mm/hugeltb: clarify (chg - freed) won't go negative in hugetlb_unreserve_pages()
[linux-2.6-microblaze.git] / mm / hugetlb.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Generic hugetlb support.
4  * (C) Nadia Yvette Chambers, April 2004
5  */
6 #include <linux/list.h>
7 #include <linux/init.h>
8 #include <linux/mm.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/compiler.h>
17 #include <linux/cpuset.h>
18 #include <linux/mutex.h>
19 #include <linux/memblock.h>
20 #include <linux/sysfs.h>
21 #include <linux/slab.h>
22 #include <linux/sched/mm.h>
23 #include <linux/mmdebug.h>
24 #include <linux/sched/signal.h>
25 #include <linux/rmap.h>
26 #include <linux/string_helpers.h>
27 #include <linux/swap.h>
28 #include <linux/swapops.h>
29 #include <linux/jhash.h>
30 #include <linux/numa.h>
31 #include <linux/llist.h>
32 #include <linux/cma.h>
33
34 #include <asm/page.h>
35 #include <asm/pgalloc.h>
36 #include <asm/tlb.h>
37
38 #include <linux/io.h>
39 #include <linux/hugetlb.h>
40 #include <linux/hugetlb_cgroup.h>
41 #include <linux/node.h>
42 #include <linux/userfaultfd_k.h>
43 #include <linux/page_owner.h>
44 #include "internal.h"
45
46 int hugetlb_max_hstate __read_mostly;
47 unsigned int default_hstate_idx;
48 struct hstate hstates[HUGE_MAX_HSTATE];
49
50 #ifdef CONFIG_CMA
51 static struct cma *hugetlb_cma[MAX_NUMNODES];
52 #endif
53 static unsigned long hugetlb_cma_size __initdata;
54
55 /*
56  * Minimum page order among possible hugepage sizes, set to a proper value
57  * at boot time.
58  */
59 static unsigned int minimum_order __read_mostly = UINT_MAX;
60
61 __initdata LIST_HEAD(huge_boot_pages);
62
63 /* for command line parsing */
64 static struct hstate * __initdata parsed_hstate;
65 static unsigned long __initdata default_hstate_max_huge_pages;
66 static bool __initdata parsed_valid_hugepagesz = true;
67 static bool __initdata parsed_default_hugepagesz;
68
69 /*
70  * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
71  * free_huge_pages, and surplus_huge_pages.
72  */
73 DEFINE_SPINLOCK(hugetlb_lock);
74
75 /*
76  * Serializes faults on the same logical page.  This is used to
77  * prevent spurious OOMs when the hugepage pool is fully utilized.
78  */
79 static int num_fault_mutexes;
80 struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
81
82 /* Forward declaration */
83 static int hugetlb_acct_memory(struct hstate *h, long delta);
84
85 static inline bool subpool_is_free(struct hugepage_subpool *spool)
86 {
87         if (spool->count)
88                 return false;
89         if (spool->max_hpages != -1)
90                 return spool->used_hpages == 0;
91         if (spool->min_hpages != -1)
92                 return spool->rsv_hpages == spool->min_hpages;
93
94         return true;
95 }
96
97 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
98 {
99         spin_unlock(&spool->lock);
100
101         /* If no pages are used, and no other handles to the subpool
102          * remain, give up any reservations based on minimum size and
103          * free the subpool */
104         if (subpool_is_free(spool)) {
105                 if (spool->min_hpages != -1)
106                         hugetlb_acct_memory(spool->hstate,
107                                                 -spool->min_hpages);
108                 kfree(spool);
109         }
110 }
111
112 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
113                                                 long min_hpages)
114 {
115         struct hugepage_subpool *spool;
116
117         spool = kzalloc(sizeof(*spool), GFP_KERNEL);
118         if (!spool)
119                 return NULL;
120
121         spin_lock_init(&spool->lock);
122         spool->count = 1;
123         spool->max_hpages = max_hpages;
124         spool->hstate = h;
125         spool->min_hpages = min_hpages;
126
127         if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
128                 kfree(spool);
129                 return NULL;
130         }
131         spool->rsv_hpages = min_hpages;
132
133         return spool;
134 }
135
136 void hugepage_put_subpool(struct hugepage_subpool *spool)
137 {
138         spin_lock(&spool->lock);
139         BUG_ON(!spool->count);
140         spool->count--;
141         unlock_or_release_subpool(spool);
142 }
143
144 /*
145  * Subpool accounting for allocating and reserving pages.
146  * Return -ENOMEM if there are not enough resources to satisfy the
147  * request.  Otherwise, return the number of pages by which the
148  * global pools must be adjusted (upward).  The returned value may
149  * only be different than the passed value (delta) in the case where
150  * a subpool minimum size must be maintained.
151  */
152 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
153                                       long delta)
154 {
155         long ret = delta;
156
157         if (!spool)
158                 return ret;
159
160         spin_lock(&spool->lock);
161
162         if (spool->max_hpages != -1) {          /* maximum size accounting */
163                 if ((spool->used_hpages + delta) <= spool->max_hpages)
164                         spool->used_hpages += delta;
165                 else {
166                         ret = -ENOMEM;
167                         goto unlock_ret;
168                 }
169         }
170
171         /* minimum size accounting */
172         if (spool->min_hpages != -1 && spool->rsv_hpages) {
173                 if (delta > spool->rsv_hpages) {
174                         /*
175                          * Asking for more reserves than those already taken on
176                          * behalf of subpool.  Return difference.
177                          */
178                         ret = delta - spool->rsv_hpages;
179                         spool->rsv_hpages = 0;
180                 } else {
181                         ret = 0;        /* reserves already accounted for */
182                         spool->rsv_hpages -= delta;
183                 }
184         }
185
186 unlock_ret:
187         spin_unlock(&spool->lock);
188         return ret;
189 }
190
191 /*
192  * Subpool accounting for freeing and unreserving pages.
193  * Return the number of global page reservations that must be dropped.
194  * The return value may only be different than the passed value (delta)
195  * in the case where a subpool minimum size must be maintained.
196  */
197 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
198                                        long delta)
199 {
200         long ret = delta;
201
202         if (!spool)
203                 return delta;
204
205         spin_lock(&spool->lock);
206
207         if (spool->max_hpages != -1)            /* maximum size accounting */
208                 spool->used_hpages -= delta;
209
210          /* minimum size accounting */
211         if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
212                 if (spool->rsv_hpages + delta <= spool->min_hpages)
213                         ret = 0;
214                 else
215                         ret = spool->rsv_hpages + delta - spool->min_hpages;
216
217                 spool->rsv_hpages += delta;
218                 if (spool->rsv_hpages > spool->min_hpages)
219                         spool->rsv_hpages = spool->min_hpages;
220         }
221
222         /*
223          * If hugetlbfs_put_super couldn't free spool due to an outstanding
224          * quota reference, free it now.
225          */
226         unlock_or_release_subpool(spool);
227
228         return ret;
229 }
230
231 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
232 {
233         return HUGETLBFS_SB(inode->i_sb)->spool;
234 }
235
236 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
237 {
238         return subpool_inode(file_inode(vma->vm_file));
239 }
240
241 /* Helper that removes a struct file_region from the resv_map cache and returns
242  * it for use.
243  */
244 static struct file_region *
245 get_file_region_entry_from_cache(struct resv_map *resv, long from, long to)
246 {
247         struct file_region *nrg = NULL;
248
249         VM_BUG_ON(resv->region_cache_count <= 0);
250
251         resv->region_cache_count--;
252         nrg = list_first_entry(&resv->region_cache, struct file_region, link);
253         list_del(&nrg->link);
254
255         nrg->from = from;
256         nrg->to = to;
257
258         return nrg;
259 }
260
261 static void copy_hugetlb_cgroup_uncharge_info(struct file_region *nrg,
262                                               struct file_region *rg)
263 {
264 #ifdef CONFIG_CGROUP_HUGETLB
265         nrg->reservation_counter = rg->reservation_counter;
266         nrg->css = rg->css;
267         if (rg->css)
268                 css_get(rg->css);
269 #endif
270 }
271
272 /* Helper that records hugetlb_cgroup uncharge info. */
273 static void record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup *h_cg,
274                                                 struct hstate *h,
275                                                 struct resv_map *resv,
276                                                 struct file_region *nrg)
277 {
278 #ifdef CONFIG_CGROUP_HUGETLB
279         if (h_cg) {
280                 nrg->reservation_counter =
281                         &h_cg->rsvd_hugepage[hstate_index(h)];
282                 nrg->css = &h_cg->css;
283                 /*
284                  * The caller will hold exactly one h_cg->css reference for the
285                  * whole contiguous reservation region. But this area might be
286                  * scattered when there are already some file_regions reside in
287                  * it. As a result, many file_regions may share only one css
288                  * reference. In order to ensure that one file_region must hold
289                  * exactly one h_cg->css reference, we should do css_get for
290                  * each file_region and leave the reference held by caller
291                  * untouched.
292                  */
293                 css_get(&h_cg->css);
294                 if (!resv->pages_per_hpage)
295                         resv->pages_per_hpage = pages_per_huge_page(h);
296                 /* pages_per_hpage should be the same for all entries in
297                  * a resv_map.
298                  */
299                 VM_BUG_ON(resv->pages_per_hpage != pages_per_huge_page(h));
300         } else {
301                 nrg->reservation_counter = NULL;
302                 nrg->css = NULL;
303         }
304 #endif
305 }
306
307 static void put_uncharge_info(struct file_region *rg)
308 {
309 #ifdef CONFIG_CGROUP_HUGETLB
310         if (rg->css)
311                 css_put(rg->css);
312 #endif
313 }
314
315 static bool has_same_uncharge_info(struct file_region *rg,
316                                    struct file_region *org)
317 {
318 #ifdef CONFIG_CGROUP_HUGETLB
319         return rg && org &&
320                rg->reservation_counter == org->reservation_counter &&
321                rg->css == org->css;
322
323 #else
324         return true;
325 #endif
326 }
327
328 static void coalesce_file_region(struct resv_map *resv, struct file_region *rg)
329 {
330         struct file_region *nrg = NULL, *prg = NULL;
331
332         prg = list_prev_entry(rg, link);
333         if (&prg->link != &resv->regions && prg->to == rg->from &&
334             has_same_uncharge_info(prg, rg)) {
335                 prg->to = rg->to;
336
337                 list_del(&rg->link);
338                 put_uncharge_info(rg);
339                 kfree(rg);
340
341                 rg = prg;
342         }
343
344         nrg = list_next_entry(rg, link);
345         if (&nrg->link != &resv->regions && nrg->from == rg->to &&
346             has_same_uncharge_info(nrg, rg)) {
347                 nrg->from = rg->from;
348
349                 list_del(&rg->link);
350                 put_uncharge_info(rg);
351                 kfree(rg);
352         }
353 }
354
355 static inline long
356 hugetlb_resv_map_add(struct resv_map *map, struct file_region *rg, long from,
357                      long to, struct hstate *h, struct hugetlb_cgroup *cg,
358                      long *regions_needed)
359 {
360         struct file_region *nrg;
361
362         if (!regions_needed) {
363                 nrg = get_file_region_entry_from_cache(map, from, to);
364                 record_hugetlb_cgroup_uncharge_info(cg, h, map, nrg);
365                 list_add(&nrg->link, rg->link.prev);
366                 coalesce_file_region(map, nrg);
367         } else
368                 *regions_needed += 1;
369
370         return to - from;
371 }
372
373 /*
374  * Must be called with resv->lock held.
375  *
376  * Calling this with regions_needed != NULL will count the number of pages
377  * to be added but will not modify the linked list. And regions_needed will
378  * indicate the number of file_regions needed in the cache to carry out to add
379  * the regions for this range.
380  */
381 static long add_reservation_in_range(struct resv_map *resv, long f, long t,
382                                      struct hugetlb_cgroup *h_cg,
383                                      struct hstate *h, long *regions_needed)
384 {
385         long add = 0;
386         struct list_head *head = &resv->regions;
387         long last_accounted_offset = f;
388         struct file_region *rg = NULL, *trg = NULL;
389
390         if (regions_needed)
391                 *regions_needed = 0;
392
393         /* In this loop, we essentially handle an entry for the range
394          * [last_accounted_offset, rg->from), at every iteration, with some
395          * bounds checking.
396          */
397         list_for_each_entry_safe(rg, trg, head, link) {
398                 /* Skip irrelevant regions that start before our range. */
399                 if (rg->from < f) {
400                         /* If this region ends after the last accounted offset,
401                          * then we need to update last_accounted_offset.
402                          */
403                         if (rg->to > last_accounted_offset)
404                                 last_accounted_offset = rg->to;
405                         continue;
406                 }
407
408                 /* When we find a region that starts beyond our range, we've
409                  * finished.
410                  */
411                 if (rg->from >= t)
412                         break;
413
414                 /* Add an entry for last_accounted_offset -> rg->from, and
415                  * update last_accounted_offset.
416                  */
417                 if (rg->from > last_accounted_offset)
418                         add += hugetlb_resv_map_add(resv, rg,
419                                                     last_accounted_offset,
420                                                     rg->from, h, h_cg,
421                                                     regions_needed);
422
423                 last_accounted_offset = rg->to;
424         }
425
426         /* Handle the case where our range extends beyond
427          * last_accounted_offset.
428          */
429         if (last_accounted_offset < t)
430                 add += hugetlb_resv_map_add(resv, rg, last_accounted_offset,
431                                             t, h, h_cg, regions_needed);
432
433         VM_BUG_ON(add < 0);
434         return add;
435 }
436
437 /* Must be called with resv->lock acquired. Will drop lock to allocate entries.
438  */
439 static int allocate_file_region_entries(struct resv_map *resv,
440                                         int regions_needed)
441         __must_hold(&resv->lock)
442 {
443         struct list_head allocated_regions;
444         int to_allocate = 0, i = 0;
445         struct file_region *trg = NULL, *rg = NULL;
446
447         VM_BUG_ON(regions_needed < 0);
448
449         INIT_LIST_HEAD(&allocated_regions);
450
451         /*
452          * Check for sufficient descriptors in the cache to accommodate
453          * the number of in progress add operations plus regions_needed.
454          *
455          * This is a while loop because when we drop the lock, some other call
456          * to region_add or region_del may have consumed some region_entries,
457          * so we keep looping here until we finally have enough entries for
458          * (adds_in_progress + regions_needed).
459          */
460         while (resv->region_cache_count <
461                (resv->adds_in_progress + regions_needed)) {
462                 to_allocate = resv->adds_in_progress + regions_needed -
463                               resv->region_cache_count;
464
465                 /* At this point, we should have enough entries in the cache
466                  * for all the existings adds_in_progress. We should only be
467                  * needing to allocate for regions_needed.
468                  */
469                 VM_BUG_ON(resv->region_cache_count < resv->adds_in_progress);
470
471                 spin_unlock(&resv->lock);
472                 for (i = 0; i < to_allocate; i++) {
473                         trg = kmalloc(sizeof(*trg), GFP_KERNEL);
474                         if (!trg)
475                                 goto out_of_memory;
476                         list_add(&trg->link, &allocated_regions);
477                 }
478
479                 spin_lock(&resv->lock);
480
481                 list_splice(&allocated_regions, &resv->region_cache);
482                 resv->region_cache_count += to_allocate;
483         }
484
485         return 0;
486
487 out_of_memory:
488         list_for_each_entry_safe(rg, trg, &allocated_regions, link) {
489                 list_del(&rg->link);
490                 kfree(rg);
491         }
492         return -ENOMEM;
493 }
494
495 /*
496  * Add the huge page range represented by [f, t) to the reserve
497  * map.  Regions will be taken from the cache to fill in this range.
498  * Sufficient regions should exist in the cache due to the previous
499  * call to region_chg with the same range, but in some cases the cache will not
500  * have sufficient entries due to races with other code doing region_add or
501  * region_del.  The extra needed entries will be allocated.
502  *
503  * regions_needed is the out value provided by a previous call to region_chg.
504  *
505  * Return the number of new huge pages added to the map.  This number is greater
506  * than or equal to zero.  If file_region entries needed to be allocated for
507  * this operation and we were not able to allocate, it returns -ENOMEM.
508  * region_add of regions of length 1 never allocate file_regions and cannot
509  * fail; region_chg will always allocate at least 1 entry and a region_add for
510  * 1 page will only require at most 1 entry.
511  */
512 static long region_add(struct resv_map *resv, long f, long t,
513                        long in_regions_needed, struct hstate *h,
514                        struct hugetlb_cgroup *h_cg)
515 {
516         long add = 0, actual_regions_needed = 0;
517
518         spin_lock(&resv->lock);
519 retry:
520
521         /* Count how many regions are actually needed to execute this add. */
522         add_reservation_in_range(resv, f, t, NULL, NULL,
523                                  &actual_regions_needed);
524
525         /*
526          * Check for sufficient descriptors in the cache to accommodate
527          * this add operation. Note that actual_regions_needed may be greater
528          * than in_regions_needed, as the resv_map may have been modified since
529          * the region_chg call. In this case, we need to make sure that we
530          * allocate extra entries, such that we have enough for all the
531          * existing adds_in_progress, plus the excess needed for this
532          * operation.
533          */
534         if (actual_regions_needed > in_regions_needed &&
535             resv->region_cache_count <
536                     resv->adds_in_progress +
537                             (actual_regions_needed - in_regions_needed)) {
538                 /* region_add operation of range 1 should never need to
539                  * allocate file_region entries.
540                  */
541                 VM_BUG_ON(t - f <= 1);
542
543                 if (allocate_file_region_entries(
544                             resv, actual_regions_needed - in_regions_needed)) {
545                         return -ENOMEM;
546                 }
547
548                 goto retry;
549         }
550
551         add = add_reservation_in_range(resv, f, t, h_cg, h, NULL);
552
553         resv->adds_in_progress -= in_regions_needed;
554
555         spin_unlock(&resv->lock);
556         return add;
557 }
558
559 /*
560  * Examine the existing reserve map and determine how many
561  * huge pages in the specified range [f, t) are NOT currently
562  * represented.  This routine is called before a subsequent
563  * call to region_add that will actually modify the reserve
564  * map to add the specified range [f, t).  region_chg does
565  * not change the number of huge pages represented by the
566  * map.  A number of new file_region structures is added to the cache as a
567  * placeholder, for the subsequent region_add call to use. At least 1
568  * file_region structure is added.
569  *
570  * out_regions_needed is the number of regions added to the
571  * resv->adds_in_progress.  This value needs to be provided to a follow up call
572  * to region_add or region_abort for proper accounting.
573  *
574  * Returns the number of huge pages that need to be added to the existing
575  * reservation map for the range [f, t).  This number is greater or equal to
576  * zero.  -ENOMEM is returned if a new file_region structure or cache entry
577  * is needed and can not be allocated.
578  */
579 static long region_chg(struct resv_map *resv, long f, long t,
580                        long *out_regions_needed)
581 {
582         long chg = 0;
583
584         spin_lock(&resv->lock);
585
586         /* Count how many hugepages in this range are NOT represented. */
587         chg = add_reservation_in_range(resv, f, t, NULL, NULL,
588                                        out_regions_needed);
589
590         if (*out_regions_needed == 0)
591                 *out_regions_needed = 1;
592
593         if (allocate_file_region_entries(resv, *out_regions_needed))
594                 return -ENOMEM;
595
596         resv->adds_in_progress += *out_regions_needed;
597
598         spin_unlock(&resv->lock);
599         return chg;
600 }
601
602 /*
603  * Abort the in progress add operation.  The adds_in_progress field
604  * of the resv_map keeps track of the operations in progress between
605  * calls to region_chg and region_add.  Operations are sometimes
606  * aborted after the call to region_chg.  In such cases, region_abort
607  * is called to decrement the adds_in_progress counter. regions_needed
608  * is the value returned by the region_chg call, it is used to decrement
609  * the adds_in_progress counter.
610  *
611  * NOTE: The range arguments [f, t) are not needed or used in this
612  * routine.  They are kept to make reading the calling code easier as
613  * arguments will match the associated region_chg call.
614  */
615 static void region_abort(struct resv_map *resv, long f, long t,
616                          long regions_needed)
617 {
618         spin_lock(&resv->lock);
619         VM_BUG_ON(!resv->region_cache_count);
620         resv->adds_in_progress -= regions_needed;
621         spin_unlock(&resv->lock);
622 }
623
624 /*
625  * Delete the specified range [f, t) from the reserve map.  If the
626  * t parameter is LONG_MAX, this indicates that ALL regions after f
627  * should be deleted.  Locate the regions which intersect [f, t)
628  * and either trim, delete or split the existing regions.
629  *
630  * Returns the number of huge pages deleted from the reserve map.
631  * In the normal case, the return value is zero or more.  In the
632  * case where a region must be split, a new region descriptor must
633  * be allocated.  If the allocation fails, -ENOMEM will be returned.
634  * NOTE: If the parameter t == LONG_MAX, then we will never split
635  * a region and possibly return -ENOMEM.  Callers specifying
636  * t == LONG_MAX do not need to check for -ENOMEM error.
637  */
638 static long region_del(struct resv_map *resv, long f, long t)
639 {
640         struct list_head *head = &resv->regions;
641         struct file_region *rg, *trg;
642         struct file_region *nrg = NULL;
643         long del = 0;
644
645 retry:
646         spin_lock(&resv->lock);
647         list_for_each_entry_safe(rg, trg, head, link) {
648                 /*
649                  * Skip regions before the range to be deleted.  file_region
650                  * ranges are normally of the form [from, to).  However, there
651                  * may be a "placeholder" entry in the map which is of the form
652                  * (from, to) with from == to.  Check for placeholder entries
653                  * at the beginning of the range to be deleted.
654                  */
655                 if (rg->to <= f && (rg->to != rg->from || rg->to != f))
656                         continue;
657
658                 if (rg->from >= t)
659                         break;
660
661                 if (f > rg->from && t < rg->to) { /* Must split region */
662                         /*
663                          * Check for an entry in the cache before dropping
664                          * lock and attempting allocation.
665                          */
666                         if (!nrg &&
667                             resv->region_cache_count > resv->adds_in_progress) {
668                                 nrg = list_first_entry(&resv->region_cache,
669                                                         struct file_region,
670                                                         link);
671                                 list_del(&nrg->link);
672                                 resv->region_cache_count--;
673                         }
674
675                         if (!nrg) {
676                                 spin_unlock(&resv->lock);
677                                 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
678                                 if (!nrg)
679                                         return -ENOMEM;
680                                 goto retry;
681                         }
682
683                         del += t - f;
684                         hugetlb_cgroup_uncharge_file_region(
685                                 resv, rg, t - f, false);
686
687                         /* New entry for end of split region */
688                         nrg->from = t;
689                         nrg->to = rg->to;
690
691                         copy_hugetlb_cgroup_uncharge_info(nrg, rg);
692
693                         INIT_LIST_HEAD(&nrg->link);
694
695                         /* Original entry is trimmed */
696                         rg->to = f;
697
698                         list_add(&nrg->link, &rg->link);
699                         nrg = NULL;
700                         break;
701                 }
702
703                 if (f <= rg->from && t >= rg->to) { /* Remove entire region */
704                         del += rg->to - rg->from;
705                         hugetlb_cgroup_uncharge_file_region(resv, rg,
706                                                             rg->to - rg->from, true);
707                         list_del(&rg->link);
708                         kfree(rg);
709                         continue;
710                 }
711
712                 if (f <= rg->from) {    /* Trim beginning of region */
713                         hugetlb_cgroup_uncharge_file_region(resv, rg,
714                                                             t - rg->from, false);
715
716                         del += t - rg->from;
717                         rg->from = t;
718                 } else {                /* Trim end of region */
719                         hugetlb_cgroup_uncharge_file_region(resv, rg,
720                                                             rg->to - f, false);
721
722                         del += rg->to - f;
723                         rg->to = f;
724                 }
725         }
726
727         spin_unlock(&resv->lock);
728         kfree(nrg);
729         return del;
730 }
731
732 /*
733  * A rare out of memory error was encountered which prevented removal of
734  * the reserve map region for a page.  The huge page itself was free'ed
735  * and removed from the page cache.  This routine will adjust the subpool
736  * usage count, and the global reserve count if needed.  By incrementing
737  * these counts, the reserve map entry which could not be deleted will
738  * appear as a "reserved" entry instead of simply dangling with incorrect
739  * counts.
740  */
741 void hugetlb_fix_reserve_counts(struct inode *inode)
742 {
743         struct hugepage_subpool *spool = subpool_inode(inode);
744         long rsv_adjust;
745
746         rsv_adjust = hugepage_subpool_get_pages(spool, 1);
747         if (rsv_adjust) {
748                 struct hstate *h = hstate_inode(inode);
749
750                 hugetlb_acct_memory(h, 1);
751         }
752 }
753
754 /*
755  * Count and return the number of huge pages in the reserve map
756  * that intersect with the range [f, t).
757  */
758 static long region_count(struct resv_map *resv, long f, long t)
759 {
760         struct list_head *head = &resv->regions;
761         struct file_region *rg;
762         long chg = 0;
763
764         spin_lock(&resv->lock);
765         /* Locate each segment we overlap with, and count that overlap. */
766         list_for_each_entry(rg, head, link) {
767                 long seg_from;
768                 long seg_to;
769
770                 if (rg->to <= f)
771                         continue;
772                 if (rg->from >= t)
773                         break;
774
775                 seg_from = max(rg->from, f);
776                 seg_to = min(rg->to, t);
777
778                 chg += seg_to - seg_from;
779         }
780         spin_unlock(&resv->lock);
781
782         return chg;
783 }
784
785 /*
786  * Convert the address within this vma to the page offset within
787  * the mapping, in pagecache page units; huge pages here.
788  */
789 static pgoff_t vma_hugecache_offset(struct hstate *h,
790                         struct vm_area_struct *vma, unsigned long address)
791 {
792         return ((address - vma->vm_start) >> huge_page_shift(h)) +
793                         (vma->vm_pgoff >> huge_page_order(h));
794 }
795
796 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
797                                      unsigned long address)
798 {
799         return vma_hugecache_offset(hstate_vma(vma), vma, address);
800 }
801 EXPORT_SYMBOL_GPL(linear_hugepage_index);
802
803 /*
804  * Return the size of the pages allocated when backing a VMA. In the majority
805  * cases this will be same size as used by the page table entries.
806  */
807 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
808 {
809         if (vma->vm_ops && vma->vm_ops->pagesize)
810                 return vma->vm_ops->pagesize(vma);
811         return PAGE_SIZE;
812 }
813 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
814
815 /*
816  * Return the page size being used by the MMU to back a VMA. In the majority
817  * of cases, the page size used by the kernel matches the MMU size. On
818  * architectures where it differs, an architecture-specific 'strong'
819  * version of this symbol is required.
820  */
821 __weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
822 {
823         return vma_kernel_pagesize(vma);
824 }
825
826 /*
827  * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
828  * bits of the reservation map pointer, which are always clear due to
829  * alignment.
830  */
831 #define HPAGE_RESV_OWNER    (1UL << 0)
832 #define HPAGE_RESV_UNMAPPED (1UL << 1)
833 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
834
835 /*
836  * These helpers are used to track how many pages are reserved for
837  * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
838  * is guaranteed to have their future faults succeed.
839  *
840  * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
841  * the reserve counters are updated with the hugetlb_lock held. It is safe
842  * to reset the VMA at fork() time as it is not in use yet and there is no
843  * chance of the global counters getting corrupted as a result of the values.
844  *
845  * The private mapping reservation is represented in a subtly different
846  * manner to a shared mapping.  A shared mapping has a region map associated
847  * with the underlying file, this region map represents the backing file
848  * pages which have ever had a reservation assigned which this persists even
849  * after the page is instantiated.  A private mapping has a region map
850  * associated with the original mmap which is attached to all VMAs which
851  * reference it, this region map represents those offsets which have consumed
852  * reservation ie. where pages have been instantiated.
853  */
854 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
855 {
856         return (unsigned long)vma->vm_private_data;
857 }
858
859 static void set_vma_private_data(struct vm_area_struct *vma,
860                                                         unsigned long value)
861 {
862         vma->vm_private_data = (void *)value;
863 }
864
865 static void
866 resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map *resv_map,
867                                           struct hugetlb_cgroup *h_cg,
868                                           struct hstate *h)
869 {
870 #ifdef CONFIG_CGROUP_HUGETLB
871         if (!h_cg || !h) {
872                 resv_map->reservation_counter = NULL;
873                 resv_map->pages_per_hpage = 0;
874                 resv_map->css = NULL;
875         } else {
876                 resv_map->reservation_counter =
877                         &h_cg->rsvd_hugepage[hstate_index(h)];
878                 resv_map->pages_per_hpage = pages_per_huge_page(h);
879                 resv_map->css = &h_cg->css;
880         }
881 #endif
882 }
883
884 struct resv_map *resv_map_alloc(void)
885 {
886         struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
887         struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
888
889         if (!resv_map || !rg) {
890                 kfree(resv_map);
891                 kfree(rg);
892                 return NULL;
893         }
894
895         kref_init(&resv_map->refs);
896         spin_lock_init(&resv_map->lock);
897         INIT_LIST_HEAD(&resv_map->regions);
898
899         resv_map->adds_in_progress = 0;
900         /*
901          * Initialize these to 0. On shared mappings, 0's here indicate these
902          * fields don't do cgroup accounting. On private mappings, these will be
903          * re-initialized to the proper values, to indicate that hugetlb cgroup
904          * reservations are to be un-charged from here.
905          */
906         resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, NULL, NULL);
907
908         INIT_LIST_HEAD(&resv_map->region_cache);
909         list_add(&rg->link, &resv_map->region_cache);
910         resv_map->region_cache_count = 1;
911
912         return resv_map;
913 }
914
915 void resv_map_release(struct kref *ref)
916 {
917         struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
918         struct list_head *head = &resv_map->region_cache;
919         struct file_region *rg, *trg;
920
921         /* Clear out any active regions before we release the map. */
922         region_del(resv_map, 0, LONG_MAX);
923
924         /* ... and any entries left in the cache */
925         list_for_each_entry_safe(rg, trg, head, link) {
926                 list_del(&rg->link);
927                 kfree(rg);
928         }
929
930         VM_BUG_ON(resv_map->adds_in_progress);
931
932         kfree(resv_map);
933 }
934
935 static inline struct resv_map *inode_resv_map(struct inode *inode)
936 {
937         /*
938          * At inode evict time, i_mapping may not point to the original
939          * address space within the inode.  This original address space
940          * contains the pointer to the resv_map.  So, always use the
941          * address space embedded within the inode.
942          * The VERY common case is inode->mapping == &inode->i_data but,
943          * this may not be true for device special inodes.
944          */
945         return (struct resv_map *)(&inode->i_data)->private_data;
946 }
947
948 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
949 {
950         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
951         if (vma->vm_flags & VM_MAYSHARE) {
952                 struct address_space *mapping = vma->vm_file->f_mapping;
953                 struct inode *inode = mapping->host;
954
955                 return inode_resv_map(inode);
956
957         } else {
958                 return (struct resv_map *)(get_vma_private_data(vma) &
959                                                         ~HPAGE_RESV_MASK);
960         }
961 }
962
963 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
964 {
965         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
966         VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
967
968         set_vma_private_data(vma, (get_vma_private_data(vma) &
969                                 HPAGE_RESV_MASK) | (unsigned long)map);
970 }
971
972 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
973 {
974         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
975         VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
976
977         set_vma_private_data(vma, get_vma_private_data(vma) | flags);
978 }
979
980 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
981 {
982         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
983
984         return (get_vma_private_data(vma) & flag) != 0;
985 }
986
987 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
988 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
989 {
990         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
991         if (!(vma->vm_flags & VM_MAYSHARE))
992                 vma->vm_private_data = (void *)0;
993 }
994
995 /* Returns true if the VMA has associated reserve pages */
996 static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
997 {
998         if (vma->vm_flags & VM_NORESERVE) {
999                 /*
1000                  * This address is already reserved by other process(chg == 0),
1001                  * so, we should decrement reserved count. Without decrementing,
1002                  * reserve count remains after releasing inode, because this
1003                  * allocated page will go into page cache and is regarded as
1004                  * coming from reserved pool in releasing step.  Currently, we
1005                  * don't have any other solution to deal with this situation
1006                  * properly, so add work-around here.
1007                  */
1008                 if (vma->vm_flags & VM_MAYSHARE && chg == 0)
1009                         return true;
1010                 else
1011                         return false;
1012         }
1013
1014         /* Shared mappings always use reserves */
1015         if (vma->vm_flags & VM_MAYSHARE) {
1016                 /*
1017                  * We know VM_NORESERVE is not set.  Therefore, there SHOULD
1018                  * be a region map for all pages.  The only situation where
1019                  * there is no region map is if a hole was punched via
1020                  * fallocate.  In this case, there really are no reserves to
1021                  * use.  This situation is indicated if chg != 0.
1022                  */
1023                 if (chg)
1024                         return false;
1025                 else
1026                         return true;
1027         }
1028
1029         /*
1030          * Only the process that called mmap() has reserves for
1031          * private mappings.
1032          */
1033         if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1034                 /*
1035                  * Like the shared case above, a hole punch or truncate
1036                  * could have been performed on the private mapping.
1037                  * Examine the value of chg to determine if reserves
1038                  * actually exist or were previously consumed.
1039                  * Very Subtle - The value of chg comes from a previous
1040                  * call to vma_needs_reserves().  The reserve map for
1041                  * private mappings has different (opposite) semantics
1042                  * than that of shared mappings.  vma_needs_reserves()
1043                  * has already taken this difference in semantics into
1044                  * account.  Therefore, the meaning of chg is the same
1045                  * as in the shared case above.  Code could easily be
1046                  * combined, but keeping it separate draws attention to
1047                  * subtle differences.
1048                  */
1049                 if (chg)
1050                         return false;
1051                 else
1052                         return true;
1053         }
1054
1055         return false;
1056 }
1057
1058 static void enqueue_huge_page(struct hstate *h, struct page *page)
1059 {
1060         int nid = page_to_nid(page);
1061         list_move(&page->lru, &h->hugepage_freelists[nid]);
1062         h->free_huge_pages++;
1063         h->free_huge_pages_node[nid]++;
1064         SetHPageFreed(page);
1065 }
1066
1067 static struct page *dequeue_huge_page_node_exact(struct hstate *h, int nid)
1068 {
1069         struct page *page;
1070         bool nocma = !!(current->flags & PF_MEMALLOC_NOCMA);
1071
1072         list_for_each_entry(page, &h->hugepage_freelists[nid], lru) {
1073                 if (nocma && is_migrate_cma_page(page))
1074                         continue;
1075
1076                 if (PageHWPoison(page))
1077                         continue;
1078
1079                 list_move(&page->lru, &h->hugepage_activelist);
1080                 set_page_refcounted(page);
1081                 ClearHPageFreed(page);
1082                 h->free_huge_pages--;
1083                 h->free_huge_pages_node[nid]--;
1084                 return page;
1085         }
1086
1087         return NULL;
1088 }
1089
1090 static struct page *dequeue_huge_page_nodemask(struct hstate *h, gfp_t gfp_mask, int nid,
1091                 nodemask_t *nmask)
1092 {
1093         unsigned int cpuset_mems_cookie;
1094         struct zonelist *zonelist;
1095         struct zone *zone;
1096         struct zoneref *z;
1097         int node = NUMA_NO_NODE;
1098
1099         zonelist = node_zonelist(nid, gfp_mask);
1100
1101 retry_cpuset:
1102         cpuset_mems_cookie = read_mems_allowed_begin();
1103         for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
1104                 struct page *page;
1105
1106                 if (!cpuset_zone_allowed(zone, gfp_mask))
1107                         continue;
1108                 /*
1109                  * no need to ask again on the same node. Pool is node rather than
1110                  * zone aware
1111                  */
1112                 if (zone_to_nid(zone) == node)
1113                         continue;
1114                 node = zone_to_nid(zone);
1115
1116                 page = dequeue_huge_page_node_exact(h, node);
1117                 if (page)
1118                         return page;
1119         }
1120         if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
1121                 goto retry_cpuset;
1122
1123         return NULL;
1124 }
1125
1126 static struct page *dequeue_huge_page_vma(struct hstate *h,
1127                                 struct vm_area_struct *vma,
1128                                 unsigned long address, int avoid_reserve,
1129                                 long chg)
1130 {
1131         struct page *page;
1132         struct mempolicy *mpol;
1133         gfp_t gfp_mask;
1134         nodemask_t *nodemask;
1135         int nid;
1136
1137         /*
1138          * A child process with MAP_PRIVATE mappings created by their parent
1139          * have no page reserves. This check ensures that reservations are
1140          * not "stolen". The child may still get SIGKILLed
1141          */
1142         if (!vma_has_reserves(vma, chg) &&
1143                         h->free_huge_pages - h->resv_huge_pages == 0)
1144                 goto err;
1145
1146         /* If reserves cannot be used, ensure enough pages are in the pool */
1147         if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
1148                 goto err;
1149
1150         gfp_mask = htlb_alloc_mask(h);
1151         nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
1152         page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
1153         if (page && !avoid_reserve && vma_has_reserves(vma, chg)) {
1154                 SetHPageRestoreReserve(page);
1155                 h->resv_huge_pages--;
1156         }
1157
1158         mpol_cond_put(mpol);
1159         return page;
1160
1161 err:
1162         return NULL;
1163 }
1164
1165 /*
1166  * common helper functions for hstate_next_node_to_{alloc|free}.
1167  * We may have allocated or freed a huge page based on a different
1168  * nodes_allowed previously, so h->next_node_to_{alloc|free} might
1169  * be outside of *nodes_allowed.  Ensure that we use an allowed
1170  * node for alloc or free.
1171  */
1172 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
1173 {
1174         nid = next_node_in(nid, *nodes_allowed);
1175         VM_BUG_ON(nid >= MAX_NUMNODES);
1176
1177         return nid;
1178 }
1179
1180 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
1181 {
1182         if (!node_isset(nid, *nodes_allowed))
1183                 nid = next_node_allowed(nid, nodes_allowed);
1184         return nid;
1185 }
1186
1187 /*
1188  * returns the previously saved node ["this node"] from which to
1189  * allocate a persistent huge page for the pool and advance the
1190  * next node from which to allocate, handling wrap at end of node
1191  * mask.
1192  */
1193 static int hstate_next_node_to_alloc(struct hstate *h,
1194                                         nodemask_t *nodes_allowed)
1195 {
1196         int nid;
1197
1198         VM_BUG_ON(!nodes_allowed);
1199
1200         nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
1201         h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
1202
1203         return nid;
1204 }
1205
1206 /*
1207  * helper for free_pool_huge_page() - return the previously saved
1208  * node ["this node"] from which to free a huge page.  Advance the
1209  * next node id whether or not we find a free huge page to free so
1210  * that the next attempt to free addresses the next node.
1211  */
1212 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1213 {
1214         int nid;
1215
1216         VM_BUG_ON(!nodes_allowed);
1217
1218         nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1219         h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1220
1221         return nid;
1222 }
1223
1224 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask)           \
1225         for (nr_nodes = nodes_weight(*mask);                            \
1226                 nr_nodes > 0 &&                                         \
1227                 ((node = hstate_next_node_to_alloc(hs, mask)) || 1);    \
1228                 nr_nodes--)
1229
1230 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask)            \
1231         for (nr_nodes = nodes_weight(*mask);                            \
1232                 nr_nodes > 0 &&                                         \
1233                 ((node = hstate_next_node_to_free(hs, mask)) || 1);     \
1234                 nr_nodes--)
1235
1236 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
1237 static void destroy_compound_gigantic_page(struct page *page,
1238                                         unsigned int order)
1239 {
1240         int i;
1241         int nr_pages = 1 << order;
1242         struct page *p = page + 1;
1243
1244         atomic_set(compound_mapcount_ptr(page), 0);
1245         atomic_set(compound_pincount_ptr(page), 0);
1246
1247         for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1248                 clear_compound_head(p);
1249                 set_page_refcounted(p);
1250         }
1251
1252         set_compound_order(page, 0);
1253         page[1].compound_nr = 0;
1254         __ClearPageHead(page);
1255 }
1256
1257 static void free_gigantic_page(struct page *page, unsigned int order)
1258 {
1259         /*
1260          * If the page isn't allocated using the cma allocator,
1261          * cma_release() returns false.
1262          */
1263 #ifdef CONFIG_CMA
1264         if (cma_release(hugetlb_cma[page_to_nid(page)], page, 1 << order))
1265                 return;
1266 #endif
1267
1268         free_contig_range(page_to_pfn(page), 1 << order);
1269 }
1270
1271 #ifdef CONFIG_CONTIG_ALLOC
1272 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1273                 int nid, nodemask_t *nodemask)
1274 {
1275         unsigned long nr_pages = pages_per_huge_page(h);
1276         if (nid == NUMA_NO_NODE)
1277                 nid = numa_mem_id();
1278
1279 #ifdef CONFIG_CMA
1280         {
1281                 struct page *page;
1282                 int node;
1283
1284                 if (hugetlb_cma[nid]) {
1285                         page = cma_alloc(hugetlb_cma[nid], nr_pages,
1286                                         huge_page_order(h), true);
1287                         if (page)
1288                                 return page;
1289                 }
1290
1291                 if (!(gfp_mask & __GFP_THISNODE)) {
1292                         for_each_node_mask(node, *nodemask) {
1293                                 if (node == nid || !hugetlb_cma[node])
1294                                         continue;
1295
1296                                 page = cma_alloc(hugetlb_cma[node], nr_pages,
1297                                                 huge_page_order(h), true);
1298                                 if (page)
1299                                         return page;
1300                         }
1301                 }
1302         }
1303 #endif
1304
1305         return alloc_contig_pages(nr_pages, gfp_mask, nid, nodemask);
1306 }
1307
1308 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid);
1309 static void prep_compound_gigantic_page(struct page *page, unsigned int order);
1310 #else /* !CONFIG_CONTIG_ALLOC */
1311 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1312                                         int nid, nodemask_t *nodemask)
1313 {
1314         return NULL;
1315 }
1316 #endif /* CONFIG_CONTIG_ALLOC */
1317
1318 #else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
1319 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1320                                         int nid, nodemask_t *nodemask)
1321 {
1322         return NULL;
1323 }
1324 static inline void free_gigantic_page(struct page *page, unsigned int order) { }
1325 static inline void destroy_compound_gigantic_page(struct page *page,
1326                                                 unsigned int order) { }
1327 #endif
1328
1329 static void update_and_free_page(struct hstate *h, struct page *page)
1330 {
1331         int i;
1332         struct page *subpage = page;
1333
1334         if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1335                 return;
1336
1337         h->nr_huge_pages--;
1338         h->nr_huge_pages_node[page_to_nid(page)]--;
1339         for (i = 0; i < pages_per_huge_page(h);
1340              i++, subpage = mem_map_next(subpage, page, i)) {
1341                 subpage->flags &= ~(1 << PG_locked | 1 << PG_error |
1342                                 1 << PG_referenced | 1 << PG_dirty |
1343                                 1 << PG_active | 1 << PG_private |
1344                                 1 << PG_writeback);
1345         }
1346         VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
1347         VM_BUG_ON_PAGE(hugetlb_cgroup_from_page_rsvd(page), page);
1348         set_compound_page_dtor(page, NULL_COMPOUND_DTOR);
1349         set_page_refcounted(page);
1350         if (hstate_is_gigantic(h)) {
1351                 /*
1352                  * Temporarily drop the hugetlb_lock, because
1353                  * we might block in free_gigantic_page().
1354                  */
1355                 spin_unlock(&hugetlb_lock);
1356                 destroy_compound_gigantic_page(page, huge_page_order(h));
1357                 free_gigantic_page(page, huge_page_order(h));
1358                 spin_lock(&hugetlb_lock);
1359         } else {
1360                 __free_pages(page, huge_page_order(h));
1361         }
1362 }
1363
1364 struct hstate *size_to_hstate(unsigned long size)
1365 {
1366         struct hstate *h;
1367
1368         for_each_hstate(h) {
1369                 if (huge_page_size(h) == size)
1370                         return h;
1371         }
1372         return NULL;
1373 }
1374
1375 static void __free_huge_page(struct page *page)
1376 {
1377         /*
1378          * Can't pass hstate in here because it is called from the
1379          * compound page destructor.
1380          */
1381         struct hstate *h = page_hstate(page);
1382         int nid = page_to_nid(page);
1383         struct hugepage_subpool *spool = hugetlb_page_subpool(page);
1384         bool restore_reserve;
1385
1386         VM_BUG_ON_PAGE(page_count(page), page);
1387         VM_BUG_ON_PAGE(page_mapcount(page), page);
1388
1389         hugetlb_set_page_subpool(page, NULL);
1390         page->mapping = NULL;
1391         restore_reserve = HPageRestoreReserve(page);
1392         ClearHPageRestoreReserve(page);
1393
1394         /*
1395          * If HPageRestoreReserve was set on page, page allocation consumed a
1396          * reservation.  If the page was associated with a subpool, there
1397          * would have been a page reserved in the subpool before allocation
1398          * via hugepage_subpool_get_pages().  Since we are 'restoring' the
1399          * reservation, do not call hugepage_subpool_put_pages() as this will
1400          * remove the reserved page from the subpool.
1401          */
1402         if (!restore_reserve) {
1403                 /*
1404                  * A return code of zero implies that the subpool will be
1405                  * under its minimum size if the reservation is not restored
1406                  * after page is free.  Therefore, force restore_reserve
1407                  * operation.
1408                  */
1409                 if (hugepage_subpool_put_pages(spool, 1) == 0)
1410                         restore_reserve = true;
1411         }
1412
1413         spin_lock(&hugetlb_lock);
1414         ClearHPageMigratable(page);
1415         hugetlb_cgroup_uncharge_page(hstate_index(h),
1416                                      pages_per_huge_page(h), page);
1417         hugetlb_cgroup_uncharge_page_rsvd(hstate_index(h),
1418                                           pages_per_huge_page(h), page);
1419         if (restore_reserve)
1420                 h->resv_huge_pages++;
1421
1422         if (HPageTemporary(page)) {
1423                 list_del(&page->lru);
1424                 ClearHPageTemporary(page);
1425                 update_and_free_page(h, page);
1426         } else if (h->surplus_huge_pages_node[nid]) {
1427                 /* remove the page from active list */
1428                 list_del(&page->lru);
1429                 update_and_free_page(h, page);
1430                 h->surplus_huge_pages--;
1431                 h->surplus_huge_pages_node[nid]--;
1432         } else {
1433                 arch_clear_hugepage_flags(page);
1434                 enqueue_huge_page(h, page);
1435         }
1436         spin_unlock(&hugetlb_lock);
1437 }
1438
1439 /*
1440  * As free_huge_page() can be called from a non-task context, we have
1441  * to defer the actual freeing in a workqueue to prevent potential
1442  * hugetlb_lock deadlock.
1443  *
1444  * free_hpage_workfn() locklessly retrieves the linked list of pages to
1445  * be freed and frees them one-by-one. As the page->mapping pointer is
1446  * going to be cleared in __free_huge_page() anyway, it is reused as the
1447  * llist_node structure of a lockless linked list of huge pages to be freed.
1448  */
1449 static LLIST_HEAD(hpage_freelist);
1450
1451 static void free_hpage_workfn(struct work_struct *work)
1452 {
1453         struct llist_node *node;
1454         struct page *page;
1455
1456         node = llist_del_all(&hpage_freelist);
1457
1458         while (node) {
1459                 page = container_of((struct address_space **)node,
1460                                      struct page, mapping);
1461                 node = node->next;
1462                 __free_huge_page(page);
1463         }
1464 }
1465 static DECLARE_WORK(free_hpage_work, free_hpage_workfn);
1466
1467 void free_huge_page(struct page *page)
1468 {
1469         /*
1470          * Defer freeing if in non-task context to avoid hugetlb_lock deadlock.
1471          */
1472         if (!in_task()) {
1473                 /*
1474                  * Only call schedule_work() if hpage_freelist is previously
1475                  * empty. Otherwise, schedule_work() had been called but the
1476                  * workfn hasn't retrieved the list yet.
1477                  */
1478                 if (llist_add((struct llist_node *)&page->mapping,
1479                               &hpage_freelist))
1480                         schedule_work(&free_hpage_work);
1481                 return;
1482         }
1483
1484         __free_huge_page(page);
1485 }
1486
1487 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
1488 {
1489         INIT_LIST_HEAD(&page->lru);
1490         set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1491         hugetlb_set_page_subpool(page, NULL);
1492         set_hugetlb_cgroup(page, NULL);
1493         set_hugetlb_cgroup_rsvd(page, NULL);
1494         spin_lock(&hugetlb_lock);
1495         h->nr_huge_pages++;
1496         h->nr_huge_pages_node[nid]++;
1497         ClearHPageFreed(page);
1498         spin_unlock(&hugetlb_lock);
1499 }
1500
1501 static void prep_compound_gigantic_page(struct page *page, unsigned int order)
1502 {
1503         int i;
1504         int nr_pages = 1 << order;
1505         struct page *p = page + 1;
1506
1507         /* we rely on prep_new_huge_page to set the destructor */
1508         set_compound_order(page, order);
1509         __ClearPageReserved(page);
1510         __SetPageHead(page);
1511         for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1512                 /*
1513                  * For gigantic hugepages allocated through bootmem at
1514                  * boot, it's safer to be consistent with the not-gigantic
1515                  * hugepages and clear the PG_reserved bit from all tail pages
1516                  * too.  Otherwise drivers using get_user_pages() to access tail
1517                  * pages may get the reference counting wrong if they see
1518                  * PG_reserved set on a tail page (despite the head page not
1519                  * having PG_reserved set).  Enforcing this consistency between
1520                  * head and tail pages allows drivers to optimize away a check
1521                  * on the head page when they need know if put_page() is needed
1522                  * after get_user_pages().
1523                  */
1524                 __ClearPageReserved(p);
1525                 set_page_count(p, 0);
1526                 set_compound_head(p, page);
1527         }
1528         atomic_set(compound_mapcount_ptr(page), -1);
1529         atomic_set(compound_pincount_ptr(page), 0);
1530 }
1531
1532 /*
1533  * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1534  * transparent huge pages.  See the PageTransHuge() documentation for more
1535  * details.
1536  */
1537 int PageHuge(struct page *page)
1538 {
1539         if (!PageCompound(page))
1540                 return 0;
1541
1542         page = compound_head(page);
1543         return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
1544 }
1545 EXPORT_SYMBOL_GPL(PageHuge);
1546
1547 /*
1548  * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1549  * normal or transparent huge pages.
1550  */
1551 int PageHeadHuge(struct page *page_head)
1552 {
1553         if (!PageHead(page_head))
1554                 return 0;
1555
1556         return page_head[1].compound_dtor == HUGETLB_PAGE_DTOR;
1557 }
1558
1559 /*
1560  * Find and lock address space (mapping) in write mode.
1561  *
1562  * Upon entry, the page is locked which means that page_mapping() is
1563  * stable.  Due to locking order, we can only trylock_write.  If we can
1564  * not get the lock, simply return NULL to caller.
1565  */
1566 struct address_space *hugetlb_page_mapping_lock_write(struct page *hpage)
1567 {
1568         struct address_space *mapping = page_mapping(hpage);
1569
1570         if (!mapping)
1571                 return mapping;
1572
1573         if (i_mmap_trylock_write(mapping))
1574                 return mapping;
1575
1576         return NULL;
1577 }
1578
1579 pgoff_t __basepage_index(struct page *page)
1580 {
1581         struct page *page_head = compound_head(page);
1582         pgoff_t index = page_index(page_head);
1583         unsigned long compound_idx;
1584
1585         if (!PageHuge(page_head))
1586                 return page_index(page);
1587
1588         if (compound_order(page_head) >= MAX_ORDER)
1589                 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
1590         else
1591                 compound_idx = page - page_head;
1592
1593         return (index << compound_order(page_head)) + compound_idx;
1594 }
1595
1596 static struct page *alloc_buddy_huge_page(struct hstate *h,
1597                 gfp_t gfp_mask, int nid, nodemask_t *nmask,
1598                 nodemask_t *node_alloc_noretry)
1599 {
1600         int order = huge_page_order(h);
1601         struct page *page;
1602         bool alloc_try_hard = true;
1603
1604         /*
1605          * By default we always try hard to allocate the page with
1606          * __GFP_RETRY_MAYFAIL flag.  However, if we are allocating pages in
1607          * a loop (to adjust global huge page counts) and previous allocation
1608          * failed, do not continue to try hard on the same node.  Use the
1609          * node_alloc_noretry bitmap to manage this state information.
1610          */
1611         if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry))
1612                 alloc_try_hard = false;
1613         gfp_mask |= __GFP_COMP|__GFP_NOWARN;
1614         if (alloc_try_hard)
1615                 gfp_mask |= __GFP_RETRY_MAYFAIL;
1616         if (nid == NUMA_NO_NODE)
1617                 nid = numa_mem_id();
1618         page = __alloc_pages(gfp_mask, order, nid, nmask);
1619         if (page)
1620                 __count_vm_event(HTLB_BUDDY_PGALLOC);
1621         else
1622                 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1623
1624         /*
1625          * If we did not specify __GFP_RETRY_MAYFAIL, but still got a page this
1626          * indicates an overall state change.  Clear bit so that we resume
1627          * normal 'try hard' allocations.
1628          */
1629         if (node_alloc_noretry && page && !alloc_try_hard)
1630                 node_clear(nid, *node_alloc_noretry);
1631
1632         /*
1633          * If we tried hard to get a page but failed, set bit so that
1634          * subsequent attempts will not try as hard until there is an
1635          * overall state change.
1636          */
1637         if (node_alloc_noretry && !page && alloc_try_hard)
1638                 node_set(nid, *node_alloc_noretry);
1639
1640         return page;
1641 }
1642
1643 /*
1644  * Common helper to allocate a fresh hugetlb page. All specific allocators
1645  * should use this function to get new hugetlb pages
1646  */
1647 static struct page *alloc_fresh_huge_page(struct hstate *h,
1648                 gfp_t gfp_mask, int nid, nodemask_t *nmask,
1649                 nodemask_t *node_alloc_noretry)
1650 {
1651         struct page *page;
1652
1653         if (hstate_is_gigantic(h))
1654                 page = alloc_gigantic_page(h, gfp_mask, nid, nmask);
1655         else
1656                 page = alloc_buddy_huge_page(h, gfp_mask,
1657                                 nid, nmask, node_alloc_noretry);
1658         if (!page)
1659                 return NULL;
1660
1661         if (hstate_is_gigantic(h))
1662                 prep_compound_gigantic_page(page, huge_page_order(h));
1663         prep_new_huge_page(h, page, page_to_nid(page));
1664
1665         return page;
1666 }
1667
1668 /*
1669  * Allocates a fresh page to the hugetlb allocator pool in the node interleaved
1670  * manner.
1671  */
1672 static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1673                                 nodemask_t *node_alloc_noretry)
1674 {
1675         struct page *page;
1676         int nr_nodes, node;
1677         gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
1678
1679         for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1680                 page = alloc_fresh_huge_page(h, gfp_mask, node, nodes_allowed,
1681                                                 node_alloc_noretry);
1682                 if (page)
1683                         break;
1684         }
1685
1686         if (!page)
1687                 return 0;
1688
1689         put_page(page); /* free it into the hugepage allocator */
1690
1691         return 1;
1692 }
1693
1694 /*
1695  * Free huge page from pool from next node to free.
1696  * Attempt to keep persistent huge pages more or less
1697  * balanced over allowed nodes.
1698  * Called with hugetlb_lock locked.
1699  */
1700 static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1701                                                          bool acct_surplus)
1702 {
1703         int nr_nodes, node;
1704         int ret = 0;
1705
1706         for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1707                 /*
1708                  * If we're returning unused surplus pages, only examine
1709                  * nodes with surplus pages.
1710                  */
1711                 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
1712                     !list_empty(&h->hugepage_freelists[node])) {
1713                         struct page *page =
1714                                 list_entry(h->hugepage_freelists[node].next,
1715                                           struct page, lru);
1716                         list_del(&page->lru);
1717                         h->free_huge_pages--;
1718                         h->free_huge_pages_node[node]--;
1719                         if (acct_surplus) {
1720                                 h->surplus_huge_pages--;
1721                                 h->surplus_huge_pages_node[node]--;
1722                         }
1723                         update_and_free_page(h, page);
1724                         ret = 1;
1725                         break;
1726                 }
1727         }
1728
1729         return ret;
1730 }
1731
1732 /*
1733  * Dissolve a given free hugepage into free buddy pages. This function does
1734  * nothing for in-use hugepages and non-hugepages.
1735  * This function returns values like below:
1736  *
1737  *  -EBUSY: failed to dissolved free hugepages or the hugepage is in-use
1738  *          (allocated or reserved.)
1739  *       0: successfully dissolved free hugepages or the page is not a
1740  *          hugepage (considered as already dissolved)
1741  */
1742 int dissolve_free_huge_page(struct page *page)
1743 {
1744         int rc = -EBUSY;
1745
1746 retry:
1747         /* Not to disrupt normal path by vainly holding hugetlb_lock */
1748         if (!PageHuge(page))
1749                 return 0;
1750
1751         spin_lock(&hugetlb_lock);
1752         if (!PageHuge(page)) {
1753                 rc = 0;
1754                 goto out;
1755         }
1756
1757         if (!page_count(page)) {
1758                 struct page *head = compound_head(page);
1759                 struct hstate *h = page_hstate(head);
1760                 int nid = page_to_nid(head);
1761                 if (h->free_huge_pages - h->resv_huge_pages == 0)
1762                         goto out;
1763
1764                 /*
1765                  * We should make sure that the page is already on the free list
1766                  * when it is dissolved.
1767                  */
1768                 if (unlikely(!HPageFreed(head))) {
1769                         spin_unlock(&hugetlb_lock);
1770                         cond_resched();
1771
1772                         /*
1773                          * Theoretically, we should return -EBUSY when we
1774                          * encounter this race. In fact, we have a chance
1775                          * to successfully dissolve the page if we do a
1776                          * retry. Because the race window is quite small.
1777                          * If we seize this opportunity, it is an optimization
1778                          * for increasing the success rate of dissolving page.
1779                          */
1780                         goto retry;
1781                 }
1782
1783                 /*
1784                  * Move PageHWPoison flag from head page to the raw error page,
1785                  * which makes any subpages rather than the error page reusable.
1786                  */
1787                 if (PageHWPoison(head) && page != head) {
1788                         SetPageHWPoison(page);
1789                         ClearPageHWPoison(head);
1790                 }
1791                 list_del(&head->lru);
1792                 h->free_huge_pages--;
1793                 h->free_huge_pages_node[nid]--;
1794                 h->max_huge_pages--;
1795                 update_and_free_page(h, head);
1796                 rc = 0;
1797         }
1798 out:
1799         spin_unlock(&hugetlb_lock);
1800         return rc;
1801 }
1802
1803 /*
1804  * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
1805  * make specified memory blocks removable from the system.
1806  * Note that this will dissolve a free gigantic hugepage completely, if any
1807  * part of it lies within the given range.
1808  * Also note that if dissolve_free_huge_page() returns with an error, all
1809  * free hugepages that were dissolved before that error are lost.
1810  */
1811 int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
1812 {
1813         unsigned long pfn;
1814         struct page *page;
1815         int rc = 0;
1816
1817         if (!hugepages_supported())
1818                 return rc;
1819
1820         for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order) {
1821                 page = pfn_to_page(pfn);
1822                 rc = dissolve_free_huge_page(page);
1823                 if (rc)
1824                         break;
1825         }
1826
1827         return rc;
1828 }
1829
1830 /*
1831  * Allocates a fresh surplus page from the page allocator.
1832  */
1833 static struct page *alloc_surplus_huge_page(struct hstate *h, gfp_t gfp_mask,
1834                 int nid, nodemask_t *nmask)
1835 {
1836         struct page *page = NULL;
1837
1838         if (hstate_is_gigantic(h))
1839                 return NULL;
1840
1841         spin_lock(&hugetlb_lock);
1842         if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages)
1843                 goto out_unlock;
1844         spin_unlock(&hugetlb_lock);
1845
1846         page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
1847         if (!page)
1848                 return NULL;
1849
1850         spin_lock(&hugetlb_lock);
1851         /*
1852          * We could have raced with the pool size change.
1853          * Double check that and simply deallocate the new page
1854          * if we would end up overcommiting the surpluses. Abuse
1855          * temporary page to workaround the nasty free_huge_page
1856          * codeflow
1857          */
1858         if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
1859                 SetHPageTemporary(page);
1860                 spin_unlock(&hugetlb_lock);
1861                 put_page(page);
1862                 return NULL;
1863         } else {
1864                 h->surplus_huge_pages++;
1865                 h->surplus_huge_pages_node[page_to_nid(page)]++;
1866         }
1867
1868 out_unlock:
1869         spin_unlock(&hugetlb_lock);
1870
1871         return page;
1872 }
1873
1874 static struct page *alloc_migrate_huge_page(struct hstate *h, gfp_t gfp_mask,
1875                                      int nid, nodemask_t *nmask)
1876 {
1877         struct page *page;
1878
1879         if (hstate_is_gigantic(h))
1880                 return NULL;
1881
1882         page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
1883         if (!page)
1884                 return NULL;
1885
1886         /*
1887          * We do not account these pages as surplus because they are only
1888          * temporary and will be released properly on the last reference
1889          */
1890         SetHPageTemporary(page);
1891
1892         return page;
1893 }
1894
1895 /*
1896  * Use the VMA's mpolicy to allocate a huge page from the buddy.
1897  */
1898 static
1899 struct page *alloc_buddy_huge_page_with_mpol(struct hstate *h,
1900                 struct vm_area_struct *vma, unsigned long addr)
1901 {
1902         struct page *page;
1903         struct mempolicy *mpol;
1904         gfp_t gfp_mask = htlb_alloc_mask(h);
1905         int nid;
1906         nodemask_t *nodemask;
1907
1908         nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
1909         page = alloc_surplus_huge_page(h, gfp_mask, nid, nodemask);
1910         mpol_cond_put(mpol);
1911
1912         return page;
1913 }
1914
1915 /* page migration callback function */
1916 struct page *alloc_huge_page_nodemask(struct hstate *h, int preferred_nid,
1917                 nodemask_t *nmask, gfp_t gfp_mask)
1918 {
1919         spin_lock(&hugetlb_lock);
1920         if (h->free_huge_pages - h->resv_huge_pages > 0) {
1921                 struct page *page;
1922
1923                 page = dequeue_huge_page_nodemask(h, gfp_mask, preferred_nid, nmask);
1924                 if (page) {
1925                         spin_unlock(&hugetlb_lock);
1926                         return page;
1927                 }
1928         }
1929         spin_unlock(&hugetlb_lock);
1930
1931         return alloc_migrate_huge_page(h, gfp_mask, preferred_nid, nmask);
1932 }
1933
1934 /* mempolicy aware migration callback */
1935 struct page *alloc_huge_page_vma(struct hstate *h, struct vm_area_struct *vma,
1936                 unsigned long address)
1937 {
1938         struct mempolicy *mpol;
1939         nodemask_t *nodemask;
1940         struct page *page;
1941         gfp_t gfp_mask;
1942         int node;
1943
1944         gfp_mask = htlb_alloc_mask(h);
1945         node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
1946         page = alloc_huge_page_nodemask(h, node, nodemask, gfp_mask);
1947         mpol_cond_put(mpol);
1948
1949         return page;
1950 }
1951
1952 /*
1953  * Increase the hugetlb pool such that it can accommodate a reservation
1954  * of size 'delta'.
1955  */
1956 static int gather_surplus_pages(struct hstate *h, long delta)
1957         __must_hold(&hugetlb_lock)
1958 {
1959         struct list_head surplus_list;
1960         struct page *page, *tmp;
1961         int ret;
1962         long i;
1963         long needed, allocated;
1964         bool alloc_ok = true;
1965
1966         needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
1967         if (needed <= 0) {
1968                 h->resv_huge_pages += delta;
1969                 return 0;
1970         }
1971
1972         allocated = 0;
1973         INIT_LIST_HEAD(&surplus_list);
1974
1975         ret = -ENOMEM;
1976 retry:
1977         spin_unlock(&hugetlb_lock);
1978         for (i = 0; i < needed; i++) {
1979                 page = alloc_surplus_huge_page(h, htlb_alloc_mask(h),
1980                                 NUMA_NO_NODE, NULL);
1981                 if (!page) {
1982                         alloc_ok = false;
1983                         break;
1984                 }
1985                 list_add(&page->lru, &surplus_list);
1986                 cond_resched();
1987         }
1988         allocated += i;
1989
1990         /*
1991          * After retaking hugetlb_lock, we need to recalculate 'needed'
1992          * because either resv_huge_pages or free_huge_pages may have changed.
1993          */
1994         spin_lock(&hugetlb_lock);
1995         needed = (h->resv_huge_pages + delta) -
1996                         (h->free_huge_pages + allocated);
1997         if (needed > 0) {
1998                 if (alloc_ok)
1999                         goto retry;
2000                 /*
2001                  * We were not able to allocate enough pages to
2002                  * satisfy the entire reservation so we free what
2003                  * we've allocated so far.
2004                  */
2005                 goto free;
2006         }
2007         /*
2008          * The surplus_list now contains _at_least_ the number of extra pages
2009          * needed to accommodate the reservation.  Add the appropriate number
2010          * of pages to the hugetlb pool and free the extras back to the buddy
2011          * allocator.  Commit the entire reservation here to prevent another
2012          * process from stealing the pages as they are added to the pool but
2013          * before they are reserved.
2014          */
2015         needed += allocated;
2016         h->resv_huge_pages += delta;
2017         ret = 0;
2018
2019         /* Free the needed pages to the hugetlb pool */
2020         list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
2021                 int zeroed;
2022
2023                 if ((--needed) < 0)
2024                         break;
2025                 /*
2026                  * This page is now managed by the hugetlb allocator and has
2027                  * no users -- drop the buddy allocator's reference.
2028                  */
2029                 zeroed = put_page_testzero(page);
2030                 VM_BUG_ON_PAGE(!zeroed, page);
2031                 enqueue_huge_page(h, page);
2032         }
2033 free:
2034         spin_unlock(&hugetlb_lock);
2035
2036         /* Free unnecessary surplus pages to the buddy allocator */
2037         list_for_each_entry_safe(page, tmp, &surplus_list, lru)
2038                 put_page(page);
2039         spin_lock(&hugetlb_lock);
2040
2041         return ret;
2042 }
2043
2044 /*
2045  * This routine has two main purposes:
2046  * 1) Decrement the reservation count (resv_huge_pages) by the value passed
2047  *    in unused_resv_pages.  This corresponds to the prior adjustments made
2048  *    to the associated reservation map.
2049  * 2) Free any unused surplus pages that may have been allocated to satisfy
2050  *    the reservation.  As many as unused_resv_pages may be freed.
2051  *
2052  * Called with hugetlb_lock held.  However, the lock could be dropped (and
2053  * reacquired) during calls to cond_resched_lock.  Whenever dropping the lock,
2054  * we must make sure nobody else can claim pages we are in the process of
2055  * freeing.  Do this by ensuring resv_huge_page always is greater than the
2056  * number of huge pages we plan to free when dropping the lock.
2057  */
2058 static void return_unused_surplus_pages(struct hstate *h,
2059                                         unsigned long unused_resv_pages)
2060 {
2061         unsigned long nr_pages;
2062
2063         /* Cannot return gigantic pages currently */
2064         if (hstate_is_gigantic(h))
2065                 goto out;
2066
2067         /*
2068          * Part (or even all) of the reservation could have been backed
2069          * by pre-allocated pages. Only free surplus pages.
2070          */
2071         nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
2072
2073         /*
2074          * We want to release as many surplus pages as possible, spread
2075          * evenly across all nodes with memory. Iterate across these nodes
2076          * until we can no longer free unreserved surplus pages. This occurs
2077          * when the nodes with surplus pages have no free pages.
2078          * free_pool_huge_page() will balance the freed pages across the
2079          * on-line nodes with memory and will handle the hstate accounting.
2080          *
2081          * Note that we decrement resv_huge_pages as we free the pages.  If
2082          * we drop the lock, resv_huge_pages will still be sufficiently large
2083          * to cover subsequent pages we may free.
2084          */
2085         while (nr_pages--) {
2086                 h->resv_huge_pages--;
2087                 unused_resv_pages--;
2088                 if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
2089                         goto out;
2090                 cond_resched_lock(&hugetlb_lock);
2091         }
2092
2093 out:
2094         /* Fully uncommit the reservation */
2095         h->resv_huge_pages -= unused_resv_pages;
2096 }
2097
2098
2099 /*
2100  * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
2101  * are used by the huge page allocation routines to manage reservations.
2102  *
2103  * vma_needs_reservation is called to determine if the huge page at addr
2104  * within the vma has an associated reservation.  If a reservation is
2105  * needed, the value 1 is returned.  The caller is then responsible for
2106  * managing the global reservation and subpool usage counts.  After
2107  * the huge page has been allocated, vma_commit_reservation is called
2108  * to add the page to the reservation map.  If the page allocation fails,
2109  * the reservation must be ended instead of committed.  vma_end_reservation
2110  * is called in such cases.
2111  *
2112  * In the normal case, vma_commit_reservation returns the same value
2113  * as the preceding vma_needs_reservation call.  The only time this
2114  * is not the case is if a reserve map was changed between calls.  It
2115  * is the responsibility of the caller to notice the difference and
2116  * take appropriate action.
2117  *
2118  * vma_add_reservation is used in error paths where a reservation must
2119  * be restored when a newly allocated huge page must be freed.  It is
2120  * to be called after calling vma_needs_reservation to determine if a
2121  * reservation exists.
2122  */
2123 enum vma_resv_mode {
2124         VMA_NEEDS_RESV,
2125         VMA_COMMIT_RESV,
2126         VMA_END_RESV,
2127         VMA_ADD_RESV,
2128 };
2129 static long __vma_reservation_common(struct hstate *h,
2130                                 struct vm_area_struct *vma, unsigned long addr,
2131                                 enum vma_resv_mode mode)
2132 {
2133         struct resv_map *resv;
2134         pgoff_t idx;
2135         long ret;
2136         long dummy_out_regions_needed;
2137
2138         resv = vma_resv_map(vma);
2139         if (!resv)
2140                 return 1;
2141
2142         idx = vma_hugecache_offset(h, vma, addr);
2143         switch (mode) {
2144         case VMA_NEEDS_RESV:
2145                 ret = region_chg(resv, idx, idx + 1, &dummy_out_regions_needed);
2146                 /* We assume that vma_reservation_* routines always operate on
2147                  * 1 page, and that adding to resv map a 1 page entry can only
2148                  * ever require 1 region.
2149                  */
2150                 VM_BUG_ON(dummy_out_regions_needed != 1);
2151                 break;
2152         case VMA_COMMIT_RESV:
2153                 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2154                 /* region_add calls of range 1 should never fail. */
2155                 VM_BUG_ON(ret < 0);
2156                 break;
2157         case VMA_END_RESV:
2158                 region_abort(resv, idx, idx + 1, 1);
2159                 ret = 0;
2160                 break;
2161         case VMA_ADD_RESV:
2162                 if (vma->vm_flags & VM_MAYSHARE) {
2163                         ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2164                         /* region_add calls of range 1 should never fail. */
2165                         VM_BUG_ON(ret < 0);
2166                 } else {
2167                         region_abort(resv, idx, idx + 1, 1);
2168                         ret = region_del(resv, idx, idx + 1);
2169                 }
2170                 break;
2171         default:
2172                 BUG();
2173         }
2174
2175         if (vma->vm_flags & VM_MAYSHARE)
2176                 return ret;
2177         /*
2178          * We know private mapping must have HPAGE_RESV_OWNER set.
2179          *
2180          * In most cases, reserves always exist for private mappings.
2181          * However, a file associated with mapping could have been
2182          * hole punched or truncated after reserves were consumed.
2183          * As subsequent fault on such a range will not use reserves.
2184          * Subtle - The reserve map for private mappings has the
2185          * opposite meaning than that of shared mappings.  If NO
2186          * entry is in the reserve map, it means a reservation exists.
2187          * If an entry exists in the reserve map, it means the
2188          * reservation has already been consumed.  As a result, the
2189          * return value of this routine is the opposite of the
2190          * value returned from reserve map manipulation routines above.
2191          */
2192         if (ret > 0)
2193                 return 0;
2194         if (ret == 0)
2195                 return 1;
2196         return ret;
2197 }
2198
2199 static long vma_needs_reservation(struct hstate *h,
2200                         struct vm_area_struct *vma, unsigned long addr)
2201 {
2202         return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
2203 }
2204
2205 static long vma_commit_reservation(struct hstate *h,
2206                         struct vm_area_struct *vma, unsigned long addr)
2207 {
2208         return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
2209 }
2210
2211 static void vma_end_reservation(struct hstate *h,
2212                         struct vm_area_struct *vma, unsigned long addr)
2213 {
2214         (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
2215 }
2216
2217 static long vma_add_reservation(struct hstate *h,
2218                         struct vm_area_struct *vma, unsigned long addr)
2219 {
2220         return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
2221 }
2222
2223 /*
2224  * This routine is called to restore a reservation on error paths.  In the
2225  * specific error paths, a huge page was allocated (via alloc_huge_page)
2226  * and is about to be freed.  If a reservation for the page existed,
2227  * alloc_huge_page would have consumed the reservation and set
2228  * HPageRestoreReserve in the newly allocated page.  When the page is freed
2229  * via free_huge_page, the global reservation count will be incremented if
2230  * HPageRestoreReserve is set.  However, free_huge_page can not adjust the
2231  * reserve map.  Adjust the reserve map here to be consistent with global
2232  * reserve count adjustments to be made by free_huge_page.
2233  */
2234 static void restore_reserve_on_error(struct hstate *h,
2235                         struct vm_area_struct *vma, unsigned long address,
2236                         struct page *page)
2237 {
2238         if (unlikely(HPageRestoreReserve(page))) {
2239                 long rc = vma_needs_reservation(h, vma, address);
2240
2241                 if (unlikely(rc < 0)) {
2242                         /*
2243                          * Rare out of memory condition in reserve map
2244                          * manipulation.  Clear HPageRestoreReserve so that
2245                          * global reserve count will not be incremented
2246                          * by free_huge_page.  This will make it appear
2247                          * as though the reservation for this page was
2248                          * consumed.  This may prevent the task from
2249                          * faulting in the page at a later time.  This
2250                          * is better than inconsistent global huge page
2251                          * accounting of reserve counts.
2252                          */
2253                         ClearHPageRestoreReserve(page);
2254                 } else if (rc) {
2255                         rc = vma_add_reservation(h, vma, address);
2256                         if (unlikely(rc < 0))
2257                                 /*
2258                                  * See above comment about rare out of
2259                                  * memory condition.
2260                                  */
2261                                 ClearHPageRestoreReserve(page);
2262                 } else
2263                         vma_end_reservation(h, vma, address);
2264         }
2265 }
2266
2267 struct page *alloc_huge_page(struct vm_area_struct *vma,
2268                                     unsigned long addr, int avoid_reserve)
2269 {
2270         struct hugepage_subpool *spool = subpool_vma(vma);
2271         struct hstate *h = hstate_vma(vma);
2272         struct page *page;
2273         long map_chg, map_commit;
2274         long gbl_chg;
2275         int ret, idx;
2276         struct hugetlb_cgroup *h_cg;
2277         bool deferred_reserve;
2278
2279         idx = hstate_index(h);
2280         /*
2281          * Examine the region/reserve map to determine if the process
2282          * has a reservation for the page to be allocated.  A return
2283          * code of zero indicates a reservation exists (no change).
2284          */
2285         map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
2286         if (map_chg < 0)
2287                 return ERR_PTR(-ENOMEM);
2288
2289         /*
2290          * Processes that did not create the mapping will have no
2291          * reserves as indicated by the region/reserve map. Check
2292          * that the allocation will not exceed the subpool limit.
2293          * Allocations for MAP_NORESERVE mappings also need to be
2294          * checked against any subpool limit.
2295          */
2296         if (map_chg || avoid_reserve) {
2297                 gbl_chg = hugepage_subpool_get_pages(spool, 1);
2298                 if (gbl_chg < 0) {
2299                         vma_end_reservation(h, vma, addr);
2300                         return ERR_PTR(-ENOSPC);
2301                 }
2302
2303                 /*
2304                  * Even though there was no reservation in the region/reserve
2305                  * map, there could be reservations associated with the
2306                  * subpool that can be used.  This would be indicated if the
2307                  * return value of hugepage_subpool_get_pages() is zero.
2308                  * However, if avoid_reserve is specified we still avoid even
2309                  * the subpool reservations.
2310                  */
2311                 if (avoid_reserve)
2312                         gbl_chg = 1;
2313         }
2314
2315         /* If this allocation is not consuming a reservation, charge it now.
2316          */
2317         deferred_reserve = map_chg || avoid_reserve;
2318         if (deferred_reserve) {
2319                 ret = hugetlb_cgroup_charge_cgroup_rsvd(
2320                         idx, pages_per_huge_page(h), &h_cg);
2321                 if (ret)
2322                         goto out_subpool_put;
2323         }
2324
2325         ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
2326         if (ret)
2327                 goto out_uncharge_cgroup_reservation;
2328
2329         spin_lock(&hugetlb_lock);
2330         /*
2331          * glb_chg is passed to indicate whether or not a page must be taken
2332          * from the global free pool (global change).  gbl_chg == 0 indicates
2333          * a reservation exists for the allocation.
2334          */
2335         page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
2336         if (!page) {
2337                 spin_unlock(&hugetlb_lock);
2338                 page = alloc_buddy_huge_page_with_mpol(h, vma, addr);
2339                 if (!page)
2340                         goto out_uncharge_cgroup;
2341                 if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
2342                         SetHPageRestoreReserve(page);
2343                         h->resv_huge_pages--;
2344                 }
2345                 spin_lock(&hugetlb_lock);
2346                 list_add(&page->lru, &h->hugepage_activelist);
2347                 /* Fall through */
2348         }
2349         hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
2350         /* If allocation is not consuming a reservation, also store the
2351          * hugetlb_cgroup pointer on the page.
2352          */
2353         if (deferred_reserve) {
2354                 hugetlb_cgroup_commit_charge_rsvd(idx, pages_per_huge_page(h),
2355                                                   h_cg, page);
2356         }
2357
2358         spin_unlock(&hugetlb_lock);
2359
2360         hugetlb_set_page_subpool(page, spool);
2361
2362         map_commit = vma_commit_reservation(h, vma, addr);
2363         if (unlikely(map_chg > map_commit)) {
2364                 /*
2365                  * The page was added to the reservation map between
2366                  * vma_needs_reservation and vma_commit_reservation.
2367                  * This indicates a race with hugetlb_reserve_pages.
2368                  * Adjust for the subpool count incremented above AND
2369                  * in hugetlb_reserve_pages for the same page.  Also,
2370                  * the reservation count added in hugetlb_reserve_pages
2371                  * no longer applies.
2372                  */
2373                 long rsv_adjust;
2374
2375                 rsv_adjust = hugepage_subpool_put_pages(spool, 1);
2376                 hugetlb_acct_memory(h, -rsv_adjust);
2377                 if (deferred_reserve)
2378                         hugetlb_cgroup_uncharge_page_rsvd(hstate_index(h),
2379                                         pages_per_huge_page(h), page);
2380         }
2381         return page;
2382
2383 out_uncharge_cgroup:
2384         hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
2385 out_uncharge_cgroup_reservation:
2386         if (deferred_reserve)
2387                 hugetlb_cgroup_uncharge_cgroup_rsvd(idx, pages_per_huge_page(h),
2388                                                     h_cg);
2389 out_subpool_put:
2390         if (map_chg || avoid_reserve)
2391                 hugepage_subpool_put_pages(spool, 1);
2392         vma_end_reservation(h, vma, addr);
2393         return ERR_PTR(-ENOSPC);
2394 }
2395
2396 int alloc_bootmem_huge_page(struct hstate *h)
2397         __attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
2398 int __alloc_bootmem_huge_page(struct hstate *h)
2399 {
2400         struct huge_bootmem_page *m;
2401         int nr_nodes, node;
2402
2403         for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
2404                 void *addr;
2405
2406                 addr = memblock_alloc_try_nid_raw(
2407                                 huge_page_size(h), huge_page_size(h),
2408                                 0, MEMBLOCK_ALLOC_ACCESSIBLE, node);
2409                 if (addr) {
2410                         /*
2411                          * Use the beginning of the huge page to store the
2412                          * huge_bootmem_page struct (until gather_bootmem
2413                          * puts them into the mem_map).
2414                          */
2415                         m = addr;
2416                         goto found;
2417                 }
2418         }
2419         return 0;
2420
2421 found:
2422         BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h)));
2423         /* Put them into a private list first because mem_map is not up yet */
2424         INIT_LIST_HEAD(&m->list);
2425         list_add(&m->list, &huge_boot_pages);
2426         m->hstate = h;
2427         return 1;
2428 }
2429
2430 static void __init prep_compound_huge_page(struct page *page,
2431                 unsigned int order)
2432 {
2433         if (unlikely(order > (MAX_ORDER - 1)))
2434                 prep_compound_gigantic_page(page, order);
2435         else
2436                 prep_compound_page(page, order);
2437 }
2438
2439 /* Put bootmem huge pages into the standard lists after mem_map is up */
2440 static void __init gather_bootmem_prealloc(void)
2441 {
2442         struct huge_bootmem_page *m;
2443
2444         list_for_each_entry(m, &huge_boot_pages, list) {
2445                 struct page *page = virt_to_page(m);
2446                 struct hstate *h = m->hstate;
2447
2448                 WARN_ON(page_count(page) != 1);
2449                 prep_compound_huge_page(page, huge_page_order(h));
2450                 WARN_ON(PageReserved(page));
2451                 prep_new_huge_page(h, page, page_to_nid(page));
2452                 put_page(page); /* free it into the hugepage allocator */
2453
2454                 /*
2455                  * If we had gigantic hugepages allocated at boot time, we need
2456                  * to restore the 'stolen' pages to totalram_pages in order to
2457                  * fix confusing memory reports from free(1) and another
2458                  * side-effects, like CommitLimit going negative.
2459                  */
2460                 if (hstate_is_gigantic(h))
2461                         adjust_managed_page_count(page, pages_per_huge_page(h));
2462                 cond_resched();
2463         }
2464 }
2465
2466 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
2467 {
2468         unsigned long i;
2469         nodemask_t *node_alloc_noretry;
2470
2471         if (!hstate_is_gigantic(h)) {
2472                 /*
2473                  * Bit mask controlling how hard we retry per-node allocations.
2474                  * Ignore errors as lower level routines can deal with
2475                  * node_alloc_noretry == NULL.  If this kmalloc fails at boot
2476                  * time, we are likely in bigger trouble.
2477                  */
2478                 node_alloc_noretry = kmalloc(sizeof(*node_alloc_noretry),
2479                                                 GFP_KERNEL);
2480         } else {
2481                 /* allocations done at boot time */
2482                 node_alloc_noretry = NULL;
2483         }
2484
2485         /* bit mask controlling how hard we retry per-node allocations */
2486         if (node_alloc_noretry)
2487                 nodes_clear(*node_alloc_noretry);
2488
2489         for (i = 0; i < h->max_huge_pages; ++i) {
2490                 if (hstate_is_gigantic(h)) {
2491                         if (hugetlb_cma_size) {
2492                                 pr_warn_once("HugeTLB: hugetlb_cma is enabled, skip boot time allocation\n");
2493                                 goto free;
2494                         }
2495                         if (!alloc_bootmem_huge_page(h))
2496                                 break;
2497                 } else if (!alloc_pool_huge_page(h,
2498                                          &node_states[N_MEMORY],
2499                                          node_alloc_noretry))
2500                         break;
2501                 cond_resched();
2502         }
2503         if (i < h->max_huge_pages) {
2504                 char buf[32];
2505
2506                 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
2507                 pr_warn("HugeTLB: allocating %lu of page size %s failed.  Only allocated %lu hugepages.\n",
2508                         h->max_huge_pages, buf, i);
2509                 h->max_huge_pages = i;
2510         }
2511 free:
2512         kfree(node_alloc_noretry);
2513 }
2514
2515 static void __init hugetlb_init_hstates(void)
2516 {
2517         struct hstate *h;
2518
2519         for_each_hstate(h) {
2520                 if (minimum_order > huge_page_order(h))
2521                         minimum_order = huge_page_order(h);
2522
2523                 /* oversize hugepages were init'ed in early boot */
2524                 if (!hstate_is_gigantic(h))
2525                         hugetlb_hstate_alloc_pages(h);
2526         }
2527         VM_BUG_ON(minimum_order == UINT_MAX);
2528 }
2529
2530 static void __init report_hugepages(void)
2531 {
2532         struct hstate *h;
2533
2534         for_each_hstate(h) {
2535                 char buf[32];
2536
2537                 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
2538                 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
2539                         buf, h->free_huge_pages);
2540         }
2541 }
2542
2543 #ifdef CONFIG_HIGHMEM
2544 static void try_to_free_low(struct hstate *h, unsigned long count,
2545                                                 nodemask_t *nodes_allowed)
2546 {
2547         int i;
2548
2549         if (hstate_is_gigantic(h))
2550                 return;
2551
2552         for_each_node_mask(i, *nodes_allowed) {
2553                 struct page *page, *next;
2554                 struct list_head *freel = &h->hugepage_freelists[i];
2555                 list_for_each_entry_safe(page, next, freel, lru) {
2556                         if (count >= h->nr_huge_pages)
2557                                 return;
2558                         if (PageHighMem(page))
2559                                 continue;
2560                         list_del(&page->lru);
2561                         update_and_free_page(h, page);
2562                         h->free_huge_pages--;
2563                         h->free_huge_pages_node[page_to_nid(page)]--;
2564                 }
2565         }
2566 }
2567 #else
2568 static inline void try_to_free_low(struct hstate *h, unsigned long count,
2569                                                 nodemask_t *nodes_allowed)
2570 {
2571 }
2572 #endif
2573
2574 /*
2575  * Increment or decrement surplus_huge_pages.  Keep node-specific counters
2576  * balanced by operating on them in a round-robin fashion.
2577  * Returns 1 if an adjustment was made.
2578  */
2579 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
2580                                 int delta)
2581 {
2582         int nr_nodes, node;
2583
2584         VM_BUG_ON(delta != -1 && delta != 1);
2585
2586         if (delta < 0) {
2587                 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
2588                         if (h->surplus_huge_pages_node[node])
2589                                 goto found;
2590                 }
2591         } else {
2592                 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2593                         if (h->surplus_huge_pages_node[node] <
2594                                         h->nr_huge_pages_node[node])
2595                                 goto found;
2596                 }
2597         }
2598         return 0;
2599
2600 found:
2601         h->surplus_huge_pages += delta;
2602         h->surplus_huge_pages_node[node] += delta;
2603         return 1;
2604 }
2605
2606 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
2607 static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid,
2608                               nodemask_t *nodes_allowed)
2609 {
2610         unsigned long min_count, ret;
2611         NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL);
2612
2613         /*
2614          * Bit mask controlling how hard we retry per-node allocations.
2615          * If we can not allocate the bit mask, do not attempt to allocate
2616          * the requested huge pages.
2617          */
2618         if (node_alloc_noretry)
2619                 nodes_clear(*node_alloc_noretry);
2620         else
2621                 return -ENOMEM;
2622
2623         spin_lock(&hugetlb_lock);
2624
2625         /*
2626          * Check for a node specific request.
2627          * Changing node specific huge page count may require a corresponding
2628          * change to the global count.  In any case, the passed node mask
2629          * (nodes_allowed) will restrict alloc/free to the specified node.
2630          */
2631         if (nid != NUMA_NO_NODE) {
2632                 unsigned long old_count = count;
2633
2634                 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
2635                 /*
2636                  * User may have specified a large count value which caused the
2637                  * above calculation to overflow.  In this case, they wanted
2638                  * to allocate as many huge pages as possible.  Set count to
2639                  * largest possible value to align with their intention.
2640                  */
2641                 if (count < old_count)
2642                         count = ULONG_MAX;
2643         }
2644
2645         /*
2646          * Gigantic pages runtime allocation depend on the capability for large
2647          * page range allocation.
2648          * If the system does not provide this feature, return an error when
2649          * the user tries to allocate gigantic pages but let the user free the
2650          * boottime allocated gigantic pages.
2651          */
2652         if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) {
2653                 if (count > persistent_huge_pages(h)) {
2654                         spin_unlock(&hugetlb_lock);
2655                         NODEMASK_FREE(node_alloc_noretry);
2656                         return -EINVAL;
2657                 }
2658                 /* Fall through to decrease pool */
2659         }
2660
2661         /*
2662          * Increase the pool size
2663          * First take pages out of surplus state.  Then make up the
2664          * remaining difference by allocating fresh huge pages.
2665          *
2666          * We might race with alloc_surplus_huge_page() here and be unable
2667          * to convert a surplus huge page to a normal huge page. That is
2668          * not critical, though, it just means the overall size of the
2669          * pool might be one hugepage larger than it needs to be, but
2670          * within all the constraints specified by the sysctls.
2671          */
2672         while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
2673                 if (!adjust_pool_surplus(h, nodes_allowed, -1))
2674                         break;
2675         }
2676
2677         while (count > persistent_huge_pages(h)) {
2678                 /*
2679                  * If this allocation races such that we no longer need the
2680                  * page, free_huge_page will handle it by freeing the page
2681                  * and reducing the surplus.
2682                  */
2683                 spin_unlock(&hugetlb_lock);
2684
2685                 /* yield cpu to avoid soft lockup */
2686                 cond_resched();
2687
2688                 ret = alloc_pool_huge_page(h, nodes_allowed,
2689                                                 node_alloc_noretry);
2690                 spin_lock(&hugetlb_lock);
2691                 if (!ret)
2692                         goto out;
2693
2694                 /* Bail for signals. Probably ctrl-c from user */
2695                 if (signal_pending(current))
2696                         goto out;
2697         }
2698
2699         /*
2700          * Decrease the pool size
2701          * First return free pages to the buddy allocator (being careful
2702          * to keep enough around to satisfy reservations).  Then place
2703          * pages into surplus state as needed so the pool will shrink
2704          * to the desired size as pages become free.
2705          *
2706          * By placing pages into the surplus state independent of the
2707          * overcommit value, we are allowing the surplus pool size to
2708          * exceed overcommit. There are few sane options here. Since
2709          * alloc_surplus_huge_page() is checking the global counter,
2710          * though, we'll note that we're not allowed to exceed surplus
2711          * and won't grow the pool anywhere else. Not until one of the
2712          * sysctls are changed, or the surplus pages go out of use.
2713          */
2714         min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
2715         min_count = max(count, min_count);
2716         try_to_free_low(h, min_count, nodes_allowed);
2717         while (min_count < persistent_huge_pages(h)) {
2718                 if (!free_pool_huge_page(h, nodes_allowed, 0))
2719                         break;
2720                 cond_resched_lock(&hugetlb_lock);
2721         }
2722         while (count < persistent_huge_pages(h)) {
2723                 if (!adjust_pool_surplus(h, nodes_allowed, 1))
2724                         break;
2725         }
2726 out:
2727         h->max_huge_pages = persistent_huge_pages(h);
2728         spin_unlock(&hugetlb_lock);
2729
2730         NODEMASK_FREE(node_alloc_noretry);
2731
2732         return 0;
2733 }
2734
2735 #define HSTATE_ATTR_RO(_name) \
2736         static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2737
2738 #define HSTATE_ATTR(_name) \
2739         static struct kobj_attribute _name##_attr = \
2740                 __ATTR(_name, 0644, _name##_show, _name##_store)
2741
2742 static struct kobject *hugepages_kobj;
2743 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2744
2745 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
2746
2747 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
2748 {
2749         int i;
2750
2751         for (i = 0; i < HUGE_MAX_HSTATE; i++)
2752                 if (hstate_kobjs[i] == kobj) {
2753                         if (nidp)
2754                                 *nidp = NUMA_NO_NODE;
2755                         return &hstates[i];
2756                 }
2757
2758         return kobj_to_node_hstate(kobj, nidp);
2759 }
2760
2761 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
2762                                         struct kobj_attribute *attr, char *buf)
2763 {
2764         struct hstate *h;
2765         unsigned long nr_huge_pages;
2766         int nid;
2767
2768         h = kobj_to_hstate(kobj, &nid);
2769         if (nid == NUMA_NO_NODE)
2770                 nr_huge_pages = h->nr_huge_pages;
2771         else
2772                 nr_huge_pages = h->nr_huge_pages_node[nid];
2773
2774         return sysfs_emit(buf, "%lu\n", nr_huge_pages);
2775 }
2776
2777 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
2778                                            struct hstate *h, int nid,
2779                                            unsigned long count, size_t len)
2780 {
2781         int err;
2782         nodemask_t nodes_allowed, *n_mask;
2783
2784         if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
2785                 return -EINVAL;
2786
2787         if (nid == NUMA_NO_NODE) {
2788                 /*
2789                  * global hstate attribute
2790                  */
2791                 if (!(obey_mempolicy &&
2792                                 init_nodemask_of_mempolicy(&nodes_allowed)))
2793                         n_mask = &node_states[N_MEMORY];
2794                 else
2795                         n_mask = &nodes_allowed;
2796         } else {
2797                 /*
2798                  * Node specific request.  count adjustment happens in
2799                  * set_max_huge_pages() after acquiring hugetlb_lock.
2800                  */
2801                 init_nodemask_of_node(&nodes_allowed, nid);
2802                 n_mask = &nodes_allowed;
2803         }
2804
2805         err = set_max_huge_pages(h, count, nid, n_mask);
2806
2807         return err ? err : len;
2808 }
2809
2810 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
2811                                          struct kobject *kobj, const char *buf,
2812                                          size_t len)
2813 {
2814         struct hstate *h;
2815         unsigned long count;
2816         int nid;
2817         int err;
2818
2819         err = kstrtoul(buf, 10, &count);
2820         if (err)
2821                 return err;
2822
2823         h = kobj_to_hstate(kobj, &nid);
2824         return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
2825 }
2826
2827 static ssize_t nr_hugepages_show(struct kobject *kobj,
2828                                        struct kobj_attribute *attr, char *buf)
2829 {
2830         return nr_hugepages_show_common(kobj, attr, buf);
2831 }
2832
2833 static ssize_t nr_hugepages_store(struct kobject *kobj,
2834                struct kobj_attribute *attr, const char *buf, size_t len)
2835 {
2836         return nr_hugepages_store_common(false, kobj, buf, len);
2837 }
2838 HSTATE_ATTR(nr_hugepages);
2839
2840 #ifdef CONFIG_NUMA
2841
2842 /*
2843  * hstate attribute for optionally mempolicy-based constraint on persistent
2844  * huge page alloc/free.
2845  */
2846 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
2847                                            struct kobj_attribute *attr,
2848                                            char *buf)
2849 {
2850         return nr_hugepages_show_common(kobj, attr, buf);
2851 }
2852
2853 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
2854                struct kobj_attribute *attr, const char *buf, size_t len)
2855 {
2856         return nr_hugepages_store_common(true, kobj, buf, len);
2857 }
2858 HSTATE_ATTR(nr_hugepages_mempolicy);
2859 #endif
2860
2861
2862 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
2863                                         struct kobj_attribute *attr, char *buf)
2864 {
2865         struct hstate *h = kobj_to_hstate(kobj, NULL);
2866         return sysfs_emit(buf, "%lu\n", h->nr_overcommit_huge_pages);
2867 }
2868
2869 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
2870                 struct kobj_attribute *attr, const char *buf, size_t count)
2871 {
2872         int err;
2873         unsigned long input;
2874         struct hstate *h = kobj_to_hstate(kobj, NULL);
2875
2876         if (hstate_is_gigantic(h))
2877                 return -EINVAL;
2878
2879         err = kstrtoul(buf, 10, &input);
2880         if (err)
2881                 return err;
2882
2883         spin_lock(&hugetlb_lock);
2884         h->nr_overcommit_huge_pages = input;
2885         spin_unlock(&hugetlb_lock);
2886
2887         return count;
2888 }
2889 HSTATE_ATTR(nr_overcommit_hugepages);
2890
2891 static ssize_t free_hugepages_show(struct kobject *kobj,
2892                                         struct kobj_attribute *attr, char *buf)
2893 {
2894         struct hstate *h;
2895         unsigned long free_huge_pages;
2896         int nid;
2897
2898         h = kobj_to_hstate(kobj, &nid);
2899         if (nid == NUMA_NO_NODE)
2900                 free_huge_pages = h->free_huge_pages;
2901         else
2902                 free_huge_pages = h->free_huge_pages_node[nid];
2903
2904         return sysfs_emit(buf, "%lu\n", free_huge_pages);
2905 }
2906 HSTATE_ATTR_RO(free_hugepages);
2907
2908 static ssize_t resv_hugepages_show(struct kobject *kobj,
2909                                         struct kobj_attribute *attr, char *buf)
2910 {
2911         struct hstate *h = kobj_to_hstate(kobj, NULL);
2912         return sysfs_emit(buf, "%lu\n", h->resv_huge_pages);
2913 }
2914 HSTATE_ATTR_RO(resv_hugepages);
2915
2916 static ssize_t surplus_hugepages_show(struct kobject *kobj,
2917                                         struct kobj_attribute *attr, char *buf)
2918 {
2919         struct hstate *h;
2920         unsigned long surplus_huge_pages;
2921         int nid;
2922
2923         h = kobj_to_hstate(kobj, &nid);
2924         if (nid == NUMA_NO_NODE)
2925                 surplus_huge_pages = h->surplus_huge_pages;
2926         else
2927                 surplus_huge_pages = h->surplus_huge_pages_node[nid];
2928
2929         return sysfs_emit(buf, "%lu\n", surplus_huge_pages);
2930 }
2931 HSTATE_ATTR_RO(surplus_hugepages);
2932
2933 static struct attribute *hstate_attrs[] = {
2934         &nr_hugepages_attr.attr,
2935         &nr_overcommit_hugepages_attr.attr,
2936         &free_hugepages_attr.attr,
2937         &resv_hugepages_attr.attr,
2938         &surplus_hugepages_attr.attr,
2939 #ifdef CONFIG_NUMA
2940         &nr_hugepages_mempolicy_attr.attr,
2941 #endif
2942         NULL,
2943 };
2944
2945 static const struct attribute_group hstate_attr_group = {
2946         .attrs = hstate_attrs,
2947 };
2948
2949 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
2950                                     struct kobject **hstate_kobjs,
2951                                     const struct attribute_group *hstate_attr_group)
2952 {
2953         int retval;
2954         int hi = hstate_index(h);
2955
2956         hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
2957         if (!hstate_kobjs[hi])
2958                 return -ENOMEM;
2959
2960         retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
2961         if (retval) {
2962                 kobject_put(hstate_kobjs[hi]);
2963                 hstate_kobjs[hi] = NULL;
2964         }
2965
2966         return retval;
2967 }
2968
2969 static void __init hugetlb_sysfs_init(void)
2970 {
2971         struct hstate *h;
2972         int err;
2973
2974         hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
2975         if (!hugepages_kobj)
2976                 return;
2977
2978         for_each_hstate(h) {
2979                 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
2980                                          hstate_kobjs, &hstate_attr_group);
2981                 if (err)
2982                         pr_err("HugeTLB: Unable to add hstate %s", h->name);
2983         }
2984 }
2985
2986 #ifdef CONFIG_NUMA
2987
2988 /*
2989  * node_hstate/s - associate per node hstate attributes, via their kobjects,
2990  * with node devices in node_devices[] using a parallel array.  The array
2991  * index of a node device or _hstate == node id.
2992  * This is here to avoid any static dependency of the node device driver, in
2993  * the base kernel, on the hugetlb module.
2994  */
2995 struct node_hstate {
2996         struct kobject          *hugepages_kobj;
2997         struct kobject          *hstate_kobjs[HUGE_MAX_HSTATE];
2998 };
2999 static struct node_hstate node_hstates[MAX_NUMNODES];
3000
3001 /*
3002  * A subset of global hstate attributes for node devices
3003  */
3004 static struct attribute *per_node_hstate_attrs[] = {
3005         &nr_hugepages_attr.attr,
3006         &free_hugepages_attr.attr,
3007         &surplus_hugepages_attr.attr,
3008         NULL,
3009 };
3010
3011 static const struct attribute_group per_node_hstate_attr_group = {
3012         .attrs = per_node_hstate_attrs,
3013 };
3014
3015 /*
3016  * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
3017  * Returns node id via non-NULL nidp.
3018  */
3019 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
3020 {
3021         int nid;
3022
3023         for (nid = 0; nid < nr_node_ids; nid++) {
3024                 struct node_hstate *nhs = &node_hstates[nid];
3025                 int i;
3026                 for (i = 0; i < HUGE_MAX_HSTATE; i++)
3027                         if (nhs->hstate_kobjs[i] == kobj) {
3028                                 if (nidp)
3029                                         *nidp = nid;
3030                                 return &hstates[i];
3031                         }
3032         }
3033
3034         BUG();
3035         return NULL;
3036 }
3037
3038 /*
3039  * Unregister hstate attributes from a single node device.
3040  * No-op if no hstate attributes attached.
3041  */
3042 static void hugetlb_unregister_node(struct node *node)
3043 {
3044         struct hstate *h;
3045         struct node_hstate *nhs = &node_hstates[node->dev.id];
3046
3047         if (!nhs->hugepages_kobj)
3048                 return;         /* no hstate attributes */
3049
3050         for_each_hstate(h) {
3051                 int idx = hstate_index(h);
3052                 if (nhs->hstate_kobjs[idx]) {
3053                         kobject_put(nhs->hstate_kobjs[idx]);
3054                         nhs->hstate_kobjs[idx] = NULL;
3055                 }
3056         }
3057
3058         kobject_put(nhs->hugepages_kobj);
3059         nhs->hugepages_kobj = NULL;
3060 }
3061
3062
3063 /*
3064  * Register hstate attributes for a single node device.
3065  * No-op if attributes already registered.
3066  */
3067 static void hugetlb_register_node(struct node *node)
3068 {
3069         struct hstate *h;
3070         struct node_hstate *nhs = &node_hstates[node->dev.id];
3071         int err;
3072
3073         if (nhs->hugepages_kobj)
3074                 return;         /* already allocated */
3075
3076         nhs->hugepages_kobj = kobject_create_and_add("hugepages",
3077                                                         &node->dev.kobj);
3078         if (!nhs->hugepages_kobj)
3079                 return;
3080
3081         for_each_hstate(h) {
3082                 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
3083                                                 nhs->hstate_kobjs,
3084                                                 &per_node_hstate_attr_group);
3085                 if (err) {
3086                         pr_err("HugeTLB: Unable to add hstate %s for node %d\n",
3087                                 h->name, node->dev.id);
3088                         hugetlb_unregister_node(node);
3089                         break;
3090                 }
3091         }
3092 }
3093
3094 /*
3095  * hugetlb init time:  register hstate attributes for all registered node
3096  * devices of nodes that have memory.  All on-line nodes should have
3097  * registered their associated device by this time.
3098  */
3099 static void __init hugetlb_register_all_nodes(void)
3100 {
3101         int nid;
3102
3103         for_each_node_state(nid, N_MEMORY) {
3104                 struct node *node = node_devices[nid];
3105                 if (node->dev.id == nid)
3106                         hugetlb_register_node(node);
3107         }
3108
3109         /*
3110          * Let the node device driver know we're here so it can
3111          * [un]register hstate attributes on node hotplug.
3112          */
3113         register_hugetlbfs_with_node(hugetlb_register_node,
3114                                      hugetlb_unregister_node);
3115 }
3116 #else   /* !CONFIG_NUMA */
3117
3118 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
3119 {
3120         BUG();
3121         if (nidp)
3122                 *nidp = -1;
3123         return NULL;
3124 }
3125
3126 static void hugetlb_register_all_nodes(void) { }
3127
3128 #endif
3129
3130 static int __init hugetlb_init(void)
3131 {
3132         int i;
3133
3134         BUILD_BUG_ON(sizeof_field(struct page, private) * BITS_PER_BYTE <
3135                         __NR_HPAGEFLAGS);
3136
3137         if (!hugepages_supported()) {
3138                 if (hugetlb_max_hstate || default_hstate_max_huge_pages)
3139                         pr_warn("HugeTLB: huge pages not supported, ignoring associated command-line parameters\n");
3140                 return 0;
3141         }
3142
3143         /*
3144          * Make sure HPAGE_SIZE (HUGETLB_PAGE_ORDER) hstate exists.  Some
3145          * architectures depend on setup being done here.
3146          */
3147         hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
3148         if (!parsed_default_hugepagesz) {
3149                 /*
3150                  * If we did not parse a default huge page size, set
3151                  * default_hstate_idx to HPAGE_SIZE hstate. And, if the
3152                  * number of huge pages for this default size was implicitly
3153                  * specified, set that here as well.
3154                  * Note that the implicit setting will overwrite an explicit
3155                  * setting.  A warning will be printed in this case.
3156                  */
3157                 default_hstate_idx = hstate_index(size_to_hstate(HPAGE_SIZE));
3158                 if (default_hstate_max_huge_pages) {
3159                         if (default_hstate.max_huge_pages) {
3160                                 char buf[32];
3161
3162                                 string_get_size(huge_page_size(&default_hstate),
3163                                         1, STRING_UNITS_2, buf, 32);
3164                                 pr_warn("HugeTLB: Ignoring hugepages=%lu associated with %s page size\n",
3165                                         default_hstate.max_huge_pages, buf);
3166                                 pr_warn("HugeTLB: Using hugepages=%lu for number of default huge pages\n",
3167                                         default_hstate_max_huge_pages);
3168                         }
3169                         default_hstate.max_huge_pages =
3170                                 default_hstate_max_huge_pages;
3171                 }
3172         }
3173
3174         hugetlb_cma_check();
3175         hugetlb_init_hstates();
3176         gather_bootmem_prealloc();
3177         report_hugepages();
3178
3179         hugetlb_sysfs_init();
3180         hugetlb_register_all_nodes();
3181         hugetlb_cgroup_file_init();
3182
3183 #ifdef CONFIG_SMP
3184         num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
3185 #else
3186         num_fault_mutexes = 1;
3187 #endif
3188         hugetlb_fault_mutex_table =
3189                 kmalloc_array(num_fault_mutexes, sizeof(struct mutex),
3190                               GFP_KERNEL);
3191         BUG_ON(!hugetlb_fault_mutex_table);
3192
3193         for (i = 0; i < num_fault_mutexes; i++)
3194                 mutex_init(&hugetlb_fault_mutex_table[i]);
3195         return 0;
3196 }
3197 subsys_initcall(hugetlb_init);
3198
3199 /* Overwritten by architectures with more huge page sizes */
3200 bool __init __attribute((weak)) arch_hugetlb_valid_size(unsigned long size)
3201 {
3202         return size == HPAGE_SIZE;
3203 }
3204
3205 void __init hugetlb_add_hstate(unsigned int order)
3206 {
3207         struct hstate *h;
3208         unsigned long i;
3209
3210         if (size_to_hstate(PAGE_SIZE << order)) {
3211                 return;
3212         }
3213         BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
3214         BUG_ON(order == 0);
3215         h = &hstates[hugetlb_max_hstate++];
3216         h->order = order;
3217         h->mask = ~(huge_page_size(h) - 1);
3218         for (i = 0; i < MAX_NUMNODES; ++i)
3219                 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
3220         INIT_LIST_HEAD(&h->hugepage_activelist);
3221         h->next_nid_to_alloc = first_memory_node;
3222         h->next_nid_to_free = first_memory_node;
3223         snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
3224                                         huge_page_size(h)/1024);
3225
3226         parsed_hstate = h;
3227 }
3228
3229 /*
3230  * hugepages command line processing
3231  * hugepages normally follows a valid hugepagsz or default_hugepagsz
3232  * specification.  If not, ignore the hugepages value.  hugepages can also
3233  * be the first huge page command line  option in which case it implicitly
3234  * specifies the number of huge pages for the default size.
3235  */
3236 static int __init hugepages_setup(char *s)
3237 {
3238         unsigned long *mhp;
3239         static unsigned long *last_mhp;
3240
3241         if (!parsed_valid_hugepagesz) {
3242                 pr_warn("HugeTLB: hugepages=%s does not follow a valid hugepagesz, ignoring\n", s);
3243                 parsed_valid_hugepagesz = true;
3244                 return 0;
3245         }
3246
3247         /*
3248          * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter
3249          * yet, so this hugepages= parameter goes to the "default hstate".
3250          * Otherwise, it goes with the previously parsed hugepagesz or
3251          * default_hugepagesz.
3252          */
3253         else if (!hugetlb_max_hstate)
3254                 mhp = &default_hstate_max_huge_pages;
3255         else
3256                 mhp = &parsed_hstate->max_huge_pages;
3257
3258         if (mhp == last_mhp) {
3259                 pr_warn("HugeTLB: hugepages= specified twice without interleaving hugepagesz=, ignoring hugepages=%s\n", s);
3260                 return 0;
3261         }
3262
3263         if (sscanf(s, "%lu", mhp) <= 0)
3264                 *mhp = 0;
3265
3266         /*
3267          * Global state is always initialized later in hugetlb_init.
3268          * But we need to allocate gigantic hstates here early to still
3269          * use the bootmem allocator.
3270          */
3271         if (hugetlb_max_hstate && hstate_is_gigantic(parsed_hstate))
3272                 hugetlb_hstate_alloc_pages(parsed_hstate);
3273
3274         last_mhp = mhp;
3275
3276         return 1;
3277 }
3278 __setup("hugepages=", hugepages_setup);
3279
3280 /*
3281  * hugepagesz command line processing
3282  * A specific huge page size can only be specified once with hugepagesz.
3283  * hugepagesz is followed by hugepages on the command line.  The global
3284  * variable 'parsed_valid_hugepagesz' is used to determine if prior
3285  * hugepagesz argument was valid.
3286  */
3287 static int __init hugepagesz_setup(char *s)
3288 {
3289         unsigned long size;
3290         struct hstate *h;
3291
3292         parsed_valid_hugepagesz = false;
3293         size = (unsigned long)memparse(s, NULL);
3294
3295         if (!arch_hugetlb_valid_size(size)) {
3296                 pr_err("HugeTLB: unsupported hugepagesz=%s\n", s);
3297                 return 0;
3298         }
3299
3300         h = size_to_hstate(size);
3301         if (h) {
3302                 /*
3303                  * hstate for this size already exists.  This is normally
3304                  * an error, but is allowed if the existing hstate is the
3305                  * default hstate.  More specifically, it is only allowed if
3306                  * the number of huge pages for the default hstate was not
3307                  * previously specified.
3308                  */
3309                 if (!parsed_default_hugepagesz ||  h != &default_hstate ||
3310                     default_hstate.max_huge_pages) {
3311                         pr_warn("HugeTLB: hugepagesz=%s specified twice, ignoring\n", s);
3312                         return 0;
3313                 }
3314
3315                 /*
3316                  * No need to call hugetlb_add_hstate() as hstate already
3317                  * exists.  But, do set parsed_hstate so that a following
3318                  * hugepages= parameter will be applied to this hstate.
3319                  */
3320                 parsed_hstate = h;
3321                 parsed_valid_hugepagesz = true;
3322                 return 1;
3323         }
3324
3325         hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
3326         parsed_valid_hugepagesz = true;
3327         return 1;
3328 }
3329 __setup("hugepagesz=", hugepagesz_setup);
3330
3331 /*
3332  * default_hugepagesz command line input
3333  * Only one instance of default_hugepagesz allowed on command line.
3334  */
3335 static int __init default_hugepagesz_setup(char *s)
3336 {
3337         unsigned long size;
3338
3339         parsed_valid_hugepagesz = false;
3340         if (parsed_default_hugepagesz) {
3341                 pr_err("HugeTLB: default_hugepagesz previously specified, ignoring %s\n", s);
3342                 return 0;
3343         }
3344
3345         size = (unsigned long)memparse(s, NULL);
3346
3347         if (!arch_hugetlb_valid_size(size)) {
3348                 pr_err("HugeTLB: unsupported default_hugepagesz=%s\n", s);
3349                 return 0;
3350         }
3351
3352         hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
3353         parsed_valid_hugepagesz = true;
3354         parsed_default_hugepagesz = true;
3355         default_hstate_idx = hstate_index(size_to_hstate(size));
3356
3357         /*
3358          * The number of default huge pages (for this size) could have been
3359          * specified as the first hugetlb parameter: hugepages=X.  If so,
3360          * then default_hstate_max_huge_pages is set.  If the default huge
3361          * page size is gigantic (>= MAX_ORDER), then the pages must be
3362          * allocated here from bootmem allocator.
3363          */
3364         if (default_hstate_max_huge_pages) {
3365                 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
3366                 if (hstate_is_gigantic(&default_hstate))
3367                         hugetlb_hstate_alloc_pages(&default_hstate);
3368                 default_hstate_max_huge_pages = 0;
3369         }
3370
3371         return 1;
3372 }
3373 __setup("default_hugepagesz=", default_hugepagesz_setup);
3374
3375 static unsigned int allowed_mems_nr(struct hstate *h)
3376 {
3377         int node;
3378         unsigned int nr = 0;
3379         nodemask_t *mpol_allowed;
3380         unsigned int *array = h->free_huge_pages_node;
3381         gfp_t gfp_mask = htlb_alloc_mask(h);
3382
3383         mpol_allowed = policy_nodemask_current(gfp_mask);
3384
3385         for_each_node_mask(node, cpuset_current_mems_allowed) {
3386                 if (!mpol_allowed || node_isset(node, *mpol_allowed))
3387                         nr += array[node];
3388         }
3389
3390         return nr;
3391 }
3392
3393 #ifdef CONFIG_SYSCTL
3394 static int proc_hugetlb_doulongvec_minmax(struct ctl_table *table, int write,
3395                                           void *buffer, size_t *length,
3396                                           loff_t *ppos, unsigned long *out)
3397 {
3398         struct ctl_table dup_table;
3399
3400         /*
3401          * In order to avoid races with __do_proc_doulongvec_minmax(), we
3402          * can duplicate the @table and alter the duplicate of it.
3403          */
3404         dup_table = *table;
3405         dup_table.data = out;
3406
3407         return proc_doulongvec_minmax(&dup_table, write, buffer, length, ppos);
3408 }
3409
3410 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
3411                          struct ctl_table *table, int write,
3412                          void *buffer, size_t *length, loff_t *ppos)
3413 {
3414         struct hstate *h = &default_hstate;
3415         unsigned long tmp = h->max_huge_pages;
3416         int ret;
3417
3418         if (!hugepages_supported())
3419                 return -EOPNOTSUPP;
3420
3421         ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
3422                                              &tmp);
3423         if (ret)
3424                 goto out;
3425
3426         if (write)
3427                 ret = __nr_hugepages_store_common(obey_mempolicy, h,
3428                                                   NUMA_NO_NODE, tmp, *length);
3429 out:
3430         return ret;
3431 }
3432
3433 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
3434                           void *buffer, size_t *length, loff_t *ppos)
3435 {
3436
3437         return hugetlb_sysctl_handler_common(false, table, write,
3438                                                         buffer, length, ppos);
3439 }
3440
3441 #ifdef CONFIG_NUMA
3442 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
3443                           void *buffer, size_t *length, loff_t *ppos)
3444 {
3445         return hugetlb_sysctl_handler_common(true, table, write,
3446                                                         buffer, length, ppos);
3447 }
3448 #endif /* CONFIG_NUMA */
3449
3450 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
3451                 void *buffer, size_t *length, loff_t *ppos)
3452 {
3453         struct hstate *h = &default_hstate;
3454         unsigned long tmp;
3455         int ret;
3456
3457         if (!hugepages_supported())
3458                 return -EOPNOTSUPP;
3459
3460         tmp = h->nr_overcommit_huge_pages;
3461
3462         if (write && hstate_is_gigantic(h))
3463                 return -EINVAL;
3464
3465         ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
3466                                              &tmp);
3467         if (ret)
3468                 goto out;
3469
3470         if (write) {
3471                 spin_lock(&hugetlb_lock);
3472                 h->nr_overcommit_huge_pages = tmp;
3473                 spin_unlock(&hugetlb_lock);
3474         }
3475 out:
3476         return ret;
3477 }
3478
3479 #endif /* CONFIG_SYSCTL */
3480
3481 void hugetlb_report_meminfo(struct seq_file *m)
3482 {
3483         struct hstate *h;
3484         unsigned long total = 0;
3485
3486         if (!hugepages_supported())
3487                 return;
3488
3489         for_each_hstate(h) {
3490                 unsigned long count = h->nr_huge_pages;
3491
3492                 total += huge_page_size(h) * count;
3493
3494                 if (h == &default_hstate)
3495                         seq_printf(m,
3496                                    "HugePages_Total:   %5lu\n"
3497                                    "HugePages_Free:    %5lu\n"
3498                                    "HugePages_Rsvd:    %5lu\n"
3499                                    "HugePages_Surp:    %5lu\n"
3500                                    "Hugepagesize:   %8lu kB\n",
3501                                    count,
3502                                    h->free_huge_pages,
3503                                    h->resv_huge_pages,
3504                                    h->surplus_huge_pages,
3505                                    huge_page_size(h) / SZ_1K);
3506         }
3507
3508         seq_printf(m, "Hugetlb:        %8lu kB\n", total / SZ_1K);
3509 }
3510
3511 int hugetlb_report_node_meminfo(char *buf, int len, int nid)
3512 {
3513         struct hstate *h = &default_hstate;
3514
3515         if (!hugepages_supported())
3516                 return 0;
3517
3518         return sysfs_emit_at(buf, len,
3519                              "Node %d HugePages_Total: %5u\n"
3520                              "Node %d HugePages_Free:  %5u\n"
3521                              "Node %d HugePages_Surp:  %5u\n",
3522                              nid, h->nr_huge_pages_node[nid],
3523                              nid, h->free_huge_pages_node[nid],
3524                              nid, h->surplus_huge_pages_node[nid]);
3525 }
3526
3527 void hugetlb_show_meminfo(void)
3528 {
3529         struct hstate *h;
3530         int nid;
3531
3532         if (!hugepages_supported())
3533                 return;
3534
3535         for_each_node_state(nid, N_MEMORY)
3536                 for_each_hstate(h)
3537                         pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
3538                                 nid,
3539                                 h->nr_huge_pages_node[nid],
3540                                 h->free_huge_pages_node[nid],
3541                                 h->surplus_huge_pages_node[nid],
3542                                 huge_page_size(h) / SZ_1K);
3543 }
3544
3545 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
3546 {
3547         seq_printf(m, "HugetlbPages:\t%8lu kB\n",
3548                    atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
3549 }
3550
3551 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
3552 unsigned long hugetlb_total_pages(void)
3553 {
3554         struct hstate *h;
3555         unsigned long nr_total_pages = 0;
3556
3557         for_each_hstate(h)
3558                 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
3559         return nr_total_pages;
3560 }
3561
3562 static int hugetlb_acct_memory(struct hstate *h, long delta)
3563 {
3564         int ret = -ENOMEM;
3565
3566         if (!delta)
3567                 return 0;
3568
3569         spin_lock(&hugetlb_lock);
3570         /*
3571          * When cpuset is configured, it breaks the strict hugetlb page
3572          * reservation as the accounting is done on a global variable. Such
3573          * reservation is completely rubbish in the presence of cpuset because
3574          * the reservation is not checked against page availability for the
3575          * current cpuset. Application can still potentially OOM'ed by kernel
3576          * with lack of free htlb page in cpuset that the task is in.
3577          * Attempt to enforce strict accounting with cpuset is almost
3578          * impossible (or too ugly) because cpuset is too fluid that
3579          * task or memory node can be dynamically moved between cpusets.
3580          *
3581          * The change of semantics for shared hugetlb mapping with cpuset is
3582          * undesirable. However, in order to preserve some of the semantics,
3583          * we fall back to check against current free page availability as
3584          * a best attempt and hopefully to minimize the impact of changing
3585          * semantics that cpuset has.
3586          *
3587          * Apart from cpuset, we also have memory policy mechanism that
3588          * also determines from which node the kernel will allocate memory
3589          * in a NUMA system. So similar to cpuset, we also should consider
3590          * the memory policy of the current task. Similar to the description
3591          * above.
3592          */
3593         if (delta > 0) {
3594                 if (gather_surplus_pages(h, delta) < 0)
3595                         goto out;
3596
3597                 if (delta > allowed_mems_nr(h)) {
3598                         return_unused_surplus_pages(h, delta);
3599                         goto out;
3600                 }
3601         }
3602
3603         ret = 0;
3604         if (delta < 0)
3605                 return_unused_surplus_pages(h, (unsigned long) -delta);
3606
3607 out:
3608         spin_unlock(&hugetlb_lock);
3609         return ret;
3610 }
3611
3612 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
3613 {
3614         struct resv_map *resv = vma_resv_map(vma);
3615
3616         /*
3617          * This new VMA should share its siblings reservation map if present.
3618          * The VMA will only ever have a valid reservation map pointer where
3619          * it is being copied for another still existing VMA.  As that VMA
3620          * has a reference to the reservation map it cannot disappear until
3621          * after this open call completes.  It is therefore safe to take a
3622          * new reference here without additional locking.
3623          */
3624         if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3625                 kref_get(&resv->refs);
3626 }
3627
3628 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
3629 {
3630         struct hstate *h = hstate_vma(vma);
3631         struct resv_map *resv = vma_resv_map(vma);
3632         struct hugepage_subpool *spool = subpool_vma(vma);
3633         unsigned long reserve, start, end;
3634         long gbl_reserve;
3635
3636         if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3637                 return;
3638
3639         start = vma_hugecache_offset(h, vma, vma->vm_start);
3640         end = vma_hugecache_offset(h, vma, vma->vm_end);
3641
3642         reserve = (end - start) - region_count(resv, start, end);
3643         hugetlb_cgroup_uncharge_counter(resv, start, end);
3644         if (reserve) {
3645                 /*
3646                  * Decrement reserve counts.  The global reserve count may be
3647                  * adjusted if the subpool has a minimum size.
3648                  */
3649                 gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
3650                 hugetlb_acct_memory(h, -gbl_reserve);
3651         }
3652
3653         kref_put(&resv->refs, resv_map_release);
3654 }
3655
3656 static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
3657 {
3658         if (addr & ~(huge_page_mask(hstate_vma(vma))))
3659                 return -EINVAL;
3660         return 0;
3661 }
3662
3663 static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma)
3664 {
3665         return huge_page_size(hstate_vma(vma));
3666 }
3667
3668 /*
3669  * We cannot handle pagefaults against hugetlb pages at all.  They cause
3670  * handle_mm_fault() to try to instantiate regular-sized pages in the
3671  * hugepage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
3672  * this far.
3673  */
3674 static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf)
3675 {
3676         BUG();
3677         return 0;
3678 }
3679
3680 /*
3681  * When a new function is introduced to vm_operations_struct and added
3682  * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops.
3683  * This is because under System V memory model, mappings created via
3684  * shmget/shmat with "huge page" specified are backed by hugetlbfs files,
3685  * their original vm_ops are overwritten with shm_vm_ops.
3686  */
3687 const struct vm_operations_struct hugetlb_vm_ops = {
3688         .fault = hugetlb_vm_op_fault,
3689         .open = hugetlb_vm_op_open,
3690         .close = hugetlb_vm_op_close,
3691         .may_split = hugetlb_vm_op_split,
3692         .pagesize = hugetlb_vm_op_pagesize,
3693 };
3694
3695 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
3696                                 int writable)
3697 {
3698         pte_t entry;
3699
3700         if (writable) {
3701                 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
3702                                          vma->vm_page_prot)));
3703         } else {
3704                 entry = huge_pte_wrprotect(mk_huge_pte(page,
3705                                            vma->vm_page_prot));
3706         }
3707         entry = pte_mkyoung(entry);
3708         entry = pte_mkhuge(entry);
3709         entry = arch_make_huge_pte(entry, vma, page, writable);
3710
3711         return entry;
3712 }
3713
3714 static void set_huge_ptep_writable(struct vm_area_struct *vma,
3715                                    unsigned long address, pte_t *ptep)
3716 {
3717         pte_t entry;
3718
3719         entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
3720         if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
3721                 update_mmu_cache(vma, address, ptep);
3722 }
3723
3724 bool is_hugetlb_entry_migration(pte_t pte)
3725 {
3726         swp_entry_t swp;
3727
3728         if (huge_pte_none(pte) || pte_present(pte))
3729                 return false;
3730         swp = pte_to_swp_entry(pte);
3731         if (is_migration_entry(swp))
3732                 return true;
3733         else
3734                 return false;
3735 }
3736
3737 static bool is_hugetlb_entry_hwpoisoned(pte_t pte)
3738 {
3739         swp_entry_t swp;
3740
3741         if (huge_pte_none(pte) || pte_present(pte))
3742                 return false;
3743         swp = pte_to_swp_entry(pte);
3744         if (is_hwpoison_entry(swp))
3745                 return true;
3746         else
3747                 return false;
3748 }
3749
3750 static void
3751 hugetlb_install_page(struct vm_area_struct *vma, pte_t *ptep, unsigned long addr,
3752                      struct page *new_page)
3753 {
3754         __SetPageUptodate(new_page);
3755         set_huge_pte_at(vma->vm_mm, addr, ptep, make_huge_pte(vma, new_page, 1));
3756         hugepage_add_new_anon_rmap(new_page, vma, addr);
3757         hugetlb_count_add(pages_per_huge_page(hstate_vma(vma)), vma->vm_mm);
3758         ClearHPageRestoreReserve(new_page);
3759         SetHPageMigratable(new_page);
3760 }
3761
3762 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
3763                             struct vm_area_struct *vma)
3764 {
3765         pte_t *src_pte, *dst_pte, entry, dst_entry;
3766         struct page *ptepage;
3767         unsigned long addr;
3768         bool cow = is_cow_mapping(vma->vm_flags);
3769         struct hstate *h = hstate_vma(vma);
3770         unsigned long sz = huge_page_size(h);
3771         unsigned long npages = pages_per_huge_page(h);
3772         struct address_space *mapping = vma->vm_file->f_mapping;
3773         struct mmu_notifier_range range;
3774         int ret = 0;
3775
3776         if (cow) {
3777                 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, src,
3778                                         vma->vm_start,
3779                                         vma->vm_end);
3780                 mmu_notifier_invalidate_range_start(&range);
3781         } else {
3782                 /*
3783                  * For shared mappings i_mmap_rwsem must be held to call
3784                  * huge_pte_alloc, otherwise the returned ptep could go
3785                  * away if part of a shared pmd and another thread calls
3786                  * huge_pmd_unshare.
3787                  */
3788                 i_mmap_lock_read(mapping);
3789         }
3790
3791         for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
3792                 spinlock_t *src_ptl, *dst_ptl;
3793                 src_pte = huge_pte_offset(src, addr, sz);
3794                 if (!src_pte)
3795                         continue;
3796                 dst_pte = huge_pte_alloc(dst, vma, addr, sz);
3797                 if (!dst_pte) {
3798                         ret = -ENOMEM;
3799                         break;
3800                 }
3801
3802                 /*
3803                  * If the pagetables are shared don't copy or take references.
3804                  * dst_pte == src_pte is the common case of src/dest sharing.
3805                  *
3806                  * However, src could have 'unshared' and dst shares with
3807                  * another vma.  If dst_pte !none, this implies sharing.
3808                  * Check here before taking page table lock, and once again
3809                  * after taking the lock below.
3810                  */
3811                 dst_entry = huge_ptep_get(dst_pte);
3812                 if ((dst_pte == src_pte) || !huge_pte_none(dst_entry))
3813                         continue;
3814
3815                 dst_ptl = huge_pte_lock(h, dst, dst_pte);
3816                 src_ptl = huge_pte_lockptr(h, src, src_pte);
3817                 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
3818                 entry = huge_ptep_get(src_pte);
3819                 dst_entry = huge_ptep_get(dst_pte);
3820 again:
3821                 if (huge_pte_none(entry) || !huge_pte_none(dst_entry)) {
3822                         /*
3823                          * Skip if src entry none.  Also, skip in the
3824                          * unlikely case dst entry !none as this implies
3825                          * sharing with another vma.
3826                          */
3827                         ;
3828                 } else if (unlikely(is_hugetlb_entry_migration(entry) ||
3829                                     is_hugetlb_entry_hwpoisoned(entry))) {
3830                         swp_entry_t swp_entry = pte_to_swp_entry(entry);
3831
3832                         if (is_write_migration_entry(swp_entry) && cow) {
3833                                 /*
3834                                  * COW mappings require pages in both
3835                                  * parent and child to be set to read.
3836                                  */
3837                                 make_migration_entry_read(&swp_entry);
3838                                 entry = swp_entry_to_pte(swp_entry);
3839                                 set_huge_swap_pte_at(src, addr, src_pte,
3840                                                      entry, sz);
3841                         }
3842                         set_huge_swap_pte_at(dst, addr, dst_pte, entry, sz);
3843                 } else {
3844                         entry = huge_ptep_get(src_pte);
3845                         ptepage = pte_page(entry);
3846                         get_page(ptepage);
3847
3848                         /*
3849                          * This is a rare case where we see pinned hugetlb
3850                          * pages while they're prone to COW.  We need to do the
3851                          * COW earlier during fork.
3852                          *
3853                          * When pre-allocating the page or copying data, we
3854                          * need to be without the pgtable locks since we could
3855                          * sleep during the process.
3856                          */
3857                         if (unlikely(page_needs_cow_for_dma(vma, ptepage))) {
3858                                 pte_t src_pte_old = entry;
3859                                 struct page *new;
3860
3861                                 spin_unlock(src_ptl);
3862                                 spin_unlock(dst_ptl);
3863                                 /* Do not use reserve as it's private owned */
3864                                 new = alloc_huge_page(vma, addr, 1);
3865                                 if (IS_ERR(new)) {
3866                                         put_page(ptepage);
3867                                         ret = PTR_ERR(new);
3868                                         break;
3869                                 }
3870                                 copy_user_huge_page(new, ptepage, addr, vma,
3871                                                     npages);
3872                                 put_page(ptepage);
3873
3874                                 /* Install the new huge page if src pte stable */
3875                                 dst_ptl = huge_pte_lock(h, dst, dst_pte);
3876                                 src_ptl = huge_pte_lockptr(h, src, src_pte);
3877                                 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
3878                                 entry = huge_ptep_get(src_pte);
3879                                 if (!pte_same(src_pte_old, entry)) {
3880                                         put_page(new);
3881                                         /* dst_entry won't change as in child */
3882                                         goto again;
3883                                 }
3884                                 hugetlb_install_page(vma, dst_pte, addr, new);
3885                                 spin_unlock(src_ptl);
3886                                 spin_unlock(dst_ptl);
3887                                 continue;
3888                         }
3889
3890                         if (cow) {
3891                                 /*
3892                                  * No need to notify as we are downgrading page
3893                                  * table protection not changing it to point
3894                                  * to a new page.
3895                                  *
3896                                  * See Documentation/vm/mmu_notifier.rst
3897                                  */
3898                                 huge_ptep_set_wrprotect(src, addr, src_pte);
3899                         }
3900
3901                         page_dup_rmap(ptepage, true);
3902                         set_huge_pte_at(dst, addr, dst_pte, entry);
3903                         hugetlb_count_add(npages, dst);
3904                 }
3905                 spin_unlock(src_ptl);
3906                 spin_unlock(dst_ptl);
3907         }
3908
3909         if (cow)
3910                 mmu_notifier_invalidate_range_end(&range);
3911         else
3912                 i_mmap_unlock_read(mapping);
3913
3914         return ret;
3915 }
3916
3917 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
3918                             unsigned long start, unsigned long end,
3919                             struct page *ref_page)
3920 {
3921         struct mm_struct *mm = vma->vm_mm;
3922         unsigned long address;
3923         pte_t *ptep;
3924         pte_t pte;
3925         spinlock_t *ptl;
3926         struct page *page;
3927         struct hstate *h = hstate_vma(vma);
3928         unsigned long sz = huge_page_size(h);
3929         struct mmu_notifier_range range;
3930
3931         WARN_ON(!is_vm_hugetlb_page(vma));
3932         BUG_ON(start & ~huge_page_mask(h));
3933         BUG_ON(end & ~huge_page_mask(h));
3934
3935         /*
3936          * This is a hugetlb vma, all the pte entries should point
3937          * to huge page.
3938          */
3939         tlb_change_page_size(tlb, sz);
3940         tlb_start_vma(tlb, vma);
3941
3942         /*
3943          * If sharing possible, alert mmu notifiers of worst case.
3944          */
3945         mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, mm, start,
3946                                 end);
3947         adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
3948         mmu_notifier_invalidate_range_start(&range);
3949         address = start;
3950         for (; address < end; address += sz) {
3951                 ptep = huge_pte_offset(mm, address, sz);
3952                 if (!ptep)
3953                         continue;
3954
3955                 ptl = huge_pte_lock(h, mm, ptep);
3956                 if (huge_pmd_unshare(mm, vma, &address, ptep)) {
3957                         spin_unlock(ptl);
3958                         /*
3959                          * We just unmapped a page of PMDs by clearing a PUD.
3960                          * The caller's TLB flush range should cover this area.
3961                          */
3962                         continue;
3963                 }
3964
3965                 pte = huge_ptep_get(ptep);
3966                 if (huge_pte_none(pte)) {
3967                         spin_unlock(ptl);
3968                         continue;
3969                 }
3970
3971                 /*
3972                  * Migrating hugepage or HWPoisoned hugepage is already
3973                  * unmapped and its refcount is dropped, so just clear pte here.
3974                  */
3975                 if (unlikely(!pte_present(pte))) {
3976                         huge_pte_clear(mm, address, ptep, sz);
3977                         spin_unlock(ptl);
3978                         continue;
3979                 }
3980
3981                 page = pte_page(pte);
3982                 /*
3983                  * If a reference page is supplied, it is because a specific
3984                  * page is being unmapped, not a range. Ensure the page we
3985                  * are about to unmap is the actual page of interest.
3986                  */
3987                 if (ref_page) {
3988                         if (page != ref_page) {
3989                                 spin_unlock(ptl);
3990                                 continue;
3991                         }
3992                         /*
3993                          * Mark the VMA as having unmapped its page so that
3994                          * future faults in this VMA will fail rather than
3995                          * looking like data was lost
3996                          */
3997                         set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
3998                 }
3999
4000                 pte = huge_ptep_get_and_clear(mm, address, ptep);
4001                 tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
4002                 if (huge_pte_dirty(pte))
4003                         set_page_dirty(page);
4004
4005                 hugetlb_count_sub(pages_per_huge_page(h), mm);
4006                 page_remove_rmap(page, true);
4007
4008                 spin_unlock(ptl);
4009                 tlb_remove_page_size(tlb, page, huge_page_size(h));
4010                 /*
4011                  * Bail out after unmapping reference page if supplied
4012                  */
4013                 if (ref_page)
4014                         break;
4015         }
4016         mmu_notifier_invalidate_range_end(&range);
4017         tlb_end_vma(tlb, vma);
4018 }
4019
4020 void __unmap_hugepage_range_final(struct mmu_gather *tlb,
4021                           struct vm_area_struct *vma, unsigned long start,
4022                           unsigned long end, struct page *ref_page)
4023 {
4024         __unmap_hugepage_range(tlb, vma, start, end, ref_page);
4025
4026         /*
4027          * Clear this flag so that x86's huge_pmd_share page_table_shareable
4028          * test will fail on a vma being torn down, and not grab a page table
4029          * on its way out.  We're lucky that the flag has such an appropriate
4030          * name, and can in fact be safely cleared here. We could clear it
4031          * before the __unmap_hugepage_range above, but all that's necessary
4032          * is to clear it before releasing the i_mmap_rwsem. This works
4033          * because in the context this is called, the VMA is about to be
4034          * destroyed and the i_mmap_rwsem is held.
4035          */
4036         vma->vm_flags &= ~VM_MAYSHARE;
4037 }
4038
4039 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
4040                           unsigned long end, struct page *ref_page)
4041 {
4042         struct mmu_gather tlb;
4043
4044         tlb_gather_mmu(&tlb, vma->vm_mm);
4045         __unmap_hugepage_range(&tlb, vma, start, end, ref_page);
4046         tlb_finish_mmu(&tlb);
4047 }
4048
4049 /*
4050  * This is called when the original mapper is failing to COW a MAP_PRIVATE
4051  * mapping it owns the reserve page for. The intention is to unmap the page
4052  * from other VMAs and let the children be SIGKILLed if they are faulting the
4053  * same region.
4054  */
4055 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
4056                               struct page *page, unsigned long address)
4057 {
4058         struct hstate *h = hstate_vma(vma);
4059         struct vm_area_struct *iter_vma;
4060         struct address_space *mapping;
4061         pgoff_t pgoff;
4062
4063         /*
4064          * vm_pgoff is in PAGE_SIZE units, hence the different calculation
4065          * from page cache lookup which is in HPAGE_SIZE units.
4066          */
4067         address = address & huge_page_mask(h);
4068         pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
4069                         vma->vm_pgoff;
4070         mapping = vma->vm_file->f_mapping;
4071
4072         /*
4073          * Take the mapping lock for the duration of the table walk. As
4074          * this mapping should be shared between all the VMAs,
4075          * __unmap_hugepage_range() is called as the lock is already held
4076          */
4077         i_mmap_lock_write(mapping);
4078         vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
4079                 /* Do not unmap the current VMA */
4080                 if (iter_vma == vma)
4081                         continue;
4082
4083                 /*
4084                  * Shared VMAs have their own reserves and do not affect
4085                  * MAP_PRIVATE accounting but it is possible that a shared
4086                  * VMA is using the same page so check and skip such VMAs.
4087                  */
4088                 if (iter_vma->vm_flags & VM_MAYSHARE)
4089                         continue;
4090
4091                 /*
4092                  * Unmap the page from other VMAs without their own reserves.
4093                  * They get marked to be SIGKILLed if they fault in these
4094                  * areas. This is because a future no-page fault on this VMA
4095                  * could insert a zeroed page instead of the data existing
4096                  * from the time of fork. This would look like data corruption
4097                  */
4098                 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
4099                         unmap_hugepage_range(iter_vma, address,
4100                                              address + huge_page_size(h), page);
4101         }
4102         i_mmap_unlock_write(mapping);
4103 }
4104
4105 /*
4106  * Hugetlb_cow() should be called with page lock of the original hugepage held.
4107  * Called with hugetlb_instantiation_mutex held and pte_page locked so we
4108  * cannot race with other handlers or page migration.
4109  * Keep the pte_same checks anyway to make transition from the mutex easier.
4110  */
4111 static vm_fault_t hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
4112                        unsigned long address, pte_t *ptep,
4113                        struct page *pagecache_page, spinlock_t *ptl)
4114 {
4115         pte_t pte;
4116         struct hstate *h = hstate_vma(vma);
4117         struct page *old_page, *new_page;
4118         int outside_reserve = 0;
4119         vm_fault_t ret = 0;
4120         unsigned long haddr = address & huge_page_mask(h);
4121         struct mmu_notifier_range range;
4122
4123         pte = huge_ptep_get(ptep);
4124         old_page = pte_page(pte);
4125
4126 retry_avoidcopy:
4127         /* If no-one else is actually using this page, avoid the copy
4128          * and just make the page writable */
4129         if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
4130                 page_move_anon_rmap(old_page, vma);
4131                 set_huge_ptep_writable(vma, haddr, ptep);
4132                 return 0;
4133         }
4134
4135         /*
4136          * If the process that created a MAP_PRIVATE mapping is about to
4137          * perform a COW due to a shared page count, attempt to satisfy
4138          * the allocation without using the existing reserves. The pagecache
4139          * page is used to determine if the reserve at this address was
4140          * consumed or not. If reserves were used, a partial faulted mapping
4141          * at the time of fork() could consume its reserves on COW instead
4142          * of the full address range.
4143          */
4144         if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
4145                         old_page != pagecache_page)
4146                 outside_reserve = 1;
4147
4148         get_page(old_page);
4149
4150         /*
4151          * Drop page table lock as buddy allocator may be called. It will
4152          * be acquired again before returning to the caller, as expected.
4153          */
4154         spin_unlock(ptl);
4155         new_page = alloc_huge_page(vma, haddr, outside_reserve);
4156
4157         if (IS_ERR(new_page)) {
4158                 /*
4159                  * If a process owning a MAP_PRIVATE mapping fails to COW,
4160                  * it is due to references held by a child and an insufficient
4161                  * huge page pool. To guarantee the original mappers
4162                  * reliability, unmap the page from child processes. The child
4163                  * may get SIGKILLed if it later faults.
4164                  */
4165                 if (outside_reserve) {
4166                         struct address_space *mapping = vma->vm_file->f_mapping;
4167                         pgoff_t idx;
4168                         u32 hash;
4169
4170                         put_page(old_page);
4171                         BUG_ON(huge_pte_none(pte));
4172                         /*
4173                          * Drop hugetlb_fault_mutex and i_mmap_rwsem before
4174                          * unmapping.  unmapping needs to hold i_mmap_rwsem
4175                          * in write mode.  Dropping i_mmap_rwsem in read mode
4176                          * here is OK as COW mappings do not interact with
4177                          * PMD sharing.
4178                          *
4179                          * Reacquire both after unmap operation.
4180                          */
4181                         idx = vma_hugecache_offset(h, vma, haddr);
4182                         hash = hugetlb_fault_mutex_hash(mapping, idx);
4183                         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
4184                         i_mmap_unlock_read(mapping);
4185
4186                         unmap_ref_private(mm, vma, old_page, haddr);
4187
4188                         i_mmap_lock_read(mapping);
4189                         mutex_lock(&hugetlb_fault_mutex_table[hash]);
4190                         spin_lock(ptl);
4191                         ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
4192                         if (likely(ptep &&
4193                                    pte_same(huge_ptep_get(ptep), pte)))
4194                                 goto retry_avoidcopy;
4195                         /*
4196                          * race occurs while re-acquiring page table
4197                          * lock, and our job is done.
4198                          */
4199                         return 0;
4200                 }
4201
4202                 ret = vmf_error(PTR_ERR(new_page));
4203                 goto out_release_old;
4204         }
4205
4206         /*
4207          * When the original hugepage is shared one, it does not have
4208          * anon_vma prepared.
4209          */
4210         if (unlikely(anon_vma_prepare(vma))) {
4211                 ret = VM_FAULT_OOM;
4212                 goto out_release_all;
4213         }
4214
4215         copy_user_huge_page(new_page, old_page, address, vma,
4216                             pages_per_huge_page(h));
4217         __SetPageUptodate(new_page);
4218
4219         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, haddr,
4220                                 haddr + huge_page_size(h));
4221         mmu_notifier_invalidate_range_start(&range);
4222
4223         /*
4224          * Retake the page table lock to check for racing updates
4225          * before the page tables are altered
4226          */
4227         spin_lock(ptl);
4228         ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
4229         if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
4230                 ClearHPageRestoreReserve(new_page);
4231
4232                 /* Break COW */
4233                 huge_ptep_clear_flush(vma, haddr, ptep);
4234                 mmu_notifier_invalidate_range(mm, range.start, range.end);
4235                 set_huge_pte_at(mm, haddr, ptep,
4236                                 make_huge_pte(vma, new_page, 1));
4237                 page_remove_rmap(old_page, true);
4238                 hugepage_add_new_anon_rmap(new_page, vma, haddr);
4239                 SetHPageMigratable(new_page);
4240                 /* Make the old page be freed below */
4241                 new_page = old_page;
4242         }
4243         spin_unlock(ptl);
4244         mmu_notifier_invalidate_range_end(&range);
4245 out_release_all:
4246         restore_reserve_on_error(h, vma, haddr, new_page);
4247         put_page(new_page);
4248 out_release_old:
4249         put_page(old_page);
4250
4251         spin_lock(ptl); /* Caller expects lock to be held */
4252         return ret;
4253 }
4254
4255 /* Return the pagecache page at a given address within a VMA */
4256 static struct page *hugetlbfs_pagecache_page(struct hstate *h,
4257                         struct vm_area_struct *vma, unsigned long address)
4258 {
4259         struct address_space *mapping;
4260         pgoff_t idx;
4261
4262         mapping = vma->vm_file->f_mapping;
4263         idx = vma_hugecache_offset(h, vma, address);
4264
4265         return find_lock_page(mapping, idx);
4266 }
4267
4268 /*
4269  * Return whether there is a pagecache page to back given address within VMA.
4270  * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
4271  */
4272 static bool hugetlbfs_pagecache_present(struct hstate *h,
4273                         struct vm_area_struct *vma, unsigned long address)
4274 {
4275         struct address_space *mapping;
4276         pgoff_t idx;
4277         struct page *page;
4278
4279         mapping = vma->vm_file->f_mapping;
4280         idx = vma_hugecache_offset(h, vma, address);
4281
4282         page = find_get_page(mapping, idx);
4283         if (page)
4284                 put_page(page);
4285         return page != NULL;
4286 }
4287
4288 int huge_add_to_page_cache(struct page *page, struct address_space *mapping,
4289                            pgoff_t idx)
4290 {
4291         struct inode *inode = mapping->host;
4292         struct hstate *h = hstate_inode(inode);
4293         int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
4294
4295         if (err)
4296                 return err;
4297         ClearHPageRestoreReserve(page);
4298
4299         /*
4300          * set page dirty so that it will not be removed from cache/file
4301          * by non-hugetlbfs specific code paths.
4302          */
4303         set_page_dirty(page);
4304
4305         spin_lock(&inode->i_lock);
4306         inode->i_blocks += blocks_per_huge_page(h);
4307         spin_unlock(&inode->i_lock);
4308         return 0;
4309 }
4310
4311 static vm_fault_t hugetlb_no_page(struct mm_struct *mm,
4312                         struct vm_area_struct *vma,
4313                         struct address_space *mapping, pgoff_t idx,
4314                         unsigned long address, pte_t *ptep, unsigned int flags)
4315 {
4316         struct hstate *h = hstate_vma(vma);
4317         vm_fault_t ret = VM_FAULT_SIGBUS;
4318         int anon_rmap = 0;
4319         unsigned long size;
4320         struct page *page;
4321         pte_t new_pte;
4322         spinlock_t *ptl;
4323         unsigned long haddr = address & huge_page_mask(h);
4324         bool new_page = false;
4325
4326         /*
4327          * Currently, we are forced to kill the process in the event the
4328          * original mapper has unmapped pages from the child due to a failed
4329          * COW. Warn that such a situation has occurred as it may not be obvious
4330          */
4331         if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
4332                 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
4333                            current->pid);
4334                 return ret;
4335         }
4336
4337         /*
4338          * We can not race with truncation due to holding i_mmap_rwsem.
4339          * i_size is modified when holding i_mmap_rwsem, so check here
4340          * once for faults beyond end of file.
4341          */
4342         size = i_size_read(mapping->host) >> huge_page_shift(h);
4343         if (idx >= size)
4344                 goto out;
4345
4346 retry:
4347         page = find_lock_page(mapping, idx);
4348         if (!page) {
4349                 /*
4350                  * Check for page in userfault range
4351                  */
4352                 if (userfaultfd_missing(vma)) {
4353                         u32 hash;
4354                         struct vm_fault vmf = {
4355                                 .vma = vma,
4356                                 .address = haddr,
4357                                 .flags = flags,
4358                                 /*
4359                                  * Hard to debug if it ends up being
4360                                  * used by a callee that assumes
4361                                  * something about the other
4362                                  * uninitialized fields... same as in
4363                                  * memory.c
4364                                  */
4365                         };
4366
4367                         /*
4368                          * hugetlb_fault_mutex and i_mmap_rwsem must be
4369                          * dropped before handling userfault.  Reacquire
4370                          * after handling fault to make calling code simpler.
4371                          */
4372                         hash = hugetlb_fault_mutex_hash(mapping, idx);
4373                         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
4374                         i_mmap_unlock_read(mapping);
4375                         ret = handle_userfault(&vmf, VM_UFFD_MISSING);
4376                         i_mmap_lock_read(mapping);
4377                         mutex_lock(&hugetlb_fault_mutex_table[hash]);
4378                         goto out;
4379                 }
4380
4381                 page = alloc_huge_page(vma, haddr, 0);
4382                 if (IS_ERR(page)) {
4383                         /*
4384                          * Returning error will result in faulting task being
4385                          * sent SIGBUS.  The hugetlb fault mutex prevents two
4386                          * tasks from racing to fault in the same page which
4387                          * could result in false unable to allocate errors.
4388                          * Page migration does not take the fault mutex, but
4389                          * does a clear then write of pte's under page table
4390                          * lock.  Page fault code could race with migration,
4391                          * notice the clear pte and try to allocate a page
4392                          * here.  Before returning error, get ptl and make
4393                          * sure there really is no pte entry.
4394                          */
4395                         ptl = huge_pte_lock(h, mm, ptep);
4396                         ret = 0;
4397                         if (huge_pte_none(huge_ptep_get(ptep)))
4398                                 ret = vmf_error(PTR_ERR(page));
4399                         spin_unlock(ptl);
4400                         goto out;
4401                 }
4402                 clear_huge_page(page, address, pages_per_huge_page(h));
4403                 __SetPageUptodate(page);
4404                 new_page = true;
4405
4406                 if (vma->vm_flags & VM_MAYSHARE) {
4407                         int err = huge_add_to_page_cache(page, mapping, idx);
4408                         if (err) {
4409                                 put_page(page);
4410                                 if (err == -EEXIST)
4411                                         goto retry;
4412                                 goto out;
4413                         }
4414                 } else {
4415                         lock_page(page);
4416                         if (unlikely(anon_vma_prepare(vma))) {
4417                                 ret = VM_FAULT_OOM;
4418                                 goto backout_unlocked;
4419                         }
4420                         anon_rmap = 1;
4421                 }
4422         } else {
4423                 /*
4424                  * If memory error occurs between mmap() and fault, some process
4425                  * don't have hwpoisoned swap entry for errored virtual address.
4426                  * So we need to block hugepage fault by PG_hwpoison bit check.
4427                  */
4428                 if (unlikely(PageHWPoison(page))) {
4429                         ret = VM_FAULT_HWPOISON_LARGE |
4430                                 VM_FAULT_SET_HINDEX(hstate_index(h));
4431                         goto backout_unlocked;
4432                 }
4433         }
4434
4435         /*
4436          * If we are going to COW a private mapping later, we examine the
4437          * pending reservations for this page now. This will ensure that
4438          * any allocations necessary to record that reservation occur outside
4439          * the spinlock.
4440          */
4441         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
4442                 if (vma_needs_reservation(h, vma, haddr) < 0) {
4443                         ret = VM_FAULT_OOM;
4444                         goto backout_unlocked;
4445                 }
4446                 /* Just decrements count, does not deallocate */
4447                 vma_end_reservation(h, vma, haddr);
4448         }
4449
4450         ptl = huge_pte_lock(h, mm, ptep);
4451         ret = 0;
4452         if (!huge_pte_none(huge_ptep_get(ptep)))
4453                 goto backout;
4454
4455         if (anon_rmap) {
4456                 ClearHPageRestoreReserve(page);
4457                 hugepage_add_new_anon_rmap(page, vma, haddr);
4458         } else
4459                 page_dup_rmap(page, true);
4460         new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
4461                                 && (vma->vm_flags & VM_SHARED)));
4462         set_huge_pte_at(mm, haddr, ptep, new_pte);
4463
4464         hugetlb_count_add(pages_per_huge_page(h), mm);
4465         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
4466                 /* Optimization, do the COW without a second fault */
4467                 ret = hugetlb_cow(mm, vma, address, ptep, page, ptl);
4468         }
4469
4470         spin_unlock(ptl);
4471
4472         /*
4473          * Only set HPageMigratable in newly allocated pages.  Existing pages
4474          * found in the pagecache may not have HPageMigratableset if they have
4475          * been isolated for migration.
4476          */
4477         if (new_page)
4478                 SetHPageMigratable(page);
4479
4480         unlock_page(page);
4481 out:
4482         return ret;
4483
4484 backout:
4485         spin_unlock(ptl);
4486 backout_unlocked:
4487         unlock_page(page);
4488         restore_reserve_on_error(h, vma, haddr, page);
4489         put_page(page);
4490         goto out;
4491 }
4492
4493 #ifdef CONFIG_SMP
4494 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
4495 {
4496         unsigned long key[2];
4497         u32 hash;
4498
4499         key[0] = (unsigned long) mapping;
4500         key[1] = idx;
4501
4502         hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0);
4503
4504         return hash & (num_fault_mutexes - 1);
4505 }
4506 #else
4507 /*
4508  * For uniprocessor systems we always use a single mutex, so just
4509  * return 0 and avoid the hashing overhead.
4510  */
4511 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
4512 {
4513         return 0;
4514 }
4515 #endif
4516
4517 vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
4518                         unsigned long address, unsigned int flags)
4519 {
4520         pte_t *ptep, entry;
4521         spinlock_t *ptl;
4522         vm_fault_t ret;
4523         u32 hash;
4524         pgoff_t idx;
4525         struct page *page = NULL;
4526         struct page *pagecache_page = NULL;
4527         struct hstate *h = hstate_vma(vma);
4528         struct address_space *mapping;
4529         int need_wait_lock = 0;
4530         unsigned long haddr = address & huge_page_mask(h);
4531
4532         ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
4533         if (ptep) {
4534                 /*
4535                  * Since we hold no locks, ptep could be stale.  That is
4536                  * OK as we are only making decisions based on content and
4537                  * not actually modifying content here.
4538                  */
4539                 entry = huge_ptep_get(ptep);
4540                 if (unlikely(is_hugetlb_entry_migration(entry))) {
4541                         migration_entry_wait_huge(vma, mm, ptep);
4542                         return 0;
4543                 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
4544                         return VM_FAULT_HWPOISON_LARGE |
4545                                 VM_FAULT_SET_HINDEX(hstate_index(h));
4546         }
4547
4548         /*
4549          * Acquire i_mmap_rwsem before calling huge_pte_alloc and hold
4550          * until finished with ptep.  This serves two purposes:
4551          * 1) It prevents huge_pmd_unshare from being called elsewhere
4552          *    and making the ptep no longer valid.
4553          * 2) It synchronizes us with i_size modifications during truncation.
4554          *
4555          * ptep could have already be assigned via huge_pte_offset.  That
4556          * is OK, as huge_pte_alloc will return the same value unless
4557          * something has changed.
4558          */
4559         mapping = vma->vm_file->f_mapping;
4560         i_mmap_lock_read(mapping);
4561         ptep = huge_pte_alloc(mm, vma, haddr, huge_page_size(h));
4562         if (!ptep) {
4563                 i_mmap_unlock_read(mapping);
4564                 return VM_FAULT_OOM;
4565         }
4566
4567         /*
4568          * Serialize hugepage allocation and instantiation, so that we don't
4569          * get spurious allocation failures if two CPUs race to instantiate
4570          * the same page in the page cache.
4571          */
4572         idx = vma_hugecache_offset(h, vma, haddr);
4573         hash = hugetlb_fault_mutex_hash(mapping, idx);
4574         mutex_lock(&hugetlb_fault_mutex_table[hash]);
4575
4576         entry = huge_ptep_get(ptep);
4577         if (huge_pte_none(entry)) {
4578                 ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
4579                 goto out_mutex;
4580         }
4581
4582         ret = 0;
4583
4584         /*
4585          * entry could be a migration/hwpoison entry at this point, so this
4586          * check prevents the kernel from going below assuming that we have
4587          * an active hugepage in pagecache. This goto expects the 2nd page
4588          * fault, and is_hugetlb_entry_(migration|hwpoisoned) check will
4589          * properly handle it.
4590          */
4591         if (!pte_present(entry))
4592                 goto out_mutex;
4593
4594         /*
4595          * If we are going to COW the mapping later, we examine the pending
4596          * reservations for this page now. This will ensure that any
4597          * allocations necessary to record that reservation occur outside the
4598          * spinlock. For private mappings, we also lookup the pagecache
4599          * page now as it is used to determine if a reservation has been
4600          * consumed.
4601          */
4602         if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
4603                 if (vma_needs_reservation(h, vma, haddr) < 0) {
4604                         ret = VM_FAULT_OOM;
4605                         goto out_mutex;
4606                 }
4607                 /* Just decrements count, does not deallocate */
4608                 vma_end_reservation(h, vma, haddr);
4609
4610                 if (!(vma->vm_flags & VM_MAYSHARE))
4611                         pagecache_page = hugetlbfs_pagecache_page(h,
4612                                                                 vma, haddr);
4613         }
4614
4615         ptl = huge_pte_lock(h, mm, ptep);
4616
4617         /* Check for a racing update before calling hugetlb_cow */
4618         if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
4619                 goto out_ptl;
4620
4621         /*
4622          * hugetlb_cow() requires page locks of pte_page(entry) and
4623          * pagecache_page, so here we need take the former one
4624          * when page != pagecache_page or !pagecache_page.
4625          */
4626         page = pte_page(entry);
4627         if (page != pagecache_page)
4628                 if (!trylock_page(page)) {
4629                         need_wait_lock = 1;
4630                         goto out_ptl;
4631                 }
4632
4633         get_page(page);
4634
4635         if (flags & FAULT_FLAG_WRITE) {
4636                 if (!huge_pte_write(entry)) {
4637                         ret = hugetlb_cow(mm, vma, address, ptep,
4638                                           pagecache_page, ptl);
4639                         goto out_put_page;
4640                 }
4641                 entry = huge_pte_mkdirty(entry);
4642         }
4643         entry = pte_mkyoung(entry);
4644         if (huge_ptep_set_access_flags(vma, haddr, ptep, entry,
4645                                                 flags & FAULT_FLAG_WRITE))
4646                 update_mmu_cache(vma, haddr, ptep);
4647 out_put_page:
4648         if (page != pagecache_page)
4649                 unlock_page(page);
4650         put_page(page);
4651 out_ptl:
4652         spin_unlock(ptl);
4653
4654         if (pagecache_page) {
4655                 unlock_page(pagecache_page);
4656                 put_page(pagecache_page);
4657         }
4658 out_mutex:
4659         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
4660         i_mmap_unlock_read(mapping);
4661         /*
4662          * Generally it's safe to hold refcount during waiting page lock. But
4663          * here we just wait to defer the next page fault to avoid busy loop and
4664          * the page is not used after unlocked before returning from the current
4665          * page fault. So we are safe from accessing freed page, even if we wait
4666          * here without taking refcount.
4667          */
4668         if (need_wait_lock)
4669                 wait_on_page_locked(page);
4670         return ret;
4671 }
4672
4673 /*
4674  * Used by userfaultfd UFFDIO_COPY.  Based on mcopy_atomic_pte with
4675  * modifications for huge pages.
4676  */
4677 int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm,
4678                             pte_t *dst_pte,
4679                             struct vm_area_struct *dst_vma,
4680                             unsigned long dst_addr,
4681                             unsigned long src_addr,
4682                             struct page **pagep)
4683 {
4684         struct address_space *mapping;
4685         pgoff_t idx;
4686         unsigned long size;
4687         int vm_shared = dst_vma->vm_flags & VM_SHARED;
4688         struct hstate *h = hstate_vma(dst_vma);
4689         pte_t _dst_pte;
4690         spinlock_t *ptl;
4691         int ret;
4692         struct page *page;
4693
4694         if (!*pagep) {
4695                 ret = -ENOMEM;
4696                 page = alloc_huge_page(dst_vma, dst_addr, 0);
4697                 if (IS_ERR(page))
4698                         goto out;
4699
4700                 ret = copy_huge_page_from_user(page,
4701                                                 (const void __user *) src_addr,
4702                                                 pages_per_huge_page(h), false);
4703
4704                 /* fallback to copy_from_user outside mmap_lock */
4705                 if (unlikely(ret)) {
4706                         ret = -ENOENT;
4707                         *pagep = page;
4708                         /* don't free the page */
4709                         goto out;
4710                 }
4711         } else {
4712                 page = *pagep;
4713                 *pagep = NULL;
4714         }
4715
4716         /*
4717          * The memory barrier inside __SetPageUptodate makes sure that
4718          * preceding stores to the page contents become visible before
4719          * the set_pte_at() write.
4720          */
4721         __SetPageUptodate(page);
4722
4723         mapping = dst_vma->vm_file->f_mapping;
4724         idx = vma_hugecache_offset(h, dst_vma, dst_addr);
4725
4726         /*
4727          * If shared, add to page cache
4728          */
4729         if (vm_shared) {
4730                 size = i_size_read(mapping->host) >> huge_page_shift(h);
4731                 ret = -EFAULT;
4732                 if (idx >= size)
4733                         goto out_release_nounlock;
4734
4735                 /*
4736                  * Serialization between remove_inode_hugepages() and
4737                  * huge_add_to_page_cache() below happens through the
4738                  * hugetlb_fault_mutex_table that here must be hold by
4739                  * the caller.
4740                  */
4741                 ret = huge_add_to_page_cache(page, mapping, idx);
4742                 if (ret)
4743                         goto out_release_nounlock;
4744         }
4745
4746         ptl = huge_pte_lockptr(h, dst_mm, dst_pte);
4747         spin_lock(ptl);
4748
4749         /*
4750          * Recheck the i_size after holding PT lock to make sure not
4751          * to leave any page mapped (as page_mapped()) beyond the end
4752          * of the i_size (remove_inode_hugepages() is strict about
4753          * enforcing that). If we bail out here, we'll also leave a
4754          * page in the radix tree in the vm_shared case beyond the end
4755          * of the i_size, but remove_inode_hugepages() will take care
4756          * of it as soon as we drop the hugetlb_fault_mutex_table.
4757          */
4758         size = i_size_read(mapping->host) >> huge_page_shift(h);
4759         ret = -EFAULT;
4760         if (idx >= size)
4761                 goto out_release_unlock;
4762
4763         ret = -EEXIST;
4764         if (!huge_pte_none(huge_ptep_get(dst_pte)))
4765                 goto out_release_unlock;
4766
4767         if (vm_shared) {
4768                 page_dup_rmap(page, true);
4769         } else {
4770                 ClearHPageRestoreReserve(page);
4771                 hugepage_add_new_anon_rmap(page, dst_vma, dst_addr);
4772         }
4773
4774         _dst_pte = make_huge_pte(dst_vma, page, dst_vma->vm_flags & VM_WRITE);
4775         if (dst_vma->vm_flags & VM_WRITE)
4776                 _dst_pte = huge_pte_mkdirty(_dst_pte);
4777         _dst_pte = pte_mkyoung(_dst_pte);
4778
4779         set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
4780
4781         (void)huge_ptep_set_access_flags(dst_vma, dst_addr, dst_pte, _dst_pte,
4782                                         dst_vma->vm_flags & VM_WRITE);
4783         hugetlb_count_add(pages_per_huge_page(h), dst_mm);
4784
4785         /* No need to invalidate - it was non-present before */
4786         update_mmu_cache(dst_vma, dst_addr, dst_pte);
4787
4788         spin_unlock(ptl);
4789         SetHPageMigratable(page);
4790         if (vm_shared)
4791                 unlock_page(page);
4792         ret = 0;
4793 out:
4794         return ret;
4795 out_release_unlock:
4796         spin_unlock(ptl);
4797         if (vm_shared)
4798                 unlock_page(page);
4799 out_release_nounlock:
4800         put_page(page);
4801         goto out;
4802 }
4803
4804 static void record_subpages_vmas(struct page *page, struct vm_area_struct *vma,
4805                                  int refs, struct page **pages,
4806                                  struct vm_area_struct **vmas)
4807 {
4808         int nr;
4809
4810         for (nr = 0; nr < refs; nr++) {
4811                 if (likely(pages))
4812                         pages[nr] = mem_map_offset(page, nr);
4813                 if (vmas)
4814                         vmas[nr] = vma;
4815         }
4816 }
4817
4818 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
4819                          struct page **pages, struct vm_area_struct **vmas,
4820                          unsigned long *position, unsigned long *nr_pages,
4821                          long i, unsigned int flags, int *locked)
4822 {
4823         unsigned long pfn_offset;
4824         unsigned long vaddr = *position;
4825         unsigned long remainder = *nr_pages;
4826         struct hstate *h = hstate_vma(vma);
4827         int err = -EFAULT, refs;
4828
4829         while (vaddr < vma->vm_end && remainder) {
4830                 pte_t *pte;
4831                 spinlock_t *ptl = NULL;
4832                 int absent;
4833                 struct page *page;
4834
4835                 /*
4836                  * If we have a pending SIGKILL, don't keep faulting pages and
4837                  * potentially allocating memory.
4838                  */
4839                 if (fatal_signal_pending(current)) {
4840                         remainder = 0;
4841                         break;
4842                 }
4843
4844                 /*
4845                  * Some archs (sparc64, sh*) have multiple pte_ts to
4846                  * each hugepage.  We have to make sure we get the
4847                  * first, for the page indexing below to work.
4848                  *
4849                  * Note that page table lock is not held when pte is null.
4850                  */
4851                 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h),
4852                                       huge_page_size(h));
4853                 if (pte)
4854                         ptl = huge_pte_lock(h, mm, pte);
4855                 absent = !pte || huge_pte_none(huge_ptep_get(pte));
4856
4857                 /*
4858                  * When coredumping, it suits get_dump_page if we just return
4859                  * an error where there's an empty slot with no huge pagecache
4860                  * to back it.  This way, we avoid allocating a hugepage, and
4861                  * the sparse dumpfile avoids allocating disk blocks, but its
4862                  * huge holes still show up with zeroes where they need to be.
4863                  */
4864                 if (absent && (flags & FOLL_DUMP) &&
4865                     !hugetlbfs_pagecache_present(h, vma, vaddr)) {
4866                         if (pte)
4867                                 spin_unlock(ptl);
4868                         remainder = 0;
4869                         break;
4870                 }
4871
4872                 /*
4873                  * We need call hugetlb_fault for both hugepages under migration
4874                  * (in which case hugetlb_fault waits for the migration,) and
4875                  * hwpoisoned hugepages (in which case we need to prevent the
4876                  * caller from accessing to them.) In order to do this, we use
4877                  * here is_swap_pte instead of is_hugetlb_entry_migration and
4878                  * is_hugetlb_entry_hwpoisoned. This is because it simply covers
4879                  * both cases, and because we can't follow correct pages
4880                  * directly from any kind of swap entries.
4881                  */
4882                 if (absent || is_swap_pte(huge_ptep_get(pte)) ||
4883                     ((flags & FOLL_WRITE) &&
4884                       !huge_pte_write(huge_ptep_get(pte)))) {
4885                         vm_fault_t ret;
4886                         unsigned int fault_flags = 0;
4887
4888                         if (pte)
4889                                 spin_unlock(ptl);
4890                         if (flags & FOLL_WRITE)
4891                                 fault_flags |= FAULT_FLAG_WRITE;
4892                         if (locked)
4893                                 fault_flags |= FAULT_FLAG_ALLOW_RETRY |
4894                                         FAULT_FLAG_KILLABLE;
4895                         if (flags & FOLL_NOWAIT)
4896                                 fault_flags |= FAULT_FLAG_ALLOW_RETRY |
4897                                         FAULT_FLAG_RETRY_NOWAIT;
4898                         if (flags & FOLL_TRIED) {
4899                                 /*
4900                                  * Note: FAULT_FLAG_ALLOW_RETRY and
4901                                  * FAULT_FLAG_TRIED can co-exist
4902                                  */
4903                                 fault_flags |= FAULT_FLAG_TRIED;
4904                         }
4905                         ret = hugetlb_fault(mm, vma, vaddr, fault_flags);
4906                         if (ret & VM_FAULT_ERROR) {
4907                                 err = vm_fault_to_errno(ret, flags);
4908                                 remainder = 0;
4909                                 break;
4910                         }
4911                         if (ret & VM_FAULT_RETRY) {
4912                                 if (locked &&
4913                                     !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
4914                                         *locked = 0;
4915                                 *nr_pages = 0;
4916                                 /*
4917                                  * VM_FAULT_RETRY must not return an
4918                                  * error, it will return zero
4919                                  * instead.
4920                                  *
4921                                  * No need to update "position" as the
4922                                  * caller will not check it after
4923                                  * *nr_pages is set to 0.
4924                                  */
4925                                 return i;
4926                         }
4927                         continue;
4928                 }
4929
4930                 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
4931                 page = pte_page(huge_ptep_get(pte));
4932
4933                 /*
4934                  * If subpage information not requested, update counters
4935                  * and skip the same_page loop below.
4936                  */
4937                 if (!pages && !vmas && !pfn_offset &&
4938                     (vaddr + huge_page_size(h) < vma->vm_end) &&
4939                     (remainder >= pages_per_huge_page(h))) {
4940                         vaddr += huge_page_size(h);
4941                         remainder -= pages_per_huge_page(h);
4942                         i += pages_per_huge_page(h);
4943                         spin_unlock(ptl);
4944                         continue;
4945                 }
4946
4947                 refs = min3(pages_per_huge_page(h) - pfn_offset,
4948                             (vma->vm_end - vaddr) >> PAGE_SHIFT, remainder);
4949
4950                 if (pages || vmas)
4951                         record_subpages_vmas(mem_map_offset(page, pfn_offset),
4952                                              vma, refs,
4953                                              likely(pages) ? pages + i : NULL,
4954                                              vmas ? vmas + i : NULL);
4955
4956                 if (pages) {
4957                         /*
4958                          * try_grab_compound_head() should always succeed here,
4959                          * because: a) we hold the ptl lock, and b) we've just
4960                          * checked that the huge page is present in the page
4961                          * tables. If the huge page is present, then the tail
4962                          * pages must also be present. The ptl prevents the
4963                          * head page and tail pages from being rearranged in
4964                          * any way. So this page must be available at this
4965                          * point, unless the page refcount overflowed:
4966                          */
4967                         if (WARN_ON_ONCE(!try_grab_compound_head(pages[i],
4968                                                                  refs,
4969                                                                  flags))) {
4970                                 spin_unlock(ptl);
4971                                 remainder = 0;
4972                                 err = -ENOMEM;
4973                                 break;
4974                         }
4975                 }
4976
4977                 vaddr += (refs << PAGE_SHIFT);
4978                 remainder -= refs;
4979                 i += refs;
4980
4981                 spin_unlock(ptl);
4982         }
4983         *nr_pages = remainder;
4984         /*
4985          * setting position is actually required only if remainder is
4986          * not zero but it's faster not to add a "if (remainder)"
4987          * branch.
4988          */
4989         *position = vaddr;
4990
4991         return i ? i : err;
4992 }
4993
4994 unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
4995                 unsigned long address, unsigned long end, pgprot_t newprot)
4996 {
4997         struct mm_struct *mm = vma->vm_mm;
4998         unsigned long start = address;
4999         pte_t *ptep;
5000         pte_t pte;
5001         struct hstate *h = hstate_vma(vma);
5002         unsigned long pages = 0;
5003         bool shared_pmd = false;
5004         struct mmu_notifier_range range;
5005
5006         /*
5007          * In the case of shared PMDs, the area to flush could be beyond
5008          * start/end.  Set range.start/range.end to cover the maximum possible
5009          * range if PMD sharing is possible.
5010          */
5011         mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA,
5012                                 0, vma, mm, start, end);
5013         adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
5014
5015         BUG_ON(address >= end);
5016         flush_cache_range(vma, range.start, range.end);
5017
5018         mmu_notifier_invalidate_range_start(&range);
5019         i_mmap_lock_write(vma->vm_file->f_mapping);
5020         for (; address < end; address += huge_page_size(h)) {
5021                 spinlock_t *ptl;
5022                 ptep = huge_pte_offset(mm, address, huge_page_size(h));
5023                 if (!ptep)
5024                         continue;
5025                 ptl = huge_pte_lock(h, mm, ptep);
5026                 if (huge_pmd_unshare(mm, vma, &address, ptep)) {
5027                         pages++;
5028                         spin_unlock(ptl);
5029                         shared_pmd = true;
5030                         continue;
5031                 }
5032                 pte = huge_ptep_get(ptep);
5033                 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
5034                         spin_unlock(ptl);
5035                         continue;
5036                 }
5037                 if (unlikely(is_hugetlb_entry_migration(pte))) {
5038                         swp_entry_t entry = pte_to_swp_entry(pte);
5039
5040                         if (is_write_migration_entry(entry)) {
5041                                 pte_t newpte;
5042
5043                                 make_migration_entry_read(&entry);
5044                                 newpte = swp_entry_to_pte(entry);
5045                                 set_huge_swap_pte_at(mm, address, ptep,
5046                                                      newpte, huge_page_size(h));
5047                                 pages++;
5048                         }
5049                         spin_unlock(ptl);
5050                         continue;
5051                 }
5052                 if (!huge_pte_none(pte)) {
5053                         pte_t old_pte;
5054
5055                         old_pte = huge_ptep_modify_prot_start(vma, address, ptep);
5056                         pte = pte_mkhuge(huge_pte_modify(old_pte, newprot));
5057                         pte = arch_make_huge_pte(pte, vma, NULL, 0);
5058                         huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte);
5059                         pages++;
5060                 }
5061                 spin_unlock(ptl);
5062         }
5063         /*
5064          * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
5065          * may have cleared our pud entry and done put_page on the page table:
5066          * once we release i_mmap_rwsem, another task can do the final put_page
5067          * and that page table be reused and filled with junk.  If we actually
5068          * did unshare a page of pmds, flush the range corresponding to the pud.
5069          */
5070         if (shared_pmd)
5071                 flush_hugetlb_tlb_range(vma, range.start, range.end);
5072         else
5073                 flush_hugetlb_tlb_range(vma, start, end);
5074         /*
5075          * No need to call mmu_notifier_invalidate_range() we are downgrading
5076          * page table protection not changing it to point to a new page.
5077          *
5078          * See Documentation/vm/mmu_notifier.rst
5079          */
5080         i_mmap_unlock_write(vma->vm_file->f_mapping);
5081         mmu_notifier_invalidate_range_end(&range);
5082
5083         return pages << h->order;
5084 }
5085
5086 /* Return true if reservation was successful, false otherwise.  */
5087 bool hugetlb_reserve_pages(struct inode *inode,
5088                                         long from, long to,
5089                                         struct vm_area_struct *vma,
5090                                         vm_flags_t vm_flags)
5091 {
5092         long chg, add = -1;
5093         struct hstate *h = hstate_inode(inode);
5094         struct hugepage_subpool *spool = subpool_inode(inode);
5095         struct resv_map *resv_map;
5096         struct hugetlb_cgroup *h_cg = NULL;
5097         long gbl_reserve, regions_needed = 0;
5098
5099         /* This should never happen */
5100         if (from > to) {
5101                 VM_WARN(1, "%s called with a negative range\n", __func__);
5102                 return false;
5103         }
5104
5105         /*
5106          * Only apply hugepage reservation if asked. At fault time, an
5107          * attempt will be made for VM_NORESERVE to allocate a page
5108          * without using reserves
5109          */
5110         if (vm_flags & VM_NORESERVE)
5111                 return true;
5112
5113         /*
5114          * Shared mappings base their reservation on the number of pages that
5115          * are already allocated on behalf of the file. Private mappings need
5116          * to reserve the full area even if read-only as mprotect() may be
5117          * called to make the mapping read-write. Assume !vma is a shm mapping
5118          */
5119         if (!vma || vma->vm_flags & VM_MAYSHARE) {
5120                 /*
5121                  * resv_map can not be NULL as hugetlb_reserve_pages is only
5122                  * called for inodes for which resv_maps were created (see
5123                  * hugetlbfs_get_inode).
5124                  */
5125                 resv_map = inode_resv_map(inode);
5126
5127                 chg = region_chg(resv_map, from, to, &regions_needed);
5128
5129         } else {
5130                 /* Private mapping. */
5131                 resv_map = resv_map_alloc();
5132                 if (!resv_map)
5133                         return false;
5134
5135                 chg = to - from;
5136
5137                 set_vma_resv_map(vma, resv_map);
5138                 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
5139         }
5140
5141         if (chg < 0)
5142                 goto out_err;
5143
5144         if (hugetlb_cgroup_charge_cgroup_rsvd(hstate_index(h),
5145                                 chg * pages_per_huge_page(h), &h_cg) < 0)
5146                 goto out_err;
5147
5148         if (vma && !(vma->vm_flags & VM_MAYSHARE) && h_cg) {
5149                 /* For private mappings, the hugetlb_cgroup uncharge info hangs
5150                  * of the resv_map.
5151                  */
5152                 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, h_cg, h);
5153         }
5154
5155         /*
5156          * There must be enough pages in the subpool for the mapping. If
5157          * the subpool has a minimum size, there may be some global
5158          * reservations already in place (gbl_reserve).
5159          */
5160         gbl_reserve = hugepage_subpool_get_pages(spool, chg);
5161         if (gbl_reserve < 0)
5162                 goto out_uncharge_cgroup;
5163
5164         /*
5165          * Check enough hugepages are available for the reservation.
5166          * Hand the pages back to the subpool if there are not
5167          */
5168         if (hugetlb_acct_memory(h, gbl_reserve) < 0)
5169                 goto out_put_pages;
5170
5171         /*
5172          * Account for the reservations made. Shared mappings record regions
5173          * that have reservations as they are shared by multiple VMAs.
5174          * When the last VMA disappears, the region map says how much
5175          * the reservation was and the page cache tells how much of
5176          * the reservation was consumed. Private mappings are per-VMA and
5177          * only the consumed reservations are tracked. When the VMA
5178          * disappears, the original reservation is the VMA size and the
5179          * consumed reservations are stored in the map. Hence, nothing
5180          * else has to be done for private mappings here
5181          */
5182         if (!vma || vma->vm_flags & VM_MAYSHARE) {
5183                 add = region_add(resv_map, from, to, regions_needed, h, h_cg);
5184
5185                 if (unlikely(add < 0)) {
5186                         hugetlb_acct_memory(h, -gbl_reserve);
5187                         goto out_put_pages;
5188                 } else if (unlikely(chg > add)) {
5189                         /*
5190                          * pages in this range were added to the reserve
5191                          * map between region_chg and region_add.  This
5192                          * indicates a race with alloc_huge_page.  Adjust
5193                          * the subpool and reserve counts modified above
5194                          * based on the difference.
5195                          */
5196                         long rsv_adjust;
5197
5198                         /*
5199                          * hugetlb_cgroup_uncharge_cgroup_rsvd() will put the
5200                          * reference to h_cg->css. See comment below for detail.
5201                          */
5202                         hugetlb_cgroup_uncharge_cgroup_rsvd(
5203                                 hstate_index(h),
5204                                 (chg - add) * pages_per_huge_page(h), h_cg);
5205
5206                         rsv_adjust = hugepage_subpool_put_pages(spool,
5207                                                                 chg - add);
5208                         hugetlb_acct_memory(h, -rsv_adjust);
5209                 } else if (h_cg) {
5210                         /*
5211                          * The file_regions will hold their own reference to
5212                          * h_cg->css. So we should release the reference held
5213                          * via hugetlb_cgroup_charge_cgroup_rsvd() when we are
5214                          * done.
5215                          */
5216                         hugetlb_cgroup_put_rsvd_cgroup(h_cg);
5217                 }
5218         }
5219         return true;
5220
5221 out_put_pages:
5222         /* put back original number of pages, chg */
5223         (void)hugepage_subpool_put_pages(spool, chg);
5224 out_uncharge_cgroup:
5225         hugetlb_cgroup_uncharge_cgroup_rsvd(hstate_index(h),
5226                                             chg * pages_per_huge_page(h), h_cg);
5227 out_err:
5228         if (!vma || vma->vm_flags & VM_MAYSHARE)
5229                 /* Only call region_abort if the region_chg succeeded but the
5230                  * region_add failed or didn't run.
5231                  */
5232                 if (chg >= 0 && add < 0)
5233                         region_abort(resv_map, from, to, regions_needed);
5234         if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
5235                 kref_put(&resv_map->refs, resv_map_release);
5236         return false;
5237 }
5238
5239 long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
5240                                                                 long freed)
5241 {
5242         struct hstate *h = hstate_inode(inode);
5243         struct resv_map *resv_map = inode_resv_map(inode);
5244         long chg = 0;
5245         struct hugepage_subpool *spool = subpool_inode(inode);
5246         long gbl_reserve;
5247
5248         /*
5249          * Since this routine can be called in the evict inode path for all
5250          * hugetlbfs inodes, resv_map could be NULL.
5251          */
5252         if (resv_map) {
5253                 chg = region_del(resv_map, start, end);
5254                 /*
5255                  * region_del() can fail in the rare case where a region
5256                  * must be split and another region descriptor can not be
5257                  * allocated.  If end == LONG_MAX, it will not fail.
5258                  */
5259                 if (chg < 0)
5260                         return chg;
5261         }
5262
5263         spin_lock(&inode->i_lock);
5264         inode->i_blocks -= (blocks_per_huge_page(h) * freed);
5265         spin_unlock(&inode->i_lock);
5266
5267         /*
5268          * If the subpool has a minimum size, the number of global
5269          * reservations to be released may be adjusted.
5270          *
5271          * Note that !resv_map implies freed == 0. So (chg - freed)
5272          * won't go negative.
5273          */
5274         gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
5275         hugetlb_acct_memory(h, -gbl_reserve);
5276
5277         return 0;
5278 }
5279
5280 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
5281 static unsigned long page_table_shareable(struct vm_area_struct *svma,
5282                                 struct vm_area_struct *vma,
5283                                 unsigned long addr, pgoff_t idx)
5284 {
5285         unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
5286                                 svma->vm_start;
5287         unsigned long sbase = saddr & PUD_MASK;
5288         unsigned long s_end = sbase + PUD_SIZE;
5289
5290         /* Allow segments to share if only one is marked locked */
5291         unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
5292         unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
5293
5294         /*
5295          * match the virtual addresses, permission and the alignment of the
5296          * page table page.
5297          */
5298         if (pmd_index(addr) != pmd_index(saddr) ||
5299             vm_flags != svm_flags ||
5300             !range_in_vma(svma, sbase, s_end))
5301                 return 0;
5302
5303         return saddr;
5304 }
5305
5306 static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr)
5307 {
5308         unsigned long base = addr & PUD_MASK;
5309         unsigned long end = base + PUD_SIZE;
5310
5311         /*
5312          * check on proper vm_flags and page table alignment
5313          */
5314         if (vma->vm_flags & VM_MAYSHARE && range_in_vma(vma, base, end))
5315                 return true;
5316         return false;
5317 }
5318
5319 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
5320 {
5321 #ifdef CONFIG_USERFAULTFD
5322         if (uffd_disable_huge_pmd_share(vma))
5323                 return false;
5324 #endif
5325         return vma_shareable(vma, addr);
5326 }
5327
5328 /*
5329  * Determine if start,end range within vma could be mapped by shared pmd.
5330  * If yes, adjust start and end to cover range associated with possible
5331  * shared pmd mappings.
5332  */
5333 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
5334                                 unsigned long *start, unsigned long *end)
5335 {
5336         unsigned long v_start = ALIGN(vma->vm_start, PUD_SIZE),
5337                 v_end = ALIGN_DOWN(vma->vm_end, PUD_SIZE);
5338
5339         /*
5340          * vma need span at least one aligned PUD size and the start,end range
5341          * must at least partialy within it.
5342          */
5343         if (!(vma->vm_flags & VM_MAYSHARE) || !(v_end > v_start) ||
5344                 (*end <= v_start) || (*start >= v_end))
5345                 return;
5346
5347         /* Extend the range to be PUD aligned for a worst case scenario */
5348         if (*start > v_start)
5349                 *start = ALIGN_DOWN(*start, PUD_SIZE);
5350
5351         if (*end < v_end)
5352                 *end = ALIGN(*end, PUD_SIZE);
5353 }
5354
5355 /*
5356  * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
5357  * and returns the corresponding pte. While this is not necessary for the
5358  * !shared pmd case because we can allocate the pmd later as well, it makes the
5359  * code much cleaner.
5360  *
5361  * This routine must be called with i_mmap_rwsem held in at least read mode if
5362  * sharing is possible.  For hugetlbfs, this prevents removal of any page
5363  * table entries associated with the address space.  This is important as we
5364  * are setting up sharing based on existing page table entries (mappings).
5365  *
5366  * NOTE: This routine is only called from huge_pte_alloc.  Some callers of
5367  * huge_pte_alloc know that sharing is not possible and do not take
5368  * i_mmap_rwsem as a performance optimization.  This is handled by the
5369  * if !vma_shareable check at the beginning of the routine. i_mmap_rwsem is
5370  * only required for subsequent processing.
5371  */
5372 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
5373                       unsigned long addr, pud_t *pud)
5374 {
5375         struct address_space *mapping = vma->vm_file->f_mapping;
5376         pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
5377                         vma->vm_pgoff;
5378         struct vm_area_struct *svma;
5379         unsigned long saddr;
5380         pte_t *spte = NULL;
5381         pte_t *pte;
5382         spinlock_t *ptl;
5383
5384         i_mmap_assert_locked(mapping);
5385         vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
5386                 if (svma == vma)
5387                         continue;
5388
5389                 saddr = page_table_shareable(svma, vma, addr, idx);
5390                 if (saddr) {
5391                         spte = huge_pte_offset(svma->vm_mm, saddr,
5392                                                vma_mmu_pagesize(svma));
5393                         if (spte) {
5394                                 get_page(virt_to_page(spte));
5395                                 break;
5396                         }
5397                 }
5398         }
5399
5400         if (!spte)
5401                 goto out;
5402
5403         ptl = huge_pte_lock(hstate_vma(vma), mm, spte);
5404         if (pud_none(*pud)) {
5405                 pud_populate(mm, pud,
5406                                 (pmd_t *)((unsigned long)spte & PAGE_MASK));
5407                 mm_inc_nr_pmds(mm);
5408         } else {
5409                 put_page(virt_to_page(spte));
5410         }
5411         spin_unlock(ptl);
5412 out:
5413         pte = (pte_t *)pmd_alloc(mm, pud, addr);
5414         return pte;
5415 }
5416
5417 /*
5418  * unmap huge page backed by shared pte.
5419  *
5420  * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
5421  * indicated by page_count > 1, unmap is achieved by clearing pud and
5422  * decrementing the ref count. If count == 1, the pte page is not shared.
5423  *
5424  * Called with page table lock held and i_mmap_rwsem held in write mode.
5425  *
5426  * returns: 1 successfully unmapped a shared pte page
5427  *          0 the underlying pte page is not shared, or it is the last user
5428  */
5429 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
5430                                         unsigned long *addr, pte_t *ptep)
5431 {
5432         pgd_t *pgd = pgd_offset(mm, *addr);
5433         p4d_t *p4d = p4d_offset(pgd, *addr);
5434         pud_t *pud = pud_offset(p4d, *addr);
5435
5436         i_mmap_assert_write_locked(vma->vm_file->f_mapping);
5437         BUG_ON(page_count(virt_to_page(ptep)) == 0);
5438         if (page_count(virt_to_page(ptep)) == 1)
5439                 return 0;
5440
5441         pud_clear(pud);
5442         put_page(virt_to_page(ptep));
5443         mm_dec_nr_pmds(mm);
5444         *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
5445         return 1;
5446 }
5447
5448 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
5449 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
5450                       unsigned long addr, pud_t *pud)
5451 {
5452         return NULL;
5453 }
5454
5455 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
5456                                 unsigned long *addr, pte_t *ptep)
5457 {
5458         return 0;
5459 }
5460
5461 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
5462                                 unsigned long *start, unsigned long *end)
5463 {
5464 }
5465
5466 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
5467 {
5468         return false;
5469 }
5470 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
5471
5472 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
5473 pte_t *huge_pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
5474                         unsigned long addr, unsigned long sz)
5475 {
5476         pgd_t *pgd;
5477         p4d_t *p4d;
5478         pud_t *pud;
5479         pte_t *pte = NULL;
5480
5481         pgd = pgd_offset(mm, addr);
5482         p4d = p4d_alloc(mm, pgd, addr);
5483         if (!p4d)
5484                 return NULL;
5485         pud = pud_alloc(mm, p4d, addr);
5486         if (pud) {
5487                 if (sz == PUD_SIZE) {
5488                         pte = (pte_t *)pud;
5489                 } else {
5490                         BUG_ON(sz != PMD_SIZE);
5491                         if (want_pmd_share(vma, addr) && pud_none(*pud))
5492                                 pte = huge_pmd_share(mm, vma, addr, pud);
5493                         else
5494                                 pte = (pte_t *)pmd_alloc(mm, pud, addr);
5495                 }
5496         }
5497         BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte));
5498
5499         return pte;
5500 }
5501
5502 /*
5503  * huge_pte_offset() - Walk the page table to resolve the hugepage
5504  * entry at address @addr
5505  *
5506  * Return: Pointer to page table entry (PUD or PMD) for
5507  * address @addr, or NULL if a !p*d_present() entry is encountered and the
5508  * size @sz doesn't match the hugepage size at this level of the page
5509  * table.
5510  */
5511 pte_t *huge_pte_offset(struct mm_struct *mm,
5512                        unsigned long addr, unsigned long sz)
5513 {
5514         pgd_t *pgd;
5515         p4d_t *p4d;
5516         pud_t *pud;
5517         pmd_t *pmd;
5518
5519         pgd = pgd_offset(mm, addr);
5520         if (!pgd_present(*pgd))
5521                 return NULL;
5522         p4d = p4d_offset(pgd, addr);
5523         if (!p4d_present(*p4d))
5524                 return NULL;
5525
5526         pud = pud_offset(p4d, addr);
5527         if (sz == PUD_SIZE)
5528                 /* must be pud huge, non-present or none */
5529                 return (pte_t *)pud;
5530         if (!pud_present(*pud))
5531                 return NULL;
5532         /* must have a valid entry and size to go further */
5533
5534         pmd = pmd_offset(pud, addr);
5535         /* must be pmd huge, non-present or none */
5536         return (pte_t *)pmd;
5537 }
5538
5539 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
5540
5541 /*
5542  * These functions are overwritable if your architecture needs its own
5543  * behavior.
5544  */
5545 struct page * __weak
5546 follow_huge_addr(struct mm_struct *mm, unsigned long address,
5547                               int write)
5548 {
5549         return ERR_PTR(-EINVAL);
5550 }
5551
5552 struct page * __weak
5553 follow_huge_pd(struct vm_area_struct *vma,
5554                unsigned long address, hugepd_t hpd, int flags, int pdshift)
5555 {
5556         WARN(1, "hugepd follow called with no support for hugepage directory format\n");
5557         return NULL;
5558 }
5559
5560 struct page * __weak
5561 follow_huge_pmd(struct mm_struct *mm, unsigned long address,
5562                 pmd_t *pmd, int flags)
5563 {
5564         struct page *page = NULL;
5565         spinlock_t *ptl;
5566         pte_t pte;
5567
5568         /* FOLL_GET and FOLL_PIN are mutually exclusive. */
5569         if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
5570                          (FOLL_PIN | FOLL_GET)))
5571                 return NULL;
5572
5573 retry:
5574         ptl = pmd_lockptr(mm, pmd);
5575         spin_lock(ptl);
5576         /*
5577          * make sure that the address range covered by this pmd is not
5578          * unmapped from other threads.
5579          */
5580         if (!pmd_huge(*pmd))
5581                 goto out;
5582         pte = huge_ptep_get((pte_t *)pmd);
5583         if (pte_present(pte)) {
5584                 page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
5585                 /*
5586                  * try_grab_page() should always succeed here, because: a) we
5587                  * hold the pmd (ptl) lock, and b) we've just checked that the
5588                  * huge pmd (head) page is present in the page tables. The ptl
5589                  * prevents the head page and tail pages from being rearranged
5590                  * in any way. So this page must be available at this point,
5591                  * unless the page refcount overflowed:
5592                  */
5593                 if (WARN_ON_ONCE(!try_grab_page(page, flags))) {
5594                         page = NULL;
5595                         goto out;
5596                 }
5597         } else {
5598                 if (is_hugetlb_entry_migration(pte)) {
5599                         spin_unlock(ptl);
5600                         __migration_entry_wait(mm, (pte_t *)pmd, ptl);
5601                         goto retry;
5602                 }
5603                 /*
5604                  * hwpoisoned entry is treated as no_page_table in
5605                  * follow_page_mask().
5606                  */
5607         }
5608 out:
5609         spin_unlock(ptl);
5610         return page;
5611 }
5612
5613 struct page * __weak
5614 follow_huge_pud(struct mm_struct *mm, unsigned long address,
5615                 pud_t *pud, int flags)
5616 {
5617         if (flags & (FOLL_GET | FOLL_PIN))
5618                 return NULL;
5619
5620         return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
5621 }
5622
5623 struct page * __weak
5624 follow_huge_pgd(struct mm_struct *mm, unsigned long address, pgd_t *pgd, int flags)
5625 {
5626         if (flags & (FOLL_GET | FOLL_PIN))
5627                 return NULL;
5628
5629         return pte_page(*(pte_t *)pgd) + ((address & ~PGDIR_MASK) >> PAGE_SHIFT);
5630 }
5631
5632 bool isolate_huge_page(struct page *page, struct list_head *list)
5633 {
5634         bool ret = true;
5635
5636         spin_lock(&hugetlb_lock);
5637         if (!PageHeadHuge(page) ||
5638             !HPageMigratable(page) ||
5639             !get_page_unless_zero(page)) {
5640                 ret = false;
5641                 goto unlock;
5642         }
5643         ClearHPageMigratable(page);
5644         list_move_tail(&page->lru, list);
5645 unlock:
5646         spin_unlock(&hugetlb_lock);
5647         return ret;
5648 }
5649
5650 void putback_active_hugepage(struct page *page)
5651 {
5652         spin_lock(&hugetlb_lock);
5653         SetHPageMigratable(page);
5654         list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
5655         spin_unlock(&hugetlb_lock);
5656         put_page(page);
5657 }
5658
5659 void move_hugetlb_state(struct page *oldpage, struct page *newpage, int reason)
5660 {
5661         struct hstate *h = page_hstate(oldpage);
5662
5663         hugetlb_cgroup_migrate(oldpage, newpage);
5664         set_page_owner_migrate_reason(newpage, reason);
5665
5666         /*
5667          * transfer temporary state of the new huge page. This is
5668          * reverse to other transitions because the newpage is going to
5669          * be final while the old one will be freed so it takes over
5670          * the temporary status.
5671          *
5672          * Also note that we have to transfer the per-node surplus state
5673          * here as well otherwise the global surplus count will not match
5674          * the per-node's.
5675          */
5676         if (HPageTemporary(newpage)) {
5677                 int old_nid = page_to_nid(oldpage);
5678                 int new_nid = page_to_nid(newpage);
5679
5680                 SetHPageTemporary(oldpage);
5681                 ClearHPageTemporary(newpage);
5682
5683                 /*
5684                  * There is no need to transfer the per-node surplus state
5685                  * when we do not cross the node.
5686                  */
5687                 if (new_nid == old_nid)
5688                         return;
5689                 spin_lock(&hugetlb_lock);
5690                 if (h->surplus_huge_pages_node[old_nid]) {
5691                         h->surplus_huge_pages_node[old_nid]--;
5692                         h->surplus_huge_pages_node[new_nid]++;
5693                 }
5694                 spin_unlock(&hugetlb_lock);
5695         }
5696 }
5697
5698 /*
5699  * This function will unconditionally remove all the shared pmd pgtable entries
5700  * within the specific vma for a hugetlbfs memory range.
5701  */
5702 void hugetlb_unshare_all_pmds(struct vm_area_struct *vma)
5703 {
5704         struct hstate *h = hstate_vma(vma);
5705         unsigned long sz = huge_page_size(h);
5706         struct mm_struct *mm = vma->vm_mm;
5707         struct mmu_notifier_range range;
5708         unsigned long address, start, end;
5709         spinlock_t *ptl;
5710         pte_t *ptep;
5711
5712         if (!(vma->vm_flags & VM_MAYSHARE))
5713                 return;
5714
5715         start = ALIGN(vma->vm_start, PUD_SIZE);
5716         end = ALIGN_DOWN(vma->vm_end, PUD_SIZE);
5717
5718         if (start >= end)
5719                 return;
5720
5721         /*
5722          * No need to call adjust_range_if_pmd_sharing_possible(), because
5723          * we have already done the PUD_SIZE alignment.
5724          */
5725         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
5726                                 start, end);
5727         mmu_notifier_invalidate_range_start(&range);
5728         i_mmap_lock_write(vma->vm_file->f_mapping);
5729         for (address = start; address < end; address += PUD_SIZE) {
5730                 unsigned long tmp = address;
5731
5732                 ptep = huge_pte_offset(mm, address, sz);
5733                 if (!ptep)
5734                         continue;
5735                 ptl = huge_pte_lock(h, mm, ptep);
5736                 /* We don't want 'address' to be changed */
5737                 huge_pmd_unshare(mm, vma, &tmp, ptep);
5738                 spin_unlock(ptl);
5739         }
5740         flush_hugetlb_tlb_range(vma, start, end);
5741         i_mmap_unlock_write(vma->vm_file->f_mapping);
5742         /*
5743          * No need to call mmu_notifier_invalidate_range(), see
5744          * Documentation/vm/mmu_notifier.rst.
5745          */
5746         mmu_notifier_invalidate_range_end(&range);
5747 }
5748
5749 #ifdef CONFIG_CMA
5750 static bool cma_reserve_called __initdata;
5751
5752 static int __init cmdline_parse_hugetlb_cma(char *p)
5753 {
5754         hugetlb_cma_size = memparse(p, &p);
5755         return 0;
5756 }
5757
5758 early_param("hugetlb_cma", cmdline_parse_hugetlb_cma);
5759
5760 void __init hugetlb_cma_reserve(int order)
5761 {
5762         unsigned long size, reserved, per_node;
5763         int nid;
5764
5765         cma_reserve_called = true;
5766
5767         if (!hugetlb_cma_size)
5768                 return;
5769
5770         if (hugetlb_cma_size < (PAGE_SIZE << order)) {
5771                 pr_warn("hugetlb_cma: cma area should be at least %lu MiB\n",
5772                         (PAGE_SIZE << order) / SZ_1M);
5773                 return;
5774         }
5775
5776         /*
5777          * If 3 GB area is requested on a machine with 4 numa nodes,
5778          * let's allocate 1 GB on first three nodes and ignore the last one.
5779          */
5780         per_node = DIV_ROUND_UP(hugetlb_cma_size, nr_online_nodes);
5781         pr_info("hugetlb_cma: reserve %lu MiB, up to %lu MiB per node\n",
5782                 hugetlb_cma_size / SZ_1M, per_node / SZ_1M);
5783
5784         reserved = 0;
5785         for_each_node_state(nid, N_ONLINE) {
5786                 int res;
5787                 char name[CMA_MAX_NAME];
5788
5789                 size = min(per_node, hugetlb_cma_size - reserved);
5790                 size = round_up(size, PAGE_SIZE << order);
5791
5792                 snprintf(name, sizeof(name), "hugetlb%d", nid);
5793                 res = cma_declare_contiguous_nid(0, size, 0, PAGE_SIZE << order,
5794                                                  0, false, name,
5795                                                  &hugetlb_cma[nid], nid);
5796                 if (res) {
5797                         pr_warn("hugetlb_cma: reservation failed: err %d, node %d",
5798                                 res, nid);
5799                         continue;
5800                 }
5801
5802                 reserved += size;
5803                 pr_info("hugetlb_cma: reserved %lu MiB on node %d\n",
5804                         size / SZ_1M, nid);
5805
5806                 if (reserved >= hugetlb_cma_size)
5807                         break;
5808         }
5809 }
5810
5811 void __init hugetlb_cma_check(void)
5812 {
5813         if (!hugetlb_cma_size || cma_reserve_called)
5814                 return;
5815
5816         pr_warn("hugetlb_cma: the option isn't supported by current arch\n");
5817 }
5818
5819 #endif /* CONFIG_CMA */