mm/zsmalloc.c: use page_private() to access page->private
[linux-2.6-microblaze.git] / mm / kasan / shadow.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * This file contains KASAN runtime code that manages shadow memory for
4  * generic and software tag-based KASAN modes.
5  *
6  * Copyright (c) 2014 Samsung Electronics Co., Ltd.
7  * Author: Andrey Ryabinin <ryabinin.a.a@gmail.com>
8  *
9  * Some code borrowed from https://github.com/xairy/kasan-prototype by
10  *        Andrey Konovalov <andreyknvl@gmail.com>
11  */
12
13 #include <linux/init.h>
14 #include <linux/kasan.h>
15 #include <linux/kernel.h>
16 #include <linux/kmemleak.h>
17 #include <linux/memory.h>
18 #include <linux/mm.h>
19 #include <linux/string.h>
20 #include <linux/types.h>
21 #include <linux/vmalloc.h>
22
23 #include <asm/cacheflush.h>
24 #include <asm/tlbflush.h>
25
26 #include "kasan.h"
27
28 bool __kasan_check_read(const volatile void *p, unsigned int size)
29 {
30         return kasan_check_range((unsigned long)p, size, false, _RET_IP_);
31 }
32 EXPORT_SYMBOL(__kasan_check_read);
33
34 bool __kasan_check_write(const volatile void *p, unsigned int size)
35 {
36         return kasan_check_range((unsigned long)p, size, true, _RET_IP_);
37 }
38 EXPORT_SYMBOL(__kasan_check_write);
39
40 #undef memset
41 void *memset(void *addr, int c, size_t len)
42 {
43         if (!kasan_check_range((unsigned long)addr, len, true, _RET_IP_))
44                 return NULL;
45
46         return __memset(addr, c, len);
47 }
48
49 #ifdef __HAVE_ARCH_MEMMOVE
50 #undef memmove
51 void *memmove(void *dest, const void *src, size_t len)
52 {
53         if (!kasan_check_range((unsigned long)src, len, false, _RET_IP_) ||
54             !kasan_check_range((unsigned long)dest, len, true, _RET_IP_))
55                 return NULL;
56
57         return __memmove(dest, src, len);
58 }
59 #endif
60
61 #undef memcpy
62 void *memcpy(void *dest, const void *src, size_t len)
63 {
64         if (!kasan_check_range((unsigned long)src, len, false, _RET_IP_) ||
65             !kasan_check_range((unsigned long)dest, len, true, _RET_IP_))
66                 return NULL;
67
68         return __memcpy(dest, src, len);
69 }
70
71 /*
72  * Poisons the shadow memory for 'size' bytes starting from 'addr'.
73  * Memory addresses should be aligned to KASAN_GRANULE_SIZE.
74  */
75 void kasan_poison(const void *address, size_t size, u8 value)
76 {
77         void *shadow_start, *shadow_end;
78
79         /*
80          * Perform shadow offset calculation based on untagged address, as
81          * some of the callers (e.g. kasan_poison_object_data) pass tagged
82          * addresses to this function.
83          */
84         address = kasan_reset_tag(address);
85         size = round_up(size, KASAN_GRANULE_SIZE);
86
87         shadow_start = kasan_mem_to_shadow(address);
88         shadow_end = kasan_mem_to_shadow(address + size);
89
90         __memset(shadow_start, value, shadow_end - shadow_start);
91 }
92 EXPORT_SYMBOL(kasan_poison);
93
94 void kasan_unpoison(const void *address, size_t size)
95 {
96         u8 tag = get_tag(address);
97
98         /*
99          * Perform shadow offset calculation based on untagged address, as
100          * some of the callers (e.g. kasan_unpoison_object_data) pass tagged
101          * addresses to this function.
102          */
103         address = kasan_reset_tag(address);
104
105         kasan_poison(address, size, tag);
106
107         if (size & KASAN_GRANULE_MASK) {
108                 u8 *shadow = (u8 *)kasan_mem_to_shadow(address + size);
109
110                 if (IS_ENABLED(CONFIG_KASAN_SW_TAGS))
111                         *shadow = tag;
112                 else /* CONFIG_KASAN_GENERIC */
113                         *shadow = size & KASAN_GRANULE_MASK;
114         }
115 }
116
117 #ifdef CONFIG_MEMORY_HOTPLUG
118 static bool shadow_mapped(unsigned long addr)
119 {
120         pgd_t *pgd = pgd_offset_k(addr);
121         p4d_t *p4d;
122         pud_t *pud;
123         pmd_t *pmd;
124         pte_t *pte;
125
126         if (pgd_none(*pgd))
127                 return false;
128         p4d = p4d_offset(pgd, addr);
129         if (p4d_none(*p4d))
130                 return false;
131         pud = pud_offset(p4d, addr);
132         if (pud_none(*pud))
133                 return false;
134
135         /*
136          * We can't use pud_large() or pud_huge(), the first one is
137          * arch-specific, the last one depends on HUGETLB_PAGE.  So let's abuse
138          * pud_bad(), if pud is bad then it's bad because it's huge.
139          */
140         if (pud_bad(*pud))
141                 return true;
142         pmd = pmd_offset(pud, addr);
143         if (pmd_none(*pmd))
144                 return false;
145
146         if (pmd_bad(*pmd))
147                 return true;
148         pte = pte_offset_kernel(pmd, addr);
149         return !pte_none(*pte);
150 }
151
152 static int __meminit kasan_mem_notifier(struct notifier_block *nb,
153                         unsigned long action, void *data)
154 {
155         struct memory_notify *mem_data = data;
156         unsigned long nr_shadow_pages, start_kaddr, shadow_start;
157         unsigned long shadow_end, shadow_size;
158
159         nr_shadow_pages = mem_data->nr_pages >> KASAN_SHADOW_SCALE_SHIFT;
160         start_kaddr = (unsigned long)pfn_to_kaddr(mem_data->start_pfn);
161         shadow_start = (unsigned long)kasan_mem_to_shadow((void *)start_kaddr);
162         shadow_size = nr_shadow_pages << PAGE_SHIFT;
163         shadow_end = shadow_start + shadow_size;
164
165         if (WARN_ON(mem_data->nr_pages % KASAN_GRANULE_SIZE) ||
166                 WARN_ON(start_kaddr % KASAN_MEMORY_PER_SHADOW_PAGE))
167                 return NOTIFY_BAD;
168
169         switch (action) {
170         case MEM_GOING_ONLINE: {
171                 void *ret;
172
173                 /*
174                  * If shadow is mapped already than it must have been mapped
175                  * during the boot. This could happen if we onlining previously
176                  * offlined memory.
177                  */
178                 if (shadow_mapped(shadow_start))
179                         return NOTIFY_OK;
180
181                 ret = __vmalloc_node_range(shadow_size, PAGE_SIZE, shadow_start,
182                                         shadow_end, GFP_KERNEL,
183                                         PAGE_KERNEL, VM_NO_GUARD,
184                                         pfn_to_nid(mem_data->start_pfn),
185                                         __builtin_return_address(0));
186                 if (!ret)
187                         return NOTIFY_BAD;
188
189                 kmemleak_ignore(ret);
190                 return NOTIFY_OK;
191         }
192         case MEM_CANCEL_ONLINE:
193         case MEM_OFFLINE: {
194                 struct vm_struct *vm;
195
196                 /*
197                  * shadow_start was either mapped during boot by kasan_init()
198                  * or during memory online by __vmalloc_node_range().
199                  * In the latter case we can use vfree() to free shadow.
200                  * Non-NULL result of the find_vm_area() will tell us if
201                  * that was the second case.
202                  *
203                  * Currently it's not possible to free shadow mapped
204                  * during boot by kasan_init(). It's because the code
205                  * to do that hasn't been written yet. So we'll just
206                  * leak the memory.
207                  */
208                 vm = find_vm_area((void *)shadow_start);
209                 if (vm)
210                         vfree((void *)shadow_start);
211         }
212         }
213
214         return NOTIFY_OK;
215 }
216
217 static int __init kasan_memhotplug_init(void)
218 {
219         hotplug_memory_notifier(kasan_mem_notifier, 0);
220
221         return 0;
222 }
223
224 core_initcall(kasan_memhotplug_init);
225 #endif
226
227 #ifdef CONFIG_KASAN_VMALLOC
228
229 static int kasan_populate_vmalloc_pte(pte_t *ptep, unsigned long addr,
230                                       void *unused)
231 {
232         unsigned long page;
233         pte_t pte;
234
235         if (likely(!pte_none(*ptep)))
236                 return 0;
237
238         page = __get_free_page(GFP_KERNEL);
239         if (!page)
240                 return -ENOMEM;
241
242         memset((void *)page, KASAN_VMALLOC_INVALID, PAGE_SIZE);
243         pte = pfn_pte(PFN_DOWN(__pa(page)), PAGE_KERNEL);
244
245         spin_lock(&init_mm.page_table_lock);
246         if (likely(pte_none(*ptep))) {
247                 set_pte_at(&init_mm, addr, ptep, pte);
248                 page = 0;
249         }
250         spin_unlock(&init_mm.page_table_lock);
251         if (page)
252                 free_page(page);
253         return 0;
254 }
255
256 int kasan_populate_vmalloc(unsigned long addr, unsigned long size)
257 {
258         unsigned long shadow_start, shadow_end;
259         int ret;
260
261         if (!is_vmalloc_or_module_addr((void *)addr))
262                 return 0;
263
264         shadow_start = (unsigned long)kasan_mem_to_shadow((void *)addr);
265         shadow_start = ALIGN_DOWN(shadow_start, PAGE_SIZE);
266         shadow_end = (unsigned long)kasan_mem_to_shadow((void *)addr + size);
267         shadow_end = ALIGN(shadow_end, PAGE_SIZE);
268
269         ret = apply_to_page_range(&init_mm, shadow_start,
270                                   shadow_end - shadow_start,
271                                   kasan_populate_vmalloc_pte, NULL);
272         if (ret)
273                 return ret;
274
275         flush_cache_vmap(shadow_start, shadow_end);
276
277         /*
278          * We need to be careful about inter-cpu effects here. Consider:
279          *
280          *   CPU#0                                CPU#1
281          * WRITE_ONCE(p, vmalloc(100));         while (x = READ_ONCE(p)) ;
282          *                                      p[99] = 1;
283          *
284          * With compiler instrumentation, that ends up looking like this:
285          *
286          *   CPU#0                                CPU#1
287          * // vmalloc() allocates memory
288          * // let a = area->addr
289          * // we reach kasan_populate_vmalloc
290          * // and call kasan_unpoison:
291          * STORE shadow(a), unpoison_val
292          * ...
293          * STORE shadow(a+99), unpoison_val     x = LOAD p
294          * // rest of vmalloc process           <data dependency>
295          * STORE p, a                           LOAD shadow(x+99)
296          *
297          * If there is no barrier between the end of unpoisioning the shadow
298          * and the store of the result to p, the stores could be committed
299          * in a different order by CPU#0, and CPU#1 could erroneously observe
300          * poison in the shadow.
301          *
302          * We need some sort of barrier between the stores.
303          *
304          * In the vmalloc() case, this is provided by a smp_wmb() in
305          * clear_vm_uninitialized_flag(). In the per-cpu allocator and in
306          * get_vm_area() and friends, the caller gets shadow allocated but
307          * doesn't have any pages mapped into the virtual address space that
308          * has been reserved. Mapping those pages in will involve taking and
309          * releasing a page-table lock, which will provide the barrier.
310          */
311
312         return 0;
313 }
314
315 /*
316  * Poison the shadow for a vmalloc region. Called as part of the
317  * freeing process at the time the region is freed.
318  */
319 void kasan_poison_vmalloc(const void *start, unsigned long size)
320 {
321         if (!is_vmalloc_or_module_addr(start))
322                 return;
323
324         size = round_up(size, KASAN_GRANULE_SIZE);
325         kasan_poison(start, size, KASAN_VMALLOC_INVALID);
326 }
327
328 void kasan_unpoison_vmalloc(const void *start, unsigned long size)
329 {
330         if (!is_vmalloc_or_module_addr(start))
331                 return;
332
333         kasan_unpoison(start, size);
334 }
335
336 static int kasan_depopulate_vmalloc_pte(pte_t *ptep, unsigned long addr,
337                                         void *unused)
338 {
339         unsigned long page;
340
341         page = (unsigned long)__va(pte_pfn(*ptep) << PAGE_SHIFT);
342
343         spin_lock(&init_mm.page_table_lock);
344
345         if (likely(!pte_none(*ptep))) {
346                 pte_clear(&init_mm, addr, ptep);
347                 free_page(page);
348         }
349         spin_unlock(&init_mm.page_table_lock);
350
351         return 0;
352 }
353
354 /*
355  * Release the backing for the vmalloc region [start, end), which
356  * lies within the free region [free_region_start, free_region_end).
357  *
358  * This can be run lazily, long after the region was freed. It runs
359  * under vmap_area_lock, so it's not safe to interact with the vmalloc/vmap
360  * infrastructure.
361  *
362  * How does this work?
363  * -------------------
364  *
365  * We have a region that is page aligned, labelled as A.
366  * That might not map onto the shadow in a way that is page-aligned:
367  *
368  *                    start                     end
369  *                    v                         v
370  * |????????|????????|AAAAAAAA|AA....AA|AAAAAAAA|????????| < vmalloc
371  *  -------- -------- --------          -------- --------
372  *      |        |       |                 |        |
373  *      |        |       |         /-------/        |
374  *      \-------\|/------/         |/---------------/
375  *              |||                ||
376  *             |??AAAAAA|AAAAAAAA|AA??????|                < shadow
377  *                 (1)      (2)      (3)
378  *
379  * First we align the start upwards and the end downwards, so that the
380  * shadow of the region aligns with shadow page boundaries. In the
381  * example, this gives us the shadow page (2). This is the shadow entirely
382  * covered by this allocation.
383  *
384  * Then we have the tricky bits. We want to know if we can free the
385  * partially covered shadow pages - (1) and (3) in the example. For this,
386  * we are given the start and end of the free region that contains this
387  * allocation. Extending our previous example, we could have:
388  *
389  *  free_region_start                                    free_region_end
390  *  |                 start                     end      |
391  *  v                 v                         v        v
392  * |FFFFFFFF|FFFFFFFF|AAAAAAAA|AA....AA|AAAAAAAA|FFFFFFFF| < vmalloc
393  *  -------- -------- --------          -------- --------
394  *      |        |       |                 |        |
395  *      |        |       |         /-------/        |
396  *      \-------\|/------/         |/---------------/
397  *              |||                ||
398  *             |FFAAAAAA|AAAAAAAA|AAF?????|                < shadow
399  *                 (1)      (2)      (3)
400  *
401  * Once again, we align the start of the free region up, and the end of
402  * the free region down so that the shadow is page aligned. So we can free
403  * page (1) - we know no allocation currently uses anything in that page,
404  * because all of it is in the vmalloc free region. But we cannot free
405  * page (3), because we can't be sure that the rest of it is unused.
406  *
407  * We only consider pages that contain part of the original region for
408  * freeing: we don't try to free other pages from the free region or we'd
409  * end up trying to free huge chunks of virtual address space.
410  *
411  * Concurrency
412  * -----------
413  *
414  * How do we know that we're not freeing a page that is simultaneously
415  * being used for a fresh allocation in kasan_populate_vmalloc(_pte)?
416  *
417  * We _can_ have kasan_release_vmalloc and kasan_populate_vmalloc running
418  * at the same time. While we run under free_vmap_area_lock, the population
419  * code does not.
420  *
421  * free_vmap_area_lock instead operates to ensure that the larger range
422  * [free_region_start, free_region_end) is safe: because __alloc_vmap_area and
423  * the per-cpu region-finding algorithm both run under free_vmap_area_lock,
424  * no space identified as free will become used while we are running. This
425  * means that so long as we are careful with alignment and only free shadow
426  * pages entirely covered by the free region, we will not run in to any
427  * trouble - any simultaneous allocations will be for disjoint regions.
428  */
429 void kasan_release_vmalloc(unsigned long start, unsigned long end,
430                            unsigned long free_region_start,
431                            unsigned long free_region_end)
432 {
433         void *shadow_start, *shadow_end;
434         unsigned long region_start, region_end;
435         unsigned long size;
436
437         region_start = ALIGN(start, KASAN_MEMORY_PER_SHADOW_PAGE);
438         region_end = ALIGN_DOWN(end, KASAN_MEMORY_PER_SHADOW_PAGE);
439
440         free_region_start = ALIGN(free_region_start, KASAN_MEMORY_PER_SHADOW_PAGE);
441
442         if (start != region_start &&
443             free_region_start < region_start)
444                 region_start -= KASAN_MEMORY_PER_SHADOW_PAGE;
445
446         free_region_end = ALIGN_DOWN(free_region_end, KASAN_MEMORY_PER_SHADOW_PAGE);
447
448         if (end != region_end &&
449             free_region_end > region_end)
450                 region_end += KASAN_MEMORY_PER_SHADOW_PAGE;
451
452         shadow_start = kasan_mem_to_shadow((void *)region_start);
453         shadow_end = kasan_mem_to_shadow((void *)region_end);
454
455         if (shadow_end > shadow_start) {
456                 size = shadow_end - shadow_start;
457                 apply_to_existing_page_range(&init_mm,
458                                              (unsigned long)shadow_start,
459                                              size, kasan_depopulate_vmalloc_pte,
460                                              NULL);
461                 flush_tlb_kernel_range((unsigned long)shadow_start,
462                                        (unsigned long)shadow_end);
463         }
464 }
465
466 #else /* CONFIG_KASAN_VMALLOC */
467
468 int kasan_module_alloc(void *addr, size_t size)
469 {
470         void *ret;
471         size_t scaled_size;
472         size_t shadow_size;
473         unsigned long shadow_start;
474
475         shadow_start = (unsigned long)kasan_mem_to_shadow(addr);
476         scaled_size = (size + KASAN_GRANULE_SIZE - 1) >>
477                                 KASAN_SHADOW_SCALE_SHIFT;
478         shadow_size = round_up(scaled_size, PAGE_SIZE);
479
480         if (WARN_ON(!PAGE_ALIGNED(shadow_start)))
481                 return -EINVAL;
482
483         ret = __vmalloc_node_range(shadow_size, 1, shadow_start,
484                         shadow_start + shadow_size,
485                         GFP_KERNEL,
486                         PAGE_KERNEL, VM_NO_GUARD, NUMA_NO_NODE,
487                         __builtin_return_address(0));
488
489         if (ret) {
490                 __memset(ret, KASAN_SHADOW_INIT, shadow_size);
491                 find_vm_area(addr)->flags |= VM_KASAN;
492                 kmemleak_ignore(ret);
493                 return 0;
494         }
495
496         return -ENOMEM;
497 }
498
499 void kasan_free_shadow(const struct vm_struct *vm)
500 {
501         if (vm->flags & VM_KASAN)
502                 vfree(kasan_mem_to_shadow(vm->addr));
503 }
504
505 #endif