mm: hugetlb_vmemmap: fix hugetlb page number decrease failed on movable nodes
[linux-2.6-microblaze.git] / mm / hugetlb_vmemmap.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * HugeTLB Vmemmap Optimization (HVO)
4  *
5  * Copyright (c) 2020, ByteDance. All rights reserved.
6  *
7  *     Author: Muchun Song <songmuchun@bytedance.com>
8  *
9  * See Documentation/mm/vmemmap_dedup.rst
10  */
11 #define pr_fmt(fmt)     "HugeTLB: " fmt
12
13 #include <linux/pgtable.h>
14 #include <linux/moduleparam.h>
15 #include <linux/bootmem_info.h>
16 #include <linux/mmdebug.h>
17 #include <asm/pgalloc.h>
18 #include <asm/tlbflush.h>
19 #include "hugetlb_vmemmap.h"
20
21 /**
22  * struct vmemmap_remap_walk - walk vmemmap page table
23  *
24  * @remap_pte:          called for each lowest-level entry (PTE).
25  * @nr_walked:          the number of walked pte.
26  * @reuse_page:         the page which is reused for the tail vmemmap pages.
27  * @reuse_addr:         the virtual address of the @reuse_page page.
28  * @vmemmap_pages:      the list head of the vmemmap pages that can be freed
29  *                      or is mapped from.
30  */
31 struct vmemmap_remap_walk {
32         void                    (*remap_pte)(pte_t *pte, unsigned long addr,
33                                              struct vmemmap_remap_walk *walk);
34         unsigned long           nr_walked;
35         struct page             *reuse_page;
36         unsigned long           reuse_addr;
37         struct list_head        *vmemmap_pages;
38 };
39
40 static int split_vmemmap_huge_pmd(pmd_t *pmd, unsigned long start)
41 {
42         pmd_t __pmd;
43         int i;
44         unsigned long addr = start;
45         struct page *head;
46         pte_t *pgtable;
47
48         spin_lock(&init_mm.page_table_lock);
49         head = pmd_leaf(*pmd) ? pmd_page(*pmd) : NULL;
50         spin_unlock(&init_mm.page_table_lock);
51
52         if (!head)
53                 return 0;
54
55         pgtable = pte_alloc_one_kernel(&init_mm);
56         if (!pgtable)
57                 return -ENOMEM;
58
59         pmd_populate_kernel(&init_mm, &__pmd, pgtable);
60
61         for (i = 0; i < PTRS_PER_PTE; i++, addr += PAGE_SIZE) {
62                 pte_t entry, *pte;
63                 pgprot_t pgprot = PAGE_KERNEL;
64
65                 entry = mk_pte(head + i, pgprot);
66                 pte = pte_offset_kernel(&__pmd, addr);
67                 set_pte_at(&init_mm, addr, pte, entry);
68         }
69
70         spin_lock(&init_mm.page_table_lock);
71         if (likely(pmd_leaf(*pmd))) {
72                 /*
73                  * Higher order allocations from buddy allocator must be able to
74                  * be treated as indepdenent small pages (as they can be freed
75                  * individually).
76                  */
77                 if (!PageReserved(head))
78                         split_page(head, get_order(PMD_SIZE));
79
80                 /* Make pte visible before pmd. See comment in pmd_install(). */
81                 smp_wmb();
82                 pmd_populate_kernel(&init_mm, pmd, pgtable);
83                 flush_tlb_kernel_range(start, start + PMD_SIZE);
84         } else {
85                 pte_free_kernel(&init_mm, pgtable);
86         }
87         spin_unlock(&init_mm.page_table_lock);
88
89         return 0;
90 }
91
92 static void vmemmap_pte_range(pmd_t *pmd, unsigned long addr,
93                               unsigned long end,
94                               struct vmemmap_remap_walk *walk)
95 {
96         pte_t *pte = pte_offset_kernel(pmd, addr);
97
98         /*
99          * The reuse_page is found 'first' in table walk before we start
100          * remapping (which is calling @walk->remap_pte).
101          */
102         if (!walk->reuse_page) {
103                 walk->reuse_page = pte_page(ptep_get(pte));
104                 /*
105                  * Because the reuse address is part of the range that we are
106                  * walking, skip the reuse address range.
107                  */
108                 addr += PAGE_SIZE;
109                 pte++;
110                 walk->nr_walked++;
111         }
112
113         for (; addr != end; addr += PAGE_SIZE, pte++) {
114                 walk->remap_pte(pte, addr, walk);
115                 walk->nr_walked++;
116         }
117 }
118
119 static int vmemmap_pmd_range(pud_t *pud, unsigned long addr,
120                              unsigned long end,
121                              struct vmemmap_remap_walk *walk)
122 {
123         pmd_t *pmd;
124         unsigned long next;
125
126         pmd = pmd_offset(pud, addr);
127         do {
128                 int ret;
129
130                 ret = split_vmemmap_huge_pmd(pmd, addr & PMD_MASK);
131                 if (ret)
132                         return ret;
133
134                 next = pmd_addr_end(addr, end);
135                 vmemmap_pte_range(pmd, addr, next, walk);
136         } while (pmd++, addr = next, addr != end);
137
138         return 0;
139 }
140
141 static int vmemmap_pud_range(p4d_t *p4d, unsigned long addr,
142                              unsigned long end,
143                              struct vmemmap_remap_walk *walk)
144 {
145         pud_t *pud;
146         unsigned long next;
147
148         pud = pud_offset(p4d, addr);
149         do {
150                 int ret;
151
152                 next = pud_addr_end(addr, end);
153                 ret = vmemmap_pmd_range(pud, addr, next, walk);
154                 if (ret)
155                         return ret;
156         } while (pud++, addr = next, addr != end);
157
158         return 0;
159 }
160
161 static int vmemmap_p4d_range(pgd_t *pgd, unsigned long addr,
162                              unsigned long end,
163                              struct vmemmap_remap_walk *walk)
164 {
165         p4d_t *p4d;
166         unsigned long next;
167
168         p4d = p4d_offset(pgd, addr);
169         do {
170                 int ret;
171
172                 next = p4d_addr_end(addr, end);
173                 ret = vmemmap_pud_range(p4d, addr, next, walk);
174                 if (ret)
175                         return ret;
176         } while (p4d++, addr = next, addr != end);
177
178         return 0;
179 }
180
181 static int vmemmap_remap_range(unsigned long start, unsigned long end,
182                                struct vmemmap_remap_walk *walk)
183 {
184         unsigned long addr = start;
185         unsigned long next;
186         pgd_t *pgd;
187
188         VM_BUG_ON(!PAGE_ALIGNED(start));
189         VM_BUG_ON(!PAGE_ALIGNED(end));
190
191         pgd = pgd_offset_k(addr);
192         do {
193                 int ret;
194
195                 next = pgd_addr_end(addr, end);
196                 ret = vmemmap_p4d_range(pgd, addr, next, walk);
197                 if (ret)
198                         return ret;
199         } while (pgd++, addr = next, addr != end);
200
201         flush_tlb_kernel_range(start, end);
202
203         return 0;
204 }
205
206 /*
207  * Free a vmemmap page. A vmemmap page can be allocated from the memblock
208  * allocator or buddy allocator. If the PG_reserved flag is set, it means
209  * that it allocated from the memblock allocator, just free it via the
210  * free_bootmem_page(). Otherwise, use __free_page().
211  */
212 static inline void free_vmemmap_page(struct page *page)
213 {
214         if (PageReserved(page))
215                 free_bootmem_page(page);
216         else
217                 __free_page(page);
218 }
219
220 /* Free a list of the vmemmap pages */
221 static void free_vmemmap_page_list(struct list_head *list)
222 {
223         struct page *page, *next;
224
225         list_for_each_entry_safe(page, next, list, lru)
226                 free_vmemmap_page(page);
227 }
228
229 static void vmemmap_remap_pte(pte_t *pte, unsigned long addr,
230                               struct vmemmap_remap_walk *walk)
231 {
232         /*
233          * Remap the tail pages as read-only to catch illegal write operation
234          * to the tail pages.
235          */
236         pgprot_t pgprot = PAGE_KERNEL_RO;
237         struct page *page = pte_page(ptep_get(pte));
238         pte_t entry;
239
240         /* Remapping the head page requires r/w */
241         if (unlikely(addr == walk->reuse_addr)) {
242                 pgprot = PAGE_KERNEL;
243                 list_del(&walk->reuse_page->lru);
244
245                 /*
246                  * Makes sure that preceding stores to the page contents from
247                  * vmemmap_remap_free() become visible before the set_pte_at()
248                  * write.
249                  */
250                 smp_wmb();
251         }
252
253         entry = mk_pte(walk->reuse_page, pgprot);
254         list_add_tail(&page->lru, walk->vmemmap_pages);
255         set_pte_at(&init_mm, addr, pte, entry);
256 }
257
258 /*
259  * How many struct page structs need to be reset. When we reuse the head
260  * struct page, the special metadata (e.g. page->flags or page->mapping)
261  * cannot copy to the tail struct page structs. The invalid value will be
262  * checked in the free_tail_page_prepare(). In order to avoid the message
263  * of "corrupted mapping in tail page". We need to reset at least 3 (one
264  * head struct page struct and two tail struct page structs) struct page
265  * structs.
266  */
267 #define NR_RESET_STRUCT_PAGE            3
268
269 static inline void reset_struct_pages(struct page *start)
270 {
271         struct page *from = start + NR_RESET_STRUCT_PAGE;
272
273         BUILD_BUG_ON(NR_RESET_STRUCT_PAGE * 2 > PAGE_SIZE / sizeof(struct page));
274         memcpy(start, from, sizeof(*from) * NR_RESET_STRUCT_PAGE);
275 }
276
277 static void vmemmap_restore_pte(pte_t *pte, unsigned long addr,
278                                 struct vmemmap_remap_walk *walk)
279 {
280         pgprot_t pgprot = PAGE_KERNEL;
281         struct page *page;
282         void *to;
283
284         BUG_ON(pte_page(ptep_get(pte)) != walk->reuse_page);
285
286         page = list_first_entry(walk->vmemmap_pages, struct page, lru);
287         list_del(&page->lru);
288         to = page_to_virt(page);
289         copy_page(to, (void *)walk->reuse_addr);
290         reset_struct_pages(to);
291
292         /*
293          * Makes sure that preceding stores to the page contents become visible
294          * before the set_pte_at() write.
295          */
296         smp_wmb();
297         set_pte_at(&init_mm, addr, pte, mk_pte(page, pgprot));
298 }
299
300 /**
301  * vmemmap_remap_free - remap the vmemmap virtual address range [@start, @end)
302  *                      to the page which @reuse is mapped to, then free vmemmap
303  *                      which the range are mapped to.
304  * @start:      start address of the vmemmap virtual address range that we want
305  *              to remap.
306  * @end:        end address of the vmemmap virtual address range that we want to
307  *              remap.
308  * @reuse:      reuse address.
309  *
310  * Return: %0 on success, negative error code otherwise.
311  */
312 static int vmemmap_remap_free(unsigned long start, unsigned long end,
313                               unsigned long reuse)
314 {
315         int ret;
316         LIST_HEAD(vmemmap_pages);
317         struct vmemmap_remap_walk walk = {
318                 .remap_pte      = vmemmap_remap_pte,
319                 .reuse_addr     = reuse,
320                 .vmemmap_pages  = &vmemmap_pages,
321         };
322         int nid = page_to_nid((struct page *)start);
323         gfp_t gfp_mask = GFP_KERNEL | __GFP_THISNODE | __GFP_NORETRY |
324                         __GFP_NOWARN;
325
326         /*
327          * Allocate a new head vmemmap page to avoid breaking a contiguous
328          * block of struct page memory when freeing it back to page allocator
329          * in free_vmemmap_page_list(). This will allow the likely contiguous
330          * struct page backing memory to be kept contiguous and allowing for
331          * more allocations of hugepages. Fallback to the currently
332          * mapped head page in case should it fail to allocate.
333          */
334         walk.reuse_page = alloc_pages_node(nid, gfp_mask, 0);
335         if (walk.reuse_page) {
336                 copy_page(page_to_virt(walk.reuse_page),
337                           (void *)walk.reuse_addr);
338                 list_add(&walk.reuse_page->lru, &vmemmap_pages);
339         }
340
341         /*
342          * In order to make remapping routine most efficient for the huge pages,
343          * the routine of vmemmap page table walking has the following rules
344          * (see more details from the vmemmap_pte_range()):
345          *
346          * - The range [@start, @end) and the range [@reuse, @reuse + PAGE_SIZE)
347          *   should be continuous.
348          * - The @reuse address is part of the range [@reuse, @end) that we are
349          *   walking which is passed to vmemmap_remap_range().
350          * - The @reuse address is the first in the complete range.
351          *
352          * So we need to make sure that @start and @reuse meet the above rules.
353          */
354         BUG_ON(start - reuse != PAGE_SIZE);
355
356         mmap_read_lock(&init_mm);
357         ret = vmemmap_remap_range(reuse, end, &walk);
358         if (ret && walk.nr_walked) {
359                 end = reuse + walk.nr_walked * PAGE_SIZE;
360                 /*
361                  * vmemmap_pages contains pages from the previous
362                  * vmemmap_remap_range call which failed.  These
363                  * are pages which were removed from the vmemmap.
364                  * They will be restored in the following call.
365                  */
366                 walk = (struct vmemmap_remap_walk) {
367                         .remap_pte      = vmemmap_restore_pte,
368                         .reuse_addr     = reuse,
369                         .vmemmap_pages  = &vmemmap_pages,
370                 };
371
372                 vmemmap_remap_range(reuse, end, &walk);
373         }
374         mmap_read_unlock(&init_mm);
375
376         free_vmemmap_page_list(&vmemmap_pages);
377
378         return ret;
379 }
380
381 static int alloc_vmemmap_page_list(unsigned long start, unsigned long end,
382                                    struct list_head *list)
383 {
384         gfp_t gfp_mask = GFP_KERNEL | __GFP_RETRY_MAYFAIL;
385         unsigned long nr_pages = (end - start) >> PAGE_SHIFT;
386         int nid = page_to_nid((struct page *)start);
387         struct page *page, *next;
388
389         while (nr_pages--) {
390                 page = alloc_pages_node(nid, gfp_mask, 0);
391                 if (!page)
392                         goto out;
393                 list_add_tail(&page->lru, list);
394         }
395
396         return 0;
397 out:
398         list_for_each_entry_safe(page, next, list, lru)
399                 __free_page(page);
400         return -ENOMEM;
401 }
402
403 /**
404  * vmemmap_remap_alloc - remap the vmemmap virtual address range [@start, end)
405  *                       to the page which is from the @vmemmap_pages
406  *                       respectively.
407  * @start:      start address of the vmemmap virtual address range that we want
408  *              to remap.
409  * @end:        end address of the vmemmap virtual address range that we want to
410  *              remap.
411  * @reuse:      reuse address.
412  *
413  * Return: %0 on success, negative error code otherwise.
414  */
415 static int vmemmap_remap_alloc(unsigned long start, unsigned long end,
416                                unsigned long reuse)
417 {
418         LIST_HEAD(vmemmap_pages);
419         struct vmemmap_remap_walk walk = {
420                 .remap_pte      = vmemmap_restore_pte,
421                 .reuse_addr     = reuse,
422                 .vmemmap_pages  = &vmemmap_pages,
423         };
424
425         /* See the comment in the vmemmap_remap_free(). */
426         BUG_ON(start - reuse != PAGE_SIZE);
427
428         if (alloc_vmemmap_page_list(start, end, &vmemmap_pages))
429                 return -ENOMEM;
430
431         mmap_read_lock(&init_mm);
432         vmemmap_remap_range(reuse, end, &walk);
433         mmap_read_unlock(&init_mm);
434
435         return 0;
436 }
437
438 DEFINE_STATIC_KEY_FALSE(hugetlb_optimize_vmemmap_key);
439 EXPORT_SYMBOL(hugetlb_optimize_vmemmap_key);
440
441 static bool vmemmap_optimize_enabled = IS_ENABLED(CONFIG_HUGETLB_PAGE_OPTIMIZE_VMEMMAP_DEFAULT_ON);
442 core_param(hugetlb_free_vmemmap, vmemmap_optimize_enabled, bool, 0);
443
444 /**
445  * hugetlb_vmemmap_restore - restore previously optimized (by
446  *                           hugetlb_vmemmap_optimize()) vmemmap pages which
447  *                           will be reallocated and remapped.
448  * @h:          struct hstate.
449  * @head:       the head page whose vmemmap pages will be restored.
450  *
451  * Return: %0 if @head's vmemmap pages have been reallocated and remapped,
452  * negative error code otherwise.
453  */
454 int hugetlb_vmemmap_restore(const struct hstate *h, struct page *head)
455 {
456         int ret;
457         unsigned long vmemmap_start = (unsigned long)head, vmemmap_end;
458         unsigned long vmemmap_reuse;
459
460         VM_WARN_ON_ONCE(!PageHuge(head));
461         if (!HPageVmemmapOptimized(head))
462                 return 0;
463
464         vmemmap_end     = vmemmap_start + hugetlb_vmemmap_size(h);
465         vmemmap_reuse   = vmemmap_start;
466         vmemmap_start   += HUGETLB_VMEMMAP_RESERVE_SIZE;
467
468         /*
469          * The pages which the vmemmap virtual address range [@vmemmap_start,
470          * @vmemmap_end) are mapped to are freed to the buddy allocator, and
471          * the range is mapped to the page which @vmemmap_reuse is mapped to.
472          * When a HugeTLB page is freed to the buddy allocator, previously
473          * discarded vmemmap pages must be allocated and remapping.
474          */
475         ret = vmemmap_remap_alloc(vmemmap_start, vmemmap_end, vmemmap_reuse);
476         if (!ret) {
477                 ClearHPageVmemmapOptimized(head);
478                 static_branch_dec(&hugetlb_optimize_vmemmap_key);
479         }
480
481         return ret;
482 }
483
484 /* Return true iff a HugeTLB whose vmemmap should and can be optimized. */
485 static bool vmemmap_should_optimize(const struct hstate *h, const struct page *head)
486 {
487         if (!READ_ONCE(vmemmap_optimize_enabled))
488                 return false;
489
490         if (!hugetlb_vmemmap_optimizable(h))
491                 return false;
492
493         if (IS_ENABLED(CONFIG_MEMORY_HOTPLUG)) {
494                 pmd_t *pmdp, pmd;
495                 struct page *vmemmap_page;
496                 unsigned long vaddr = (unsigned long)head;
497
498                 /*
499                  * Only the vmemmap page's vmemmap page can be self-hosted.
500                  * Walking the page tables to find the backing page of the
501                  * vmemmap page.
502                  */
503                 pmdp = pmd_off_k(vaddr);
504                 /*
505                  * The READ_ONCE() is used to stabilize *pmdp in a register or
506                  * on the stack so that it will stop changing under the code.
507                  * The only concurrent operation where it can be changed is
508                  * split_vmemmap_huge_pmd() (*pmdp will be stable after this
509                  * operation).
510                  */
511                 pmd = READ_ONCE(*pmdp);
512                 if (pmd_leaf(pmd))
513                         vmemmap_page = pmd_page(pmd) + pte_index(vaddr);
514                 else
515                         vmemmap_page = pte_page(*pte_offset_kernel(pmdp, vaddr));
516                 /*
517                  * Due to HugeTLB alignment requirements and the vmemmap pages
518                  * being at the start of the hotplugged memory region in
519                  * memory_hotplug.memmap_on_memory case. Checking any vmemmap
520                  * page's vmemmap page if it is marked as VmemmapSelfHosted is
521                  * sufficient.
522                  *
523                  * [                  hotplugged memory                  ]
524                  * [        section        ][...][        section        ]
525                  * [ vmemmap ][              usable memory               ]
526                  *   ^   |     |                                        |
527                  *   +---+     |                                        |
528                  *     ^       |                                        |
529                  *     +-------+                                        |
530                  *          ^                                           |
531                  *          +-------------------------------------------+
532                  */
533                 if (PageVmemmapSelfHosted(vmemmap_page))
534                         return false;
535         }
536
537         return true;
538 }
539
540 /**
541  * hugetlb_vmemmap_optimize - optimize @head page's vmemmap pages.
542  * @h:          struct hstate.
543  * @head:       the head page whose vmemmap pages will be optimized.
544  *
545  * This function only tries to optimize @head's vmemmap pages and does not
546  * guarantee that the optimization will succeed after it returns. The caller
547  * can use HPageVmemmapOptimized(@head) to detect if @head's vmemmap pages
548  * have been optimized.
549  */
550 void hugetlb_vmemmap_optimize(const struct hstate *h, struct page *head)
551 {
552         unsigned long vmemmap_start = (unsigned long)head, vmemmap_end;
553         unsigned long vmemmap_reuse;
554
555         VM_WARN_ON_ONCE(!PageHuge(head));
556         if (!vmemmap_should_optimize(h, head))
557                 return;
558
559         static_branch_inc(&hugetlb_optimize_vmemmap_key);
560
561         vmemmap_end     = vmemmap_start + hugetlb_vmemmap_size(h);
562         vmemmap_reuse   = vmemmap_start;
563         vmemmap_start   += HUGETLB_VMEMMAP_RESERVE_SIZE;
564
565         /*
566          * Remap the vmemmap virtual address range [@vmemmap_start, @vmemmap_end)
567          * to the page which @vmemmap_reuse is mapped to, then free the pages
568          * which the range [@vmemmap_start, @vmemmap_end] is mapped to.
569          */
570         if (vmemmap_remap_free(vmemmap_start, vmemmap_end, vmemmap_reuse))
571                 static_branch_dec(&hugetlb_optimize_vmemmap_key);
572         else
573                 SetHPageVmemmapOptimized(head);
574 }
575
576 static struct ctl_table hugetlb_vmemmap_sysctls[] = {
577         {
578                 .procname       = "hugetlb_optimize_vmemmap",
579                 .data           = &vmemmap_optimize_enabled,
580                 .maxlen         = sizeof(vmemmap_optimize_enabled),
581                 .mode           = 0644,
582                 .proc_handler   = proc_dobool,
583         },
584         { }
585 };
586
587 static int __init hugetlb_vmemmap_init(void)
588 {
589         const struct hstate *h;
590
591         /* HUGETLB_VMEMMAP_RESERVE_SIZE should cover all used struct pages */
592         BUILD_BUG_ON(__NR_USED_SUBPAGE * sizeof(struct page) > HUGETLB_VMEMMAP_RESERVE_SIZE);
593
594         for_each_hstate(h) {
595                 if (hugetlb_vmemmap_optimizable(h)) {
596                         register_sysctl_init("vm", hugetlb_vmemmap_sysctls);
597                         break;
598                 }
599         }
600         return 0;
601 }
602 late_initcall(hugetlb_vmemmap_init);