kfence: report sensitive information based on no_hash_pointers
[linux-2.6-microblaze.git] / mm / kfence / core.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * KFENCE guarded object allocator and fault handling.
4  *
5  * Copyright (C) 2020, Google LLC.
6  */
7
8 #define pr_fmt(fmt) "kfence: " fmt
9
10 #include <linux/atomic.h>
11 #include <linux/bug.h>
12 #include <linux/debugfs.h>
13 #include <linux/kcsan-checks.h>
14 #include <linux/kfence.h>
15 #include <linux/list.h>
16 #include <linux/lockdep.h>
17 #include <linux/memblock.h>
18 #include <linux/moduleparam.h>
19 #include <linux/random.h>
20 #include <linux/rcupdate.h>
21 #include <linux/seq_file.h>
22 #include <linux/slab.h>
23 #include <linux/spinlock.h>
24 #include <linux/string.h>
25
26 #include <asm/kfence.h>
27
28 #include "kfence.h"
29
30 /* Disables KFENCE on the first warning assuming an irrecoverable error. */
31 #define KFENCE_WARN_ON(cond)                                                   \
32         ({                                                                     \
33                 const bool __cond = WARN_ON(cond);                             \
34                 if (unlikely(__cond))                                          \
35                         WRITE_ONCE(kfence_enabled, false);                     \
36                 __cond;                                                        \
37         })
38
39 /* === Data ================================================================= */
40
41 static bool kfence_enabled __read_mostly;
42
43 static unsigned long kfence_sample_interval __read_mostly = CONFIG_KFENCE_SAMPLE_INTERVAL;
44
45 #ifdef MODULE_PARAM_PREFIX
46 #undef MODULE_PARAM_PREFIX
47 #endif
48 #define MODULE_PARAM_PREFIX "kfence."
49
50 static int param_set_sample_interval(const char *val, const struct kernel_param *kp)
51 {
52         unsigned long num;
53         int ret = kstrtoul(val, 0, &num);
54
55         if (ret < 0)
56                 return ret;
57
58         if (!num) /* Using 0 to indicate KFENCE is disabled. */
59                 WRITE_ONCE(kfence_enabled, false);
60         else if (!READ_ONCE(kfence_enabled) && system_state != SYSTEM_BOOTING)
61                 return -EINVAL; /* Cannot (re-)enable KFENCE on-the-fly. */
62
63         *((unsigned long *)kp->arg) = num;
64         return 0;
65 }
66
67 static int param_get_sample_interval(char *buffer, const struct kernel_param *kp)
68 {
69         if (!READ_ONCE(kfence_enabled))
70                 return sprintf(buffer, "0\n");
71
72         return param_get_ulong(buffer, kp);
73 }
74
75 static const struct kernel_param_ops sample_interval_param_ops = {
76         .set = param_set_sample_interval,
77         .get = param_get_sample_interval,
78 };
79 module_param_cb(sample_interval, &sample_interval_param_ops, &kfence_sample_interval, 0600);
80
81 /* The pool of pages used for guard pages and objects. */
82 char *__kfence_pool __ro_after_init;
83 EXPORT_SYMBOL(__kfence_pool); /* Export for test modules. */
84
85 /*
86  * Per-object metadata, with one-to-one mapping of object metadata to
87  * backing pages (in __kfence_pool).
88  */
89 static_assert(CONFIG_KFENCE_NUM_OBJECTS > 0);
90 struct kfence_metadata kfence_metadata[CONFIG_KFENCE_NUM_OBJECTS];
91
92 /* Freelist with available objects. */
93 static struct list_head kfence_freelist = LIST_HEAD_INIT(kfence_freelist);
94 static DEFINE_RAW_SPINLOCK(kfence_freelist_lock); /* Lock protecting freelist. */
95
96 #ifdef CONFIG_KFENCE_STATIC_KEYS
97 /* The static key to set up a KFENCE allocation. */
98 DEFINE_STATIC_KEY_FALSE(kfence_allocation_key);
99 #endif
100
101 /* Gates the allocation, ensuring only one succeeds in a given period. */
102 atomic_t kfence_allocation_gate = ATOMIC_INIT(1);
103
104 /* Statistics counters for debugfs. */
105 enum kfence_counter_id {
106         KFENCE_COUNTER_ALLOCATED,
107         KFENCE_COUNTER_ALLOCS,
108         KFENCE_COUNTER_FREES,
109         KFENCE_COUNTER_ZOMBIES,
110         KFENCE_COUNTER_BUGS,
111         KFENCE_COUNTER_COUNT,
112 };
113 static atomic_long_t counters[KFENCE_COUNTER_COUNT];
114 static const char *const counter_names[] = {
115         [KFENCE_COUNTER_ALLOCATED]      = "currently allocated",
116         [KFENCE_COUNTER_ALLOCS]         = "total allocations",
117         [KFENCE_COUNTER_FREES]          = "total frees",
118         [KFENCE_COUNTER_ZOMBIES]        = "zombie allocations",
119         [KFENCE_COUNTER_BUGS]           = "total bugs",
120 };
121 static_assert(ARRAY_SIZE(counter_names) == KFENCE_COUNTER_COUNT);
122
123 /* === Internals ============================================================ */
124
125 static bool kfence_protect(unsigned long addr)
126 {
127         return !KFENCE_WARN_ON(!kfence_protect_page(ALIGN_DOWN(addr, PAGE_SIZE), true));
128 }
129
130 static bool kfence_unprotect(unsigned long addr)
131 {
132         return !KFENCE_WARN_ON(!kfence_protect_page(ALIGN_DOWN(addr, PAGE_SIZE), false));
133 }
134
135 static inline struct kfence_metadata *addr_to_metadata(unsigned long addr)
136 {
137         long index;
138
139         /* The checks do not affect performance; only called from slow-paths. */
140
141         if (!is_kfence_address((void *)addr))
142                 return NULL;
143
144         /*
145          * May be an invalid index if called with an address at the edge of
146          * __kfence_pool, in which case we would report an "invalid access"
147          * error.
148          */
149         index = (addr - (unsigned long)__kfence_pool) / (PAGE_SIZE * 2) - 1;
150         if (index < 0 || index >= CONFIG_KFENCE_NUM_OBJECTS)
151                 return NULL;
152
153         return &kfence_metadata[index];
154 }
155
156 static inline unsigned long metadata_to_pageaddr(const struct kfence_metadata *meta)
157 {
158         unsigned long offset = (meta - kfence_metadata + 1) * PAGE_SIZE * 2;
159         unsigned long pageaddr = (unsigned long)&__kfence_pool[offset];
160
161         /* The checks do not affect performance; only called from slow-paths. */
162
163         /* Only call with a pointer into kfence_metadata. */
164         if (KFENCE_WARN_ON(meta < kfence_metadata ||
165                            meta >= kfence_metadata + CONFIG_KFENCE_NUM_OBJECTS))
166                 return 0;
167
168         /*
169          * This metadata object only ever maps to 1 page; verify that the stored
170          * address is in the expected range.
171          */
172         if (KFENCE_WARN_ON(ALIGN_DOWN(meta->addr, PAGE_SIZE) != pageaddr))
173                 return 0;
174
175         return pageaddr;
176 }
177
178 /*
179  * Update the object's metadata state, including updating the alloc/free stacks
180  * depending on the state transition.
181  */
182 static noinline void metadata_update_state(struct kfence_metadata *meta,
183                                            enum kfence_object_state next)
184 {
185         struct kfence_track *track =
186                 next == KFENCE_OBJECT_FREED ? &meta->free_track : &meta->alloc_track;
187
188         lockdep_assert_held(&meta->lock);
189
190         /*
191          * Skip over 1 (this) functions; noinline ensures we do not accidentally
192          * skip over the caller by never inlining.
193          */
194         track->num_stack_entries = stack_trace_save(track->stack_entries, KFENCE_STACK_DEPTH, 1);
195         track->pid = task_pid_nr(current);
196
197         /*
198          * Pairs with READ_ONCE() in
199          *      kfence_shutdown_cache(),
200          *      kfence_handle_page_fault().
201          */
202         WRITE_ONCE(meta->state, next);
203 }
204
205 /* Write canary byte to @addr. */
206 static inline bool set_canary_byte(u8 *addr)
207 {
208         *addr = KFENCE_CANARY_PATTERN(addr);
209         return true;
210 }
211
212 /* Check canary byte at @addr. */
213 static inline bool check_canary_byte(u8 *addr)
214 {
215         if (likely(*addr == KFENCE_CANARY_PATTERN(addr)))
216                 return true;
217
218         atomic_long_inc(&counters[KFENCE_COUNTER_BUGS]);
219         kfence_report_error((unsigned long)addr, false, NULL, addr_to_metadata((unsigned long)addr),
220                             KFENCE_ERROR_CORRUPTION);
221         return false;
222 }
223
224 /* __always_inline this to ensure we won't do an indirect call to fn. */
225 static __always_inline void for_each_canary(const struct kfence_metadata *meta, bool (*fn)(u8 *))
226 {
227         const unsigned long pageaddr = ALIGN_DOWN(meta->addr, PAGE_SIZE);
228         unsigned long addr;
229
230         lockdep_assert_held(&meta->lock);
231
232         /*
233          * We'll iterate over each canary byte per-side until fn() returns
234          * false. However, we'll still iterate over the canary bytes to the
235          * right of the object even if there was an error in the canary bytes to
236          * the left of the object. Specifically, if check_canary_byte()
237          * generates an error, showing both sides might give more clues as to
238          * what the error is about when displaying which bytes were corrupted.
239          */
240
241         /* Apply to left of object. */
242         for (addr = pageaddr; addr < meta->addr; addr++) {
243                 if (!fn((u8 *)addr))
244                         break;
245         }
246
247         /* Apply to right of object. */
248         for (addr = meta->addr + meta->size; addr < pageaddr + PAGE_SIZE; addr++) {
249                 if (!fn((u8 *)addr))
250                         break;
251         }
252 }
253
254 static void *kfence_guarded_alloc(struct kmem_cache *cache, size_t size, gfp_t gfp)
255 {
256         struct kfence_metadata *meta = NULL;
257         unsigned long flags;
258         struct page *page;
259         void *addr;
260
261         /* Try to obtain a free object. */
262         raw_spin_lock_irqsave(&kfence_freelist_lock, flags);
263         if (!list_empty(&kfence_freelist)) {
264                 meta = list_entry(kfence_freelist.next, struct kfence_metadata, list);
265                 list_del_init(&meta->list);
266         }
267         raw_spin_unlock_irqrestore(&kfence_freelist_lock, flags);
268         if (!meta)
269                 return NULL;
270
271         if (unlikely(!raw_spin_trylock_irqsave(&meta->lock, flags))) {
272                 /*
273                  * This is extremely unlikely -- we are reporting on a
274                  * use-after-free, which locked meta->lock, and the reporting
275                  * code via printk calls kmalloc() which ends up in
276                  * kfence_alloc() and tries to grab the same object that we're
277                  * reporting on. While it has never been observed, lockdep does
278                  * report that there is a possibility of deadlock. Fix it by
279                  * using trylock and bailing out gracefully.
280                  */
281                 raw_spin_lock_irqsave(&kfence_freelist_lock, flags);
282                 /* Put the object back on the freelist. */
283                 list_add_tail(&meta->list, &kfence_freelist);
284                 raw_spin_unlock_irqrestore(&kfence_freelist_lock, flags);
285
286                 return NULL;
287         }
288
289         meta->addr = metadata_to_pageaddr(meta);
290         /* Unprotect if we're reusing this page. */
291         if (meta->state == KFENCE_OBJECT_FREED)
292                 kfence_unprotect(meta->addr);
293
294         /*
295          * Note: for allocations made before RNG initialization, will always
296          * return zero. We still benefit from enabling KFENCE as early as
297          * possible, even when the RNG is not yet available, as this will allow
298          * KFENCE to detect bugs due to earlier allocations. The only downside
299          * is that the out-of-bounds accesses detected are deterministic for
300          * such allocations.
301          */
302         if (prandom_u32_max(2)) {
303                 /* Allocate on the "right" side, re-calculate address. */
304                 meta->addr += PAGE_SIZE - size;
305                 meta->addr = ALIGN_DOWN(meta->addr, cache->align);
306         }
307
308         addr = (void *)meta->addr;
309
310         /* Update remaining metadata. */
311         metadata_update_state(meta, KFENCE_OBJECT_ALLOCATED);
312         /* Pairs with READ_ONCE() in kfence_shutdown_cache(). */
313         WRITE_ONCE(meta->cache, cache);
314         meta->size = size;
315         for_each_canary(meta, set_canary_byte);
316
317         /* Set required struct page fields. */
318         page = virt_to_page(meta->addr);
319         page->slab_cache = cache;
320         if (IS_ENABLED(CONFIG_SLUB))
321                 page->objects = 1;
322         if (IS_ENABLED(CONFIG_SLAB))
323                 page->s_mem = addr;
324
325         raw_spin_unlock_irqrestore(&meta->lock, flags);
326
327         /* Memory initialization. */
328
329         /*
330          * We check slab_want_init_on_alloc() ourselves, rather than letting
331          * SL*B do the initialization, as otherwise we might overwrite KFENCE's
332          * redzone.
333          */
334         if (unlikely(slab_want_init_on_alloc(gfp, cache)))
335                 memzero_explicit(addr, size);
336         if (cache->ctor)
337                 cache->ctor(addr);
338
339         if (CONFIG_KFENCE_STRESS_TEST_FAULTS && !prandom_u32_max(CONFIG_KFENCE_STRESS_TEST_FAULTS))
340                 kfence_protect(meta->addr); /* Random "faults" by protecting the object. */
341
342         atomic_long_inc(&counters[KFENCE_COUNTER_ALLOCATED]);
343         atomic_long_inc(&counters[KFENCE_COUNTER_ALLOCS]);
344
345         return addr;
346 }
347
348 static void kfence_guarded_free(void *addr, struct kfence_metadata *meta, bool zombie)
349 {
350         struct kcsan_scoped_access assert_page_exclusive;
351         unsigned long flags;
352
353         raw_spin_lock_irqsave(&meta->lock, flags);
354
355         if (meta->state != KFENCE_OBJECT_ALLOCATED || meta->addr != (unsigned long)addr) {
356                 /* Invalid or double-free, bail out. */
357                 atomic_long_inc(&counters[KFENCE_COUNTER_BUGS]);
358                 kfence_report_error((unsigned long)addr, false, NULL, meta,
359                                     KFENCE_ERROR_INVALID_FREE);
360                 raw_spin_unlock_irqrestore(&meta->lock, flags);
361                 return;
362         }
363
364         /* Detect racy use-after-free, or incorrect reallocation of this page by KFENCE. */
365         kcsan_begin_scoped_access((void *)ALIGN_DOWN((unsigned long)addr, PAGE_SIZE), PAGE_SIZE,
366                                   KCSAN_ACCESS_SCOPED | KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ASSERT,
367                                   &assert_page_exclusive);
368
369         if (CONFIG_KFENCE_STRESS_TEST_FAULTS)
370                 kfence_unprotect((unsigned long)addr); /* To check canary bytes. */
371
372         /* Restore page protection if there was an OOB access. */
373         if (meta->unprotected_page) {
374                 kfence_protect(meta->unprotected_page);
375                 meta->unprotected_page = 0;
376         }
377
378         /* Check canary bytes for memory corruption. */
379         for_each_canary(meta, check_canary_byte);
380
381         /*
382          * Clear memory if init-on-free is set. While we protect the page, the
383          * data is still there, and after a use-after-free is detected, we
384          * unprotect the page, so the data is still accessible.
385          */
386         if (!zombie && unlikely(slab_want_init_on_free(meta->cache)))
387                 memzero_explicit(addr, meta->size);
388
389         /* Mark the object as freed. */
390         metadata_update_state(meta, KFENCE_OBJECT_FREED);
391
392         raw_spin_unlock_irqrestore(&meta->lock, flags);
393
394         /* Protect to detect use-after-frees. */
395         kfence_protect((unsigned long)addr);
396
397         kcsan_end_scoped_access(&assert_page_exclusive);
398         if (!zombie) {
399                 /* Add it to the tail of the freelist for reuse. */
400                 raw_spin_lock_irqsave(&kfence_freelist_lock, flags);
401                 KFENCE_WARN_ON(!list_empty(&meta->list));
402                 list_add_tail(&meta->list, &kfence_freelist);
403                 raw_spin_unlock_irqrestore(&kfence_freelist_lock, flags);
404
405                 atomic_long_dec(&counters[KFENCE_COUNTER_ALLOCATED]);
406                 atomic_long_inc(&counters[KFENCE_COUNTER_FREES]);
407         } else {
408                 /* See kfence_shutdown_cache(). */
409                 atomic_long_inc(&counters[KFENCE_COUNTER_ZOMBIES]);
410         }
411 }
412
413 static void rcu_guarded_free(struct rcu_head *h)
414 {
415         struct kfence_metadata *meta = container_of(h, struct kfence_metadata, rcu_head);
416
417         kfence_guarded_free((void *)meta->addr, meta, false);
418 }
419
420 static bool __init kfence_init_pool(void)
421 {
422         unsigned long addr = (unsigned long)__kfence_pool;
423         struct page *pages;
424         int i;
425
426         if (!__kfence_pool)
427                 return false;
428
429         if (!arch_kfence_init_pool())
430                 goto err;
431
432         pages = virt_to_page(addr);
433
434         /*
435          * Set up object pages: they must have PG_slab set, to avoid freeing
436          * these as real pages.
437          *
438          * We also want to avoid inserting kfence_free() in the kfree()
439          * fast-path in SLUB, and therefore need to ensure kfree() correctly
440          * enters __slab_free() slow-path.
441          */
442         for (i = 0; i < KFENCE_POOL_SIZE / PAGE_SIZE; i++) {
443                 if (!i || (i % 2))
444                         continue;
445
446                 /* Verify we do not have a compound head page. */
447                 if (WARN_ON(compound_head(&pages[i]) != &pages[i]))
448                         goto err;
449
450                 __SetPageSlab(&pages[i]);
451         }
452
453         /*
454          * Protect the first 2 pages. The first page is mostly unnecessary, and
455          * merely serves as an extended guard page. However, adding one
456          * additional page in the beginning gives us an even number of pages,
457          * which simplifies the mapping of address to metadata index.
458          */
459         for (i = 0; i < 2; i++) {
460                 if (unlikely(!kfence_protect(addr)))
461                         goto err;
462
463                 addr += PAGE_SIZE;
464         }
465
466         for (i = 0; i < CONFIG_KFENCE_NUM_OBJECTS; i++) {
467                 struct kfence_metadata *meta = &kfence_metadata[i];
468
469                 /* Initialize metadata. */
470                 INIT_LIST_HEAD(&meta->list);
471                 raw_spin_lock_init(&meta->lock);
472                 meta->state = KFENCE_OBJECT_UNUSED;
473                 meta->addr = addr; /* Initialize for validation in metadata_to_pageaddr(). */
474                 list_add_tail(&meta->list, &kfence_freelist);
475
476                 /* Protect the right redzone. */
477                 if (unlikely(!kfence_protect(addr + PAGE_SIZE)))
478                         goto err;
479
480                 addr += 2 * PAGE_SIZE;
481         }
482
483         return true;
484
485 err:
486         /*
487          * Only release unprotected pages, and do not try to go back and change
488          * page attributes due to risk of failing to do so as well. If changing
489          * page attributes for some pages fails, it is very likely that it also
490          * fails for the first page, and therefore expect addr==__kfence_pool in
491          * most failure cases.
492          */
493         memblock_free_late(__pa(addr), KFENCE_POOL_SIZE - (addr - (unsigned long)__kfence_pool));
494         __kfence_pool = NULL;
495         return false;
496 }
497
498 /* === DebugFS Interface ==================================================== */
499
500 static int stats_show(struct seq_file *seq, void *v)
501 {
502         int i;
503
504         seq_printf(seq, "enabled: %i\n", READ_ONCE(kfence_enabled));
505         for (i = 0; i < KFENCE_COUNTER_COUNT; i++)
506                 seq_printf(seq, "%s: %ld\n", counter_names[i], atomic_long_read(&counters[i]));
507
508         return 0;
509 }
510 DEFINE_SHOW_ATTRIBUTE(stats);
511
512 /*
513  * debugfs seq_file operations for /sys/kernel/debug/kfence/objects.
514  * start_object() and next_object() return the object index + 1, because NULL is used
515  * to stop iteration.
516  */
517 static void *start_object(struct seq_file *seq, loff_t *pos)
518 {
519         if (*pos < CONFIG_KFENCE_NUM_OBJECTS)
520                 return (void *)((long)*pos + 1);
521         return NULL;
522 }
523
524 static void stop_object(struct seq_file *seq, void *v)
525 {
526 }
527
528 static void *next_object(struct seq_file *seq, void *v, loff_t *pos)
529 {
530         ++*pos;
531         if (*pos < CONFIG_KFENCE_NUM_OBJECTS)
532                 return (void *)((long)*pos + 1);
533         return NULL;
534 }
535
536 static int show_object(struct seq_file *seq, void *v)
537 {
538         struct kfence_metadata *meta = &kfence_metadata[(long)v - 1];
539         unsigned long flags;
540
541         raw_spin_lock_irqsave(&meta->lock, flags);
542         kfence_print_object(seq, meta);
543         raw_spin_unlock_irqrestore(&meta->lock, flags);
544         seq_puts(seq, "---------------------------------\n");
545
546         return 0;
547 }
548
549 static const struct seq_operations object_seqops = {
550         .start = start_object,
551         .next = next_object,
552         .stop = stop_object,
553         .show = show_object,
554 };
555
556 static int open_objects(struct inode *inode, struct file *file)
557 {
558         return seq_open(file, &object_seqops);
559 }
560
561 static const struct file_operations objects_fops = {
562         .open = open_objects,
563         .read = seq_read,
564         .llseek = seq_lseek,
565 };
566
567 static int __init kfence_debugfs_init(void)
568 {
569         struct dentry *kfence_dir = debugfs_create_dir("kfence", NULL);
570
571         debugfs_create_file("stats", 0444, kfence_dir, NULL, &stats_fops);
572         debugfs_create_file("objects", 0400, kfence_dir, NULL, &objects_fops);
573         return 0;
574 }
575
576 late_initcall(kfence_debugfs_init);
577
578 /* === Allocation Gate Timer ================================================ */
579
580 /*
581  * Set up delayed work, which will enable and disable the static key. We need to
582  * use a work queue (rather than a simple timer), since enabling and disabling a
583  * static key cannot be done from an interrupt.
584  *
585  * Note: Toggling a static branch currently causes IPIs, and here we'll end up
586  * with a total of 2 IPIs to all CPUs. If this ends up a problem in future (with
587  * more aggressive sampling intervals), we could get away with a variant that
588  * avoids IPIs, at the cost of not immediately capturing allocations if the
589  * instructions remain cached.
590  */
591 static struct delayed_work kfence_timer;
592 static void toggle_allocation_gate(struct work_struct *work)
593 {
594         if (!READ_ONCE(kfence_enabled))
595                 return;
596
597         /* Enable static key, and await allocation to happen. */
598         atomic_set(&kfence_allocation_gate, 0);
599 #ifdef CONFIG_KFENCE_STATIC_KEYS
600         static_branch_enable(&kfence_allocation_key);
601         /*
602          * Await an allocation. Timeout after 1 second, in case the kernel stops
603          * doing allocations, to avoid stalling this worker task for too long.
604          */
605         {
606                 unsigned long end_wait = jiffies + HZ;
607
608                 do {
609                         set_current_state(TASK_UNINTERRUPTIBLE);
610                         if (atomic_read(&kfence_allocation_gate) != 0)
611                                 break;
612                         schedule_timeout(1);
613                 } while (time_before(jiffies, end_wait));
614                 __set_current_state(TASK_RUNNING);
615         }
616         /* Disable static key and reset timer. */
617         static_branch_disable(&kfence_allocation_key);
618 #endif
619         schedule_delayed_work(&kfence_timer, msecs_to_jiffies(kfence_sample_interval));
620 }
621 static DECLARE_DELAYED_WORK(kfence_timer, toggle_allocation_gate);
622
623 /* === Public interface ===================================================== */
624
625 void __init kfence_alloc_pool(void)
626 {
627         if (!kfence_sample_interval)
628                 return;
629
630         __kfence_pool = memblock_alloc(KFENCE_POOL_SIZE, PAGE_SIZE);
631
632         if (!__kfence_pool)
633                 pr_err("failed to allocate pool\n");
634 }
635
636 void __init kfence_init(void)
637 {
638         /* Setting kfence_sample_interval to 0 on boot disables KFENCE. */
639         if (!kfence_sample_interval)
640                 return;
641
642         if (!kfence_init_pool()) {
643                 pr_err("%s failed\n", __func__);
644                 return;
645         }
646
647         WRITE_ONCE(kfence_enabled, true);
648         schedule_delayed_work(&kfence_timer, 0);
649         pr_info("initialized - using %lu bytes for %d objects at 0x%p-0x%p\n", KFENCE_POOL_SIZE,
650                 CONFIG_KFENCE_NUM_OBJECTS, (void *)__kfence_pool,
651                 (void *)(__kfence_pool + KFENCE_POOL_SIZE));
652 }
653
654 void kfence_shutdown_cache(struct kmem_cache *s)
655 {
656         unsigned long flags;
657         struct kfence_metadata *meta;
658         int i;
659
660         for (i = 0; i < CONFIG_KFENCE_NUM_OBJECTS; i++) {
661                 bool in_use;
662
663                 meta = &kfence_metadata[i];
664
665                 /*
666                  * If we observe some inconsistent cache and state pair where we
667                  * should have returned false here, cache destruction is racing
668                  * with either kmem_cache_alloc() or kmem_cache_free(). Taking
669                  * the lock will not help, as different critical section
670                  * serialization will have the same outcome.
671                  */
672                 if (READ_ONCE(meta->cache) != s ||
673                     READ_ONCE(meta->state) != KFENCE_OBJECT_ALLOCATED)
674                         continue;
675
676                 raw_spin_lock_irqsave(&meta->lock, flags);
677                 in_use = meta->cache == s && meta->state == KFENCE_OBJECT_ALLOCATED;
678                 raw_spin_unlock_irqrestore(&meta->lock, flags);
679
680                 if (in_use) {
681                         /*
682                          * This cache still has allocations, and we should not
683                          * release them back into the freelist so they can still
684                          * safely be used and retain the kernel's default
685                          * behaviour of keeping the allocations alive (leak the
686                          * cache); however, they effectively become "zombie
687                          * allocations" as the KFENCE objects are the only ones
688                          * still in use and the owning cache is being destroyed.
689                          *
690                          * We mark them freed, so that any subsequent use shows
691                          * more useful error messages that will include stack
692                          * traces of the user of the object, the original
693                          * allocation, and caller to shutdown_cache().
694                          */
695                         kfence_guarded_free((void *)meta->addr, meta, /*zombie=*/true);
696                 }
697         }
698
699         for (i = 0; i < CONFIG_KFENCE_NUM_OBJECTS; i++) {
700                 meta = &kfence_metadata[i];
701
702                 /* See above. */
703                 if (READ_ONCE(meta->cache) != s || READ_ONCE(meta->state) != KFENCE_OBJECT_FREED)
704                         continue;
705
706                 raw_spin_lock_irqsave(&meta->lock, flags);
707                 if (meta->cache == s && meta->state == KFENCE_OBJECT_FREED)
708                         meta->cache = NULL;
709                 raw_spin_unlock_irqrestore(&meta->lock, flags);
710         }
711 }
712
713 void *__kfence_alloc(struct kmem_cache *s, size_t size, gfp_t flags)
714 {
715         /*
716          * allocation_gate only needs to become non-zero, so it doesn't make
717          * sense to continue writing to it and pay the associated contention
718          * cost, in case we have a large number of concurrent allocations.
719          */
720         if (atomic_read(&kfence_allocation_gate) || atomic_inc_return(&kfence_allocation_gate) > 1)
721                 return NULL;
722
723         if (!READ_ONCE(kfence_enabled))
724                 return NULL;
725
726         if (size > PAGE_SIZE)
727                 return NULL;
728
729         return kfence_guarded_alloc(s, size, flags);
730 }
731
732 size_t kfence_ksize(const void *addr)
733 {
734         const struct kfence_metadata *meta = addr_to_metadata((unsigned long)addr);
735
736         /*
737          * Read locklessly -- if there is a race with __kfence_alloc(), this is
738          * either a use-after-free or invalid access.
739          */
740         return meta ? meta->size : 0;
741 }
742
743 void *kfence_object_start(const void *addr)
744 {
745         const struct kfence_metadata *meta = addr_to_metadata((unsigned long)addr);
746
747         /*
748          * Read locklessly -- if there is a race with __kfence_alloc(), this is
749          * either a use-after-free or invalid access.
750          */
751         return meta ? (void *)meta->addr : NULL;
752 }
753
754 void __kfence_free(void *addr)
755 {
756         struct kfence_metadata *meta = addr_to_metadata((unsigned long)addr);
757
758         /*
759          * If the objects of the cache are SLAB_TYPESAFE_BY_RCU, defer freeing
760          * the object, as the object page may be recycled for other-typed
761          * objects once it has been freed. meta->cache may be NULL if the cache
762          * was destroyed.
763          */
764         if (unlikely(meta->cache && (meta->cache->flags & SLAB_TYPESAFE_BY_RCU)))
765                 call_rcu(&meta->rcu_head, rcu_guarded_free);
766         else
767                 kfence_guarded_free(addr, meta, false);
768 }
769
770 bool kfence_handle_page_fault(unsigned long addr, bool is_write, struct pt_regs *regs)
771 {
772         const int page_index = (addr - (unsigned long)__kfence_pool) / PAGE_SIZE;
773         struct kfence_metadata *to_report = NULL;
774         enum kfence_error_type error_type;
775         unsigned long flags;
776
777         if (!is_kfence_address((void *)addr))
778                 return false;
779
780         if (!READ_ONCE(kfence_enabled)) /* If disabled at runtime ... */
781                 return kfence_unprotect(addr); /* ... unprotect and proceed. */
782
783         atomic_long_inc(&counters[KFENCE_COUNTER_BUGS]);
784
785         if (page_index % 2) {
786                 /* This is a redzone, report a buffer overflow. */
787                 struct kfence_metadata *meta;
788                 int distance = 0;
789
790                 meta = addr_to_metadata(addr - PAGE_SIZE);
791                 if (meta && READ_ONCE(meta->state) == KFENCE_OBJECT_ALLOCATED) {
792                         to_report = meta;
793                         /* Data race ok; distance calculation approximate. */
794                         distance = addr - data_race(meta->addr + meta->size);
795                 }
796
797                 meta = addr_to_metadata(addr + PAGE_SIZE);
798                 if (meta && READ_ONCE(meta->state) == KFENCE_OBJECT_ALLOCATED) {
799                         /* Data race ok; distance calculation approximate. */
800                         if (!to_report || distance > data_race(meta->addr) - addr)
801                                 to_report = meta;
802                 }
803
804                 if (!to_report)
805                         goto out;
806
807                 raw_spin_lock_irqsave(&to_report->lock, flags);
808                 to_report->unprotected_page = addr;
809                 error_type = KFENCE_ERROR_OOB;
810
811                 /*
812                  * If the object was freed before we took the look we can still
813                  * report this as an OOB -- the report will simply show the
814                  * stacktrace of the free as well.
815                  */
816         } else {
817                 to_report = addr_to_metadata(addr);
818                 if (!to_report)
819                         goto out;
820
821                 raw_spin_lock_irqsave(&to_report->lock, flags);
822                 error_type = KFENCE_ERROR_UAF;
823                 /*
824                  * We may race with __kfence_alloc(), and it is possible that a
825                  * freed object may be reallocated. We simply report this as a
826                  * use-after-free, with the stack trace showing the place where
827                  * the object was re-allocated.
828                  */
829         }
830
831 out:
832         if (to_report) {
833                 kfence_report_error(addr, is_write, regs, to_report, error_type);
834                 raw_spin_unlock_irqrestore(&to_report->lock, flags);
835         } else {
836                 /* This may be a UAF or OOB access, but we can't be sure. */
837                 kfence_report_error(addr, is_write, regs, NULL, KFENCE_ERROR_INVALID);
838         }
839
840         return kfence_unprotect(addr); /* Unprotect and let access proceed. */
841 }