61c76670a7a9e56d73575443e69fc1c6adbd4357
[linux-2.6-microblaze.git] / mm / kfence / core.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * KFENCE guarded object allocator and fault handling.
4  *
5  * Copyright (C) 2020, Google LLC.
6  */
7
8 #define pr_fmt(fmt) "kfence: " fmt
9
10 #include <linux/atomic.h>
11 #include <linux/bug.h>
12 #include <linux/debugfs.h>
13 #include <linux/kcsan-checks.h>
14 #include <linux/kfence.h>
15 #include <linux/list.h>
16 #include <linux/lockdep.h>
17 #include <linux/memblock.h>
18 #include <linux/moduleparam.h>
19 #include <linux/random.h>
20 #include <linux/rcupdate.h>
21 #include <linux/seq_file.h>
22 #include <linux/slab.h>
23 #include <linux/spinlock.h>
24 #include <linux/string.h>
25
26 #include <asm/kfence.h>
27
28 #include "kfence.h"
29
30 /* Disables KFENCE on the first warning assuming an irrecoverable error. */
31 #define KFENCE_WARN_ON(cond)                                                   \
32         ({                                                                     \
33                 const bool __cond = WARN_ON(cond);                             \
34                 if (unlikely(__cond))                                          \
35                         WRITE_ONCE(kfence_enabled, false);                     \
36                 __cond;                                                        \
37         })
38
39 /* === Data ================================================================= */
40
41 static bool kfence_enabled __read_mostly;
42
43 static unsigned long kfence_sample_interval __read_mostly = CONFIG_KFENCE_SAMPLE_INTERVAL;
44
45 #ifdef MODULE_PARAM_PREFIX
46 #undef MODULE_PARAM_PREFIX
47 #endif
48 #define MODULE_PARAM_PREFIX "kfence."
49
50 static int param_set_sample_interval(const char *val, const struct kernel_param *kp)
51 {
52         unsigned long num;
53         int ret = kstrtoul(val, 0, &num);
54
55         if (ret < 0)
56                 return ret;
57
58         if (!num) /* Using 0 to indicate KFENCE is disabled. */
59                 WRITE_ONCE(kfence_enabled, false);
60         else if (!READ_ONCE(kfence_enabled) && system_state != SYSTEM_BOOTING)
61                 return -EINVAL; /* Cannot (re-)enable KFENCE on-the-fly. */
62
63         *((unsigned long *)kp->arg) = num;
64         return 0;
65 }
66
67 static int param_get_sample_interval(char *buffer, const struct kernel_param *kp)
68 {
69         if (!READ_ONCE(kfence_enabled))
70                 return sprintf(buffer, "0\n");
71
72         return param_get_ulong(buffer, kp);
73 }
74
75 static const struct kernel_param_ops sample_interval_param_ops = {
76         .set = param_set_sample_interval,
77         .get = param_get_sample_interval,
78 };
79 module_param_cb(sample_interval, &sample_interval_param_ops, &kfence_sample_interval, 0600);
80
81 /* The pool of pages used for guard pages and objects. */
82 char *__kfence_pool __ro_after_init;
83 EXPORT_SYMBOL(__kfence_pool); /* Export for test modules. */
84
85 /*
86  * Per-object metadata, with one-to-one mapping of object metadata to
87  * backing pages (in __kfence_pool).
88  */
89 static_assert(CONFIG_KFENCE_NUM_OBJECTS > 0);
90 struct kfence_metadata kfence_metadata[CONFIG_KFENCE_NUM_OBJECTS];
91
92 /* Freelist with available objects. */
93 static struct list_head kfence_freelist = LIST_HEAD_INIT(kfence_freelist);
94 static DEFINE_RAW_SPINLOCK(kfence_freelist_lock); /* Lock protecting freelist. */
95
96 #ifdef CONFIG_KFENCE_STATIC_KEYS
97 /* The static key to set up a KFENCE allocation. */
98 DEFINE_STATIC_KEY_FALSE(kfence_allocation_key);
99 #endif
100
101 /* Gates the allocation, ensuring only one succeeds in a given period. */
102 atomic_t kfence_allocation_gate = ATOMIC_INIT(1);
103
104 /* Statistics counters for debugfs. */
105 enum kfence_counter_id {
106         KFENCE_COUNTER_ALLOCATED,
107         KFENCE_COUNTER_ALLOCS,
108         KFENCE_COUNTER_FREES,
109         KFENCE_COUNTER_ZOMBIES,
110         KFENCE_COUNTER_BUGS,
111         KFENCE_COUNTER_COUNT,
112 };
113 static atomic_long_t counters[KFENCE_COUNTER_COUNT];
114 static const char *const counter_names[] = {
115         [KFENCE_COUNTER_ALLOCATED]      = "currently allocated",
116         [KFENCE_COUNTER_ALLOCS]         = "total allocations",
117         [KFENCE_COUNTER_FREES]          = "total frees",
118         [KFENCE_COUNTER_ZOMBIES]        = "zombie allocations",
119         [KFENCE_COUNTER_BUGS]           = "total bugs",
120 };
121 static_assert(ARRAY_SIZE(counter_names) == KFENCE_COUNTER_COUNT);
122
123 /* === Internals ============================================================ */
124
125 static bool kfence_protect(unsigned long addr)
126 {
127         return !KFENCE_WARN_ON(!kfence_protect_page(ALIGN_DOWN(addr, PAGE_SIZE), true));
128 }
129
130 static bool kfence_unprotect(unsigned long addr)
131 {
132         return !KFENCE_WARN_ON(!kfence_protect_page(ALIGN_DOWN(addr, PAGE_SIZE), false));
133 }
134
135 static inline struct kfence_metadata *addr_to_metadata(unsigned long addr)
136 {
137         long index;
138
139         /* The checks do not affect performance; only called from slow-paths. */
140
141         if (!is_kfence_address((void *)addr))
142                 return NULL;
143
144         /*
145          * May be an invalid index if called with an address at the edge of
146          * __kfence_pool, in which case we would report an "invalid access"
147          * error.
148          */
149         index = (addr - (unsigned long)__kfence_pool) / (PAGE_SIZE * 2) - 1;
150         if (index < 0 || index >= CONFIG_KFENCE_NUM_OBJECTS)
151                 return NULL;
152
153         return &kfence_metadata[index];
154 }
155
156 static inline unsigned long metadata_to_pageaddr(const struct kfence_metadata *meta)
157 {
158         unsigned long offset = (meta - kfence_metadata + 1) * PAGE_SIZE * 2;
159         unsigned long pageaddr = (unsigned long)&__kfence_pool[offset];
160
161         /* The checks do not affect performance; only called from slow-paths. */
162
163         /* Only call with a pointer into kfence_metadata. */
164         if (KFENCE_WARN_ON(meta < kfence_metadata ||
165                            meta >= kfence_metadata + CONFIG_KFENCE_NUM_OBJECTS))
166                 return 0;
167
168         /*
169          * This metadata object only ever maps to 1 page; verify that the stored
170          * address is in the expected range.
171          */
172         if (KFENCE_WARN_ON(ALIGN_DOWN(meta->addr, PAGE_SIZE) != pageaddr))
173                 return 0;
174
175         return pageaddr;
176 }
177
178 /*
179  * Update the object's metadata state, including updating the alloc/free stacks
180  * depending on the state transition.
181  */
182 static noinline void metadata_update_state(struct kfence_metadata *meta,
183                                            enum kfence_object_state next)
184 {
185         struct kfence_track *track =
186                 next == KFENCE_OBJECT_FREED ? &meta->free_track : &meta->alloc_track;
187
188         lockdep_assert_held(&meta->lock);
189
190         /*
191          * Skip over 1 (this) functions; noinline ensures we do not accidentally
192          * skip over the caller by never inlining.
193          */
194         track->num_stack_entries = stack_trace_save(track->stack_entries, KFENCE_STACK_DEPTH, 1);
195         track->pid = task_pid_nr(current);
196
197         /*
198          * Pairs with READ_ONCE() in
199          *      kfence_shutdown_cache(),
200          *      kfence_handle_page_fault().
201          */
202         WRITE_ONCE(meta->state, next);
203 }
204
205 /* Write canary byte to @addr. */
206 static inline bool set_canary_byte(u8 *addr)
207 {
208         *addr = KFENCE_CANARY_PATTERN(addr);
209         return true;
210 }
211
212 /* Check canary byte at @addr. */
213 static inline bool check_canary_byte(u8 *addr)
214 {
215         if (likely(*addr == KFENCE_CANARY_PATTERN(addr)))
216                 return true;
217
218         atomic_long_inc(&counters[KFENCE_COUNTER_BUGS]);
219         kfence_report_error((unsigned long)addr, NULL, addr_to_metadata((unsigned long)addr),
220                             KFENCE_ERROR_CORRUPTION);
221         return false;
222 }
223
224 /* __always_inline this to ensure we won't do an indirect call to fn. */
225 static __always_inline void for_each_canary(const struct kfence_metadata *meta, bool (*fn)(u8 *))
226 {
227         const unsigned long pageaddr = ALIGN_DOWN(meta->addr, PAGE_SIZE);
228         unsigned long addr;
229
230         lockdep_assert_held(&meta->lock);
231
232         /*
233          * We'll iterate over each canary byte per-side until fn() returns
234          * false. However, we'll still iterate over the canary bytes to the
235          * right of the object even if there was an error in the canary bytes to
236          * the left of the object. Specifically, if check_canary_byte()
237          * generates an error, showing both sides might give more clues as to
238          * what the error is about when displaying which bytes were corrupted.
239          */
240
241         /* Apply to left of object. */
242         for (addr = pageaddr; addr < meta->addr; addr++) {
243                 if (!fn((u8 *)addr))
244                         break;
245         }
246
247         /* Apply to right of object. */
248         for (addr = meta->addr + meta->size; addr < pageaddr + PAGE_SIZE; addr++) {
249                 if (!fn((u8 *)addr))
250                         break;
251         }
252 }
253
254 static void *kfence_guarded_alloc(struct kmem_cache *cache, size_t size, gfp_t gfp)
255 {
256         struct kfence_metadata *meta = NULL;
257         unsigned long flags;
258         struct page *page;
259         void *addr;
260
261         /* Try to obtain a free object. */
262         raw_spin_lock_irqsave(&kfence_freelist_lock, flags);
263         if (!list_empty(&kfence_freelist)) {
264                 meta = list_entry(kfence_freelist.next, struct kfence_metadata, list);
265                 list_del_init(&meta->list);
266         }
267         raw_spin_unlock_irqrestore(&kfence_freelist_lock, flags);
268         if (!meta)
269                 return NULL;
270
271         if (unlikely(!raw_spin_trylock_irqsave(&meta->lock, flags))) {
272                 /*
273                  * This is extremely unlikely -- we are reporting on a
274                  * use-after-free, which locked meta->lock, and the reporting
275                  * code via printk calls kmalloc() which ends up in
276                  * kfence_alloc() and tries to grab the same object that we're
277                  * reporting on. While it has never been observed, lockdep does
278                  * report that there is a possibility of deadlock. Fix it by
279                  * using trylock and bailing out gracefully.
280                  */
281                 raw_spin_lock_irqsave(&kfence_freelist_lock, flags);
282                 /* Put the object back on the freelist. */
283                 list_add_tail(&meta->list, &kfence_freelist);
284                 raw_spin_unlock_irqrestore(&kfence_freelist_lock, flags);
285
286                 return NULL;
287         }
288
289         meta->addr = metadata_to_pageaddr(meta);
290         /* Unprotect if we're reusing this page. */
291         if (meta->state == KFENCE_OBJECT_FREED)
292                 kfence_unprotect(meta->addr);
293
294         /*
295          * Note: for allocations made before RNG initialization, will always
296          * return zero. We still benefit from enabling KFENCE as early as
297          * possible, even when the RNG is not yet available, as this will allow
298          * KFENCE to detect bugs due to earlier allocations. The only downside
299          * is that the out-of-bounds accesses detected are deterministic for
300          * such allocations.
301          */
302         if (prandom_u32_max(2)) {
303                 /* Allocate on the "right" side, re-calculate address. */
304                 meta->addr += PAGE_SIZE - size;
305                 meta->addr = ALIGN_DOWN(meta->addr, cache->align);
306         }
307
308         addr = (void *)meta->addr;
309
310         /* Update remaining metadata. */
311         metadata_update_state(meta, KFENCE_OBJECT_ALLOCATED);
312         /* Pairs with READ_ONCE() in kfence_shutdown_cache(). */
313         WRITE_ONCE(meta->cache, cache);
314         meta->size = size;
315         for_each_canary(meta, set_canary_byte);
316
317         /* Set required struct page fields. */
318         page = virt_to_page(meta->addr);
319         page->slab_cache = cache;
320
321         raw_spin_unlock_irqrestore(&meta->lock, flags);
322
323         /* Memory initialization. */
324
325         /*
326          * We check slab_want_init_on_alloc() ourselves, rather than letting
327          * SL*B do the initialization, as otherwise we might overwrite KFENCE's
328          * redzone.
329          */
330         if (unlikely(slab_want_init_on_alloc(gfp, cache)))
331                 memzero_explicit(addr, size);
332         if (cache->ctor)
333                 cache->ctor(addr);
334
335         if (CONFIG_KFENCE_STRESS_TEST_FAULTS && !prandom_u32_max(CONFIG_KFENCE_STRESS_TEST_FAULTS))
336                 kfence_protect(meta->addr); /* Random "faults" by protecting the object. */
337
338         atomic_long_inc(&counters[KFENCE_COUNTER_ALLOCATED]);
339         atomic_long_inc(&counters[KFENCE_COUNTER_ALLOCS]);
340
341         return addr;
342 }
343
344 static void kfence_guarded_free(void *addr, struct kfence_metadata *meta, bool zombie)
345 {
346         struct kcsan_scoped_access assert_page_exclusive;
347         unsigned long flags;
348
349         raw_spin_lock_irqsave(&meta->lock, flags);
350
351         if (meta->state != KFENCE_OBJECT_ALLOCATED || meta->addr != (unsigned long)addr) {
352                 /* Invalid or double-free, bail out. */
353                 atomic_long_inc(&counters[KFENCE_COUNTER_BUGS]);
354                 kfence_report_error((unsigned long)addr, NULL, meta, KFENCE_ERROR_INVALID_FREE);
355                 raw_spin_unlock_irqrestore(&meta->lock, flags);
356                 return;
357         }
358
359         /* Detect racy use-after-free, or incorrect reallocation of this page by KFENCE. */
360         kcsan_begin_scoped_access((void *)ALIGN_DOWN((unsigned long)addr, PAGE_SIZE), PAGE_SIZE,
361                                   KCSAN_ACCESS_SCOPED | KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ASSERT,
362                                   &assert_page_exclusive);
363
364         if (CONFIG_KFENCE_STRESS_TEST_FAULTS)
365                 kfence_unprotect((unsigned long)addr); /* To check canary bytes. */
366
367         /* Restore page protection if there was an OOB access. */
368         if (meta->unprotected_page) {
369                 kfence_protect(meta->unprotected_page);
370                 meta->unprotected_page = 0;
371         }
372
373         /* Check canary bytes for memory corruption. */
374         for_each_canary(meta, check_canary_byte);
375
376         /*
377          * Clear memory if init-on-free is set. While we protect the page, the
378          * data is still there, and after a use-after-free is detected, we
379          * unprotect the page, so the data is still accessible.
380          */
381         if (!zombie && unlikely(slab_want_init_on_free(meta->cache)))
382                 memzero_explicit(addr, meta->size);
383
384         /* Mark the object as freed. */
385         metadata_update_state(meta, KFENCE_OBJECT_FREED);
386
387         raw_spin_unlock_irqrestore(&meta->lock, flags);
388
389         /* Protect to detect use-after-frees. */
390         kfence_protect((unsigned long)addr);
391
392         kcsan_end_scoped_access(&assert_page_exclusive);
393         if (!zombie) {
394                 /* Add it to the tail of the freelist for reuse. */
395                 raw_spin_lock_irqsave(&kfence_freelist_lock, flags);
396                 KFENCE_WARN_ON(!list_empty(&meta->list));
397                 list_add_tail(&meta->list, &kfence_freelist);
398                 raw_spin_unlock_irqrestore(&kfence_freelist_lock, flags);
399
400                 atomic_long_dec(&counters[KFENCE_COUNTER_ALLOCATED]);
401                 atomic_long_inc(&counters[KFENCE_COUNTER_FREES]);
402         } else {
403                 /* See kfence_shutdown_cache(). */
404                 atomic_long_inc(&counters[KFENCE_COUNTER_ZOMBIES]);
405         }
406 }
407
408 static void rcu_guarded_free(struct rcu_head *h)
409 {
410         struct kfence_metadata *meta = container_of(h, struct kfence_metadata, rcu_head);
411
412         kfence_guarded_free((void *)meta->addr, meta, false);
413 }
414
415 static bool __init kfence_init_pool(void)
416 {
417         unsigned long addr = (unsigned long)__kfence_pool;
418         struct page *pages;
419         int i;
420
421         if (!__kfence_pool)
422                 return false;
423
424         if (!arch_kfence_init_pool())
425                 goto err;
426
427         pages = virt_to_page(addr);
428
429         /*
430          * Set up object pages: they must have PG_slab set, to avoid freeing
431          * these as real pages.
432          *
433          * We also want to avoid inserting kfence_free() in the kfree()
434          * fast-path in SLUB, and therefore need to ensure kfree() correctly
435          * enters __slab_free() slow-path.
436          */
437         for (i = 0; i < KFENCE_POOL_SIZE / PAGE_SIZE; i++) {
438                 if (!i || (i % 2))
439                         continue;
440
441                 /* Verify we do not have a compound head page. */
442                 if (WARN_ON(compound_head(&pages[i]) != &pages[i]))
443                         goto err;
444
445                 __SetPageSlab(&pages[i]);
446         }
447
448         /*
449          * Protect the first 2 pages. The first page is mostly unnecessary, and
450          * merely serves as an extended guard page. However, adding one
451          * additional page in the beginning gives us an even number of pages,
452          * which simplifies the mapping of address to metadata index.
453          */
454         for (i = 0; i < 2; i++) {
455                 if (unlikely(!kfence_protect(addr)))
456                         goto err;
457
458                 addr += PAGE_SIZE;
459         }
460
461         for (i = 0; i < CONFIG_KFENCE_NUM_OBJECTS; i++) {
462                 struct kfence_metadata *meta = &kfence_metadata[i];
463
464                 /* Initialize metadata. */
465                 INIT_LIST_HEAD(&meta->list);
466                 raw_spin_lock_init(&meta->lock);
467                 meta->state = KFENCE_OBJECT_UNUSED;
468                 meta->addr = addr; /* Initialize for validation in metadata_to_pageaddr(). */
469                 list_add_tail(&meta->list, &kfence_freelist);
470
471                 /* Protect the right redzone. */
472                 if (unlikely(!kfence_protect(addr + PAGE_SIZE)))
473                         goto err;
474
475                 addr += 2 * PAGE_SIZE;
476         }
477
478         return true;
479
480 err:
481         /*
482          * Only release unprotected pages, and do not try to go back and change
483          * page attributes due to risk of failing to do so as well. If changing
484          * page attributes for some pages fails, it is very likely that it also
485          * fails for the first page, and therefore expect addr==__kfence_pool in
486          * most failure cases.
487          */
488         memblock_free_late(__pa(addr), KFENCE_POOL_SIZE - (addr - (unsigned long)__kfence_pool));
489         __kfence_pool = NULL;
490         return false;
491 }
492
493 /* === DebugFS Interface ==================================================== */
494
495 static int stats_show(struct seq_file *seq, void *v)
496 {
497         int i;
498
499         seq_printf(seq, "enabled: %i\n", READ_ONCE(kfence_enabled));
500         for (i = 0; i < KFENCE_COUNTER_COUNT; i++)
501                 seq_printf(seq, "%s: %ld\n", counter_names[i], atomic_long_read(&counters[i]));
502
503         return 0;
504 }
505 DEFINE_SHOW_ATTRIBUTE(stats);
506
507 /*
508  * debugfs seq_file operations for /sys/kernel/debug/kfence/objects.
509  * start_object() and next_object() return the object index + 1, because NULL is used
510  * to stop iteration.
511  */
512 static void *start_object(struct seq_file *seq, loff_t *pos)
513 {
514         if (*pos < CONFIG_KFENCE_NUM_OBJECTS)
515                 return (void *)((long)*pos + 1);
516         return NULL;
517 }
518
519 static void stop_object(struct seq_file *seq, void *v)
520 {
521 }
522
523 static void *next_object(struct seq_file *seq, void *v, loff_t *pos)
524 {
525         ++*pos;
526         if (*pos < CONFIG_KFENCE_NUM_OBJECTS)
527                 return (void *)((long)*pos + 1);
528         return NULL;
529 }
530
531 static int show_object(struct seq_file *seq, void *v)
532 {
533         struct kfence_metadata *meta = &kfence_metadata[(long)v - 1];
534         unsigned long flags;
535
536         raw_spin_lock_irqsave(&meta->lock, flags);
537         kfence_print_object(seq, meta);
538         raw_spin_unlock_irqrestore(&meta->lock, flags);
539         seq_puts(seq, "---------------------------------\n");
540
541         return 0;
542 }
543
544 static const struct seq_operations object_seqops = {
545         .start = start_object,
546         .next = next_object,
547         .stop = stop_object,
548         .show = show_object,
549 };
550
551 static int open_objects(struct inode *inode, struct file *file)
552 {
553         return seq_open(file, &object_seqops);
554 }
555
556 static const struct file_operations objects_fops = {
557         .open = open_objects,
558         .read = seq_read,
559         .llseek = seq_lseek,
560 };
561
562 static int __init kfence_debugfs_init(void)
563 {
564         struct dentry *kfence_dir = debugfs_create_dir("kfence", NULL);
565
566         debugfs_create_file("stats", 0444, kfence_dir, NULL, &stats_fops);
567         debugfs_create_file("objects", 0400, kfence_dir, NULL, &objects_fops);
568         return 0;
569 }
570
571 late_initcall(kfence_debugfs_init);
572
573 /* === Allocation Gate Timer ================================================ */
574
575 /*
576  * Set up delayed work, which will enable and disable the static key. We need to
577  * use a work queue (rather than a simple timer), since enabling and disabling a
578  * static key cannot be done from an interrupt.
579  *
580  * Note: Toggling a static branch currently causes IPIs, and here we'll end up
581  * with a total of 2 IPIs to all CPUs. If this ends up a problem in future (with
582  * more aggressive sampling intervals), we could get away with a variant that
583  * avoids IPIs, at the cost of not immediately capturing allocations if the
584  * instructions remain cached.
585  */
586 static struct delayed_work kfence_timer;
587 static void toggle_allocation_gate(struct work_struct *work)
588 {
589         if (!READ_ONCE(kfence_enabled))
590                 return;
591
592         /* Enable static key, and await allocation to happen. */
593         atomic_set(&kfence_allocation_gate, 0);
594 #ifdef CONFIG_KFENCE_STATIC_KEYS
595         static_branch_enable(&kfence_allocation_key);
596         /*
597          * Await an allocation. Timeout after 1 second, in case the kernel stops
598          * doing allocations, to avoid stalling this worker task for too long.
599          */
600         {
601                 unsigned long end_wait = jiffies + HZ;
602
603                 do {
604                         set_current_state(TASK_UNINTERRUPTIBLE);
605                         if (atomic_read(&kfence_allocation_gate) != 0)
606                                 break;
607                         schedule_timeout(1);
608                 } while (time_before(jiffies, end_wait));
609                 __set_current_state(TASK_RUNNING);
610         }
611         /* Disable static key and reset timer. */
612         static_branch_disable(&kfence_allocation_key);
613 #endif
614         schedule_delayed_work(&kfence_timer, msecs_to_jiffies(kfence_sample_interval));
615 }
616 static DECLARE_DELAYED_WORK(kfence_timer, toggle_allocation_gate);
617
618 /* === Public interface ===================================================== */
619
620 void __init kfence_alloc_pool(void)
621 {
622         if (!kfence_sample_interval)
623                 return;
624
625         __kfence_pool = memblock_alloc(KFENCE_POOL_SIZE, PAGE_SIZE);
626
627         if (!__kfence_pool)
628                 pr_err("failed to allocate pool\n");
629 }
630
631 void __init kfence_init(void)
632 {
633         /* Setting kfence_sample_interval to 0 on boot disables KFENCE. */
634         if (!kfence_sample_interval)
635                 return;
636
637         if (!kfence_init_pool()) {
638                 pr_err("%s failed\n", __func__);
639                 return;
640         }
641
642         WRITE_ONCE(kfence_enabled, true);
643         schedule_delayed_work(&kfence_timer, 0);
644         pr_info("initialized - using %lu bytes for %d objects", KFENCE_POOL_SIZE,
645                 CONFIG_KFENCE_NUM_OBJECTS);
646         if (IS_ENABLED(CONFIG_DEBUG_KERNEL))
647                 pr_cont(" at 0x%px-0x%px\n", (void *)__kfence_pool,
648                         (void *)(__kfence_pool + KFENCE_POOL_SIZE));
649         else
650                 pr_cont("\n");
651 }
652
653 void kfence_shutdown_cache(struct kmem_cache *s)
654 {
655         unsigned long flags;
656         struct kfence_metadata *meta;
657         int i;
658
659         for (i = 0; i < CONFIG_KFENCE_NUM_OBJECTS; i++) {
660                 bool in_use;
661
662                 meta = &kfence_metadata[i];
663
664                 /*
665                  * If we observe some inconsistent cache and state pair where we
666                  * should have returned false here, cache destruction is racing
667                  * with either kmem_cache_alloc() or kmem_cache_free(). Taking
668                  * the lock will not help, as different critical section
669                  * serialization will have the same outcome.
670                  */
671                 if (READ_ONCE(meta->cache) != s ||
672                     READ_ONCE(meta->state) != KFENCE_OBJECT_ALLOCATED)
673                         continue;
674
675                 raw_spin_lock_irqsave(&meta->lock, flags);
676                 in_use = meta->cache == s && meta->state == KFENCE_OBJECT_ALLOCATED;
677                 raw_spin_unlock_irqrestore(&meta->lock, flags);
678
679                 if (in_use) {
680                         /*
681                          * This cache still has allocations, and we should not
682                          * release them back into the freelist so they can still
683                          * safely be used and retain the kernel's default
684                          * behaviour of keeping the allocations alive (leak the
685                          * cache); however, they effectively become "zombie
686                          * allocations" as the KFENCE objects are the only ones
687                          * still in use and the owning cache is being destroyed.
688                          *
689                          * We mark them freed, so that any subsequent use shows
690                          * more useful error messages that will include stack
691                          * traces of the user of the object, the original
692                          * allocation, and caller to shutdown_cache().
693                          */
694                         kfence_guarded_free((void *)meta->addr, meta, /*zombie=*/true);
695                 }
696         }
697
698         for (i = 0; i < CONFIG_KFENCE_NUM_OBJECTS; i++) {
699                 meta = &kfence_metadata[i];
700
701                 /* See above. */
702                 if (READ_ONCE(meta->cache) != s || READ_ONCE(meta->state) != KFENCE_OBJECT_FREED)
703                         continue;
704
705                 raw_spin_lock_irqsave(&meta->lock, flags);
706                 if (meta->cache == s && meta->state == KFENCE_OBJECT_FREED)
707                         meta->cache = NULL;
708                 raw_spin_unlock_irqrestore(&meta->lock, flags);
709         }
710 }
711
712 void *__kfence_alloc(struct kmem_cache *s, size_t size, gfp_t flags)
713 {
714         /*
715          * allocation_gate only needs to become non-zero, so it doesn't make
716          * sense to continue writing to it and pay the associated contention
717          * cost, in case we have a large number of concurrent allocations.
718          */
719         if (atomic_read(&kfence_allocation_gate) || atomic_inc_return(&kfence_allocation_gate) > 1)
720                 return NULL;
721
722         if (!READ_ONCE(kfence_enabled))
723                 return NULL;
724
725         if (size > PAGE_SIZE)
726                 return NULL;
727
728         return kfence_guarded_alloc(s, size, flags);
729 }
730
731 size_t kfence_ksize(const void *addr)
732 {
733         const struct kfence_metadata *meta = addr_to_metadata((unsigned long)addr);
734
735         /*
736          * Read locklessly -- if there is a race with __kfence_alloc(), this is
737          * either a use-after-free or invalid access.
738          */
739         return meta ? meta->size : 0;
740 }
741
742 void *kfence_object_start(const void *addr)
743 {
744         const struct kfence_metadata *meta = addr_to_metadata((unsigned long)addr);
745
746         /*
747          * Read locklessly -- if there is a race with __kfence_alloc(), this is
748          * either a use-after-free or invalid access.
749          */
750         return meta ? (void *)meta->addr : NULL;
751 }
752
753 void __kfence_free(void *addr)
754 {
755         struct kfence_metadata *meta = addr_to_metadata((unsigned long)addr);
756
757         /*
758          * If the objects of the cache are SLAB_TYPESAFE_BY_RCU, defer freeing
759          * the object, as the object page may be recycled for other-typed
760          * objects once it has been freed. meta->cache may be NULL if the cache
761          * was destroyed.
762          */
763         if (unlikely(meta->cache && (meta->cache->flags & SLAB_TYPESAFE_BY_RCU)))
764                 call_rcu(&meta->rcu_head, rcu_guarded_free);
765         else
766                 kfence_guarded_free(addr, meta, false);
767 }
768
769 bool kfence_handle_page_fault(unsigned long addr, struct pt_regs *regs)
770 {
771         const int page_index = (addr - (unsigned long)__kfence_pool) / PAGE_SIZE;
772         struct kfence_metadata *to_report = NULL;
773         enum kfence_error_type error_type;
774         unsigned long flags;
775
776         if (!is_kfence_address((void *)addr))
777                 return false;
778
779         if (!READ_ONCE(kfence_enabled)) /* If disabled at runtime ... */
780                 return kfence_unprotect(addr); /* ... unprotect and proceed. */
781
782         atomic_long_inc(&counters[KFENCE_COUNTER_BUGS]);
783
784         if (page_index % 2) {
785                 /* This is a redzone, report a buffer overflow. */
786                 struct kfence_metadata *meta;
787                 int distance = 0;
788
789                 meta = addr_to_metadata(addr - PAGE_SIZE);
790                 if (meta && READ_ONCE(meta->state) == KFENCE_OBJECT_ALLOCATED) {
791                         to_report = meta;
792                         /* Data race ok; distance calculation approximate. */
793                         distance = addr - data_race(meta->addr + meta->size);
794                 }
795
796                 meta = addr_to_metadata(addr + PAGE_SIZE);
797                 if (meta && READ_ONCE(meta->state) == KFENCE_OBJECT_ALLOCATED) {
798                         /* Data race ok; distance calculation approximate. */
799                         if (!to_report || distance > data_race(meta->addr) - addr)
800                                 to_report = meta;
801                 }
802
803                 if (!to_report)
804                         goto out;
805
806                 raw_spin_lock_irqsave(&to_report->lock, flags);
807                 to_report->unprotected_page = addr;
808                 error_type = KFENCE_ERROR_OOB;
809
810                 /*
811                  * If the object was freed before we took the look we can still
812                  * report this as an OOB -- the report will simply show the
813                  * stacktrace of the free as well.
814                  */
815         } else {
816                 to_report = addr_to_metadata(addr);
817                 if (!to_report)
818                         goto out;
819
820                 raw_spin_lock_irqsave(&to_report->lock, flags);
821                 error_type = KFENCE_ERROR_UAF;
822                 /*
823                  * We may race with __kfence_alloc(), and it is possible that a
824                  * freed object may be reallocated. We simply report this as a
825                  * use-after-free, with the stack trace showing the place where
826                  * the object was re-allocated.
827                  */
828         }
829
830 out:
831         if (to_report) {
832                 kfence_report_error(addr, regs, to_report, error_type);
833                 raw_spin_unlock_irqrestore(&to_report->lock, flags);
834         } else {
835                 /* This may be a UAF or OOB access, but we can't be sure. */
836                 kfence_report_error(addr, regs, NULL, KFENCE_ERROR_INVALID);
837         }
838
839         return kfence_unprotect(addr); /* Unprotect and let access proceed. */
840 }