Merge tag 'for-5.18/drivers-2022-03-18' of git://git.kernel.dk/linux-block
[linux-2.6-microblaze.git] / mm / kfence / core.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * KFENCE guarded object allocator and fault handling.
4  *
5  * Copyright (C) 2020, Google LLC.
6  */
7
8 #define pr_fmt(fmt) "kfence: " fmt
9
10 #include <linux/atomic.h>
11 #include <linux/bug.h>
12 #include <linux/debugfs.h>
13 #include <linux/hash.h>
14 #include <linux/irq_work.h>
15 #include <linux/jhash.h>
16 #include <linux/kcsan-checks.h>
17 #include <linux/kfence.h>
18 #include <linux/kmemleak.h>
19 #include <linux/list.h>
20 #include <linux/lockdep.h>
21 #include <linux/log2.h>
22 #include <linux/memblock.h>
23 #include <linux/moduleparam.h>
24 #include <linux/random.h>
25 #include <linux/rcupdate.h>
26 #include <linux/sched/clock.h>
27 #include <linux/sched/sysctl.h>
28 #include <linux/seq_file.h>
29 #include <linux/slab.h>
30 #include <linux/spinlock.h>
31 #include <linux/string.h>
32
33 #include <asm/kfence.h>
34
35 #include "kfence.h"
36
37 /* Disables KFENCE on the first warning assuming an irrecoverable error. */
38 #define KFENCE_WARN_ON(cond)                                                   \
39         ({                                                                     \
40                 const bool __cond = WARN_ON(cond);                             \
41                 if (unlikely(__cond))                                          \
42                         WRITE_ONCE(kfence_enabled, false);                     \
43                 __cond;                                                        \
44         })
45
46 /* === Data ================================================================= */
47
48 static bool kfence_enabled __read_mostly;
49
50 unsigned long kfence_sample_interval __read_mostly = CONFIG_KFENCE_SAMPLE_INTERVAL;
51 EXPORT_SYMBOL_GPL(kfence_sample_interval); /* Export for test modules. */
52
53 #ifdef MODULE_PARAM_PREFIX
54 #undef MODULE_PARAM_PREFIX
55 #endif
56 #define MODULE_PARAM_PREFIX "kfence."
57
58 static int param_set_sample_interval(const char *val, const struct kernel_param *kp)
59 {
60         unsigned long num;
61         int ret = kstrtoul(val, 0, &num);
62
63         if (ret < 0)
64                 return ret;
65
66         if (!num) /* Using 0 to indicate KFENCE is disabled. */
67                 WRITE_ONCE(kfence_enabled, false);
68         else if (!READ_ONCE(kfence_enabled) && system_state != SYSTEM_BOOTING)
69                 return -EINVAL; /* Cannot (re-)enable KFENCE on-the-fly. */
70
71         *((unsigned long *)kp->arg) = num;
72         return 0;
73 }
74
75 static int param_get_sample_interval(char *buffer, const struct kernel_param *kp)
76 {
77         if (!READ_ONCE(kfence_enabled))
78                 return sprintf(buffer, "0\n");
79
80         return param_get_ulong(buffer, kp);
81 }
82
83 static const struct kernel_param_ops sample_interval_param_ops = {
84         .set = param_set_sample_interval,
85         .get = param_get_sample_interval,
86 };
87 module_param_cb(sample_interval, &sample_interval_param_ops, &kfence_sample_interval, 0600);
88
89 /* Pool usage% threshold when currently covered allocations are skipped. */
90 static unsigned long kfence_skip_covered_thresh __read_mostly = 75;
91 module_param_named(skip_covered_thresh, kfence_skip_covered_thresh, ulong, 0644);
92
93 /* The pool of pages used for guard pages and objects. */
94 char *__kfence_pool __ro_after_init;
95 EXPORT_SYMBOL(__kfence_pool); /* Export for test modules. */
96
97 /*
98  * Per-object metadata, with one-to-one mapping of object metadata to
99  * backing pages (in __kfence_pool).
100  */
101 static_assert(CONFIG_KFENCE_NUM_OBJECTS > 0);
102 struct kfence_metadata kfence_metadata[CONFIG_KFENCE_NUM_OBJECTS];
103
104 /* Freelist with available objects. */
105 static struct list_head kfence_freelist = LIST_HEAD_INIT(kfence_freelist);
106 static DEFINE_RAW_SPINLOCK(kfence_freelist_lock); /* Lock protecting freelist. */
107
108 /*
109  * The static key to set up a KFENCE allocation; or if static keys are not used
110  * to gate allocations, to avoid a load and compare if KFENCE is disabled.
111  */
112 DEFINE_STATIC_KEY_FALSE(kfence_allocation_key);
113
114 /* Gates the allocation, ensuring only one succeeds in a given period. */
115 atomic_t kfence_allocation_gate = ATOMIC_INIT(1);
116
117 /*
118  * A Counting Bloom filter of allocation coverage: limits currently covered
119  * allocations of the same source filling up the pool.
120  *
121  * Assuming a range of 15%-85% unique allocations in the pool at any point in
122  * time, the below parameters provide a probablity of 0.02-0.33 for false
123  * positive hits respectively:
124  *
125  *      P(alloc_traces) = (1 - e^(-HNUM * (alloc_traces / SIZE)) ^ HNUM
126  */
127 #define ALLOC_COVERED_HNUM      2
128 #define ALLOC_COVERED_ORDER     (const_ilog2(CONFIG_KFENCE_NUM_OBJECTS) + 2)
129 #define ALLOC_COVERED_SIZE      (1 << ALLOC_COVERED_ORDER)
130 #define ALLOC_COVERED_HNEXT(h)  hash_32(h, ALLOC_COVERED_ORDER)
131 #define ALLOC_COVERED_MASK      (ALLOC_COVERED_SIZE - 1)
132 static atomic_t alloc_covered[ALLOC_COVERED_SIZE];
133
134 /* Stack depth used to determine uniqueness of an allocation. */
135 #define UNIQUE_ALLOC_STACK_DEPTH ((size_t)8)
136
137 /*
138  * Randomness for stack hashes, making the same collisions across reboots and
139  * different machines less likely.
140  */
141 static u32 stack_hash_seed __ro_after_init;
142
143 /* Statistics counters for debugfs. */
144 enum kfence_counter_id {
145         KFENCE_COUNTER_ALLOCATED,
146         KFENCE_COUNTER_ALLOCS,
147         KFENCE_COUNTER_FREES,
148         KFENCE_COUNTER_ZOMBIES,
149         KFENCE_COUNTER_BUGS,
150         KFENCE_COUNTER_SKIP_INCOMPAT,
151         KFENCE_COUNTER_SKIP_CAPACITY,
152         KFENCE_COUNTER_SKIP_COVERED,
153         KFENCE_COUNTER_COUNT,
154 };
155 static atomic_long_t counters[KFENCE_COUNTER_COUNT];
156 static const char *const counter_names[] = {
157         [KFENCE_COUNTER_ALLOCATED]      = "currently allocated",
158         [KFENCE_COUNTER_ALLOCS]         = "total allocations",
159         [KFENCE_COUNTER_FREES]          = "total frees",
160         [KFENCE_COUNTER_ZOMBIES]        = "zombie allocations",
161         [KFENCE_COUNTER_BUGS]           = "total bugs",
162         [KFENCE_COUNTER_SKIP_INCOMPAT]  = "skipped allocations (incompatible)",
163         [KFENCE_COUNTER_SKIP_CAPACITY]  = "skipped allocations (capacity)",
164         [KFENCE_COUNTER_SKIP_COVERED]   = "skipped allocations (covered)",
165 };
166 static_assert(ARRAY_SIZE(counter_names) == KFENCE_COUNTER_COUNT);
167
168 /* === Internals ============================================================ */
169
170 static inline bool should_skip_covered(void)
171 {
172         unsigned long thresh = (CONFIG_KFENCE_NUM_OBJECTS * kfence_skip_covered_thresh) / 100;
173
174         return atomic_long_read(&counters[KFENCE_COUNTER_ALLOCATED]) > thresh;
175 }
176
177 static u32 get_alloc_stack_hash(unsigned long *stack_entries, size_t num_entries)
178 {
179         num_entries = min(num_entries, UNIQUE_ALLOC_STACK_DEPTH);
180         num_entries = filter_irq_stacks(stack_entries, num_entries);
181         return jhash(stack_entries, num_entries * sizeof(stack_entries[0]), stack_hash_seed);
182 }
183
184 /*
185  * Adds (or subtracts) count @val for allocation stack trace hash
186  * @alloc_stack_hash from Counting Bloom filter.
187  */
188 static void alloc_covered_add(u32 alloc_stack_hash, int val)
189 {
190         int i;
191
192         for (i = 0; i < ALLOC_COVERED_HNUM; i++) {
193                 atomic_add(val, &alloc_covered[alloc_stack_hash & ALLOC_COVERED_MASK]);
194                 alloc_stack_hash = ALLOC_COVERED_HNEXT(alloc_stack_hash);
195         }
196 }
197
198 /*
199  * Returns true if the allocation stack trace hash @alloc_stack_hash is
200  * currently contained (non-zero count) in Counting Bloom filter.
201  */
202 static bool alloc_covered_contains(u32 alloc_stack_hash)
203 {
204         int i;
205
206         for (i = 0; i < ALLOC_COVERED_HNUM; i++) {
207                 if (!atomic_read(&alloc_covered[alloc_stack_hash & ALLOC_COVERED_MASK]))
208                         return false;
209                 alloc_stack_hash = ALLOC_COVERED_HNEXT(alloc_stack_hash);
210         }
211
212         return true;
213 }
214
215 static bool kfence_protect(unsigned long addr)
216 {
217         return !KFENCE_WARN_ON(!kfence_protect_page(ALIGN_DOWN(addr, PAGE_SIZE), true));
218 }
219
220 static bool kfence_unprotect(unsigned long addr)
221 {
222         return !KFENCE_WARN_ON(!kfence_protect_page(ALIGN_DOWN(addr, PAGE_SIZE), false));
223 }
224
225 static inline struct kfence_metadata *addr_to_metadata(unsigned long addr)
226 {
227         long index;
228
229         /* The checks do not affect performance; only called from slow-paths. */
230
231         if (!is_kfence_address((void *)addr))
232                 return NULL;
233
234         /*
235          * May be an invalid index if called with an address at the edge of
236          * __kfence_pool, in which case we would report an "invalid access"
237          * error.
238          */
239         index = (addr - (unsigned long)__kfence_pool) / (PAGE_SIZE * 2) - 1;
240         if (index < 0 || index >= CONFIG_KFENCE_NUM_OBJECTS)
241                 return NULL;
242
243         return &kfence_metadata[index];
244 }
245
246 static inline unsigned long metadata_to_pageaddr(const struct kfence_metadata *meta)
247 {
248         unsigned long offset = (meta - kfence_metadata + 1) * PAGE_SIZE * 2;
249         unsigned long pageaddr = (unsigned long)&__kfence_pool[offset];
250
251         /* The checks do not affect performance; only called from slow-paths. */
252
253         /* Only call with a pointer into kfence_metadata. */
254         if (KFENCE_WARN_ON(meta < kfence_metadata ||
255                            meta >= kfence_metadata + CONFIG_KFENCE_NUM_OBJECTS))
256                 return 0;
257
258         /*
259          * This metadata object only ever maps to 1 page; verify that the stored
260          * address is in the expected range.
261          */
262         if (KFENCE_WARN_ON(ALIGN_DOWN(meta->addr, PAGE_SIZE) != pageaddr))
263                 return 0;
264
265         return pageaddr;
266 }
267
268 /*
269  * Update the object's metadata state, including updating the alloc/free stacks
270  * depending on the state transition.
271  */
272 static noinline void
273 metadata_update_state(struct kfence_metadata *meta, enum kfence_object_state next,
274                       unsigned long *stack_entries, size_t num_stack_entries)
275 {
276         struct kfence_track *track =
277                 next == KFENCE_OBJECT_FREED ? &meta->free_track : &meta->alloc_track;
278
279         lockdep_assert_held(&meta->lock);
280
281         if (stack_entries) {
282                 memcpy(track->stack_entries, stack_entries,
283                        num_stack_entries * sizeof(stack_entries[0]));
284         } else {
285                 /*
286                  * Skip over 1 (this) functions; noinline ensures we do not
287                  * accidentally skip over the caller by never inlining.
288                  */
289                 num_stack_entries = stack_trace_save(track->stack_entries, KFENCE_STACK_DEPTH, 1);
290         }
291         track->num_stack_entries = num_stack_entries;
292         track->pid = task_pid_nr(current);
293         track->cpu = raw_smp_processor_id();
294         track->ts_nsec = local_clock(); /* Same source as printk timestamps. */
295
296         /*
297          * Pairs with READ_ONCE() in
298          *      kfence_shutdown_cache(),
299          *      kfence_handle_page_fault().
300          */
301         WRITE_ONCE(meta->state, next);
302 }
303
304 /* Write canary byte to @addr. */
305 static inline bool set_canary_byte(u8 *addr)
306 {
307         *addr = KFENCE_CANARY_PATTERN(addr);
308         return true;
309 }
310
311 /* Check canary byte at @addr. */
312 static inline bool check_canary_byte(u8 *addr)
313 {
314         struct kfence_metadata *meta;
315         unsigned long flags;
316
317         if (likely(*addr == KFENCE_CANARY_PATTERN(addr)))
318                 return true;
319
320         atomic_long_inc(&counters[KFENCE_COUNTER_BUGS]);
321
322         meta = addr_to_metadata((unsigned long)addr);
323         raw_spin_lock_irqsave(&meta->lock, flags);
324         kfence_report_error((unsigned long)addr, false, NULL, meta, KFENCE_ERROR_CORRUPTION);
325         raw_spin_unlock_irqrestore(&meta->lock, flags);
326
327         return false;
328 }
329
330 /* __always_inline this to ensure we won't do an indirect call to fn. */
331 static __always_inline void for_each_canary(const struct kfence_metadata *meta, bool (*fn)(u8 *))
332 {
333         const unsigned long pageaddr = ALIGN_DOWN(meta->addr, PAGE_SIZE);
334         unsigned long addr;
335
336         /*
337          * We'll iterate over each canary byte per-side until fn() returns
338          * false. However, we'll still iterate over the canary bytes to the
339          * right of the object even if there was an error in the canary bytes to
340          * the left of the object. Specifically, if check_canary_byte()
341          * generates an error, showing both sides might give more clues as to
342          * what the error is about when displaying which bytes were corrupted.
343          */
344
345         /* Apply to left of object. */
346         for (addr = pageaddr; addr < meta->addr; addr++) {
347                 if (!fn((u8 *)addr))
348                         break;
349         }
350
351         /* Apply to right of object. */
352         for (addr = meta->addr + meta->size; addr < pageaddr + PAGE_SIZE; addr++) {
353                 if (!fn((u8 *)addr))
354                         break;
355         }
356 }
357
358 static void *kfence_guarded_alloc(struct kmem_cache *cache, size_t size, gfp_t gfp,
359                                   unsigned long *stack_entries, size_t num_stack_entries,
360                                   u32 alloc_stack_hash)
361 {
362         struct kfence_metadata *meta = NULL;
363         unsigned long flags;
364         struct slab *slab;
365         void *addr;
366
367         /* Try to obtain a free object. */
368         raw_spin_lock_irqsave(&kfence_freelist_lock, flags);
369         if (!list_empty(&kfence_freelist)) {
370                 meta = list_entry(kfence_freelist.next, struct kfence_metadata, list);
371                 list_del_init(&meta->list);
372         }
373         raw_spin_unlock_irqrestore(&kfence_freelist_lock, flags);
374         if (!meta) {
375                 atomic_long_inc(&counters[KFENCE_COUNTER_SKIP_CAPACITY]);
376                 return NULL;
377         }
378
379         if (unlikely(!raw_spin_trylock_irqsave(&meta->lock, flags))) {
380                 /*
381                  * This is extremely unlikely -- we are reporting on a
382                  * use-after-free, which locked meta->lock, and the reporting
383                  * code via printk calls kmalloc() which ends up in
384                  * kfence_alloc() and tries to grab the same object that we're
385                  * reporting on. While it has never been observed, lockdep does
386                  * report that there is a possibility of deadlock. Fix it by
387                  * using trylock and bailing out gracefully.
388                  */
389                 raw_spin_lock_irqsave(&kfence_freelist_lock, flags);
390                 /* Put the object back on the freelist. */
391                 list_add_tail(&meta->list, &kfence_freelist);
392                 raw_spin_unlock_irqrestore(&kfence_freelist_lock, flags);
393
394                 return NULL;
395         }
396
397         meta->addr = metadata_to_pageaddr(meta);
398         /* Unprotect if we're reusing this page. */
399         if (meta->state == KFENCE_OBJECT_FREED)
400                 kfence_unprotect(meta->addr);
401
402         /*
403          * Note: for allocations made before RNG initialization, will always
404          * return zero. We still benefit from enabling KFENCE as early as
405          * possible, even when the RNG is not yet available, as this will allow
406          * KFENCE to detect bugs due to earlier allocations. The only downside
407          * is that the out-of-bounds accesses detected are deterministic for
408          * such allocations.
409          */
410         if (prandom_u32_max(2)) {
411                 /* Allocate on the "right" side, re-calculate address. */
412                 meta->addr += PAGE_SIZE - size;
413                 meta->addr = ALIGN_DOWN(meta->addr, cache->align);
414         }
415
416         addr = (void *)meta->addr;
417
418         /* Update remaining metadata. */
419         metadata_update_state(meta, KFENCE_OBJECT_ALLOCATED, stack_entries, num_stack_entries);
420         /* Pairs with READ_ONCE() in kfence_shutdown_cache(). */
421         WRITE_ONCE(meta->cache, cache);
422         meta->size = size;
423         meta->alloc_stack_hash = alloc_stack_hash;
424         raw_spin_unlock_irqrestore(&meta->lock, flags);
425
426         alloc_covered_add(alloc_stack_hash, 1);
427
428         /* Set required slab fields. */
429         slab = virt_to_slab((void *)meta->addr);
430         slab->slab_cache = cache;
431 #if defined(CONFIG_SLUB)
432         slab->objects = 1;
433 #elif defined(CONFIG_SLAB)
434         slab->s_mem = addr;
435 #endif
436
437         /* Memory initialization. */
438         for_each_canary(meta, set_canary_byte);
439
440         /*
441          * We check slab_want_init_on_alloc() ourselves, rather than letting
442          * SL*B do the initialization, as otherwise we might overwrite KFENCE's
443          * redzone.
444          */
445         if (unlikely(slab_want_init_on_alloc(gfp, cache)))
446                 memzero_explicit(addr, size);
447         if (cache->ctor)
448                 cache->ctor(addr);
449
450         if (CONFIG_KFENCE_STRESS_TEST_FAULTS && !prandom_u32_max(CONFIG_KFENCE_STRESS_TEST_FAULTS))
451                 kfence_protect(meta->addr); /* Random "faults" by protecting the object. */
452
453         atomic_long_inc(&counters[KFENCE_COUNTER_ALLOCATED]);
454         atomic_long_inc(&counters[KFENCE_COUNTER_ALLOCS]);
455
456         return addr;
457 }
458
459 static void kfence_guarded_free(void *addr, struct kfence_metadata *meta, bool zombie)
460 {
461         struct kcsan_scoped_access assert_page_exclusive;
462         unsigned long flags;
463         bool init;
464
465         raw_spin_lock_irqsave(&meta->lock, flags);
466
467         if (meta->state != KFENCE_OBJECT_ALLOCATED || meta->addr != (unsigned long)addr) {
468                 /* Invalid or double-free, bail out. */
469                 atomic_long_inc(&counters[KFENCE_COUNTER_BUGS]);
470                 kfence_report_error((unsigned long)addr, false, NULL, meta,
471                                     KFENCE_ERROR_INVALID_FREE);
472                 raw_spin_unlock_irqrestore(&meta->lock, flags);
473                 return;
474         }
475
476         /* Detect racy use-after-free, or incorrect reallocation of this page by KFENCE. */
477         kcsan_begin_scoped_access((void *)ALIGN_DOWN((unsigned long)addr, PAGE_SIZE), PAGE_SIZE,
478                                   KCSAN_ACCESS_SCOPED | KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ASSERT,
479                                   &assert_page_exclusive);
480
481         if (CONFIG_KFENCE_STRESS_TEST_FAULTS)
482                 kfence_unprotect((unsigned long)addr); /* To check canary bytes. */
483
484         /* Restore page protection if there was an OOB access. */
485         if (meta->unprotected_page) {
486                 memzero_explicit((void *)ALIGN_DOWN(meta->unprotected_page, PAGE_SIZE), PAGE_SIZE);
487                 kfence_protect(meta->unprotected_page);
488                 meta->unprotected_page = 0;
489         }
490
491         /* Mark the object as freed. */
492         metadata_update_state(meta, KFENCE_OBJECT_FREED, NULL, 0);
493         init = slab_want_init_on_free(meta->cache);
494         raw_spin_unlock_irqrestore(&meta->lock, flags);
495
496         alloc_covered_add(meta->alloc_stack_hash, -1);
497
498         /* Check canary bytes for memory corruption. */
499         for_each_canary(meta, check_canary_byte);
500
501         /*
502          * Clear memory if init-on-free is set. While we protect the page, the
503          * data is still there, and after a use-after-free is detected, we
504          * unprotect the page, so the data is still accessible.
505          */
506         if (!zombie && unlikely(init))
507                 memzero_explicit(addr, meta->size);
508
509         /* Protect to detect use-after-frees. */
510         kfence_protect((unsigned long)addr);
511
512         kcsan_end_scoped_access(&assert_page_exclusive);
513         if (!zombie) {
514                 /* Add it to the tail of the freelist for reuse. */
515                 raw_spin_lock_irqsave(&kfence_freelist_lock, flags);
516                 KFENCE_WARN_ON(!list_empty(&meta->list));
517                 list_add_tail(&meta->list, &kfence_freelist);
518                 raw_spin_unlock_irqrestore(&kfence_freelist_lock, flags);
519
520                 atomic_long_dec(&counters[KFENCE_COUNTER_ALLOCATED]);
521                 atomic_long_inc(&counters[KFENCE_COUNTER_FREES]);
522         } else {
523                 /* See kfence_shutdown_cache(). */
524                 atomic_long_inc(&counters[KFENCE_COUNTER_ZOMBIES]);
525         }
526 }
527
528 static void rcu_guarded_free(struct rcu_head *h)
529 {
530         struct kfence_metadata *meta = container_of(h, struct kfence_metadata, rcu_head);
531
532         kfence_guarded_free((void *)meta->addr, meta, false);
533 }
534
535 static bool __init kfence_init_pool(void)
536 {
537         unsigned long addr = (unsigned long)__kfence_pool;
538         struct page *pages;
539         int i;
540
541         if (!__kfence_pool)
542                 return false;
543
544         if (!arch_kfence_init_pool())
545                 goto err;
546
547         pages = virt_to_page(addr);
548
549         /*
550          * Set up object pages: they must have PG_slab set, to avoid freeing
551          * these as real pages.
552          *
553          * We also want to avoid inserting kfence_free() in the kfree()
554          * fast-path in SLUB, and therefore need to ensure kfree() correctly
555          * enters __slab_free() slow-path.
556          */
557         for (i = 0; i < KFENCE_POOL_SIZE / PAGE_SIZE; i++) {
558                 if (!i || (i % 2))
559                         continue;
560
561                 /* Verify we do not have a compound head page. */
562                 if (WARN_ON(compound_head(&pages[i]) != &pages[i]))
563                         goto err;
564
565                 __SetPageSlab(&pages[i]);
566         }
567
568         /*
569          * Protect the first 2 pages. The first page is mostly unnecessary, and
570          * merely serves as an extended guard page. However, adding one
571          * additional page in the beginning gives us an even number of pages,
572          * which simplifies the mapping of address to metadata index.
573          */
574         for (i = 0; i < 2; i++) {
575                 if (unlikely(!kfence_protect(addr)))
576                         goto err;
577
578                 addr += PAGE_SIZE;
579         }
580
581         for (i = 0; i < CONFIG_KFENCE_NUM_OBJECTS; i++) {
582                 struct kfence_metadata *meta = &kfence_metadata[i];
583
584                 /* Initialize metadata. */
585                 INIT_LIST_HEAD(&meta->list);
586                 raw_spin_lock_init(&meta->lock);
587                 meta->state = KFENCE_OBJECT_UNUSED;
588                 meta->addr = addr; /* Initialize for validation in metadata_to_pageaddr(). */
589                 list_add_tail(&meta->list, &kfence_freelist);
590
591                 /* Protect the right redzone. */
592                 if (unlikely(!kfence_protect(addr + PAGE_SIZE)))
593                         goto err;
594
595                 addr += 2 * PAGE_SIZE;
596         }
597
598         /*
599          * The pool is live and will never be deallocated from this point on.
600          * Remove the pool object from the kmemleak object tree, as it would
601          * otherwise overlap with allocations returned by kfence_alloc(), which
602          * are registered with kmemleak through the slab post-alloc hook.
603          */
604         kmemleak_free(__kfence_pool);
605
606         return true;
607
608 err:
609         /*
610          * Only release unprotected pages, and do not try to go back and change
611          * page attributes due to risk of failing to do so as well. If changing
612          * page attributes for some pages fails, it is very likely that it also
613          * fails for the first page, and therefore expect addr==__kfence_pool in
614          * most failure cases.
615          */
616         memblock_free_late(__pa(addr), KFENCE_POOL_SIZE - (addr - (unsigned long)__kfence_pool));
617         __kfence_pool = NULL;
618         return false;
619 }
620
621 /* === DebugFS Interface ==================================================== */
622
623 static int stats_show(struct seq_file *seq, void *v)
624 {
625         int i;
626
627         seq_printf(seq, "enabled: %i\n", READ_ONCE(kfence_enabled));
628         for (i = 0; i < KFENCE_COUNTER_COUNT; i++)
629                 seq_printf(seq, "%s: %ld\n", counter_names[i], atomic_long_read(&counters[i]));
630
631         return 0;
632 }
633 DEFINE_SHOW_ATTRIBUTE(stats);
634
635 /*
636  * debugfs seq_file operations for /sys/kernel/debug/kfence/objects.
637  * start_object() and next_object() return the object index + 1, because NULL is used
638  * to stop iteration.
639  */
640 static void *start_object(struct seq_file *seq, loff_t *pos)
641 {
642         if (*pos < CONFIG_KFENCE_NUM_OBJECTS)
643                 return (void *)((long)*pos + 1);
644         return NULL;
645 }
646
647 static void stop_object(struct seq_file *seq, void *v)
648 {
649 }
650
651 static void *next_object(struct seq_file *seq, void *v, loff_t *pos)
652 {
653         ++*pos;
654         if (*pos < CONFIG_KFENCE_NUM_OBJECTS)
655                 return (void *)((long)*pos + 1);
656         return NULL;
657 }
658
659 static int show_object(struct seq_file *seq, void *v)
660 {
661         struct kfence_metadata *meta = &kfence_metadata[(long)v - 1];
662         unsigned long flags;
663
664         raw_spin_lock_irqsave(&meta->lock, flags);
665         kfence_print_object(seq, meta);
666         raw_spin_unlock_irqrestore(&meta->lock, flags);
667         seq_puts(seq, "---------------------------------\n");
668
669         return 0;
670 }
671
672 static const struct seq_operations object_seqops = {
673         .start = start_object,
674         .next = next_object,
675         .stop = stop_object,
676         .show = show_object,
677 };
678
679 static int open_objects(struct inode *inode, struct file *file)
680 {
681         return seq_open(file, &object_seqops);
682 }
683
684 static const struct file_operations objects_fops = {
685         .open = open_objects,
686         .read = seq_read,
687         .llseek = seq_lseek,
688         .release = seq_release,
689 };
690
691 static int __init kfence_debugfs_init(void)
692 {
693         struct dentry *kfence_dir = debugfs_create_dir("kfence", NULL);
694
695         debugfs_create_file("stats", 0444, kfence_dir, NULL, &stats_fops);
696         debugfs_create_file("objects", 0400, kfence_dir, NULL, &objects_fops);
697         return 0;
698 }
699
700 late_initcall(kfence_debugfs_init);
701
702 /* === Allocation Gate Timer ================================================ */
703
704 #ifdef CONFIG_KFENCE_STATIC_KEYS
705 /* Wait queue to wake up allocation-gate timer task. */
706 static DECLARE_WAIT_QUEUE_HEAD(allocation_wait);
707
708 static void wake_up_kfence_timer(struct irq_work *work)
709 {
710         wake_up(&allocation_wait);
711 }
712 static DEFINE_IRQ_WORK(wake_up_kfence_timer_work, wake_up_kfence_timer);
713 #endif
714
715 /*
716  * Set up delayed work, which will enable and disable the static key. We need to
717  * use a work queue (rather than a simple timer), since enabling and disabling a
718  * static key cannot be done from an interrupt.
719  *
720  * Note: Toggling a static branch currently causes IPIs, and here we'll end up
721  * with a total of 2 IPIs to all CPUs. If this ends up a problem in future (with
722  * more aggressive sampling intervals), we could get away with a variant that
723  * avoids IPIs, at the cost of not immediately capturing allocations if the
724  * instructions remain cached.
725  */
726 static struct delayed_work kfence_timer;
727 static void toggle_allocation_gate(struct work_struct *work)
728 {
729         if (!READ_ONCE(kfence_enabled))
730                 return;
731
732         atomic_set(&kfence_allocation_gate, 0);
733 #ifdef CONFIG_KFENCE_STATIC_KEYS
734         /* Enable static key, and await allocation to happen. */
735         static_branch_enable(&kfence_allocation_key);
736
737         if (sysctl_hung_task_timeout_secs) {
738                 /*
739                  * During low activity with no allocations we might wait a
740                  * while; let's avoid the hung task warning.
741                  */
742                 wait_event_idle_timeout(allocation_wait, atomic_read(&kfence_allocation_gate),
743                                         sysctl_hung_task_timeout_secs * HZ / 2);
744         } else {
745                 wait_event_idle(allocation_wait, atomic_read(&kfence_allocation_gate));
746         }
747
748         /* Disable static key and reset timer. */
749         static_branch_disable(&kfence_allocation_key);
750 #endif
751         queue_delayed_work(system_unbound_wq, &kfence_timer,
752                            msecs_to_jiffies(kfence_sample_interval));
753 }
754 static DECLARE_DELAYED_WORK(kfence_timer, toggle_allocation_gate);
755
756 /* === Public interface ===================================================== */
757
758 void __init kfence_alloc_pool(void)
759 {
760         if (!kfence_sample_interval)
761                 return;
762
763         __kfence_pool = memblock_alloc(KFENCE_POOL_SIZE, PAGE_SIZE);
764
765         if (!__kfence_pool)
766                 pr_err("failed to allocate pool\n");
767 }
768
769 void __init kfence_init(void)
770 {
771         /* Setting kfence_sample_interval to 0 on boot disables KFENCE. */
772         if (!kfence_sample_interval)
773                 return;
774
775         stack_hash_seed = (u32)random_get_entropy();
776         if (!kfence_init_pool()) {
777                 pr_err("%s failed\n", __func__);
778                 return;
779         }
780
781         if (!IS_ENABLED(CONFIG_KFENCE_STATIC_KEYS))
782                 static_branch_enable(&kfence_allocation_key);
783         WRITE_ONCE(kfence_enabled, true);
784         queue_delayed_work(system_unbound_wq, &kfence_timer, 0);
785         pr_info("initialized - using %lu bytes for %d objects at 0x%p-0x%p\n", KFENCE_POOL_SIZE,
786                 CONFIG_KFENCE_NUM_OBJECTS, (void *)__kfence_pool,
787                 (void *)(__kfence_pool + KFENCE_POOL_SIZE));
788 }
789
790 void kfence_shutdown_cache(struct kmem_cache *s)
791 {
792         unsigned long flags;
793         struct kfence_metadata *meta;
794         int i;
795
796         for (i = 0; i < CONFIG_KFENCE_NUM_OBJECTS; i++) {
797                 bool in_use;
798
799                 meta = &kfence_metadata[i];
800
801                 /*
802                  * If we observe some inconsistent cache and state pair where we
803                  * should have returned false here, cache destruction is racing
804                  * with either kmem_cache_alloc() or kmem_cache_free(). Taking
805                  * the lock will not help, as different critical section
806                  * serialization will have the same outcome.
807                  */
808                 if (READ_ONCE(meta->cache) != s ||
809                     READ_ONCE(meta->state) != KFENCE_OBJECT_ALLOCATED)
810                         continue;
811
812                 raw_spin_lock_irqsave(&meta->lock, flags);
813                 in_use = meta->cache == s && meta->state == KFENCE_OBJECT_ALLOCATED;
814                 raw_spin_unlock_irqrestore(&meta->lock, flags);
815
816                 if (in_use) {
817                         /*
818                          * This cache still has allocations, and we should not
819                          * release them back into the freelist so they can still
820                          * safely be used and retain the kernel's default
821                          * behaviour of keeping the allocations alive (leak the
822                          * cache); however, they effectively become "zombie
823                          * allocations" as the KFENCE objects are the only ones
824                          * still in use and the owning cache is being destroyed.
825                          *
826                          * We mark them freed, so that any subsequent use shows
827                          * more useful error messages that will include stack
828                          * traces of the user of the object, the original
829                          * allocation, and caller to shutdown_cache().
830                          */
831                         kfence_guarded_free((void *)meta->addr, meta, /*zombie=*/true);
832                 }
833         }
834
835         for (i = 0; i < CONFIG_KFENCE_NUM_OBJECTS; i++) {
836                 meta = &kfence_metadata[i];
837
838                 /* See above. */
839                 if (READ_ONCE(meta->cache) != s || READ_ONCE(meta->state) != KFENCE_OBJECT_FREED)
840                         continue;
841
842                 raw_spin_lock_irqsave(&meta->lock, flags);
843                 if (meta->cache == s && meta->state == KFENCE_OBJECT_FREED)
844                         meta->cache = NULL;
845                 raw_spin_unlock_irqrestore(&meta->lock, flags);
846         }
847 }
848
849 void *__kfence_alloc(struct kmem_cache *s, size_t size, gfp_t flags)
850 {
851         unsigned long stack_entries[KFENCE_STACK_DEPTH];
852         size_t num_stack_entries;
853         u32 alloc_stack_hash;
854
855         /*
856          * Perform size check before switching kfence_allocation_gate, so that
857          * we don't disable KFENCE without making an allocation.
858          */
859         if (size > PAGE_SIZE) {
860                 atomic_long_inc(&counters[KFENCE_COUNTER_SKIP_INCOMPAT]);
861                 return NULL;
862         }
863
864         /*
865          * Skip allocations from non-default zones, including DMA. We cannot
866          * guarantee that pages in the KFENCE pool will have the requested
867          * properties (e.g. reside in DMAable memory).
868          */
869         if ((flags & GFP_ZONEMASK) ||
870             (s->flags & (SLAB_CACHE_DMA | SLAB_CACHE_DMA32))) {
871                 atomic_long_inc(&counters[KFENCE_COUNTER_SKIP_INCOMPAT]);
872                 return NULL;
873         }
874
875         if (atomic_inc_return(&kfence_allocation_gate) > 1)
876                 return NULL;
877 #ifdef CONFIG_KFENCE_STATIC_KEYS
878         /*
879          * waitqueue_active() is fully ordered after the update of
880          * kfence_allocation_gate per atomic_inc_return().
881          */
882         if (waitqueue_active(&allocation_wait)) {
883                 /*
884                  * Calling wake_up() here may deadlock when allocations happen
885                  * from within timer code. Use an irq_work to defer it.
886                  */
887                 irq_work_queue(&wake_up_kfence_timer_work);
888         }
889 #endif
890
891         if (!READ_ONCE(kfence_enabled))
892                 return NULL;
893
894         num_stack_entries = stack_trace_save(stack_entries, KFENCE_STACK_DEPTH, 0);
895
896         /*
897          * Do expensive check for coverage of allocation in slow-path after
898          * allocation_gate has already become non-zero, even though it might
899          * mean not making any allocation within a given sample interval.
900          *
901          * This ensures reasonable allocation coverage when the pool is almost
902          * full, including avoiding long-lived allocations of the same source
903          * filling up the pool (e.g. pagecache allocations).
904          */
905         alloc_stack_hash = get_alloc_stack_hash(stack_entries, num_stack_entries);
906         if (should_skip_covered() && alloc_covered_contains(alloc_stack_hash)) {
907                 atomic_long_inc(&counters[KFENCE_COUNTER_SKIP_COVERED]);
908                 return NULL;
909         }
910
911         return kfence_guarded_alloc(s, size, flags, stack_entries, num_stack_entries,
912                                     alloc_stack_hash);
913 }
914
915 size_t kfence_ksize(const void *addr)
916 {
917         const struct kfence_metadata *meta = addr_to_metadata((unsigned long)addr);
918
919         /*
920          * Read locklessly -- if there is a race with __kfence_alloc(), this is
921          * either a use-after-free or invalid access.
922          */
923         return meta ? meta->size : 0;
924 }
925
926 void *kfence_object_start(const void *addr)
927 {
928         const struct kfence_metadata *meta = addr_to_metadata((unsigned long)addr);
929
930         /*
931          * Read locklessly -- if there is a race with __kfence_alloc(), this is
932          * either a use-after-free or invalid access.
933          */
934         return meta ? (void *)meta->addr : NULL;
935 }
936
937 void __kfence_free(void *addr)
938 {
939         struct kfence_metadata *meta = addr_to_metadata((unsigned long)addr);
940
941         /*
942          * If the objects of the cache are SLAB_TYPESAFE_BY_RCU, defer freeing
943          * the object, as the object page may be recycled for other-typed
944          * objects once it has been freed. meta->cache may be NULL if the cache
945          * was destroyed.
946          */
947         if (unlikely(meta->cache && (meta->cache->flags & SLAB_TYPESAFE_BY_RCU)))
948                 call_rcu(&meta->rcu_head, rcu_guarded_free);
949         else
950                 kfence_guarded_free(addr, meta, false);
951 }
952
953 bool kfence_handle_page_fault(unsigned long addr, bool is_write, struct pt_regs *regs)
954 {
955         const int page_index = (addr - (unsigned long)__kfence_pool) / PAGE_SIZE;
956         struct kfence_metadata *to_report = NULL;
957         enum kfence_error_type error_type;
958         unsigned long flags;
959
960         if (!is_kfence_address((void *)addr))
961                 return false;
962
963         if (!READ_ONCE(kfence_enabled)) /* If disabled at runtime ... */
964                 return kfence_unprotect(addr); /* ... unprotect and proceed. */
965
966         atomic_long_inc(&counters[KFENCE_COUNTER_BUGS]);
967
968         if (page_index % 2) {
969                 /* This is a redzone, report a buffer overflow. */
970                 struct kfence_metadata *meta;
971                 int distance = 0;
972
973                 meta = addr_to_metadata(addr - PAGE_SIZE);
974                 if (meta && READ_ONCE(meta->state) == KFENCE_OBJECT_ALLOCATED) {
975                         to_report = meta;
976                         /* Data race ok; distance calculation approximate. */
977                         distance = addr - data_race(meta->addr + meta->size);
978                 }
979
980                 meta = addr_to_metadata(addr + PAGE_SIZE);
981                 if (meta && READ_ONCE(meta->state) == KFENCE_OBJECT_ALLOCATED) {
982                         /* Data race ok; distance calculation approximate. */
983                         if (!to_report || distance > data_race(meta->addr) - addr)
984                                 to_report = meta;
985                 }
986
987                 if (!to_report)
988                         goto out;
989
990                 raw_spin_lock_irqsave(&to_report->lock, flags);
991                 to_report->unprotected_page = addr;
992                 error_type = KFENCE_ERROR_OOB;
993
994                 /*
995                  * If the object was freed before we took the look we can still
996                  * report this as an OOB -- the report will simply show the
997                  * stacktrace of the free as well.
998                  */
999         } else {
1000                 to_report = addr_to_metadata(addr);
1001                 if (!to_report)
1002                         goto out;
1003
1004                 raw_spin_lock_irqsave(&to_report->lock, flags);
1005                 error_type = KFENCE_ERROR_UAF;
1006                 /*
1007                  * We may race with __kfence_alloc(), and it is possible that a
1008                  * freed object may be reallocated. We simply report this as a
1009                  * use-after-free, with the stack trace showing the place where
1010                  * the object was re-allocated.
1011                  */
1012         }
1013
1014 out:
1015         if (to_report) {
1016                 kfence_report_error(addr, is_write, regs, to_report, error_type);
1017                 raw_spin_unlock_irqrestore(&to_report->lock, flags);
1018         } else {
1019                 /* This may be a UAF or OOB access, but we can't be sure. */
1020                 kfence_report_error(addr, is_write, regs, NULL, KFENCE_ERROR_INVALID);
1021         }
1022
1023         return kfence_unprotect(addr); /* Unprotect and let access proceed. */
1024 }