Merge tag 'amd-drm-next-5.19-2022-04-29' of https://gitlab.freedesktop.org/agd5f...
[linux-2.6-microblaze.git] / mm / kasan / shadow.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * This file contains KASAN runtime code that manages shadow memory for
4  * generic and software tag-based KASAN modes.
5  *
6  * Copyright (c) 2014 Samsung Electronics Co., Ltd.
7  * Author: Andrey Ryabinin <ryabinin.a.a@gmail.com>
8  *
9  * Some code borrowed from https://github.com/xairy/kasan-prototype by
10  *        Andrey Konovalov <andreyknvl@gmail.com>
11  */
12
13 #include <linux/init.h>
14 #include <linux/kasan.h>
15 #include <linux/kernel.h>
16 #include <linux/kfence.h>
17 #include <linux/kmemleak.h>
18 #include <linux/memory.h>
19 #include <linux/mm.h>
20 #include <linux/string.h>
21 #include <linux/types.h>
22 #include <linux/vmalloc.h>
23
24 #include <asm/cacheflush.h>
25 #include <asm/tlbflush.h>
26
27 #include "kasan.h"
28
29 bool __kasan_check_read(const volatile void *p, unsigned int size)
30 {
31         return kasan_check_range((unsigned long)p, size, false, _RET_IP_);
32 }
33 EXPORT_SYMBOL(__kasan_check_read);
34
35 bool __kasan_check_write(const volatile void *p, unsigned int size)
36 {
37         return kasan_check_range((unsigned long)p, size, true, _RET_IP_);
38 }
39 EXPORT_SYMBOL(__kasan_check_write);
40
41 #undef memset
42 void *memset(void *addr, int c, size_t len)
43 {
44         if (!kasan_check_range((unsigned long)addr, len, true, _RET_IP_))
45                 return NULL;
46
47         return __memset(addr, c, len);
48 }
49
50 #ifdef __HAVE_ARCH_MEMMOVE
51 #undef memmove
52 void *memmove(void *dest, const void *src, size_t len)
53 {
54         if (!kasan_check_range((unsigned long)src, len, false, _RET_IP_) ||
55             !kasan_check_range((unsigned long)dest, len, true, _RET_IP_))
56                 return NULL;
57
58         return __memmove(dest, src, len);
59 }
60 #endif
61
62 #undef memcpy
63 void *memcpy(void *dest, const void *src, size_t len)
64 {
65         if (!kasan_check_range((unsigned long)src, len, false, _RET_IP_) ||
66             !kasan_check_range((unsigned long)dest, len, true, _RET_IP_))
67                 return NULL;
68
69         return __memcpy(dest, src, len);
70 }
71
72 void kasan_poison(const void *addr, size_t size, u8 value, bool init)
73 {
74         void *shadow_start, *shadow_end;
75
76         if (!kasan_arch_is_ready())
77                 return;
78
79         /*
80          * Perform shadow offset calculation based on untagged address, as
81          * some of the callers (e.g. kasan_poison_object_data) pass tagged
82          * addresses to this function.
83          */
84         addr = kasan_reset_tag(addr);
85
86         /* Skip KFENCE memory if called explicitly outside of sl*b. */
87         if (is_kfence_address(addr))
88                 return;
89
90         if (WARN_ON((unsigned long)addr & KASAN_GRANULE_MASK))
91                 return;
92         if (WARN_ON(size & KASAN_GRANULE_MASK))
93                 return;
94
95         shadow_start = kasan_mem_to_shadow(addr);
96         shadow_end = kasan_mem_to_shadow(addr + size);
97
98         __memset(shadow_start, value, shadow_end - shadow_start);
99 }
100 EXPORT_SYMBOL(kasan_poison);
101
102 #ifdef CONFIG_KASAN_GENERIC
103 void kasan_poison_last_granule(const void *addr, size_t size)
104 {
105         if (!kasan_arch_is_ready())
106                 return;
107
108         if (size & KASAN_GRANULE_MASK) {
109                 u8 *shadow = (u8 *)kasan_mem_to_shadow(addr + size);
110                 *shadow = size & KASAN_GRANULE_MASK;
111         }
112 }
113 #endif
114
115 void kasan_unpoison(const void *addr, size_t size, bool init)
116 {
117         u8 tag = get_tag(addr);
118
119         /*
120          * Perform shadow offset calculation based on untagged address, as
121          * some of the callers (e.g. kasan_unpoison_object_data) pass tagged
122          * addresses to this function.
123          */
124         addr = kasan_reset_tag(addr);
125
126         /*
127          * Skip KFENCE memory if called explicitly outside of sl*b. Also note
128          * that calls to ksize(), where size is not a multiple of machine-word
129          * size, would otherwise poison the invalid portion of the word.
130          */
131         if (is_kfence_address(addr))
132                 return;
133
134         if (WARN_ON((unsigned long)addr & KASAN_GRANULE_MASK))
135                 return;
136
137         /* Unpoison all granules that cover the object. */
138         kasan_poison(addr, round_up(size, KASAN_GRANULE_SIZE), tag, false);
139
140         /* Partially poison the last granule for the generic mode. */
141         if (IS_ENABLED(CONFIG_KASAN_GENERIC))
142                 kasan_poison_last_granule(addr, size);
143 }
144
145 #ifdef CONFIG_MEMORY_HOTPLUG
146 static bool shadow_mapped(unsigned long addr)
147 {
148         pgd_t *pgd = pgd_offset_k(addr);
149         p4d_t *p4d;
150         pud_t *pud;
151         pmd_t *pmd;
152         pte_t *pte;
153
154         if (pgd_none(*pgd))
155                 return false;
156         p4d = p4d_offset(pgd, addr);
157         if (p4d_none(*p4d))
158                 return false;
159         pud = pud_offset(p4d, addr);
160         if (pud_none(*pud))
161                 return false;
162
163         /*
164          * We can't use pud_large() or pud_huge(), the first one is
165          * arch-specific, the last one depends on HUGETLB_PAGE.  So let's abuse
166          * pud_bad(), if pud is bad then it's bad because it's huge.
167          */
168         if (pud_bad(*pud))
169                 return true;
170         pmd = pmd_offset(pud, addr);
171         if (pmd_none(*pmd))
172                 return false;
173
174         if (pmd_bad(*pmd))
175                 return true;
176         pte = pte_offset_kernel(pmd, addr);
177         return !pte_none(*pte);
178 }
179
180 static int __meminit kasan_mem_notifier(struct notifier_block *nb,
181                         unsigned long action, void *data)
182 {
183         struct memory_notify *mem_data = data;
184         unsigned long nr_shadow_pages, start_kaddr, shadow_start;
185         unsigned long shadow_end, shadow_size;
186
187         nr_shadow_pages = mem_data->nr_pages >> KASAN_SHADOW_SCALE_SHIFT;
188         start_kaddr = (unsigned long)pfn_to_kaddr(mem_data->start_pfn);
189         shadow_start = (unsigned long)kasan_mem_to_shadow((void *)start_kaddr);
190         shadow_size = nr_shadow_pages << PAGE_SHIFT;
191         shadow_end = shadow_start + shadow_size;
192
193         if (WARN_ON(mem_data->nr_pages % KASAN_GRANULE_SIZE) ||
194                 WARN_ON(start_kaddr % KASAN_MEMORY_PER_SHADOW_PAGE))
195                 return NOTIFY_BAD;
196
197         switch (action) {
198         case MEM_GOING_ONLINE: {
199                 void *ret;
200
201                 /*
202                  * If shadow is mapped already than it must have been mapped
203                  * during the boot. This could happen if we onlining previously
204                  * offlined memory.
205                  */
206                 if (shadow_mapped(shadow_start))
207                         return NOTIFY_OK;
208
209                 ret = __vmalloc_node_range(shadow_size, PAGE_SIZE, shadow_start,
210                                         shadow_end, GFP_KERNEL,
211                                         PAGE_KERNEL, VM_NO_GUARD,
212                                         pfn_to_nid(mem_data->start_pfn),
213                                         __builtin_return_address(0));
214                 if (!ret)
215                         return NOTIFY_BAD;
216
217                 kmemleak_ignore(ret);
218                 return NOTIFY_OK;
219         }
220         case MEM_CANCEL_ONLINE:
221         case MEM_OFFLINE: {
222                 struct vm_struct *vm;
223
224                 /*
225                  * shadow_start was either mapped during boot by kasan_init()
226                  * or during memory online by __vmalloc_node_range().
227                  * In the latter case we can use vfree() to free shadow.
228                  * Non-NULL result of the find_vm_area() will tell us if
229                  * that was the second case.
230                  *
231                  * Currently it's not possible to free shadow mapped
232                  * during boot by kasan_init(). It's because the code
233                  * to do that hasn't been written yet. So we'll just
234                  * leak the memory.
235                  */
236                 vm = find_vm_area((void *)shadow_start);
237                 if (vm)
238                         vfree((void *)shadow_start);
239         }
240         }
241
242         return NOTIFY_OK;
243 }
244
245 static int __init kasan_memhotplug_init(void)
246 {
247         hotplug_memory_notifier(kasan_mem_notifier, 0);
248
249         return 0;
250 }
251
252 core_initcall(kasan_memhotplug_init);
253 #endif
254
255 #ifdef CONFIG_KASAN_VMALLOC
256
257 void __init __weak kasan_populate_early_vm_area_shadow(void *start,
258                                                        unsigned long size)
259 {
260 }
261
262 static int kasan_populate_vmalloc_pte(pte_t *ptep, unsigned long addr,
263                                       void *unused)
264 {
265         unsigned long page;
266         pte_t pte;
267
268         if (likely(!pte_none(*ptep)))
269                 return 0;
270
271         page = __get_free_page(GFP_KERNEL);
272         if (!page)
273                 return -ENOMEM;
274
275         memset((void *)page, KASAN_VMALLOC_INVALID, PAGE_SIZE);
276         pte = pfn_pte(PFN_DOWN(__pa(page)), PAGE_KERNEL);
277
278         spin_lock(&init_mm.page_table_lock);
279         if (likely(pte_none(*ptep))) {
280                 set_pte_at(&init_mm, addr, ptep, pte);
281                 page = 0;
282         }
283         spin_unlock(&init_mm.page_table_lock);
284         if (page)
285                 free_page(page);
286         return 0;
287 }
288
289 int kasan_populate_vmalloc(unsigned long addr, unsigned long size)
290 {
291         unsigned long shadow_start, shadow_end;
292         int ret;
293
294         if (!is_vmalloc_or_module_addr((void *)addr))
295                 return 0;
296
297         shadow_start = (unsigned long)kasan_mem_to_shadow((void *)addr);
298         shadow_start = ALIGN_DOWN(shadow_start, PAGE_SIZE);
299         shadow_end = (unsigned long)kasan_mem_to_shadow((void *)addr + size);
300         shadow_end = ALIGN(shadow_end, PAGE_SIZE);
301
302         ret = apply_to_page_range(&init_mm, shadow_start,
303                                   shadow_end - shadow_start,
304                                   kasan_populate_vmalloc_pte, NULL);
305         if (ret)
306                 return ret;
307
308         flush_cache_vmap(shadow_start, shadow_end);
309
310         /*
311          * We need to be careful about inter-cpu effects here. Consider:
312          *
313          *   CPU#0                                CPU#1
314          * WRITE_ONCE(p, vmalloc(100));         while (x = READ_ONCE(p)) ;
315          *                                      p[99] = 1;
316          *
317          * With compiler instrumentation, that ends up looking like this:
318          *
319          *   CPU#0                                CPU#1
320          * // vmalloc() allocates memory
321          * // let a = area->addr
322          * // we reach kasan_populate_vmalloc
323          * // and call kasan_unpoison:
324          * STORE shadow(a), unpoison_val
325          * ...
326          * STORE shadow(a+99), unpoison_val     x = LOAD p
327          * // rest of vmalloc process           <data dependency>
328          * STORE p, a                           LOAD shadow(x+99)
329          *
330          * If there is no barrier between the end of unpoisoning the shadow
331          * and the store of the result to p, the stores could be committed
332          * in a different order by CPU#0, and CPU#1 could erroneously observe
333          * poison in the shadow.
334          *
335          * We need some sort of barrier between the stores.
336          *
337          * In the vmalloc() case, this is provided by a smp_wmb() in
338          * clear_vm_uninitialized_flag(). In the per-cpu allocator and in
339          * get_vm_area() and friends, the caller gets shadow allocated but
340          * doesn't have any pages mapped into the virtual address space that
341          * has been reserved. Mapping those pages in will involve taking and
342          * releasing a page-table lock, which will provide the barrier.
343          */
344
345         return 0;
346 }
347
348 static int kasan_depopulate_vmalloc_pte(pte_t *ptep, unsigned long addr,
349                                         void *unused)
350 {
351         unsigned long page;
352
353         page = (unsigned long)__va(pte_pfn(*ptep) << PAGE_SHIFT);
354
355         spin_lock(&init_mm.page_table_lock);
356
357         if (likely(!pte_none(*ptep))) {
358                 pte_clear(&init_mm, addr, ptep);
359                 free_page(page);
360         }
361         spin_unlock(&init_mm.page_table_lock);
362
363         return 0;
364 }
365
366 /*
367  * Release the backing for the vmalloc region [start, end), which
368  * lies within the free region [free_region_start, free_region_end).
369  *
370  * This can be run lazily, long after the region was freed. It runs
371  * under vmap_area_lock, so it's not safe to interact with the vmalloc/vmap
372  * infrastructure.
373  *
374  * How does this work?
375  * -------------------
376  *
377  * We have a region that is page aligned, labeled as A.
378  * That might not map onto the shadow in a way that is page-aligned:
379  *
380  *                    start                     end
381  *                    v                         v
382  * |????????|????????|AAAAAAAA|AA....AA|AAAAAAAA|????????| < vmalloc
383  *  -------- -------- --------          -------- --------
384  *      |        |       |                 |        |
385  *      |        |       |         /-------/        |
386  *      \-------\|/------/         |/---------------/
387  *              |||                ||
388  *             |??AAAAAA|AAAAAAAA|AA??????|                < shadow
389  *                 (1)      (2)      (3)
390  *
391  * First we align the start upwards and the end downwards, so that the
392  * shadow of the region aligns with shadow page boundaries. In the
393  * example, this gives us the shadow page (2). This is the shadow entirely
394  * covered by this allocation.
395  *
396  * Then we have the tricky bits. We want to know if we can free the
397  * partially covered shadow pages - (1) and (3) in the example. For this,
398  * we are given the start and end of the free region that contains this
399  * allocation. Extending our previous example, we could have:
400  *
401  *  free_region_start                                    free_region_end
402  *  |                 start                     end      |
403  *  v                 v                         v        v
404  * |FFFFFFFF|FFFFFFFF|AAAAAAAA|AA....AA|AAAAAAAA|FFFFFFFF| < vmalloc
405  *  -------- -------- --------          -------- --------
406  *      |        |       |                 |        |
407  *      |        |       |         /-------/        |
408  *      \-------\|/------/         |/---------------/
409  *              |||                ||
410  *             |FFAAAAAA|AAAAAAAA|AAF?????|                < shadow
411  *                 (1)      (2)      (3)
412  *
413  * Once again, we align the start of the free region up, and the end of
414  * the free region down so that the shadow is page aligned. So we can free
415  * page (1) - we know no allocation currently uses anything in that page,
416  * because all of it is in the vmalloc free region. But we cannot free
417  * page (3), because we can't be sure that the rest of it is unused.
418  *
419  * We only consider pages that contain part of the original region for
420  * freeing: we don't try to free other pages from the free region or we'd
421  * end up trying to free huge chunks of virtual address space.
422  *
423  * Concurrency
424  * -----------
425  *
426  * How do we know that we're not freeing a page that is simultaneously
427  * being used for a fresh allocation in kasan_populate_vmalloc(_pte)?
428  *
429  * We _can_ have kasan_release_vmalloc and kasan_populate_vmalloc running
430  * at the same time. While we run under free_vmap_area_lock, the population
431  * code does not.
432  *
433  * free_vmap_area_lock instead operates to ensure that the larger range
434  * [free_region_start, free_region_end) is safe: because __alloc_vmap_area and
435  * the per-cpu region-finding algorithm both run under free_vmap_area_lock,
436  * no space identified as free will become used while we are running. This
437  * means that so long as we are careful with alignment and only free shadow
438  * pages entirely covered by the free region, we will not run in to any
439  * trouble - any simultaneous allocations will be for disjoint regions.
440  */
441 void kasan_release_vmalloc(unsigned long start, unsigned long end,
442                            unsigned long free_region_start,
443                            unsigned long free_region_end)
444 {
445         void *shadow_start, *shadow_end;
446         unsigned long region_start, region_end;
447         unsigned long size;
448
449         region_start = ALIGN(start, KASAN_MEMORY_PER_SHADOW_PAGE);
450         region_end = ALIGN_DOWN(end, KASAN_MEMORY_PER_SHADOW_PAGE);
451
452         free_region_start = ALIGN(free_region_start, KASAN_MEMORY_PER_SHADOW_PAGE);
453
454         if (start != region_start &&
455             free_region_start < region_start)
456                 region_start -= KASAN_MEMORY_PER_SHADOW_PAGE;
457
458         free_region_end = ALIGN_DOWN(free_region_end, KASAN_MEMORY_PER_SHADOW_PAGE);
459
460         if (end != region_end &&
461             free_region_end > region_end)
462                 region_end += KASAN_MEMORY_PER_SHADOW_PAGE;
463
464         shadow_start = kasan_mem_to_shadow((void *)region_start);
465         shadow_end = kasan_mem_to_shadow((void *)region_end);
466
467         if (shadow_end > shadow_start) {
468                 size = shadow_end - shadow_start;
469                 apply_to_existing_page_range(&init_mm,
470                                              (unsigned long)shadow_start,
471                                              size, kasan_depopulate_vmalloc_pte,
472                                              NULL);
473                 flush_tlb_kernel_range((unsigned long)shadow_start,
474                                        (unsigned long)shadow_end);
475         }
476 }
477
478 void *__kasan_unpoison_vmalloc(const void *start, unsigned long size,
479                                kasan_vmalloc_flags_t flags)
480 {
481         /*
482          * Software KASAN modes unpoison both VM_ALLOC and non-VM_ALLOC
483          * mappings, so the KASAN_VMALLOC_VM_ALLOC flag is ignored.
484          * Software KASAN modes can't optimize zeroing memory by combining it
485          * with setting memory tags, so the KASAN_VMALLOC_INIT flag is ignored.
486          */
487
488         if (!is_vmalloc_or_module_addr(start))
489                 return (void *)start;
490
491         /*
492          * Don't tag executable memory with the tag-based mode.
493          * The kernel doesn't tolerate having the PC register tagged.
494          */
495         if (IS_ENABLED(CONFIG_KASAN_SW_TAGS) &&
496             !(flags & KASAN_VMALLOC_PROT_NORMAL))
497                 return (void *)start;
498
499         start = set_tag(start, kasan_random_tag());
500         kasan_unpoison(start, size, false);
501         return (void *)start;
502 }
503
504 /*
505  * Poison the shadow for a vmalloc region. Called as part of the
506  * freeing process at the time the region is freed.
507  */
508 void __kasan_poison_vmalloc(const void *start, unsigned long size)
509 {
510         if (!is_vmalloc_or_module_addr(start))
511                 return;
512
513         size = round_up(size, KASAN_GRANULE_SIZE);
514         kasan_poison(start, size, KASAN_VMALLOC_INVALID, false);
515 }
516
517 #else /* CONFIG_KASAN_VMALLOC */
518
519 int kasan_alloc_module_shadow(void *addr, size_t size, gfp_t gfp_mask)
520 {
521         void *ret;
522         size_t scaled_size;
523         size_t shadow_size;
524         unsigned long shadow_start;
525
526         shadow_start = (unsigned long)kasan_mem_to_shadow(addr);
527         scaled_size = (size + KASAN_GRANULE_SIZE - 1) >>
528                                 KASAN_SHADOW_SCALE_SHIFT;
529         shadow_size = round_up(scaled_size, PAGE_SIZE);
530
531         if (WARN_ON(!PAGE_ALIGNED(shadow_start)))
532                 return -EINVAL;
533
534         ret = __vmalloc_node_range(shadow_size, 1, shadow_start,
535                         shadow_start + shadow_size,
536                         GFP_KERNEL,
537                         PAGE_KERNEL, VM_NO_GUARD, NUMA_NO_NODE,
538                         __builtin_return_address(0));
539
540         if (ret) {
541                 struct vm_struct *vm = find_vm_area(addr);
542                 __memset(ret, KASAN_SHADOW_INIT, shadow_size);
543                 vm->flags |= VM_KASAN;
544                 kmemleak_ignore(ret);
545
546                 if (vm->flags & VM_DEFER_KMEMLEAK)
547                         kmemleak_vmalloc(vm, size, gfp_mask);
548
549                 return 0;
550         }
551
552         return -ENOMEM;
553 }
554
555 void kasan_free_module_shadow(const struct vm_struct *vm)
556 {
557         if (vm->flags & VM_KASAN)
558                 vfree(kasan_mem_to_shadow(vm->addr));
559 }
560
561 #endif