5f68c93734bab5f1157b6c1119e5a12a14899457
[linux-2.6-microblaze.git] / mm / kasan / common.c
1 /*
2  * This file contains common generic and tag-based KASAN code.
3  *
4  * Copyright (c) 2014 Samsung Electronics Co., Ltd.
5  * Author: Andrey Ryabinin <ryabinin.a.a@gmail.com>
6  *
7  * Some code borrowed from https://github.com/xairy/kasan-prototype by
8  *        Andrey Konovalov <andreyknvl@gmail.com>
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of the GNU General Public License version 2 as
12  * published by the Free Software Foundation.
13  *
14  */
15
16 #include <linux/export.h>
17 #include <linux/interrupt.h>
18 #include <linux/init.h>
19 #include <linux/kasan.h>
20 #include <linux/kernel.h>
21 #include <linux/kmemleak.h>
22 #include <linux/linkage.h>
23 #include <linux/memblock.h>
24 #include <linux/memory.h>
25 #include <linux/mm.h>
26 #include <linux/module.h>
27 #include <linux/printk.h>
28 #include <linux/sched.h>
29 #include <linux/sched/task_stack.h>
30 #include <linux/slab.h>
31 #include <linux/stacktrace.h>
32 #include <linux/string.h>
33 #include <linux/types.h>
34 #include <linux/vmalloc.h>
35 #include <linux/bug.h>
36
37 #include "kasan.h"
38 #include "../slab.h"
39
40 static inline int in_irqentry_text(unsigned long ptr)
41 {
42         return (ptr >= (unsigned long)&__irqentry_text_start &&
43                 ptr < (unsigned long)&__irqentry_text_end) ||
44                 (ptr >= (unsigned long)&__softirqentry_text_start &&
45                  ptr < (unsigned long)&__softirqentry_text_end);
46 }
47
48 static inline void filter_irq_stacks(struct stack_trace *trace)
49 {
50         int i;
51
52         if (!trace->nr_entries)
53                 return;
54         for (i = 0; i < trace->nr_entries; i++)
55                 if (in_irqentry_text(trace->entries[i])) {
56                         /* Include the irqentry function into the stack. */
57                         trace->nr_entries = i + 1;
58                         break;
59                 }
60 }
61
62 static inline depot_stack_handle_t save_stack(gfp_t flags)
63 {
64         unsigned long entries[KASAN_STACK_DEPTH];
65         struct stack_trace trace = {
66                 .nr_entries = 0,
67                 .entries = entries,
68                 .max_entries = KASAN_STACK_DEPTH,
69                 .skip = 0
70         };
71
72         save_stack_trace(&trace);
73         filter_irq_stacks(&trace);
74         if (trace.nr_entries != 0 &&
75             trace.entries[trace.nr_entries-1] == ULONG_MAX)
76                 trace.nr_entries--;
77
78         return depot_save_stack(&trace, flags);
79 }
80
81 static inline void set_track(struct kasan_track *track, gfp_t flags)
82 {
83         track->pid = current->pid;
84         track->stack = save_stack(flags);
85 }
86
87 void kasan_enable_current(void)
88 {
89         current->kasan_depth++;
90 }
91
92 void kasan_disable_current(void)
93 {
94         current->kasan_depth--;
95 }
96
97 void kasan_check_read(const volatile void *p, unsigned int size)
98 {
99         check_memory_region((unsigned long)p, size, false, _RET_IP_);
100 }
101 EXPORT_SYMBOL(kasan_check_read);
102
103 void kasan_check_write(const volatile void *p, unsigned int size)
104 {
105         check_memory_region((unsigned long)p, size, true, _RET_IP_);
106 }
107 EXPORT_SYMBOL(kasan_check_write);
108
109 #undef memset
110 void *memset(void *addr, int c, size_t len)
111 {
112         check_memory_region((unsigned long)addr, len, true, _RET_IP_);
113
114         return __memset(addr, c, len);
115 }
116
117 #undef memmove
118 void *memmove(void *dest, const void *src, size_t len)
119 {
120         check_memory_region((unsigned long)src, len, false, _RET_IP_);
121         check_memory_region((unsigned long)dest, len, true, _RET_IP_);
122
123         return __memmove(dest, src, len);
124 }
125
126 #undef memcpy
127 void *memcpy(void *dest, const void *src, size_t len)
128 {
129         check_memory_region((unsigned long)src, len, false, _RET_IP_);
130         check_memory_region((unsigned long)dest, len, true, _RET_IP_);
131
132         return __memcpy(dest, src, len);
133 }
134
135 /*
136  * Poisons the shadow memory for 'size' bytes starting from 'addr'.
137  * Memory addresses should be aligned to KASAN_SHADOW_SCALE_SIZE.
138  */
139 void kasan_poison_shadow(const void *address, size_t size, u8 value)
140 {
141         void *shadow_start, *shadow_end;
142
143         shadow_start = kasan_mem_to_shadow(address);
144         shadow_end = kasan_mem_to_shadow(address + size);
145
146         __memset(shadow_start, value, shadow_end - shadow_start);
147 }
148
149 void kasan_unpoison_shadow(const void *address, size_t size)
150 {
151         kasan_poison_shadow(address, size, 0);
152
153         if (size & KASAN_SHADOW_MASK) {
154                 u8 *shadow = (u8 *)kasan_mem_to_shadow(address + size);
155                 *shadow = size & KASAN_SHADOW_MASK;
156         }
157 }
158
159 static void __kasan_unpoison_stack(struct task_struct *task, const void *sp)
160 {
161         void *base = task_stack_page(task);
162         size_t size = sp - base;
163
164         kasan_unpoison_shadow(base, size);
165 }
166
167 /* Unpoison the entire stack for a task. */
168 void kasan_unpoison_task_stack(struct task_struct *task)
169 {
170         __kasan_unpoison_stack(task, task_stack_page(task) + THREAD_SIZE);
171 }
172
173 /* Unpoison the stack for the current task beyond a watermark sp value. */
174 asmlinkage void kasan_unpoison_task_stack_below(const void *watermark)
175 {
176         /*
177          * Calculate the task stack base address.  Avoid using 'current'
178          * because this function is called by early resume code which hasn't
179          * yet set up the percpu register (%gs).
180          */
181         void *base = (void *)((unsigned long)watermark & ~(THREAD_SIZE - 1));
182
183         kasan_unpoison_shadow(base, watermark - base);
184 }
185
186 /*
187  * Clear all poison for the region between the current SP and a provided
188  * watermark value, as is sometimes required prior to hand-crafted asm function
189  * returns in the middle of functions.
190  */
191 void kasan_unpoison_stack_above_sp_to(const void *watermark)
192 {
193         const void *sp = __builtin_frame_address(0);
194         size_t size = watermark - sp;
195
196         if (WARN_ON(sp > watermark))
197                 return;
198         kasan_unpoison_shadow(sp, size);
199 }
200
201 void kasan_alloc_pages(struct page *page, unsigned int order)
202 {
203         if (likely(!PageHighMem(page)))
204                 kasan_unpoison_shadow(page_address(page), PAGE_SIZE << order);
205 }
206
207 void kasan_free_pages(struct page *page, unsigned int order)
208 {
209         if (likely(!PageHighMem(page)))
210                 kasan_poison_shadow(page_address(page),
211                                 PAGE_SIZE << order,
212                                 KASAN_FREE_PAGE);
213 }
214
215 /*
216  * Adaptive redzone policy taken from the userspace AddressSanitizer runtime.
217  * For larger allocations larger redzones are used.
218  */
219 static inline unsigned int optimal_redzone(unsigned int object_size)
220 {
221         return
222                 object_size <= 64        - 16   ? 16 :
223                 object_size <= 128       - 32   ? 32 :
224                 object_size <= 512       - 64   ? 64 :
225                 object_size <= 4096      - 128  ? 128 :
226                 object_size <= (1 << 14) - 256  ? 256 :
227                 object_size <= (1 << 15) - 512  ? 512 :
228                 object_size <= (1 << 16) - 1024 ? 1024 : 2048;
229 }
230
231 void kasan_cache_create(struct kmem_cache *cache, unsigned int *size,
232                         slab_flags_t *flags)
233 {
234         unsigned int orig_size = *size;
235         int redzone_adjust;
236
237         /* Add alloc meta. */
238         cache->kasan_info.alloc_meta_offset = *size;
239         *size += sizeof(struct kasan_alloc_meta);
240
241         /* Add free meta. */
242         if (cache->flags & SLAB_TYPESAFE_BY_RCU || cache->ctor ||
243             cache->object_size < sizeof(struct kasan_free_meta)) {
244                 cache->kasan_info.free_meta_offset = *size;
245                 *size += sizeof(struct kasan_free_meta);
246         }
247         redzone_adjust = optimal_redzone(cache->object_size) -
248                 (*size - cache->object_size);
249
250         if (redzone_adjust > 0)
251                 *size += redzone_adjust;
252
253         *size = min_t(unsigned int, KMALLOC_MAX_SIZE,
254                         max(*size, cache->object_size +
255                                         optimal_redzone(cache->object_size)));
256
257         /*
258          * If the metadata doesn't fit, don't enable KASAN at all.
259          */
260         if (*size <= cache->kasan_info.alloc_meta_offset ||
261                         *size <= cache->kasan_info.free_meta_offset) {
262                 cache->kasan_info.alloc_meta_offset = 0;
263                 cache->kasan_info.free_meta_offset = 0;
264                 *size = orig_size;
265                 return;
266         }
267
268         *flags |= SLAB_KASAN;
269 }
270
271 size_t kasan_metadata_size(struct kmem_cache *cache)
272 {
273         return (cache->kasan_info.alloc_meta_offset ?
274                 sizeof(struct kasan_alloc_meta) : 0) +
275                 (cache->kasan_info.free_meta_offset ?
276                 sizeof(struct kasan_free_meta) : 0);
277 }
278
279 struct kasan_alloc_meta *get_alloc_info(struct kmem_cache *cache,
280                                         const void *object)
281 {
282         BUILD_BUG_ON(sizeof(struct kasan_alloc_meta) > 32);
283         return (void *)object + cache->kasan_info.alloc_meta_offset;
284 }
285
286 struct kasan_free_meta *get_free_info(struct kmem_cache *cache,
287                                       const void *object)
288 {
289         BUILD_BUG_ON(sizeof(struct kasan_free_meta) > 32);
290         return (void *)object + cache->kasan_info.free_meta_offset;
291 }
292
293 void kasan_poison_slab(struct page *page)
294 {
295         kasan_poison_shadow(page_address(page),
296                         PAGE_SIZE << compound_order(page),
297                         KASAN_KMALLOC_REDZONE);
298 }
299
300 void kasan_unpoison_object_data(struct kmem_cache *cache, void *object)
301 {
302         kasan_unpoison_shadow(object, cache->object_size);
303 }
304
305 void kasan_poison_object_data(struct kmem_cache *cache, void *object)
306 {
307         kasan_poison_shadow(object,
308                         round_up(cache->object_size, KASAN_SHADOW_SCALE_SIZE),
309                         KASAN_KMALLOC_REDZONE);
310 }
311
312 void *kasan_init_slab_obj(struct kmem_cache *cache, const void *object)
313 {
314         struct kasan_alloc_meta *alloc_info;
315
316         if (!(cache->flags & SLAB_KASAN))
317                 return (void *)object;
318
319         alloc_info = get_alloc_info(cache, object);
320         __memset(alloc_info, 0, sizeof(*alloc_info));
321
322         return (void *)object;
323 }
324
325 void *kasan_slab_alloc(struct kmem_cache *cache, void *object, gfp_t flags)
326 {
327         return kasan_kmalloc(cache, object, cache->object_size, flags);
328 }
329
330 static bool __kasan_slab_free(struct kmem_cache *cache, void *object,
331                               unsigned long ip, bool quarantine)
332 {
333         s8 shadow_byte;
334         unsigned long rounded_up_size;
335
336         if (unlikely(nearest_obj(cache, virt_to_head_page(object), object) !=
337             object)) {
338                 kasan_report_invalid_free(object, ip);
339                 return true;
340         }
341
342         /* RCU slabs could be legally used after free within the RCU period */
343         if (unlikely(cache->flags & SLAB_TYPESAFE_BY_RCU))
344                 return false;
345
346         shadow_byte = READ_ONCE(*(s8 *)kasan_mem_to_shadow(object));
347         if (shadow_byte < 0 || shadow_byte >= KASAN_SHADOW_SCALE_SIZE) {
348                 kasan_report_invalid_free(object, ip);
349                 return true;
350         }
351
352         rounded_up_size = round_up(cache->object_size, KASAN_SHADOW_SCALE_SIZE);
353         kasan_poison_shadow(object, rounded_up_size, KASAN_KMALLOC_FREE);
354
355         if (!quarantine || unlikely(!(cache->flags & SLAB_KASAN)))
356                 return false;
357
358         set_track(&get_alloc_info(cache, object)->free_track, GFP_NOWAIT);
359         quarantine_put(get_free_info(cache, object), cache);
360         return true;
361 }
362
363 bool kasan_slab_free(struct kmem_cache *cache, void *object, unsigned long ip)
364 {
365         return __kasan_slab_free(cache, object, ip, true);
366 }
367
368 void *kasan_kmalloc(struct kmem_cache *cache, const void *object, size_t size,
369                    gfp_t flags)
370 {
371         unsigned long redzone_start;
372         unsigned long redzone_end;
373
374         if (gfpflags_allow_blocking(flags))
375                 quarantine_reduce();
376
377         if (unlikely(object == NULL))
378                 return NULL;
379
380         redzone_start = round_up((unsigned long)(object + size),
381                                 KASAN_SHADOW_SCALE_SIZE);
382         redzone_end = round_up((unsigned long)object + cache->object_size,
383                                 KASAN_SHADOW_SCALE_SIZE);
384
385         kasan_unpoison_shadow(object, size);
386         kasan_poison_shadow((void *)redzone_start, redzone_end - redzone_start,
387                 KASAN_KMALLOC_REDZONE);
388
389         if (cache->flags & SLAB_KASAN)
390                 set_track(&get_alloc_info(cache, object)->alloc_track, flags);
391
392         return (void *)object;
393 }
394 EXPORT_SYMBOL(kasan_kmalloc);
395
396 void *kasan_kmalloc_large(const void *ptr, size_t size, gfp_t flags)
397 {
398         struct page *page;
399         unsigned long redzone_start;
400         unsigned long redzone_end;
401
402         if (gfpflags_allow_blocking(flags))
403                 quarantine_reduce();
404
405         if (unlikely(ptr == NULL))
406                 return NULL;
407
408         page = virt_to_page(ptr);
409         redzone_start = round_up((unsigned long)(ptr + size),
410                                 KASAN_SHADOW_SCALE_SIZE);
411         redzone_end = (unsigned long)ptr + (PAGE_SIZE << compound_order(page));
412
413         kasan_unpoison_shadow(ptr, size);
414         kasan_poison_shadow((void *)redzone_start, redzone_end - redzone_start,
415                 KASAN_PAGE_REDZONE);
416
417         return (void *)ptr;
418 }
419
420 void *kasan_krealloc(const void *object, size_t size, gfp_t flags)
421 {
422         struct page *page;
423
424         if (unlikely(object == ZERO_SIZE_PTR))
425                 return (void *)object;
426
427         page = virt_to_head_page(object);
428
429         if (unlikely(!PageSlab(page)))
430                 return kasan_kmalloc_large(object, size, flags);
431         else
432                 return kasan_kmalloc(page->slab_cache, object, size, flags);
433 }
434
435 void kasan_poison_kfree(void *ptr, unsigned long ip)
436 {
437         struct page *page;
438
439         page = virt_to_head_page(ptr);
440
441         if (unlikely(!PageSlab(page))) {
442                 if (ptr != page_address(page)) {
443                         kasan_report_invalid_free(ptr, ip);
444                         return;
445                 }
446                 kasan_poison_shadow(ptr, PAGE_SIZE << compound_order(page),
447                                 KASAN_FREE_PAGE);
448         } else {
449                 __kasan_slab_free(page->slab_cache, ptr, ip, false);
450         }
451 }
452
453 void kasan_kfree_large(void *ptr, unsigned long ip)
454 {
455         if (ptr != page_address(virt_to_head_page(ptr)))
456                 kasan_report_invalid_free(ptr, ip);
457         /* The object will be poisoned by page_alloc. */
458 }
459
460 int kasan_module_alloc(void *addr, size_t size)
461 {
462         void *ret;
463         size_t scaled_size;
464         size_t shadow_size;
465         unsigned long shadow_start;
466
467         shadow_start = (unsigned long)kasan_mem_to_shadow(addr);
468         scaled_size = (size + KASAN_SHADOW_MASK) >> KASAN_SHADOW_SCALE_SHIFT;
469         shadow_size = round_up(scaled_size, PAGE_SIZE);
470
471         if (WARN_ON(!PAGE_ALIGNED(shadow_start)))
472                 return -EINVAL;
473
474         ret = __vmalloc_node_range(shadow_size, 1, shadow_start,
475                         shadow_start + shadow_size,
476                         GFP_KERNEL | __GFP_ZERO,
477                         PAGE_KERNEL, VM_NO_GUARD, NUMA_NO_NODE,
478                         __builtin_return_address(0));
479
480         if (ret) {
481                 find_vm_area(addr)->flags |= VM_KASAN;
482                 kmemleak_ignore(ret);
483                 return 0;
484         }
485
486         return -ENOMEM;
487 }
488
489 void kasan_free_shadow(const struct vm_struct *vm)
490 {
491         if (vm->flags & VM_KASAN)
492                 vfree(kasan_mem_to_shadow(vm->addr));
493 }
494
495 #ifdef CONFIG_MEMORY_HOTPLUG
496 static bool shadow_mapped(unsigned long addr)
497 {
498         pgd_t *pgd = pgd_offset_k(addr);
499         p4d_t *p4d;
500         pud_t *pud;
501         pmd_t *pmd;
502         pte_t *pte;
503
504         if (pgd_none(*pgd))
505                 return false;
506         p4d = p4d_offset(pgd, addr);
507         if (p4d_none(*p4d))
508                 return false;
509         pud = pud_offset(p4d, addr);
510         if (pud_none(*pud))
511                 return false;
512
513         /*
514          * We can't use pud_large() or pud_huge(), the first one is
515          * arch-specific, the last one depends on HUGETLB_PAGE.  So let's abuse
516          * pud_bad(), if pud is bad then it's bad because it's huge.
517          */
518         if (pud_bad(*pud))
519                 return true;
520         pmd = pmd_offset(pud, addr);
521         if (pmd_none(*pmd))
522                 return false;
523
524         if (pmd_bad(*pmd))
525                 return true;
526         pte = pte_offset_kernel(pmd, addr);
527         return !pte_none(*pte);
528 }
529
530 static int __meminit kasan_mem_notifier(struct notifier_block *nb,
531                         unsigned long action, void *data)
532 {
533         struct memory_notify *mem_data = data;
534         unsigned long nr_shadow_pages, start_kaddr, shadow_start;
535         unsigned long shadow_end, shadow_size;
536
537         nr_shadow_pages = mem_data->nr_pages >> KASAN_SHADOW_SCALE_SHIFT;
538         start_kaddr = (unsigned long)pfn_to_kaddr(mem_data->start_pfn);
539         shadow_start = (unsigned long)kasan_mem_to_shadow((void *)start_kaddr);
540         shadow_size = nr_shadow_pages << PAGE_SHIFT;
541         shadow_end = shadow_start + shadow_size;
542
543         if (WARN_ON(mem_data->nr_pages % KASAN_SHADOW_SCALE_SIZE) ||
544                 WARN_ON(start_kaddr % (KASAN_SHADOW_SCALE_SIZE << PAGE_SHIFT)))
545                 return NOTIFY_BAD;
546
547         switch (action) {
548         case MEM_GOING_ONLINE: {
549                 void *ret;
550
551                 /*
552                  * If shadow is mapped already than it must have been mapped
553                  * during the boot. This could happen if we onlining previously
554                  * offlined memory.
555                  */
556                 if (shadow_mapped(shadow_start))
557                         return NOTIFY_OK;
558
559                 ret = __vmalloc_node_range(shadow_size, PAGE_SIZE, shadow_start,
560                                         shadow_end, GFP_KERNEL,
561                                         PAGE_KERNEL, VM_NO_GUARD,
562                                         pfn_to_nid(mem_data->start_pfn),
563                                         __builtin_return_address(0));
564                 if (!ret)
565                         return NOTIFY_BAD;
566
567                 kmemleak_ignore(ret);
568                 return NOTIFY_OK;
569         }
570         case MEM_CANCEL_ONLINE:
571         case MEM_OFFLINE: {
572                 struct vm_struct *vm;
573
574                 /*
575                  * shadow_start was either mapped during boot by kasan_init()
576                  * or during memory online by __vmalloc_node_range().
577                  * In the latter case we can use vfree() to free shadow.
578                  * Non-NULL result of the find_vm_area() will tell us if
579                  * that was the second case.
580                  *
581                  * Currently it's not possible to free shadow mapped
582                  * during boot by kasan_init(). It's because the code
583                  * to do that hasn't been written yet. So we'll just
584                  * leak the memory.
585                  */
586                 vm = find_vm_area((void *)shadow_start);
587                 if (vm)
588                         vfree((void *)shadow_start);
589         }
590         }
591
592         return NOTIFY_OK;
593 }
594
595 static int __init kasan_memhotplug_init(void)
596 {
597         hotplug_memory_notifier(kasan_mem_notifier, 0);
598
599         return 0;
600 }
601
602 core_initcall(kasan_memhotplug_init);
603 #endif