hugetlb: before freeing hugetlb page set dtor to appropriate value
[linux-2.6-microblaze.git] / mm / hugetlb.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Generic hugetlb support.
4  * (C) Nadia Yvette Chambers, April 2004
5  */
6 #include <linux/list.h>
7 #include <linux/init.h>
8 #include <linux/mm.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/compiler.h>
17 #include <linux/cpuset.h>
18 #include <linux/mutex.h>
19 #include <linux/memblock.h>
20 #include <linux/sysfs.h>
21 #include <linux/slab.h>
22 #include <linux/sched/mm.h>
23 #include <linux/mmdebug.h>
24 #include <linux/sched/signal.h>
25 #include <linux/rmap.h>
26 #include <linux/string_helpers.h>
27 #include <linux/swap.h>
28 #include <linux/swapops.h>
29 #include <linux/jhash.h>
30 #include <linux/numa.h>
31 #include <linux/llist.h>
32 #include <linux/cma.h>
33 #include <linux/migrate.h>
34
35 #include <asm/page.h>
36 #include <asm/pgalloc.h>
37 #include <asm/tlb.h>
38
39 #include <linux/io.h>
40 #include <linux/hugetlb.h>
41 #include <linux/hugetlb_cgroup.h>
42 #include <linux/node.h>
43 #include <linux/page_owner.h>
44 #include "internal.h"
45 #include "hugetlb_vmemmap.h"
46
47 int hugetlb_max_hstate __read_mostly;
48 unsigned int default_hstate_idx;
49 struct hstate hstates[HUGE_MAX_HSTATE];
50
51 #ifdef CONFIG_CMA
52 static struct cma *hugetlb_cma[MAX_NUMNODES];
53 #endif
54 static unsigned long hugetlb_cma_size __initdata;
55
56 /*
57  * Minimum page order among possible hugepage sizes, set to a proper value
58  * at boot time.
59  */
60 static unsigned int minimum_order __read_mostly = UINT_MAX;
61
62 __initdata LIST_HEAD(huge_boot_pages);
63
64 /* for command line parsing */
65 static struct hstate * __initdata parsed_hstate;
66 static unsigned long __initdata default_hstate_max_huge_pages;
67 static bool __initdata parsed_valid_hugepagesz = true;
68 static bool __initdata parsed_default_hugepagesz;
69
70 /*
71  * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
72  * free_huge_pages, and surplus_huge_pages.
73  */
74 DEFINE_SPINLOCK(hugetlb_lock);
75
76 /*
77  * Serializes faults on the same logical page.  This is used to
78  * prevent spurious OOMs when the hugepage pool is fully utilized.
79  */
80 static int num_fault_mutexes;
81 struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
82
83 /* Forward declaration */
84 static int hugetlb_acct_memory(struct hstate *h, long delta);
85
86 static inline bool subpool_is_free(struct hugepage_subpool *spool)
87 {
88         if (spool->count)
89                 return false;
90         if (spool->max_hpages != -1)
91                 return spool->used_hpages == 0;
92         if (spool->min_hpages != -1)
93                 return spool->rsv_hpages == spool->min_hpages;
94
95         return true;
96 }
97
98 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool,
99                                                 unsigned long irq_flags)
100 {
101         spin_unlock_irqrestore(&spool->lock, irq_flags);
102
103         /* If no pages are used, and no other handles to the subpool
104          * remain, give up any reservations based on minimum size and
105          * free the subpool */
106         if (subpool_is_free(spool)) {
107                 if (spool->min_hpages != -1)
108                         hugetlb_acct_memory(spool->hstate,
109                                                 -spool->min_hpages);
110                 kfree(spool);
111         }
112 }
113
114 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
115                                                 long min_hpages)
116 {
117         struct hugepage_subpool *spool;
118
119         spool = kzalloc(sizeof(*spool), GFP_KERNEL);
120         if (!spool)
121                 return NULL;
122
123         spin_lock_init(&spool->lock);
124         spool->count = 1;
125         spool->max_hpages = max_hpages;
126         spool->hstate = h;
127         spool->min_hpages = min_hpages;
128
129         if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
130                 kfree(spool);
131                 return NULL;
132         }
133         spool->rsv_hpages = min_hpages;
134
135         return spool;
136 }
137
138 void hugepage_put_subpool(struct hugepage_subpool *spool)
139 {
140         unsigned long flags;
141
142         spin_lock_irqsave(&spool->lock, flags);
143         BUG_ON(!spool->count);
144         spool->count--;
145         unlock_or_release_subpool(spool, flags);
146 }
147
148 /*
149  * Subpool accounting for allocating and reserving pages.
150  * Return -ENOMEM if there are not enough resources to satisfy the
151  * request.  Otherwise, return the number of pages by which the
152  * global pools must be adjusted (upward).  The returned value may
153  * only be different than the passed value (delta) in the case where
154  * a subpool minimum size must be maintained.
155  */
156 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
157                                       long delta)
158 {
159         long ret = delta;
160
161         if (!spool)
162                 return ret;
163
164         spin_lock_irq(&spool->lock);
165
166         if (spool->max_hpages != -1) {          /* maximum size accounting */
167                 if ((spool->used_hpages + delta) <= spool->max_hpages)
168                         spool->used_hpages += delta;
169                 else {
170                         ret = -ENOMEM;
171                         goto unlock_ret;
172                 }
173         }
174
175         /* minimum size accounting */
176         if (spool->min_hpages != -1 && spool->rsv_hpages) {
177                 if (delta > spool->rsv_hpages) {
178                         /*
179                          * Asking for more reserves than those already taken on
180                          * behalf of subpool.  Return difference.
181                          */
182                         ret = delta - spool->rsv_hpages;
183                         spool->rsv_hpages = 0;
184                 } else {
185                         ret = 0;        /* reserves already accounted for */
186                         spool->rsv_hpages -= delta;
187                 }
188         }
189
190 unlock_ret:
191         spin_unlock_irq(&spool->lock);
192         return ret;
193 }
194
195 /*
196  * Subpool accounting for freeing and unreserving pages.
197  * Return the number of global page reservations that must be dropped.
198  * The return value may only be different than the passed value (delta)
199  * in the case where a subpool minimum size must be maintained.
200  */
201 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
202                                        long delta)
203 {
204         long ret = delta;
205         unsigned long flags;
206
207         if (!spool)
208                 return delta;
209
210         spin_lock_irqsave(&spool->lock, flags);
211
212         if (spool->max_hpages != -1)            /* maximum size accounting */
213                 spool->used_hpages -= delta;
214
215          /* minimum size accounting */
216         if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
217                 if (spool->rsv_hpages + delta <= spool->min_hpages)
218                         ret = 0;
219                 else
220                         ret = spool->rsv_hpages + delta - spool->min_hpages;
221
222                 spool->rsv_hpages += delta;
223                 if (spool->rsv_hpages > spool->min_hpages)
224                         spool->rsv_hpages = spool->min_hpages;
225         }
226
227         /*
228          * If hugetlbfs_put_super couldn't free spool due to an outstanding
229          * quota reference, free it now.
230          */
231         unlock_or_release_subpool(spool, flags);
232
233         return ret;
234 }
235
236 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
237 {
238         return HUGETLBFS_SB(inode->i_sb)->spool;
239 }
240
241 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
242 {
243         return subpool_inode(file_inode(vma->vm_file));
244 }
245
246 /* Helper that removes a struct file_region from the resv_map cache and returns
247  * it for use.
248  */
249 static struct file_region *
250 get_file_region_entry_from_cache(struct resv_map *resv, long from, long to)
251 {
252         struct file_region *nrg = NULL;
253
254         VM_BUG_ON(resv->region_cache_count <= 0);
255
256         resv->region_cache_count--;
257         nrg = list_first_entry(&resv->region_cache, struct file_region, link);
258         list_del(&nrg->link);
259
260         nrg->from = from;
261         nrg->to = to;
262
263         return nrg;
264 }
265
266 static void copy_hugetlb_cgroup_uncharge_info(struct file_region *nrg,
267                                               struct file_region *rg)
268 {
269 #ifdef CONFIG_CGROUP_HUGETLB
270         nrg->reservation_counter = rg->reservation_counter;
271         nrg->css = rg->css;
272         if (rg->css)
273                 css_get(rg->css);
274 #endif
275 }
276
277 /* Helper that records hugetlb_cgroup uncharge info. */
278 static void record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup *h_cg,
279                                                 struct hstate *h,
280                                                 struct resv_map *resv,
281                                                 struct file_region *nrg)
282 {
283 #ifdef CONFIG_CGROUP_HUGETLB
284         if (h_cg) {
285                 nrg->reservation_counter =
286                         &h_cg->rsvd_hugepage[hstate_index(h)];
287                 nrg->css = &h_cg->css;
288                 /*
289                  * The caller will hold exactly one h_cg->css reference for the
290                  * whole contiguous reservation region. But this area might be
291                  * scattered when there are already some file_regions reside in
292                  * it. As a result, many file_regions may share only one css
293                  * reference. In order to ensure that one file_region must hold
294                  * exactly one h_cg->css reference, we should do css_get for
295                  * each file_region and leave the reference held by caller
296                  * untouched.
297                  */
298                 css_get(&h_cg->css);
299                 if (!resv->pages_per_hpage)
300                         resv->pages_per_hpage = pages_per_huge_page(h);
301                 /* pages_per_hpage should be the same for all entries in
302                  * a resv_map.
303                  */
304                 VM_BUG_ON(resv->pages_per_hpage != pages_per_huge_page(h));
305         } else {
306                 nrg->reservation_counter = NULL;
307                 nrg->css = NULL;
308         }
309 #endif
310 }
311
312 static void put_uncharge_info(struct file_region *rg)
313 {
314 #ifdef CONFIG_CGROUP_HUGETLB
315         if (rg->css)
316                 css_put(rg->css);
317 #endif
318 }
319
320 static bool has_same_uncharge_info(struct file_region *rg,
321                                    struct file_region *org)
322 {
323 #ifdef CONFIG_CGROUP_HUGETLB
324         return rg && org &&
325                rg->reservation_counter == org->reservation_counter &&
326                rg->css == org->css;
327
328 #else
329         return true;
330 #endif
331 }
332
333 static void coalesce_file_region(struct resv_map *resv, struct file_region *rg)
334 {
335         struct file_region *nrg = NULL, *prg = NULL;
336
337         prg = list_prev_entry(rg, link);
338         if (&prg->link != &resv->regions && prg->to == rg->from &&
339             has_same_uncharge_info(prg, rg)) {
340                 prg->to = rg->to;
341
342                 list_del(&rg->link);
343                 put_uncharge_info(rg);
344                 kfree(rg);
345
346                 rg = prg;
347         }
348
349         nrg = list_next_entry(rg, link);
350         if (&nrg->link != &resv->regions && nrg->from == rg->to &&
351             has_same_uncharge_info(nrg, rg)) {
352                 nrg->from = rg->from;
353
354                 list_del(&rg->link);
355                 put_uncharge_info(rg);
356                 kfree(rg);
357         }
358 }
359
360 static inline long
361 hugetlb_resv_map_add(struct resv_map *map, struct file_region *rg, long from,
362                      long to, struct hstate *h, struct hugetlb_cgroup *cg,
363                      long *regions_needed)
364 {
365         struct file_region *nrg;
366
367         if (!regions_needed) {
368                 nrg = get_file_region_entry_from_cache(map, from, to);
369                 record_hugetlb_cgroup_uncharge_info(cg, h, map, nrg);
370                 list_add(&nrg->link, rg->link.prev);
371                 coalesce_file_region(map, nrg);
372         } else
373                 *regions_needed += 1;
374
375         return to - from;
376 }
377
378 /*
379  * Must be called with resv->lock held.
380  *
381  * Calling this with regions_needed != NULL will count the number of pages
382  * to be added but will not modify the linked list. And regions_needed will
383  * indicate the number of file_regions needed in the cache to carry out to add
384  * the regions for this range.
385  */
386 static long add_reservation_in_range(struct resv_map *resv, long f, long t,
387                                      struct hugetlb_cgroup *h_cg,
388                                      struct hstate *h, long *regions_needed)
389 {
390         long add = 0;
391         struct list_head *head = &resv->regions;
392         long last_accounted_offset = f;
393         struct file_region *rg = NULL, *trg = NULL;
394
395         if (regions_needed)
396                 *regions_needed = 0;
397
398         /* In this loop, we essentially handle an entry for the range
399          * [last_accounted_offset, rg->from), at every iteration, with some
400          * bounds checking.
401          */
402         list_for_each_entry_safe(rg, trg, head, link) {
403                 /* Skip irrelevant regions that start before our range. */
404                 if (rg->from < f) {
405                         /* If this region ends after the last accounted offset,
406                          * then we need to update last_accounted_offset.
407                          */
408                         if (rg->to > last_accounted_offset)
409                                 last_accounted_offset = rg->to;
410                         continue;
411                 }
412
413                 /* When we find a region that starts beyond our range, we've
414                  * finished.
415                  */
416                 if (rg->from >= t)
417                         break;
418
419                 /* Add an entry for last_accounted_offset -> rg->from, and
420                  * update last_accounted_offset.
421                  */
422                 if (rg->from > last_accounted_offset)
423                         add += hugetlb_resv_map_add(resv, rg,
424                                                     last_accounted_offset,
425                                                     rg->from, h, h_cg,
426                                                     regions_needed);
427
428                 last_accounted_offset = rg->to;
429         }
430
431         /* Handle the case where our range extends beyond
432          * last_accounted_offset.
433          */
434         if (last_accounted_offset < t)
435                 add += hugetlb_resv_map_add(resv, rg, last_accounted_offset,
436                                             t, h, h_cg, regions_needed);
437
438         VM_BUG_ON(add < 0);
439         return add;
440 }
441
442 /* Must be called with resv->lock acquired. Will drop lock to allocate entries.
443  */
444 static int allocate_file_region_entries(struct resv_map *resv,
445                                         int regions_needed)
446         __must_hold(&resv->lock)
447 {
448         struct list_head allocated_regions;
449         int to_allocate = 0, i = 0;
450         struct file_region *trg = NULL, *rg = NULL;
451
452         VM_BUG_ON(regions_needed < 0);
453
454         INIT_LIST_HEAD(&allocated_regions);
455
456         /*
457          * Check for sufficient descriptors in the cache to accommodate
458          * the number of in progress add operations plus regions_needed.
459          *
460          * This is a while loop because when we drop the lock, some other call
461          * to region_add or region_del may have consumed some region_entries,
462          * so we keep looping here until we finally have enough entries for
463          * (adds_in_progress + regions_needed).
464          */
465         while (resv->region_cache_count <
466                (resv->adds_in_progress + regions_needed)) {
467                 to_allocate = resv->adds_in_progress + regions_needed -
468                               resv->region_cache_count;
469
470                 /* At this point, we should have enough entries in the cache
471                  * for all the existing adds_in_progress. We should only be
472                  * needing to allocate for regions_needed.
473                  */
474                 VM_BUG_ON(resv->region_cache_count < resv->adds_in_progress);
475
476                 spin_unlock(&resv->lock);
477                 for (i = 0; i < to_allocate; i++) {
478                         trg = kmalloc(sizeof(*trg), GFP_KERNEL);
479                         if (!trg)
480                                 goto out_of_memory;
481                         list_add(&trg->link, &allocated_regions);
482                 }
483
484                 spin_lock(&resv->lock);
485
486                 list_splice(&allocated_regions, &resv->region_cache);
487                 resv->region_cache_count += to_allocate;
488         }
489
490         return 0;
491
492 out_of_memory:
493         list_for_each_entry_safe(rg, trg, &allocated_regions, link) {
494                 list_del(&rg->link);
495                 kfree(rg);
496         }
497         return -ENOMEM;
498 }
499
500 /*
501  * Add the huge page range represented by [f, t) to the reserve
502  * map.  Regions will be taken from the cache to fill in this range.
503  * Sufficient regions should exist in the cache due to the previous
504  * call to region_chg with the same range, but in some cases the cache will not
505  * have sufficient entries due to races with other code doing region_add or
506  * region_del.  The extra needed entries will be allocated.
507  *
508  * regions_needed is the out value provided by a previous call to region_chg.
509  *
510  * Return the number of new huge pages added to the map.  This number is greater
511  * than or equal to zero.  If file_region entries needed to be allocated for
512  * this operation and we were not able to allocate, it returns -ENOMEM.
513  * region_add of regions of length 1 never allocate file_regions and cannot
514  * fail; region_chg will always allocate at least 1 entry and a region_add for
515  * 1 page will only require at most 1 entry.
516  */
517 static long region_add(struct resv_map *resv, long f, long t,
518                        long in_regions_needed, struct hstate *h,
519                        struct hugetlb_cgroup *h_cg)
520 {
521         long add = 0, actual_regions_needed = 0;
522
523         spin_lock(&resv->lock);
524 retry:
525
526         /* Count how many regions are actually needed to execute this add. */
527         add_reservation_in_range(resv, f, t, NULL, NULL,
528                                  &actual_regions_needed);
529
530         /*
531          * Check for sufficient descriptors in the cache to accommodate
532          * this add operation. Note that actual_regions_needed may be greater
533          * than in_regions_needed, as the resv_map may have been modified since
534          * the region_chg call. In this case, we need to make sure that we
535          * allocate extra entries, such that we have enough for all the
536          * existing adds_in_progress, plus the excess needed for this
537          * operation.
538          */
539         if (actual_regions_needed > in_regions_needed &&
540             resv->region_cache_count <
541                     resv->adds_in_progress +
542                             (actual_regions_needed - in_regions_needed)) {
543                 /* region_add operation of range 1 should never need to
544                  * allocate file_region entries.
545                  */
546                 VM_BUG_ON(t - f <= 1);
547
548                 if (allocate_file_region_entries(
549                             resv, actual_regions_needed - in_regions_needed)) {
550                         return -ENOMEM;
551                 }
552
553                 goto retry;
554         }
555
556         add = add_reservation_in_range(resv, f, t, h_cg, h, NULL);
557
558         resv->adds_in_progress -= in_regions_needed;
559
560         spin_unlock(&resv->lock);
561         return add;
562 }
563
564 /*
565  * Examine the existing reserve map and determine how many
566  * huge pages in the specified range [f, t) are NOT currently
567  * represented.  This routine is called before a subsequent
568  * call to region_add that will actually modify the reserve
569  * map to add the specified range [f, t).  region_chg does
570  * not change the number of huge pages represented by the
571  * map.  A number of new file_region structures is added to the cache as a
572  * placeholder, for the subsequent region_add call to use. At least 1
573  * file_region structure is added.
574  *
575  * out_regions_needed is the number of regions added to the
576  * resv->adds_in_progress.  This value needs to be provided to a follow up call
577  * to region_add or region_abort for proper accounting.
578  *
579  * Returns the number of huge pages that need to be added to the existing
580  * reservation map for the range [f, t).  This number is greater or equal to
581  * zero.  -ENOMEM is returned if a new file_region structure or cache entry
582  * is needed and can not be allocated.
583  */
584 static long region_chg(struct resv_map *resv, long f, long t,
585                        long *out_regions_needed)
586 {
587         long chg = 0;
588
589         spin_lock(&resv->lock);
590
591         /* Count how many hugepages in this range are NOT represented. */
592         chg = add_reservation_in_range(resv, f, t, NULL, NULL,
593                                        out_regions_needed);
594
595         if (*out_regions_needed == 0)
596                 *out_regions_needed = 1;
597
598         if (allocate_file_region_entries(resv, *out_regions_needed))
599                 return -ENOMEM;
600
601         resv->adds_in_progress += *out_regions_needed;
602
603         spin_unlock(&resv->lock);
604         return chg;
605 }
606
607 /*
608  * Abort the in progress add operation.  The adds_in_progress field
609  * of the resv_map keeps track of the operations in progress between
610  * calls to region_chg and region_add.  Operations are sometimes
611  * aborted after the call to region_chg.  In such cases, region_abort
612  * is called to decrement the adds_in_progress counter. regions_needed
613  * is the value returned by the region_chg call, it is used to decrement
614  * the adds_in_progress counter.
615  *
616  * NOTE: The range arguments [f, t) are not needed or used in this
617  * routine.  They are kept to make reading the calling code easier as
618  * arguments will match the associated region_chg call.
619  */
620 static void region_abort(struct resv_map *resv, long f, long t,
621                          long regions_needed)
622 {
623         spin_lock(&resv->lock);
624         VM_BUG_ON(!resv->region_cache_count);
625         resv->adds_in_progress -= regions_needed;
626         spin_unlock(&resv->lock);
627 }
628
629 /*
630  * Delete the specified range [f, t) from the reserve map.  If the
631  * t parameter is LONG_MAX, this indicates that ALL regions after f
632  * should be deleted.  Locate the regions which intersect [f, t)
633  * and either trim, delete or split the existing regions.
634  *
635  * Returns the number of huge pages deleted from the reserve map.
636  * In the normal case, the return value is zero or more.  In the
637  * case where a region must be split, a new region descriptor must
638  * be allocated.  If the allocation fails, -ENOMEM will be returned.
639  * NOTE: If the parameter t == LONG_MAX, then we will never split
640  * a region and possibly return -ENOMEM.  Callers specifying
641  * t == LONG_MAX do not need to check for -ENOMEM error.
642  */
643 static long region_del(struct resv_map *resv, long f, long t)
644 {
645         struct list_head *head = &resv->regions;
646         struct file_region *rg, *trg;
647         struct file_region *nrg = NULL;
648         long del = 0;
649
650 retry:
651         spin_lock(&resv->lock);
652         list_for_each_entry_safe(rg, trg, head, link) {
653                 /*
654                  * Skip regions before the range to be deleted.  file_region
655                  * ranges are normally of the form [from, to).  However, there
656                  * may be a "placeholder" entry in the map which is of the form
657                  * (from, to) with from == to.  Check for placeholder entries
658                  * at the beginning of the range to be deleted.
659                  */
660                 if (rg->to <= f && (rg->to != rg->from || rg->to != f))
661                         continue;
662
663                 if (rg->from >= t)
664                         break;
665
666                 if (f > rg->from && t < rg->to) { /* Must split region */
667                         /*
668                          * Check for an entry in the cache before dropping
669                          * lock and attempting allocation.
670                          */
671                         if (!nrg &&
672                             resv->region_cache_count > resv->adds_in_progress) {
673                                 nrg = list_first_entry(&resv->region_cache,
674                                                         struct file_region,
675                                                         link);
676                                 list_del(&nrg->link);
677                                 resv->region_cache_count--;
678                         }
679
680                         if (!nrg) {
681                                 spin_unlock(&resv->lock);
682                                 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
683                                 if (!nrg)
684                                         return -ENOMEM;
685                                 goto retry;
686                         }
687
688                         del += t - f;
689                         hugetlb_cgroup_uncharge_file_region(
690                                 resv, rg, t - f, false);
691
692                         /* New entry for end of split region */
693                         nrg->from = t;
694                         nrg->to = rg->to;
695
696                         copy_hugetlb_cgroup_uncharge_info(nrg, rg);
697
698                         INIT_LIST_HEAD(&nrg->link);
699
700                         /* Original entry is trimmed */
701                         rg->to = f;
702
703                         list_add(&nrg->link, &rg->link);
704                         nrg = NULL;
705                         break;
706                 }
707
708                 if (f <= rg->from && t >= rg->to) { /* Remove entire region */
709                         del += rg->to - rg->from;
710                         hugetlb_cgroup_uncharge_file_region(resv, rg,
711                                                             rg->to - rg->from, true);
712                         list_del(&rg->link);
713                         kfree(rg);
714                         continue;
715                 }
716
717                 if (f <= rg->from) {    /* Trim beginning of region */
718                         hugetlb_cgroup_uncharge_file_region(resv, rg,
719                                                             t - rg->from, false);
720
721                         del += t - rg->from;
722                         rg->from = t;
723                 } else {                /* Trim end of region */
724                         hugetlb_cgroup_uncharge_file_region(resv, rg,
725                                                             rg->to - f, false);
726
727                         del += rg->to - f;
728                         rg->to = f;
729                 }
730         }
731
732         spin_unlock(&resv->lock);
733         kfree(nrg);
734         return del;
735 }
736
737 /*
738  * A rare out of memory error was encountered which prevented removal of
739  * the reserve map region for a page.  The huge page itself was free'ed
740  * and removed from the page cache.  This routine will adjust the subpool
741  * usage count, and the global reserve count if needed.  By incrementing
742  * these counts, the reserve map entry which could not be deleted will
743  * appear as a "reserved" entry instead of simply dangling with incorrect
744  * counts.
745  */
746 void hugetlb_fix_reserve_counts(struct inode *inode)
747 {
748         struct hugepage_subpool *spool = subpool_inode(inode);
749         long rsv_adjust;
750         bool reserved = false;
751
752         rsv_adjust = hugepage_subpool_get_pages(spool, 1);
753         if (rsv_adjust > 0) {
754                 struct hstate *h = hstate_inode(inode);
755
756                 if (!hugetlb_acct_memory(h, 1))
757                         reserved = true;
758         } else if (!rsv_adjust) {
759                 reserved = true;
760         }
761
762         if (!reserved)
763                 pr_warn("hugetlb: Huge Page Reserved count may go negative.\n");
764 }
765
766 /*
767  * Count and return the number of huge pages in the reserve map
768  * that intersect with the range [f, t).
769  */
770 static long region_count(struct resv_map *resv, long f, long t)
771 {
772         struct list_head *head = &resv->regions;
773         struct file_region *rg;
774         long chg = 0;
775
776         spin_lock(&resv->lock);
777         /* Locate each segment we overlap with, and count that overlap. */
778         list_for_each_entry(rg, head, link) {
779                 long seg_from;
780                 long seg_to;
781
782                 if (rg->to <= f)
783                         continue;
784                 if (rg->from >= t)
785                         break;
786
787                 seg_from = max(rg->from, f);
788                 seg_to = min(rg->to, t);
789
790                 chg += seg_to - seg_from;
791         }
792         spin_unlock(&resv->lock);
793
794         return chg;
795 }
796
797 /*
798  * Convert the address within this vma to the page offset within
799  * the mapping, in pagecache page units; huge pages here.
800  */
801 static pgoff_t vma_hugecache_offset(struct hstate *h,
802                         struct vm_area_struct *vma, unsigned long address)
803 {
804         return ((address - vma->vm_start) >> huge_page_shift(h)) +
805                         (vma->vm_pgoff >> huge_page_order(h));
806 }
807
808 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
809                                      unsigned long address)
810 {
811         return vma_hugecache_offset(hstate_vma(vma), vma, address);
812 }
813 EXPORT_SYMBOL_GPL(linear_hugepage_index);
814
815 /*
816  * Return the size of the pages allocated when backing a VMA. In the majority
817  * cases this will be same size as used by the page table entries.
818  */
819 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
820 {
821         if (vma->vm_ops && vma->vm_ops->pagesize)
822                 return vma->vm_ops->pagesize(vma);
823         return PAGE_SIZE;
824 }
825 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
826
827 /*
828  * Return the page size being used by the MMU to back a VMA. In the majority
829  * of cases, the page size used by the kernel matches the MMU size. On
830  * architectures where it differs, an architecture-specific 'strong'
831  * version of this symbol is required.
832  */
833 __weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
834 {
835         return vma_kernel_pagesize(vma);
836 }
837
838 /*
839  * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
840  * bits of the reservation map pointer, which are always clear due to
841  * alignment.
842  */
843 #define HPAGE_RESV_OWNER    (1UL << 0)
844 #define HPAGE_RESV_UNMAPPED (1UL << 1)
845 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
846
847 /*
848  * These helpers are used to track how many pages are reserved for
849  * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
850  * is guaranteed to have their future faults succeed.
851  *
852  * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
853  * the reserve counters are updated with the hugetlb_lock held. It is safe
854  * to reset the VMA at fork() time as it is not in use yet and there is no
855  * chance of the global counters getting corrupted as a result of the values.
856  *
857  * The private mapping reservation is represented in a subtly different
858  * manner to a shared mapping.  A shared mapping has a region map associated
859  * with the underlying file, this region map represents the backing file
860  * pages which have ever had a reservation assigned which this persists even
861  * after the page is instantiated.  A private mapping has a region map
862  * associated with the original mmap which is attached to all VMAs which
863  * reference it, this region map represents those offsets which have consumed
864  * reservation ie. where pages have been instantiated.
865  */
866 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
867 {
868         return (unsigned long)vma->vm_private_data;
869 }
870
871 static void set_vma_private_data(struct vm_area_struct *vma,
872                                                         unsigned long value)
873 {
874         vma->vm_private_data = (void *)value;
875 }
876
877 static void
878 resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map *resv_map,
879                                           struct hugetlb_cgroup *h_cg,
880                                           struct hstate *h)
881 {
882 #ifdef CONFIG_CGROUP_HUGETLB
883         if (!h_cg || !h) {
884                 resv_map->reservation_counter = NULL;
885                 resv_map->pages_per_hpage = 0;
886                 resv_map->css = NULL;
887         } else {
888                 resv_map->reservation_counter =
889                         &h_cg->rsvd_hugepage[hstate_index(h)];
890                 resv_map->pages_per_hpage = pages_per_huge_page(h);
891                 resv_map->css = &h_cg->css;
892         }
893 #endif
894 }
895
896 struct resv_map *resv_map_alloc(void)
897 {
898         struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
899         struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
900
901         if (!resv_map || !rg) {
902                 kfree(resv_map);
903                 kfree(rg);
904                 return NULL;
905         }
906
907         kref_init(&resv_map->refs);
908         spin_lock_init(&resv_map->lock);
909         INIT_LIST_HEAD(&resv_map->regions);
910
911         resv_map->adds_in_progress = 0;
912         /*
913          * Initialize these to 0. On shared mappings, 0's here indicate these
914          * fields don't do cgroup accounting. On private mappings, these will be
915          * re-initialized to the proper values, to indicate that hugetlb cgroup
916          * reservations are to be un-charged from here.
917          */
918         resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, NULL, NULL);
919
920         INIT_LIST_HEAD(&resv_map->region_cache);
921         list_add(&rg->link, &resv_map->region_cache);
922         resv_map->region_cache_count = 1;
923
924         return resv_map;
925 }
926
927 void resv_map_release(struct kref *ref)
928 {
929         struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
930         struct list_head *head = &resv_map->region_cache;
931         struct file_region *rg, *trg;
932
933         /* Clear out any active regions before we release the map. */
934         region_del(resv_map, 0, LONG_MAX);
935
936         /* ... and any entries left in the cache */
937         list_for_each_entry_safe(rg, trg, head, link) {
938                 list_del(&rg->link);
939                 kfree(rg);
940         }
941
942         VM_BUG_ON(resv_map->adds_in_progress);
943
944         kfree(resv_map);
945 }
946
947 static inline struct resv_map *inode_resv_map(struct inode *inode)
948 {
949         /*
950          * At inode evict time, i_mapping may not point to the original
951          * address space within the inode.  This original address space
952          * contains the pointer to the resv_map.  So, always use the
953          * address space embedded within the inode.
954          * The VERY common case is inode->mapping == &inode->i_data but,
955          * this may not be true for device special inodes.
956          */
957         return (struct resv_map *)(&inode->i_data)->private_data;
958 }
959
960 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
961 {
962         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
963         if (vma->vm_flags & VM_MAYSHARE) {
964                 struct address_space *mapping = vma->vm_file->f_mapping;
965                 struct inode *inode = mapping->host;
966
967                 return inode_resv_map(inode);
968
969         } else {
970                 return (struct resv_map *)(get_vma_private_data(vma) &
971                                                         ~HPAGE_RESV_MASK);
972         }
973 }
974
975 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
976 {
977         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
978         VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
979
980         set_vma_private_data(vma, (get_vma_private_data(vma) &
981                                 HPAGE_RESV_MASK) | (unsigned long)map);
982 }
983
984 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
985 {
986         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
987         VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
988
989         set_vma_private_data(vma, get_vma_private_data(vma) | flags);
990 }
991
992 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
993 {
994         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
995
996         return (get_vma_private_data(vma) & flag) != 0;
997 }
998
999 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
1000 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
1001 {
1002         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1003         if (!(vma->vm_flags & VM_MAYSHARE))
1004                 vma->vm_private_data = (void *)0;
1005 }
1006
1007 /* Returns true if the VMA has associated reserve pages */
1008 static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
1009 {
1010         if (vma->vm_flags & VM_NORESERVE) {
1011                 /*
1012                  * This address is already reserved by other process(chg == 0),
1013                  * so, we should decrement reserved count. Without decrementing,
1014                  * reserve count remains after releasing inode, because this
1015                  * allocated page will go into page cache and is regarded as
1016                  * coming from reserved pool in releasing step.  Currently, we
1017                  * don't have any other solution to deal with this situation
1018                  * properly, so add work-around here.
1019                  */
1020                 if (vma->vm_flags & VM_MAYSHARE && chg == 0)
1021                         return true;
1022                 else
1023                         return false;
1024         }
1025
1026         /* Shared mappings always use reserves */
1027         if (vma->vm_flags & VM_MAYSHARE) {
1028                 /*
1029                  * We know VM_NORESERVE is not set.  Therefore, there SHOULD
1030                  * be a region map for all pages.  The only situation where
1031                  * there is no region map is if a hole was punched via
1032                  * fallocate.  In this case, there really are no reserves to
1033                  * use.  This situation is indicated if chg != 0.
1034                  */
1035                 if (chg)
1036                         return false;
1037                 else
1038                         return true;
1039         }
1040
1041         /*
1042          * Only the process that called mmap() has reserves for
1043          * private mappings.
1044          */
1045         if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1046                 /*
1047                  * Like the shared case above, a hole punch or truncate
1048                  * could have been performed on the private mapping.
1049                  * Examine the value of chg to determine if reserves
1050                  * actually exist or were previously consumed.
1051                  * Very Subtle - The value of chg comes from a previous
1052                  * call to vma_needs_reserves().  The reserve map for
1053                  * private mappings has different (opposite) semantics
1054                  * than that of shared mappings.  vma_needs_reserves()
1055                  * has already taken this difference in semantics into
1056                  * account.  Therefore, the meaning of chg is the same
1057                  * as in the shared case above.  Code could easily be
1058                  * combined, but keeping it separate draws attention to
1059                  * subtle differences.
1060                  */
1061                 if (chg)
1062                         return false;
1063                 else
1064                         return true;
1065         }
1066
1067         return false;
1068 }
1069
1070 static void enqueue_huge_page(struct hstate *h, struct page *page)
1071 {
1072         int nid = page_to_nid(page);
1073
1074         lockdep_assert_held(&hugetlb_lock);
1075         VM_BUG_ON_PAGE(page_count(page), page);
1076
1077         list_move(&page->lru, &h->hugepage_freelists[nid]);
1078         h->free_huge_pages++;
1079         h->free_huge_pages_node[nid]++;
1080         SetHPageFreed(page);
1081 }
1082
1083 static struct page *dequeue_huge_page_node_exact(struct hstate *h, int nid)
1084 {
1085         struct page *page;
1086         bool pin = !!(current->flags & PF_MEMALLOC_PIN);
1087
1088         lockdep_assert_held(&hugetlb_lock);
1089         list_for_each_entry(page, &h->hugepage_freelists[nid], lru) {
1090                 if (pin && !is_pinnable_page(page))
1091                         continue;
1092
1093                 if (PageHWPoison(page))
1094                         continue;
1095
1096                 list_move(&page->lru, &h->hugepage_activelist);
1097                 set_page_refcounted(page);
1098                 ClearHPageFreed(page);
1099                 h->free_huge_pages--;
1100                 h->free_huge_pages_node[nid]--;
1101                 return page;
1102         }
1103
1104         return NULL;
1105 }
1106
1107 static struct page *dequeue_huge_page_nodemask(struct hstate *h, gfp_t gfp_mask, int nid,
1108                 nodemask_t *nmask)
1109 {
1110         unsigned int cpuset_mems_cookie;
1111         struct zonelist *zonelist;
1112         struct zone *zone;
1113         struct zoneref *z;
1114         int node = NUMA_NO_NODE;
1115
1116         zonelist = node_zonelist(nid, gfp_mask);
1117
1118 retry_cpuset:
1119         cpuset_mems_cookie = read_mems_allowed_begin();
1120         for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
1121                 struct page *page;
1122
1123                 if (!cpuset_zone_allowed(zone, gfp_mask))
1124                         continue;
1125                 /*
1126                  * no need to ask again on the same node. Pool is node rather than
1127                  * zone aware
1128                  */
1129                 if (zone_to_nid(zone) == node)
1130                         continue;
1131                 node = zone_to_nid(zone);
1132
1133                 page = dequeue_huge_page_node_exact(h, node);
1134                 if (page)
1135                         return page;
1136         }
1137         if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
1138                 goto retry_cpuset;
1139
1140         return NULL;
1141 }
1142
1143 static struct page *dequeue_huge_page_vma(struct hstate *h,
1144                                 struct vm_area_struct *vma,
1145                                 unsigned long address, int avoid_reserve,
1146                                 long chg)
1147 {
1148         struct page *page;
1149         struct mempolicy *mpol;
1150         gfp_t gfp_mask;
1151         nodemask_t *nodemask;
1152         int nid;
1153
1154         /*
1155          * A child process with MAP_PRIVATE mappings created by their parent
1156          * have no page reserves. This check ensures that reservations are
1157          * not "stolen". The child may still get SIGKILLed
1158          */
1159         if (!vma_has_reserves(vma, chg) &&
1160                         h->free_huge_pages - h->resv_huge_pages == 0)
1161                 goto err;
1162
1163         /* If reserves cannot be used, ensure enough pages are in the pool */
1164         if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
1165                 goto err;
1166
1167         gfp_mask = htlb_alloc_mask(h);
1168         nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
1169         page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
1170         if (page && !avoid_reserve && vma_has_reserves(vma, chg)) {
1171                 SetHPageRestoreReserve(page);
1172                 h->resv_huge_pages--;
1173         }
1174
1175         mpol_cond_put(mpol);
1176         return page;
1177
1178 err:
1179         return NULL;
1180 }
1181
1182 /*
1183  * common helper functions for hstate_next_node_to_{alloc|free}.
1184  * We may have allocated or freed a huge page based on a different
1185  * nodes_allowed previously, so h->next_node_to_{alloc|free} might
1186  * be outside of *nodes_allowed.  Ensure that we use an allowed
1187  * node for alloc or free.
1188  */
1189 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
1190 {
1191         nid = next_node_in(nid, *nodes_allowed);
1192         VM_BUG_ON(nid >= MAX_NUMNODES);
1193
1194         return nid;
1195 }
1196
1197 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
1198 {
1199         if (!node_isset(nid, *nodes_allowed))
1200                 nid = next_node_allowed(nid, nodes_allowed);
1201         return nid;
1202 }
1203
1204 /*
1205  * returns the previously saved node ["this node"] from which to
1206  * allocate a persistent huge page for the pool and advance the
1207  * next node from which to allocate, handling wrap at end of node
1208  * mask.
1209  */
1210 static int hstate_next_node_to_alloc(struct hstate *h,
1211                                         nodemask_t *nodes_allowed)
1212 {
1213         int nid;
1214
1215         VM_BUG_ON(!nodes_allowed);
1216
1217         nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
1218         h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
1219
1220         return nid;
1221 }
1222
1223 /*
1224  * helper for remove_pool_huge_page() - return the previously saved
1225  * node ["this node"] from which to free a huge page.  Advance the
1226  * next node id whether or not we find a free huge page to free so
1227  * that the next attempt to free addresses the next node.
1228  */
1229 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1230 {
1231         int nid;
1232
1233         VM_BUG_ON(!nodes_allowed);
1234
1235         nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1236         h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1237
1238         return nid;
1239 }
1240
1241 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask)           \
1242         for (nr_nodes = nodes_weight(*mask);                            \
1243                 nr_nodes > 0 &&                                         \
1244                 ((node = hstate_next_node_to_alloc(hs, mask)) || 1);    \
1245                 nr_nodes--)
1246
1247 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask)            \
1248         for (nr_nodes = nodes_weight(*mask);                            \
1249                 nr_nodes > 0 &&                                         \
1250                 ((node = hstate_next_node_to_free(hs, mask)) || 1);     \
1251                 nr_nodes--)
1252
1253 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
1254 static void destroy_compound_gigantic_page(struct page *page,
1255                                         unsigned int order)
1256 {
1257         int i;
1258         int nr_pages = 1 << order;
1259         struct page *p = page + 1;
1260
1261         atomic_set(compound_mapcount_ptr(page), 0);
1262         atomic_set(compound_pincount_ptr(page), 0);
1263
1264         for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1265                 clear_compound_head(p);
1266                 set_page_refcounted(p);
1267         }
1268
1269         set_compound_order(page, 0);
1270         page[1].compound_nr = 0;
1271         __ClearPageHead(page);
1272 }
1273
1274 static void free_gigantic_page(struct page *page, unsigned int order)
1275 {
1276         /*
1277          * If the page isn't allocated using the cma allocator,
1278          * cma_release() returns false.
1279          */
1280 #ifdef CONFIG_CMA
1281         if (cma_release(hugetlb_cma[page_to_nid(page)], page, 1 << order))
1282                 return;
1283 #endif
1284
1285         free_contig_range(page_to_pfn(page), 1 << order);
1286 }
1287
1288 #ifdef CONFIG_CONTIG_ALLOC
1289 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1290                 int nid, nodemask_t *nodemask)
1291 {
1292         unsigned long nr_pages = pages_per_huge_page(h);
1293         if (nid == NUMA_NO_NODE)
1294                 nid = numa_mem_id();
1295
1296 #ifdef CONFIG_CMA
1297         {
1298                 struct page *page;
1299                 int node;
1300
1301                 if (hugetlb_cma[nid]) {
1302                         page = cma_alloc(hugetlb_cma[nid], nr_pages,
1303                                         huge_page_order(h), true);
1304                         if (page)
1305                                 return page;
1306                 }
1307
1308                 if (!(gfp_mask & __GFP_THISNODE)) {
1309                         for_each_node_mask(node, *nodemask) {
1310                                 if (node == nid || !hugetlb_cma[node])
1311                                         continue;
1312
1313                                 page = cma_alloc(hugetlb_cma[node], nr_pages,
1314                                                 huge_page_order(h), true);
1315                                 if (page)
1316                                         return page;
1317                         }
1318                 }
1319         }
1320 #endif
1321
1322         return alloc_contig_pages(nr_pages, gfp_mask, nid, nodemask);
1323 }
1324
1325 #else /* !CONFIG_CONTIG_ALLOC */
1326 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1327                                         int nid, nodemask_t *nodemask)
1328 {
1329         return NULL;
1330 }
1331 #endif /* CONFIG_CONTIG_ALLOC */
1332
1333 #else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
1334 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1335                                         int nid, nodemask_t *nodemask)
1336 {
1337         return NULL;
1338 }
1339 static inline void free_gigantic_page(struct page *page, unsigned int order) { }
1340 static inline void destroy_compound_gigantic_page(struct page *page,
1341                                                 unsigned int order) { }
1342 #endif
1343
1344 /*
1345  * Remove hugetlb page from lists, and update dtor so that page appears
1346  * as just a compound page.  A reference is held on the page.
1347  *
1348  * Must be called with hugetlb lock held.
1349  */
1350 static void remove_hugetlb_page(struct hstate *h, struct page *page,
1351                                                         bool adjust_surplus)
1352 {
1353         int nid = page_to_nid(page);
1354
1355         VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
1356         VM_BUG_ON_PAGE(hugetlb_cgroup_from_page_rsvd(page), page);
1357
1358         lockdep_assert_held(&hugetlb_lock);
1359         if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1360                 return;
1361
1362         list_del(&page->lru);
1363
1364         if (HPageFreed(page)) {
1365                 h->free_huge_pages--;
1366                 h->free_huge_pages_node[nid]--;
1367         }
1368         if (adjust_surplus) {
1369                 h->surplus_huge_pages--;
1370                 h->surplus_huge_pages_node[nid]--;
1371         }
1372
1373         /*
1374          * Very subtle
1375          *
1376          * For non-gigantic pages set the destructor to the normal compound
1377          * page dtor.  This is needed in case someone takes an additional
1378          * temporary ref to the page, and freeing is delayed until they drop
1379          * their reference.
1380          *
1381          * For gigantic pages set the destructor to the null dtor.  This
1382          * destructor will never be called.  Before freeing the gigantic
1383          * page destroy_compound_gigantic_page will turn the compound page
1384          * into a simple group of pages.  After this the destructor does not
1385          * apply.
1386          *
1387          * This handles the case where more than one ref is held when and
1388          * after update_and_free_page is called.
1389          */
1390         set_page_refcounted(page);
1391         if (hstate_is_gigantic(h))
1392                 set_compound_page_dtor(page, NULL_COMPOUND_DTOR);
1393         else
1394                 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
1395
1396         h->nr_huge_pages--;
1397         h->nr_huge_pages_node[nid]--;
1398 }
1399
1400 static void add_hugetlb_page(struct hstate *h, struct page *page,
1401                              bool adjust_surplus)
1402 {
1403         int zeroed;
1404         int nid = page_to_nid(page);
1405
1406         VM_BUG_ON_PAGE(!HPageVmemmapOptimized(page), page);
1407
1408         lockdep_assert_held(&hugetlb_lock);
1409
1410         INIT_LIST_HEAD(&page->lru);
1411         h->nr_huge_pages++;
1412         h->nr_huge_pages_node[nid]++;
1413
1414         if (adjust_surplus) {
1415                 h->surplus_huge_pages++;
1416                 h->surplus_huge_pages_node[nid]++;
1417         }
1418
1419         set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1420         set_page_private(page, 0);
1421         SetHPageVmemmapOptimized(page);
1422
1423         /*
1424          * This page is about to be managed by the hugetlb allocator and
1425          * should have no users.  Drop our reference, and check for others
1426          * just in case.
1427          */
1428         zeroed = put_page_testzero(page);
1429         if (!zeroed)
1430                 /*
1431                  * It is VERY unlikely soneone else has taken a ref on
1432                  * the page.  In this case, we simply return as the
1433                  * hugetlb destructor (free_huge_page) will be called
1434                  * when this other ref is dropped.
1435                  */
1436                 return;
1437
1438         arch_clear_hugepage_flags(page);
1439         enqueue_huge_page(h, page);
1440 }
1441
1442 static void __update_and_free_page(struct hstate *h, struct page *page)
1443 {
1444         int i;
1445         struct page *subpage = page;
1446
1447         if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1448                 return;
1449
1450         if (alloc_huge_page_vmemmap(h, page)) {
1451                 spin_lock_irq(&hugetlb_lock);
1452                 /*
1453                  * If we cannot allocate vmemmap pages, just refuse to free the
1454                  * page and put the page back on the hugetlb free list and treat
1455                  * as a surplus page.
1456                  */
1457                 add_hugetlb_page(h, page, true);
1458                 spin_unlock_irq(&hugetlb_lock);
1459                 return;
1460         }
1461
1462         for (i = 0; i < pages_per_huge_page(h);
1463              i++, subpage = mem_map_next(subpage, page, i)) {
1464                 subpage->flags &= ~(1 << PG_locked | 1 << PG_error |
1465                                 1 << PG_referenced | 1 << PG_dirty |
1466                                 1 << PG_active | 1 << PG_private |
1467                                 1 << PG_writeback);
1468         }
1469         if (hstate_is_gigantic(h)) {
1470                 destroy_compound_gigantic_page(page, huge_page_order(h));
1471                 free_gigantic_page(page, huge_page_order(h));
1472         } else {
1473                 __free_pages(page, huge_page_order(h));
1474         }
1475 }
1476
1477 /*
1478  * As update_and_free_page() can be called under any context, so we cannot
1479  * use GFP_KERNEL to allocate vmemmap pages. However, we can defer the
1480  * actual freeing in a workqueue to prevent from using GFP_ATOMIC to allocate
1481  * the vmemmap pages.
1482  *
1483  * free_hpage_workfn() locklessly retrieves the linked list of pages to be
1484  * freed and frees them one-by-one. As the page->mapping pointer is going
1485  * to be cleared in free_hpage_workfn() anyway, it is reused as the llist_node
1486  * structure of a lockless linked list of huge pages to be freed.
1487  */
1488 static LLIST_HEAD(hpage_freelist);
1489
1490 static void free_hpage_workfn(struct work_struct *work)
1491 {
1492         struct llist_node *node;
1493
1494         node = llist_del_all(&hpage_freelist);
1495
1496         while (node) {
1497                 struct page *page;
1498                 struct hstate *h;
1499
1500                 page = container_of((struct address_space **)node,
1501                                      struct page, mapping);
1502                 node = node->next;
1503                 page->mapping = NULL;
1504                 /*
1505                  * The VM_BUG_ON_PAGE(!PageHuge(page), page) in page_hstate()
1506                  * is going to trigger because a previous call to
1507                  * remove_hugetlb_page() will set_compound_page_dtor(page,
1508                  * NULL_COMPOUND_DTOR), so do not use page_hstate() directly.
1509                  */
1510                 h = size_to_hstate(page_size(page));
1511
1512                 __update_and_free_page(h, page);
1513
1514                 cond_resched();
1515         }
1516 }
1517 static DECLARE_WORK(free_hpage_work, free_hpage_workfn);
1518
1519 static inline void flush_free_hpage_work(struct hstate *h)
1520 {
1521         if (free_vmemmap_pages_per_hpage(h))
1522                 flush_work(&free_hpage_work);
1523 }
1524
1525 static void update_and_free_page(struct hstate *h, struct page *page,
1526                                  bool atomic)
1527 {
1528         if (!HPageVmemmapOptimized(page) || !atomic) {
1529                 __update_and_free_page(h, page);
1530                 return;
1531         }
1532
1533         /*
1534          * Defer freeing to avoid using GFP_ATOMIC to allocate vmemmap pages.
1535          *
1536          * Only call schedule_work() if hpage_freelist is previously
1537          * empty. Otherwise, schedule_work() had been called but the workfn
1538          * hasn't retrieved the list yet.
1539          */
1540         if (llist_add((struct llist_node *)&page->mapping, &hpage_freelist))
1541                 schedule_work(&free_hpage_work);
1542 }
1543
1544 static void update_and_free_pages_bulk(struct hstate *h, struct list_head *list)
1545 {
1546         struct page *page, *t_page;
1547
1548         list_for_each_entry_safe(page, t_page, list, lru) {
1549                 update_and_free_page(h, page, false);
1550                 cond_resched();
1551         }
1552 }
1553
1554 struct hstate *size_to_hstate(unsigned long size)
1555 {
1556         struct hstate *h;
1557
1558         for_each_hstate(h) {
1559                 if (huge_page_size(h) == size)
1560                         return h;
1561         }
1562         return NULL;
1563 }
1564
1565 void free_huge_page(struct page *page)
1566 {
1567         /*
1568          * Can't pass hstate in here because it is called from the
1569          * compound page destructor.
1570          */
1571         struct hstate *h = page_hstate(page);
1572         int nid = page_to_nid(page);
1573         struct hugepage_subpool *spool = hugetlb_page_subpool(page);
1574         bool restore_reserve;
1575         unsigned long flags;
1576
1577         VM_BUG_ON_PAGE(page_count(page), page);
1578         VM_BUG_ON_PAGE(page_mapcount(page), page);
1579
1580         hugetlb_set_page_subpool(page, NULL);
1581         page->mapping = NULL;
1582         restore_reserve = HPageRestoreReserve(page);
1583         ClearHPageRestoreReserve(page);
1584
1585         /*
1586          * If HPageRestoreReserve was set on page, page allocation consumed a
1587          * reservation.  If the page was associated with a subpool, there
1588          * would have been a page reserved in the subpool before allocation
1589          * via hugepage_subpool_get_pages().  Since we are 'restoring' the
1590          * reservation, do not call hugepage_subpool_put_pages() as this will
1591          * remove the reserved page from the subpool.
1592          */
1593         if (!restore_reserve) {
1594                 /*
1595                  * A return code of zero implies that the subpool will be
1596                  * under its minimum size if the reservation is not restored
1597                  * after page is free.  Therefore, force restore_reserve
1598                  * operation.
1599                  */
1600                 if (hugepage_subpool_put_pages(spool, 1) == 0)
1601                         restore_reserve = true;
1602         }
1603
1604         spin_lock_irqsave(&hugetlb_lock, flags);
1605         ClearHPageMigratable(page);
1606         hugetlb_cgroup_uncharge_page(hstate_index(h),
1607                                      pages_per_huge_page(h), page);
1608         hugetlb_cgroup_uncharge_page_rsvd(hstate_index(h),
1609                                           pages_per_huge_page(h), page);
1610         if (restore_reserve)
1611                 h->resv_huge_pages++;
1612
1613         if (HPageTemporary(page)) {
1614                 remove_hugetlb_page(h, page, false);
1615                 spin_unlock_irqrestore(&hugetlb_lock, flags);
1616                 update_and_free_page(h, page, true);
1617         } else if (h->surplus_huge_pages_node[nid]) {
1618                 /* remove the page from active list */
1619                 remove_hugetlb_page(h, page, true);
1620                 spin_unlock_irqrestore(&hugetlb_lock, flags);
1621                 update_and_free_page(h, page, true);
1622         } else {
1623                 arch_clear_hugepage_flags(page);
1624                 enqueue_huge_page(h, page);
1625                 spin_unlock_irqrestore(&hugetlb_lock, flags);
1626         }
1627 }
1628
1629 /*
1630  * Must be called with the hugetlb lock held
1631  */
1632 static void __prep_account_new_huge_page(struct hstate *h, int nid)
1633 {
1634         lockdep_assert_held(&hugetlb_lock);
1635         h->nr_huge_pages++;
1636         h->nr_huge_pages_node[nid]++;
1637 }
1638
1639 static void __prep_new_huge_page(struct hstate *h, struct page *page)
1640 {
1641         free_huge_page_vmemmap(h, page);
1642         INIT_LIST_HEAD(&page->lru);
1643         set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1644         hugetlb_set_page_subpool(page, NULL);
1645         set_hugetlb_cgroup(page, NULL);
1646         set_hugetlb_cgroup_rsvd(page, NULL);
1647 }
1648
1649 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
1650 {
1651         __prep_new_huge_page(h, page);
1652         spin_lock_irq(&hugetlb_lock);
1653         __prep_account_new_huge_page(h, nid);
1654         spin_unlock_irq(&hugetlb_lock);
1655 }
1656
1657 static bool prep_compound_gigantic_page(struct page *page, unsigned int order)
1658 {
1659         int i, j;
1660         int nr_pages = 1 << order;
1661         struct page *p = page + 1;
1662
1663         /* we rely on prep_new_huge_page to set the destructor */
1664         set_compound_order(page, order);
1665         __ClearPageReserved(page);
1666         __SetPageHead(page);
1667         for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1668                 /*
1669                  * For gigantic hugepages allocated through bootmem at
1670                  * boot, it's safer to be consistent with the not-gigantic
1671                  * hugepages and clear the PG_reserved bit from all tail pages
1672                  * too.  Otherwise drivers using get_user_pages() to access tail
1673                  * pages may get the reference counting wrong if they see
1674                  * PG_reserved set on a tail page (despite the head page not
1675                  * having PG_reserved set).  Enforcing this consistency between
1676                  * head and tail pages allows drivers to optimize away a check
1677                  * on the head page when they need know if put_page() is needed
1678                  * after get_user_pages().
1679                  */
1680                 __ClearPageReserved(p);
1681                 /*
1682                  * Subtle and very unlikely
1683                  *
1684                  * Gigantic 'page allocators' such as memblock or cma will
1685                  * return a set of pages with each page ref counted.  We need
1686                  * to turn this set of pages into a compound page with tail
1687                  * page ref counts set to zero.  Code such as speculative page
1688                  * cache adding could take a ref on a 'to be' tail page.
1689                  * We need to respect any increased ref count, and only set
1690                  * the ref count to zero if count is currently 1.  If count
1691                  * is not 1, we return an error.  An error return indicates
1692                  * the set of pages can not be converted to a gigantic page.
1693                  * The caller who allocated the pages should then discard the
1694                  * pages using the appropriate free interface.
1695                  */
1696                 if (!page_ref_freeze(p, 1)) {
1697                         pr_warn("HugeTLB page can not be used due to unexpected inflated ref count\n");
1698                         goto out_error;
1699                 }
1700                 set_page_count(p, 0);
1701                 set_compound_head(p, page);
1702         }
1703         atomic_set(compound_mapcount_ptr(page), -1);
1704         atomic_set(compound_pincount_ptr(page), 0);
1705         return true;
1706
1707 out_error:
1708         /* undo tail page modifications made above */
1709         p = page + 1;
1710         for (j = 1; j < i; j++, p = mem_map_next(p, page, j)) {
1711                 clear_compound_head(p);
1712                 set_page_refcounted(p);
1713         }
1714         /* need to clear PG_reserved on remaining tail pages  */
1715         for (; j < nr_pages; j++, p = mem_map_next(p, page, j))
1716                 __ClearPageReserved(p);
1717         set_compound_order(page, 0);
1718         page[1].compound_nr = 0;
1719         __ClearPageHead(page);
1720         return false;
1721 }
1722
1723 /*
1724  * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1725  * transparent huge pages.  See the PageTransHuge() documentation for more
1726  * details.
1727  */
1728 int PageHuge(struct page *page)
1729 {
1730         if (!PageCompound(page))
1731                 return 0;
1732
1733         page = compound_head(page);
1734         return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
1735 }
1736 EXPORT_SYMBOL_GPL(PageHuge);
1737
1738 /*
1739  * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1740  * normal or transparent huge pages.
1741  */
1742 int PageHeadHuge(struct page *page_head)
1743 {
1744         if (!PageHead(page_head))
1745                 return 0;
1746
1747         return page_head[1].compound_dtor == HUGETLB_PAGE_DTOR;
1748 }
1749
1750 /*
1751  * Find and lock address space (mapping) in write mode.
1752  *
1753  * Upon entry, the page is locked which means that page_mapping() is
1754  * stable.  Due to locking order, we can only trylock_write.  If we can
1755  * not get the lock, simply return NULL to caller.
1756  */
1757 struct address_space *hugetlb_page_mapping_lock_write(struct page *hpage)
1758 {
1759         struct address_space *mapping = page_mapping(hpage);
1760
1761         if (!mapping)
1762                 return mapping;
1763
1764         if (i_mmap_trylock_write(mapping))
1765                 return mapping;
1766
1767         return NULL;
1768 }
1769
1770 pgoff_t hugetlb_basepage_index(struct page *page)
1771 {
1772         struct page *page_head = compound_head(page);
1773         pgoff_t index = page_index(page_head);
1774         unsigned long compound_idx;
1775
1776         if (compound_order(page_head) >= MAX_ORDER)
1777                 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
1778         else
1779                 compound_idx = page - page_head;
1780
1781         return (index << compound_order(page_head)) + compound_idx;
1782 }
1783
1784 static struct page *alloc_buddy_huge_page(struct hstate *h,
1785                 gfp_t gfp_mask, int nid, nodemask_t *nmask,
1786                 nodemask_t *node_alloc_noretry)
1787 {
1788         int order = huge_page_order(h);
1789         struct page *page;
1790         bool alloc_try_hard = true;
1791
1792         /*
1793          * By default we always try hard to allocate the page with
1794          * __GFP_RETRY_MAYFAIL flag.  However, if we are allocating pages in
1795          * a loop (to adjust global huge page counts) and previous allocation
1796          * failed, do not continue to try hard on the same node.  Use the
1797          * node_alloc_noretry bitmap to manage this state information.
1798          */
1799         if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry))
1800                 alloc_try_hard = false;
1801         gfp_mask |= __GFP_COMP|__GFP_NOWARN;
1802         if (alloc_try_hard)
1803                 gfp_mask |= __GFP_RETRY_MAYFAIL;
1804         if (nid == NUMA_NO_NODE)
1805                 nid = numa_mem_id();
1806         page = __alloc_pages(gfp_mask, order, nid, nmask);
1807         if (page)
1808                 __count_vm_event(HTLB_BUDDY_PGALLOC);
1809         else
1810                 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1811
1812         /*
1813          * If we did not specify __GFP_RETRY_MAYFAIL, but still got a page this
1814          * indicates an overall state change.  Clear bit so that we resume
1815          * normal 'try hard' allocations.
1816          */
1817         if (node_alloc_noretry && page && !alloc_try_hard)
1818                 node_clear(nid, *node_alloc_noretry);
1819
1820         /*
1821          * If we tried hard to get a page but failed, set bit so that
1822          * subsequent attempts will not try as hard until there is an
1823          * overall state change.
1824          */
1825         if (node_alloc_noretry && !page && alloc_try_hard)
1826                 node_set(nid, *node_alloc_noretry);
1827
1828         return page;
1829 }
1830
1831 /*
1832  * Common helper to allocate a fresh hugetlb page. All specific allocators
1833  * should use this function to get new hugetlb pages
1834  */
1835 static struct page *alloc_fresh_huge_page(struct hstate *h,
1836                 gfp_t gfp_mask, int nid, nodemask_t *nmask,
1837                 nodemask_t *node_alloc_noretry)
1838 {
1839         struct page *page;
1840         bool retry = false;
1841
1842 retry:
1843         if (hstate_is_gigantic(h))
1844                 page = alloc_gigantic_page(h, gfp_mask, nid, nmask);
1845         else
1846                 page = alloc_buddy_huge_page(h, gfp_mask,
1847                                 nid, nmask, node_alloc_noretry);
1848         if (!page)
1849                 return NULL;
1850
1851         if (hstate_is_gigantic(h)) {
1852                 if (!prep_compound_gigantic_page(page, huge_page_order(h))) {
1853                         /*
1854                          * Rare failure to convert pages to compound page.
1855                          * Free pages and try again - ONCE!
1856                          */
1857                         free_gigantic_page(page, huge_page_order(h));
1858                         if (!retry) {
1859                                 retry = true;
1860                                 goto retry;
1861                         }
1862                         return NULL;
1863                 }
1864         }
1865         prep_new_huge_page(h, page, page_to_nid(page));
1866
1867         return page;
1868 }
1869
1870 /*
1871  * Allocates a fresh page to the hugetlb allocator pool in the node interleaved
1872  * manner.
1873  */
1874 static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1875                                 nodemask_t *node_alloc_noretry)
1876 {
1877         struct page *page;
1878         int nr_nodes, node;
1879         gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
1880
1881         for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1882                 page = alloc_fresh_huge_page(h, gfp_mask, node, nodes_allowed,
1883                                                 node_alloc_noretry);
1884                 if (page)
1885                         break;
1886         }
1887
1888         if (!page)
1889                 return 0;
1890
1891         put_page(page); /* free it into the hugepage allocator */
1892
1893         return 1;
1894 }
1895
1896 /*
1897  * Remove huge page from pool from next node to free.  Attempt to keep
1898  * persistent huge pages more or less balanced over allowed nodes.
1899  * This routine only 'removes' the hugetlb page.  The caller must make
1900  * an additional call to free the page to low level allocators.
1901  * Called with hugetlb_lock locked.
1902  */
1903 static struct page *remove_pool_huge_page(struct hstate *h,
1904                                                 nodemask_t *nodes_allowed,
1905                                                  bool acct_surplus)
1906 {
1907         int nr_nodes, node;
1908         struct page *page = NULL;
1909
1910         lockdep_assert_held(&hugetlb_lock);
1911         for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1912                 /*
1913                  * If we're returning unused surplus pages, only examine
1914                  * nodes with surplus pages.
1915                  */
1916                 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
1917                     !list_empty(&h->hugepage_freelists[node])) {
1918                         page = list_entry(h->hugepage_freelists[node].next,
1919                                           struct page, lru);
1920                         remove_hugetlb_page(h, page, acct_surplus);
1921                         break;
1922                 }
1923         }
1924
1925         return page;
1926 }
1927
1928 /*
1929  * Dissolve a given free hugepage into free buddy pages. This function does
1930  * nothing for in-use hugepages and non-hugepages.
1931  * This function returns values like below:
1932  *
1933  *  -ENOMEM: failed to allocate vmemmap pages to free the freed hugepages
1934  *           when the system is under memory pressure and the feature of
1935  *           freeing unused vmemmap pages associated with each hugetlb page
1936  *           is enabled.
1937  *  -EBUSY:  failed to dissolved free hugepages or the hugepage is in-use
1938  *           (allocated or reserved.)
1939  *       0:  successfully dissolved free hugepages or the page is not a
1940  *           hugepage (considered as already dissolved)
1941  */
1942 int dissolve_free_huge_page(struct page *page)
1943 {
1944         int rc = -EBUSY;
1945
1946 retry:
1947         /* Not to disrupt normal path by vainly holding hugetlb_lock */
1948         if (!PageHuge(page))
1949                 return 0;
1950
1951         spin_lock_irq(&hugetlb_lock);
1952         if (!PageHuge(page)) {
1953                 rc = 0;
1954                 goto out;
1955         }
1956
1957         if (!page_count(page)) {
1958                 struct page *head = compound_head(page);
1959                 struct hstate *h = page_hstate(head);
1960                 if (h->free_huge_pages - h->resv_huge_pages == 0)
1961                         goto out;
1962
1963                 /*
1964                  * We should make sure that the page is already on the free list
1965                  * when it is dissolved.
1966                  */
1967                 if (unlikely(!HPageFreed(head))) {
1968                         spin_unlock_irq(&hugetlb_lock);
1969                         cond_resched();
1970
1971                         /*
1972                          * Theoretically, we should return -EBUSY when we
1973                          * encounter this race. In fact, we have a chance
1974                          * to successfully dissolve the page if we do a
1975                          * retry. Because the race window is quite small.
1976                          * If we seize this opportunity, it is an optimization
1977                          * for increasing the success rate of dissolving page.
1978                          */
1979                         goto retry;
1980                 }
1981
1982                 remove_hugetlb_page(h, head, false);
1983                 h->max_huge_pages--;
1984                 spin_unlock_irq(&hugetlb_lock);
1985
1986                 /*
1987                  * Normally update_and_free_page will allocate required vmemmmap
1988                  * before freeing the page.  update_and_free_page will fail to
1989                  * free the page if it can not allocate required vmemmap.  We
1990                  * need to adjust max_huge_pages if the page is not freed.
1991                  * Attempt to allocate vmemmmap here so that we can take
1992                  * appropriate action on failure.
1993                  */
1994                 rc = alloc_huge_page_vmemmap(h, head);
1995                 if (!rc) {
1996                         /*
1997                          * Move PageHWPoison flag from head page to the raw
1998                          * error page, which makes any subpages rather than
1999                          * the error page reusable.
2000                          */
2001                         if (PageHWPoison(head) && page != head) {
2002                                 SetPageHWPoison(page);
2003                                 ClearPageHWPoison(head);
2004                         }
2005                         update_and_free_page(h, head, false);
2006                 } else {
2007                         spin_lock_irq(&hugetlb_lock);
2008                         add_hugetlb_page(h, head, false);
2009                         h->max_huge_pages++;
2010                         spin_unlock_irq(&hugetlb_lock);
2011                 }
2012
2013                 return rc;
2014         }
2015 out:
2016         spin_unlock_irq(&hugetlb_lock);
2017         return rc;
2018 }
2019
2020 /*
2021  * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
2022  * make specified memory blocks removable from the system.
2023  * Note that this will dissolve a free gigantic hugepage completely, if any
2024  * part of it lies within the given range.
2025  * Also note that if dissolve_free_huge_page() returns with an error, all
2026  * free hugepages that were dissolved before that error are lost.
2027  */
2028 int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
2029 {
2030         unsigned long pfn;
2031         struct page *page;
2032         int rc = 0;
2033
2034         if (!hugepages_supported())
2035                 return rc;
2036
2037         for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order) {
2038                 page = pfn_to_page(pfn);
2039                 rc = dissolve_free_huge_page(page);
2040                 if (rc)
2041                         break;
2042         }
2043
2044         return rc;
2045 }
2046
2047 /*
2048  * Allocates a fresh surplus page from the page allocator.
2049  */
2050 static struct page *alloc_surplus_huge_page(struct hstate *h, gfp_t gfp_mask,
2051                 int nid, nodemask_t *nmask, bool zero_ref)
2052 {
2053         struct page *page = NULL;
2054         bool retry = false;
2055
2056         if (hstate_is_gigantic(h))
2057                 return NULL;
2058
2059         spin_lock_irq(&hugetlb_lock);
2060         if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages)
2061                 goto out_unlock;
2062         spin_unlock_irq(&hugetlb_lock);
2063
2064 retry:
2065         page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
2066         if (!page)
2067                 return NULL;
2068
2069         spin_lock_irq(&hugetlb_lock);
2070         /*
2071          * We could have raced with the pool size change.
2072          * Double check that and simply deallocate the new page
2073          * if we would end up overcommiting the surpluses. Abuse
2074          * temporary page to workaround the nasty free_huge_page
2075          * codeflow
2076          */
2077         if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
2078                 SetHPageTemporary(page);
2079                 spin_unlock_irq(&hugetlb_lock);
2080                 put_page(page);
2081                 return NULL;
2082         }
2083
2084         if (zero_ref) {
2085                 /*
2086                  * Caller requires a page with zero ref count.
2087                  * We will drop ref count here.  If someone else is holding
2088                  * a ref, the page will be freed when they drop it.  Abuse
2089                  * temporary page flag to accomplish this.
2090                  */
2091                 SetHPageTemporary(page);
2092                 if (!put_page_testzero(page)) {
2093                         /*
2094                          * Unexpected inflated ref count on freshly allocated
2095                          * huge.  Retry once.
2096                          */
2097                         pr_info("HugeTLB unexpected inflated ref count on freshly allocated page\n");
2098                         spin_unlock_irq(&hugetlb_lock);
2099                         if (retry)
2100                                 return NULL;
2101
2102                         retry = true;
2103                         goto retry;
2104                 }
2105                 ClearHPageTemporary(page);
2106         }
2107
2108         h->surplus_huge_pages++;
2109         h->surplus_huge_pages_node[page_to_nid(page)]++;
2110
2111 out_unlock:
2112         spin_unlock_irq(&hugetlb_lock);
2113
2114         return page;
2115 }
2116
2117 static struct page *alloc_migrate_huge_page(struct hstate *h, gfp_t gfp_mask,
2118                                      int nid, nodemask_t *nmask)
2119 {
2120         struct page *page;
2121
2122         if (hstate_is_gigantic(h))
2123                 return NULL;
2124
2125         page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
2126         if (!page)
2127                 return NULL;
2128
2129         /*
2130          * We do not account these pages as surplus because they are only
2131          * temporary and will be released properly on the last reference
2132          */
2133         SetHPageTemporary(page);
2134
2135         return page;
2136 }
2137
2138 /*
2139  * Use the VMA's mpolicy to allocate a huge page from the buddy.
2140  */
2141 static
2142 struct page *alloc_buddy_huge_page_with_mpol(struct hstate *h,
2143                 struct vm_area_struct *vma, unsigned long addr)
2144 {
2145         struct page *page;
2146         struct mempolicy *mpol;
2147         gfp_t gfp_mask = htlb_alloc_mask(h);
2148         int nid;
2149         nodemask_t *nodemask;
2150
2151         nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
2152         page = alloc_surplus_huge_page(h, gfp_mask, nid, nodemask, false);
2153         mpol_cond_put(mpol);
2154
2155         return page;
2156 }
2157
2158 /* page migration callback function */
2159 struct page *alloc_huge_page_nodemask(struct hstate *h, int preferred_nid,
2160                 nodemask_t *nmask, gfp_t gfp_mask)
2161 {
2162         spin_lock_irq(&hugetlb_lock);
2163         if (h->free_huge_pages - h->resv_huge_pages > 0) {
2164                 struct page *page;
2165
2166                 page = dequeue_huge_page_nodemask(h, gfp_mask, preferred_nid, nmask);
2167                 if (page) {
2168                         spin_unlock_irq(&hugetlb_lock);
2169                         return page;
2170                 }
2171         }
2172         spin_unlock_irq(&hugetlb_lock);
2173
2174         return alloc_migrate_huge_page(h, gfp_mask, preferred_nid, nmask);
2175 }
2176
2177 /* mempolicy aware migration callback */
2178 struct page *alloc_huge_page_vma(struct hstate *h, struct vm_area_struct *vma,
2179                 unsigned long address)
2180 {
2181         struct mempolicy *mpol;
2182         nodemask_t *nodemask;
2183         struct page *page;
2184         gfp_t gfp_mask;
2185         int node;
2186
2187         gfp_mask = htlb_alloc_mask(h);
2188         node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
2189         page = alloc_huge_page_nodemask(h, node, nodemask, gfp_mask);
2190         mpol_cond_put(mpol);
2191
2192         return page;
2193 }
2194
2195 /*
2196  * Increase the hugetlb pool such that it can accommodate a reservation
2197  * of size 'delta'.
2198  */
2199 static int gather_surplus_pages(struct hstate *h, long delta)
2200         __must_hold(&hugetlb_lock)
2201 {
2202         struct list_head surplus_list;
2203         struct page *page, *tmp;
2204         int ret;
2205         long i;
2206         long needed, allocated;
2207         bool alloc_ok = true;
2208
2209         lockdep_assert_held(&hugetlb_lock);
2210         needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
2211         if (needed <= 0) {
2212                 h->resv_huge_pages += delta;
2213                 return 0;
2214         }
2215
2216         allocated = 0;
2217         INIT_LIST_HEAD(&surplus_list);
2218
2219         ret = -ENOMEM;
2220 retry:
2221         spin_unlock_irq(&hugetlb_lock);
2222         for (i = 0; i < needed; i++) {
2223                 page = alloc_surplus_huge_page(h, htlb_alloc_mask(h),
2224                                 NUMA_NO_NODE, NULL, true);
2225                 if (!page) {
2226                         alloc_ok = false;
2227                         break;
2228                 }
2229                 list_add(&page->lru, &surplus_list);
2230                 cond_resched();
2231         }
2232         allocated += i;
2233
2234         /*
2235          * After retaking hugetlb_lock, we need to recalculate 'needed'
2236          * because either resv_huge_pages or free_huge_pages may have changed.
2237          */
2238         spin_lock_irq(&hugetlb_lock);
2239         needed = (h->resv_huge_pages + delta) -
2240                         (h->free_huge_pages + allocated);
2241         if (needed > 0) {
2242                 if (alloc_ok)
2243                         goto retry;
2244                 /*
2245                  * We were not able to allocate enough pages to
2246                  * satisfy the entire reservation so we free what
2247                  * we've allocated so far.
2248                  */
2249                 goto free;
2250         }
2251         /*
2252          * The surplus_list now contains _at_least_ the number of extra pages
2253          * needed to accommodate the reservation.  Add the appropriate number
2254          * of pages to the hugetlb pool and free the extras back to the buddy
2255          * allocator.  Commit the entire reservation here to prevent another
2256          * process from stealing the pages as they are added to the pool but
2257          * before they are reserved.
2258          */
2259         needed += allocated;
2260         h->resv_huge_pages += delta;
2261         ret = 0;
2262
2263         /* Free the needed pages to the hugetlb pool */
2264         list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
2265                 if ((--needed) < 0)
2266                         break;
2267                 /* Add the page to the hugetlb allocator */
2268                 enqueue_huge_page(h, page);
2269         }
2270 free:
2271         spin_unlock_irq(&hugetlb_lock);
2272
2273         /*
2274          * Free unnecessary surplus pages to the buddy allocator.
2275          * Pages have no ref count, call free_huge_page directly.
2276          */
2277         list_for_each_entry_safe(page, tmp, &surplus_list, lru)
2278                 free_huge_page(page);
2279         spin_lock_irq(&hugetlb_lock);
2280
2281         return ret;
2282 }
2283
2284 /*
2285  * This routine has two main purposes:
2286  * 1) Decrement the reservation count (resv_huge_pages) by the value passed
2287  *    in unused_resv_pages.  This corresponds to the prior adjustments made
2288  *    to the associated reservation map.
2289  * 2) Free any unused surplus pages that may have been allocated to satisfy
2290  *    the reservation.  As many as unused_resv_pages may be freed.
2291  */
2292 static void return_unused_surplus_pages(struct hstate *h,
2293                                         unsigned long unused_resv_pages)
2294 {
2295         unsigned long nr_pages;
2296         struct page *page;
2297         LIST_HEAD(page_list);
2298
2299         lockdep_assert_held(&hugetlb_lock);
2300         /* Uncommit the reservation */
2301         h->resv_huge_pages -= unused_resv_pages;
2302
2303         /* Cannot return gigantic pages currently */
2304         if (hstate_is_gigantic(h))
2305                 goto out;
2306
2307         /*
2308          * Part (or even all) of the reservation could have been backed
2309          * by pre-allocated pages. Only free surplus pages.
2310          */
2311         nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
2312
2313         /*
2314          * We want to release as many surplus pages as possible, spread
2315          * evenly across all nodes with memory. Iterate across these nodes
2316          * until we can no longer free unreserved surplus pages. This occurs
2317          * when the nodes with surplus pages have no free pages.
2318          * remove_pool_huge_page() will balance the freed pages across the
2319          * on-line nodes with memory and will handle the hstate accounting.
2320          */
2321         while (nr_pages--) {
2322                 page = remove_pool_huge_page(h, &node_states[N_MEMORY], 1);
2323                 if (!page)
2324                         goto out;
2325
2326                 list_add(&page->lru, &page_list);
2327         }
2328
2329 out:
2330         spin_unlock_irq(&hugetlb_lock);
2331         update_and_free_pages_bulk(h, &page_list);
2332         spin_lock_irq(&hugetlb_lock);
2333 }
2334
2335
2336 /*
2337  * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
2338  * are used by the huge page allocation routines to manage reservations.
2339  *
2340  * vma_needs_reservation is called to determine if the huge page at addr
2341  * within the vma has an associated reservation.  If a reservation is
2342  * needed, the value 1 is returned.  The caller is then responsible for
2343  * managing the global reservation and subpool usage counts.  After
2344  * the huge page has been allocated, vma_commit_reservation is called
2345  * to add the page to the reservation map.  If the page allocation fails,
2346  * the reservation must be ended instead of committed.  vma_end_reservation
2347  * is called in such cases.
2348  *
2349  * In the normal case, vma_commit_reservation returns the same value
2350  * as the preceding vma_needs_reservation call.  The only time this
2351  * is not the case is if a reserve map was changed between calls.  It
2352  * is the responsibility of the caller to notice the difference and
2353  * take appropriate action.
2354  *
2355  * vma_add_reservation is used in error paths where a reservation must
2356  * be restored when a newly allocated huge page must be freed.  It is
2357  * to be called after calling vma_needs_reservation to determine if a
2358  * reservation exists.
2359  *
2360  * vma_del_reservation is used in error paths where an entry in the reserve
2361  * map was created during huge page allocation and must be removed.  It is to
2362  * be called after calling vma_needs_reservation to determine if a reservation
2363  * exists.
2364  */
2365 enum vma_resv_mode {
2366         VMA_NEEDS_RESV,
2367         VMA_COMMIT_RESV,
2368         VMA_END_RESV,
2369         VMA_ADD_RESV,
2370         VMA_DEL_RESV,
2371 };
2372 static long __vma_reservation_common(struct hstate *h,
2373                                 struct vm_area_struct *vma, unsigned long addr,
2374                                 enum vma_resv_mode mode)
2375 {
2376         struct resv_map *resv;
2377         pgoff_t idx;
2378         long ret;
2379         long dummy_out_regions_needed;
2380
2381         resv = vma_resv_map(vma);
2382         if (!resv)
2383                 return 1;
2384
2385         idx = vma_hugecache_offset(h, vma, addr);
2386         switch (mode) {
2387         case VMA_NEEDS_RESV:
2388                 ret = region_chg(resv, idx, idx + 1, &dummy_out_regions_needed);
2389                 /* We assume that vma_reservation_* routines always operate on
2390                  * 1 page, and that adding to resv map a 1 page entry can only
2391                  * ever require 1 region.
2392                  */
2393                 VM_BUG_ON(dummy_out_regions_needed != 1);
2394                 break;
2395         case VMA_COMMIT_RESV:
2396                 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2397                 /* region_add calls of range 1 should never fail. */
2398                 VM_BUG_ON(ret < 0);
2399                 break;
2400         case VMA_END_RESV:
2401                 region_abort(resv, idx, idx + 1, 1);
2402                 ret = 0;
2403                 break;
2404         case VMA_ADD_RESV:
2405                 if (vma->vm_flags & VM_MAYSHARE) {
2406                         ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2407                         /* region_add calls of range 1 should never fail. */
2408                         VM_BUG_ON(ret < 0);
2409                 } else {
2410                         region_abort(resv, idx, idx + 1, 1);
2411                         ret = region_del(resv, idx, idx + 1);
2412                 }
2413                 break;
2414         case VMA_DEL_RESV:
2415                 if (vma->vm_flags & VM_MAYSHARE) {
2416                         region_abort(resv, idx, idx + 1, 1);
2417                         ret = region_del(resv, idx, idx + 1);
2418                 } else {
2419                         ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2420                         /* region_add calls of range 1 should never fail. */
2421                         VM_BUG_ON(ret < 0);
2422                 }
2423                 break;
2424         default:
2425                 BUG();
2426         }
2427
2428         if (vma->vm_flags & VM_MAYSHARE || mode == VMA_DEL_RESV)
2429                 return ret;
2430         /*
2431          * We know private mapping must have HPAGE_RESV_OWNER set.
2432          *
2433          * In most cases, reserves always exist for private mappings.
2434          * However, a file associated with mapping could have been
2435          * hole punched or truncated after reserves were consumed.
2436          * As subsequent fault on such a range will not use reserves.
2437          * Subtle - The reserve map for private mappings has the
2438          * opposite meaning than that of shared mappings.  If NO
2439          * entry is in the reserve map, it means a reservation exists.
2440          * If an entry exists in the reserve map, it means the
2441          * reservation has already been consumed.  As a result, the
2442          * return value of this routine is the opposite of the
2443          * value returned from reserve map manipulation routines above.
2444          */
2445         if (ret > 0)
2446                 return 0;
2447         if (ret == 0)
2448                 return 1;
2449         return ret;
2450 }
2451
2452 static long vma_needs_reservation(struct hstate *h,
2453                         struct vm_area_struct *vma, unsigned long addr)
2454 {
2455         return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
2456 }
2457
2458 static long vma_commit_reservation(struct hstate *h,
2459                         struct vm_area_struct *vma, unsigned long addr)
2460 {
2461         return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
2462 }
2463
2464 static void vma_end_reservation(struct hstate *h,
2465                         struct vm_area_struct *vma, unsigned long addr)
2466 {
2467         (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
2468 }
2469
2470 static long vma_add_reservation(struct hstate *h,
2471                         struct vm_area_struct *vma, unsigned long addr)
2472 {
2473         return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
2474 }
2475
2476 static long vma_del_reservation(struct hstate *h,
2477                         struct vm_area_struct *vma, unsigned long addr)
2478 {
2479         return __vma_reservation_common(h, vma, addr, VMA_DEL_RESV);
2480 }
2481
2482 /*
2483  * This routine is called to restore reservation information on error paths.
2484  * It should ONLY be called for pages allocated via alloc_huge_page(), and
2485  * the hugetlb mutex should remain held when calling this routine.
2486  *
2487  * It handles two specific cases:
2488  * 1) A reservation was in place and the page consumed the reservation.
2489  *    HPageRestoreReserve is set in the page.
2490  * 2) No reservation was in place for the page, so HPageRestoreReserve is
2491  *    not set.  However, alloc_huge_page always updates the reserve map.
2492  *
2493  * In case 1, free_huge_page later in the error path will increment the
2494  * global reserve count.  But, free_huge_page does not have enough context
2495  * to adjust the reservation map.  This case deals primarily with private
2496  * mappings.  Adjust the reserve map here to be consistent with global
2497  * reserve count adjustments to be made by free_huge_page.  Make sure the
2498  * reserve map indicates there is a reservation present.
2499  *
2500  * In case 2, simply undo reserve map modifications done by alloc_huge_page.
2501  */
2502 void restore_reserve_on_error(struct hstate *h, struct vm_area_struct *vma,
2503                         unsigned long address, struct page *page)
2504 {
2505         long rc = vma_needs_reservation(h, vma, address);
2506
2507         if (HPageRestoreReserve(page)) {
2508                 if (unlikely(rc < 0))
2509                         /*
2510                          * Rare out of memory condition in reserve map
2511                          * manipulation.  Clear HPageRestoreReserve so that
2512                          * global reserve count will not be incremented
2513                          * by free_huge_page.  This will make it appear
2514                          * as though the reservation for this page was
2515                          * consumed.  This may prevent the task from
2516                          * faulting in the page at a later time.  This
2517                          * is better than inconsistent global huge page
2518                          * accounting of reserve counts.
2519                          */
2520                         ClearHPageRestoreReserve(page);
2521                 else if (rc)
2522                         (void)vma_add_reservation(h, vma, address);
2523                 else
2524                         vma_end_reservation(h, vma, address);
2525         } else {
2526                 if (!rc) {
2527                         /*
2528                          * This indicates there is an entry in the reserve map
2529                          * not added by alloc_huge_page.  We know it was added
2530                          * before the alloc_huge_page call, otherwise
2531                          * HPageRestoreReserve would be set on the page.
2532                          * Remove the entry so that a subsequent allocation
2533                          * does not consume a reservation.
2534                          */
2535                         rc = vma_del_reservation(h, vma, address);
2536                         if (rc < 0)
2537                                 /*
2538                                  * VERY rare out of memory condition.  Since
2539                                  * we can not delete the entry, set
2540                                  * HPageRestoreReserve so that the reserve
2541                                  * count will be incremented when the page
2542                                  * is freed.  This reserve will be consumed
2543                                  * on a subsequent allocation.
2544                                  */
2545                                 SetHPageRestoreReserve(page);
2546                 } else if (rc < 0) {
2547                         /*
2548                          * Rare out of memory condition from
2549                          * vma_needs_reservation call.  Memory allocation is
2550                          * only attempted if a new entry is needed.  Therefore,
2551                          * this implies there is not an entry in the
2552                          * reserve map.
2553                          *
2554                          * For shared mappings, no entry in the map indicates
2555                          * no reservation.  We are done.
2556                          */
2557                         if (!(vma->vm_flags & VM_MAYSHARE))
2558                                 /*
2559                                  * For private mappings, no entry indicates
2560                                  * a reservation is present.  Since we can
2561                                  * not add an entry, set SetHPageRestoreReserve
2562                                  * on the page so reserve count will be
2563                                  * incremented when freed.  This reserve will
2564                                  * be consumed on a subsequent allocation.
2565                                  */
2566                                 SetHPageRestoreReserve(page);
2567                 } else
2568                         /*
2569                          * No reservation present, do nothing
2570                          */
2571                          vma_end_reservation(h, vma, address);
2572         }
2573 }
2574
2575 /*
2576  * alloc_and_dissolve_huge_page - Allocate a new page and dissolve the old one
2577  * @h: struct hstate old page belongs to
2578  * @old_page: Old page to dissolve
2579  * @list: List to isolate the page in case we need to
2580  * Returns 0 on success, otherwise negated error.
2581  */
2582 static int alloc_and_dissolve_huge_page(struct hstate *h, struct page *old_page,
2583                                         struct list_head *list)
2584 {
2585         gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
2586         int nid = page_to_nid(old_page);
2587         bool alloc_retry = false;
2588         struct page *new_page;
2589         int ret = 0;
2590
2591         /*
2592          * Before dissolving the page, we need to allocate a new one for the
2593          * pool to remain stable.  Here, we allocate the page and 'prep' it
2594          * by doing everything but actually updating counters and adding to
2595          * the pool.  This simplifies and let us do most of the processing
2596          * under the lock.
2597          */
2598 alloc_retry:
2599         new_page = alloc_buddy_huge_page(h, gfp_mask, nid, NULL, NULL);
2600         if (!new_page)
2601                 return -ENOMEM;
2602         /*
2603          * If all goes well, this page will be directly added to the free
2604          * list in the pool.  For this the ref count needs to be zero.
2605          * Attempt to drop now, and retry once if needed.  It is VERY
2606          * unlikely there is another ref on the page.
2607          *
2608          * If someone else has a reference to the page, it will be freed
2609          * when they drop their ref.  Abuse temporary page flag to accomplish
2610          * this.  Retry once if there is an inflated ref count.
2611          */
2612         SetHPageTemporary(new_page);
2613         if (!put_page_testzero(new_page)) {
2614                 if (alloc_retry)
2615                         return -EBUSY;
2616
2617                 alloc_retry = true;
2618                 goto alloc_retry;
2619         }
2620         ClearHPageTemporary(new_page);
2621
2622         __prep_new_huge_page(h, new_page);
2623
2624 retry:
2625         spin_lock_irq(&hugetlb_lock);
2626         if (!PageHuge(old_page)) {
2627                 /*
2628                  * Freed from under us. Drop new_page too.
2629                  */
2630                 goto free_new;
2631         } else if (page_count(old_page)) {
2632                 /*
2633                  * Someone has grabbed the page, try to isolate it here.
2634                  * Fail with -EBUSY if not possible.
2635                  */
2636                 spin_unlock_irq(&hugetlb_lock);
2637                 if (!isolate_huge_page(old_page, list))
2638                         ret = -EBUSY;
2639                 spin_lock_irq(&hugetlb_lock);
2640                 goto free_new;
2641         } else if (!HPageFreed(old_page)) {
2642                 /*
2643                  * Page's refcount is 0 but it has not been enqueued in the
2644                  * freelist yet. Race window is small, so we can succeed here if
2645                  * we retry.
2646                  */
2647                 spin_unlock_irq(&hugetlb_lock);
2648                 cond_resched();
2649                 goto retry;
2650         } else {
2651                 /*
2652                  * Ok, old_page is still a genuine free hugepage. Remove it from
2653                  * the freelist and decrease the counters. These will be
2654                  * incremented again when calling __prep_account_new_huge_page()
2655                  * and enqueue_huge_page() for new_page. The counters will remain
2656                  * stable since this happens under the lock.
2657                  */
2658                 remove_hugetlb_page(h, old_page, false);
2659
2660                 /*
2661                  * Ref count on new page is already zero as it was dropped
2662                  * earlier.  It can be directly added to the pool free list.
2663                  */
2664                 __prep_account_new_huge_page(h, nid);
2665                 enqueue_huge_page(h, new_page);
2666
2667                 /*
2668                  * Pages have been replaced, we can safely free the old one.
2669                  */
2670                 spin_unlock_irq(&hugetlb_lock);
2671                 update_and_free_page(h, old_page, false);
2672         }
2673
2674         return ret;
2675
2676 free_new:
2677         spin_unlock_irq(&hugetlb_lock);
2678         /* Page has a zero ref count, but needs a ref to be freed */
2679         set_page_refcounted(new_page);
2680         update_and_free_page(h, new_page, false);
2681
2682         return ret;
2683 }
2684
2685 int isolate_or_dissolve_huge_page(struct page *page, struct list_head *list)
2686 {
2687         struct hstate *h;
2688         struct page *head;
2689         int ret = -EBUSY;
2690
2691         /*
2692          * The page might have been dissolved from under our feet, so make sure
2693          * to carefully check the state under the lock.
2694          * Return success when racing as if we dissolved the page ourselves.
2695          */
2696         spin_lock_irq(&hugetlb_lock);
2697         if (PageHuge(page)) {
2698                 head = compound_head(page);
2699                 h = page_hstate(head);
2700         } else {
2701                 spin_unlock_irq(&hugetlb_lock);
2702                 return 0;
2703         }
2704         spin_unlock_irq(&hugetlb_lock);
2705
2706         /*
2707          * Fence off gigantic pages as there is a cyclic dependency between
2708          * alloc_contig_range and them. Return -ENOMEM as this has the effect
2709          * of bailing out right away without further retrying.
2710          */
2711         if (hstate_is_gigantic(h))
2712                 return -ENOMEM;
2713
2714         if (page_count(head) && isolate_huge_page(head, list))
2715                 ret = 0;
2716         else if (!page_count(head))
2717                 ret = alloc_and_dissolve_huge_page(h, head, list);
2718
2719         return ret;
2720 }
2721
2722 struct page *alloc_huge_page(struct vm_area_struct *vma,
2723                                     unsigned long addr, int avoid_reserve)
2724 {
2725         struct hugepage_subpool *spool = subpool_vma(vma);
2726         struct hstate *h = hstate_vma(vma);
2727         struct page *page;
2728         long map_chg, map_commit;
2729         long gbl_chg;
2730         int ret, idx;
2731         struct hugetlb_cgroup *h_cg;
2732         bool deferred_reserve;
2733
2734         idx = hstate_index(h);
2735         /*
2736          * Examine the region/reserve map to determine if the process
2737          * has a reservation for the page to be allocated.  A return
2738          * code of zero indicates a reservation exists (no change).
2739          */
2740         map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
2741         if (map_chg < 0)
2742                 return ERR_PTR(-ENOMEM);
2743
2744         /*
2745          * Processes that did not create the mapping will have no
2746          * reserves as indicated by the region/reserve map. Check
2747          * that the allocation will not exceed the subpool limit.
2748          * Allocations for MAP_NORESERVE mappings also need to be
2749          * checked against any subpool limit.
2750          */
2751         if (map_chg || avoid_reserve) {
2752                 gbl_chg = hugepage_subpool_get_pages(spool, 1);
2753                 if (gbl_chg < 0) {
2754                         vma_end_reservation(h, vma, addr);
2755                         return ERR_PTR(-ENOSPC);
2756                 }
2757
2758                 /*
2759                  * Even though there was no reservation in the region/reserve
2760                  * map, there could be reservations associated with the
2761                  * subpool that can be used.  This would be indicated if the
2762                  * return value of hugepage_subpool_get_pages() is zero.
2763                  * However, if avoid_reserve is specified we still avoid even
2764                  * the subpool reservations.
2765                  */
2766                 if (avoid_reserve)
2767                         gbl_chg = 1;
2768         }
2769
2770         /* If this allocation is not consuming a reservation, charge it now.
2771          */
2772         deferred_reserve = map_chg || avoid_reserve;
2773         if (deferred_reserve) {
2774                 ret = hugetlb_cgroup_charge_cgroup_rsvd(
2775                         idx, pages_per_huge_page(h), &h_cg);
2776                 if (ret)
2777                         goto out_subpool_put;
2778         }
2779
2780         ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
2781         if (ret)
2782                 goto out_uncharge_cgroup_reservation;
2783
2784         spin_lock_irq(&hugetlb_lock);
2785         /*
2786          * glb_chg is passed to indicate whether or not a page must be taken
2787          * from the global free pool (global change).  gbl_chg == 0 indicates
2788          * a reservation exists for the allocation.
2789          */
2790         page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
2791         if (!page) {
2792                 spin_unlock_irq(&hugetlb_lock);
2793                 page = alloc_buddy_huge_page_with_mpol(h, vma, addr);
2794                 if (!page)
2795                         goto out_uncharge_cgroup;
2796                 if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
2797                         SetHPageRestoreReserve(page);
2798                         h->resv_huge_pages--;
2799                 }
2800                 spin_lock_irq(&hugetlb_lock);
2801                 list_add(&page->lru, &h->hugepage_activelist);
2802                 /* Fall through */
2803         }
2804         hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
2805         /* If allocation is not consuming a reservation, also store the
2806          * hugetlb_cgroup pointer on the page.
2807          */
2808         if (deferred_reserve) {
2809                 hugetlb_cgroup_commit_charge_rsvd(idx, pages_per_huge_page(h),
2810                                                   h_cg, page);
2811         }
2812
2813         spin_unlock_irq(&hugetlb_lock);
2814
2815         hugetlb_set_page_subpool(page, spool);
2816
2817         map_commit = vma_commit_reservation(h, vma, addr);
2818         if (unlikely(map_chg > map_commit)) {
2819                 /*
2820                  * The page was added to the reservation map between
2821                  * vma_needs_reservation and vma_commit_reservation.
2822                  * This indicates a race with hugetlb_reserve_pages.
2823                  * Adjust for the subpool count incremented above AND
2824                  * in hugetlb_reserve_pages for the same page.  Also,
2825                  * the reservation count added in hugetlb_reserve_pages
2826                  * no longer applies.
2827                  */
2828                 long rsv_adjust;
2829
2830                 rsv_adjust = hugepage_subpool_put_pages(spool, 1);
2831                 hugetlb_acct_memory(h, -rsv_adjust);
2832                 if (deferred_reserve)
2833                         hugetlb_cgroup_uncharge_page_rsvd(hstate_index(h),
2834                                         pages_per_huge_page(h), page);
2835         }
2836         return page;
2837
2838 out_uncharge_cgroup:
2839         hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
2840 out_uncharge_cgroup_reservation:
2841         if (deferred_reserve)
2842                 hugetlb_cgroup_uncharge_cgroup_rsvd(idx, pages_per_huge_page(h),
2843                                                     h_cg);
2844 out_subpool_put:
2845         if (map_chg || avoid_reserve)
2846                 hugepage_subpool_put_pages(spool, 1);
2847         vma_end_reservation(h, vma, addr);
2848         return ERR_PTR(-ENOSPC);
2849 }
2850
2851 int alloc_bootmem_huge_page(struct hstate *h)
2852         __attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
2853 int __alloc_bootmem_huge_page(struct hstate *h)
2854 {
2855         struct huge_bootmem_page *m;
2856         int nr_nodes, node;
2857
2858         for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
2859                 void *addr;
2860
2861                 addr = memblock_alloc_try_nid_raw(
2862                                 huge_page_size(h), huge_page_size(h),
2863                                 0, MEMBLOCK_ALLOC_ACCESSIBLE, node);
2864                 if (addr) {
2865                         /*
2866                          * Use the beginning of the huge page to store the
2867                          * huge_bootmem_page struct (until gather_bootmem
2868                          * puts them into the mem_map).
2869                          */
2870                         m = addr;
2871                         goto found;
2872                 }
2873         }
2874         return 0;
2875
2876 found:
2877         BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h)));
2878         /* Put them into a private list first because mem_map is not up yet */
2879         INIT_LIST_HEAD(&m->list);
2880         list_add(&m->list, &huge_boot_pages);
2881         m->hstate = h;
2882         return 1;
2883 }
2884
2885 /*
2886  * Put bootmem huge pages into the standard lists after mem_map is up.
2887  * Note: This only applies to gigantic (order > MAX_ORDER) pages.
2888  */
2889 static void __init gather_bootmem_prealloc(void)
2890 {
2891         struct huge_bootmem_page *m;
2892
2893         list_for_each_entry(m, &huge_boot_pages, list) {
2894                 struct page *page = virt_to_page(m);
2895                 struct hstate *h = m->hstate;
2896
2897                 VM_BUG_ON(!hstate_is_gigantic(h));
2898                 WARN_ON(page_count(page) != 1);
2899                 if (prep_compound_gigantic_page(page, huge_page_order(h))) {
2900                         WARN_ON(PageReserved(page));
2901                         prep_new_huge_page(h, page, page_to_nid(page));
2902                         put_page(page); /* add to the hugepage allocator */
2903                 } else {
2904                         /* VERY unlikely inflated ref count on a tail page */
2905                         free_gigantic_page(page, huge_page_order(h));
2906                 }
2907
2908                 /*
2909                  * We need to restore the 'stolen' pages to totalram_pages
2910                  * in order to fix confusing memory reports from free(1) and
2911                  * other side-effects, like CommitLimit going negative.
2912                  */
2913                 adjust_managed_page_count(page, pages_per_huge_page(h));
2914                 cond_resched();
2915         }
2916 }
2917
2918 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
2919 {
2920         unsigned long i;
2921         nodemask_t *node_alloc_noretry;
2922
2923         if (!hstate_is_gigantic(h)) {
2924                 /*
2925                  * Bit mask controlling how hard we retry per-node allocations.
2926                  * Ignore errors as lower level routines can deal with
2927                  * node_alloc_noretry == NULL.  If this kmalloc fails at boot
2928                  * time, we are likely in bigger trouble.
2929                  */
2930                 node_alloc_noretry = kmalloc(sizeof(*node_alloc_noretry),
2931                                                 GFP_KERNEL);
2932         } else {
2933                 /* allocations done at boot time */
2934                 node_alloc_noretry = NULL;
2935         }
2936
2937         /* bit mask controlling how hard we retry per-node allocations */
2938         if (node_alloc_noretry)
2939                 nodes_clear(*node_alloc_noretry);
2940
2941         for (i = 0; i < h->max_huge_pages; ++i) {
2942                 if (hstate_is_gigantic(h)) {
2943                         if (hugetlb_cma_size) {
2944                                 pr_warn_once("HugeTLB: hugetlb_cma is enabled, skip boot time allocation\n");
2945                                 goto free;
2946                         }
2947                         if (!alloc_bootmem_huge_page(h))
2948                                 break;
2949                 } else if (!alloc_pool_huge_page(h,
2950                                          &node_states[N_MEMORY],
2951                                          node_alloc_noretry))
2952                         break;
2953                 cond_resched();
2954         }
2955         if (i < h->max_huge_pages) {
2956                 char buf[32];
2957
2958                 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
2959                 pr_warn("HugeTLB: allocating %lu of page size %s failed.  Only allocated %lu hugepages.\n",
2960                         h->max_huge_pages, buf, i);
2961                 h->max_huge_pages = i;
2962         }
2963 free:
2964         kfree(node_alloc_noretry);
2965 }
2966
2967 static void __init hugetlb_init_hstates(void)
2968 {
2969         struct hstate *h;
2970
2971         for_each_hstate(h) {
2972                 if (minimum_order > huge_page_order(h))
2973                         minimum_order = huge_page_order(h);
2974
2975                 /* oversize hugepages were init'ed in early boot */
2976                 if (!hstate_is_gigantic(h))
2977                         hugetlb_hstate_alloc_pages(h);
2978         }
2979         VM_BUG_ON(minimum_order == UINT_MAX);
2980 }
2981
2982 static void __init report_hugepages(void)
2983 {
2984         struct hstate *h;
2985
2986         for_each_hstate(h) {
2987                 char buf[32];
2988
2989                 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
2990                 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
2991                         buf, h->free_huge_pages);
2992         }
2993 }
2994
2995 #ifdef CONFIG_HIGHMEM
2996 static void try_to_free_low(struct hstate *h, unsigned long count,
2997                                                 nodemask_t *nodes_allowed)
2998 {
2999         int i;
3000         LIST_HEAD(page_list);
3001
3002         lockdep_assert_held(&hugetlb_lock);
3003         if (hstate_is_gigantic(h))
3004                 return;
3005
3006         /*
3007          * Collect pages to be freed on a list, and free after dropping lock
3008          */
3009         for_each_node_mask(i, *nodes_allowed) {
3010                 struct page *page, *next;
3011                 struct list_head *freel = &h->hugepage_freelists[i];
3012                 list_for_each_entry_safe(page, next, freel, lru) {
3013                         if (count >= h->nr_huge_pages)
3014                                 goto out;
3015                         if (PageHighMem(page))
3016                                 continue;
3017                         remove_hugetlb_page(h, page, false);
3018                         list_add(&page->lru, &page_list);
3019                 }
3020         }
3021
3022 out:
3023         spin_unlock_irq(&hugetlb_lock);
3024         update_and_free_pages_bulk(h, &page_list);
3025         spin_lock_irq(&hugetlb_lock);
3026 }
3027 #else
3028 static inline void try_to_free_low(struct hstate *h, unsigned long count,
3029                                                 nodemask_t *nodes_allowed)
3030 {
3031 }
3032 #endif
3033
3034 /*
3035  * Increment or decrement surplus_huge_pages.  Keep node-specific counters
3036  * balanced by operating on them in a round-robin fashion.
3037  * Returns 1 if an adjustment was made.
3038  */
3039 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
3040                                 int delta)
3041 {
3042         int nr_nodes, node;
3043
3044         lockdep_assert_held(&hugetlb_lock);
3045         VM_BUG_ON(delta != -1 && delta != 1);
3046
3047         if (delta < 0) {
3048                 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
3049                         if (h->surplus_huge_pages_node[node])
3050                                 goto found;
3051                 }
3052         } else {
3053                 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
3054                         if (h->surplus_huge_pages_node[node] <
3055                                         h->nr_huge_pages_node[node])
3056                                 goto found;
3057                 }
3058         }
3059         return 0;
3060
3061 found:
3062         h->surplus_huge_pages += delta;
3063         h->surplus_huge_pages_node[node] += delta;
3064         return 1;
3065 }
3066
3067 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
3068 static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid,
3069                               nodemask_t *nodes_allowed)
3070 {
3071         unsigned long min_count, ret;
3072         struct page *page;
3073         LIST_HEAD(page_list);
3074         NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL);
3075
3076         /*
3077          * Bit mask controlling how hard we retry per-node allocations.
3078          * If we can not allocate the bit mask, do not attempt to allocate
3079          * the requested huge pages.
3080          */
3081         if (node_alloc_noretry)
3082                 nodes_clear(*node_alloc_noretry);
3083         else
3084                 return -ENOMEM;
3085
3086         /*
3087          * resize_lock mutex prevents concurrent adjustments to number of
3088          * pages in hstate via the proc/sysfs interfaces.
3089          */
3090         mutex_lock(&h->resize_lock);
3091         flush_free_hpage_work(h);
3092         spin_lock_irq(&hugetlb_lock);
3093
3094         /*
3095          * Check for a node specific request.
3096          * Changing node specific huge page count may require a corresponding
3097          * change to the global count.  In any case, the passed node mask
3098          * (nodes_allowed) will restrict alloc/free to the specified node.
3099          */
3100         if (nid != NUMA_NO_NODE) {
3101                 unsigned long old_count = count;
3102
3103                 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
3104                 /*
3105                  * User may have specified a large count value which caused the
3106                  * above calculation to overflow.  In this case, they wanted
3107                  * to allocate as many huge pages as possible.  Set count to
3108                  * largest possible value to align with their intention.
3109                  */
3110                 if (count < old_count)
3111                         count = ULONG_MAX;
3112         }
3113
3114         /*
3115          * Gigantic pages runtime allocation depend on the capability for large
3116          * page range allocation.
3117          * If the system does not provide this feature, return an error when
3118          * the user tries to allocate gigantic pages but let the user free the
3119          * boottime allocated gigantic pages.
3120          */
3121         if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) {
3122                 if (count > persistent_huge_pages(h)) {
3123                         spin_unlock_irq(&hugetlb_lock);
3124                         mutex_unlock(&h->resize_lock);
3125                         NODEMASK_FREE(node_alloc_noretry);
3126                         return -EINVAL;
3127                 }
3128                 /* Fall through to decrease pool */
3129         }
3130
3131         /*
3132          * Increase the pool size
3133          * First take pages out of surplus state.  Then make up the
3134          * remaining difference by allocating fresh huge pages.
3135          *
3136          * We might race with alloc_surplus_huge_page() here and be unable
3137          * to convert a surplus huge page to a normal huge page. That is
3138          * not critical, though, it just means the overall size of the
3139          * pool might be one hugepage larger than it needs to be, but
3140          * within all the constraints specified by the sysctls.
3141          */
3142         while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
3143                 if (!adjust_pool_surplus(h, nodes_allowed, -1))
3144                         break;
3145         }
3146
3147         while (count > persistent_huge_pages(h)) {
3148                 /*
3149                  * If this allocation races such that we no longer need the
3150                  * page, free_huge_page will handle it by freeing the page
3151                  * and reducing the surplus.
3152                  */
3153                 spin_unlock_irq(&hugetlb_lock);
3154
3155                 /* yield cpu to avoid soft lockup */
3156                 cond_resched();
3157
3158                 ret = alloc_pool_huge_page(h, nodes_allowed,
3159                                                 node_alloc_noretry);
3160                 spin_lock_irq(&hugetlb_lock);
3161                 if (!ret)
3162                         goto out;
3163
3164                 /* Bail for signals. Probably ctrl-c from user */
3165                 if (signal_pending(current))
3166                         goto out;
3167         }
3168
3169         /*
3170          * Decrease the pool size
3171          * First return free pages to the buddy allocator (being careful
3172          * to keep enough around to satisfy reservations).  Then place
3173          * pages into surplus state as needed so the pool will shrink
3174          * to the desired size as pages become free.
3175          *
3176          * By placing pages into the surplus state independent of the
3177          * overcommit value, we are allowing the surplus pool size to
3178          * exceed overcommit. There are few sane options here. Since
3179          * alloc_surplus_huge_page() is checking the global counter,
3180          * though, we'll note that we're not allowed to exceed surplus
3181          * and won't grow the pool anywhere else. Not until one of the
3182          * sysctls are changed, or the surplus pages go out of use.
3183          */
3184         min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
3185         min_count = max(count, min_count);
3186         try_to_free_low(h, min_count, nodes_allowed);
3187
3188         /*
3189          * Collect pages to be removed on list without dropping lock
3190          */
3191         while (min_count < persistent_huge_pages(h)) {
3192                 page = remove_pool_huge_page(h, nodes_allowed, 0);
3193                 if (!page)
3194                         break;
3195
3196                 list_add(&page->lru, &page_list);
3197         }
3198         /* free the pages after dropping lock */
3199         spin_unlock_irq(&hugetlb_lock);
3200         update_and_free_pages_bulk(h, &page_list);
3201         flush_free_hpage_work(h);
3202         spin_lock_irq(&hugetlb_lock);
3203
3204         while (count < persistent_huge_pages(h)) {
3205                 if (!adjust_pool_surplus(h, nodes_allowed, 1))
3206                         break;
3207         }
3208 out:
3209         h->max_huge_pages = persistent_huge_pages(h);
3210         spin_unlock_irq(&hugetlb_lock);
3211         mutex_unlock(&h->resize_lock);
3212
3213         NODEMASK_FREE(node_alloc_noretry);
3214
3215         return 0;
3216 }
3217
3218 #define HSTATE_ATTR_RO(_name) \
3219         static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
3220
3221 #define HSTATE_ATTR(_name) \
3222         static struct kobj_attribute _name##_attr = \
3223                 __ATTR(_name, 0644, _name##_show, _name##_store)
3224
3225 static struct kobject *hugepages_kobj;
3226 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
3227
3228 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
3229
3230 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
3231 {
3232         int i;
3233
3234         for (i = 0; i < HUGE_MAX_HSTATE; i++)
3235                 if (hstate_kobjs[i] == kobj) {
3236                         if (nidp)
3237                                 *nidp = NUMA_NO_NODE;
3238                         return &hstates[i];
3239                 }
3240
3241         return kobj_to_node_hstate(kobj, nidp);
3242 }
3243
3244 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
3245                                         struct kobj_attribute *attr, char *buf)
3246 {
3247         struct hstate *h;
3248         unsigned long nr_huge_pages;
3249         int nid;
3250
3251         h = kobj_to_hstate(kobj, &nid);
3252         if (nid == NUMA_NO_NODE)
3253                 nr_huge_pages = h->nr_huge_pages;
3254         else
3255                 nr_huge_pages = h->nr_huge_pages_node[nid];
3256
3257         return sysfs_emit(buf, "%lu\n", nr_huge_pages);
3258 }
3259
3260 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
3261                                            struct hstate *h, int nid,
3262                                            unsigned long count, size_t len)
3263 {
3264         int err;
3265         nodemask_t nodes_allowed, *n_mask;
3266
3267         if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
3268                 return -EINVAL;
3269
3270         if (nid == NUMA_NO_NODE) {
3271                 /*
3272                  * global hstate attribute
3273                  */
3274                 if (!(obey_mempolicy &&
3275                                 init_nodemask_of_mempolicy(&nodes_allowed)))
3276                         n_mask = &node_states[N_MEMORY];
3277                 else
3278                         n_mask = &nodes_allowed;
3279         } else {
3280                 /*
3281                  * Node specific request.  count adjustment happens in
3282                  * set_max_huge_pages() after acquiring hugetlb_lock.
3283                  */
3284                 init_nodemask_of_node(&nodes_allowed, nid);
3285                 n_mask = &nodes_allowed;
3286         }
3287
3288         err = set_max_huge_pages(h, count, nid, n_mask);
3289
3290         return err ? err : len;
3291 }
3292
3293 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
3294                                          struct kobject *kobj, const char *buf,
3295                                          size_t len)
3296 {
3297         struct hstate *h;
3298         unsigned long count;
3299         int nid;
3300         int err;
3301
3302         err = kstrtoul(buf, 10, &count);
3303         if (err)
3304                 return err;
3305
3306         h = kobj_to_hstate(kobj, &nid);
3307         return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
3308 }
3309
3310 static ssize_t nr_hugepages_show(struct kobject *kobj,
3311                                        struct kobj_attribute *attr, char *buf)
3312 {
3313         return nr_hugepages_show_common(kobj, attr, buf);
3314 }
3315
3316 static ssize_t nr_hugepages_store(struct kobject *kobj,
3317                struct kobj_attribute *attr, const char *buf, size_t len)
3318 {
3319         return nr_hugepages_store_common(false, kobj, buf, len);
3320 }
3321 HSTATE_ATTR(nr_hugepages);
3322
3323 #ifdef CONFIG_NUMA
3324
3325 /*
3326  * hstate attribute for optionally mempolicy-based constraint on persistent
3327  * huge page alloc/free.
3328  */
3329 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
3330                                            struct kobj_attribute *attr,
3331                                            char *buf)
3332 {
3333         return nr_hugepages_show_common(kobj, attr, buf);
3334 }
3335
3336 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
3337                struct kobj_attribute *attr, const char *buf, size_t len)
3338 {
3339         return nr_hugepages_store_common(true, kobj, buf, len);
3340 }
3341 HSTATE_ATTR(nr_hugepages_mempolicy);
3342 #endif
3343
3344
3345 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
3346                                         struct kobj_attribute *attr, char *buf)
3347 {
3348         struct hstate *h = kobj_to_hstate(kobj, NULL);
3349         return sysfs_emit(buf, "%lu\n", h->nr_overcommit_huge_pages);
3350 }
3351
3352 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
3353                 struct kobj_attribute *attr, const char *buf, size_t count)
3354 {
3355         int err;
3356         unsigned long input;
3357         struct hstate *h = kobj_to_hstate(kobj, NULL);
3358
3359         if (hstate_is_gigantic(h))
3360                 return -EINVAL;
3361
3362         err = kstrtoul(buf, 10, &input);
3363         if (err)
3364                 return err;
3365
3366         spin_lock_irq(&hugetlb_lock);
3367         h->nr_overcommit_huge_pages = input;
3368         spin_unlock_irq(&hugetlb_lock);
3369
3370         return count;
3371 }
3372 HSTATE_ATTR(nr_overcommit_hugepages);
3373
3374 static ssize_t free_hugepages_show(struct kobject *kobj,
3375                                         struct kobj_attribute *attr, char *buf)
3376 {
3377         struct hstate *h;
3378         unsigned long free_huge_pages;
3379         int nid;
3380
3381         h = kobj_to_hstate(kobj, &nid);
3382         if (nid == NUMA_NO_NODE)
3383                 free_huge_pages = h->free_huge_pages;
3384         else
3385                 free_huge_pages = h->free_huge_pages_node[nid];
3386
3387         return sysfs_emit(buf, "%lu\n", free_huge_pages);
3388 }
3389 HSTATE_ATTR_RO(free_hugepages);
3390
3391 static ssize_t resv_hugepages_show(struct kobject *kobj,
3392                                         struct kobj_attribute *attr, char *buf)
3393 {
3394         struct hstate *h = kobj_to_hstate(kobj, NULL);
3395         return sysfs_emit(buf, "%lu\n", h->resv_huge_pages);
3396 }
3397 HSTATE_ATTR_RO(resv_hugepages);
3398
3399 static ssize_t surplus_hugepages_show(struct kobject *kobj,
3400                                         struct kobj_attribute *attr, char *buf)
3401 {
3402         struct hstate *h;
3403         unsigned long surplus_huge_pages;
3404         int nid;
3405
3406         h = kobj_to_hstate(kobj, &nid);
3407         if (nid == NUMA_NO_NODE)
3408                 surplus_huge_pages = h->surplus_huge_pages;
3409         else
3410                 surplus_huge_pages = h->surplus_huge_pages_node[nid];
3411
3412         return sysfs_emit(buf, "%lu\n", surplus_huge_pages);
3413 }
3414 HSTATE_ATTR_RO(surplus_hugepages);
3415
3416 static struct attribute *hstate_attrs[] = {
3417         &nr_hugepages_attr.attr,
3418         &nr_overcommit_hugepages_attr.attr,
3419         &free_hugepages_attr.attr,
3420         &resv_hugepages_attr.attr,
3421         &surplus_hugepages_attr.attr,
3422 #ifdef CONFIG_NUMA
3423         &nr_hugepages_mempolicy_attr.attr,
3424 #endif
3425         NULL,
3426 };
3427
3428 static const struct attribute_group hstate_attr_group = {
3429         .attrs = hstate_attrs,
3430 };
3431
3432 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
3433                                     struct kobject **hstate_kobjs,
3434                                     const struct attribute_group *hstate_attr_group)
3435 {
3436         int retval;
3437         int hi = hstate_index(h);
3438
3439         hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
3440         if (!hstate_kobjs[hi])
3441                 return -ENOMEM;
3442
3443         retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
3444         if (retval) {
3445                 kobject_put(hstate_kobjs[hi]);
3446                 hstate_kobjs[hi] = NULL;
3447         }
3448
3449         return retval;
3450 }
3451
3452 static void __init hugetlb_sysfs_init(void)
3453 {
3454         struct hstate *h;
3455         int err;
3456
3457         hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
3458         if (!hugepages_kobj)
3459                 return;
3460
3461         for_each_hstate(h) {
3462                 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
3463                                          hstate_kobjs, &hstate_attr_group);
3464                 if (err)
3465                         pr_err("HugeTLB: Unable to add hstate %s", h->name);
3466         }
3467 }
3468
3469 #ifdef CONFIG_NUMA
3470
3471 /*
3472  * node_hstate/s - associate per node hstate attributes, via their kobjects,
3473  * with node devices in node_devices[] using a parallel array.  The array
3474  * index of a node device or _hstate == node id.
3475  * This is here to avoid any static dependency of the node device driver, in
3476  * the base kernel, on the hugetlb module.
3477  */
3478 struct node_hstate {
3479         struct kobject          *hugepages_kobj;
3480         struct kobject          *hstate_kobjs[HUGE_MAX_HSTATE];
3481 };
3482 static struct node_hstate node_hstates[MAX_NUMNODES];
3483
3484 /*
3485  * A subset of global hstate attributes for node devices
3486  */
3487 static struct attribute *per_node_hstate_attrs[] = {
3488         &nr_hugepages_attr.attr,
3489         &free_hugepages_attr.attr,
3490         &surplus_hugepages_attr.attr,
3491         NULL,
3492 };
3493
3494 static const struct attribute_group per_node_hstate_attr_group = {
3495         .attrs = per_node_hstate_attrs,
3496 };
3497
3498 /*
3499  * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
3500  * Returns node id via non-NULL nidp.
3501  */
3502 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
3503 {
3504         int nid;
3505
3506         for (nid = 0; nid < nr_node_ids; nid++) {
3507                 struct node_hstate *nhs = &node_hstates[nid];
3508                 int i;
3509                 for (i = 0; i < HUGE_MAX_HSTATE; i++)
3510                         if (nhs->hstate_kobjs[i] == kobj) {
3511                                 if (nidp)
3512                                         *nidp = nid;
3513                                 return &hstates[i];
3514                         }
3515         }
3516
3517         BUG();
3518         return NULL;
3519 }
3520
3521 /*
3522  * Unregister hstate attributes from a single node device.
3523  * No-op if no hstate attributes attached.
3524  */
3525 static void hugetlb_unregister_node(struct node *node)
3526 {
3527         struct hstate *h;
3528         struct node_hstate *nhs = &node_hstates[node->dev.id];
3529
3530         if (!nhs->hugepages_kobj)
3531                 return;         /* no hstate attributes */
3532
3533         for_each_hstate(h) {
3534                 int idx = hstate_index(h);
3535                 if (nhs->hstate_kobjs[idx]) {
3536                         kobject_put(nhs->hstate_kobjs[idx]);
3537                         nhs->hstate_kobjs[idx] = NULL;
3538                 }
3539         }
3540
3541         kobject_put(nhs->hugepages_kobj);
3542         nhs->hugepages_kobj = NULL;
3543 }
3544
3545
3546 /*
3547  * Register hstate attributes for a single node device.
3548  * No-op if attributes already registered.
3549  */
3550 static void hugetlb_register_node(struct node *node)
3551 {
3552         struct hstate *h;
3553         struct node_hstate *nhs = &node_hstates[node->dev.id];
3554         int err;
3555
3556         if (nhs->hugepages_kobj)
3557                 return;         /* already allocated */
3558
3559         nhs->hugepages_kobj = kobject_create_and_add("hugepages",
3560                                                         &node->dev.kobj);
3561         if (!nhs->hugepages_kobj)
3562                 return;
3563
3564         for_each_hstate(h) {
3565                 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
3566                                                 nhs->hstate_kobjs,
3567                                                 &per_node_hstate_attr_group);
3568                 if (err) {
3569                         pr_err("HugeTLB: Unable to add hstate %s for node %d\n",
3570                                 h->name, node->dev.id);
3571                         hugetlb_unregister_node(node);
3572                         break;
3573                 }
3574         }
3575 }
3576
3577 /*
3578  * hugetlb init time:  register hstate attributes for all registered node
3579  * devices of nodes that have memory.  All on-line nodes should have
3580  * registered their associated device by this time.
3581  */
3582 static void __init hugetlb_register_all_nodes(void)
3583 {
3584         int nid;
3585
3586         for_each_node_state(nid, N_MEMORY) {
3587                 struct node *node = node_devices[nid];
3588                 if (node->dev.id == nid)
3589                         hugetlb_register_node(node);
3590         }
3591
3592         /*
3593          * Let the node device driver know we're here so it can
3594          * [un]register hstate attributes on node hotplug.
3595          */
3596         register_hugetlbfs_with_node(hugetlb_register_node,
3597                                      hugetlb_unregister_node);
3598 }
3599 #else   /* !CONFIG_NUMA */
3600
3601 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
3602 {
3603         BUG();
3604         if (nidp)
3605                 *nidp = -1;
3606         return NULL;
3607 }
3608
3609 static void hugetlb_register_all_nodes(void) { }
3610
3611 #endif
3612
3613 static int __init hugetlb_init(void)
3614 {
3615         int i;
3616
3617         BUILD_BUG_ON(sizeof_field(struct page, private) * BITS_PER_BYTE <
3618                         __NR_HPAGEFLAGS);
3619
3620         if (!hugepages_supported()) {
3621                 if (hugetlb_max_hstate || default_hstate_max_huge_pages)
3622                         pr_warn("HugeTLB: huge pages not supported, ignoring associated command-line parameters\n");
3623                 return 0;
3624         }
3625
3626         /*
3627          * Make sure HPAGE_SIZE (HUGETLB_PAGE_ORDER) hstate exists.  Some
3628          * architectures depend on setup being done here.
3629          */
3630         hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
3631         if (!parsed_default_hugepagesz) {
3632                 /*
3633                  * If we did not parse a default huge page size, set
3634                  * default_hstate_idx to HPAGE_SIZE hstate. And, if the
3635                  * number of huge pages for this default size was implicitly
3636                  * specified, set that here as well.
3637                  * Note that the implicit setting will overwrite an explicit
3638                  * setting.  A warning will be printed in this case.
3639                  */
3640                 default_hstate_idx = hstate_index(size_to_hstate(HPAGE_SIZE));
3641                 if (default_hstate_max_huge_pages) {
3642                         if (default_hstate.max_huge_pages) {
3643                                 char buf[32];
3644
3645                                 string_get_size(huge_page_size(&default_hstate),
3646                                         1, STRING_UNITS_2, buf, 32);
3647                                 pr_warn("HugeTLB: Ignoring hugepages=%lu associated with %s page size\n",
3648                                         default_hstate.max_huge_pages, buf);
3649                                 pr_warn("HugeTLB: Using hugepages=%lu for number of default huge pages\n",
3650                                         default_hstate_max_huge_pages);
3651                         }
3652                         default_hstate.max_huge_pages =
3653                                 default_hstate_max_huge_pages;
3654                 }
3655         }
3656
3657         hugetlb_cma_check();
3658         hugetlb_init_hstates();
3659         gather_bootmem_prealloc();
3660         report_hugepages();
3661
3662         hugetlb_sysfs_init();
3663         hugetlb_register_all_nodes();
3664         hugetlb_cgroup_file_init();
3665
3666 #ifdef CONFIG_SMP
3667         num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
3668 #else
3669         num_fault_mutexes = 1;
3670 #endif
3671         hugetlb_fault_mutex_table =
3672                 kmalloc_array(num_fault_mutexes, sizeof(struct mutex),
3673                               GFP_KERNEL);
3674         BUG_ON(!hugetlb_fault_mutex_table);
3675
3676         for (i = 0; i < num_fault_mutexes; i++)
3677                 mutex_init(&hugetlb_fault_mutex_table[i]);
3678         return 0;
3679 }
3680 subsys_initcall(hugetlb_init);
3681
3682 /* Overwritten by architectures with more huge page sizes */
3683 bool __init __attribute((weak)) arch_hugetlb_valid_size(unsigned long size)
3684 {
3685         return size == HPAGE_SIZE;
3686 }
3687
3688 void __init hugetlb_add_hstate(unsigned int order)
3689 {
3690         struct hstate *h;
3691         unsigned long i;
3692
3693         if (size_to_hstate(PAGE_SIZE << order)) {
3694                 return;
3695         }
3696         BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
3697         BUG_ON(order == 0);
3698         h = &hstates[hugetlb_max_hstate++];
3699         mutex_init(&h->resize_lock);
3700         h->order = order;
3701         h->mask = ~(huge_page_size(h) - 1);
3702         for (i = 0; i < MAX_NUMNODES; ++i)
3703                 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
3704         INIT_LIST_HEAD(&h->hugepage_activelist);
3705         h->next_nid_to_alloc = first_memory_node;
3706         h->next_nid_to_free = first_memory_node;
3707         snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
3708                                         huge_page_size(h)/1024);
3709         hugetlb_vmemmap_init(h);
3710
3711         parsed_hstate = h;
3712 }
3713
3714 /*
3715  * hugepages command line processing
3716  * hugepages normally follows a valid hugepagsz or default_hugepagsz
3717  * specification.  If not, ignore the hugepages value.  hugepages can also
3718  * be the first huge page command line  option in which case it implicitly
3719  * specifies the number of huge pages for the default size.
3720  */
3721 static int __init hugepages_setup(char *s)
3722 {
3723         unsigned long *mhp;
3724         static unsigned long *last_mhp;
3725
3726         if (!parsed_valid_hugepagesz) {
3727                 pr_warn("HugeTLB: hugepages=%s does not follow a valid hugepagesz, ignoring\n", s);
3728                 parsed_valid_hugepagesz = true;
3729                 return 0;
3730         }
3731
3732         /*
3733          * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter
3734          * yet, so this hugepages= parameter goes to the "default hstate".
3735          * Otherwise, it goes with the previously parsed hugepagesz or
3736          * default_hugepagesz.
3737          */
3738         else if (!hugetlb_max_hstate)
3739                 mhp = &default_hstate_max_huge_pages;
3740         else
3741                 mhp = &parsed_hstate->max_huge_pages;
3742
3743         if (mhp == last_mhp) {
3744                 pr_warn("HugeTLB: hugepages= specified twice without interleaving hugepagesz=, ignoring hugepages=%s\n", s);
3745                 return 0;
3746         }
3747
3748         if (sscanf(s, "%lu", mhp) <= 0)
3749                 *mhp = 0;
3750
3751         /*
3752          * Global state is always initialized later in hugetlb_init.
3753          * But we need to allocate gigantic hstates here early to still
3754          * use the bootmem allocator.
3755          */
3756         if (hugetlb_max_hstate && hstate_is_gigantic(parsed_hstate))
3757                 hugetlb_hstate_alloc_pages(parsed_hstate);
3758
3759         last_mhp = mhp;
3760
3761         return 1;
3762 }
3763 __setup("hugepages=", hugepages_setup);
3764
3765 /*
3766  * hugepagesz command line processing
3767  * A specific huge page size can only be specified once with hugepagesz.
3768  * hugepagesz is followed by hugepages on the command line.  The global
3769  * variable 'parsed_valid_hugepagesz' is used to determine if prior
3770  * hugepagesz argument was valid.
3771  */
3772 static int __init hugepagesz_setup(char *s)
3773 {
3774         unsigned long size;
3775         struct hstate *h;
3776
3777         parsed_valid_hugepagesz = false;
3778         size = (unsigned long)memparse(s, NULL);
3779
3780         if (!arch_hugetlb_valid_size(size)) {
3781                 pr_err("HugeTLB: unsupported hugepagesz=%s\n", s);
3782                 return 0;
3783         }
3784
3785         h = size_to_hstate(size);
3786         if (h) {
3787                 /*
3788                  * hstate for this size already exists.  This is normally
3789                  * an error, but is allowed if the existing hstate is the
3790                  * default hstate.  More specifically, it is only allowed if
3791                  * the number of huge pages for the default hstate was not
3792                  * previously specified.
3793                  */
3794                 if (!parsed_default_hugepagesz ||  h != &default_hstate ||
3795                     default_hstate.max_huge_pages) {
3796                         pr_warn("HugeTLB: hugepagesz=%s specified twice, ignoring\n", s);
3797                         return 0;
3798                 }
3799
3800                 /*
3801                  * No need to call hugetlb_add_hstate() as hstate already
3802                  * exists.  But, do set parsed_hstate so that a following
3803                  * hugepages= parameter will be applied to this hstate.
3804                  */
3805                 parsed_hstate = h;
3806                 parsed_valid_hugepagesz = true;
3807                 return 1;
3808         }
3809
3810         hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
3811         parsed_valid_hugepagesz = true;
3812         return 1;
3813 }
3814 __setup("hugepagesz=", hugepagesz_setup);
3815
3816 /*
3817  * default_hugepagesz command line input
3818  * Only one instance of default_hugepagesz allowed on command line.
3819  */
3820 static int __init default_hugepagesz_setup(char *s)
3821 {
3822         unsigned long size;
3823
3824         parsed_valid_hugepagesz = false;
3825         if (parsed_default_hugepagesz) {
3826                 pr_err("HugeTLB: default_hugepagesz previously specified, ignoring %s\n", s);
3827                 return 0;
3828         }
3829
3830         size = (unsigned long)memparse(s, NULL);
3831
3832         if (!arch_hugetlb_valid_size(size)) {
3833                 pr_err("HugeTLB: unsupported default_hugepagesz=%s\n", s);
3834                 return 0;
3835         }
3836
3837         hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
3838         parsed_valid_hugepagesz = true;
3839         parsed_default_hugepagesz = true;
3840         default_hstate_idx = hstate_index(size_to_hstate(size));
3841
3842         /*
3843          * The number of default huge pages (for this size) could have been
3844          * specified as the first hugetlb parameter: hugepages=X.  If so,
3845          * then default_hstate_max_huge_pages is set.  If the default huge
3846          * page size is gigantic (>= MAX_ORDER), then the pages must be
3847          * allocated here from bootmem allocator.
3848          */
3849         if (default_hstate_max_huge_pages) {
3850                 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
3851                 if (hstate_is_gigantic(&default_hstate))
3852                         hugetlb_hstate_alloc_pages(&default_hstate);
3853                 default_hstate_max_huge_pages = 0;
3854         }
3855
3856         return 1;
3857 }
3858 __setup("default_hugepagesz=", default_hugepagesz_setup);
3859
3860 static unsigned int allowed_mems_nr(struct hstate *h)
3861 {
3862         int node;
3863         unsigned int nr = 0;
3864         nodemask_t *mpol_allowed;
3865         unsigned int *array = h->free_huge_pages_node;
3866         gfp_t gfp_mask = htlb_alloc_mask(h);
3867
3868         mpol_allowed = policy_nodemask_current(gfp_mask);
3869
3870         for_each_node_mask(node, cpuset_current_mems_allowed) {
3871                 if (!mpol_allowed || node_isset(node, *mpol_allowed))
3872                         nr += array[node];
3873         }
3874
3875         return nr;
3876 }
3877
3878 #ifdef CONFIG_SYSCTL
3879 static int proc_hugetlb_doulongvec_minmax(struct ctl_table *table, int write,
3880                                           void *buffer, size_t *length,
3881                                           loff_t *ppos, unsigned long *out)
3882 {
3883         struct ctl_table dup_table;
3884
3885         /*
3886          * In order to avoid races with __do_proc_doulongvec_minmax(), we
3887          * can duplicate the @table and alter the duplicate of it.
3888          */
3889         dup_table = *table;
3890         dup_table.data = out;
3891
3892         return proc_doulongvec_minmax(&dup_table, write, buffer, length, ppos);
3893 }
3894
3895 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
3896                          struct ctl_table *table, int write,
3897                          void *buffer, size_t *length, loff_t *ppos)
3898 {
3899         struct hstate *h = &default_hstate;
3900         unsigned long tmp = h->max_huge_pages;
3901         int ret;
3902
3903         if (!hugepages_supported())
3904                 return -EOPNOTSUPP;
3905
3906         ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
3907                                              &tmp);
3908         if (ret)
3909                 goto out;
3910
3911         if (write)
3912                 ret = __nr_hugepages_store_common(obey_mempolicy, h,
3913                                                   NUMA_NO_NODE, tmp, *length);
3914 out:
3915         return ret;
3916 }
3917
3918 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
3919                           void *buffer, size_t *length, loff_t *ppos)
3920 {
3921
3922         return hugetlb_sysctl_handler_common(false, table, write,
3923                                                         buffer, length, ppos);
3924 }
3925
3926 #ifdef CONFIG_NUMA
3927 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
3928                           void *buffer, size_t *length, loff_t *ppos)
3929 {
3930         return hugetlb_sysctl_handler_common(true, table, write,
3931                                                         buffer, length, ppos);
3932 }
3933 #endif /* CONFIG_NUMA */
3934
3935 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
3936                 void *buffer, size_t *length, loff_t *ppos)
3937 {
3938         struct hstate *h = &default_hstate;
3939         unsigned long tmp;
3940         int ret;
3941
3942         if (!hugepages_supported())
3943                 return -EOPNOTSUPP;
3944
3945         tmp = h->nr_overcommit_huge_pages;
3946
3947         if (write && hstate_is_gigantic(h))
3948                 return -EINVAL;
3949
3950         ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
3951                                              &tmp);
3952         if (ret)
3953                 goto out;
3954
3955         if (write) {
3956                 spin_lock_irq(&hugetlb_lock);
3957                 h->nr_overcommit_huge_pages = tmp;
3958                 spin_unlock_irq(&hugetlb_lock);
3959         }
3960 out:
3961         return ret;
3962 }
3963
3964 #endif /* CONFIG_SYSCTL */
3965
3966 void hugetlb_report_meminfo(struct seq_file *m)
3967 {
3968         struct hstate *h;
3969         unsigned long total = 0;
3970
3971         if (!hugepages_supported())
3972                 return;
3973
3974         for_each_hstate(h) {
3975                 unsigned long count = h->nr_huge_pages;
3976
3977                 total += huge_page_size(h) * count;
3978
3979                 if (h == &default_hstate)
3980                         seq_printf(m,
3981                                    "HugePages_Total:   %5lu\n"
3982                                    "HugePages_Free:    %5lu\n"
3983                                    "HugePages_Rsvd:    %5lu\n"
3984                                    "HugePages_Surp:    %5lu\n"
3985                                    "Hugepagesize:   %8lu kB\n",
3986                                    count,
3987                                    h->free_huge_pages,
3988                                    h->resv_huge_pages,
3989                                    h->surplus_huge_pages,
3990                                    huge_page_size(h) / SZ_1K);
3991         }
3992
3993         seq_printf(m, "Hugetlb:        %8lu kB\n", total / SZ_1K);
3994 }
3995
3996 int hugetlb_report_node_meminfo(char *buf, int len, int nid)
3997 {
3998         struct hstate *h = &default_hstate;
3999
4000         if (!hugepages_supported())
4001                 return 0;
4002
4003         return sysfs_emit_at(buf, len,
4004                              "Node %d HugePages_Total: %5u\n"
4005                              "Node %d HugePages_Free:  %5u\n"
4006                              "Node %d HugePages_Surp:  %5u\n",
4007                              nid, h->nr_huge_pages_node[nid],
4008                              nid, h->free_huge_pages_node[nid],
4009                              nid, h->surplus_huge_pages_node[nid]);
4010 }
4011
4012 void hugetlb_show_meminfo(void)
4013 {
4014         struct hstate *h;
4015         int nid;
4016
4017         if (!hugepages_supported())
4018                 return;
4019
4020         for_each_node_state(nid, N_MEMORY)
4021                 for_each_hstate(h)
4022                         pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
4023                                 nid,
4024                                 h->nr_huge_pages_node[nid],
4025                                 h->free_huge_pages_node[nid],
4026                                 h->surplus_huge_pages_node[nid],
4027                                 huge_page_size(h) / SZ_1K);
4028 }
4029
4030 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
4031 {
4032         seq_printf(m, "HugetlbPages:\t%8lu kB\n",
4033                    atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
4034 }
4035
4036 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
4037 unsigned long hugetlb_total_pages(void)
4038 {
4039         struct hstate *h;
4040         unsigned long nr_total_pages = 0;
4041
4042         for_each_hstate(h)
4043                 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
4044         return nr_total_pages;
4045 }
4046
4047 static int hugetlb_acct_memory(struct hstate *h, long delta)
4048 {
4049         int ret = -ENOMEM;
4050
4051         if (!delta)
4052                 return 0;
4053
4054         spin_lock_irq(&hugetlb_lock);
4055         /*
4056          * When cpuset is configured, it breaks the strict hugetlb page
4057          * reservation as the accounting is done on a global variable. Such
4058          * reservation is completely rubbish in the presence of cpuset because
4059          * the reservation is not checked against page availability for the
4060          * current cpuset. Application can still potentially OOM'ed by kernel
4061          * with lack of free htlb page in cpuset that the task is in.
4062          * Attempt to enforce strict accounting with cpuset is almost
4063          * impossible (or too ugly) because cpuset is too fluid that
4064          * task or memory node can be dynamically moved between cpusets.
4065          *
4066          * The change of semantics for shared hugetlb mapping with cpuset is
4067          * undesirable. However, in order to preserve some of the semantics,
4068          * we fall back to check against current free page availability as
4069          * a best attempt and hopefully to minimize the impact of changing
4070          * semantics that cpuset has.
4071          *
4072          * Apart from cpuset, we also have memory policy mechanism that
4073          * also determines from which node the kernel will allocate memory
4074          * in a NUMA system. So similar to cpuset, we also should consider
4075          * the memory policy of the current task. Similar to the description
4076          * above.
4077          */
4078         if (delta > 0) {
4079                 if (gather_surplus_pages(h, delta) < 0)
4080                         goto out;
4081
4082                 if (delta > allowed_mems_nr(h)) {
4083                         return_unused_surplus_pages(h, delta);
4084                         goto out;
4085                 }
4086         }
4087
4088         ret = 0;
4089         if (delta < 0)
4090                 return_unused_surplus_pages(h, (unsigned long) -delta);
4091
4092 out:
4093         spin_unlock_irq(&hugetlb_lock);
4094         return ret;
4095 }
4096
4097 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
4098 {
4099         struct resv_map *resv = vma_resv_map(vma);
4100
4101         /*
4102          * This new VMA should share its siblings reservation map if present.
4103          * The VMA will only ever have a valid reservation map pointer where
4104          * it is being copied for another still existing VMA.  As that VMA
4105          * has a reference to the reservation map it cannot disappear until
4106          * after this open call completes.  It is therefore safe to take a
4107          * new reference here without additional locking.
4108          */
4109         if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
4110                 kref_get(&resv->refs);
4111 }
4112
4113 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
4114 {
4115         struct hstate *h = hstate_vma(vma);
4116         struct resv_map *resv = vma_resv_map(vma);
4117         struct hugepage_subpool *spool = subpool_vma(vma);
4118         unsigned long reserve, start, end;
4119         long gbl_reserve;
4120
4121         if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
4122                 return;
4123
4124         start = vma_hugecache_offset(h, vma, vma->vm_start);
4125         end = vma_hugecache_offset(h, vma, vma->vm_end);
4126
4127         reserve = (end - start) - region_count(resv, start, end);
4128         hugetlb_cgroup_uncharge_counter(resv, start, end);
4129         if (reserve) {
4130                 /*
4131                  * Decrement reserve counts.  The global reserve count may be
4132                  * adjusted if the subpool has a minimum size.
4133                  */
4134                 gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
4135                 hugetlb_acct_memory(h, -gbl_reserve);
4136         }
4137
4138         kref_put(&resv->refs, resv_map_release);
4139 }
4140
4141 static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
4142 {
4143         if (addr & ~(huge_page_mask(hstate_vma(vma))))
4144                 return -EINVAL;
4145         return 0;
4146 }
4147
4148 static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma)
4149 {
4150         return huge_page_size(hstate_vma(vma));
4151 }
4152
4153 /*
4154  * We cannot handle pagefaults against hugetlb pages at all.  They cause
4155  * handle_mm_fault() to try to instantiate regular-sized pages in the
4156  * hugepage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
4157  * this far.
4158  */
4159 static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf)
4160 {
4161         BUG();
4162         return 0;
4163 }
4164
4165 /*
4166  * When a new function is introduced to vm_operations_struct and added
4167  * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops.
4168  * This is because under System V memory model, mappings created via
4169  * shmget/shmat with "huge page" specified are backed by hugetlbfs files,
4170  * their original vm_ops are overwritten with shm_vm_ops.
4171  */
4172 const struct vm_operations_struct hugetlb_vm_ops = {
4173         .fault = hugetlb_vm_op_fault,
4174         .open = hugetlb_vm_op_open,
4175         .close = hugetlb_vm_op_close,
4176         .may_split = hugetlb_vm_op_split,
4177         .pagesize = hugetlb_vm_op_pagesize,
4178 };
4179
4180 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
4181                                 int writable)
4182 {
4183         pte_t entry;
4184         unsigned int shift = huge_page_shift(hstate_vma(vma));
4185
4186         if (writable) {
4187                 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
4188                                          vma->vm_page_prot)));
4189         } else {
4190                 entry = huge_pte_wrprotect(mk_huge_pte(page,
4191                                            vma->vm_page_prot));
4192         }
4193         entry = pte_mkyoung(entry);
4194         entry = pte_mkhuge(entry);
4195         entry = arch_make_huge_pte(entry, shift, vma->vm_flags);
4196
4197         return entry;
4198 }
4199
4200 static void set_huge_ptep_writable(struct vm_area_struct *vma,
4201                                    unsigned long address, pte_t *ptep)
4202 {
4203         pte_t entry;
4204
4205         entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
4206         if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
4207                 update_mmu_cache(vma, address, ptep);
4208 }
4209
4210 bool is_hugetlb_entry_migration(pte_t pte)
4211 {
4212         swp_entry_t swp;
4213
4214         if (huge_pte_none(pte) || pte_present(pte))
4215                 return false;
4216         swp = pte_to_swp_entry(pte);
4217         if (is_migration_entry(swp))
4218                 return true;
4219         else
4220                 return false;
4221 }
4222
4223 static bool is_hugetlb_entry_hwpoisoned(pte_t pte)
4224 {
4225         swp_entry_t swp;
4226
4227         if (huge_pte_none(pte) || pte_present(pte))
4228                 return false;
4229         swp = pte_to_swp_entry(pte);
4230         if (is_hwpoison_entry(swp))
4231                 return true;
4232         else
4233                 return false;
4234 }
4235
4236 static void
4237 hugetlb_install_page(struct vm_area_struct *vma, pte_t *ptep, unsigned long addr,
4238                      struct page *new_page)
4239 {
4240         __SetPageUptodate(new_page);
4241         set_huge_pte_at(vma->vm_mm, addr, ptep, make_huge_pte(vma, new_page, 1));
4242         hugepage_add_new_anon_rmap(new_page, vma, addr);
4243         hugetlb_count_add(pages_per_huge_page(hstate_vma(vma)), vma->vm_mm);
4244         ClearHPageRestoreReserve(new_page);
4245         SetHPageMigratable(new_page);
4246 }
4247
4248 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
4249                             struct vm_area_struct *vma)
4250 {
4251         pte_t *src_pte, *dst_pte, entry, dst_entry;
4252         struct page *ptepage;
4253         unsigned long addr;
4254         bool cow = is_cow_mapping(vma->vm_flags);
4255         struct hstate *h = hstate_vma(vma);
4256         unsigned long sz = huge_page_size(h);
4257         unsigned long npages = pages_per_huge_page(h);
4258         struct address_space *mapping = vma->vm_file->f_mapping;
4259         struct mmu_notifier_range range;
4260         int ret = 0;
4261
4262         if (cow) {
4263                 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, src,
4264                                         vma->vm_start,
4265                                         vma->vm_end);
4266                 mmu_notifier_invalidate_range_start(&range);
4267         } else {
4268                 /*
4269                  * For shared mappings i_mmap_rwsem must be held to call
4270                  * huge_pte_alloc, otherwise the returned ptep could go
4271                  * away if part of a shared pmd and another thread calls
4272                  * huge_pmd_unshare.
4273                  */
4274                 i_mmap_lock_read(mapping);
4275         }
4276
4277         for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
4278                 spinlock_t *src_ptl, *dst_ptl;
4279                 src_pte = huge_pte_offset(src, addr, sz);
4280                 if (!src_pte)
4281                         continue;
4282                 dst_pte = huge_pte_alloc(dst, vma, addr, sz);
4283                 if (!dst_pte) {
4284                         ret = -ENOMEM;
4285                         break;
4286                 }
4287
4288                 /*
4289                  * If the pagetables are shared don't copy or take references.
4290                  * dst_pte == src_pte is the common case of src/dest sharing.
4291                  *
4292                  * However, src could have 'unshared' and dst shares with
4293                  * another vma.  If dst_pte !none, this implies sharing.
4294                  * Check here before taking page table lock, and once again
4295                  * after taking the lock below.
4296                  */
4297                 dst_entry = huge_ptep_get(dst_pte);
4298                 if ((dst_pte == src_pte) || !huge_pte_none(dst_entry))
4299                         continue;
4300
4301                 dst_ptl = huge_pte_lock(h, dst, dst_pte);
4302                 src_ptl = huge_pte_lockptr(h, src, src_pte);
4303                 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
4304                 entry = huge_ptep_get(src_pte);
4305                 dst_entry = huge_ptep_get(dst_pte);
4306 again:
4307                 if (huge_pte_none(entry) || !huge_pte_none(dst_entry)) {
4308                         /*
4309                          * Skip if src entry none.  Also, skip in the
4310                          * unlikely case dst entry !none as this implies
4311                          * sharing with another vma.
4312                          */
4313                         ;
4314                 } else if (unlikely(is_hugetlb_entry_migration(entry) ||
4315                                     is_hugetlb_entry_hwpoisoned(entry))) {
4316                         swp_entry_t swp_entry = pte_to_swp_entry(entry);
4317
4318                         if (is_writable_migration_entry(swp_entry) && cow) {
4319                                 /*
4320                                  * COW mappings require pages in both
4321                                  * parent and child to be set to read.
4322                                  */
4323                                 swp_entry = make_readable_migration_entry(
4324                                                         swp_offset(swp_entry));
4325                                 entry = swp_entry_to_pte(swp_entry);
4326                                 set_huge_swap_pte_at(src, addr, src_pte,
4327                                                      entry, sz);
4328                         }
4329                         set_huge_swap_pte_at(dst, addr, dst_pte, entry, sz);
4330                 } else {
4331                         entry = huge_ptep_get(src_pte);
4332                         ptepage = pte_page(entry);
4333                         get_page(ptepage);
4334
4335                         /*
4336                          * This is a rare case where we see pinned hugetlb
4337                          * pages while they're prone to COW.  We need to do the
4338                          * COW earlier during fork.
4339                          *
4340                          * When pre-allocating the page or copying data, we
4341                          * need to be without the pgtable locks since we could
4342                          * sleep during the process.
4343                          */
4344                         if (unlikely(page_needs_cow_for_dma(vma, ptepage))) {
4345                                 pte_t src_pte_old = entry;
4346                                 struct page *new;
4347
4348                                 spin_unlock(src_ptl);
4349                                 spin_unlock(dst_ptl);
4350                                 /* Do not use reserve as it's private owned */
4351                                 new = alloc_huge_page(vma, addr, 1);
4352                                 if (IS_ERR(new)) {
4353                                         put_page(ptepage);
4354                                         ret = PTR_ERR(new);
4355                                         break;
4356                                 }
4357                                 copy_user_huge_page(new, ptepage, addr, vma,
4358                                                     npages);
4359                                 put_page(ptepage);
4360
4361                                 /* Install the new huge page if src pte stable */
4362                                 dst_ptl = huge_pte_lock(h, dst, dst_pte);
4363                                 src_ptl = huge_pte_lockptr(h, src, src_pte);
4364                                 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
4365                                 entry = huge_ptep_get(src_pte);
4366                                 if (!pte_same(src_pte_old, entry)) {
4367                                         restore_reserve_on_error(h, vma, addr,
4368                                                                 new);
4369                                         put_page(new);
4370                                         /* dst_entry won't change as in child */
4371                                         goto again;
4372                                 }
4373                                 hugetlb_install_page(vma, dst_pte, addr, new);
4374                                 spin_unlock(src_ptl);
4375                                 spin_unlock(dst_ptl);
4376                                 continue;
4377                         }
4378
4379                         if (cow) {
4380                                 /*
4381                                  * No need to notify as we are downgrading page
4382                                  * table protection not changing it to point
4383                                  * to a new page.
4384                                  *
4385                                  * See Documentation/vm/mmu_notifier.rst
4386                                  */
4387                                 huge_ptep_set_wrprotect(src, addr, src_pte);
4388                                 entry = huge_pte_wrprotect(entry);
4389                         }
4390
4391                         page_dup_rmap(ptepage, true);
4392                         set_huge_pte_at(dst, addr, dst_pte, entry);
4393                         hugetlb_count_add(npages, dst);
4394                 }
4395                 spin_unlock(src_ptl);
4396                 spin_unlock(dst_ptl);
4397         }
4398
4399         if (cow)
4400                 mmu_notifier_invalidate_range_end(&range);
4401         else
4402                 i_mmap_unlock_read(mapping);
4403
4404         return ret;
4405 }
4406
4407 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
4408                             unsigned long start, unsigned long end,
4409                             struct page *ref_page)
4410 {
4411         struct mm_struct *mm = vma->vm_mm;
4412         unsigned long address;
4413         pte_t *ptep;
4414         pte_t pte;
4415         spinlock_t *ptl;
4416         struct page *page;
4417         struct hstate *h = hstate_vma(vma);
4418         unsigned long sz = huge_page_size(h);
4419         struct mmu_notifier_range range;
4420
4421         WARN_ON(!is_vm_hugetlb_page(vma));
4422         BUG_ON(start & ~huge_page_mask(h));
4423         BUG_ON(end & ~huge_page_mask(h));
4424
4425         /*
4426          * This is a hugetlb vma, all the pte entries should point
4427          * to huge page.
4428          */
4429         tlb_change_page_size(tlb, sz);
4430         tlb_start_vma(tlb, vma);
4431
4432         /*
4433          * If sharing possible, alert mmu notifiers of worst case.
4434          */
4435         mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, mm, start,
4436                                 end);
4437         adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
4438         mmu_notifier_invalidate_range_start(&range);
4439         address = start;
4440         for (; address < end; address += sz) {
4441                 ptep = huge_pte_offset(mm, address, sz);
4442                 if (!ptep)
4443                         continue;
4444
4445                 ptl = huge_pte_lock(h, mm, ptep);
4446                 if (huge_pmd_unshare(mm, vma, &address, ptep)) {
4447                         spin_unlock(ptl);
4448                         /*
4449                          * We just unmapped a page of PMDs by clearing a PUD.
4450                          * The caller's TLB flush range should cover this area.
4451                          */
4452                         continue;
4453                 }
4454
4455                 pte = huge_ptep_get(ptep);
4456                 if (huge_pte_none(pte)) {
4457                         spin_unlock(ptl);
4458                         continue;
4459                 }
4460
4461                 /*
4462                  * Migrating hugepage or HWPoisoned hugepage is already
4463                  * unmapped and its refcount is dropped, so just clear pte here.
4464                  */
4465                 if (unlikely(!pte_present(pte))) {
4466                         huge_pte_clear(mm, address, ptep, sz);
4467                         spin_unlock(ptl);
4468                         continue;
4469                 }
4470
4471                 page = pte_page(pte);
4472                 /*
4473                  * If a reference page is supplied, it is because a specific
4474                  * page is being unmapped, not a range. Ensure the page we
4475                  * are about to unmap is the actual page of interest.
4476                  */
4477                 if (ref_page) {
4478                         if (page != ref_page) {
4479                                 spin_unlock(ptl);
4480                                 continue;
4481                         }
4482                         /*
4483                          * Mark the VMA as having unmapped its page so that
4484                          * future faults in this VMA will fail rather than
4485                          * looking like data was lost
4486                          */
4487                         set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
4488                 }
4489
4490                 pte = huge_ptep_get_and_clear(mm, address, ptep);
4491                 tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
4492                 if (huge_pte_dirty(pte))
4493                         set_page_dirty(page);
4494
4495                 hugetlb_count_sub(pages_per_huge_page(h), mm);
4496                 page_remove_rmap(page, true);
4497
4498                 spin_unlock(ptl);
4499                 tlb_remove_page_size(tlb, page, huge_page_size(h));
4500                 /*
4501                  * Bail out after unmapping reference page if supplied
4502                  */
4503                 if (ref_page)
4504                         break;
4505         }
4506         mmu_notifier_invalidate_range_end(&range);
4507         tlb_end_vma(tlb, vma);
4508 }
4509
4510 void __unmap_hugepage_range_final(struct mmu_gather *tlb,
4511                           struct vm_area_struct *vma, unsigned long start,
4512                           unsigned long end, struct page *ref_page)
4513 {
4514         __unmap_hugepage_range(tlb, vma, start, end, ref_page);
4515
4516         /*
4517          * Clear this flag so that x86's huge_pmd_share page_table_shareable
4518          * test will fail on a vma being torn down, and not grab a page table
4519          * on its way out.  We're lucky that the flag has such an appropriate
4520          * name, and can in fact be safely cleared here. We could clear it
4521          * before the __unmap_hugepage_range above, but all that's necessary
4522          * is to clear it before releasing the i_mmap_rwsem. This works
4523          * because in the context this is called, the VMA is about to be
4524          * destroyed and the i_mmap_rwsem is held.
4525          */
4526         vma->vm_flags &= ~VM_MAYSHARE;
4527 }
4528
4529 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
4530                           unsigned long end, struct page *ref_page)
4531 {
4532         struct mmu_gather tlb;
4533
4534         tlb_gather_mmu(&tlb, vma->vm_mm);
4535         __unmap_hugepage_range(&tlb, vma, start, end, ref_page);
4536         tlb_finish_mmu(&tlb);
4537 }
4538
4539 /*
4540  * This is called when the original mapper is failing to COW a MAP_PRIVATE
4541  * mapping it owns the reserve page for. The intention is to unmap the page
4542  * from other VMAs and let the children be SIGKILLed if they are faulting the
4543  * same region.
4544  */
4545 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
4546                               struct page *page, unsigned long address)
4547 {
4548         struct hstate *h = hstate_vma(vma);
4549         struct vm_area_struct *iter_vma;
4550         struct address_space *mapping;
4551         pgoff_t pgoff;
4552
4553         /*
4554          * vm_pgoff is in PAGE_SIZE units, hence the different calculation
4555          * from page cache lookup which is in HPAGE_SIZE units.
4556          */
4557         address = address & huge_page_mask(h);
4558         pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
4559                         vma->vm_pgoff;
4560         mapping = vma->vm_file->f_mapping;
4561
4562         /*
4563          * Take the mapping lock for the duration of the table walk. As
4564          * this mapping should be shared between all the VMAs,
4565          * __unmap_hugepage_range() is called as the lock is already held
4566          */
4567         i_mmap_lock_write(mapping);
4568         vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
4569                 /* Do not unmap the current VMA */
4570                 if (iter_vma == vma)
4571                         continue;
4572
4573                 /*
4574                  * Shared VMAs have their own reserves and do not affect
4575                  * MAP_PRIVATE accounting but it is possible that a shared
4576                  * VMA is using the same page so check and skip such VMAs.
4577                  */
4578                 if (iter_vma->vm_flags & VM_MAYSHARE)
4579                         continue;
4580
4581                 /*
4582                  * Unmap the page from other VMAs without their own reserves.
4583                  * They get marked to be SIGKILLed if they fault in these
4584                  * areas. This is because a future no-page fault on this VMA
4585                  * could insert a zeroed page instead of the data existing
4586                  * from the time of fork. This would look like data corruption
4587                  */
4588                 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
4589                         unmap_hugepage_range(iter_vma, address,
4590                                              address + huge_page_size(h), page);
4591         }
4592         i_mmap_unlock_write(mapping);
4593 }
4594
4595 /*
4596  * Hugetlb_cow() should be called with page lock of the original hugepage held.
4597  * Called with hugetlb_instantiation_mutex held and pte_page locked so we
4598  * cannot race with other handlers or page migration.
4599  * Keep the pte_same checks anyway to make transition from the mutex easier.
4600  */
4601 static vm_fault_t hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
4602                        unsigned long address, pte_t *ptep,
4603                        struct page *pagecache_page, spinlock_t *ptl)
4604 {
4605         pte_t pte;
4606         struct hstate *h = hstate_vma(vma);
4607         struct page *old_page, *new_page;
4608         int outside_reserve = 0;
4609         vm_fault_t ret = 0;
4610         unsigned long haddr = address & huge_page_mask(h);
4611         struct mmu_notifier_range range;
4612
4613         pte = huge_ptep_get(ptep);
4614         old_page = pte_page(pte);
4615
4616 retry_avoidcopy:
4617         /* If no-one else is actually using this page, avoid the copy
4618          * and just make the page writable */
4619         if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
4620                 page_move_anon_rmap(old_page, vma);
4621                 set_huge_ptep_writable(vma, haddr, ptep);
4622                 return 0;
4623         }
4624
4625         /*
4626          * If the process that created a MAP_PRIVATE mapping is about to
4627          * perform a COW due to a shared page count, attempt to satisfy
4628          * the allocation without using the existing reserves. The pagecache
4629          * page is used to determine if the reserve at this address was
4630          * consumed or not. If reserves were used, a partial faulted mapping
4631          * at the time of fork() could consume its reserves on COW instead
4632          * of the full address range.
4633          */
4634         if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
4635                         old_page != pagecache_page)
4636                 outside_reserve = 1;
4637
4638         get_page(old_page);
4639
4640         /*
4641          * Drop page table lock as buddy allocator may be called. It will
4642          * be acquired again before returning to the caller, as expected.
4643          */
4644         spin_unlock(ptl);
4645         new_page = alloc_huge_page(vma, haddr, outside_reserve);
4646
4647         if (IS_ERR(new_page)) {
4648                 /*
4649                  * If a process owning a MAP_PRIVATE mapping fails to COW,
4650                  * it is due to references held by a child and an insufficient
4651                  * huge page pool. To guarantee the original mappers
4652                  * reliability, unmap the page from child processes. The child
4653                  * may get SIGKILLed if it later faults.
4654                  */
4655                 if (outside_reserve) {
4656                         struct address_space *mapping = vma->vm_file->f_mapping;
4657                         pgoff_t idx;
4658                         u32 hash;
4659
4660                         put_page(old_page);
4661                         BUG_ON(huge_pte_none(pte));
4662                         /*
4663                          * Drop hugetlb_fault_mutex and i_mmap_rwsem before
4664                          * unmapping.  unmapping needs to hold i_mmap_rwsem
4665                          * in write mode.  Dropping i_mmap_rwsem in read mode
4666                          * here is OK as COW mappings do not interact with
4667                          * PMD sharing.
4668                          *
4669                          * Reacquire both after unmap operation.
4670                          */
4671                         idx = vma_hugecache_offset(h, vma, haddr);
4672                         hash = hugetlb_fault_mutex_hash(mapping, idx);
4673                         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
4674                         i_mmap_unlock_read(mapping);
4675
4676                         unmap_ref_private(mm, vma, old_page, haddr);
4677
4678                         i_mmap_lock_read(mapping);
4679                         mutex_lock(&hugetlb_fault_mutex_table[hash]);
4680                         spin_lock(ptl);
4681                         ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
4682                         if (likely(ptep &&
4683                                    pte_same(huge_ptep_get(ptep), pte)))
4684                                 goto retry_avoidcopy;
4685                         /*
4686                          * race occurs while re-acquiring page table
4687                          * lock, and our job is done.
4688                          */
4689                         return 0;
4690                 }
4691
4692                 ret = vmf_error(PTR_ERR(new_page));
4693                 goto out_release_old;
4694         }
4695
4696         /*
4697          * When the original hugepage is shared one, it does not have
4698          * anon_vma prepared.
4699          */
4700         if (unlikely(anon_vma_prepare(vma))) {
4701                 ret = VM_FAULT_OOM;
4702                 goto out_release_all;
4703         }
4704
4705         copy_user_huge_page(new_page, old_page, address, vma,
4706                             pages_per_huge_page(h));
4707         __SetPageUptodate(new_page);
4708
4709         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, haddr,
4710                                 haddr + huge_page_size(h));
4711         mmu_notifier_invalidate_range_start(&range);
4712
4713         /*
4714          * Retake the page table lock to check for racing updates
4715          * before the page tables are altered
4716          */
4717         spin_lock(ptl);
4718         ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
4719         if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
4720                 ClearHPageRestoreReserve(new_page);
4721
4722                 /* Break COW */
4723                 huge_ptep_clear_flush(vma, haddr, ptep);
4724                 mmu_notifier_invalidate_range(mm, range.start, range.end);
4725                 set_huge_pte_at(mm, haddr, ptep,
4726                                 make_huge_pte(vma, new_page, 1));
4727                 page_remove_rmap(old_page, true);
4728                 hugepage_add_new_anon_rmap(new_page, vma, haddr);
4729                 SetHPageMigratable(new_page);
4730                 /* Make the old page be freed below */
4731                 new_page = old_page;
4732         }
4733         spin_unlock(ptl);
4734         mmu_notifier_invalidate_range_end(&range);
4735 out_release_all:
4736         /* No restore in case of successful pagetable update (Break COW) */
4737         if (new_page != old_page)
4738                 restore_reserve_on_error(h, vma, haddr, new_page);
4739         put_page(new_page);
4740 out_release_old:
4741         put_page(old_page);
4742
4743         spin_lock(ptl); /* Caller expects lock to be held */
4744         return ret;
4745 }
4746
4747 /* Return the pagecache page at a given address within a VMA */
4748 static struct page *hugetlbfs_pagecache_page(struct hstate *h,
4749                         struct vm_area_struct *vma, unsigned long address)
4750 {
4751         struct address_space *mapping;
4752         pgoff_t idx;
4753
4754         mapping = vma->vm_file->f_mapping;
4755         idx = vma_hugecache_offset(h, vma, address);
4756
4757         return find_lock_page(mapping, idx);
4758 }
4759
4760 /*
4761  * Return whether there is a pagecache page to back given address within VMA.
4762  * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
4763  */
4764 static bool hugetlbfs_pagecache_present(struct hstate *h,
4765                         struct vm_area_struct *vma, unsigned long address)
4766 {
4767         struct address_space *mapping;
4768         pgoff_t idx;
4769         struct page *page;
4770
4771         mapping = vma->vm_file->f_mapping;
4772         idx = vma_hugecache_offset(h, vma, address);
4773
4774         page = find_get_page(mapping, idx);
4775         if (page)
4776                 put_page(page);
4777         return page != NULL;
4778 }
4779
4780 int huge_add_to_page_cache(struct page *page, struct address_space *mapping,
4781                            pgoff_t idx)
4782 {
4783         struct inode *inode = mapping->host;
4784         struct hstate *h = hstate_inode(inode);
4785         int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
4786
4787         if (err)
4788                 return err;
4789         ClearHPageRestoreReserve(page);
4790
4791         /*
4792          * set page dirty so that it will not be removed from cache/file
4793          * by non-hugetlbfs specific code paths.
4794          */
4795         set_page_dirty(page);
4796
4797         spin_lock(&inode->i_lock);
4798         inode->i_blocks += blocks_per_huge_page(h);
4799         spin_unlock(&inode->i_lock);
4800         return 0;
4801 }
4802
4803 static inline vm_fault_t hugetlb_handle_userfault(struct vm_area_struct *vma,
4804                                                   struct address_space *mapping,
4805                                                   pgoff_t idx,
4806                                                   unsigned int flags,
4807                                                   unsigned long haddr,
4808                                                   unsigned long reason)
4809 {
4810         vm_fault_t ret;
4811         u32 hash;
4812         struct vm_fault vmf = {
4813                 .vma = vma,
4814                 .address = haddr,
4815                 .flags = flags,
4816
4817                 /*
4818                  * Hard to debug if it ends up being
4819                  * used by a callee that assumes
4820                  * something about the other
4821                  * uninitialized fields... same as in
4822                  * memory.c
4823                  */
4824         };
4825
4826         /*
4827          * hugetlb_fault_mutex and i_mmap_rwsem must be
4828          * dropped before handling userfault.  Reacquire
4829          * after handling fault to make calling code simpler.
4830          */
4831         hash = hugetlb_fault_mutex_hash(mapping, idx);
4832         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
4833         i_mmap_unlock_read(mapping);
4834         ret = handle_userfault(&vmf, reason);
4835         i_mmap_lock_read(mapping);
4836         mutex_lock(&hugetlb_fault_mutex_table[hash]);
4837
4838         return ret;
4839 }
4840
4841 static vm_fault_t hugetlb_no_page(struct mm_struct *mm,
4842                         struct vm_area_struct *vma,
4843                         struct address_space *mapping, pgoff_t idx,
4844                         unsigned long address, pte_t *ptep, unsigned int flags)
4845 {
4846         struct hstate *h = hstate_vma(vma);
4847         vm_fault_t ret = VM_FAULT_SIGBUS;
4848         int anon_rmap = 0;
4849         unsigned long size;
4850         struct page *page;
4851         pte_t new_pte;
4852         spinlock_t *ptl;
4853         unsigned long haddr = address & huge_page_mask(h);
4854         bool new_page, new_pagecache_page = false;
4855
4856         /*
4857          * Currently, we are forced to kill the process in the event the
4858          * original mapper has unmapped pages from the child due to a failed
4859          * COW. Warn that such a situation has occurred as it may not be obvious
4860          */
4861         if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
4862                 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
4863                            current->pid);
4864                 return ret;
4865         }
4866
4867         /*
4868          * We can not race with truncation due to holding i_mmap_rwsem.
4869          * i_size is modified when holding i_mmap_rwsem, so check here
4870          * once for faults beyond end of file.
4871          */
4872         size = i_size_read(mapping->host) >> huge_page_shift(h);
4873         if (idx >= size)
4874                 goto out;
4875
4876 retry:
4877         new_page = false;
4878         page = find_lock_page(mapping, idx);
4879         if (!page) {
4880                 /* Check for page in userfault range */
4881                 if (userfaultfd_missing(vma)) {
4882                         ret = hugetlb_handle_userfault(vma, mapping, idx,
4883                                                        flags, haddr,
4884                                                        VM_UFFD_MISSING);
4885                         goto out;
4886                 }
4887
4888                 page = alloc_huge_page(vma, haddr, 0);
4889                 if (IS_ERR(page)) {
4890                         /*
4891                          * Returning error will result in faulting task being
4892                          * sent SIGBUS.  The hugetlb fault mutex prevents two
4893                          * tasks from racing to fault in the same page which
4894                          * could result in false unable to allocate errors.
4895                          * Page migration does not take the fault mutex, but
4896                          * does a clear then write of pte's under page table
4897                          * lock.  Page fault code could race with migration,
4898                          * notice the clear pte and try to allocate a page
4899                          * here.  Before returning error, get ptl and make
4900                          * sure there really is no pte entry.
4901                          */
4902                         ptl = huge_pte_lock(h, mm, ptep);
4903                         ret = 0;
4904                         if (huge_pte_none(huge_ptep_get(ptep)))
4905                                 ret = vmf_error(PTR_ERR(page));
4906                         spin_unlock(ptl);
4907                         goto out;
4908                 }
4909                 clear_huge_page(page, address, pages_per_huge_page(h));
4910                 __SetPageUptodate(page);
4911                 new_page = true;
4912
4913                 if (vma->vm_flags & VM_MAYSHARE) {
4914                         int err = huge_add_to_page_cache(page, mapping, idx);
4915                         if (err) {
4916                                 put_page(page);
4917                                 if (err == -EEXIST)
4918                                         goto retry;
4919                                 goto out;
4920                         }
4921                         new_pagecache_page = true;
4922                 } else {
4923                         lock_page(page);
4924                         if (unlikely(anon_vma_prepare(vma))) {
4925                                 ret = VM_FAULT_OOM;
4926                                 goto backout_unlocked;
4927                         }
4928                         anon_rmap = 1;
4929                 }
4930         } else {
4931                 /*
4932                  * If memory error occurs between mmap() and fault, some process
4933                  * don't have hwpoisoned swap entry for errored virtual address.
4934                  * So we need to block hugepage fault by PG_hwpoison bit check.
4935                  */
4936                 if (unlikely(PageHWPoison(page))) {
4937                         ret = VM_FAULT_HWPOISON_LARGE |
4938                                 VM_FAULT_SET_HINDEX(hstate_index(h));
4939                         goto backout_unlocked;
4940                 }
4941
4942                 /* Check for page in userfault range. */
4943                 if (userfaultfd_minor(vma)) {
4944                         unlock_page(page);
4945                         put_page(page);
4946                         ret = hugetlb_handle_userfault(vma, mapping, idx,
4947                                                        flags, haddr,
4948                                                        VM_UFFD_MINOR);
4949                         goto out;
4950                 }
4951         }
4952
4953         /*
4954          * If we are going to COW a private mapping later, we examine the
4955          * pending reservations for this page now. This will ensure that
4956          * any allocations necessary to record that reservation occur outside
4957          * the spinlock.
4958          */
4959         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
4960                 if (vma_needs_reservation(h, vma, haddr) < 0) {
4961                         ret = VM_FAULT_OOM;
4962                         goto backout_unlocked;
4963                 }
4964                 /* Just decrements count, does not deallocate */
4965                 vma_end_reservation(h, vma, haddr);
4966         }
4967
4968         ptl = huge_pte_lock(h, mm, ptep);
4969         ret = 0;
4970         if (!huge_pte_none(huge_ptep_get(ptep)))
4971                 goto backout;
4972
4973         if (anon_rmap) {
4974                 ClearHPageRestoreReserve(page);
4975                 hugepage_add_new_anon_rmap(page, vma, haddr);
4976         } else
4977                 page_dup_rmap(page, true);
4978         new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
4979                                 && (vma->vm_flags & VM_SHARED)));
4980         set_huge_pte_at(mm, haddr, ptep, new_pte);
4981
4982         hugetlb_count_add(pages_per_huge_page(h), mm);
4983         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
4984                 /* Optimization, do the COW without a second fault */
4985                 ret = hugetlb_cow(mm, vma, address, ptep, page, ptl);
4986         }
4987
4988         spin_unlock(ptl);
4989
4990         /*
4991          * Only set HPageMigratable in newly allocated pages.  Existing pages
4992          * found in the pagecache may not have HPageMigratableset if they have
4993          * been isolated for migration.
4994          */
4995         if (new_page)
4996                 SetHPageMigratable(page);
4997
4998         unlock_page(page);
4999 out:
5000         return ret;
5001
5002 backout:
5003         spin_unlock(ptl);
5004 backout_unlocked:
5005         unlock_page(page);
5006         /* restore reserve for newly allocated pages not in page cache */
5007         if (new_page && !new_pagecache_page)
5008                 restore_reserve_on_error(h, vma, haddr, page);
5009         put_page(page);
5010         goto out;
5011 }
5012
5013 #ifdef CONFIG_SMP
5014 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
5015 {
5016         unsigned long key[2];
5017         u32 hash;
5018
5019         key[0] = (unsigned long) mapping;
5020         key[1] = idx;
5021
5022         hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0);
5023
5024         return hash & (num_fault_mutexes - 1);
5025 }
5026 #else
5027 /*
5028  * For uniprocessor systems we always use a single mutex, so just
5029  * return 0 and avoid the hashing overhead.
5030  */
5031 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
5032 {
5033         return 0;
5034 }
5035 #endif
5036
5037 vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
5038                         unsigned long address, unsigned int flags)
5039 {
5040         pte_t *ptep, entry;
5041         spinlock_t *ptl;
5042         vm_fault_t ret;
5043         u32 hash;
5044         pgoff_t idx;
5045         struct page *page = NULL;
5046         struct page *pagecache_page = NULL;
5047         struct hstate *h = hstate_vma(vma);
5048         struct address_space *mapping;
5049         int need_wait_lock = 0;
5050         unsigned long haddr = address & huge_page_mask(h);
5051
5052         ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
5053         if (ptep) {
5054                 /*
5055                  * Since we hold no locks, ptep could be stale.  That is
5056                  * OK as we are only making decisions based on content and
5057                  * not actually modifying content here.
5058                  */
5059                 entry = huge_ptep_get(ptep);
5060                 if (unlikely(is_hugetlb_entry_migration(entry))) {
5061                         migration_entry_wait_huge(vma, mm, ptep);
5062                         return 0;
5063                 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
5064                         return VM_FAULT_HWPOISON_LARGE |
5065                                 VM_FAULT_SET_HINDEX(hstate_index(h));
5066         }
5067
5068         /*
5069          * Acquire i_mmap_rwsem before calling huge_pte_alloc and hold
5070          * until finished with ptep.  This serves two purposes:
5071          * 1) It prevents huge_pmd_unshare from being called elsewhere
5072          *    and making the ptep no longer valid.
5073          * 2) It synchronizes us with i_size modifications during truncation.
5074          *
5075          * ptep could have already be assigned via huge_pte_offset.  That
5076          * is OK, as huge_pte_alloc will return the same value unless
5077          * something has changed.
5078          */
5079         mapping = vma->vm_file->f_mapping;
5080         i_mmap_lock_read(mapping);
5081         ptep = huge_pte_alloc(mm, vma, haddr, huge_page_size(h));
5082         if (!ptep) {
5083                 i_mmap_unlock_read(mapping);
5084                 return VM_FAULT_OOM;
5085         }
5086
5087         /*
5088          * Serialize hugepage allocation and instantiation, so that we don't
5089          * get spurious allocation failures if two CPUs race to instantiate
5090          * the same page in the page cache.
5091          */
5092         idx = vma_hugecache_offset(h, vma, haddr);
5093         hash = hugetlb_fault_mutex_hash(mapping, idx);
5094         mutex_lock(&hugetlb_fault_mutex_table[hash]);
5095
5096         entry = huge_ptep_get(ptep);
5097         if (huge_pte_none(entry)) {
5098                 ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
5099                 goto out_mutex;
5100         }
5101
5102         ret = 0;
5103
5104         /*
5105          * entry could be a migration/hwpoison entry at this point, so this
5106          * check prevents the kernel from going below assuming that we have
5107          * an active hugepage in pagecache. This goto expects the 2nd page
5108          * fault, and is_hugetlb_entry_(migration|hwpoisoned) check will
5109          * properly handle it.
5110          */
5111         if (!pte_present(entry))
5112                 goto out_mutex;
5113
5114         /*
5115          * If we are going to COW the mapping later, we examine the pending
5116          * reservations for this page now. This will ensure that any
5117          * allocations necessary to record that reservation occur outside the
5118          * spinlock. For private mappings, we also lookup the pagecache
5119          * page now as it is used to determine if a reservation has been
5120          * consumed.
5121          */
5122         if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
5123                 if (vma_needs_reservation(h, vma, haddr) < 0) {
5124                         ret = VM_FAULT_OOM;
5125                         goto out_mutex;
5126                 }
5127                 /* Just decrements count, does not deallocate */
5128                 vma_end_reservation(h, vma, haddr);
5129
5130                 if (!(vma->vm_flags & VM_MAYSHARE))
5131                         pagecache_page = hugetlbfs_pagecache_page(h,
5132                                                                 vma, haddr);
5133         }
5134
5135         ptl = huge_pte_lock(h, mm, ptep);
5136
5137         /* Check for a racing update before calling hugetlb_cow */
5138         if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
5139                 goto out_ptl;
5140
5141         /*
5142          * hugetlb_cow() requires page locks of pte_page(entry) and
5143          * pagecache_page, so here we need take the former one
5144          * when page != pagecache_page or !pagecache_page.
5145          */
5146         page = pte_page(entry);
5147         if (page != pagecache_page)
5148                 if (!trylock_page(page)) {
5149                         need_wait_lock = 1;
5150                         goto out_ptl;
5151                 }
5152
5153         get_page(page);
5154
5155         if (flags & FAULT_FLAG_WRITE) {
5156                 if (!huge_pte_write(entry)) {
5157                         ret = hugetlb_cow(mm, vma, address, ptep,
5158                                           pagecache_page, ptl);
5159                         goto out_put_page;
5160                 }
5161                 entry = huge_pte_mkdirty(entry);
5162         }
5163         entry = pte_mkyoung(entry);
5164         if (huge_ptep_set_access_flags(vma, haddr, ptep, entry,
5165                                                 flags & FAULT_FLAG_WRITE))
5166                 update_mmu_cache(vma, haddr, ptep);
5167 out_put_page:
5168         if (page != pagecache_page)
5169                 unlock_page(page);
5170         put_page(page);
5171 out_ptl:
5172         spin_unlock(ptl);
5173
5174         if (pagecache_page) {
5175                 unlock_page(pagecache_page);
5176                 put_page(pagecache_page);
5177         }
5178 out_mutex:
5179         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5180         i_mmap_unlock_read(mapping);
5181         /*
5182          * Generally it's safe to hold refcount during waiting page lock. But
5183          * here we just wait to defer the next page fault to avoid busy loop and
5184          * the page is not used after unlocked before returning from the current
5185          * page fault. So we are safe from accessing freed page, even if we wait
5186          * here without taking refcount.
5187          */
5188         if (need_wait_lock)
5189                 wait_on_page_locked(page);
5190         return ret;
5191 }
5192
5193 #ifdef CONFIG_USERFAULTFD
5194 /*
5195  * Used by userfaultfd UFFDIO_COPY.  Based on mcopy_atomic_pte with
5196  * modifications for huge pages.
5197  */
5198 int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm,
5199                             pte_t *dst_pte,
5200                             struct vm_area_struct *dst_vma,
5201                             unsigned long dst_addr,
5202                             unsigned long src_addr,
5203                             enum mcopy_atomic_mode mode,
5204                             struct page **pagep)
5205 {
5206         bool is_continue = (mode == MCOPY_ATOMIC_CONTINUE);
5207         struct hstate *h = hstate_vma(dst_vma);
5208         struct address_space *mapping = dst_vma->vm_file->f_mapping;
5209         pgoff_t idx = vma_hugecache_offset(h, dst_vma, dst_addr);
5210         unsigned long size;
5211         int vm_shared = dst_vma->vm_flags & VM_SHARED;
5212         pte_t _dst_pte;
5213         spinlock_t *ptl;
5214         int ret = -ENOMEM;
5215         struct page *page;
5216         int writable;
5217         bool new_pagecache_page = false;
5218
5219         if (is_continue) {
5220                 ret = -EFAULT;
5221                 page = find_lock_page(mapping, idx);
5222                 if (!page)
5223                         goto out;
5224         } else if (!*pagep) {
5225                 /* If a page already exists, then it's UFFDIO_COPY for
5226                  * a non-missing case. Return -EEXIST.
5227                  */
5228                 if (vm_shared &&
5229                     hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
5230                         ret = -EEXIST;
5231                         goto out;
5232                 }
5233
5234                 page = alloc_huge_page(dst_vma, dst_addr, 0);
5235                 if (IS_ERR(page)) {
5236                         ret = -ENOMEM;
5237                         goto out;
5238                 }
5239
5240                 ret = copy_huge_page_from_user(page,
5241                                                 (const void __user *) src_addr,
5242                                                 pages_per_huge_page(h), false);
5243
5244                 /* fallback to copy_from_user outside mmap_lock */
5245                 if (unlikely(ret)) {
5246                         ret = -ENOENT;
5247                         /* Free the allocated page which may have
5248                          * consumed a reservation.
5249                          */
5250                         restore_reserve_on_error(h, dst_vma, dst_addr, page);
5251                         put_page(page);
5252
5253                         /* Allocate a temporary page to hold the copied
5254                          * contents.
5255                          */
5256                         page = alloc_huge_page_vma(h, dst_vma, dst_addr);
5257                         if (!page) {
5258                                 ret = -ENOMEM;
5259                                 goto out;
5260                         }
5261                         *pagep = page;
5262                         /* Set the outparam pagep and return to the caller to
5263                          * copy the contents outside the lock. Don't free the
5264                          * page.
5265                          */
5266                         goto out;
5267                 }
5268         } else {
5269                 if (vm_shared &&
5270                     hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
5271                         put_page(*pagep);
5272                         ret = -EEXIST;
5273                         *pagep = NULL;
5274                         goto out;
5275                 }
5276
5277                 page = alloc_huge_page(dst_vma, dst_addr, 0);
5278                 if (IS_ERR(page)) {
5279                         ret = -ENOMEM;
5280                         *pagep = NULL;
5281                         goto out;
5282                 }
5283                 copy_huge_page(page, *pagep);
5284                 put_page(*pagep);
5285                 *pagep = NULL;
5286         }
5287
5288         /*
5289          * The memory barrier inside __SetPageUptodate makes sure that
5290          * preceding stores to the page contents become visible before
5291          * the set_pte_at() write.
5292          */
5293         __SetPageUptodate(page);
5294
5295         /* Add shared, newly allocated pages to the page cache. */
5296         if (vm_shared && !is_continue) {
5297                 size = i_size_read(mapping->host) >> huge_page_shift(h);
5298                 ret = -EFAULT;
5299                 if (idx >= size)
5300                         goto out_release_nounlock;
5301
5302                 /*
5303                  * Serialization between remove_inode_hugepages() and
5304                  * huge_add_to_page_cache() below happens through the
5305                  * hugetlb_fault_mutex_table that here must be hold by
5306                  * the caller.
5307                  */
5308                 ret = huge_add_to_page_cache(page, mapping, idx);
5309                 if (ret)
5310                         goto out_release_nounlock;
5311                 new_pagecache_page = true;
5312         }
5313
5314         ptl = huge_pte_lockptr(h, dst_mm, dst_pte);
5315         spin_lock(ptl);
5316
5317         /*
5318          * Recheck the i_size after holding PT lock to make sure not
5319          * to leave any page mapped (as page_mapped()) beyond the end
5320          * of the i_size (remove_inode_hugepages() is strict about
5321          * enforcing that). If we bail out here, we'll also leave a
5322          * page in the radix tree in the vm_shared case beyond the end
5323          * of the i_size, but remove_inode_hugepages() will take care
5324          * of it as soon as we drop the hugetlb_fault_mutex_table.
5325          */
5326         size = i_size_read(mapping->host) >> huge_page_shift(h);
5327         ret = -EFAULT;
5328         if (idx >= size)
5329                 goto out_release_unlock;
5330
5331         ret = -EEXIST;
5332         if (!huge_pte_none(huge_ptep_get(dst_pte)))
5333                 goto out_release_unlock;
5334
5335         if (vm_shared) {
5336                 page_dup_rmap(page, true);
5337         } else {
5338                 ClearHPageRestoreReserve(page);
5339                 hugepage_add_new_anon_rmap(page, dst_vma, dst_addr);
5340         }
5341
5342         /* For CONTINUE on a non-shared VMA, don't set VM_WRITE for CoW. */
5343         if (is_continue && !vm_shared)
5344                 writable = 0;
5345         else
5346                 writable = dst_vma->vm_flags & VM_WRITE;
5347
5348         _dst_pte = make_huge_pte(dst_vma, page, writable);
5349         if (writable)
5350                 _dst_pte = huge_pte_mkdirty(_dst_pte);
5351         _dst_pte = pte_mkyoung(_dst_pte);
5352
5353         set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
5354
5355         (void)huge_ptep_set_access_flags(dst_vma, dst_addr, dst_pte, _dst_pte,
5356                                         dst_vma->vm_flags & VM_WRITE);
5357         hugetlb_count_add(pages_per_huge_page(h), dst_mm);
5358
5359         /* No need to invalidate - it was non-present before */
5360         update_mmu_cache(dst_vma, dst_addr, dst_pte);
5361
5362         spin_unlock(ptl);
5363         if (!is_continue)
5364                 SetHPageMigratable(page);
5365         if (vm_shared || is_continue)
5366                 unlock_page(page);
5367         ret = 0;
5368 out:
5369         return ret;
5370 out_release_unlock:
5371         spin_unlock(ptl);
5372         if (vm_shared || is_continue)
5373                 unlock_page(page);
5374 out_release_nounlock:
5375         if (!new_pagecache_page)
5376                 restore_reserve_on_error(h, dst_vma, dst_addr, page);
5377         put_page(page);
5378         goto out;
5379 }
5380 #endif /* CONFIG_USERFAULTFD */
5381
5382 static void record_subpages_vmas(struct page *page, struct vm_area_struct *vma,
5383                                  int refs, struct page **pages,
5384                                  struct vm_area_struct **vmas)
5385 {
5386         int nr;
5387
5388         for (nr = 0; nr < refs; nr++) {
5389                 if (likely(pages))
5390                         pages[nr] = mem_map_offset(page, nr);
5391                 if (vmas)
5392                         vmas[nr] = vma;
5393         }
5394 }
5395
5396 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
5397                          struct page **pages, struct vm_area_struct **vmas,
5398                          unsigned long *position, unsigned long *nr_pages,
5399                          long i, unsigned int flags, int *locked)
5400 {
5401         unsigned long pfn_offset;
5402         unsigned long vaddr = *position;
5403         unsigned long remainder = *nr_pages;
5404         struct hstate *h = hstate_vma(vma);
5405         int err = -EFAULT, refs;
5406
5407         while (vaddr < vma->vm_end && remainder) {
5408                 pte_t *pte;
5409                 spinlock_t *ptl = NULL;
5410                 int absent;
5411                 struct page *page;
5412
5413                 /*
5414                  * If we have a pending SIGKILL, don't keep faulting pages and
5415                  * potentially allocating memory.
5416                  */
5417                 if (fatal_signal_pending(current)) {
5418                         remainder = 0;
5419                         break;
5420                 }
5421
5422                 /*
5423                  * Some archs (sparc64, sh*) have multiple pte_ts to
5424                  * each hugepage.  We have to make sure we get the
5425                  * first, for the page indexing below to work.
5426                  *
5427                  * Note that page table lock is not held when pte is null.
5428                  */
5429                 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h),
5430                                       huge_page_size(h));
5431                 if (pte)
5432                         ptl = huge_pte_lock(h, mm, pte);
5433                 absent = !pte || huge_pte_none(huge_ptep_get(pte));
5434
5435                 /*
5436                  * When coredumping, it suits get_dump_page if we just return
5437                  * an error where there's an empty slot with no huge pagecache
5438                  * to back it.  This way, we avoid allocating a hugepage, and
5439                  * the sparse dumpfile avoids allocating disk blocks, but its
5440                  * huge holes still show up with zeroes where they need to be.
5441                  */
5442                 if (absent && (flags & FOLL_DUMP) &&
5443                     !hugetlbfs_pagecache_present(h, vma, vaddr)) {
5444                         if (pte)
5445                                 spin_unlock(ptl);
5446                         remainder = 0;
5447                         break;
5448                 }
5449
5450                 /*
5451                  * We need call hugetlb_fault for both hugepages under migration
5452                  * (in which case hugetlb_fault waits for the migration,) and
5453                  * hwpoisoned hugepages (in which case we need to prevent the
5454                  * caller from accessing to them.) In order to do this, we use
5455                  * here is_swap_pte instead of is_hugetlb_entry_migration and
5456                  * is_hugetlb_entry_hwpoisoned. This is because it simply covers
5457                  * both cases, and because we can't follow correct pages
5458                  * directly from any kind of swap entries.
5459                  */
5460                 if (absent || is_swap_pte(huge_ptep_get(pte)) ||
5461                     ((flags & FOLL_WRITE) &&
5462                       !huge_pte_write(huge_ptep_get(pte)))) {
5463                         vm_fault_t ret;
5464                         unsigned int fault_flags = 0;
5465
5466                         if (pte)
5467                                 spin_unlock(ptl);
5468                         if (flags & FOLL_WRITE)
5469                                 fault_flags |= FAULT_FLAG_WRITE;
5470                         if (locked)
5471                                 fault_flags |= FAULT_FLAG_ALLOW_RETRY |
5472                                         FAULT_FLAG_KILLABLE;
5473                         if (flags & FOLL_NOWAIT)
5474                                 fault_flags |= FAULT_FLAG_ALLOW_RETRY |
5475                                         FAULT_FLAG_RETRY_NOWAIT;
5476                         if (flags & FOLL_TRIED) {
5477                                 /*
5478                                  * Note: FAULT_FLAG_ALLOW_RETRY and
5479                                  * FAULT_FLAG_TRIED can co-exist
5480                                  */
5481                                 fault_flags |= FAULT_FLAG_TRIED;
5482                         }
5483                         ret = hugetlb_fault(mm, vma, vaddr, fault_flags);
5484                         if (ret & VM_FAULT_ERROR) {
5485                                 err = vm_fault_to_errno(ret, flags);
5486                                 remainder = 0;
5487                                 break;
5488                         }
5489                         if (ret & VM_FAULT_RETRY) {
5490                                 if (locked &&
5491                                     !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
5492                                         *locked = 0;
5493                                 *nr_pages = 0;
5494                                 /*
5495                                  * VM_FAULT_RETRY must not return an
5496                                  * error, it will return zero
5497                                  * instead.
5498                                  *
5499                                  * No need to update "position" as the
5500                                  * caller will not check it after
5501                                  * *nr_pages is set to 0.
5502                                  */
5503                                 return i;
5504                         }
5505                         continue;
5506                 }
5507
5508                 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
5509                 page = pte_page(huge_ptep_get(pte));
5510
5511                 /*
5512                  * If subpage information not requested, update counters
5513                  * and skip the same_page loop below.
5514                  */
5515                 if (!pages && !vmas && !pfn_offset &&
5516                     (vaddr + huge_page_size(h) < vma->vm_end) &&
5517                     (remainder >= pages_per_huge_page(h))) {
5518                         vaddr += huge_page_size(h);
5519                         remainder -= pages_per_huge_page(h);
5520                         i += pages_per_huge_page(h);
5521                         spin_unlock(ptl);
5522                         continue;
5523                 }
5524
5525                 /* vaddr may not be aligned to PAGE_SIZE */
5526                 refs = min3(pages_per_huge_page(h) - pfn_offset, remainder,
5527                     (vma->vm_end - ALIGN_DOWN(vaddr, PAGE_SIZE)) >> PAGE_SHIFT);
5528
5529                 if (pages || vmas)
5530                         record_subpages_vmas(mem_map_offset(page, pfn_offset),
5531                                              vma, refs,
5532                                              likely(pages) ? pages + i : NULL,
5533                                              vmas ? vmas + i : NULL);
5534
5535                 if (pages) {
5536                         /*
5537                          * try_grab_compound_head() should always succeed here,
5538                          * because: a) we hold the ptl lock, and b) we've just
5539                          * checked that the huge page is present in the page
5540                          * tables. If the huge page is present, then the tail
5541                          * pages must also be present. The ptl prevents the
5542                          * head page and tail pages from being rearranged in
5543                          * any way. So this page must be available at this
5544                          * point, unless the page refcount overflowed:
5545                          */
5546                         if (WARN_ON_ONCE(!try_grab_compound_head(pages[i],
5547                                                                  refs,
5548                                                                  flags))) {
5549                                 spin_unlock(ptl);
5550                                 remainder = 0;
5551                                 err = -ENOMEM;
5552                                 break;
5553                         }
5554                 }
5555
5556                 vaddr += (refs << PAGE_SHIFT);
5557                 remainder -= refs;
5558                 i += refs;
5559
5560                 spin_unlock(ptl);
5561         }
5562         *nr_pages = remainder;
5563         /*
5564          * setting position is actually required only if remainder is
5565          * not zero but it's faster not to add a "if (remainder)"
5566          * branch.
5567          */
5568         *position = vaddr;
5569
5570         return i ? i : err;
5571 }
5572
5573 unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
5574                 unsigned long address, unsigned long end, pgprot_t newprot)
5575 {
5576         struct mm_struct *mm = vma->vm_mm;
5577         unsigned long start = address;
5578         pte_t *ptep;
5579         pte_t pte;
5580         struct hstate *h = hstate_vma(vma);
5581         unsigned long pages = 0;
5582         bool shared_pmd = false;
5583         struct mmu_notifier_range range;
5584
5585         /*
5586          * In the case of shared PMDs, the area to flush could be beyond
5587          * start/end.  Set range.start/range.end to cover the maximum possible
5588          * range if PMD sharing is possible.
5589          */
5590         mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA,
5591                                 0, vma, mm, start, end);
5592         adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
5593
5594         BUG_ON(address >= end);
5595         flush_cache_range(vma, range.start, range.end);
5596
5597         mmu_notifier_invalidate_range_start(&range);
5598         i_mmap_lock_write(vma->vm_file->f_mapping);
5599         for (; address < end; address += huge_page_size(h)) {
5600                 spinlock_t *ptl;
5601                 ptep = huge_pte_offset(mm, address, huge_page_size(h));
5602                 if (!ptep)
5603                         continue;
5604                 ptl = huge_pte_lock(h, mm, ptep);
5605                 if (huge_pmd_unshare(mm, vma, &address, ptep)) {
5606                         pages++;
5607                         spin_unlock(ptl);
5608                         shared_pmd = true;
5609                         continue;
5610                 }
5611                 pte = huge_ptep_get(ptep);
5612                 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
5613                         spin_unlock(ptl);
5614                         continue;
5615                 }
5616                 if (unlikely(is_hugetlb_entry_migration(pte))) {
5617                         swp_entry_t entry = pte_to_swp_entry(pte);
5618
5619                         if (is_writable_migration_entry(entry)) {
5620                                 pte_t newpte;
5621
5622                                 entry = make_readable_migration_entry(
5623                                                         swp_offset(entry));
5624                                 newpte = swp_entry_to_pte(entry);
5625                                 set_huge_swap_pte_at(mm, address, ptep,
5626                                                      newpte, huge_page_size(h));
5627                                 pages++;
5628                         }
5629                         spin_unlock(ptl);
5630                         continue;
5631                 }
5632                 if (!huge_pte_none(pte)) {
5633                         pte_t old_pte;
5634                         unsigned int shift = huge_page_shift(hstate_vma(vma));
5635
5636                         old_pte = huge_ptep_modify_prot_start(vma, address, ptep);
5637                         pte = pte_mkhuge(huge_pte_modify(old_pte, newprot));
5638                         pte = arch_make_huge_pte(pte, shift, vma->vm_flags);
5639                         huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte);
5640                         pages++;
5641                 }
5642                 spin_unlock(ptl);
5643         }
5644         /*
5645          * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
5646          * may have cleared our pud entry and done put_page on the page table:
5647          * once we release i_mmap_rwsem, another task can do the final put_page
5648          * and that page table be reused and filled with junk.  If we actually
5649          * did unshare a page of pmds, flush the range corresponding to the pud.
5650          */
5651         if (shared_pmd)
5652                 flush_hugetlb_tlb_range(vma, range.start, range.end);
5653         else
5654                 flush_hugetlb_tlb_range(vma, start, end);
5655         /*
5656          * No need to call mmu_notifier_invalidate_range() we are downgrading
5657          * page table protection not changing it to point to a new page.
5658          *
5659          * See Documentation/vm/mmu_notifier.rst
5660          */
5661         i_mmap_unlock_write(vma->vm_file->f_mapping);
5662         mmu_notifier_invalidate_range_end(&range);
5663
5664         return pages << h->order;
5665 }
5666
5667 /* Return true if reservation was successful, false otherwise.  */
5668 bool hugetlb_reserve_pages(struct inode *inode,
5669                                         long from, long to,
5670                                         struct vm_area_struct *vma,
5671                                         vm_flags_t vm_flags)
5672 {
5673         long chg, add = -1;
5674         struct hstate *h = hstate_inode(inode);
5675         struct hugepage_subpool *spool = subpool_inode(inode);
5676         struct resv_map *resv_map;
5677         struct hugetlb_cgroup *h_cg = NULL;
5678         long gbl_reserve, regions_needed = 0;
5679
5680         /* This should never happen */
5681         if (from > to) {
5682                 VM_WARN(1, "%s called with a negative range\n", __func__);
5683                 return false;
5684         }
5685
5686         /*
5687          * Only apply hugepage reservation if asked. At fault time, an
5688          * attempt will be made for VM_NORESERVE to allocate a page
5689          * without using reserves
5690          */
5691         if (vm_flags & VM_NORESERVE)
5692                 return true;
5693
5694         /*
5695          * Shared mappings base their reservation on the number of pages that
5696          * are already allocated on behalf of the file. Private mappings need
5697          * to reserve the full area even if read-only as mprotect() may be
5698          * called to make the mapping read-write. Assume !vma is a shm mapping
5699          */
5700         if (!vma || vma->vm_flags & VM_MAYSHARE) {
5701                 /*
5702                  * resv_map can not be NULL as hugetlb_reserve_pages is only
5703                  * called for inodes for which resv_maps were created (see
5704                  * hugetlbfs_get_inode).
5705                  */
5706                 resv_map = inode_resv_map(inode);
5707
5708                 chg = region_chg(resv_map, from, to, &regions_needed);
5709
5710         } else {
5711                 /* Private mapping. */
5712                 resv_map = resv_map_alloc();
5713                 if (!resv_map)
5714                         return false;
5715
5716                 chg = to - from;
5717
5718                 set_vma_resv_map(vma, resv_map);
5719                 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
5720         }
5721
5722         if (chg < 0)
5723                 goto out_err;
5724
5725         if (hugetlb_cgroup_charge_cgroup_rsvd(hstate_index(h),
5726                                 chg * pages_per_huge_page(h), &h_cg) < 0)
5727                 goto out_err;
5728
5729         if (vma && !(vma->vm_flags & VM_MAYSHARE) && h_cg) {
5730                 /* For private mappings, the hugetlb_cgroup uncharge info hangs
5731                  * of the resv_map.
5732                  */
5733                 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, h_cg, h);
5734         }
5735
5736         /*
5737          * There must be enough pages in the subpool for the mapping. If
5738          * the subpool has a minimum size, there may be some global
5739          * reservations already in place (gbl_reserve).
5740          */
5741         gbl_reserve = hugepage_subpool_get_pages(spool, chg);
5742         if (gbl_reserve < 0)
5743                 goto out_uncharge_cgroup;
5744
5745         /*
5746          * Check enough hugepages are available for the reservation.
5747          * Hand the pages back to the subpool if there are not
5748          */
5749         if (hugetlb_acct_memory(h, gbl_reserve) < 0)
5750                 goto out_put_pages;
5751
5752         /*
5753          * Account for the reservations made. Shared mappings record regions
5754          * that have reservations as they are shared by multiple VMAs.
5755          * When the last VMA disappears, the region map says how much
5756          * the reservation was and the page cache tells how much of
5757          * the reservation was consumed. Private mappings are per-VMA and
5758          * only the consumed reservations are tracked. When the VMA
5759          * disappears, the original reservation is the VMA size and the
5760          * consumed reservations are stored in the map. Hence, nothing
5761          * else has to be done for private mappings here
5762          */
5763         if (!vma || vma->vm_flags & VM_MAYSHARE) {
5764                 add = region_add(resv_map, from, to, regions_needed, h, h_cg);
5765
5766                 if (unlikely(add < 0)) {
5767                         hugetlb_acct_memory(h, -gbl_reserve);
5768                         goto out_put_pages;
5769                 } else if (unlikely(chg > add)) {
5770                         /*
5771                          * pages in this range were added to the reserve
5772                          * map between region_chg and region_add.  This
5773                          * indicates a race with alloc_huge_page.  Adjust
5774                          * the subpool and reserve counts modified above
5775                          * based on the difference.
5776                          */
5777                         long rsv_adjust;
5778
5779                         /*
5780                          * hugetlb_cgroup_uncharge_cgroup_rsvd() will put the
5781                          * reference to h_cg->css. See comment below for detail.
5782                          */
5783                         hugetlb_cgroup_uncharge_cgroup_rsvd(
5784                                 hstate_index(h),
5785                                 (chg - add) * pages_per_huge_page(h), h_cg);
5786
5787                         rsv_adjust = hugepage_subpool_put_pages(spool,
5788                                                                 chg - add);
5789                         hugetlb_acct_memory(h, -rsv_adjust);
5790                 } else if (h_cg) {
5791                         /*
5792                          * The file_regions will hold their own reference to
5793                          * h_cg->css. So we should release the reference held
5794                          * via hugetlb_cgroup_charge_cgroup_rsvd() when we are
5795                          * done.
5796                          */
5797                         hugetlb_cgroup_put_rsvd_cgroup(h_cg);
5798                 }
5799         }
5800         return true;
5801
5802 out_put_pages:
5803         /* put back original number of pages, chg */
5804         (void)hugepage_subpool_put_pages(spool, chg);
5805 out_uncharge_cgroup:
5806         hugetlb_cgroup_uncharge_cgroup_rsvd(hstate_index(h),
5807                                             chg * pages_per_huge_page(h), h_cg);
5808 out_err:
5809         if (!vma || vma->vm_flags & VM_MAYSHARE)
5810                 /* Only call region_abort if the region_chg succeeded but the
5811                  * region_add failed or didn't run.
5812                  */
5813                 if (chg >= 0 && add < 0)
5814                         region_abort(resv_map, from, to, regions_needed);
5815         if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
5816                 kref_put(&resv_map->refs, resv_map_release);
5817         return false;
5818 }
5819
5820 long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
5821                                                                 long freed)
5822 {
5823         struct hstate *h = hstate_inode(inode);
5824         struct resv_map *resv_map = inode_resv_map(inode);
5825         long chg = 0;
5826         struct hugepage_subpool *spool = subpool_inode(inode);
5827         long gbl_reserve;
5828
5829         /*
5830          * Since this routine can be called in the evict inode path for all
5831          * hugetlbfs inodes, resv_map could be NULL.
5832          */
5833         if (resv_map) {
5834                 chg = region_del(resv_map, start, end);
5835                 /*
5836                  * region_del() can fail in the rare case where a region
5837                  * must be split and another region descriptor can not be
5838                  * allocated.  If end == LONG_MAX, it will not fail.
5839                  */
5840                 if (chg < 0)
5841                         return chg;
5842         }
5843
5844         spin_lock(&inode->i_lock);
5845         inode->i_blocks -= (blocks_per_huge_page(h) * freed);
5846         spin_unlock(&inode->i_lock);
5847
5848         /*
5849          * If the subpool has a minimum size, the number of global
5850          * reservations to be released may be adjusted.
5851          *
5852          * Note that !resv_map implies freed == 0. So (chg - freed)
5853          * won't go negative.
5854          */
5855         gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
5856         hugetlb_acct_memory(h, -gbl_reserve);
5857
5858         return 0;
5859 }
5860
5861 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
5862 static unsigned long page_table_shareable(struct vm_area_struct *svma,
5863                                 struct vm_area_struct *vma,
5864                                 unsigned long addr, pgoff_t idx)
5865 {
5866         unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
5867                                 svma->vm_start;
5868         unsigned long sbase = saddr & PUD_MASK;
5869         unsigned long s_end = sbase + PUD_SIZE;
5870
5871         /* Allow segments to share if only one is marked locked */
5872         unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
5873         unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
5874
5875         /*
5876          * match the virtual addresses, permission and the alignment of the
5877          * page table page.
5878          */
5879         if (pmd_index(addr) != pmd_index(saddr) ||
5880             vm_flags != svm_flags ||
5881             !range_in_vma(svma, sbase, s_end))
5882                 return 0;
5883
5884         return saddr;
5885 }
5886
5887 static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr)
5888 {
5889         unsigned long base = addr & PUD_MASK;
5890         unsigned long end = base + PUD_SIZE;
5891
5892         /*
5893          * check on proper vm_flags and page table alignment
5894          */
5895         if (vma->vm_flags & VM_MAYSHARE && range_in_vma(vma, base, end))
5896                 return true;
5897         return false;
5898 }
5899
5900 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
5901 {
5902 #ifdef CONFIG_USERFAULTFD
5903         if (uffd_disable_huge_pmd_share(vma))
5904                 return false;
5905 #endif
5906         return vma_shareable(vma, addr);
5907 }
5908
5909 /*
5910  * Determine if start,end range within vma could be mapped by shared pmd.
5911  * If yes, adjust start and end to cover range associated with possible
5912  * shared pmd mappings.
5913  */
5914 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
5915                                 unsigned long *start, unsigned long *end)
5916 {
5917         unsigned long v_start = ALIGN(vma->vm_start, PUD_SIZE),
5918                 v_end = ALIGN_DOWN(vma->vm_end, PUD_SIZE);
5919
5920         /*
5921          * vma needs to span at least one aligned PUD size, and the range
5922          * must be at least partially within in.
5923          */
5924         if (!(vma->vm_flags & VM_MAYSHARE) || !(v_end > v_start) ||
5925                 (*end <= v_start) || (*start >= v_end))
5926                 return;
5927
5928         /* Extend the range to be PUD aligned for a worst case scenario */
5929         if (*start > v_start)
5930                 *start = ALIGN_DOWN(*start, PUD_SIZE);
5931
5932         if (*end < v_end)
5933                 *end = ALIGN(*end, PUD_SIZE);
5934 }
5935
5936 /*
5937  * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
5938  * and returns the corresponding pte. While this is not necessary for the
5939  * !shared pmd case because we can allocate the pmd later as well, it makes the
5940  * code much cleaner.
5941  *
5942  * This routine must be called with i_mmap_rwsem held in at least read mode if
5943  * sharing is possible.  For hugetlbfs, this prevents removal of any page
5944  * table entries associated with the address space.  This is important as we
5945  * are setting up sharing based on existing page table entries (mappings).
5946  *
5947  * NOTE: This routine is only called from huge_pte_alloc.  Some callers of
5948  * huge_pte_alloc know that sharing is not possible and do not take
5949  * i_mmap_rwsem as a performance optimization.  This is handled by the
5950  * if !vma_shareable check at the beginning of the routine. i_mmap_rwsem is
5951  * only required for subsequent processing.
5952  */
5953 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
5954                       unsigned long addr, pud_t *pud)
5955 {
5956         struct address_space *mapping = vma->vm_file->f_mapping;
5957         pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
5958                         vma->vm_pgoff;
5959         struct vm_area_struct *svma;
5960         unsigned long saddr;
5961         pte_t *spte = NULL;
5962         pte_t *pte;
5963         spinlock_t *ptl;
5964
5965         i_mmap_assert_locked(mapping);
5966         vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
5967                 if (svma == vma)
5968                         continue;
5969
5970                 saddr = page_table_shareable(svma, vma, addr, idx);
5971                 if (saddr) {
5972                         spte = huge_pte_offset(svma->vm_mm, saddr,
5973                                                vma_mmu_pagesize(svma));
5974                         if (spte) {
5975                                 get_page(virt_to_page(spte));
5976                                 break;
5977                         }
5978                 }
5979         }
5980
5981         if (!spte)
5982                 goto out;
5983
5984         ptl = huge_pte_lock(hstate_vma(vma), mm, spte);
5985         if (pud_none(*pud)) {
5986                 pud_populate(mm, pud,
5987                                 (pmd_t *)((unsigned long)spte & PAGE_MASK));
5988                 mm_inc_nr_pmds(mm);
5989         } else {
5990                 put_page(virt_to_page(spte));
5991         }
5992         spin_unlock(ptl);
5993 out:
5994         pte = (pte_t *)pmd_alloc(mm, pud, addr);
5995         return pte;
5996 }
5997
5998 /*
5999  * unmap huge page backed by shared pte.
6000  *
6001  * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
6002  * indicated by page_count > 1, unmap is achieved by clearing pud and
6003  * decrementing the ref count. If count == 1, the pte page is not shared.
6004  *
6005  * Called with page table lock held and i_mmap_rwsem held in write mode.
6006  *
6007  * returns: 1 successfully unmapped a shared pte page
6008  *          0 the underlying pte page is not shared, or it is the last user
6009  */
6010 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
6011                                         unsigned long *addr, pte_t *ptep)
6012 {
6013         pgd_t *pgd = pgd_offset(mm, *addr);
6014         p4d_t *p4d = p4d_offset(pgd, *addr);
6015         pud_t *pud = pud_offset(p4d, *addr);
6016
6017         i_mmap_assert_write_locked(vma->vm_file->f_mapping);
6018         BUG_ON(page_count(virt_to_page(ptep)) == 0);
6019         if (page_count(virt_to_page(ptep)) == 1)
6020                 return 0;
6021
6022         pud_clear(pud);
6023         put_page(virt_to_page(ptep));
6024         mm_dec_nr_pmds(mm);
6025         *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
6026         return 1;
6027 }
6028
6029 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
6030 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
6031                       unsigned long addr, pud_t *pud)
6032 {
6033         return NULL;
6034 }
6035
6036 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
6037                                 unsigned long *addr, pte_t *ptep)
6038 {
6039         return 0;
6040 }
6041
6042 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
6043                                 unsigned long *start, unsigned long *end)
6044 {
6045 }
6046
6047 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
6048 {
6049         return false;
6050 }
6051 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
6052
6053 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
6054 pte_t *huge_pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
6055                         unsigned long addr, unsigned long sz)
6056 {
6057         pgd_t *pgd;
6058         p4d_t *p4d;
6059         pud_t *pud;
6060         pte_t *pte = NULL;
6061
6062         pgd = pgd_offset(mm, addr);
6063         p4d = p4d_alloc(mm, pgd, addr);
6064         if (!p4d)
6065                 return NULL;
6066         pud = pud_alloc(mm, p4d, addr);
6067         if (pud) {
6068                 if (sz == PUD_SIZE) {
6069                         pte = (pte_t *)pud;
6070                 } else {
6071                         BUG_ON(sz != PMD_SIZE);
6072                         if (want_pmd_share(vma, addr) && pud_none(*pud))
6073                                 pte = huge_pmd_share(mm, vma, addr, pud);
6074                         else
6075                                 pte = (pte_t *)pmd_alloc(mm, pud, addr);
6076                 }
6077         }
6078         BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte));
6079
6080         return pte;
6081 }
6082
6083 /*
6084  * huge_pte_offset() - Walk the page table to resolve the hugepage
6085  * entry at address @addr
6086  *
6087  * Return: Pointer to page table entry (PUD or PMD) for
6088  * address @addr, or NULL if a !p*d_present() entry is encountered and the
6089  * size @sz doesn't match the hugepage size at this level of the page
6090  * table.
6091  */
6092 pte_t *huge_pte_offset(struct mm_struct *mm,
6093                        unsigned long addr, unsigned long sz)
6094 {
6095         pgd_t *pgd;
6096         p4d_t *p4d;
6097         pud_t *pud;
6098         pmd_t *pmd;
6099
6100         pgd = pgd_offset(mm, addr);
6101         if (!pgd_present(*pgd))
6102                 return NULL;
6103         p4d = p4d_offset(pgd, addr);
6104         if (!p4d_present(*p4d))
6105                 return NULL;
6106
6107         pud = pud_offset(p4d, addr);
6108         if (sz == PUD_SIZE)
6109                 /* must be pud huge, non-present or none */
6110                 return (pte_t *)pud;
6111         if (!pud_present(*pud))
6112                 return NULL;
6113         /* must have a valid entry and size to go further */
6114
6115         pmd = pmd_offset(pud, addr);
6116         /* must be pmd huge, non-present or none */
6117         return (pte_t *)pmd;
6118 }
6119
6120 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
6121
6122 /*
6123  * These functions are overwritable if your architecture needs its own
6124  * behavior.
6125  */
6126 struct page * __weak
6127 follow_huge_addr(struct mm_struct *mm, unsigned long address,
6128                               int write)
6129 {
6130         return ERR_PTR(-EINVAL);
6131 }
6132
6133 struct page * __weak
6134 follow_huge_pd(struct vm_area_struct *vma,
6135                unsigned long address, hugepd_t hpd, int flags, int pdshift)
6136 {
6137         WARN(1, "hugepd follow called with no support for hugepage directory format\n");
6138         return NULL;
6139 }
6140
6141 struct page * __weak
6142 follow_huge_pmd(struct mm_struct *mm, unsigned long address,
6143                 pmd_t *pmd, int flags)
6144 {
6145         struct page *page = NULL;
6146         spinlock_t *ptl;
6147         pte_t pte;
6148
6149         /* FOLL_GET and FOLL_PIN are mutually exclusive. */
6150         if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
6151                          (FOLL_PIN | FOLL_GET)))
6152                 return NULL;
6153
6154 retry:
6155         ptl = pmd_lockptr(mm, pmd);
6156         spin_lock(ptl);
6157         /*
6158          * make sure that the address range covered by this pmd is not
6159          * unmapped from other threads.
6160          */
6161         if (!pmd_huge(*pmd))
6162                 goto out;
6163         pte = huge_ptep_get((pte_t *)pmd);
6164         if (pte_present(pte)) {
6165                 page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
6166                 /*
6167                  * try_grab_page() should always succeed here, because: a) we
6168                  * hold the pmd (ptl) lock, and b) we've just checked that the
6169                  * huge pmd (head) page is present in the page tables. The ptl
6170                  * prevents the head page and tail pages from being rearranged
6171                  * in any way. So this page must be available at this point,
6172                  * unless the page refcount overflowed:
6173                  */
6174                 if (WARN_ON_ONCE(!try_grab_page(page, flags))) {
6175                         page = NULL;
6176                         goto out;
6177                 }
6178         } else {
6179                 if (is_hugetlb_entry_migration(pte)) {
6180                         spin_unlock(ptl);
6181                         __migration_entry_wait(mm, (pte_t *)pmd, ptl);
6182                         goto retry;
6183                 }
6184                 /*
6185                  * hwpoisoned entry is treated as no_page_table in
6186                  * follow_page_mask().
6187                  */
6188         }
6189 out:
6190         spin_unlock(ptl);
6191         return page;
6192 }
6193
6194 struct page * __weak
6195 follow_huge_pud(struct mm_struct *mm, unsigned long address,
6196                 pud_t *pud, int flags)
6197 {
6198         if (flags & (FOLL_GET | FOLL_PIN))
6199                 return NULL;
6200
6201         return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
6202 }
6203
6204 struct page * __weak
6205 follow_huge_pgd(struct mm_struct *mm, unsigned long address, pgd_t *pgd, int flags)
6206 {
6207         if (flags & (FOLL_GET | FOLL_PIN))
6208                 return NULL;
6209
6210         return pte_page(*(pte_t *)pgd) + ((address & ~PGDIR_MASK) >> PAGE_SHIFT);
6211 }
6212
6213 bool isolate_huge_page(struct page *page, struct list_head *list)
6214 {
6215         bool ret = true;
6216
6217         spin_lock_irq(&hugetlb_lock);
6218         if (!PageHeadHuge(page) ||
6219             !HPageMigratable(page) ||
6220             !get_page_unless_zero(page)) {
6221                 ret = false;
6222                 goto unlock;
6223         }
6224         ClearHPageMigratable(page);
6225         list_move_tail(&page->lru, list);
6226 unlock:
6227         spin_unlock_irq(&hugetlb_lock);
6228         return ret;
6229 }
6230
6231 int get_hwpoison_huge_page(struct page *page, bool *hugetlb)
6232 {
6233         int ret = 0;
6234
6235         *hugetlb = false;
6236         spin_lock_irq(&hugetlb_lock);
6237         if (PageHeadHuge(page)) {
6238                 *hugetlb = true;
6239                 if (HPageFreed(page) || HPageMigratable(page))
6240                         ret = get_page_unless_zero(page);
6241                 else
6242                         ret = -EBUSY;
6243         }
6244         spin_unlock_irq(&hugetlb_lock);
6245         return ret;
6246 }
6247
6248 void putback_active_hugepage(struct page *page)
6249 {
6250         spin_lock_irq(&hugetlb_lock);
6251         SetHPageMigratable(page);
6252         list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
6253         spin_unlock_irq(&hugetlb_lock);
6254         put_page(page);
6255 }
6256
6257 void move_hugetlb_state(struct page *oldpage, struct page *newpage, int reason)
6258 {
6259         struct hstate *h = page_hstate(oldpage);
6260
6261         hugetlb_cgroup_migrate(oldpage, newpage);
6262         set_page_owner_migrate_reason(newpage, reason);
6263
6264         /*
6265          * transfer temporary state of the new huge page. This is
6266          * reverse to other transitions because the newpage is going to
6267          * be final while the old one will be freed so it takes over
6268          * the temporary status.
6269          *
6270          * Also note that we have to transfer the per-node surplus state
6271          * here as well otherwise the global surplus count will not match
6272          * the per-node's.
6273          */
6274         if (HPageTemporary(newpage)) {
6275                 int old_nid = page_to_nid(oldpage);
6276                 int new_nid = page_to_nid(newpage);
6277
6278                 SetHPageTemporary(oldpage);
6279                 ClearHPageTemporary(newpage);
6280
6281                 /*
6282                  * There is no need to transfer the per-node surplus state
6283                  * when we do not cross the node.
6284                  */
6285                 if (new_nid == old_nid)
6286                         return;
6287                 spin_lock_irq(&hugetlb_lock);
6288                 if (h->surplus_huge_pages_node[old_nid]) {
6289                         h->surplus_huge_pages_node[old_nid]--;
6290                         h->surplus_huge_pages_node[new_nid]++;
6291                 }
6292                 spin_unlock_irq(&hugetlb_lock);
6293         }
6294 }
6295
6296 /*
6297  * This function will unconditionally remove all the shared pmd pgtable entries
6298  * within the specific vma for a hugetlbfs memory range.
6299  */
6300 void hugetlb_unshare_all_pmds(struct vm_area_struct *vma)
6301 {
6302         struct hstate *h = hstate_vma(vma);
6303         unsigned long sz = huge_page_size(h);
6304         struct mm_struct *mm = vma->vm_mm;
6305         struct mmu_notifier_range range;
6306         unsigned long address, start, end;
6307         spinlock_t *ptl;
6308         pte_t *ptep;
6309
6310         if (!(vma->vm_flags & VM_MAYSHARE))
6311                 return;
6312
6313         start = ALIGN(vma->vm_start, PUD_SIZE);
6314         end = ALIGN_DOWN(vma->vm_end, PUD_SIZE);
6315
6316         if (start >= end)
6317                 return;
6318
6319         /*
6320          * No need to call adjust_range_if_pmd_sharing_possible(), because
6321          * we have already done the PUD_SIZE alignment.
6322          */
6323         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
6324                                 start, end);
6325         mmu_notifier_invalidate_range_start(&range);
6326         i_mmap_lock_write(vma->vm_file->f_mapping);
6327         for (address = start; address < end; address += PUD_SIZE) {
6328                 unsigned long tmp = address;
6329
6330                 ptep = huge_pte_offset(mm, address, sz);
6331                 if (!ptep)
6332                         continue;
6333                 ptl = huge_pte_lock(h, mm, ptep);
6334                 /* We don't want 'address' to be changed */
6335                 huge_pmd_unshare(mm, vma, &tmp, ptep);
6336                 spin_unlock(ptl);
6337         }
6338         flush_hugetlb_tlb_range(vma, start, end);
6339         i_mmap_unlock_write(vma->vm_file->f_mapping);
6340         /*
6341          * No need to call mmu_notifier_invalidate_range(), see
6342          * Documentation/vm/mmu_notifier.rst.
6343          */
6344         mmu_notifier_invalidate_range_end(&range);
6345 }
6346
6347 #ifdef CONFIG_CMA
6348 static bool cma_reserve_called __initdata;
6349
6350 static int __init cmdline_parse_hugetlb_cma(char *p)
6351 {
6352         hugetlb_cma_size = memparse(p, &p);
6353         return 0;
6354 }
6355
6356 early_param("hugetlb_cma", cmdline_parse_hugetlb_cma);
6357
6358 void __init hugetlb_cma_reserve(int order)
6359 {
6360         unsigned long size, reserved, per_node;
6361         int nid;
6362
6363         cma_reserve_called = true;
6364
6365         if (!hugetlb_cma_size)
6366                 return;
6367
6368         if (hugetlb_cma_size < (PAGE_SIZE << order)) {
6369                 pr_warn("hugetlb_cma: cma area should be at least %lu MiB\n",
6370                         (PAGE_SIZE << order) / SZ_1M);
6371                 return;
6372         }
6373
6374         /*
6375          * If 3 GB area is requested on a machine with 4 numa nodes,
6376          * let's allocate 1 GB on first three nodes and ignore the last one.
6377          */
6378         per_node = DIV_ROUND_UP(hugetlb_cma_size, nr_online_nodes);
6379         pr_info("hugetlb_cma: reserve %lu MiB, up to %lu MiB per node\n",
6380                 hugetlb_cma_size / SZ_1M, per_node / SZ_1M);
6381
6382         reserved = 0;
6383         for_each_node_state(nid, N_ONLINE) {
6384                 int res;
6385                 char name[CMA_MAX_NAME];
6386
6387                 size = min(per_node, hugetlb_cma_size - reserved);
6388                 size = round_up(size, PAGE_SIZE << order);
6389
6390                 snprintf(name, sizeof(name), "hugetlb%d", nid);
6391                 res = cma_declare_contiguous_nid(0, size, 0, PAGE_SIZE << order,
6392                                                  0, false, name,
6393                                                  &hugetlb_cma[nid], nid);
6394                 if (res) {
6395                         pr_warn("hugetlb_cma: reservation failed: err %d, node %d",
6396                                 res, nid);
6397                         continue;
6398                 }
6399
6400                 reserved += size;
6401                 pr_info("hugetlb_cma: reserved %lu MiB on node %d\n",
6402                         size / SZ_1M, nid);
6403
6404                 if (reserved >= hugetlb_cma_size)
6405                         break;
6406         }
6407 }
6408
6409 void __init hugetlb_cma_check(void)
6410 {
6411         if (!hugetlb_cma_size || cma_reserve_called)
6412                 return;
6413
6414         pr_warn("hugetlb_cma: the option isn't supported by current arch\n");
6415 }
6416
6417 #endif /* CONFIG_CMA */