hugetlb: perform vmemmap optimization on a list of pages
[linux-2.6-microblaze.git] / mm / hugetlb_vmemmap.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * HugeTLB Vmemmap Optimization (HVO)
4  *
5  * Copyright (c) 2020, ByteDance. All rights reserved.
6  *
7  *     Author: Muchun Song <songmuchun@bytedance.com>
8  *
9  * See Documentation/mm/vmemmap_dedup.rst
10  */
11 #define pr_fmt(fmt)     "HugeTLB: " fmt
12
13 #include <linux/pgtable.h>
14 #include <linux/moduleparam.h>
15 #include <linux/bootmem_info.h>
16 #include <linux/mmdebug.h>
17 #include <asm/pgalloc.h>
18 #include <asm/tlbflush.h>
19 #include "hugetlb_vmemmap.h"
20
21 /**
22  * struct vmemmap_remap_walk - walk vmemmap page table
23  *
24  * @remap_pte:          called for each lowest-level entry (PTE).
25  * @nr_walked:          the number of walked pte.
26  * @reuse_page:         the page which is reused for the tail vmemmap pages.
27  * @reuse_addr:         the virtual address of the @reuse_page page.
28  * @vmemmap_pages:      the list head of the vmemmap pages that can be freed
29  *                      or is mapped from.
30  */
31 struct vmemmap_remap_walk {
32         void                    (*remap_pte)(pte_t *pte, unsigned long addr,
33                                              struct vmemmap_remap_walk *walk);
34         unsigned long           nr_walked;
35         struct page             *reuse_page;
36         unsigned long           reuse_addr;
37         struct list_head        *vmemmap_pages;
38 };
39
40 static int split_vmemmap_huge_pmd(pmd_t *pmd, unsigned long start)
41 {
42         pmd_t __pmd;
43         int i;
44         unsigned long addr = start;
45         struct page *head;
46         pte_t *pgtable;
47
48         spin_lock(&init_mm.page_table_lock);
49         head = pmd_leaf(*pmd) ? pmd_page(*pmd) : NULL;
50         spin_unlock(&init_mm.page_table_lock);
51
52         if (!head)
53                 return 0;
54
55         pgtable = pte_alloc_one_kernel(&init_mm);
56         if (!pgtable)
57                 return -ENOMEM;
58
59         pmd_populate_kernel(&init_mm, &__pmd, pgtable);
60
61         for (i = 0; i < PTRS_PER_PTE; i++, addr += PAGE_SIZE) {
62                 pte_t entry, *pte;
63                 pgprot_t pgprot = PAGE_KERNEL;
64
65                 entry = mk_pte(head + i, pgprot);
66                 pte = pte_offset_kernel(&__pmd, addr);
67                 set_pte_at(&init_mm, addr, pte, entry);
68         }
69
70         spin_lock(&init_mm.page_table_lock);
71         if (likely(pmd_leaf(*pmd))) {
72                 /*
73                  * Higher order allocations from buddy allocator must be able to
74                  * be treated as indepdenent small pages (as they can be freed
75                  * individually).
76                  */
77                 if (!PageReserved(head))
78                         split_page(head, get_order(PMD_SIZE));
79
80                 /* Make pte visible before pmd. See comment in pmd_install(). */
81                 smp_wmb();
82                 pmd_populate_kernel(&init_mm, pmd, pgtable);
83                 flush_tlb_kernel_range(start, start + PMD_SIZE);
84         } else {
85                 pte_free_kernel(&init_mm, pgtable);
86         }
87         spin_unlock(&init_mm.page_table_lock);
88
89         return 0;
90 }
91
92 static void vmemmap_pte_range(pmd_t *pmd, unsigned long addr,
93                               unsigned long end,
94                               struct vmemmap_remap_walk *walk)
95 {
96         pte_t *pte = pte_offset_kernel(pmd, addr);
97
98         /*
99          * The reuse_page is found 'first' in table walk before we start
100          * remapping (which is calling @walk->remap_pte).
101          */
102         if (!walk->reuse_page) {
103                 walk->reuse_page = pte_page(ptep_get(pte));
104                 /*
105                  * Because the reuse address is part of the range that we are
106                  * walking, skip the reuse address range.
107                  */
108                 addr += PAGE_SIZE;
109                 pte++;
110                 walk->nr_walked++;
111         }
112
113         for (; addr != end; addr += PAGE_SIZE, pte++) {
114                 walk->remap_pte(pte, addr, walk);
115                 walk->nr_walked++;
116         }
117 }
118
119 static int vmemmap_pmd_range(pud_t *pud, unsigned long addr,
120                              unsigned long end,
121                              struct vmemmap_remap_walk *walk)
122 {
123         pmd_t *pmd;
124         unsigned long next;
125
126         pmd = pmd_offset(pud, addr);
127         do {
128                 int ret;
129
130                 ret = split_vmemmap_huge_pmd(pmd, addr & PMD_MASK);
131                 if (ret)
132                         return ret;
133
134                 next = pmd_addr_end(addr, end);
135                 vmemmap_pte_range(pmd, addr, next, walk);
136         } while (pmd++, addr = next, addr != end);
137
138         return 0;
139 }
140
141 static int vmemmap_pud_range(p4d_t *p4d, unsigned long addr,
142                              unsigned long end,
143                              struct vmemmap_remap_walk *walk)
144 {
145         pud_t *pud;
146         unsigned long next;
147
148         pud = pud_offset(p4d, addr);
149         do {
150                 int ret;
151
152                 next = pud_addr_end(addr, end);
153                 ret = vmemmap_pmd_range(pud, addr, next, walk);
154                 if (ret)
155                         return ret;
156         } while (pud++, addr = next, addr != end);
157
158         return 0;
159 }
160
161 static int vmemmap_p4d_range(pgd_t *pgd, unsigned long addr,
162                              unsigned long end,
163                              struct vmemmap_remap_walk *walk)
164 {
165         p4d_t *p4d;
166         unsigned long next;
167
168         p4d = p4d_offset(pgd, addr);
169         do {
170                 int ret;
171
172                 next = p4d_addr_end(addr, end);
173                 ret = vmemmap_pud_range(p4d, addr, next, walk);
174                 if (ret)
175                         return ret;
176         } while (p4d++, addr = next, addr != end);
177
178         return 0;
179 }
180
181 static int vmemmap_remap_range(unsigned long start, unsigned long end,
182                                struct vmemmap_remap_walk *walk)
183 {
184         unsigned long addr = start;
185         unsigned long next;
186         pgd_t *pgd;
187
188         VM_BUG_ON(!PAGE_ALIGNED(start));
189         VM_BUG_ON(!PAGE_ALIGNED(end));
190
191         pgd = pgd_offset_k(addr);
192         do {
193                 int ret;
194
195                 next = pgd_addr_end(addr, end);
196                 ret = vmemmap_p4d_range(pgd, addr, next, walk);
197                 if (ret)
198                         return ret;
199         } while (pgd++, addr = next, addr != end);
200
201         flush_tlb_kernel_range(start, end);
202
203         return 0;
204 }
205
206 /*
207  * Free a vmemmap page. A vmemmap page can be allocated from the memblock
208  * allocator or buddy allocator. If the PG_reserved flag is set, it means
209  * that it allocated from the memblock allocator, just free it via the
210  * free_bootmem_page(). Otherwise, use __free_page().
211  */
212 static inline void free_vmemmap_page(struct page *page)
213 {
214         if (PageReserved(page))
215                 free_bootmem_page(page);
216         else
217                 __free_page(page);
218 }
219
220 /* Free a list of the vmemmap pages */
221 static void free_vmemmap_page_list(struct list_head *list)
222 {
223         struct page *page, *next;
224
225         list_for_each_entry_safe(page, next, list, lru)
226                 free_vmemmap_page(page);
227 }
228
229 static void vmemmap_remap_pte(pte_t *pte, unsigned long addr,
230                               struct vmemmap_remap_walk *walk)
231 {
232         /*
233          * Remap the tail pages as read-only to catch illegal write operation
234          * to the tail pages.
235          */
236         pgprot_t pgprot = PAGE_KERNEL_RO;
237         struct page *page = pte_page(ptep_get(pte));
238         pte_t entry;
239
240         /* Remapping the head page requires r/w */
241         if (unlikely(addr == walk->reuse_addr)) {
242                 pgprot = PAGE_KERNEL;
243                 list_del(&walk->reuse_page->lru);
244
245                 /*
246                  * Makes sure that preceding stores to the page contents from
247                  * vmemmap_remap_free() become visible before the set_pte_at()
248                  * write.
249                  */
250                 smp_wmb();
251         }
252
253         entry = mk_pte(walk->reuse_page, pgprot);
254         list_add_tail(&page->lru, walk->vmemmap_pages);
255         set_pte_at(&init_mm, addr, pte, entry);
256 }
257
258 /*
259  * How many struct page structs need to be reset. When we reuse the head
260  * struct page, the special metadata (e.g. page->flags or page->mapping)
261  * cannot copy to the tail struct page structs. The invalid value will be
262  * checked in the free_tail_page_prepare(). In order to avoid the message
263  * of "corrupted mapping in tail page". We need to reset at least 3 (one
264  * head struct page struct and two tail struct page structs) struct page
265  * structs.
266  */
267 #define NR_RESET_STRUCT_PAGE            3
268
269 static inline void reset_struct_pages(struct page *start)
270 {
271         struct page *from = start + NR_RESET_STRUCT_PAGE;
272
273         BUILD_BUG_ON(NR_RESET_STRUCT_PAGE * 2 > PAGE_SIZE / sizeof(struct page));
274         memcpy(start, from, sizeof(*from) * NR_RESET_STRUCT_PAGE);
275 }
276
277 static void vmemmap_restore_pte(pte_t *pte, unsigned long addr,
278                                 struct vmemmap_remap_walk *walk)
279 {
280         pgprot_t pgprot = PAGE_KERNEL;
281         struct page *page;
282         void *to;
283
284         BUG_ON(pte_page(ptep_get(pte)) != walk->reuse_page);
285
286         page = list_first_entry(walk->vmemmap_pages, struct page, lru);
287         list_del(&page->lru);
288         to = page_to_virt(page);
289         copy_page(to, (void *)walk->reuse_addr);
290         reset_struct_pages(to);
291
292         /*
293          * Makes sure that preceding stores to the page contents become visible
294          * before the set_pte_at() write.
295          */
296         smp_wmb();
297         set_pte_at(&init_mm, addr, pte, mk_pte(page, pgprot));
298 }
299
300 /**
301  * vmemmap_remap_free - remap the vmemmap virtual address range [@start, @end)
302  *                      to the page which @reuse is mapped to, then free vmemmap
303  *                      which the range are mapped to.
304  * @start:      start address of the vmemmap virtual address range that we want
305  *              to remap.
306  * @end:        end address of the vmemmap virtual address range that we want to
307  *              remap.
308  * @reuse:      reuse address.
309  *
310  * Return: %0 on success, negative error code otherwise.
311  */
312 static int vmemmap_remap_free(unsigned long start, unsigned long end,
313                               unsigned long reuse)
314 {
315         int ret;
316         LIST_HEAD(vmemmap_pages);
317         struct vmemmap_remap_walk walk = {
318                 .remap_pte      = vmemmap_remap_pte,
319                 .reuse_addr     = reuse,
320                 .vmemmap_pages  = &vmemmap_pages,
321         };
322         int nid = page_to_nid((struct page *)reuse);
323         gfp_t gfp_mask = GFP_KERNEL | __GFP_NORETRY | __GFP_NOWARN;
324
325         /*
326          * Allocate a new head vmemmap page to avoid breaking a contiguous
327          * block of struct page memory when freeing it back to page allocator
328          * in free_vmemmap_page_list(). This will allow the likely contiguous
329          * struct page backing memory to be kept contiguous and allowing for
330          * more allocations of hugepages. Fallback to the currently
331          * mapped head page in case should it fail to allocate.
332          */
333         walk.reuse_page = alloc_pages_node(nid, gfp_mask, 0);
334         if (walk.reuse_page) {
335                 copy_page(page_to_virt(walk.reuse_page),
336                           (void *)walk.reuse_addr);
337                 list_add(&walk.reuse_page->lru, &vmemmap_pages);
338         }
339
340         /*
341          * In order to make remapping routine most efficient for the huge pages,
342          * the routine of vmemmap page table walking has the following rules
343          * (see more details from the vmemmap_pte_range()):
344          *
345          * - The range [@start, @end) and the range [@reuse, @reuse + PAGE_SIZE)
346          *   should be continuous.
347          * - The @reuse address is part of the range [@reuse, @end) that we are
348          *   walking which is passed to vmemmap_remap_range().
349          * - The @reuse address is the first in the complete range.
350          *
351          * So we need to make sure that @start and @reuse meet the above rules.
352          */
353         BUG_ON(start - reuse != PAGE_SIZE);
354
355         mmap_read_lock(&init_mm);
356         ret = vmemmap_remap_range(reuse, end, &walk);
357         if (ret && walk.nr_walked) {
358                 end = reuse + walk.nr_walked * PAGE_SIZE;
359                 /*
360                  * vmemmap_pages contains pages from the previous
361                  * vmemmap_remap_range call which failed.  These
362                  * are pages which were removed from the vmemmap.
363                  * They will be restored in the following call.
364                  */
365                 walk = (struct vmemmap_remap_walk) {
366                         .remap_pte      = vmemmap_restore_pte,
367                         .reuse_addr     = reuse,
368                         .vmemmap_pages  = &vmemmap_pages,
369                 };
370
371                 vmemmap_remap_range(reuse, end, &walk);
372         }
373         mmap_read_unlock(&init_mm);
374
375         free_vmemmap_page_list(&vmemmap_pages);
376
377         return ret;
378 }
379
380 static int alloc_vmemmap_page_list(unsigned long start, unsigned long end,
381                                    struct list_head *list)
382 {
383         gfp_t gfp_mask = GFP_KERNEL | __GFP_RETRY_MAYFAIL;
384         unsigned long nr_pages = (end - start) >> PAGE_SHIFT;
385         int nid = page_to_nid((struct page *)start);
386         struct page *page, *next;
387
388         while (nr_pages--) {
389                 page = alloc_pages_node(nid, gfp_mask, 0);
390                 if (!page)
391                         goto out;
392                 list_add_tail(&page->lru, list);
393         }
394
395         return 0;
396 out:
397         list_for_each_entry_safe(page, next, list, lru)
398                 __free_page(page);
399         return -ENOMEM;
400 }
401
402 /**
403  * vmemmap_remap_alloc - remap the vmemmap virtual address range [@start, end)
404  *                       to the page which is from the @vmemmap_pages
405  *                       respectively.
406  * @start:      start address of the vmemmap virtual address range that we want
407  *              to remap.
408  * @end:        end address of the vmemmap virtual address range that we want to
409  *              remap.
410  * @reuse:      reuse address.
411  *
412  * Return: %0 on success, negative error code otherwise.
413  */
414 static int vmemmap_remap_alloc(unsigned long start, unsigned long end,
415                                unsigned long reuse)
416 {
417         LIST_HEAD(vmemmap_pages);
418         struct vmemmap_remap_walk walk = {
419                 .remap_pte      = vmemmap_restore_pte,
420                 .reuse_addr     = reuse,
421                 .vmemmap_pages  = &vmemmap_pages,
422         };
423
424         /* See the comment in the vmemmap_remap_free(). */
425         BUG_ON(start - reuse != PAGE_SIZE);
426
427         if (alloc_vmemmap_page_list(start, end, &vmemmap_pages))
428                 return -ENOMEM;
429
430         mmap_read_lock(&init_mm);
431         vmemmap_remap_range(reuse, end, &walk);
432         mmap_read_unlock(&init_mm);
433
434         return 0;
435 }
436
437 DEFINE_STATIC_KEY_FALSE(hugetlb_optimize_vmemmap_key);
438 EXPORT_SYMBOL(hugetlb_optimize_vmemmap_key);
439
440 static bool vmemmap_optimize_enabled = IS_ENABLED(CONFIG_HUGETLB_PAGE_OPTIMIZE_VMEMMAP_DEFAULT_ON);
441 core_param(hugetlb_free_vmemmap, vmemmap_optimize_enabled, bool, 0);
442
443 /**
444  * hugetlb_vmemmap_restore - restore previously optimized (by
445  *                           hugetlb_vmemmap_optimize()) vmemmap pages which
446  *                           will be reallocated and remapped.
447  * @h:          struct hstate.
448  * @head:       the head page whose vmemmap pages will be restored.
449  *
450  * Return: %0 if @head's vmemmap pages have been reallocated and remapped,
451  * negative error code otherwise.
452  */
453 int hugetlb_vmemmap_restore(const struct hstate *h, struct page *head)
454 {
455         int ret;
456         unsigned long vmemmap_start = (unsigned long)head, vmemmap_end;
457         unsigned long vmemmap_reuse;
458
459         VM_WARN_ON_ONCE(!PageHuge(head));
460         if (!HPageVmemmapOptimized(head))
461                 return 0;
462
463         vmemmap_end     = vmemmap_start + hugetlb_vmemmap_size(h);
464         vmemmap_reuse   = vmemmap_start;
465         vmemmap_start   += HUGETLB_VMEMMAP_RESERVE_SIZE;
466
467         /*
468          * The pages which the vmemmap virtual address range [@vmemmap_start,
469          * @vmemmap_end) are mapped to are freed to the buddy allocator, and
470          * the range is mapped to the page which @vmemmap_reuse is mapped to.
471          * When a HugeTLB page is freed to the buddy allocator, previously
472          * discarded vmemmap pages must be allocated and remapping.
473          */
474         ret = vmemmap_remap_alloc(vmemmap_start, vmemmap_end, vmemmap_reuse);
475         if (!ret) {
476                 ClearHPageVmemmapOptimized(head);
477                 static_branch_dec(&hugetlb_optimize_vmemmap_key);
478         }
479
480         return ret;
481 }
482
483 /* Return true iff a HugeTLB whose vmemmap should and can be optimized. */
484 static bool vmemmap_should_optimize(const struct hstate *h, const struct page *head)
485 {
486         if (HPageVmemmapOptimized((struct page *)head))
487                 return false;
488
489         if (!READ_ONCE(vmemmap_optimize_enabled))
490                 return false;
491
492         if (!hugetlb_vmemmap_optimizable(h))
493                 return false;
494
495         if (IS_ENABLED(CONFIG_MEMORY_HOTPLUG)) {
496                 pmd_t *pmdp, pmd;
497                 struct page *vmemmap_page;
498                 unsigned long vaddr = (unsigned long)head;
499
500                 /*
501                  * Only the vmemmap page's vmemmap page can be self-hosted.
502                  * Walking the page tables to find the backing page of the
503                  * vmemmap page.
504                  */
505                 pmdp = pmd_off_k(vaddr);
506                 /*
507                  * The READ_ONCE() is used to stabilize *pmdp in a register or
508                  * on the stack so that it will stop changing under the code.
509                  * The only concurrent operation where it can be changed is
510                  * split_vmemmap_huge_pmd() (*pmdp will be stable after this
511                  * operation).
512                  */
513                 pmd = READ_ONCE(*pmdp);
514                 if (pmd_leaf(pmd))
515                         vmemmap_page = pmd_page(pmd) + pte_index(vaddr);
516                 else
517                         vmemmap_page = pte_page(*pte_offset_kernel(pmdp, vaddr));
518                 /*
519                  * Due to HugeTLB alignment requirements and the vmemmap pages
520                  * being at the start of the hotplugged memory region in
521                  * memory_hotplug.memmap_on_memory case. Checking any vmemmap
522                  * page's vmemmap page if it is marked as VmemmapSelfHosted is
523                  * sufficient.
524                  *
525                  * [                  hotplugged memory                  ]
526                  * [        section        ][...][        section        ]
527                  * [ vmemmap ][              usable memory               ]
528                  *   ^   |     |                                        |
529                  *   +---+     |                                        |
530                  *     ^       |                                        |
531                  *     +-------+                                        |
532                  *          ^                                           |
533                  *          +-------------------------------------------+
534                  */
535                 if (PageVmemmapSelfHosted(vmemmap_page))
536                         return false;
537         }
538
539         return true;
540 }
541
542 /**
543  * hugetlb_vmemmap_optimize - optimize @head page's vmemmap pages.
544  * @h:          struct hstate.
545  * @head:       the head page whose vmemmap pages will be optimized.
546  *
547  * This function only tries to optimize @head's vmemmap pages and does not
548  * guarantee that the optimization will succeed after it returns. The caller
549  * can use HPageVmemmapOptimized(@head) to detect if @head's vmemmap pages
550  * have been optimized.
551  */
552 void hugetlb_vmemmap_optimize(const struct hstate *h, struct page *head)
553 {
554         unsigned long vmemmap_start = (unsigned long)head, vmemmap_end;
555         unsigned long vmemmap_reuse;
556
557         VM_WARN_ON_ONCE(!PageHuge(head));
558         if (!vmemmap_should_optimize(h, head))
559                 return;
560
561         static_branch_inc(&hugetlb_optimize_vmemmap_key);
562
563         vmemmap_end     = vmemmap_start + hugetlb_vmemmap_size(h);
564         vmemmap_reuse   = vmemmap_start;
565         vmemmap_start   += HUGETLB_VMEMMAP_RESERVE_SIZE;
566
567         /*
568          * Remap the vmemmap virtual address range [@vmemmap_start, @vmemmap_end)
569          * to the page which @vmemmap_reuse is mapped to, then free the pages
570          * which the range [@vmemmap_start, @vmemmap_end] is mapped to.
571          */
572         if (vmemmap_remap_free(vmemmap_start, vmemmap_end, vmemmap_reuse))
573                 static_branch_dec(&hugetlb_optimize_vmemmap_key);
574         else
575                 SetHPageVmemmapOptimized(head);
576 }
577
578 void hugetlb_vmemmap_optimize_folios(struct hstate *h, struct list_head *folio_list)
579 {
580         struct folio *folio;
581
582         list_for_each_entry(folio, folio_list, lru)
583                 hugetlb_vmemmap_optimize(h, &folio->page);
584 }
585
586 static struct ctl_table hugetlb_vmemmap_sysctls[] = {
587         {
588                 .procname       = "hugetlb_optimize_vmemmap",
589                 .data           = &vmemmap_optimize_enabled,
590                 .maxlen         = sizeof(vmemmap_optimize_enabled),
591                 .mode           = 0644,
592                 .proc_handler   = proc_dobool,
593         },
594         { }
595 };
596
597 static int __init hugetlb_vmemmap_init(void)
598 {
599         const struct hstate *h;
600
601         /* HUGETLB_VMEMMAP_RESERVE_SIZE should cover all used struct pages */
602         BUILD_BUG_ON(__NR_USED_SUBPAGE > HUGETLB_VMEMMAP_RESERVE_PAGES);
603
604         for_each_hstate(h) {
605                 if (hugetlb_vmemmap_optimizable(h)) {
606                         register_sysctl_init("vm", hugetlb_vmemmap_sysctls);
607                         break;
608                 }
609         }
610         return 0;
611 }
612 late_initcall(hugetlb_vmemmap_init);