const struct kernel_param *kp)
58 {
59         unsigned long num;
60         int ret = kstrtoul(val, 0, &num);
61
62         if (ret < 0)
63                 return ret;
64
65         if (!num) /* Using 0 to indicate KFENCE is disabled. */
66                 WRITE_ONCE(kfence_enabled, false);
67         else if (!READ_ONCE(kfence_enabled) && system_state != SYSTEM_BOOTING)
68                 return -EINVAL; /* Cannot (re-)enable KFENCE on-the-fly. */
69
70         *((unsigned long *)kp->arg) = num;
71         return 0;
72 }
73
74 static int param_get_sample_interval(char *buffer, const struct kernel_param *kp)
75 {
76         if (!READ_ONCE(kfence_enabled))
77                 return sprintf(buffer, "0\n");
78
79         return param_get_ulong(buffer, kp);
80 }
81
82 static const struct kernel_param_ops sample_interval_param_ops = {
83         .set = param_set_sample_interval,
84         .get = param_get_sample_interval,
85 };
86 module_param_cb(sample_interval, &sample_interval_param_ops, &kfence_sample_interval, 0600);
87
88 /* Pool usage% threshold when currently covered allocations are skipped. */
89 static unsigned long kfence_skip_covered_thresh __read_mostly = 75;
90 module_param_named(skip_covered_thresh, kfence_skip_covered_thresh, ulong, 0644);
91
92 /* The pool of pages used for guard pages and objects. */
93 char *__kfence_pool __ro_after_init;
94 EXPORT_SYMBOL(__kfence_pool); /* Export for test modules. */
95
96 /*
97  * Per-object metadata, with one-to-one mapping of object metadata to
98  * backing pages (in __kfence_pool).
99  */
100 static_assert(CONFIG_KFENCE_NUM_OBJECTS > 0);
101 struct kfence_metadata kfence_metadata[CONFIG_KFENCE_NUM_OBJECTS];
102
103 /* Freelist with available objects. */
104 static struct list_head kfence_freelist = LIST_HEAD_INIT(kfence_freelist);
105 static DEFINE_RAW_SPINLOCK(kfence_freelist_lock); /* Lock protecting freelist. */
106
107 /*
108  * The static key to set up a KFENCE allocation; or if static keys are not used
109  * to gate allocations, to avoid a load and compare if KFENCE is disabled.
110  */
111 DEFINE_STATIC_KEY_FALSE(kfence_allocation_key);
112
113 /* Gates the allocation, ensuring only one succeeds in a given period. */
114 atomic_t kfence_allocation_gate = ATOMIC_INIT(1);
115
116 /*
117  * A Counting Bloom filter of allocation coverage: limits currently covered
118  * allocations of the same source filling up the pool.
119  *
120  * Assuming a range of 15%-85% unique allocations in the pool at any point in
121  * time, the below parameters provide a probablity of 0.02-0.33 for false
122  * positive hits respectively:
123  *
124  *      P(alloc_traces) = (1 - e^(-HNUM * (alloc_traces / SIZE)) ^ HNUM
125  */
126 #define ALLOC_COVERED_HNUM      2
127 #define ALLOC_COVERED_ORDER     (const_ilog2(CONFIG_KFENCE_NUM_OBJECTS) + 2)
128 #define ALLOC_COVERED_SIZE      (1 << ALLOC_COVERED_ORDER)
129 #define ALLOC_COVERED_HNEXT(h)  hash_32(h, ALLOC_COVERED_ORDER)
130 #define ALLOC_COVERED_MASK      (ALLOC_COVERED_SIZE - 1)
131 static atomic_t alloc_covered[ALLOC_COVERED_SIZE];
132
133 /* Stack depth used to determine uniqueness of an allocation. */
134 #define UNIQUE_ALLOC_STACK_DEPTH ((size_t)8)
135
136 /*
137  * Randomness for stack hashes, making the same collisions across reboots and
138  * different machines less likely.
139  */
140 static u32 stack_hash_seed __ro_after_init;
141
142 /* Statistics counters for debugfs. */
143 enum kfence_counter_id {
144         KFENCE_COUNTER_ALLOCATED,
145         KFENCE_COUNTER_ALLOCS,
146         KFENCE_COUNTER_FREES,
147         KFENCE_COUNTER_ZOMBIES,
148         KFENCE_COUNTER_BUGS,
149         KFENCE_COUNTER_SKIP_INCOMPAT,
150         KFENCE_COUNTER_SKIP_CAPACITY,
151         KFENCE_COUNTER_SKIP_COVERED,
152         KFENCE_COUNTER_COUNT,
153 };
154 static atomic_long_t counters[KFENCE_COUNTER_COUNT];
155 static const char *const counter_names[] = {
156         [KFENCE_COUNTER_ALLOCATED]      = "currently allocated",
157         [KFENCE_COUNTER_ALLOCS]         = "total allocations",
158         [KFENCE_COUNTER_FREES]          = "total frees",
159         [KFENCE_COUNTER_ZOMBIES]        = "zombie allocations",
160         [KFENCE_COUNTER_BUGS]           = "total bugs",
161         [KFENCE_COUNTER_SKIP_INCOMPAT]  = "skipped allocations (incompatible)",
162         [KFENCE_COUNTER_SKIP_CAPACITY]  = "skipped allocations (capacity)",
163         [KFENCE_COUNTER_SKIP_COVERED]   = "skipped allocations (covered)",
164 };
165 static_assert(ARRAY_SIZE(counter_names) == KFENCE_COUNTER_COUNT);
166
167 /* === Internals ============================================================ */
168
169 static inline bool should_skip_covered(void)
170 {
171         unsigned long thresh = (CONFIG_KFENCE_NUM_OBJECTS * kfence_skip_covered_thresh) / 100;
172
173         return atomic_long_read(&counters[KFENCE_COUNTER_ALLOCATED]) > thresh;
174 }
175
176 static u32 get_alloc_stack_hash(unsigned long *stack_entries, size_t num_entries)
177 {
178         num_entries = min(num_entries, UNIQUE_ALLOC_STACK_DEPTH);
179         num_entries = filter_irq_stacks(stack_entries, num_entries);
180         return jhash(stack_entries, num_entries * sizeof(stack_entries[0]), stack_hash_seed);
181 }
182
183 /*
184  * Adds (or subtracts) count @val for allocation stack trace hash
185  * @alloc_stack_hash from Counting Bloom filter.
186  */
187 static void alloc_covered_add(u32 alloc_stack_hash, int val)
188 {
189         int i;
190
191         for (i = 0; i < ALLOC_COVERED_HNUM; i++) {
192                 atomic_add(val, &alloc_covered[alloc_stack_hash & ALLOC_COVERED_MASK]);
193                 alloc_stack_hash = ALLOC_COVERED_HNEXT(alloc_stack_hash);
194         }
195 }
196
197 /*
198  * Returns true if the allocation stack trace hash @alloc_stack_hash is
199  * currently contained (non-zero count) in Counting Bloom filter.
200  */
201 static bool alloc_covered_contains(u32 alloc_stack_hash)
202 {
203         int i;
204
205         for (i = 0; i < ALLOC_COVERED_HNUM; i++) {
206                 if (!atomic_read(&alloc_covered[alloc_stack_hash & ALLOC_COVERED_MASK]))
207                         return false;
208                 alloc_stack_hash = ALLOC_COVERED_HNEXT(alloc_stack_hash);
209         }
210
211         return true;
212 }
213
214 static bool kfence_protect(unsigned long addr)
215 {
216         return !KFENCE_WARN_ON(!kfence_protect_page(ALIGN_DOWN(addr, PAGE_SIZE), true));
217 }
218
219 static bool kfence_unprotect(unsigned long addr)
220 {
221         return !KFENCE_WARN_ON(!kfence_protect_page(ALIGN_DOWN(addr, PAGE_SIZE), false));
222 }
223
224 static inline struct kfence_metadata *addr_to_metadata(unsigned long addr)
225 {
226         long index;
227
228         /* The checks do not affect performance; only called from slow-paths. */
229
230         if (!is_kfence_address((void *)addr))
231                 return NULL;
232
233         /*
234          * May be an invalid index if called with an address at the edge of
235          * __kfence_pool, in which case we would report an "invalid access"
236          * error.
237          */
238         index = (addr - (unsigned long)__kfence_pool) / (PAGE_SIZE * 2) - 1;
239         if (index < 0 || index >= CONFIG_KFENCE_NUM_OBJECTS)
240                 return NULL;
241
242         return &kfence_metadata[index];
243 }
244
245 static inline unsigned long metadata_to_pageaddr(const struct kfence_metadata *meta)
246 {
247         unsigned long offset = (meta - kfence_metadata + 1) * PAGE_SIZE * 2;
248         unsigned long pageaddr = (unsigned long)&__kfence_pool[offset];
249
250         /* The checks do not affect performance; only called from slow-paths. */
251
252         /* Only call with a pointer into kfence_metadata. */
253         if (KFENCE_WARN_ON(meta < kfence_metadata ||
254                            meta >= kfence_metadata + CONFIG_KFENCE_NUM_OBJECTS))
255                 return 0;
256
257         /*
258          * This metadata object only ever maps to 1 page; verify that the stored
259          * address is in the expected range.
260          */
261         if (KFENCE_WARN_ON(ALIGN_DOWN(meta->addr, PAGE_SIZE) != pageaddr))
262                 return 0;
263
264         return pageaddr;
265 }
266
267 /*
268  * Update the object's metadata state, including updating the alloc/free stacks
269  * depending on the state transition.
270  */
271 static noinline void
272 metadata_update_state(struct kfence_metadata *meta, enum kfence_object_state next,
273                       unsigned long *stack_entries, size_t num_stack_entries)
274 {
275         struct kfence_track *track =
276                 next == KFENCE_OBJECT_FREED ? &meta->free_track : &meta->alloc_track;
277
278         lockdep_assert_held(&meta->lock);
279
280         if (stack_entries) {
281                 memcpy(track->stack_entries, stack_entries,
282                        num_stack_entries * sizeof(stack_entries[0]));
283         } else {
284                 /*
285                  * Skip over 1 (this) functions; noinline ensures we do not
286                  * accidentally skip over the caller by never inlining.
287                  */
288                 num_stack_entries = stack_trace_save(track->stack_entries, KFENCE_STACK_DEPTH, 1);
289         }
290         track->num_stack_entries = num_stack_entries;
291         track->pid = task_pid_nr(current);
292         track->cpu = raw_smp_processor_id();
293         track->ts_nsec = local_clock(); /* Same source as printk timestamps. */
294
295         /*
296          * Pairs with READ_ONCE() in
297          *      kfence_shutdown_cache(),
298          *      kfence_handle_page_fault().
299          */
300         WRITE_ONCE(meta->state, next);
301 }
302
303 /* Write canary byte to @addr. */
304 static inline bool set_canary_byte(u8 *addr)
305 {
306         *addr = KFENCE_CANARY_PATTERN(addr);
307         return true;
308 }
309
310 /* Check canary byte at @addr. */
311 static inline bool check_canary_byte(u8 *addr)
312 {
313         struct kfence_metadata *meta;
314         unsigned long flags;
315
316         if (likely(*addr == KFENCE_CANARY_PATTERN(addr)))
317                 return true;
318
319         atomic_long_inc(&counters[KFENCE_COUNTER_BUGS]);
320
321         meta = addr_to_metadata((unsigned long)addr);
322         raw_spin_lock_irqsave(&meta->lock, flags);
323         kfence_report_error((unsigned long)addr, false, NULL, meta, KFENCE_ERROR_CORRUPTION);
324         raw_spin_unlock_irqrestore(&meta->lock, flags);
325
326         return false;
327 }
328
329 /* __always_inline this to ensure we won't do an indirect call to fn. */
330 static __always_inline void for_each_canary(const struct kfence_metadata *meta, bool (*fn)(u8 *))
331 {
332         const unsigned long pageaddr = ALIGN_DOWN(meta->addr, PAGE_SIZE);
333         unsigned long addr;
334
335         /*
336          * We'll iterate over each canary byte per-side until fn() returns
337          * false. However, we'll still iterate over the canary bytes to the
338          * right of the object even if there was an error in the canary bytes to
339          * the left of the object. Specifically, if check_canary_byte()
340          * generates an error, showing both sides might give more clues as to
341          * what the error is about when displaying which bytes were corrupted.
342          */
343
344         /* Apply to left of object. */
345         for (addr = pageaddr; addr < meta->addr; addr++) {
346                 if (!fn((u8 *)addr))
347                         break;
348         }
349
350         /* Apply to right of object. */
351         for (addr = meta->addr + meta->size; addr < pageaddr + PAGE_SIZE; addr++) {
352                 if (!fn((u8 *)addr))
353                         break;
354         }
355 }
356
357 static void *kfence_guarded_alloc(struct kmem_cache *cache, size_t size, gfp_t gfp,
358                                   unsigned long *stack_entries, size_t num_stack_entries,
359                                   u32 alloc_stack_hash)
360 {
361         struct kfence_metadata *meta = NULL;
362         unsigned long flags;
363         struct slab *slab;
364         void *addr;
365
366         /* Try to obtain a free object. */
367         raw_spin_lock_irqsave(&kfence_freelist_lock, flags);
368         if (!list_empty(&kfence_freelist)) {
369                 meta = list_entry(kfence_freelist.next, struct kfence_metadata, list);
370                 list_del_init(&meta->list);
371         }
372         raw_spin_unlock_irqrestore(&kfence_freelist_lock, flags);
373         if (!meta) {
374                 atomic_long_inc(&counters[KFENCE_COUNTER_SKIP_CAPACITY]);
375                 return NULL;
376         }
377
378         if (unlikely(!raw_spin_trylock_irqsave(&meta->lock, flags))) {
379                 /*
380                  * This is extremely unlikely -- we are reporting on a
381                  * use-after-free, which locked meta->lock, and the reporting
382                  * code via printk calls kmalloc() which ends up in
383                  * kfence_alloc() and tries to grab the same object that we're
384                  * reporting on. While it has never been observed, lockdep does
385                  * report that there is a possibility of deadlock. Fix it by
386                  * using trylock and bailing out gracefully.
387                  */
388                 raw_spin_lock_irqsave(&kfence_freelist_lock, flags);
389                 /* Put the object back on the freelist. */
390                 list_add_tail(&meta->list, &kfence_freelist);
391                 raw_spin_unlock_irqrestore(&kfence_freelist_lock, flags);
392
393                 return NULL;
394         }
395
396         meta->addr = metadata_to_pageaddr(meta);
397         /* Unprotect if we're reusing this page. */
398         if (meta->state == KFENCE_OBJECT_FREED)
399                 kfence_unprotect(meta->addr);
400
401         /*
402          * Note: for allocations made before RNG initialization, will always
403          * return zero. We still benefit from enabling KFENCE as early as
404          * possible, even when the RNG is not yet available, as this will allow
405          * KFENCE to detect bugs due to earlier allocations. The only downside
406          * is that the out-of-bounds accesses detected are deterministic for
407          * such allocations.
408          */
409         if (prandom_u32_max(2)) {
410                 /* Allocate on the "right" side, re-calculate address. */
411                 meta->addr += PAGE_SIZE - size;
412                 meta->addr = ALIGN_DOWN(meta->addr, cache->align);
413         }
414
415         addr = (void *)meta->addr;
416
417         /* Update remaining metadata. */
418         metadata_update_state(meta, KFENCE_OBJECT_ALLOCATED, stack_entries, num_stack_entries);
419         /* Pairs with READ_ONCE() in kfence_shutdown_cache(). */
420         WRITE_ONCE(meta->cache, cache);
421         meta->size = size;
422         meta->alloc_stack_hash = alloc_stack_hash;
423         raw_spin_unlock_irqrestore(&meta->lock, flags);
424
425         alloc_covered_add(alloc_stack_hash, 1);
426
427         /* Set required slab fields. */
428         slab = virt_to_slab((void *)meta->addr);
429         slab->slab_cache = cache;
430 #if defined(CONFIG_SLUB)
431         slab->objects = 1;
432 #elif defined(CONFIG_SLAB)
433         slab->s_mem = addr;
434 #endif
435
436         /* Memory initialization. */
437         for_each_canary(meta, set_canary_byte);
438
439         /*
440          * We check slab_want_init_on_alloc() ourselves, rather than letting
441          * SL*B do the initialization, as otherwise we might overwrite KFENCE's
442          * redzone.
443          */
444         if (unlikely(slab_want_init_on_alloc(gfp, cache)))
445                 memzero_explicit(addr, size);
446         if (cache->ctor)
447                 cache->ctor(addr);
448
449         if (CONFIG_KFENCE_STRESS_TEST_FAULTS && !prandom_u32_max(CONFIG_KFENCE_STRESS_TEST_FAULTS))
450                 kfence_protect(meta->addr); /* Random "faults" by protecting the object. */
451
452         atomic_long_inc(&counters[KFENCE_COUNTER_ALLOCATED]);
453         atomic_long_inc(&counters[KFENCE_COUNTER_ALLOCS]);
454
455         return addr;
456 }
457
458 static void kfence_guarded_free(void *addr, struct kfence_metadata *meta, bool zombie)
459 {
460         struct kcsan_scoped_access assert_page_exclusive;
461         unsigned long flags;
462         bool init;
463
464         raw_spin_lock_irqsave(&meta->lock, flags);
465
466         if (meta->state != KFENCE_OBJECT_ALLOCATED || meta->addr != (unsigned long)addr) {
467                 /* Invalid or double-free, bail out. */
468                 atomic_long_inc(&counters[KFENCE_COUNTER_BUGS]);
469                 kfence_report_error((unsigned long)addr, false, NULL, meta,
470                                     KFENCE_ERROR_INVALID_FREE);
471                 raw_spin_unlock_irqrestore(&meta->lock, flags);
472                 return;
473         }
474
475         /* Detect racy use-after-free, or incorrect reallocation of this page by KFENCE. */
476         kcsan_begin_scoped_access((void *)ALIGN_DOWN((unsigned long)addr, PAGE_SIZE), PAGE_SIZE,
477                                   KCSAN_ACCESS_SCOPED | KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ASSERT,
478                                   &assert_page_exclusive);
479
480         if (CONFIG_KFENCE_STRESS_TEST_FAULTS)
481                 kfence_unprotect((unsigned long)addr); /* To check canary bytes. */
482
483         /* Restore page protection if there was an OOB access. */
484         if (meta->unprotected_page) {
485                 memzero_explicit((void *)ALIGN_DOWN(meta->unprotected_page, PAGE_SIZE), PAGE_SIZE);
486                 kfence_protect(meta->unprotected_page);
487                 meta->unprotected_page = 0;
488         }
489
490         /* Mark the object as freed. */
491         metadata_update_state(meta, KFENCE_OBJECT_FREED, NULL, 0);
492         init = slab_want_init_on_free(meta->cache);
493         raw_spin_unlock_irqrestore(&meta->lock, flags);
494
495         alloc_covered_add(meta->alloc_stack_hash, -1);
496
497         /* Check canary bytes for memory corruption. */
498         for_each_canary(meta, check_canary_byte);
499
500         /*
501          * Clear memory if init-on-free is set. While we protect the page, the
502          * data is still there, and after a use-after-free is detected, we
503          * unprotect the page, so the data is still accessible.
504          */
505         if (!zombie && unlikely(init))
506                 memzero_explicit(addr, meta->size);
507
508         /* Protect to detect use-after-frees. */
509         kfence_protect((unsigned long)addr);
510
511         kcsan_end_scoped_access(&assert_page_exclusive);
512         if (!zombie) {
513                 /* Add it to the tail of the freelist for reuse. */
514                 raw_spin_lock_irqsave(&kfence_freelist_lock, flags);
515                 KFENCE_WARN_ON(!list_empty(&meta->list));
516                 list_add_tail(&meta->list, &kfence_freelist);
517                 raw_spin_unlock_irqrestore(&kfence_freelist_lock, flags);
518
519                 atomic_long_dec(&counters[KFENCE_COUNTER_ALLOCATED]);
520                 atomic_long_inc(&counters[KFENCE_COUNTER_FREES]);
521         } else {
522                 /* See kfence_shutdown_cache(). */
523                 atomic_long_inc(&counters[KFENCE_COUNTER_ZOMBIES]);
524         }
525 }
526
527 static void rcu_guarded_free(struct rcu_head *h)
528 {
529         struct kfence_metadata *meta = container_of(h, struct kfence_metadata, rcu_head);
530
531         kfence_guarded_free((void *)meta->addr, meta, false);
532 }
533
534 static bool __init kfence_init_pool(void)
535 {
536         unsigned long addr = (unsigned long)__kfence_pool;
537         struct page *pages;
538         int i;
539
540         if (!__kfence_pool)
541                 return false;
542
543         if (!arch_kfence_init_pool())
544                 goto err;
545
546         pages = virt_to_page(addr);
547
548         /*
549          * Set up object pages: they must have PG_slab set, to avoid freeing
550          * these as real pages.
551          *
552          * We also want to avoid inserting kfence_free() in the kfree()
553          * fast-path in SLUB, and therefore need to ensure kfree() correctly
554          * enters __slab_free() slow-path.
555          */
556         for (i = 0; i < KFENCE_POOL_SIZE / PAGE_SIZE; i++) {
557                 if (!i || (i % 2))
558                         continue;
559
560                 /* Verify we do not have a compound head page. */
561                 if (WARN_ON(compound_head(&pages[i]) != &pages[i]))
562                         goto err;
563
564                 __SetPageSlab(&pages[i]);
565         }
566
567         /*
568          * Protect the first 2 pages. The first page is mostly unnecessary, and
569          * merely serves as an extended guard page. However, adding one
570          * additional page in the beginning gives us an even number of pages,
571          * which simplifies the mapping of address to metadata index.
572          */
573         for (i = 0; i < 2; i++) {
574                 if (unlikely(!kfence_protect(addr)))
575                         goto err;
576
577                 addr += PAGE_SIZE;
578         }
579
580         for (i = 0; i < CONFIG_KFENCE_NUM_OBJECTS; i++) {
581                 struct kfence_metadata *meta = &kfence_metadata[i];
582
583                 /* Initialize metadata. */
584                 INIT_LIST_HEAD(&meta->list);
585                 raw_spin_lock_init(&meta->lock);
586                 meta->state = KFENCE_OBJECT_UNUSED;
587                 meta->addr = addr; /* Initialize for validation in metadata_to_pageaddr(). */
588                 list_add_tail(&meta->list, &kfence_freelist);
589
590                 /* Protect the right redzone. */
591                 if (unlikely(!kfence_protect(addr + PAGE_SIZE)))
592                         goto err;
593
594                 addr += 2 * PAGE_SIZE;
595         }
596
597         /*
598          * The pool is live and will never be deallocated from this point on.
599          * Remove the pool object from the kmemleak object tree, as it would
600          * otherwise overlap with allocations returned by kfence_alloc(), which
601          * are registered with kmemleak through the slab post-alloc hook.
602          */
603         kmemleak_free(__kfence_pool);
604
605         return true;
606
607 err:
608         /*
609          * Only release unprotected pages, and do not try to go back and change
610          * page attributes due to risk of failing to do so as well. If changing
611          * page attributes for some pages fails, it is very likely that it also
612          * fails for the first page, and therefore expect addr==__kfence_pool in
613          * most failure cases.
614          */
615         memblock_free_late(__pa(addr), KFENCE_POOL_SIZE - (addr - (unsigned long)__kfence_pool));
616         __kfence_pool = NULL;
617         return false;
618 }
619
620 /* === DebugFS Interface ==================================================== */
621
622 static int stats_show(struct seq_file *seq, void *v)
623 {
624         int i;
625
626         seq_printf(seq, "enabled: %i\n", READ_ONCE(kfence_enabled));
627         for (i = 0; i < KFENCE_COUNTER_COUNT; i++)
628                 seq_printf(seq, "%s: %ld\n", counter_names[i], atomic_long_read(&counters[i]));
629
630         return 0;
631 }
632 DEFINE_SHOW_ATTRIBUTE(stats);
633
634 /*
635  * debugfs seq_file operations for /sys/kernel/debug/kfence/objects.
636  * start_object() and next_object() return the object index + 1, because NULL is used
637  * to stop iteration.
638  */
639 static void *start_object(struct seq_file *seq, loff_t *pos)
640 {
641         if (*pos < CONFIG_KFENCE_NUM_OBJECTS)
642                 return (void *)((long)*pos + 1);
643         return NULL;
644 }
645
646 static void stop_object(struct seq_file *seq, void *v)
647 {
648 }
649
650 static void *next_object(struct seq_file *seq, void *v, loff_t *pos)
651 {
652         ++*pos;
653         if (*pos < CONFIG_KFENCE_NUM_OBJECTS)
654                 return (void *)((long)*pos + 1);
655         return NULL;
656 }
657
658 static int show_object(struct seq_file *seq, void *v)
659 {
660         struct kfence_metadata *meta = &kfence_metadata[(long)v - 1];
661         unsigned long flags;
662
663         raw_spin_lock_irqsave(&meta->lock, flags);
664         kfence_print_object(seq, meta);
665         raw_spin_unlock_irqrestore(&meta->lock, flags);
666         seq_puts(seq, "---------------------------------\n");
667
668         return 0;
669 }
670
671 static const struct seq_operations object_seqops = {
672         .start = start_object,
673         .next = next_object,
674         .stop = stop_object,
675         .show = show_object,
676 };
677
678 static int open_objects(struct inode *inode, struct file *file)
679 {
680         return seq_open(file, &object_seqops);
681 }
682
683 static const struct file_operations objects_fops = {
684         .open = open_objects,
685         .read = seq_read,
686         .llseek = seq_lseek,
687         .release = seq_release,
688 };
689
690 static int __init kfence_debugfs_init(void)
691 {
692         struct dentry *kfence_dir = debugfs_create_dir("kfence", NULL);
693
694         debugfs_create_file("stats", 0444, kfence_dir, NULL, &stats_fops);
695         debugfs_create_file("objects", 0400, kfence_dir, NULL, &objects_fops);
696         return 0;
697 }
698
699 late_initcall(kfence_debugfs_init);
700
701 /* === Allocation Gate Timer ================================================ */
702
703 #ifdef CONFIG_KFENCE_STATIC_KEYS
704 /* Wait queue to wake up allocation-gate timer task. */
705 static DECLARE_WAIT_QUEUE_HEAD(allocation_wait);
706
707 static void wake_up_kfence_timer(struct irq_work *work)
708 {
709         wake_up(&allocation_wait);
710 }
711 static DEFINE_IRQ_WORK(wake_up_kfence_timer_work, wake_up_kfence_timer);
712 #endif
713
714 /*
715  * Set up delayed work, which will enable and disable the static key. We need to
716  * use a work queue (rather than a simple timer), since enabling and disabling a
717  * static key cannot be done from an interrupt.
718  *
719  * Note: Toggling a static branch currently causes IPIs, and here we'll end up
720  * with a total of 2 IPIs to all CPUs. If this ends up a problem in future (with
721  * more aggressive sampling intervals), we could get away with a variant that
722  * avoids IPIs, at the cost of not immediately capturing allocations if the
723  * instructions remain cached.
724  */
725 static struct delayed_work kfence_timer;
726 static void toggle_allocation_gate(struct work_struct *work)
727 {
728         if (!READ_ONCE(kfence_enabled))
729                 return;
730
731         atomic_set(&kfence_allocation_gate, 0);
732 #ifdef CONFIG_KFENCE_STATIC_KEYS
733         /* Enable static key, and await allocation to happen. */
734         static_branch_enable(&kfence_allocation_key);
735
736         if (sysctl_hung_task_timeout_secs) {
737                 /*
738                  * During low activity with no allocations we might wait a
739                  * while; let's avoid the hung task warning.
740                  */
741                 wait_event_idle_timeout(allocation_wait, atomic_read(&kfence_allocation_gate),
742                                         sysctl_hung_task_timeout_secs * HZ / 2);
743         } else {
744                 wait_event_idle(allocation_wait, atomic_read(&kfence_allocation_gate));
745         }
746
747         /* Disable static key and reset timer. */
748         static_branch_disable(&kfence_allocation_key);
749 #endif
750         queue_delayed_work(system_unbound_wq, &kfence_timer,
751                            msecs_to_jiffies(kfence_sample_interval));
752 }
753 static DECLARE_DELAYED_WORK(kfence_timer, toggle_allocation_gate);
754
755 /* === Public interface ===================================================== */
756
757 void __init kfence_alloc_pool(void)
758 {
759         if (!kfence_sample_interval)
760                 return;
761
762         __kfence_pool = memblock_alloc(KFENCE_POOL_SIZE, PAGE_SIZE);
763
764         if (!__kfence_pool)
765                 pr_err("failed to allocate pool\n");
766 }
767
768 void __init kfence_init(void)
769 {
770         /* Setting kfence_sample_interval to 0 on boot disables KFENCE. */
771         if (!kfence_sample_interval)
772                 return;
773
774         stack_hash_seed = (u32)random_get_entropy();
775         if (!kfence_init_pool()) {
776                 pr_err("%s failed\n", __func__);
777                 return;
778         }
779
780         if (!IS_ENABLED(CONFIG_KFENCE_STATIC_KEYS))
781                 static_branch_enable(&kfence_allocation_key);
782         WRITE_ONCE(kfence_enabled, true);
783         queue_delayed_work(system_unbound_wq, &kfence_timer, 0);
784         pr_info("initialized - using %lu bytes for %d objects at 0x%p-0x%p\n", KFENCE_POOL_SIZE,
785                 CONFIG_KFENCE_NUM_OBJECTS, (void *)__kfence_pool,
786                 (void *)(__kfence_pool + KFENCE_POOL_SIZE));
787 }
788
789 void kfence_shutdown_cache(struct kmem_cache *s)
790 {
791         unsigned long flags;
792         struct kfence_metadata *meta;
793         int i;
794
795         for (i = 0; i < CONFIG_KFENCE_NUM_OBJECTS; i++) {
796                 bool in_use;
797
798                 meta = &kfence_metadata[i];
799
800                 /*
801                  * If we observe some inconsistent cache and state pair where we
802                  * should have returned false here, cache destruction is racing
803                  * with either kmem_cache_alloc() or kmem_cache_free(). Taking
804                  * the lock will not help, as different critical section
805                  * serialization will have the same outcome.
806                  */
807                 if (READ_ONCE(meta->cache) != s ||
808                     READ_ONCE(meta->state) != KFENCE_OBJECT_ALLOCATED)
809                         continue;
810
811                 raw_spin_lock_irqsave(&meta->lock, flags);
812                 in_use = meta->cache == s && meta->state == KFENCE_OBJECT_ALLOCATED;
813                 raw_spin_unlock_irqrestore(&meta->lock, flags);
814
815                 if (in_use) {
816                         /*
817                          * This cache still has allocations, and we should not
818                          * release them back into the freelist so they can still
819                          * safely be used and retain the kernel's default
820                          * behaviour of keeping the allocations alive (leak the
821                          * cache); however, they effectively become "zombie
822                          * allocations" as the KFENCE objects are the only ones
823                          * still in use and the owning cache is being destroyed.
824                          *
825                          * We mark them freed, so that any subsequent use shows
826                          * more useful error messages that will include stack
827                          * traces of the user of the object, the original
828                          * allocation, and caller to shutdown_cache().
829                          */
830                         kfence_guarded_free((void *)meta->addr, meta, /*zombie=*/true);
831                 }
832         }
833
834         for (i = 0; i < CONFIG_KFENCE_NUM_OBJECTS; i++) {
835                 meta = &kfence_metadata[i];
836
837                 /* See above. */
838                 if (READ_ONCE(meta->cache) != s || READ_ONCE(meta->state) != KFENCE_OBJECT_FREED)
839                         continue;
840
841                 raw_spin_lock_irqsave(&meta->lock, flags);
842                 if (meta->cache == s && meta->state == KFENCE_OBJECT_FREED)
843                         meta->cache = NULL;
844                 raw_spin_unlock_irqrestore(&meta->lock, flags);
845         }
846 }
847
848 void *__kfence_alloc(struct kmem_cache *s, size_t size, gfp_t flags)
849 {
850         unsigned long stack_entries[KFENCE_STACK_DEPTH];
851         size_t num_stack_entries;
852         u32 alloc_stack_hash;
853
854         /*
855          * Perform size check before switching kfence_allocation_gate, so that
856          * we don't disable KFENCE without making an allocation.
857          */
858         if (size > PAGE_SIZE) {
859                 atomic_long_inc(&counters[KFENCE_COUNTER_SKIP_INCOMPAT]);
860                 return NULL;
861         }
862
863         /*
864          * Skip allocations from non-default zones, including DMA. We cannot
865          * guarantee that pages in the KFENCE pool will have the requested
866          * properties (e.g. reside in DMAable memory).
867          */
868         if ((flags & GFP_ZONEMASK) ||
869             (s->flags & (SLAB_CACHE_DMA | SLAB_CACHE_DMA32))) {
870                 atomic_long_inc(&counters[KFENCE_COUNTER_SKIP_INCOMPAT]);
871                 return NULL;
872         }
873
874         if (atomic_inc_return(&kfence_allocation_gate) > 1)
875                 return NULL;
876 #ifdef CONFIG_KFENCE_STATIC_KEYS
877         /*
878          * waitqueue_active() is fully ordered after the update of
879          * kfence_allocation_gate per atomic_inc_return().
880          */
881         if (waitqueue_active(&allocation_wait)) {
882                 /*
883                  * Calling wake_up() here may deadlock when allocations happen
884                  * from within timer code. Use an irq_work to defer it.
885                  */
886                 irq_work_queue(&wake_up_kfence_timer_work);
887         }
888 #endif
889
890         if (!READ_ONCE(kfence_enabled))
891                 return NULL;
892
893         num_stack_entries = stack_trace_save(stack_entries, KFENCE_STACK_DEPTH, 0);
894
895         /*
896          * Do expensive check for coverage of allocation in slow-path after
897          * allocation_gate has already become non-zero, even though it might
898          * mean not making any allocation within a given sample interval.
899          *
900          * This ensures reasonable allocation coverage when the pool is almost
901          * full, including avoiding long-lived allocations of the same source
902          * filling up the pool (e.g. pagecache allocations).
903          */
904         alloc_stack_hash = get_alloc_stack_hash(stack_entries, num_stack_entries);
905         if (should_skip_covered() && alloc_covered_contains(alloc_stack_hash)) {
906                 atomic_long_inc(&counters[KFENCE_COUNTER_SKIP_COVERED]);
907                 return NULL;
908         }
909
910         return kfence_guarded_alloc(s, size, flags, stack_entries, num_stack_entries,
911                                     alloc_stack_hash);
912 }
913
914 size_t kfence_ksize(const void *addr)
915 {
916         const struct kfence_metadata *meta = addr_to_metadata((unsigned long)addr);
917
918         /*
919          * Read locklessly -- if there is a race with __kfence_alloc(), this is
920          * either a use-after-free or invalid access.
921          */
922         return meta ? meta->size : 0;
923 }
924
925 void *kfence_object_start(const void *addr)
926 {
927         const struct kfence_metadata *meta = addr_to_metadata((unsigned long)addr);
928
929         /*
930          * Read locklessly -- if there is a race with __kfence_alloc(), this is
931          * either a use-after-free or invalid access.
932          */
933         return meta ? (void *)meta->addr : NULL;
934 }
935
936 void __kfence_free(void *addr)
937 {
938         struct kfence_metadata *meta = addr_to_metadata((unsigned long)addr);
939
940         /*
941          * If the objects of the cache are SLAB_TYPESAFE_BY_RCU, defer freeing
942          * the object, as the object page may be recycled for other-typed
943          * objects once it has been freed. meta->cache may be NULL if the cache
944          * was destroyed.
945          */
946         if (unlikely(meta->cache && (meta->cache->flags & SLAB_TYPESAFE_BY_RCU)))
947                 call_rcu(&meta->rcu_head, rcu_guarded_free);
948         else
949                 kfence_guarded_free(addr, meta, false);
950 }
951
952 bool kfence_handle_page_fault(unsigned long addr, bool is_write, struct pt_regs *regs)
953 {
954         const int page_index = (addr - (unsigned long)__kfence_pool) / PAGE_SIZE;
955         struct kfence_metadata *to_report = NULL;
956         enum kfence_error_type error_type;
957         unsigned long flags;
958
959         if (!is_kfence_address((void *)addr))
960                 return false;
961
962         if (!READ_ONCE(kfence_enabled)) /* If disabled at runtime ... */
963                 return kfence_unprotect(addr); /* ... unprotect and proceed. */
964
965         atomic_long_inc(&counters[KFENCE_COUNTER_BUGS]);
966
967         if (page_index % 2) {
968                 /* This is a redzone, report a buffer overflow. */
969                 struct kfence_metadata *meta;
970                 int distance = 0;
971
972                 meta = addr_to_metadata(addr - PAGE_SIZE);
973                 if (meta && READ_ONCE(meta->state) == KFENCE_OBJECT_ALLOCATED) {
974                         to_report = meta;
975                         /* Data race ok; distance calculation approximate. */
976                         distance = addr - data_race(meta->addr + meta->size);
977                 }
978
979                 meta = addr_to_metadata(addr + PAGE_SIZE);
980                 if (meta && READ_ONCE(meta->state) == KFENCE_OBJECT_ALLOCATED) {
981                         /* Data race ok; distance calculation approximate. */
982                         if (!to_report || distance > data_race(meta->addr) - addr)
983                                 to_report = meta;
984                 }
985
986                 if (!to_report)
987                         goto out;
988
989                 raw_spin_lock_irqsave(&to_report->lock, flags);
990                 to_report->unprotected_page = addr;
991                 error_type = KFENCE_ERROR_OOB;
992
993                 /*
994                  * If the object was freed before we took the look we can still
995                  * report this as an OOB -- the report will simply show the
996                  * stacktrace of the free as well.
997                  */
998         } else {
999                 to_report = addr_to_metadata(addr);
1000                 if (!to_report)
1001                         goto out;
1002
1003                 raw_spin_lock_irqsave(&to_report->lock, flags);
1004                 error_type = KFENCE_ERROR_UAF;
1005                 /*
1006                  * We may race with __kfence_alloc(), and it is possible that a
1007                  * freed object may be reallocated. We simply report this as a
1008                  * use-after-free, with the stack trace showing the place where
1009                  * the object was re-allocated.
1010                  */
1011         }
1012
1013 out:
1014         if (to_report) {
1015                 kfence_report_error(addr, is_write, regs, to_report, error_type);
1016                 raw_spin_unlock_irqrestore(&to_report->lock, flags);
1017         } else {
1018                 /* This may be a UAF or OOB access, but we can't be sure. */
1019                 kfence_report_error(addr, is_write, regs, NULL, KFENCE_ERROR_INVALID);
1020         }
1021
1022         return kfence_unprotect(addr); /* Unprotect and let access proceed. */
1023 }