Merge tag 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/rdma/rdma
[linux-2.6-microblaze.git] / mm / kasan / common.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * This file contains common generic and tag-based KASAN code.
4  *
5  * Copyright (c) 2014 Samsung Electronics Co., Ltd.
6  * Author: Andrey Ryabinin <ryabinin.a.a@gmail.com>
7  *
8  * Some code borrowed from https://github.com/xairy/kasan-prototype by
9  *        Andrey Konovalov <andreyknvl@gmail.com>
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License version 2 as
13  * published by the Free Software Foundation.
14  *
15  */
16
17 #include <linux/export.h>
18 #include <linux/interrupt.h>
19 #include <linux/init.h>
20 #include <linux/kasan.h>
21 #include <linux/kernel.h>
22 #include <linux/kmemleak.h>
23 #include <linux/linkage.h>
24 #include <linux/memblock.h>
25 #include <linux/memory.h>
26 #include <linux/mm.h>
27 #include <linux/module.h>
28 #include <linux/printk.h>
29 #include <linux/sched.h>
30 #include <linux/sched/task_stack.h>
31 #include <linux/slab.h>
32 #include <linux/stacktrace.h>
33 #include <linux/string.h>
34 #include <linux/types.h>
35 #include <linux/vmalloc.h>
36 #include <linux/bug.h>
37
38 #include "kasan.h"
39 #include "../slab.h"
40
41 static inline int in_irqentry_text(unsigned long ptr)
42 {
43         return (ptr >= (unsigned long)&__irqentry_text_start &&
44                 ptr < (unsigned long)&__irqentry_text_end) ||
45                 (ptr >= (unsigned long)&__softirqentry_text_start &&
46                  ptr < (unsigned long)&__softirqentry_text_end);
47 }
48
49 static inline void filter_irq_stacks(struct stack_trace *trace)
50 {
51         int i;
52
53         if (!trace->nr_entries)
54                 return;
55         for (i = 0; i < trace->nr_entries; i++)
56                 if (in_irqentry_text(trace->entries[i])) {
57                         /* Include the irqentry function into the stack. */
58                         trace->nr_entries = i + 1;
59                         break;
60                 }
61 }
62
63 static inline depot_stack_handle_t save_stack(gfp_t flags)
64 {
65         unsigned long entries[KASAN_STACK_DEPTH];
66         struct stack_trace trace = {
67                 .nr_entries = 0,
68                 .entries = entries,
69                 .max_entries = KASAN_STACK_DEPTH,
70                 .skip = 0
71         };
72
73         save_stack_trace(&trace);
74         filter_irq_stacks(&trace);
75         if (trace.nr_entries != 0 &&
76             trace.entries[trace.nr_entries-1] == ULONG_MAX)
77                 trace.nr_entries--;
78
79         return depot_save_stack(&trace, flags);
80 }
81
82 static inline void set_track(struct kasan_track *track, gfp_t flags)
83 {
84         track->pid = current->pid;
85         track->stack = save_stack(flags);
86 }
87
88 void kasan_enable_current(void)
89 {
90         current->kasan_depth++;
91 }
92
93 void kasan_disable_current(void)
94 {
95         current->kasan_depth--;
96 }
97
98 void kasan_check_read(const volatile void *p, unsigned int size)
99 {
100         check_memory_region((unsigned long)p, size, false, _RET_IP_);
101 }
102 EXPORT_SYMBOL(kasan_check_read);
103
104 void kasan_check_write(const volatile void *p, unsigned int size)
105 {
106         check_memory_region((unsigned long)p, size, true, _RET_IP_);
107 }
108 EXPORT_SYMBOL(kasan_check_write);
109
110 #undef memset
111 void *memset(void *addr, int c, size_t len)
112 {
113         check_memory_region((unsigned long)addr, len, true, _RET_IP_);
114
115         return __memset(addr, c, len);
116 }
117
118 #undef memmove
119 void *memmove(void *dest, const void *src, size_t len)
120 {
121         check_memory_region((unsigned long)src, len, false, _RET_IP_);
122         check_memory_region((unsigned long)dest, len, true, _RET_IP_);
123
124         return __memmove(dest, src, len);
125 }
126
127 #undef memcpy
128 void *memcpy(void *dest, const void *src, size_t len)
129 {
130         check_memory_region((unsigned long)src, len, false, _RET_IP_);
131         check_memory_region((unsigned long)dest, len, true, _RET_IP_);
132
133         return __memcpy(dest, src, len);
134 }
135
136 /*
137  * Poisons the shadow memory for 'size' bytes starting from 'addr'.
138  * Memory addresses should be aligned to KASAN_SHADOW_SCALE_SIZE.
139  */
140 void kasan_poison_shadow(const void *address, size_t size, u8 value)
141 {
142         void *shadow_start, *shadow_end;
143
144         /*
145          * Perform shadow offset calculation based on untagged address, as
146          * some of the callers (e.g. kasan_poison_object_data) pass tagged
147          * addresses to this function.
148          */
149         address = reset_tag(address);
150
151         shadow_start = kasan_mem_to_shadow(address);
152         shadow_end = kasan_mem_to_shadow(address + size);
153
154         __memset(shadow_start, value, shadow_end - shadow_start);
155 }
156
157 void kasan_unpoison_shadow(const void *address, size_t size)
158 {
159         u8 tag = get_tag(address);
160
161         /*
162          * Perform shadow offset calculation based on untagged address, as
163          * some of the callers (e.g. kasan_unpoison_object_data) pass tagged
164          * addresses to this function.
165          */
166         address = reset_tag(address);
167
168         kasan_poison_shadow(address, size, tag);
169
170         if (size & KASAN_SHADOW_MASK) {
171                 u8 *shadow = (u8 *)kasan_mem_to_shadow(address + size);
172
173                 if (IS_ENABLED(CONFIG_KASAN_SW_TAGS))
174                         *shadow = tag;
175                 else
176                         *shadow = size & KASAN_SHADOW_MASK;
177         }
178 }
179
180 static void __kasan_unpoison_stack(struct task_struct *task, const void *sp)
181 {
182         void *base = task_stack_page(task);
183         size_t size = sp - base;
184
185         kasan_unpoison_shadow(base, size);
186 }
187
188 /* Unpoison the entire stack for a task. */
189 void kasan_unpoison_task_stack(struct task_struct *task)
190 {
191         __kasan_unpoison_stack(task, task_stack_page(task) + THREAD_SIZE);
192 }
193
194 /* Unpoison the stack for the current task beyond a watermark sp value. */
195 asmlinkage void kasan_unpoison_task_stack_below(const void *watermark)
196 {
197         /*
198          * Calculate the task stack base address.  Avoid using 'current'
199          * because this function is called by early resume code which hasn't
200          * yet set up the percpu register (%gs).
201          */
202         void *base = (void *)((unsigned long)watermark & ~(THREAD_SIZE - 1));
203
204         kasan_unpoison_shadow(base, watermark - base);
205 }
206
207 /*
208  * Clear all poison for the region between the current SP and a provided
209  * watermark value, as is sometimes required prior to hand-crafted asm function
210  * returns in the middle of functions.
211  */
212 void kasan_unpoison_stack_above_sp_to(const void *watermark)
213 {
214         const void *sp = __builtin_frame_address(0);
215         size_t size = watermark - sp;
216
217         if (WARN_ON(sp > watermark))
218                 return;
219         kasan_unpoison_shadow(sp, size);
220 }
221
222 void kasan_alloc_pages(struct page *page, unsigned int order)
223 {
224         u8 tag;
225         unsigned long i;
226
227         if (unlikely(PageHighMem(page)))
228                 return;
229
230         tag = random_tag();
231         for (i = 0; i < (1 << order); i++)
232                 page_kasan_tag_set(page + i, tag);
233         kasan_unpoison_shadow(page_address(page), PAGE_SIZE << order);
234 }
235
236 void kasan_free_pages(struct page *page, unsigned int order)
237 {
238         if (likely(!PageHighMem(page)))
239                 kasan_poison_shadow(page_address(page),
240                                 PAGE_SIZE << order,
241                                 KASAN_FREE_PAGE);
242 }
243
244 /*
245  * Adaptive redzone policy taken from the userspace AddressSanitizer runtime.
246  * For larger allocations larger redzones are used.
247  */
248 static inline unsigned int optimal_redzone(unsigned int object_size)
249 {
250         if (IS_ENABLED(CONFIG_KASAN_SW_TAGS))
251                 return 0;
252
253         return
254                 object_size <= 64        - 16   ? 16 :
255                 object_size <= 128       - 32   ? 32 :
256                 object_size <= 512       - 64   ? 64 :
257                 object_size <= 4096      - 128  ? 128 :
258                 object_size <= (1 << 14) - 256  ? 256 :
259                 object_size <= (1 << 15) - 512  ? 512 :
260                 object_size <= (1 << 16) - 1024 ? 1024 : 2048;
261 }
262
263 void kasan_cache_create(struct kmem_cache *cache, unsigned int *size,
264                         slab_flags_t *flags)
265 {
266         unsigned int orig_size = *size;
267         unsigned int redzone_size;
268         int redzone_adjust;
269
270         /* Add alloc meta. */
271         cache->kasan_info.alloc_meta_offset = *size;
272         *size += sizeof(struct kasan_alloc_meta);
273
274         /* Add free meta. */
275         if (IS_ENABLED(CONFIG_KASAN_GENERIC) &&
276             (cache->flags & SLAB_TYPESAFE_BY_RCU || cache->ctor ||
277              cache->object_size < sizeof(struct kasan_free_meta))) {
278                 cache->kasan_info.free_meta_offset = *size;
279                 *size += sizeof(struct kasan_free_meta);
280         }
281
282         redzone_size = optimal_redzone(cache->object_size);
283         redzone_adjust = redzone_size - (*size - cache->object_size);
284         if (redzone_adjust > 0)
285                 *size += redzone_adjust;
286
287         *size = min_t(unsigned int, KMALLOC_MAX_SIZE,
288                         max(*size, cache->object_size + redzone_size));
289
290         /*
291          * If the metadata doesn't fit, don't enable KASAN at all.
292          */
293         if (*size <= cache->kasan_info.alloc_meta_offset ||
294                         *size <= cache->kasan_info.free_meta_offset) {
295                 cache->kasan_info.alloc_meta_offset = 0;
296                 cache->kasan_info.free_meta_offset = 0;
297                 *size = orig_size;
298                 return;
299         }
300
301         *flags |= SLAB_KASAN;
302 }
303
304 size_t kasan_metadata_size(struct kmem_cache *cache)
305 {
306         return (cache->kasan_info.alloc_meta_offset ?
307                 sizeof(struct kasan_alloc_meta) : 0) +
308                 (cache->kasan_info.free_meta_offset ?
309                 sizeof(struct kasan_free_meta) : 0);
310 }
311
312 struct kasan_alloc_meta *get_alloc_info(struct kmem_cache *cache,
313                                         const void *object)
314 {
315         BUILD_BUG_ON(sizeof(struct kasan_alloc_meta) > 32);
316         return (void *)object + cache->kasan_info.alloc_meta_offset;
317 }
318
319 struct kasan_free_meta *get_free_info(struct kmem_cache *cache,
320                                       const void *object)
321 {
322         BUILD_BUG_ON(sizeof(struct kasan_free_meta) > 32);
323         return (void *)object + cache->kasan_info.free_meta_offset;
324 }
325
326 void kasan_poison_slab(struct page *page)
327 {
328         unsigned long i;
329
330         for (i = 0; i < (1 << compound_order(page)); i++)
331                 page_kasan_tag_reset(page + i);
332         kasan_poison_shadow(page_address(page),
333                         PAGE_SIZE << compound_order(page),
334                         KASAN_KMALLOC_REDZONE);
335 }
336
337 void kasan_unpoison_object_data(struct kmem_cache *cache, void *object)
338 {
339         kasan_unpoison_shadow(object, cache->object_size);
340 }
341
342 void kasan_poison_object_data(struct kmem_cache *cache, void *object)
343 {
344         kasan_poison_shadow(object,
345                         round_up(cache->object_size, KASAN_SHADOW_SCALE_SIZE),
346                         KASAN_KMALLOC_REDZONE);
347 }
348
349 /*
350  * This function assigns a tag to an object considering the following:
351  * 1. A cache might have a constructor, which might save a pointer to a slab
352  *    object somewhere (e.g. in the object itself). We preassign a tag for
353  *    each object in caches with constructors during slab creation and reuse
354  *    the same tag each time a particular object is allocated.
355  * 2. A cache might be SLAB_TYPESAFE_BY_RCU, which means objects can be
356  *    accessed after being freed. We preassign tags for objects in these
357  *    caches as well.
358  * 3. For SLAB allocator we can't preassign tags randomly since the freelist
359  *    is stored as an array of indexes instead of a linked list. Assign tags
360  *    based on objects indexes, so that objects that are next to each other
361  *    get different tags.
362  */
363 static u8 assign_tag(struct kmem_cache *cache, const void *object,
364                         bool init, bool keep_tag)
365 {
366         /*
367          * 1. When an object is kmalloc()'ed, two hooks are called:
368          *    kasan_slab_alloc() and kasan_kmalloc(). We assign the
369          *    tag only in the first one.
370          * 2. We reuse the same tag for krealloc'ed objects.
371          */
372         if (keep_tag)
373                 return get_tag(object);
374
375         /*
376          * If the cache neither has a constructor nor has SLAB_TYPESAFE_BY_RCU
377          * set, assign a tag when the object is being allocated (init == false).
378          */
379         if (!cache->ctor && !(cache->flags & SLAB_TYPESAFE_BY_RCU))
380                 return init ? KASAN_TAG_KERNEL : random_tag();
381
382         /* For caches that either have a constructor or SLAB_TYPESAFE_BY_RCU: */
383 #ifdef CONFIG_SLAB
384         /* For SLAB assign tags based on the object index in the freelist. */
385         return (u8)obj_to_index(cache, virt_to_page(object), (void *)object);
386 #else
387         /*
388          * For SLUB assign a random tag during slab creation, otherwise reuse
389          * the already assigned tag.
390          */
391         return init ? random_tag() : get_tag(object);
392 #endif
393 }
394
395 void * __must_check kasan_init_slab_obj(struct kmem_cache *cache,
396                                                 const void *object)
397 {
398         struct kasan_alloc_meta *alloc_info;
399
400         if (!(cache->flags & SLAB_KASAN))
401                 return (void *)object;
402
403         alloc_info = get_alloc_info(cache, object);
404         __memset(alloc_info, 0, sizeof(*alloc_info));
405
406         if (IS_ENABLED(CONFIG_KASAN_SW_TAGS))
407                 object = set_tag(object,
408                                 assign_tag(cache, object, true, false));
409
410         return (void *)object;
411 }
412
413 static inline bool shadow_invalid(u8 tag, s8 shadow_byte)
414 {
415         if (IS_ENABLED(CONFIG_KASAN_GENERIC))
416                 return shadow_byte < 0 ||
417                         shadow_byte >= KASAN_SHADOW_SCALE_SIZE;
418         else
419                 return tag != (u8)shadow_byte;
420 }
421
422 static bool __kasan_slab_free(struct kmem_cache *cache, void *object,
423                               unsigned long ip, bool quarantine)
424 {
425         s8 shadow_byte;
426         u8 tag;
427         void *tagged_object;
428         unsigned long rounded_up_size;
429
430         tag = get_tag(object);
431         tagged_object = object;
432         object = reset_tag(object);
433
434         if (unlikely(nearest_obj(cache, virt_to_head_page(object), object) !=
435             object)) {
436                 kasan_report_invalid_free(tagged_object, ip);
437                 return true;
438         }
439
440         /* RCU slabs could be legally used after free within the RCU period */
441         if (unlikely(cache->flags & SLAB_TYPESAFE_BY_RCU))
442                 return false;
443
444         shadow_byte = READ_ONCE(*(s8 *)kasan_mem_to_shadow(object));
445         if (shadow_invalid(tag, shadow_byte)) {
446                 kasan_report_invalid_free(tagged_object, ip);
447                 return true;
448         }
449
450         rounded_up_size = round_up(cache->object_size, KASAN_SHADOW_SCALE_SIZE);
451         kasan_poison_shadow(object, rounded_up_size, KASAN_KMALLOC_FREE);
452
453         if ((IS_ENABLED(CONFIG_KASAN_GENERIC) && !quarantine) ||
454                         unlikely(!(cache->flags & SLAB_KASAN)))
455                 return false;
456
457         set_track(&get_alloc_info(cache, object)->free_track, GFP_NOWAIT);
458         quarantine_put(get_free_info(cache, object), cache);
459
460         return IS_ENABLED(CONFIG_KASAN_GENERIC);
461 }
462
463 bool kasan_slab_free(struct kmem_cache *cache, void *object, unsigned long ip)
464 {
465         return __kasan_slab_free(cache, object, ip, true);
466 }
467
468 static void *__kasan_kmalloc(struct kmem_cache *cache, const void *object,
469                                 size_t size, gfp_t flags, bool keep_tag)
470 {
471         unsigned long redzone_start;
472         unsigned long redzone_end;
473         u8 tag;
474
475         if (gfpflags_allow_blocking(flags))
476                 quarantine_reduce();
477
478         if (unlikely(object == NULL))
479                 return NULL;
480
481         redzone_start = round_up((unsigned long)(object + size),
482                                 KASAN_SHADOW_SCALE_SIZE);
483         redzone_end = round_up((unsigned long)object + cache->object_size,
484                                 KASAN_SHADOW_SCALE_SIZE);
485
486         if (IS_ENABLED(CONFIG_KASAN_SW_TAGS))
487                 tag = assign_tag(cache, object, false, keep_tag);
488
489         /* Tag is ignored in set_tag without CONFIG_KASAN_SW_TAGS */
490         kasan_unpoison_shadow(set_tag(object, tag), size);
491         kasan_poison_shadow((void *)redzone_start, redzone_end - redzone_start,
492                 KASAN_KMALLOC_REDZONE);
493
494         if (cache->flags & SLAB_KASAN)
495                 set_track(&get_alloc_info(cache, object)->alloc_track, flags);
496
497         return set_tag(object, tag);
498 }
499
500 void * __must_check kasan_slab_alloc(struct kmem_cache *cache, void *object,
501                                         gfp_t flags)
502 {
503         return __kasan_kmalloc(cache, object, cache->object_size, flags, false);
504 }
505
506 void * __must_check kasan_kmalloc(struct kmem_cache *cache, const void *object,
507                                 size_t size, gfp_t flags)
508 {
509         return __kasan_kmalloc(cache, object, size, flags, true);
510 }
511 EXPORT_SYMBOL(kasan_kmalloc);
512
513 void * __must_check kasan_kmalloc_large(const void *ptr, size_t size,
514                                                 gfp_t flags)
515 {
516         struct page *page;
517         unsigned long redzone_start;
518         unsigned long redzone_end;
519
520         if (gfpflags_allow_blocking(flags))
521                 quarantine_reduce();
522
523         if (unlikely(ptr == NULL))
524                 return NULL;
525
526         page = virt_to_page(ptr);
527         redzone_start = round_up((unsigned long)(ptr + size),
528                                 KASAN_SHADOW_SCALE_SIZE);
529         redzone_end = (unsigned long)ptr + (PAGE_SIZE << compound_order(page));
530
531         kasan_unpoison_shadow(ptr, size);
532         kasan_poison_shadow((void *)redzone_start, redzone_end - redzone_start,
533                 KASAN_PAGE_REDZONE);
534
535         return (void *)ptr;
536 }
537
538 void * __must_check kasan_krealloc(const void *object, size_t size, gfp_t flags)
539 {
540         struct page *page;
541
542         if (unlikely(object == ZERO_SIZE_PTR))
543                 return (void *)object;
544
545         page = virt_to_head_page(object);
546
547         if (unlikely(!PageSlab(page)))
548                 return kasan_kmalloc_large(object, size, flags);
549         else
550                 return __kasan_kmalloc(page->slab_cache, object, size,
551                                                 flags, true);
552 }
553
554 void kasan_poison_kfree(void *ptr, unsigned long ip)
555 {
556         struct page *page;
557
558         page = virt_to_head_page(ptr);
559
560         if (unlikely(!PageSlab(page))) {
561                 if (ptr != page_address(page)) {
562                         kasan_report_invalid_free(ptr, ip);
563                         return;
564                 }
565                 kasan_poison_shadow(ptr, PAGE_SIZE << compound_order(page),
566                                 KASAN_FREE_PAGE);
567         } else {
568                 __kasan_slab_free(page->slab_cache, ptr, ip, false);
569         }
570 }
571
572 void kasan_kfree_large(void *ptr, unsigned long ip)
573 {
574         if (ptr != page_address(virt_to_head_page(ptr)))
575                 kasan_report_invalid_free(ptr, ip);
576         /* The object will be poisoned by page_alloc. */
577 }
578
579 int kasan_module_alloc(void *addr, size_t size)
580 {
581         void *ret;
582         size_t scaled_size;
583         size_t shadow_size;
584         unsigned long shadow_start;
585
586         shadow_start = (unsigned long)kasan_mem_to_shadow(addr);
587         scaled_size = (size + KASAN_SHADOW_MASK) >> KASAN_SHADOW_SCALE_SHIFT;
588         shadow_size = round_up(scaled_size, PAGE_SIZE);
589
590         if (WARN_ON(!PAGE_ALIGNED(shadow_start)))
591                 return -EINVAL;
592
593         ret = __vmalloc_node_range(shadow_size, 1, shadow_start,
594                         shadow_start + shadow_size,
595                         GFP_KERNEL,
596                         PAGE_KERNEL, VM_NO_GUARD, NUMA_NO_NODE,
597                         __builtin_return_address(0));
598
599         if (ret) {
600                 __memset(ret, KASAN_SHADOW_INIT, shadow_size);
601                 find_vm_area(addr)->flags |= VM_KASAN;
602                 kmemleak_ignore(ret);
603                 return 0;
604         }
605
606         return -ENOMEM;
607 }
608
609 void kasan_free_shadow(const struct vm_struct *vm)
610 {
611         if (vm->flags & VM_KASAN)
612                 vfree(kasan_mem_to_shadow(vm->addr));
613 }
614
615 #ifdef CONFIG_MEMORY_HOTPLUG
616 static bool shadow_mapped(unsigned long addr)
617 {
618         pgd_t *pgd = pgd_offset_k(addr);
619         p4d_t *p4d;
620         pud_t *pud;
621         pmd_t *pmd;
622         pte_t *pte;
623
624         if (pgd_none(*pgd))
625                 return false;
626         p4d = p4d_offset(pgd, addr);
627         if (p4d_none(*p4d))
628                 return false;
629         pud = pud_offset(p4d, addr);
630         if (pud_none(*pud))
631                 return false;
632
633         /*
634          * We can't use pud_large() or pud_huge(), the first one is
635          * arch-specific, the last one depends on HUGETLB_PAGE.  So let's abuse
636          * pud_bad(), if pud is bad then it's bad because it's huge.
637          */
638         if (pud_bad(*pud))
639                 return true;
640         pmd = pmd_offset(pud, addr);
641         if (pmd_none(*pmd))
642                 return false;
643
644         if (pmd_bad(*pmd))
645                 return true;
646         pte = pte_offset_kernel(pmd, addr);
647         return !pte_none(*pte);
648 }
649
650 static int __meminit kasan_mem_notifier(struct notifier_block *nb,
651                         unsigned long action, void *data)
652 {
653         struct memory_notify *mem_data = data;
654         unsigned long nr_shadow_pages, start_kaddr, shadow_start;
655         unsigned long shadow_end, shadow_size;
656
657         nr_shadow_pages = mem_data->nr_pages >> KASAN_SHADOW_SCALE_SHIFT;
658         start_kaddr = (unsigned long)pfn_to_kaddr(mem_data->start_pfn);
659         shadow_start = (unsigned long)kasan_mem_to_shadow((void *)start_kaddr);
660         shadow_size = nr_shadow_pages << PAGE_SHIFT;
661         shadow_end = shadow_start + shadow_size;
662
663         if (WARN_ON(mem_data->nr_pages % KASAN_SHADOW_SCALE_SIZE) ||
664                 WARN_ON(start_kaddr % (KASAN_SHADOW_SCALE_SIZE << PAGE_SHIFT)))
665                 return NOTIFY_BAD;
666
667         switch (action) {
668         case MEM_GOING_ONLINE: {
669                 void *ret;
670
671                 /*
672                  * If shadow is mapped already than it must have been mapped
673                  * during the boot. This could happen if we onlining previously
674                  * offlined memory.
675                  */
676                 if (shadow_mapped(shadow_start))
677                         return NOTIFY_OK;
678
679                 ret = __vmalloc_node_range(shadow_size, PAGE_SIZE, shadow_start,
680                                         shadow_end, GFP_KERNEL,
681                                         PAGE_KERNEL, VM_NO_GUARD,
682                                         pfn_to_nid(mem_data->start_pfn),
683                                         __builtin_return_address(0));
684                 if (!ret)
685                         return NOTIFY_BAD;
686
687                 kmemleak_ignore(ret);
688                 return NOTIFY_OK;
689         }
690         case MEM_CANCEL_ONLINE:
691         case MEM_OFFLINE: {
692                 struct vm_struct *vm;
693
694                 /*
695                  * shadow_start was either mapped during boot by kasan_init()
696                  * or during memory online by __vmalloc_node_range().
697                  * In the latter case we can use vfree() to free shadow.
698                  * Non-NULL result of the find_vm_area() will tell us if
699                  * that was the second case.
700                  *
701                  * Currently it's not possible to free shadow mapped
702                  * during boot by kasan_init(). It's because the code
703                  * to do that hasn't been written yet. So we'll just
704                  * leak the memory.
705                  */
706                 vm = find_vm_area((void *)shadow_start);
707                 if (vm)
708                         vfree((void *)shadow_start);
709         }
710         }
711
712         return NOTIFY_OK;
713 }
714
715 static int __init kasan_memhotplug_init(void)
716 {
717         hotplug_memory_notifier(kasan_mem_notifier, 0);
718
719         return 0;
720 }
721
722 core_initcall(kasan_memhotplug_init);
723 #endif