kasan: record and print the free track
[linux-2.6-microblaze.git] / mm / kasan / common.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * This file contains common generic and tag-based KASAN code.
4  *
5  * Copyright (c) 2014 Samsung Electronics Co., Ltd.
6  * Author: Andrey Ryabinin <ryabinin.a.a@gmail.com>
7  *
8  * Some code borrowed from https://github.com/xairy/kasan-prototype by
9  *        Andrey Konovalov <andreyknvl@gmail.com>
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License version 2 as
13  * published by the Free Software Foundation.
14  *
15  */
16
17 #include <linux/export.h>
18 #include <linux/init.h>
19 #include <linux/kasan.h>
20 #include <linux/kernel.h>
21 #include <linux/kmemleak.h>
22 #include <linux/linkage.h>
23 #include <linux/memblock.h>
24 #include <linux/memory.h>
25 #include <linux/mm.h>
26 #include <linux/module.h>
27 #include <linux/printk.h>
28 #include <linux/sched.h>
29 #include <linux/sched/task_stack.h>
30 #include <linux/slab.h>
31 #include <linux/stacktrace.h>
32 #include <linux/string.h>
33 #include <linux/types.h>
34 #include <linux/vmalloc.h>
35 #include <linux/bug.h>
36
37 #include <asm/cacheflush.h>
38 #include <asm/tlbflush.h>
39
40 #include "kasan.h"
41 #include "../slab.h"
42
43 depot_stack_handle_t kasan_save_stack(gfp_t flags)
44 {
45         unsigned long entries[KASAN_STACK_DEPTH];
46         unsigned int nr_entries;
47
48         nr_entries = stack_trace_save(entries, ARRAY_SIZE(entries), 0);
49         nr_entries = filter_irq_stacks(entries, nr_entries);
50         return stack_depot_save(entries, nr_entries, flags);
51 }
52
53 void kasan_set_track(struct kasan_track *track, gfp_t flags)
54 {
55         track->pid = current->pid;
56         track->stack = kasan_save_stack(flags);
57 }
58
59 void kasan_enable_current(void)
60 {
61         current->kasan_depth++;
62 }
63
64 void kasan_disable_current(void)
65 {
66         current->kasan_depth--;
67 }
68
69 bool __kasan_check_read(const volatile void *p, unsigned int size)
70 {
71         return check_memory_region((unsigned long)p, size, false, _RET_IP_);
72 }
73 EXPORT_SYMBOL(__kasan_check_read);
74
75 bool __kasan_check_write(const volatile void *p, unsigned int size)
76 {
77         return check_memory_region((unsigned long)p, size, true, _RET_IP_);
78 }
79 EXPORT_SYMBOL(__kasan_check_write);
80
81 #undef memset
82 void *memset(void *addr, int c, size_t len)
83 {
84         if (!check_memory_region((unsigned long)addr, len, true, _RET_IP_))
85                 return NULL;
86
87         return __memset(addr, c, len);
88 }
89
90 #ifdef __HAVE_ARCH_MEMMOVE
91 #undef memmove
92 void *memmove(void *dest, const void *src, size_t len)
93 {
94         if (!check_memory_region((unsigned long)src, len, false, _RET_IP_) ||
95             !check_memory_region((unsigned long)dest, len, true, _RET_IP_))
96                 return NULL;
97
98         return __memmove(dest, src, len);
99 }
100 #endif
101
102 #undef memcpy
103 void *memcpy(void *dest, const void *src, size_t len)
104 {
105         if (!check_memory_region((unsigned long)src, len, false, _RET_IP_) ||
106             !check_memory_region((unsigned long)dest, len, true, _RET_IP_))
107                 return NULL;
108
109         return __memcpy(dest, src, len);
110 }
111
112 /*
113  * Poisons the shadow memory for 'size' bytes starting from 'addr'.
114  * Memory addresses should be aligned to KASAN_SHADOW_SCALE_SIZE.
115  */
116 void kasan_poison_shadow(const void *address, size_t size, u8 value)
117 {
118         void *shadow_start, *shadow_end;
119
120         /*
121          * Perform shadow offset calculation based on untagged address, as
122          * some of the callers (e.g. kasan_poison_object_data) pass tagged
123          * addresses to this function.
124          */
125         address = reset_tag(address);
126
127         shadow_start = kasan_mem_to_shadow(address);
128         shadow_end = kasan_mem_to_shadow(address + size);
129
130         __memset(shadow_start, value, shadow_end - shadow_start);
131 }
132
133 void kasan_unpoison_shadow(const void *address, size_t size)
134 {
135         u8 tag = get_tag(address);
136
137         /*
138          * Perform shadow offset calculation based on untagged address, as
139          * some of the callers (e.g. kasan_unpoison_object_data) pass tagged
140          * addresses to this function.
141          */
142         address = reset_tag(address);
143
144         kasan_poison_shadow(address, size, tag);
145
146         if (size & KASAN_SHADOW_MASK) {
147                 u8 *shadow = (u8 *)kasan_mem_to_shadow(address + size);
148
149                 if (IS_ENABLED(CONFIG_KASAN_SW_TAGS))
150                         *shadow = tag;
151                 else
152                         *shadow = size & KASAN_SHADOW_MASK;
153         }
154 }
155
156 static void __kasan_unpoison_stack(struct task_struct *task, const void *sp)
157 {
158         void *base = task_stack_page(task);
159         size_t size = sp - base;
160
161         kasan_unpoison_shadow(base, size);
162 }
163
164 /* Unpoison the entire stack for a task. */
165 void kasan_unpoison_task_stack(struct task_struct *task)
166 {
167         __kasan_unpoison_stack(task, task_stack_page(task) + THREAD_SIZE);
168 }
169
170 /* Unpoison the stack for the current task beyond a watermark sp value. */
171 asmlinkage void kasan_unpoison_task_stack_below(const void *watermark)
172 {
173         /*
174          * Calculate the task stack base address.  Avoid using 'current'
175          * because this function is called by early resume code which hasn't
176          * yet set up the percpu register (%gs).
177          */
178         void *base = (void *)((unsigned long)watermark & ~(THREAD_SIZE - 1));
179
180         kasan_unpoison_shadow(base, watermark - base);
181 }
182
183 /*
184  * Clear all poison for the region between the current SP and a provided
185  * watermark value, as is sometimes required prior to hand-crafted asm function
186  * returns in the middle of functions.
187  */
188 void kasan_unpoison_stack_above_sp_to(const void *watermark)
189 {
190         const void *sp = __builtin_frame_address(0);
191         size_t size = watermark - sp;
192
193         if (WARN_ON(sp > watermark))
194                 return;
195         kasan_unpoison_shadow(sp, size);
196 }
197
198 void kasan_alloc_pages(struct page *page, unsigned int order)
199 {
200         u8 tag;
201         unsigned long i;
202
203         if (unlikely(PageHighMem(page)))
204                 return;
205
206         tag = random_tag();
207         for (i = 0; i < (1 << order); i++)
208                 page_kasan_tag_set(page + i, tag);
209         kasan_unpoison_shadow(page_address(page), PAGE_SIZE << order);
210 }
211
212 void kasan_free_pages(struct page *page, unsigned int order)
213 {
214         if (likely(!PageHighMem(page)))
215                 kasan_poison_shadow(page_address(page),
216                                 PAGE_SIZE << order,
217                                 KASAN_FREE_PAGE);
218 }
219
220 /*
221  * Adaptive redzone policy taken from the userspace AddressSanitizer runtime.
222  * For larger allocations larger redzones are used.
223  */
224 static inline unsigned int optimal_redzone(unsigned int object_size)
225 {
226         if (IS_ENABLED(CONFIG_KASAN_SW_TAGS))
227                 return 0;
228
229         return
230                 object_size <= 64        - 16   ? 16 :
231                 object_size <= 128       - 32   ? 32 :
232                 object_size <= 512       - 64   ? 64 :
233                 object_size <= 4096      - 128  ? 128 :
234                 object_size <= (1 << 14) - 256  ? 256 :
235                 object_size <= (1 << 15) - 512  ? 512 :
236                 object_size <= (1 << 16) - 1024 ? 1024 : 2048;
237 }
238
239 void kasan_cache_create(struct kmem_cache *cache, unsigned int *size,
240                         slab_flags_t *flags)
241 {
242         unsigned int orig_size = *size;
243         unsigned int redzone_size;
244         int redzone_adjust;
245
246         /* Add alloc meta. */
247         cache->kasan_info.alloc_meta_offset = *size;
248         *size += sizeof(struct kasan_alloc_meta);
249
250         /* Add free meta. */
251         if (IS_ENABLED(CONFIG_KASAN_GENERIC) &&
252             (cache->flags & SLAB_TYPESAFE_BY_RCU || cache->ctor ||
253              cache->object_size < sizeof(struct kasan_free_meta))) {
254                 cache->kasan_info.free_meta_offset = *size;
255                 *size += sizeof(struct kasan_free_meta);
256         }
257
258         redzone_size = optimal_redzone(cache->object_size);
259         redzone_adjust = redzone_size - (*size - cache->object_size);
260         if (redzone_adjust > 0)
261                 *size += redzone_adjust;
262
263         *size = min_t(unsigned int, KMALLOC_MAX_SIZE,
264                         max(*size, cache->object_size + redzone_size));
265
266         /*
267          * If the metadata doesn't fit, don't enable KASAN at all.
268          */
269         if (*size <= cache->kasan_info.alloc_meta_offset ||
270                         *size <= cache->kasan_info.free_meta_offset) {
271                 cache->kasan_info.alloc_meta_offset = 0;
272                 cache->kasan_info.free_meta_offset = 0;
273                 *size = orig_size;
274                 return;
275         }
276
277         *flags |= SLAB_KASAN;
278 }
279
280 size_t kasan_metadata_size(struct kmem_cache *cache)
281 {
282         return (cache->kasan_info.alloc_meta_offset ?
283                 sizeof(struct kasan_alloc_meta) : 0) +
284                 (cache->kasan_info.free_meta_offset ?
285                 sizeof(struct kasan_free_meta) : 0);
286 }
287
288 struct kasan_alloc_meta *get_alloc_info(struct kmem_cache *cache,
289                                         const void *object)
290 {
291         return (void *)object + cache->kasan_info.alloc_meta_offset;
292 }
293
294 struct kasan_free_meta *get_free_info(struct kmem_cache *cache,
295                                       const void *object)
296 {
297         BUILD_BUG_ON(sizeof(struct kasan_free_meta) > 32);
298         return (void *)object + cache->kasan_info.free_meta_offset;
299 }
300
301 void kasan_poison_slab(struct page *page)
302 {
303         unsigned long i;
304
305         for (i = 0; i < compound_nr(page); i++)
306                 page_kasan_tag_reset(page + i);
307         kasan_poison_shadow(page_address(page), page_size(page),
308                         KASAN_KMALLOC_REDZONE);
309 }
310
311 void kasan_unpoison_object_data(struct kmem_cache *cache, void *object)
312 {
313         kasan_unpoison_shadow(object, cache->object_size);
314 }
315
316 void kasan_poison_object_data(struct kmem_cache *cache, void *object)
317 {
318         kasan_poison_shadow(object,
319                         round_up(cache->object_size, KASAN_SHADOW_SCALE_SIZE),
320                         KASAN_KMALLOC_REDZONE);
321 }
322
323 /*
324  * This function assigns a tag to an object considering the following:
325  * 1. A cache might have a constructor, which might save a pointer to a slab
326  *    object somewhere (e.g. in the object itself). We preassign a tag for
327  *    each object in caches with constructors during slab creation and reuse
328  *    the same tag each time a particular object is allocated.
329  * 2. A cache might be SLAB_TYPESAFE_BY_RCU, which means objects can be
330  *    accessed after being freed. We preassign tags for objects in these
331  *    caches as well.
332  * 3. For SLAB allocator we can't preassign tags randomly since the freelist
333  *    is stored as an array of indexes instead of a linked list. Assign tags
334  *    based on objects indexes, so that objects that are next to each other
335  *    get different tags.
336  */
337 static u8 assign_tag(struct kmem_cache *cache, const void *object,
338                         bool init, bool keep_tag)
339 {
340         /*
341          * 1. When an object is kmalloc()'ed, two hooks are called:
342          *    kasan_slab_alloc() and kasan_kmalloc(). We assign the
343          *    tag only in the first one.
344          * 2. We reuse the same tag for krealloc'ed objects.
345          */
346         if (keep_tag)
347                 return get_tag(object);
348
349         /*
350          * If the cache neither has a constructor nor has SLAB_TYPESAFE_BY_RCU
351          * set, assign a tag when the object is being allocated (init == false).
352          */
353         if (!cache->ctor && !(cache->flags & SLAB_TYPESAFE_BY_RCU))
354                 return init ? KASAN_TAG_KERNEL : random_tag();
355
356         /* For caches that either have a constructor or SLAB_TYPESAFE_BY_RCU: */
357 #ifdef CONFIG_SLAB
358         /* For SLAB assign tags based on the object index in the freelist. */
359         return (u8)obj_to_index(cache, virt_to_page(object), (void *)object);
360 #else
361         /*
362          * For SLUB assign a random tag during slab creation, otherwise reuse
363          * the already assigned tag.
364          */
365         return init ? random_tag() : get_tag(object);
366 #endif
367 }
368
369 void * __must_check kasan_init_slab_obj(struct kmem_cache *cache,
370                                                 const void *object)
371 {
372         struct kasan_alloc_meta *alloc_info;
373
374         if (!(cache->flags & SLAB_KASAN))
375                 return (void *)object;
376
377         alloc_info = get_alloc_info(cache, object);
378         __memset(alloc_info, 0, sizeof(*alloc_info));
379
380         if (IS_ENABLED(CONFIG_KASAN_SW_TAGS))
381                 object = set_tag(object,
382                                 assign_tag(cache, object, true, false));
383
384         return (void *)object;
385 }
386
387 static inline bool shadow_invalid(u8 tag, s8 shadow_byte)
388 {
389         if (IS_ENABLED(CONFIG_KASAN_GENERIC))
390                 return shadow_byte < 0 ||
391                         shadow_byte >= KASAN_SHADOW_SCALE_SIZE;
392
393         /* else CONFIG_KASAN_SW_TAGS: */
394         if ((u8)shadow_byte == KASAN_TAG_INVALID)
395                 return true;
396         if ((tag != KASAN_TAG_KERNEL) && (tag != (u8)shadow_byte))
397                 return true;
398
399         return false;
400 }
401
402 static bool __kasan_slab_free(struct kmem_cache *cache, void *object,
403                               unsigned long ip, bool quarantine)
404 {
405         s8 shadow_byte;
406         u8 tag;
407         void *tagged_object;
408         unsigned long rounded_up_size;
409
410         tag = get_tag(object);
411         tagged_object = object;
412         object = reset_tag(object);
413
414         if (unlikely(nearest_obj(cache, virt_to_head_page(object), object) !=
415             object)) {
416                 kasan_report_invalid_free(tagged_object, ip);
417                 return true;
418         }
419
420         /* RCU slabs could be legally used after free within the RCU period */
421         if (unlikely(cache->flags & SLAB_TYPESAFE_BY_RCU))
422                 return false;
423
424         shadow_byte = READ_ONCE(*(s8 *)kasan_mem_to_shadow(object));
425         if (shadow_invalid(tag, shadow_byte)) {
426                 kasan_report_invalid_free(tagged_object, ip);
427                 return true;
428         }
429
430         rounded_up_size = round_up(cache->object_size, KASAN_SHADOW_SCALE_SIZE);
431         kasan_poison_shadow(object, rounded_up_size, KASAN_KMALLOC_FREE);
432
433         if ((IS_ENABLED(CONFIG_KASAN_GENERIC) && !quarantine) ||
434                         unlikely(!(cache->flags & SLAB_KASAN)))
435                 return false;
436
437         kasan_set_free_info(cache, object, tag);
438
439         quarantine_put(get_free_info(cache, object), cache);
440
441         return IS_ENABLED(CONFIG_KASAN_GENERIC);
442 }
443
444 bool kasan_slab_free(struct kmem_cache *cache, void *object, unsigned long ip)
445 {
446         return __kasan_slab_free(cache, object, ip, true);
447 }
448
449 static void *__kasan_kmalloc(struct kmem_cache *cache, const void *object,
450                                 size_t size, gfp_t flags, bool keep_tag)
451 {
452         unsigned long redzone_start;
453         unsigned long redzone_end;
454         u8 tag = 0xff;
455
456         if (gfpflags_allow_blocking(flags))
457                 quarantine_reduce();
458
459         if (unlikely(object == NULL))
460                 return NULL;
461
462         redzone_start = round_up((unsigned long)(object + size),
463                                 KASAN_SHADOW_SCALE_SIZE);
464         redzone_end = round_up((unsigned long)object + cache->object_size,
465                                 KASAN_SHADOW_SCALE_SIZE);
466
467         if (IS_ENABLED(CONFIG_KASAN_SW_TAGS))
468                 tag = assign_tag(cache, object, false, keep_tag);
469
470         /* Tag is ignored in set_tag without CONFIG_KASAN_SW_TAGS */
471         kasan_unpoison_shadow(set_tag(object, tag), size);
472         kasan_poison_shadow((void *)redzone_start, redzone_end - redzone_start,
473                 KASAN_KMALLOC_REDZONE);
474
475         if (cache->flags & SLAB_KASAN)
476                 kasan_set_track(&get_alloc_info(cache, object)->alloc_track, flags);
477
478         return set_tag(object, tag);
479 }
480
481 void * __must_check kasan_slab_alloc(struct kmem_cache *cache, void *object,
482                                         gfp_t flags)
483 {
484         return __kasan_kmalloc(cache, object, cache->object_size, flags, false);
485 }
486
487 void * __must_check kasan_kmalloc(struct kmem_cache *cache, const void *object,
488                                 size_t size, gfp_t flags)
489 {
490         return __kasan_kmalloc(cache, object, size, flags, true);
491 }
492 EXPORT_SYMBOL(kasan_kmalloc);
493
494 void * __must_check kasan_kmalloc_large(const void *ptr, size_t size,
495                                                 gfp_t flags)
496 {
497         struct page *page;
498         unsigned long redzone_start;
499         unsigned long redzone_end;
500
501         if (gfpflags_allow_blocking(flags))
502                 quarantine_reduce();
503
504         if (unlikely(ptr == NULL))
505                 return NULL;
506
507         page = virt_to_page(ptr);
508         redzone_start = round_up((unsigned long)(ptr + size),
509                                 KASAN_SHADOW_SCALE_SIZE);
510         redzone_end = (unsigned long)ptr + page_size(page);
511
512         kasan_unpoison_shadow(ptr, size);
513         kasan_poison_shadow((void *)redzone_start, redzone_end - redzone_start,
514                 KASAN_PAGE_REDZONE);
515
516         return (void *)ptr;
517 }
518
519 void * __must_check kasan_krealloc(const void *object, size_t size, gfp_t flags)
520 {
521         struct page *page;
522
523         if (unlikely(object == ZERO_SIZE_PTR))
524                 return (void *)object;
525
526         page = virt_to_head_page(object);
527
528         if (unlikely(!PageSlab(page)))
529                 return kasan_kmalloc_large(object, size, flags);
530         else
531                 return __kasan_kmalloc(page->slab_cache, object, size,
532                                                 flags, true);
533 }
534
535 void kasan_poison_kfree(void *ptr, unsigned long ip)
536 {
537         struct page *page;
538
539         page = virt_to_head_page(ptr);
540
541         if (unlikely(!PageSlab(page))) {
542                 if (ptr != page_address(page)) {
543                         kasan_report_invalid_free(ptr, ip);
544                         return;
545                 }
546                 kasan_poison_shadow(ptr, page_size(page), KASAN_FREE_PAGE);
547         } else {
548                 __kasan_slab_free(page->slab_cache, ptr, ip, false);
549         }
550 }
551
552 void kasan_kfree_large(void *ptr, unsigned long ip)
553 {
554         if (ptr != page_address(virt_to_head_page(ptr)))
555                 kasan_report_invalid_free(ptr, ip);
556         /* The object will be poisoned by page_alloc. */
557 }
558
559 #ifndef CONFIG_KASAN_VMALLOC
560 int kasan_module_alloc(void *addr, size_t size)
561 {
562         void *ret;
563         size_t scaled_size;
564         size_t shadow_size;
565         unsigned long shadow_start;
566
567         shadow_start = (unsigned long)kasan_mem_to_shadow(addr);
568         scaled_size = (size + KASAN_SHADOW_MASK) >> KASAN_SHADOW_SCALE_SHIFT;
569         shadow_size = round_up(scaled_size, PAGE_SIZE);
570
571         if (WARN_ON(!PAGE_ALIGNED(shadow_start)))
572                 return -EINVAL;
573
574         ret = __vmalloc_node_range(shadow_size, 1, shadow_start,
575                         shadow_start + shadow_size,
576                         GFP_KERNEL,
577                         PAGE_KERNEL, VM_NO_GUARD, NUMA_NO_NODE,
578                         __builtin_return_address(0));
579
580         if (ret) {
581                 __memset(ret, KASAN_SHADOW_INIT, shadow_size);
582                 find_vm_area(addr)->flags |= VM_KASAN;
583                 kmemleak_ignore(ret);
584                 return 0;
585         }
586
587         return -ENOMEM;
588 }
589
590 void kasan_free_shadow(const struct vm_struct *vm)
591 {
592         if (vm->flags & VM_KASAN)
593                 vfree(kasan_mem_to_shadow(vm->addr));
594 }
595 #endif
596
597 #ifdef CONFIG_MEMORY_HOTPLUG
598 static bool shadow_mapped(unsigned long addr)
599 {
600         pgd_t *pgd = pgd_offset_k(addr);
601         p4d_t *p4d;
602         pud_t *pud;
603         pmd_t *pmd;
604         pte_t *pte;
605
606         if (pgd_none(*pgd))
607                 return false;
608         p4d = p4d_offset(pgd, addr);
609         if (p4d_none(*p4d))
610                 return false;
611         pud = pud_offset(p4d, addr);
612         if (pud_none(*pud))
613                 return false;
614
615         /*
616          * We can't use pud_large() or pud_huge(), the first one is
617          * arch-specific, the last one depends on HUGETLB_PAGE.  So let's abuse
618          * pud_bad(), if pud is bad then it's bad because it's huge.
619          */
620         if (pud_bad(*pud))
621                 return true;
622         pmd = pmd_offset(pud, addr);
623         if (pmd_none(*pmd))
624                 return false;
625
626         if (pmd_bad(*pmd))
627                 return true;
628         pte = pte_offset_kernel(pmd, addr);
629         return !pte_none(*pte);
630 }
631
632 static int __meminit kasan_mem_notifier(struct notifier_block *nb,
633                         unsigned long action, void *data)
634 {
635         struct memory_notify *mem_data = data;
636         unsigned long nr_shadow_pages, start_kaddr, shadow_start;
637         unsigned long shadow_end, shadow_size;
638
639         nr_shadow_pages = mem_data->nr_pages >> KASAN_SHADOW_SCALE_SHIFT;
640         start_kaddr = (unsigned long)pfn_to_kaddr(mem_data->start_pfn);
641         shadow_start = (unsigned long)kasan_mem_to_shadow((void *)start_kaddr);
642         shadow_size = nr_shadow_pages << PAGE_SHIFT;
643         shadow_end = shadow_start + shadow_size;
644
645         if (WARN_ON(mem_data->nr_pages % KASAN_SHADOW_SCALE_SIZE) ||
646                 WARN_ON(start_kaddr % (KASAN_SHADOW_SCALE_SIZE << PAGE_SHIFT)))
647                 return NOTIFY_BAD;
648
649         switch (action) {
650         case MEM_GOING_ONLINE: {
651                 void *ret;
652
653                 /*
654                  * If shadow is mapped already than it must have been mapped
655                  * during the boot. This could happen if we onlining previously
656                  * offlined memory.
657                  */
658                 if (shadow_mapped(shadow_start))
659                         return NOTIFY_OK;
660
661                 ret = __vmalloc_node_range(shadow_size, PAGE_SIZE, shadow_start,
662                                         shadow_end, GFP_KERNEL,
663                                         PAGE_KERNEL, VM_NO_GUARD,
664                                         pfn_to_nid(mem_data->start_pfn),
665                                         __builtin_return_address(0));
666                 if (!ret)
667                         return NOTIFY_BAD;
668
669                 kmemleak_ignore(ret);
670                 return NOTIFY_OK;
671         }
672         case MEM_CANCEL_ONLINE:
673         case MEM_OFFLINE: {
674                 struct vm_struct *vm;
675
676                 /*
677                  * shadow_start was either mapped during boot by kasan_init()
678                  * or during memory online by __vmalloc_node_range().
679                  * In the latter case we can use vfree() to free shadow.
680                  * Non-NULL result of the find_vm_area() will tell us if
681                  * that was the second case.
682                  *
683                  * Currently it's not possible to free shadow mapped
684                  * during boot by kasan_init(). It's because the code
685                  * to do that hasn't been written yet. So we'll just
686                  * leak the memory.
687                  */
688                 vm = find_vm_area((void *)shadow_start);
689                 if (vm)
690                         vfree((void *)shadow_start);
691         }
692         }
693
694         return NOTIFY_OK;
695 }
696
697 static int __init kasan_memhotplug_init(void)
698 {
699         hotplug_memory_notifier(kasan_mem_notifier, 0);
700
701         return 0;
702 }
703
704 core_initcall(kasan_memhotplug_init);
705 #endif
706
707 #ifdef CONFIG_KASAN_VMALLOC
708 static int kasan_populate_vmalloc_pte(pte_t *ptep, unsigned long addr,
709                                       void *unused)
710 {
711         unsigned long page;
712         pte_t pte;
713
714         if (likely(!pte_none(*ptep)))
715                 return 0;
716
717         page = __get_free_page(GFP_KERNEL);
718         if (!page)
719                 return -ENOMEM;
720
721         memset((void *)page, KASAN_VMALLOC_INVALID, PAGE_SIZE);
722         pte = pfn_pte(PFN_DOWN(__pa(page)), PAGE_KERNEL);
723
724         spin_lock(&init_mm.page_table_lock);
725         if (likely(pte_none(*ptep))) {
726                 set_pte_at(&init_mm, addr, ptep, pte);
727                 page = 0;
728         }
729         spin_unlock(&init_mm.page_table_lock);
730         if (page)
731                 free_page(page);
732         return 0;
733 }
734
735 int kasan_populate_vmalloc(unsigned long addr, unsigned long size)
736 {
737         unsigned long shadow_start, shadow_end;
738         int ret;
739
740         if (!is_vmalloc_or_module_addr((void *)addr))
741                 return 0;
742
743         shadow_start = (unsigned long)kasan_mem_to_shadow((void *)addr);
744         shadow_start = ALIGN_DOWN(shadow_start, PAGE_SIZE);
745         shadow_end = (unsigned long)kasan_mem_to_shadow((void *)addr + size);
746         shadow_end = ALIGN(shadow_end, PAGE_SIZE);
747
748         ret = apply_to_page_range(&init_mm, shadow_start,
749                                   shadow_end - shadow_start,
750                                   kasan_populate_vmalloc_pte, NULL);
751         if (ret)
752                 return ret;
753
754         flush_cache_vmap(shadow_start, shadow_end);
755
756         /*
757          * We need to be careful about inter-cpu effects here. Consider:
758          *
759          *   CPU#0                                CPU#1
760          * WRITE_ONCE(p, vmalloc(100));         while (x = READ_ONCE(p)) ;
761          *                                      p[99] = 1;
762          *
763          * With compiler instrumentation, that ends up looking like this:
764          *
765          *   CPU#0                                CPU#1
766          * // vmalloc() allocates memory
767          * // let a = area->addr
768          * // we reach kasan_populate_vmalloc
769          * // and call kasan_unpoison_shadow:
770          * STORE shadow(a), unpoison_val
771          * ...
772          * STORE shadow(a+99), unpoison_val     x = LOAD p
773          * // rest of vmalloc process           <data dependency>
774          * STORE p, a                           LOAD shadow(x+99)
775          *
776          * If there is no barrier between the end of unpoisioning the shadow
777          * and the store of the result to p, the stores could be committed
778          * in a different order by CPU#0, and CPU#1 could erroneously observe
779          * poison in the shadow.
780          *
781          * We need some sort of barrier between the stores.
782          *
783          * In the vmalloc() case, this is provided by a smp_wmb() in
784          * clear_vm_uninitialized_flag(). In the per-cpu allocator and in
785          * get_vm_area() and friends, the caller gets shadow allocated but
786          * doesn't have any pages mapped into the virtual address space that
787          * has been reserved. Mapping those pages in will involve taking and
788          * releasing a page-table lock, which will provide the barrier.
789          */
790
791         return 0;
792 }
793
794 /*
795  * Poison the shadow for a vmalloc region. Called as part of the
796  * freeing process at the time the region is freed.
797  */
798 void kasan_poison_vmalloc(const void *start, unsigned long size)
799 {
800         if (!is_vmalloc_or_module_addr(start))
801                 return;
802
803         size = round_up(size, KASAN_SHADOW_SCALE_SIZE);
804         kasan_poison_shadow(start, size, KASAN_VMALLOC_INVALID);
805 }
806
807 void kasan_unpoison_vmalloc(const void *start, unsigned long size)
808 {
809         if (!is_vmalloc_or_module_addr(start))
810                 return;
811
812         kasan_unpoison_shadow(start, size);
813 }
814
815 static int kasan_depopulate_vmalloc_pte(pte_t *ptep, unsigned long addr,
816                                         void *unused)
817 {
818         unsigned long page;
819
820         page = (unsigned long)__va(pte_pfn(*ptep) << PAGE_SHIFT);
821
822         spin_lock(&init_mm.page_table_lock);
823
824         if (likely(!pte_none(*ptep))) {
825                 pte_clear(&init_mm, addr, ptep);
826                 free_page(page);
827         }
828         spin_unlock(&init_mm.page_table_lock);
829
830         return 0;
831 }
832
833 /*
834  * Release the backing for the vmalloc region [start, end), which
835  * lies within the free region [free_region_start, free_region_end).
836  *
837  * This can be run lazily, long after the region was freed. It runs
838  * under vmap_area_lock, so it's not safe to interact with the vmalloc/vmap
839  * infrastructure.
840  *
841  * How does this work?
842  * -------------------
843  *
844  * We have a region that is page aligned, labelled as A.
845  * That might not map onto the shadow in a way that is page-aligned:
846  *
847  *                    start                     end
848  *                    v                         v
849  * |????????|????????|AAAAAAAA|AA....AA|AAAAAAAA|????????| < vmalloc
850  *  -------- -------- --------          -------- --------
851  *      |        |       |                 |        |
852  *      |        |       |         /-------/        |
853  *      \-------\|/------/         |/---------------/
854  *              |||                ||
855  *             |??AAAAAA|AAAAAAAA|AA??????|                < shadow
856  *                 (1)      (2)      (3)
857  *
858  * First we align the start upwards and the end downwards, so that the
859  * shadow of the region aligns with shadow page boundaries. In the
860  * example, this gives us the shadow page (2). This is the shadow entirely
861  * covered by this allocation.
862  *
863  * Then we have the tricky bits. We want to know if we can free the
864  * partially covered shadow pages - (1) and (3) in the example. For this,
865  * we are given the start and end of the free region that contains this
866  * allocation. Extending our previous example, we could have:
867  *
868  *  free_region_start                                    free_region_end
869  *  |                 start                     end      |
870  *  v                 v                         v        v
871  * |FFFFFFFF|FFFFFFFF|AAAAAAAA|AA....AA|AAAAAAAA|FFFFFFFF| < vmalloc
872  *  -------- -------- --------          -------- --------
873  *      |        |       |                 |        |
874  *      |        |       |         /-------/        |
875  *      \-------\|/------/         |/---------------/
876  *              |||                ||
877  *             |FFAAAAAA|AAAAAAAA|AAF?????|                < shadow
878  *                 (1)      (2)      (3)
879  *
880  * Once again, we align the start of the free region up, and the end of
881  * the free region down so that the shadow is page aligned. So we can free
882  * page (1) - we know no allocation currently uses anything in that page,
883  * because all of it is in the vmalloc free region. But we cannot free
884  * page (3), because we can't be sure that the rest of it is unused.
885  *
886  * We only consider pages that contain part of the original region for
887  * freeing: we don't try to free other pages from the free region or we'd
888  * end up trying to free huge chunks of virtual address space.
889  *
890  * Concurrency
891  * -----------
892  *
893  * How do we know that we're not freeing a page that is simultaneously
894  * being used for a fresh allocation in kasan_populate_vmalloc(_pte)?
895  *
896  * We _can_ have kasan_release_vmalloc and kasan_populate_vmalloc running
897  * at the same time. While we run under free_vmap_area_lock, the population
898  * code does not.
899  *
900  * free_vmap_area_lock instead operates to ensure that the larger range
901  * [free_region_start, free_region_end) is safe: because __alloc_vmap_area and
902  * the per-cpu region-finding algorithm both run under free_vmap_area_lock,
903  * no space identified as free will become used while we are running. This
904  * means that so long as we are careful with alignment and only free shadow
905  * pages entirely covered by the free region, we will not run in to any
906  * trouble - any simultaneous allocations will be for disjoint regions.
907  */
908 void kasan_release_vmalloc(unsigned long start, unsigned long end,
909                            unsigned long free_region_start,
910                            unsigned long free_region_end)
911 {
912         void *shadow_start, *shadow_end;
913         unsigned long region_start, region_end;
914         unsigned long size;
915
916         region_start = ALIGN(start, PAGE_SIZE * KASAN_SHADOW_SCALE_SIZE);
917         region_end = ALIGN_DOWN(end, PAGE_SIZE * KASAN_SHADOW_SCALE_SIZE);
918
919         free_region_start = ALIGN(free_region_start,
920                                   PAGE_SIZE * KASAN_SHADOW_SCALE_SIZE);
921
922         if (start != region_start &&
923             free_region_start < region_start)
924                 region_start -= PAGE_SIZE * KASAN_SHADOW_SCALE_SIZE;
925
926         free_region_end = ALIGN_DOWN(free_region_end,
927                                      PAGE_SIZE * KASAN_SHADOW_SCALE_SIZE);
928
929         if (end != region_end &&
930             free_region_end > region_end)
931                 region_end += PAGE_SIZE * KASAN_SHADOW_SCALE_SIZE;
932
933         shadow_start = kasan_mem_to_shadow((void *)region_start);
934         shadow_end = kasan_mem_to_shadow((void *)region_end);
935
936         if (shadow_end > shadow_start) {
937                 size = shadow_end - shadow_start;
938                 apply_to_existing_page_range(&init_mm,
939                                              (unsigned long)shadow_start,
940                                              size, kasan_depopulate_vmalloc_pte,
941                                              NULL);
942                 flush_tlb_kernel_range((unsigned long)shadow_start,
943                                        (unsigned long)shadow_end);
944         }
945 }
946 #endif