hugetlb: make free_huge_page irq safe
[linux-2.6-microblaze.git] / mm / hugetlb.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Generic hugetlb support.
4  * (C) Nadia Yvette Chambers, April 2004
5  */
6 #include <linux/list.h>
7 #include <linux/init.h>
8 #include <linux/mm.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/compiler.h>
17 #include <linux/cpuset.h>
18 #include <linux/mutex.h>
19 #include <linux/memblock.h>
20 #include <linux/sysfs.h>
21 #include <linux/slab.h>
22 #include <linux/sched/mm.h>
23 #include <linux/mmdebug.h>
24 #include <linux/sched/signal.h>
25 #include <linux/rmap.h>
26 #include <linux/string_helpers.h>
27 #include <linux/swap.h>
28 #include <linux/swapops.h>
29 #include <linux/jhash.h>
30 #include <linux/numa.h>
31 #include <linux/llist.h>
32 #include <linux/cma.h>
33
34 #include <asm/page.h>
35 #include <asm/pgalloc.h>
36 #include <asm/tlb.h>
37
38 #include <linux/io.h>
39 #include <linux/hugetlb.h>
40 #include <linux/hugetlb_cgroup.h>
41 #include <linux/node.h>
42 #include <linux/userfaultfd_k.h>
43 #include <linux/page_owner.h>
44 #include "internal.h"
45
46 int hugetlb_max_hstate __read_mostly;
47 unsigned int default_hstate_idx;
48 struct hstate hstates[HUGE_MAX_HSTATE];
49
50 #ifdef CONFIG_CMA
51 static struct cma *hugetlb_cma[MAX_NUMNODES];
52 #endif
53 static unsigned long hugetlb_cma_size __initdata;
54
55 /*
56  * Minimum page order among possible hugepage sizes, set to a proper value
57  * at boot time.
58  */
59 static unsigned int minimum_order __read_mostly = UINT_MAX;
60
61 __initdata LIST_HEAD(huge_boot_pages);
62
63 /* for command line parsing */
64 static struct hstate * __initdata parsed_hstate;
65 static unsigned long __initdata default_hstate_max_huge_pages;
66 static bool __initdata parsed_valid_hugepagesz = true;
67 static bool __initdata parsed_default_hugepagesz;
68
69 /*
70  * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
71  * free_huge_pages, and surplus_huge_pages.
72  */
73 DEFINE_SPINLOCK(hugetlb_lock);
74
75 /*
76  * Serializes faults on the same logical page.  This is used to
77  * prevent spurious OOMs when the hugepage pool is fully utilized.
78  */
79 static int num_fault_mutexes;
80 struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
81
82 /* Forward declaration */
83 static int hugetlb_acct_memory(struct hstate *h, long delta);
84
85 static inline bool subpool_is_free(struct hugepage_subpool *spool)
86 {
87         if (spool->count)
88                 return false;
89         if (spool->max_hpages != -1)
90                 return spool->used_hpages == 0;
91         if (spool->min_hpages != -1)
92                 return spool->rsv_hpages == spool->min_hpages;
93
94         return true;
95 }
96
97 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool,
98                                                 unsigned long irq_flags)
99 {
100         spin_unlock_irqrestore(&spool->lock, irq_flags);
101
102         /* If no pages are used, and no other handles to the subpool
103          * remain, give up any reservations based on minimum size and
104          * free the subpool */
105         if (subpool_is_free(spool)) {
106                 if (spool->min_hpages != -1)
107                         hugetlb_acct_memory(spool->hstate,
108                                                 -spool->min_hpages);
109                 kfree(spool);
110         }
111 }
112
113 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
114                                                 long min_hpages)
115 {
116         struct hugepage_subpool *spool;
117
118         spool = kzalloc(sizeof(*spool), GFP_KERNEL);
119         if (!spool)
120                 return NULL;
121
122         spin_lock_init(&spool->lock);
123         spool->count = 1;
124         spool->max_hpages = max_hpages;
125         spool->hstate = h;
126         spool->min_hpages = min_hpages;
127
128         if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
129                 kfree(spool);
130                 return NULL;
131         }
132         spool->rsv_hpages = min_hpages;
133
134         return spool;
135 }
136
137 void hugepage_put_subpool(struct hugepage_subpool *spool)
138 {
139         unsigned long flags;
140
141         spin_lock_irqsave(&spool->lock, flags);
142         BUG_ON(!spool->count);
143         spool->count--;
144         unlock_or_release_subpool(spool, flags);
145 }
146
147 /*
148  * Subpool accounting for allocating and reserving pages.
149  * Return -ENOMEM if there are not enough resources to satisfy the
150  * request.  Otherwise, return the number of pages by which the
151  * global pools must be adjusted (upward).  The returned value may
152  * only be different than the passed value (delta) in the case where
153  * a subpool minimum size must be maintained.
154  */
155 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
156                                       long delta)
157 {
158         long ret = delta;
159
160         if (!spool)
161                 return ret;
162
163         spin_lock_irq(&spool->lock);
164
165         if (spool->max_hpages != -1) {          /* maximum size accounting */
166                 if ((spool->used_hpages + delta) <= spool->max_hpages)
167                         spool->used_hpages += delta;
168                 else {
169                         ret = -ENOMEM;
170                         goto unlock_ret;
171                 }
172         }
173
174         /* minimum size accounting */
175         if (spool->min_hpages != -1 && spool->rsv_hpages) {
176                 if (delta > spool->rsv_hpages) {
177                         /*
178                          * Asking for more reserves than those already taken on
179                          * behalf of subpool.  Return difference.
180                          */
181                         ret = delta - spool->rsv_hpages;
182                         spool->rsv_hpages = 0;
183                 } else {
184                         ret = 0;        /* reserves already accounted for */
185                         spool->rsv_hpages -= delta;
186                 }
187         }
188
189 unlock_ret:
190         spin_unlock_irq(&spool->lock);
191         return ret;
192 }
193
194 /*
195  * Subpool accounting for freeing and unreserving pages.
196  * Return the number of global page reservations that must be dropped.
197  * The return value may only be different than the passed value (delta)
198  * in the case where a subpool minimum size must be maintained.
199  */
200 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
201                                        long delta)
202 {
203         long ret = delta;
204         unsigned long flags;
205
206         if (!spool)
207                 return delta;
208
209         spin_lock_irqsave(&spool->lock, flags);
210
211         if (spool->max_hpages != -1)            /* maximum size accounting */
212                 spool->used_hpages -= delta;
213
214          /* minimum size accounting */
215         if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
216                 if (spool->rsv_hpages + delta <= spool->min_hpages)
217                         ret = 0;
218                 else
219                         ret = spool->rsv_hpages + delta - spool->min_hpages;
220
221                 spool->rsv_hpages += delta;
222                 if (spool->rsv_hpages > spool->min_hpages)
223                         spool->rsv_hpages = spool->min_hpages;
224         }
225
226         /*
227          * If hugetlbfs_put_super couldn't free spool due to an outstanding
228          * quota reference, free it now.
229          */
230         unlock_or_release_subpool(spool, flags);
231
232         return ret;
233 }
234
235 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
236 {
237         return HUGETLBFS_SB(inode->i_sb)->spool;
238 }
239
240 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
241 {
242         return subpool_inode(file_inode(vma->vm_file));
243 }
244
245 /* Helper that removes a struct file_region from the resv_map cache and returns
246  * it for use.
247  */
248 static struct file_region *
249 get_file_region_entry_from_cache(struct resv_map *resv, long from, long to)
250 {
251         struct file_region *nrg = NULL;
252
253         VM_BUG_ON(resv->region_cache_count <= 0);
254
255         resv->region_cache_count--;
256         nrg = list_first_entry(&resv->region_cache, struct file_region, link);
257         list_del(&nrg->link);
258
259         nrg->from = from;
260         nrg->to = to;
261
262         return nrg;
263 }
264
265 static void copy_hugetlb_cgroup_uncharge_info(struct file_region *nrg,
266                                               struct file_region *rg)
267 {
268 #ifdef CONFIG_CGROUP_HUGETLB
269         nrg->reservation_counter = rg->reservation_counter;
270         nrg->css = rg->css;
271         if (rg->css)
272                 css_get(rg->css);
273 #endif
274 }
275
276 /* Helper that records hugetlb_cgroup uncharge info. */
277 static void record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup *h_cg,
278                                                 struct hstate *h,
279                                                 struct resv_map *resv,
280                                                 struct file_region *nrg)
281 {
282 #ifdef CONFIG_CGROUP_HUGETLB
283         if (h_cg) {
284                 nrg->reservation_counter =
285                         &h_cg->rsvd_hugepage[hstate_index(h)];
286                 nrg->css = &h_cg->css;
287                 /*
288                  * The caller will hold exactly one h_cg->css reference for the
289                  * whole contiguous reservation region. But this area might be
290                  * scattered when there are already some file_regions reside in
291                  * it. As a result, many file_regions may share only one css
292                  * reference. In order to ensure that one file_region must hold
293                  * exactly one h_cg->css reference, we should do css_get for
294                  * each file_region and leave the reference held by caller
295                  * untouched.
296                  */
297                 css_get(&h_cg->css);
298                 if (!resv->pages_per_hpage)
299                         resv->pages_per_hpage = pages_per_huge_page(h);
300                 /* pages_per_hpage should be the same for all entries in
301                  * a resv_map.
302                  */
303                 VM_BUG_ON(resv->pages_per_hpage != pages_per_huge_page(h));
304         } else {
305                 nrg->reservation_counter = NULL;
306                 nrg->css = NULL;
307         }
308 #endif
309 }
310
311 static void put_uncharge_info(struct file_region *rg)
312 {
313 #ifdef CONFIG_CGROUP_HUGETLB
314         if (rg->css)
315                 css_put(rg->css);
316 #endif
317 }
318
319 static bool has_same_uncharge_info(struct file_region *rg,
320                                    struct file_region *org)
321 {
322 #ifdef CONFIG_CGROUP_HUGETLB
323         return rg && org &&
324                rg->reservation_counter == org->reservation_counter &&
325                rg->css == org->css;
326
327 #else
328         return true;
329 #endif
330 }
331
332 static void coalesce_file_region(struct resv_map *resv, struct file_region *rg)
333 {
334         struct file_region *nrg = NULL, *prg = NULL;
335
336         prg = list_prev_entry(rg, link);
337         if (&prg->link != &resv->regions && prg->to == rg->from &&
338             has_same_uncharge_info(prg, rg)) {
339                 prg->to = rg->to;
340
341                 list_del(&rg->link);
342                 put_uncharge_info(rg);
343                 kfree(rg);
344
345                 rg = prg;
346         }
347
348         nrg = list_next_entry(rg, link);
349         if (&nrg->link != &resv->regions && nrg->from == rg->to &&
350             has_same_uncharge_info(nrg, rg)) {
351                 nrg->from = rg->from;
352
353                 list_del(&rg->link);
354                 put_uncharge_info(rg);
355                 kfree(rg);
356         }
357 }
358
359 static inline long
360 hugetlb_resv_map_add(struct resv_map *map, struct file_region *rg, long from,
361                      long to, struct hstate *h, struct hugetlb_cgroup *cg,
362                      long *regions_needed)
363 {
364         struct file_region *nrg;
365
366         if (!regions_needed) {
367                 nrg = get_file_region_entry_from_cache(map, from, to);
368                 record_hugetlb_cgroup_uncharge_info(cg, h, map, nrg);
369                 list_add(&nrg->link, rg->link.prev);
370                 coalesce_file_region(map, nrg);
371         } else
372                 *regions_needed += 1;
373
374         return to - from;
375 }
376
377 /*
378  * Must be called with resv->lock held.
379  *
380  * Calling this with regions_needed != NULL will count the number of pages
381  * to be added but will not modify the linked list. And regions_needed will
382  * indicate the number of file_regions needed in the cache to carry out to add
383  * the regions for this range.
384  */
385 static long add_reservation_in_range(struct resv_map *resv, long f, long t,
386                                      struct hugetlb_cgroup *h_cg,
387                                      struct hstate *h, long *regions_needed)
388 {
389         long add = 0;
390         struct list_head *head = &resv->regions;
391         long last_accounted_offset = f;
392         struct file_region *rg = NULL, *trg = NULL;
393
394         if (regions_needed)
395                 *regions_needed = 0;
396
397         /* In this loop, we essentially handle an entry for the range
398          * [last_accounted_offset, rg->from), at every iteration, with some
399          * bounds checking.
400          */
401         list_for_each_entry_safe(rg, trg, head, link) {
402                 /* Skip irrelevant regions that start before our range. */
403                 if (rg->from < f) {
404                         /* If this region ends after the last accounted offset,
405                          * then we need to update last_accounted_offset.
406                          */
407                         if (rg->to > last_accounted_offset)
408                                 last_accounted_offset = rg->to;
409                         continue;
410                 }
411
412                 /* When we find a region that starts beyond our range, we've
413                  * finished.
414                  */
415                 if (rg->from >= t)
416                         break;
417
418                 /* Add an entry for last_accounted_offset -> rg->from, and
419                  * update last_accounted_offset.
420                  */
421                 if (rg->from > last_accounted_offset)
422                         add += hugetlb_resv_map_add(resv, rg,
423                                                     last_accounted_offset,
424                                                     rg->from, h, h_cg,
425                                                     regions_needed);
426
427                 last_accounted_offset = rg->to;
428         }
429
430         /* Handle the case where our range extends beyond
431          * last_accounted_offset.
432          */
433         if (last_accounted_offset < t)
434                 add += hugetlb_resv_map_add(resv, rg, last_accounted_offset,
435                                             t, h, h_cg, regions_needed);
436
437         VM_BUG_ON(add < 0);
438         return add;
439 }
440
441 /* Must be called with resv->lock acquired. Will drop lock to allocate entries.
442  */
443 static int allocate_file_region_entries(struct resv_map *resv,
444                                         int regions_needed)
445         __must_hold(&resv->lock)
446 {
447         struct list_head allocated_regions;
448         int to_allocate = 0, i = 0;
449         struct file_region *trg = NULL, *rg = NULL;
450
451         VM_BUG_ON(regions_needed < 0);
452
453         INIT_LIST_HEAD(&allocated_regions);
454
455         /*
456          * Check for sufficient descriptors in the cache to accommodate
457          * the number of in progress add operations plus regions_needed.
458          *
459          * This is a while loop because when we drop the lock, some other call
460          * to region_add or region_del may have consumed some region_entries,
461          * so we keep looping here until we finally have enough entries for
462          * (adds_in_progress + regions_needed).
463          */
464         while (resv->region_cache_count <
465                (resv->adds_in_progress + regions_needed)) {
466                 to_allocate = resv->adds_in_progress + regions_needed -
467                               resv->region_cache_count;
468
469                 /* At this point, we should have enough entries in the cache
470                  * for all the existings adds_in_progress. We should only be
471                  * needing to allocate for regions_needed.
472                  */
473                 VM_BUG_ON(resv->region_cache_count < resv->adds_in_progress);
474
475                 spin_unlock(&resv->lock);
476                 for (i = 0; i < to_allocate; i++) {
477                         trg = kmalloc(sizeof(*trg), GFP_KERNEL);
478                         if (!trg)
479                                 goto out_of_memory;
480                         list_add(&trg->link, &allocated_regions);
481                 }
482
483                 spin_lock(&resv->lock);
484
485                 list_splice(&allocated_regions, &resv->region_cache);
486                 resv->region_cache_count += to_allocate;
487         }
488
489         return 0;
490
491 out_of_memory:
492         list_for_each_entry_safe(rg, trg, &allocated_regions, link) {
493                 list_del(&rg->link);
494                 kfree(rg);
495         }
496         return -ENOMEM;
497 }
498
499 /*
500  * Add the huge page range represented by [f, t) to the reserve
501  * map.  Regions will be taken from the cache to fill in this range.
502  * Sufficient regions should exist in the cache due to the previous
503  * call to region_chg with the same range, but in some cases the cache will not
504  * have sufficient entries due to races with other code doing region_add or
505  * region_del.  The extra needed entries will be allocated.
506  *
507  * regions_needed is the out value provided by a previous call to region_chg.
508  *
509  * Return the number of new huge pages added to the map.  This number is greater
510  * than or equal to zero.  If file_region entries needed to be allocated for
511  * this operation and we were not able to allocate, it returns -ENOMEM.
512  * region_add of regions of length 1 never allocate file_regions and cannot
513  * fail; region_chg will always allocate at least 1 entry and a region_add for
514  * 1 page will only require at most 1 entry.
515  */
516 static long region_add(struct resv_map *resv, long f, long t,
517                        long in_regions_needed, struct hstate *h,
518                        struct hugetlb_cgroup *h_cg)
519 {
520         long add = 0, actual_regions_needed = 0;
521
522         spin_lock(&resv->lock);
523 retry:
524
525         /* Count how many regions are actually needed to execute this add. */
526         add_reservation_in_range(resv, f, t, NULL, NULL,
527                                  &actual_regions_needed);
528
529         /*
530          * Check for sufficient descriptors in the cache to accommodate
531          * this add operation. Note that actual_regions_needed may be greater
532          * than in_regions_needed, as the resv_map may have been modified since
533          * the region_chg call. In this case, we need to make sure that we
534          * allocate extra entries, such that we have enough for all the
535          * existing adds_in_progress, plus the excess needed for this
536          * operation.
537          */
538         if (actual_regions_needed > in_regions_needed &&
539             resv->region_cache_count <
540                     resv->adds_in_progress +
541                             (actual_regions_needed - in_regions_needed)) {
542                 /* region_add operation of range 1 should never need to
543                  * allocate file_region entries.
544                  */
545                 VM_BUG_ON(t - f <= 1);
546
547                 if (allocate_file_region_entries(
548                             resv, actual_regions_needed - in_regions_needed)) {
549                         return -ENOMEM;
550                 }
551
552                 goto retry;
553         }
554
555         add = add_reservation_in_range(resv, f, t, h_cg, h, NULL);
556
557         resv->adds_in_progress -= in_regions_needed;
558
559         spin_unlock(&resv->lock);
560         return add;
561 }
562
563 /*
564  * Examine the existing reserve map and determine how many
565  * huge pages in the specified range [f, t) are NOT currently
566  * represented.  This routine is called before a subsequent
567  * call to region_add that will actually modify the reserve
568  * map to add the specified range [f, t).  region_chg does
569  * not change the number of huge pages represented by the
570  * map.  A number of new file_region structures is added to the cache as a
571  * placeholder, for the subsequent region_add call to use. At least 1
572  * file_region structure is added.
573  *
574  * out_regions_needed is the number of regions added to the
575  * resv->adds_in_progress.  This value needs to be provided to a follow up call
576  * to region_add or region_abort for proper accounting.
577  *
578  * Returns the number of huge pages that need to be added to the existing
579  * reservation map for the range [f, t).  This number is greater or equal to
580  * zero.  -ENOMEM is returned if a new file_region structure or cache entry
581  * is needed and can not be allocated.
582  */
583 static long region_chg(struct resv_map *resv, long f, long t,
584                        long *out_regions_needed)
585 {
586         long chg = 0;
587
588         spin_lock(&resv->lock);
589
590         /* Count how many hugepages in this range are NOT represented. */
591         chg = add_reservation_in_range(resv, f, t, NULL, NULL,
592                                        out_regions_needed);
593
594         if (*out_regions_needed == 0)
595                 *out_regions_needed = 1;
596
597         if (allocate_file_region_entries(resv, *out_regions_needed))
598                 return -ENOMEM;
599
600         resv->adds_in_progress += *out_regions_needed;
601
602         spin_unlock(&resv->lock);
603         return chg;
604 }
605
606 /*
607  * Abort the in progress add operation.  The adds_in_progress field
608  * of the resv_map keeps track of the operations in progress between
609  * calls to region_chg and region_add.  Operations are sometimes
610  * aborted after the call to region_chg.  In such cases, region_abort
611  * is called to decrement the adds_in_progress counter. regions_needed
612  * is the value returned by the region_chg call, it is used to decrement
613  * the adds_in_progress counter.
614  *
615  * NOTE: The range arguments [f, t) are not needed or used in this
616  * routine.  They are kept to make reading the calling code easier as
617  * arguments will match the associated region_chg call.
618  */
619 static void region_abort(struct resv_map *resv, long f, long t,
620                          long regions_needed)
621 {
622         spin_lock(&resv->lock);
623         VM_BUG_ON(!resv->region_cache_count);
624         resv->adds_in_progress -= regions_needed;
625         spin_unlock(&resv->lock);
626 }
627
628 /*
629  * Delete the specified range [f, t) from the reserve map.  If the
630  * t parameter is LONG_MAX, this indicates that ALL regions after f
631  * should be deleted.  Locate the regions which intersect [f, t)
632  * and either trim, delete or split the existing regions.
633  *
634  * Returns the number of huge pages deleted from the reserve map.
635  * In the normal case, the return value is zero or more.  In the
636  * case where a region must be split, a new region descriptor must
637  * be allocated.  If the allocation fails, -ENOMEM will be returned.
638  * NOTE: If the parameter t == LONG_MAX, then we will never split
639  * a region and possibly return -ENOMEM.  Callers specifying
640  * t == LONG_MAX do not need to check for -ENOMEM error.
641  */
642 static long region_del(struct resv_map *resv, long f, long t)
643 {
644         struct list_head *head = &resv->regions;
645         struct file_region *rg, *trg;
646         struct file_region *nrg = NULL;
647         long del = 0;
648
649 retry:
650         spin_lock(&resv->lock);
651         list_for_each_entry_safe(rg, trg, head, link) {
652                 /*
653                  * Skip regions before the range to be deleted.  file_region
654                  * ranges are normally of the form [from, to).  However, there
655                  * may be a "placeholder" entry in the map which is of the form
656                  * (from, to) with from == to.  Check for placeholder entries
657                  * at the beginning of the range to be deleted.
658                  */
659                 if (rg->to <= f && (rg->to != rg->from || rg->to != f))
660                         continue;
661
662                 if (rg->from >= t)
663                         break;
664
665                 if (f > rg->from && t < rg->to) { /* Must split region */
666                         /*
667                          * Check for an entry in the cache before dropping
668                          * lock and attempting allocation.
669                          */
670                         if (!nrg &&
671                             resv->region_cache_count > resv->adds_in_progress) {
672                                 nrg = list_first_entry(&resv->region_cache,
673                                                         struct file_region,
674                                                         link);
675                                 list_del(&nrg->link);
676                                 resv->region_cache_count--;
677                         }
678
679                         if (!nrg) {
680                                 spin_unlock(&resv->lock);
681                                 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
682                                 if (!nrg)
683                                         return -ENOMEM;
684                                 goto retry;
685                         }
686
687                         del += t - f;
688                         hugetlb_cgroup_uncharge_file_region(
689                                 resv, rg, t - f, false);
690
691                         /* New entry for end of split region */
692                         nrg->from = t;
693                         nrg->to = rg->to;
694
695                         copy_hugetlb_cgroup_uncharge_info(nrg, rg);
696
697                         INIT_LIST_HEAD(&nrg->link);
698
699                         /* Original entry is trimmed */
700                         rg->to = f;
701
702                         list_add(&nrg->link, &rg->link);
703                         nrg = NULL;
704                         break;
705                 }
706
707                 if (f <= rg->from && t >= rg->to) { /* Remove entire region */
708                         del += rg->to - rg->from;
709                         hugetlb_cgroup_uncharge_file_region(resv, rg,
710                                                             rg->to - rg->from, true);
711                         list_del(&rg->link);
712                         kfree(rg);
713                         continue;
714                 }
715
716                 if (f <= rg->from) {    /* Trim beginning of region */
717                         hugetlb_cgroup_uncharge_file_region(resv, rg,
718                                                             t - rg->from, false);
719
720                         del += t - rg->from;
721                         rg->from = t;
722                 } else {                /* Trim end of region */
723                         hugetlb_cgroup_uncharge_file_region(resv, rg,
724                                                             rg->to - f, false);
725
726                         del += rg->to - f;
727                         rg->to = f;
728                 }
729         }
730
731         spin_unlock(&resv->lock);
732         kfree(nrg);
733         return del;
734 }
735
736 /*
737  * A rare out of memory error was encountered which prevented removal of
738  * the reserve map region for a page.  The huge page itself was free'ed
739  * and removed from the page cache.  This routine will adjust the subpool
740  * usage count, and the global reserve count if needed.  By incrementing
741  * these counts, the reserve map entry which could not be deleted will
742  * appear as a "reserved" entry instead of simply dangling with incorrect
743  * counts.
744  */
745 void hugetlb_fix_reserve_counts(struct inode *inode)
746 {
747         struct hugepage_subpool *spool = subpool_inode(inode);
748         long rsv_adjust;
749         bool reserved = false;
750
751         rsv_adjust = hugepage_subpool_get_pages(spool, 1);
752         if (rsv_adjust > 0) {
753                 struct hstate *h = hstate_inode(inode);
754
755                 if (!hugetlb_acct_memory(h, 1))
756                         reserved = true;
757         } else if (!rsv_adjust) {
758                 reserved = true;
759         }
760
761         if (!reserved)
762                 pr_warn("hugetlb: Huge Page Reserved count may go negative.\n");
763 }
764
765 /*
766  * Count and return the number of huge pages in the reserve map
767  * that intersect with the range [f, t).
768  */
769 static long region_count(struct resv_map *resv, long f, long t)
770 {
771         struct list_head *head = &resv->regions;
772         struct file_region *rg;
773         long chg = 0;
774
775         spin_lock(&resv->lock);
776         /* Locate each segment we overlap with, and count that overlap. */
777         list_for_each_entry(rg, head, link) {
778                 long seg_from;
779                 long seg_to;
780
781                 if (rg->to <= f)
782                         continue;
783                 if (rg->from >= t)
784                         break;
785
786                 seg_from = max(rg->from, f);
787                 seg_to = min(rg->to, t);
788
789                 chg += seg_to - seg_from;
790         }
791         spin_unlock(&resv->lock);
792
793         return chg;
794 }
795
796 /*
797  * Convert the address within this vma to the page offset within
798  * the mapping, in pagecache page units; huge pages here.
799  */
800 static pgoff_t vma_hugecache_offset(struct hstate *h,
801                         struct vm_area_struct *vma, unsigned long address)
802 {
803         return ((address - vma->vm_start) >> huge_page_shift(h)) +
804                         (vma->vm_pgoff >> huge_page_order(h));
805 }
806
807 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
808                                      unsigned long address)
809 {
810         return vma_hugecache_offset(hstate_vma(vma), vma, address);
811 }
812 EXPORT_SYMBOL_GPL(linear_hugepage_index);
813
814 /*
815  * Return the size of the pages allocated when backing a VMA. In the majority
816  * cases this will be same size as used by the page table entries.
817  */
818 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
819 {
820         if (vma->vm_ops && vma->vm_ops->pagesize)
821                 return vma->vm_ops->pagesize(vma);
822         return PAGE_SIZE;
823 }
824 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
825
826 /*
827  * Return the page size being used by the MMU to back a VMA. In the majority
828  * of cases, the page size used by the kernel matches the MMU size. On
829  * architectures where it differs, an architecture-specific 'strong'
830  * version of this symbol is required.
831  */
832 __weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
833 {
834         return vma_kernel_pagesize(vma);
835 }
836
837 /*
838  * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
839  * bits of the reservation map pointer, which are always clear due to
840  * alignment.
841  */
842 #define HPAGE_RESV_OWNER    (1UL << 0)
843 #define HPAGE_RESV_UNMAPPED (1UL << 1)
844 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
845
846 /*
847  * These helpers are used to track how many pages are reserved for
848  * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
849  * is guaranteed to have their future faults succeed.
850  *
851  * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
852  * the reserve counters are updated with the hugetlb_lock held. It is safe
853  * to reset the VMA at fork() time as it is not in use yet and there is no
854  * chance of the global counters getting corrupted as a result of the values.
855  *
856  * The private mapping reservation is represented in a subtly different
857  * manner to a shared mapping.  A shared mapping has a region map associated
858  * with the underlying file, this region map represents the backing file
859  * pages which have ever had a reservation assigned which this persists even
860  * after the page is instantiated.  A private mapping has a region map
861  * associated with the original mmap which is attached to all VMAs which
862  * reference it, this region map represents those offsets which have consumed
863  * reservation ie. where pages have been instantiated.
864  */
865 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
866 {
867         return (unsigned long)vma->vm_private_data;
868 }
869
870 static void set_vma_private_data(struct vm_area_struct *vma,
871                                                         unsigned long value)
872 {
873         vma->vm_private_data = (void *)value;
874 }
875
876 static void
877 resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map *resv_map,
878                                           struct hugetlb_cgroup *h_cg,
879                                           struct hstate *h)
880 {
881 #ifdef CONFIG_CGROUP_HUGETLB
882         if (!h_cg || !h) {
883                 resv_map->reservation_counter = NULL;
884                 resv_map->pages_per_hpage = 0;
885                 resv_map->css = NULL;
886         } else {
887                 resv_map->reservation_counter =
888                         &h_cg->rsvd_hugepage[hstate_index(h)];
889                 resv_map->pages_per_hpage = pages_per_huge_page(h);
890                 resv_map->css = &h_cg->css;
891         }
892 #endif
893 }
894
895 struct resv_map *resv_map_alloc(void)
896 {
897         struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
898         struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
899
900         if (!resv_map || !rg) {
901                 kfree(resv_map);
902                 kfree(rg);
903                 return NULL;
904         }
905
906         kref_init(&resv_map->refs);
907         spin_lock_init(&resv_map->lock);
908         INIT_LIST_HEAD(&resv_map->regions);
909
910         resv_map->adds_in_progress = 0;
911         /*
912          * Initialize these to 0. On shared mappings, 0's here indicate these
913          * fields don't do cgroup accounting. On private mappings, these will be
914          * re-initialized to the proper values, to indicate that hugetlb cgroup
915          * reservations are to be un-charged from here.
916          */
917         resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, NULL, NULL);
918
919         INIT_LIST_HEAD(&resv_map->region_cache);
920         list_add(&rg->link, &resv_map->region_cache);
921         resv_map->region_cache_count = 1;
922
923         return resv_map;
924 }
925
926 void resv_map_release(struct kref *ref)
927 {
928         struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
929         struct list_head *head = &resv_map->region_cache;
930         struct file_region *rg, *trg;
931
932         /* Clear out any active regions before we release the map. */
933         region_del(resv_map, 0, LONG_MAX);
934
935         /* ... and any entries left in the cache */
936         list_for_each_entry_safe(rg, trg, head, link) {
937                 list_del(&rg->link);
938                 kfree(rg);
939         }
940
941         VM_BUG_ON(resv_map->adds_in_progress);
942
943         kfree(resv_map);
944 }
945
946 static inline struct resv_map *inode_resv_map(struct inode *inode)
947 {
948         /*
949          * At inode evict time, i_mapping may not point to the original
950          * address space within the inode.  This original address space
951          * contains the pointer to the resv_map.  So, always use the
952          * address space embedded within the inode.
953          * The VERY common case is inode->mapping == &inode->i_data but,
954          * this may not be true for device special inodes.
955          */
956         return (struct resv_map *)(&inode->i_data)->private_data;
957 }
958
959 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
960 {
961         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
962         if (vma->vm_flags & VM_MAYSHARE) {
963                 struct address_space *mapping = vma->vm_file->f_mapping;
964                 struct inode *inode = mapping->host;
965
966                 return inode_resv_map(inode);
967
968         } else {
969                 return (struct resv_map *)(get_vma_private_data(vma) &
970                                                         ~HPAGE_RESV_MASK);
971         }
972 }
973
974 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
975 {
976         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
977         VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
978
979         set_vma_private_data(vma, (get_vma_private_data(vma) &
980                                 HPAGE_RESV_MASK) | (unsigned long)map);
981 }
982
983 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
984 {
985         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
986         VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
987
988         set_vma_private_data(vma, get_vma_private_data(vma) | flags);
989 }
990
991 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
992 {
993         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
994
995         return (get_vma_private_data(vma) & flag) != 0;
996 }
997
998 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
999 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
1000 {
1001         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1002         if (!(vma->vm_flags & VM_MAYSHARE))
1003                 vma->vm_private_data = (void *)0;
1004 }
1005
1006 /* Returns true if the VMA has associated reserve pages */
1007 static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
1008 {
1009         if (vma->vm_flags & VM_NORESERVE) {
1010                 /*
1011                  * This address is already reserved by other process(chg == 0),
1012                  * so, we should decrement reserved count. Without decrementing,
1013                  * reserve count remains after releasing inode, because this
1014                  * allocated page will go into page cache and is regarded as
1015                  * coming from reserved pool in releasing step.  Currently, we
1016                  * don't have any other solution to deal with this situation
1017                  * properly, so add work-around here.
1018                  */
1019                 if (vma->vm_flags & VM_MAYSHARE && chg == 0)
1020                         return true;
1021                 else
1022                         return false;
1023         }
1024
1025         /* Shared mappings always use reserves */
1026         if (vma->vm_flags & VM_MAYSHARE) {
1027                 /*
1028                  * We know VM_NORESERVE is not set.  Therefore, there SHOULD
1029                  * be a region map for all pages.  The only situation where
1030                  * there is no region map is if a hole was punched via
1031                  * fallocate.  In this case, there really are no reserves to
1032                  * use.  This situation is indicated if chg != 0.
1033                  */
1034                 if (chg)
1035                         return false;
1036                 else
1037                         return true;
1038         }
1039
1040         /*
1041          * Only the process that called mmap() has reserves for
1042          * private mappings.
1043          */
1044         if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1045                 /*
1046                  * Like the shared case above, a hole punch or truncate
1047                  * could have been performed on the private mapping.
1048                  * Examine the value of chg to determine if reserves
1049                  * actually exist or were previously consumed.
1050                  * Very Subtle - The value of chg comes from a previous
1051                  * call to vma_needs_reserves().  The reserve map for
1052                  * private mappings has different (opposite) semantics
1053                  * than that of shared mappings.  vma_needs_reserves()
1054                  * has already taken this difference in semantics into
1055                  * account.  Therefore, the meaning of chg is the same
1056                  * as in the shared case above.  Code could easily be
1057                  * combined, but keeping it separate draws attention to
1058                  * subtle differences.
1059                  */
1060                 if (chg)
1061                         return false;
1062                 else
1063                         return true;
1064         }
1065
1066         return false;
1067 }
1068
1069 static void enqueue_huge_page(struct hstate *h, struct page *page)
1070 {
1071         int nid = page_to_nid(page);
1072         list_move(&page->lru, &h->hugepage_freelists[nid]);
1073         h->free_huge_pages++;
1074         h->free_huge_pages_node[nid]++;
1075         SetHPageFreed(page);
1076 }
1077
1078 static struct page *dequeue_huge_page_node_exact(struct hstate *h, int nid)
1079 {
1080         struct page *page;
1081         bool nocma = !!(current->flags & PF_MEMALLOC_NOCMA);
1082
1083         list_for_each_entry(page, &h->hugepage_freelists[nid], lru) {
1084                 if (nocma && is_migrate_cma_page(page))
1085                         continue;
1086
1087                 if (PageHWPoison(page))
1088                         continue;
1089
1090                 list_move(&page->lru, &h->hugepage_activelist);
1091                 set_page_refcounted(page);
1092                 ClearHPageFreed(page);
1093                 h->free_huge_pages--;
1094                 h->free_huge_pages_node[nid]--;
1095                 return page;
1096         }
1097
1098         return NULL;
1099 }
1100
1101 static struct page *dequeue_huge_page_nodemask(struct hstate *h, gfp_t gfp_mask, int nid,
1102                 nodemask_t *nmask)
1103 {
1104         unsigned int cpuset_mems_cookie;
1105         struct zonelist *zonelist;
1106         struct zone *zone;
1107         struct zoneref *z;
1108         int node = NUMA_NO_NODE;
1109
1110         zonelist = node_zonelist(nid, gfp_mask);
1111
1112 retry_cpuset:
1113         cpuset_mems_cookie = read_mems_allowed_begin();
1114         for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
1115                 struct page *page;
1116
1117                 if (!cpuset_zone_allowed(zone, gfp_mask))
1118                         continue;
1119                 /*
1120                  * no need to ask again on the same node. Pool is node rather than
1121                  * zone aware
1122                  */
1123                 if (zone_to_nid(zone) == node)
1124                         continue;
1125                 node = zone_to_nid(zone);
1126
1127                 page = dequeue_huge_page_node_exact(h, node);
1128                 if (page)
1129                         return page;
1130         }
1131         if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
1132                 goto retry_cpuset;
1133
1134         return NULL;
1135 }
1136
1137 static struct page *dequeue_huge_page_vma(struct hstate *h,
1138                                 struct vm_area_struct *vma,
1139                                 unsigned long address, int avoid_reserve,
1140                                 long chg)
1141 {
1142         struct page *page;
1143         struct mempolicy *mpol;
1144         gfp_t gfp_mask;
1145         nodemask_t *nodemask;
1146         int nid;
1147
1148         /*
1149          * A child process with MAP_PRIVATE mappings created by their parent
1150          * have no page reserves. This check ensures that reservations are
1151          * not "stolen". The child may still get SIGKILLed
1152          */
1153         if (!vma_has_reserves(vma, chg) &&
1154                         h->free_huge_pages - h->resv_huge_pages == 0)
1155                 goto err;
1156
1157         /* If reserves cannot be used, ensure enough pages are in the pool */
1158         if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
1159                 goto err;
1160
1161         gfp_mask = htlb_alloc_mask(h);
1162         nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
1163         page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
1164         if (page && !avoid_reserve && vma_has_reserves(vma, chg)) {
1165                 SetHPageRestoreReserve(page);
1166                 h->resv_huge_pages--;
1167         }
1168
1169         mpol_cond_put(mpol);
1170         return page;
1171
1172 err:
1173         return NULL;
1174 }
1175
1176 /*
1177  * common helper functions for hstate_next_node_to_{alloc|free}.
1178  * We may have allocated or freed a huge page based on a different
1179  * nodes_allowed previously, so h->next_node_to_{alloc|free} might
1180  * be outside of *nodes_allowed.  Ensure that we use an allowed
1181  * node for alloc or free.
1182  */
1183 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
1184 {
1185         nid = next_node_in(nid, *nodes_allowed);
1186         VM_BUG_ON(nid >= MAX_NUMNODES);
1187
1188         return nid;
1189 }
1190
1191 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
1192 {
1193         if (!node_isset(nid, *nodes_allowed))
1194                 nid = next_node_allowed(nid, nodes_allowed);
1195         return nid;
1196 }
1197
1198 /*
1199  * returns the previously saved node ["this node"] from which to
1200  * allocate a persistent huge page for the pool and advance the
1201  * next node from which to allocate, handling wrap at end of node
1202  * mask.
1203  */
1204 static int hstate_next_node_to_alloc(struct hstate *h,
1205                                         nodemask_t *nodes_allowed)
1206 {
1207         int nid;
1208
1209         VM_BUG_ON(!nodes_allowed);
1210
1211         nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
1212         h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
1213
1214         return nid;
1215 }
1216
1217 /*
1218  * helper for remove_pool_huge_page() - return the previously saved
1219  * node ["this node"] from which to free a huge page.  Advance the
1220  * next node id whether or not we find a free huge page to free so
1221  * that the next attempt to free addresses the next node.
1222  */
1223 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1224 {
1225         int nid;
1226
1227         VM_BUG_ON(!nodes_allowed);
1228
1229         nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1230         h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1231
1232         return nid;
1233 }
1234
1235 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask)           \
1236         for (nr_nodes = nodes_weight(*mask);                            \
1237                 nr_nodes > 0 &&                                         \
1238                 ((node = hstate_next_node_to_alloc(hs, mask)) || 1);    \
1239                 nr_nodes--)
1240
1241 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask)            \
1242         for (nr_nodes = nodes_weight(*mask);                            \
1243                 nr_nodes > 0 &&                                         \
1244                 ((node = hstate_next_node_to_free(hs, mask)) || 1);     \
1245                 nr_nodes--)
1246
1247 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
1248 static void destroy_compound_gigantic_page(struct page *page,
1249                                         unsigned int order)
1250 {
1251         int i;
1252         int nr_pages = 1 << order;
1253         struct page *p = page + 1;
1254
1255         atomic_set(compound_mapcount_ptr(page), 0);
1256         atomic_set(compound_pincount_ptr(page), 0);
1257
1258         for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1259                 clear_compound_head(p);
1260                 set_page_refcounted(p);
1261         }
1262
1263         set_compound_order(page, 0);
1264         page[1].compound_nr = 0;
1265         __ClearPageHead(page);
1266 }
1267
1268 static void free_gigantic_page(struct page *page, unsigned int order)
1269 {
1270         /*
1271          * If the page isn't allocated using the cma allocator,
1272          * cma_release() returns false.
1273          */
1274 #ifdef CONFIG_CMA
1275         if (cma_release(hugetlb_cma[page_to_nid(page)], page, 1 << order))
1276                 return;
1277 #endif
1278
1279         free_contig_range(page_to_pfn(page), 1 << order);
1280 }
1281
1282 #ifdef CONFIG_CONTIG_ALLOC
1283 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1284                 int nid, nodemask_t *nodemask)
1285 {
1286         unsigned long nr_pages = pages_per_huge_page(h);
1287         if (nid == NUMA_NO_NODE)
1288                 nid = numa_mem_id();
1289
1290 #ifdef CONFIG_CMA
1291         {
1292                 struct page *page;
1293                 int node;
1294
1295                 if (hugetlb_cma[nid]) {
1296                         page = cma_alloc(hugetlb_cma[nid], nr_pages,
1297                                         huge_page_order(h), true);
1298                         if (page)
1299                                 return page;
1300                 }
1301
1302                 if (!(gfp_mask & __GFP_THISNODE)) {
1303                         for_each_node_mask(node, *nodemask) {
1304                                 if (node == nid || !hugetlb_cma[node])
1305                                         continue;
1306
1307                                 page = cma_alloc(hugetlb_cma[node], nr_pages,
1308                                                 huge_page_order(h), true);
1309                                 if (page)
1310                                         return page;
1311                         }
1312                 }
1313         }
1314 #endif
1315
1316         return alloc_contig_pages(nr_pages, gfp_mask, nid, nodemask);
1317 }
1318
1319 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid);
1320 static void prep_compound_gigantic_page(struct page *page, unsigned int order);
1321 #else /* !CONFIG_CONTIG_ALLOC */
1322 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1323                                         int nid, nodemask_t *nodemask)
1324 {
1325         return NULL;
1326 }
1327 #endif /* CONFIG_CONTIG_ALLOC */
1328
1329 #else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
1330 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1331                                         int nid, nodemask_t *nodemask)
1332 {
1333         return NULL;
1334 }
1335 static inline void free_gigantic_page(struct page *page, unsigned int order) { }
1336 static inline void destroy_compound_gigantic_page(struct page *page,
1337                                                 unsigned int order) { }
1338 #endif
1339
1340 /*
1341  * Remove hugetlb page from lists, and update dtor so that page appears
1342  * as just a compound page.  A reference is held on the page.
1343  *
1344  * Must be called with hugetlb lock held.
1345  */
1346 static void remove_hugetlb_page(struct hstate *h, struct page *page,
1347                                                         bool adjust_surplus)
1348 {
1349         int nid = page_to_nid(page);
1350
1351         VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
1352         VM_BUG_ON_PAGE(hugetlb_cgroup_from_page_rsvd(page), page);
1353
1354         if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1355                 return;
1356
1357         list_del(&page->lru);
1358
1359         if (HPageFreed(page)) {
1360                 h->free_huge_pages--;
1361                 h->free_huge_pages_node[nid]--;
1362         }
1363         if (adjust_surplus) {
1364                 h->surplus_huge_pages--;
1365                 h->surplus_huge_pages_node[nid]--;
1366         }
1367
1368         set_page_refcounted(page);
1369         set_compound_page_dtor(page, NULL_COMPOUND_DTOR);
1370
1371         h->nr_huge_pages--;
1372         h->nr_huge_pages_node[nid]--;
1373 }
1374
1375 static void update_and_free_page(struct hstate *h, struct page *page)
1376 {
1377         int i;
1378         struct page *subpage = page;
1379
1380         if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1381                 return;
1382
1383         for (i = 0; i < pages_per_huge_page(h);
1384              i++, subpage = mem_map_next(subpage, page, i)) {
1385                 subpage->flags &= ~(1 << PG_locked | 1 << PG_error |
1386                                 1 << PG_referenced | 1 << PG_dirty |
1387                                 1 << PG_active | 1 << PG_private |
1388                                 1 << PG_writeback);
1389         }
1390         if (hstate_is_gigantic(h)) {
1391                 destroy_compound_gigantic_page(page, huge_page_order(h));
1392                 free_gigantic_page(page, huge_page_order(h));
1393         } else {
1394                 __free_pages(page, huge_page_order(h));
1395         }
1396 }
1397
1398 static void update_and_free_pages_bulk(struct hstate *h, struct list_head *list)
1399 {
1400         struct page *page, *t_page;
1401
1402         list_for_each_entry_safe(page, t_page, list, lru) {
1403                 update_and_free_page(h, page);
1404                 cond_resched();
1405         }
1406 }
1407
1408 struct hstate *size_to_hstate(unsigned long size)
1409 {
1410         struct hstate *h;
1411
1412         for_each_hstate(h) {
1413                 if (huge_page_size(h) == size)
1414                         return h;
1415         }
1416         return NULL;
1417 }
1418
1419 void free_huge_page(struct page *page)
1420 {
1421         /*
1422          * Can't pass hstate in here because it is called from the
1423          * compound page destructor.
1424          */
1425         struct hstate *h = page_hstate(page);
1426         int nid = page_to_nid(page);
1427         struct hugepage_subpool *spool = hugetlb_page_subpool(page);
1428         bool restore_reserve;
1429         unsigned long flags;
1430
1431         VM_BUG_ON_PAGE(page_count(page), page);
1432         VM_BUG_ON_PAGE(page_mapcount(page), page);
1433
1434         hugetlb_set_page_subpool(page, NULL);
1435         page->mapping = NULL;
1436         restore_reserve = HPageRestoreReserve(page);
1437         ClearHPageRestoreReserve(page);
1438
1439         /*
1440          * If HPageRestoreReserve was set on page, page allocation consumed a
1441          * reservation.  If the page was associated with a subpool, there
1442          * would have been a page reserved in the subpool before allocation
1443          * via hugepage_subpool_get_pages().  Since we are 'restoring' the
1444          * reservation, do not call hugepage_subpool_put_pages() as this will
1445          * remove the reserved page from the subpool.
1446          */
1447         if (!restore_reserve) {
1448                 /*
1449                  * A return code of zero implies that the subpool will be
1450                  * under its minimum size if the reservation is not restored
1451                  * after page is free.  Therefore, force restore_reserve
1452                  * operation.
1453                  */
1454                 if (hugepage_subpool_put_pages(spool, 1) == 0)
1455                         restore_reserve = true;
1456         }
1457
1458         spin_lock_irqsave(&hugetlb_lock, flags);
1459         ClearHPageMigratable(page);
1460         hugetlb_cgroup_uncharge_page(hstate_index(h),
1461                                      pages_per_huge_page(h), page);
1462         hugetlb_cgroup_uncharge_page_rsvd(hstate_index(h),
1463                                           pages_per_huge_page(h), page);
1464         if (restore_reserve)
1465                 h->resv_huge_pages++;
1466
1467         if (HPageTemporary(page)) {
1468                 remove_hugetlb_page(h, page, false);
1469                 spin_unlock_irqrestore(&hugetlb_lock, flags);
1470                 update_and_free_page(h, page);
1471         } else if (h->surplus_huge_pages_node[nid]) {
1472                 /* remove the page from active list */
1473                 remove_hugetlb_page(h, page, true);
1474                 spin_unlock_irqrestore(&hugetlb_lock, flags);
1475                 update_and_free_page(h, page);
1476         } else {
1477                 arch_clear_hugepage_flags(page);
1478                 enqueue_huge_page(h, page);
1479                 spin_unlock_irqrestore(&hugetlb_lock, flags);
1480         }
1481 }
1482
1483 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
1484 {
1485         INIT_LIST_HEAD(&page->lru);
1486         set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1487         hugetlb_set_page_subpool(page, NULL);
1488         set_hugetlb_cgroup(page, NULL);
1489         set_hugetlb_cgroup_rsvd(page, NULL);
1490         spin_lock_irq(&hugetlb_lock);
1491         h->nr_huge_pages++;
1492         h->nr_huge_pages_node[nid]++;
1493         ClearHPageFreed(page);
1494         spin_unlock_irq(&hugetlb_lock);
1495 }
1496
1497 static void prep_compound_gigantic_page(struct page *page, unsigned int order)
1498 {
1499         int i;
1500         int nr_pages = 1 << order;
1501         struct page *p = page + 1;
1502
1503         /* we rely on prep_new_huge_page to set the destructor */
1504         set_compound_order(page, order);
1505         __ClearPageReserved(page);
1506         __SetPageHead(page);
1507         for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1508                 /*
1509                  * For gigantic hugepages allocated through bootmem at
1510                  * boot, it's safer to be consistent with the not-gigantic
1511                  * hugepages and clear the PG_reserved bit from all tail pages
1512                  * too.  Otherwise drivers using get_user_pages() to access tail
1513                  * pages may get the reference counting wrong if they see
1514                  * PG_reserved set on a tail page (despite the head page not
1515                  * having PG_reserved set).  Enforcing this consistency between
1516                  * head and tail pages allows drivers to optimize away a check
1517                  * on the head page when they need know if put_page() is needed
1518                  * after get_user_pages().
1519                  */
1520                 __ClearPageReserved(p);
1521                 set_page_count(p, 0);
1522                 set_compound_head(p, page);
1523         }
1524         atomic_set(compound_mapcount_ptr(page), -1);
1525         atomic_set(compound_pincount_ptr(page), 0);
1526 }
1527
1528 /*
1529  * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1530  * transparent huge pages.  See the PageTransHuge() documentation for more
1531  * details.
1532  */
1533 int PageHuge(struct page *page)
1534 {
1535         if (!PageCompound(page))
1536                 return 0;
1537
1538         page = compound_head(page);
1539         return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
1540 }
1541 EXPORT_SYMBOL_GPL(PageHuge);
1542
1543 /*
1544  * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1545  * normal or transparent huge pages.
1546  */
1547 int PageHeadHuge(struct page *page_head)
1548 {
1549         if (!PageHead(page_head))
1550                 return 0;
1551
1552         return page_head[1].compound_dtor == HUGETLB_PAGE_DTOR;
1553 }
1554
1555 /*
1556  * Find and lock address space (mapping) in write mode.
1557  *
1558  * Upon entry, the page is locked which means that page_mapping() is
1559  * stable.  Due to locking order, we can only trylock_write.  If we can
1560  * not get the lock, simply return NULL to caller.
1561  */
1562 struct address_space *hugetlb_page_mapping_lock_write(struct page *hpage)
1563 {
1564         struct address_space *mapping = page_mapping(hpage);
1565
1566         if (!mapping)
1567                 return mapping;
1568
1569         if (i_mmap_trylock_write(mapping))
1570                 return mapping;
1571
1572         return NULL;
1573 }
1574
1575 pgoff_t __basepage_index(struct page *page)
1576 {
1577         struct page *page_head = compound_head(page);
1578         pgoff_t index = page_index(page_head);
1579         unsigned long compound_idx;
1580
1581         if (!PageHuge(page_head))
1582                 return page_index(page);
1583
1584         if (compound_order(page_head) >= MAX_ORDER)
1585                 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
1586         else
1587                 compound_idx = page - page_head;
1588
1589         return (index << compound_order(page_head)) + compound_idx;
1590 }
1591
1592 static struct page *alloc_buddy_huge_page(struct hstate *h,
1593                 gfp_t gfp_mask, int nid, nodemask_t *nmask,
1594                 nodemask_t *node_alloc_noretry)
1595 {
1596         int order = huge_page_order(h);
1597         struct page *page;
1598         bool alloc_try_hard = true;
1599
1600         /*
1601          * By default we always try hard to allocate the page with
1602          * __GFP_RETRY_MAYFAIL flag.  However, if we are allocating pages in
1603          * a loop (to adjust global huge page counts) and previous allocation
1604          * failed, do not continue to try hard on the same node.  Use the
1605          * node_alloc_noretry bitmap to manage this state information.
1606          */
1607         if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry))
1608                 alloc_try_hard = false;
1609         gfp_mask |= __GFP_COMP|__GFP_NOWARN;
1610         if (alloc_try_hard)
1611                 gfp_mask |= __GFP_RETRY_MAYFAIL;
1612         if (nid == NUMA_NO_NODE)
1613                 nid = numa_mem_id();
1614         page = __alloc_pages(gfp_mask, order, nid, nmask);
1615         if (page)
1616                 __count_vm_event(HTLB_BUDDY_PGALLOC);
1617         else
1618                 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1619
1620         /*
1621          * If we did not specify __GFP_RETRY_MAYFAIL, but still got a page this
1622          * indicates an overall state change.  Clear bit so that we resume
1623          * normal 'try hard' allocations.
1624          */
1625         if (node_alloc_noretry && page && !alloc_try_hard)
1626                 node_clear(nid, *node_alloc_noretry);
1627
1628         /*
1629          * If we tried hard to get a page but failed, set bit so that
1630          * subsequent attempts will not try as hard until there is an
1631          * overall state change.
1632          */
1633         if (node_alloc_noretry && !page && alloc_try_hard)
1634                 node_set(nid, *node_alloc_noretry);
1635
1636         return page;
1637 }
1638
1639 /*
1640  * Common helper to allocate a fresh hugetlb page. All specific allocators
1641  * should use this function to get new hugetlb pages
1642  */
1643 static struct page *alloc_fresh_huge_page(struct hstate *h,
1644                 gfp_t gfp_mask, int nid, nodemask_t *nmask,
1645                 nodemask_t *node_alloc_noretry)
1646 {
1647         struct page *page;
1648
1649         if (hstate_is_gigantic(h))
1650                 page = alloc_gigantic_page(h, gfp_mask, nid, nmask);
1651         else
1652                 page = alloc_buddy_huge_page(h, gfp_mask,
1653                                 nid, nmask, node_alloc_noretry);
1654         if (!page)
1655                 return NULL;
1656
1657         if (hstate_is_gigantic(h))
1658                 prep_compound_gigantic_page(page, huge_page_order(h));
1659         prep_new_huge_page(h, page, page_to_nid(page));
1660
1661         return page;
1662 }
1663
1664 /*
1665  * Allocates a fresh page to the hugetlb allocator pool in the node interleaved
1666  * manner.
1667  */
1668 static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1669                                 nodemask_t *node_alloc_noretry)
1670 {
1671         struct page *page;
1672         int nr_nodes, node;
1673         gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
1674
1675         for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1676                 page = alloc_fresh_huge_page(h, gfp_mask, node, nodes_allowed,
1677                                                 node_alloc_noretry);
1678                 if (page)
1679                         break;
1680         }
1681
1682         if (!page)
1683                 return 0;
1684
1685         put_page(page); /* free it into the hugepage allocator */
1686
1687         return 1;
1688 }
1689
1690 /*
1691  * Remove huge page from pool from next node to free.  Attempt to keep
1692  * persistent huge pages more or less balanced over allowed nodes.
1693  * This routine only 'removes' the hugetlb page.  The caller must make
1694  * an additional call to free the page to low level allocators.
1695  * Called with hugetlb_lock locked.
1696  */
1697 static struct page *remove_pool_huge_page(struct hstate *h,
1698                                                 nodemask_t *nodes_allowed,
1699                                                  bool acct_surplus)
1700 {
1701         int nr_nodes, node;
1702         struct page *page = NULL;
1703
1704         for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1705                 /*
1706                  * If we're returning unused surplus pages, only examine
1707                  * nodes with surplus pages.
1708                  */
1709                 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
1710                     !list_empty(&h->hugepage_freelists[node])) {
1711                         page = list_entry(h->hugepage_freelists[node].next,
1712                                           struct page, lru);
1713                         remove_hugetlb_page(h, page, acct_surplus);
1714                         break;
1715                 }
1716         }
1717
1718         return page;
1719 }
1720
1721 /*
1722  * Dissolve a given free hugepage into free buddy pages. This function does
1723  * nothing for in-use hugepages and non-hugepages.
1724  * This function returns values like below:
1725  *
1726  *  -EBUSY: failed to dissolved free hugepages or the hugepage is in-use
1727  *          (allocated or reserved.)
1728  *       0: successfully dissolved free hugepages or the page is not a
1729  *          hugepage (considered as already dissolved)
1730  */
1731 int dissolve_free_huge_page(struct page *page)
1732 {
1733         int rc = -EBUSY;
1734
1735 retry:
1736         /* Not to disrupt normal path by vainly holding hugetlb_lock */
1737         if (!PageHuge(page))
1738                 return 0;
1739
1740         spin_lock_irq(&hugetlb_lock);
1741         if (!PageHuge(page)) {
1742                 rc = 0;
1743                 goto out;
1744         }
1745
1746         if (!page_count(page)) {
1747                 struct page *head = compound_head(page);
1748                 struct hstate *h = page_hstate(head);
1749                 if (h->free_huge_pages - h->resv_huge_pages == 0)
1750                         goto out;
1751
1752                 /*
1753                  * We should make sure that the page is already on the free list
1754                  * when it is dissolved.
1755                  */
1756                 if (unlikely(!HPageFreed(head))) {
1757                         spin_unlock_irq(&hugetlb_lock);
1758                         cond_resched();
1759
1760                         /*
1761                          * Theoretically, we should return -EBUSY when we
1762                          * encounter this race. In fact, we have a chance
1763                          * to successfully dissolve the page if we do a
1764                          * retry. Because the race window is quite small.
1765                          * If we seize this opportunity, it is an optimization
1766                          * for increasing the success rate of dissolving page.
1767                          */
1768                         goto retry;
1769                 }
1770
1771                 /*
1772                  * Move PageHWPoison flag from head page to the raw error page,
1773                  * which makes any subpages rather than the error page reusable.
1774                  */
1775                 if (PageHWPoison(head) && page != head) {
1776                         SetPageHWPoison(page);
1777                         ClearPageHWPoison(head);
1778                 }
1779                 remove_hugetlb_page(h, page, false);
1780                 h->max_huge_pages--;
1781                 spin_unlock_irq(&hugetlb_lock);
1782                 update_and_free_page(h, head);
1783                 return 0;
1784         }
1785 out:
1786         spin_unlock_irq(&hugetlb_lock);
1787         return rc;
1788 }
1789
1790 /*
1791  * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
1792  * make specified memory blocks removable from the system.
1793  * Note that this will dissolve a free gigantic hugepage completely, if any
1794  * part of it lies within the given range.
1795  * Also note that if dissolve_free_huge_page() returns with an error, all
1796  * free hugepages that were dissolved before that error are lost.
1797  */
1798 int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
1799 {
1800         unsigned long pfn;
1801         struct page *page;
1802         int rc = 0;
1803
1804         if (!hugepages_supported())
1805                 return rc;
1806
1807         for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order) {
1808                 page = pfn_to_page(pfn);
1809                 rc = dissolve_free_huge_page(page);
1810                 if (rc)
1811                         break;
1812         }
1813
1814         return rc;
1815 }
1816
1817 /*
1818  * Allocates a fresh surplus page from the page allocator.
1819  */
1820 static struct page *alloc_surplus_huge_page(struct hstate *h, gfp_t gfp_mask,
1821                 int nid, nodemask_t *nmask)
1822 {
1823         struct page *page = NULL;
1824
1825         if (hstate_is_gigantic(h))
1826                 return NULL;
1827
1828         spin_lock_irq(&hugetlb_lock);
1829         if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages)
1830                 goto out_unlock;
1831         spin_unlock_irq(&hugetlb_lock);
1832
1833         page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
1834         if (!page)
1835                 return NULL;
1836
1837         spin_lock_irq(&hugetlb_lock);
1838         /*
1839          * We could have raced with the pool size change.
1840          * Double check that and simply deallocate the new page
1841          * if we would end up overcommiting the surpluses. Abuse
1842          * temporary page to workaround the nasty free_huge_page
1843          * codeflow
1844          */
1845         if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
1846                 SetHPageTemporary(page);
1847                 spin_unlock_irq(&hugetlb_lock);
1848                 put_page(page);
1849                 return NULL;
1850         } else {
1851                 h->surplus_huge_pages++;
1852                 h->surplus_huge_pages_node[page_to_nid(page)]++;
1853         }
1854
1855 out_unlock:
1856         spin_unlock_irq(&hugetlb_lock);
1857
1858         return page;
1859 }
1860
1861 static struct page *alloc_migrate_huge_page(struct hstate *h, gfp_t gfp_mask,
1862                                      int nid, nodemask_t *nmask)
1863 {
1864         struct page *page;
1865
1866         if (hstate_is_gigantic(h))
1867                 return NULL;
1868
1869         page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
1870         if (!page)
1871                 return NULL;
1872
1873         /*
1874          * We do not account these pages as surplus because they are only
1875          * temporary and will be released properly on the last reference
1876          */
1877         SetHPageTemporary(page);
1878
1879         return page;
1880 }
1881
1882 /*
1883  * Use the VMA's mpolicy to allocate a huge page from the buddy.
1884  */
1885 static
1886 struct page *alloc_buddy_huge_page_with_mpol(struct hstate *h,
1887                 struct vm_area_struct *vma, unsigned long addr)
1888 {
1889         struct page *page;
1890         struct mempolicy *mpol;
1891         gfp_t gfp_mask = htlb_alloc_mask(h);
1892         int nid;
1893         nodemask_t *nodemask;
1894
1895         nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
1896         page = alloc_surplus_huge_page(h, gfp_mask, nid, nodemask);
1897         mpol_cond_put(mpol);
1898
1899         return page;
1900 }
1901
1902 /* page migration callback function */
1903 struct page *alloc_huge_page_nodemask(struct hstate *h, int preferred_nid,
1904                 nodemask_t *nmask, gfp_t gfp_mask)
1905 {
1906         spin_lock_irq(&hugetlb_lock);
1907         if (h->free_huge_pages - h->resv_huge_pages > 0) {
1908                 struct page *page;
1909
1910                 page = dequeue_huge_page_nodemask(h, gfp_mask, preferred_nid, nmask);
1911                 if (page) {
1912                         spin_unlock_irq(&hugetlb_lock);
1913                         return page;
1914                 }
1915         }
1916         spin_unlock_irq(&hugetlb_lock);
1917
1918         return alloc_migrate_huge_page(h, gfp_mask, preferred_nid, nmask);
1919 }
1920
1921 /* mempolicy aware migration callback */
1922 struct page *alloc_huge_page_vma(struct hstate *h, struct vm_area_struct *vma,
1923                 unsigned long address)
1924 {
1925         struct mempolicy *mpol;
1926         nodemask_t *nodemask;
1927         struct page *page;
1928         gfp_t gfp_mask;
1929         int node;
1930
1931         gfp_mask = htlb_alloc_mask(h);
1932         node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
1933         page = alloc_huge_page_nodemask(h, node, nodemask, gfp_mask);
1934         mpol_cond_put(mpol);
1935
1936         return page;
1937 }
1938
1939 /*
1940  * Increase the hugetlb pool such that it can accommodate a reservation
1941  * of size 'delta'.
1942  */
1943 static int gather_surplus_pages(struct hstate *h, long delta)
1944         __must_hold(&hugetlb_lock)
1945 {
1946         struct list_head surplus_list;
1947         struct page *page, *tmp;
1948         int ret;
1949         long i;
1950         long needed, allocated;
1951         bool alloc_ok = true;
1952
1953         needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
1954         if (needed <= 0) {
1955                 h->resv_huge_pages += delta;
1956                 return 0;
1957         }
1958
1959         allocated = 0;
1960         INIT_LIST_HEAD(&surplus_list);
1961
1962         ret = -ENOMEM;
1963 retry:
1964         spin_unlock_irq(&hugetlb_lock);
1965         for (i = 0; i < needed; i++) {
1966                 page = alloc_surplus_huge_page(h, htlb_alloc_mask(h),
1967                                 NUMA_NO_NODE, NULL);
1968                 if (!page) {
1969                         alloc_ok = false;
1970                         break;
1971                 }
1972                 list_add(&page->lru, &surplus_list);
1973                 cond_resched();
1974         }
1975         allocated += i;
1976
1977         /*
1978          * After retaking hugetlb_lock, we need to recalculate 'needed'
1979          * because either resv_huge_pages or free_huge_pages may have changed.
1980          */
1981         spin_lock_irq(&hugetlb_lock);
1982         needed = (h->resv_huge_pages + delta) -
1983                         (h->free_huge_pages + allocated);
1984         if (needed > 0) {
1985                 if (alloc_ok)
1986                         goto retry;
1987                 /*
1988                  * We were not able to allocate enough pages to
1989                  * satisfy the entire reservation so we free what
1990                  * we've allocated so far.
1991                  */
1992                 goto free;
1993         }
1994         /*
1995          * The surplus_list now contains _at_least_ the number of extra pages
1996          * needed to accommodate the reservation.  Add the appropriate number
1997          * of pages to the hugetlb pool and free the extras back to the buddy
1998          * allocator.  Commit the entire reservation here to prevent another
1999          * process from stealing the pages as they are added to the pool but
2000          * before they are reserved.
2001          */
2002         needed += allocated;
2003         h->resv_huge_pages += delta;
2004         ret = 0;
2005
2006         /* Free the needed pages to the hugetlb pool */
2007         list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
2008                 int zeroed;
2009
2010                 if ((--needed) < 0)
2011                         break;
2012                 /*
2013                  * This page is now managed by the hugetlb allocator and has
2014                  * no users -- drop the buddy allocator's reference.
2015                  */
2016                 zeroed = put_page_testzero(page);
2017                 VM_BUG_ON_PAGE(!zeroed, page);
2018                 enqueue_huge_page(h, page);
2019         }
2020 free:
2021         spin_unlock_irq(&hugetlb_lock);
2022
2023         /* Free unnecessary surplus pages to the buddy allocator */
2024         list_for_each_entry_safe(page, tmp, &surplus_list, lru)
2025                 put_page(page);
2026         spin_lock_irq(&hugetlb_lock);
2027
2028         return ret;
2029 }
2030
2031 /*
2032  * This routine has two main purposes:
2033  * 1) Decrement the reservation count (resv_huge_pages) by the value passed
2034  *    in unused_resv_pages.  This corresponds to the prior adjustments made
2035  *    to the associated reservation map.
2036  * 2) Free any unused surplus pages that may have been allocated to satisfy
2037  *    the reservation.  As many as unused_resv_pages may be freed.
2038  */
2039 static void return_unused_surplus_pages(struct hstate *h,
2040                                         unsigned long unused_resv_pages)
2041 {
2042         unsigned long nr_pages;
2043         struct page *page;
2044         LIST_HEAD(page_list);
2045
2046         /* Uncommit the reservation */
2047         h->resv_huge_pages -= unused_resv_pages;
2048
2049         /* Cannot return gigantic pages currently */
2050         if (hstate_is_gigantic(h))
2051                 goto out;
2052
2053         /*
2054          * Part (or even all) of the reservation could have been backed
2055          * by pre-allocated pages. Only free surplus pages.
2056          */
2057         nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
2058
2059         /*
2060          * We want to release as many surplus pages as possible, spread
2061          * evenly across all nodes with memory. Iterate across these nodes
2062          * until we can no longer free unreserved surplus pages. This occurs
2063          * when the nodes with surplus pages have no free pages.
2064          * remove_pool_huge_page() will balance the freed pages across the
2065          * on-line nodes with memory and will handle the hstate accounting.
2066          */
2067         while (nr_pages--) {
2068                 page = remove_pool_huge_page(h, &node_states[N_MEMORY], 1);
2069                 if (!page)
2070                         goto out;
2071
2072                 list_add(&page->lru, &page_list);
2073         }
2074
2075 out:
2076         spin_unlock_irq(&hugetlb_lock);
2077         update_and_free_pages_bulk(h, &page_list);
2078         spin_lock_irq(&hugetlb_lock);
2079 }
2080
2081
2082 /*
2083  * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
2084  * are used by the huge page allocation routines to manage reservations.
2085  *
2086  * vma_needs_reservation is called to determine if the huge page at addr
2087  * within the vma has an associated reservation.  If a reservation is
2088  * needed, the value 1 is returned.  The caller is then responsible for
2089  * managing the global reservation and subpool usage counts.  After
2090  * the huge page has been allocated, vma_commit_reservation is called
2091  * to add the page to the reservation map.  If the page allocation fails,
2092  * the reservation must be ended instead of committed.  vma_end_reservation
2093  * is called in such cases.
2094  *
2095  * In the normal case, vma_commit_reservation returns the same value
2096  * as the preceding vma_needs_reservation call.  The only time this
2097  * is not the case is if a reserve map was changed between calls.  It
2098  * is the responsibility of the caller to notice the difference and
2099  * take appropriate action.
2100  *
2101  * vma_add_reservation is used in error paths where a reservation must
2102  * be restored when a newly allocated huge page must be freed.  It is
2103  * to be called after calling vma_needs_reservation to determine if a
2104  * reservation exists.
2105  */
2106 enum vma_resv_mode {
2107         VMA_NEEDS_RESV,
2108         VMA_COMMIT_RESV,
2109         VMA_END_RESV,
2110         VMA_ADD_RESV,
2111 };
2112 static long __vma_reservation_common(struct hstate *h,
2113                                 struct vm_area_struct *vma, unsigned long addr,
2114                                 enum vma_resv_mode mode)
2115 {
2116         struct resv_map *resv;
2117         pgoff_t idx;
2118         long ret;
2119         long dummy_out_regions_needed;
2120
2121         resv = vma_resv_map(vma);
2122         if (!resv)
2123                 return 1;
2124
2125         idx = vma_hugecache_offset(h, vma, addr);
2126         switch (mode) {
2127         case VMA_NEEDS_RESV:
2128                 ret = region_chg(resv, idx, idx + 1, &dummy_out_regions_needed);
2129                 /* We assume that vma_reservation_* routines always operate on
2130                  * 1 page, and that adding to resv map a 1 page entry can only
2131                  * ever require 1 region.
2132                  */
2133                 VM_BUG_ON(dummy_out_regions_needed != 1);
2134                 break;
2135         case VMA_COMMIT_RESV:
2136                 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2137                 /* region_add calls of range 1 should never fail. */
2138                 VM_BUG_ON(ret < 0);
2139                 break;
2140         case VMA_END_RESV:
2141                 region_abort(resv, idx, idx + 1, 1);
2142                 ret = 0;
2143                 break;
2144         case VMA_ADD_RESV:
2145                 if (vma->vm_flags & VM_MAYSHARE) {
2146                         ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2147                         /* region_add calls of range 1 should never fail. */
2148                         VM_BUG_ON(ret < 0);
2149                 } else {
2150                         region_abort(resv, idx, idx + 1, 1);
2151                         ret = region_del(resv, idx, idx + 1);
2152                 }
2153                 break;
2154         default:
2155                 BUG();
2156         }
2157
2158         if (vma->vm_flags & VM_MAYSHARE)
2159                 return ret;
2160         /*
2161          * We know private mapping must have HPAGE_RESV_OWNER set.
2162          *
2163          * In most cases, reserves always exist for private mappings.
2164          * However, a file associated with mapping could have been
2165          * hole punched or truncated after reserves were consumed.
2166          * As subsequent fault on such a range will not use reserves.
2167          * Subtle - The reserve map for private mappings has the
2168          * opposite meaning than that of shared mappings.  If NO
2169          * entry is in the reserve map, it means a reservation exists.
2170          * If an entry exists in the reserve map, it means the
2171          * reservation has already been consumed.  As a result, the
2172          * return value of this routine is the opposite of the
2173          * value returned from reserve map manipulation routines above.
2174          */
2175         if (ret > 0)
2176                 return 0;
2177         if (ret == 0)
2178                 return 1;
2179         return ret;
2180 }
2181
2182 static long vma_needs_reservation(struct hstate *h,
2183                         struct vm_area_struct *vma, unsigned long addr)
2184 {
2185         return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
2186 }
2187
2188 static long vma_commit_reservation(struct hstate *h,
2189                         struct vm_area_struct *vma, unsigned long addr)
2190 {
2191         return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
2192 }
2193
2194 static void vma_end_reservation(struct hstate *h,
2195                         struct vm_area_struct *vma, unsigned long addr)
2196 {
2197         (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
2198 }
2199
2200 static long vma_add_reservation(struct hstate *h,
2201                         struct vm_area_struct *vma, unsigned long addr)
2202 {
2203         return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
2204 }
2205
2206 /*
2207  * This routine is called to restore a reservation on error paths.  In the
2208  * specific error paths, a huge page was allocated (via alloc_huge_page)
2209  * and is about to be freed.  If a reservation for the page existed,
2210  * alloc_huge_page would have consumed the reservation and set
2211  * HPageRestoreReserve in the newly allocated page.  When the page is freed
2212  * via free_huge_page, the global reservation count will be incremented if
2213  * HPageRestoreReserve is set.  However, free_huge_page can not adjust the
2214  * reserve map.  Adjust the reserve map here to be consistent with global
2215  * reserve count adjustments to be made by free_huge_page.
2216  */
2217 static void restore_reserve_on_error(struct hstate *h,
2218                         struct vm_area_struct *vma, unsigned long address,
2219                         struct page *page)
2220 {
2221         if (unlikely(HPageRestoreReserve(page))) {
2222                 long rc = vma_needs_reservation(h, vma, address);
2223
2224                 if (unlikely(rc < 0)) {
2225                         /*
2226                          * Rare out of memory condition in reserve map
2227                          * manipulation.  Clear HPageRestoreReserve so that
2228                          * global reserve count will not be incremented
2229                          * by free_huge_page.  This will make it appear
2230                          * as though the reservation for this page was
2231                          * consumed.  This may prevent the task from
2232                          * faulting in the page at a later time.  This
2233                          * is better than inconsistent global huge page
2234                          * accounting of reserve counts.
2235                          */
2236                         ClearHPageRestoreReserve(page);
2237                 } else if (rc) {
2238                         rc = vma_add_reservation(h, vma, address);
2239                         if (unlikely(rc < 0))
2240                                 /*
2241                                  * See above comment about rare out of
2242                                  * memory condition.
2243                                  */
2244                                 ClearHPageRestoreReserve(page);
2245                 } else
2246                         vma_end_reservation(h, vma, address);
2247         }
2248 }
2249
2250 struct page *alloc_huge_page(struct vm_area_struct *vma,
2251                                     unsigned long addr, int avoid_reserve)
2252 {
2253         struct hugepage_subpool *spool = subpool_vma(vma);
2254         struct hstate *h = hstate_vma(vma);
2255         struct page *page;
2256         long map_chg, map_commit;
2257         long gbl_chg;
2258         int ret, idx;
2259         struct hugetlb_cgroup *h_cg;
2260         bool deferred_reserve;
2261
2262         idx = hstate_index(h);
2263         /*
2264          * Examine the region/reserve map to determine if the process
2265          * has a reservation for the page to be allocated.  A return
2266          * code of zero indicates a reservation exists (no change).
2267          */
2268         map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
2269         if (map_chg < 0)
2270                 return ERR_PTR(-ENOMEM);
2271
2272         /*
2273          * Processes that did not create the mapping will have no
2274          * reserves as indicated by the region/reserve map. Check
2275          * that the allocation will not exceed the subpool limit.
2276          * Allocations for MAP_NORESERVE mappings also need to be
2277          * checked against any subpool limit.
2278          */
2279         if (map_chg || avoid_reserve) {
2280                 gbl_chg = hugepage_subpool_get_pages(spool, 1);
2281                 if (gbl_chg < 0) {
2282                         vma_end_reservation(h, vma, addr);
2283                         return ERR_PTR(-ENOSPC);
2284                 }
2285
2286                 /*
2287                  * Even though there was no reservation in the region/reserve
2288                  * map, there could be reservations associated with the
2289                  * subpool that can be used.  This would be indicated if the
2290                  * return value of hugepage_subpool_get_pages() is zero.
2291                  * However, if avoid_reserve is specified we still avoid even
2292                  * the subpool reservations.
2293                  */
2294                 if (avoid_reserve)
2295                         gbl_chg = 1;
2296         }
2297
2298         /* If this allocation is not consuming a reservation, charge it now.
2299          */
2300         deferred_reserve = map_chg || avoid_reserve;
2301         if (deferred_reserve) {
2302                 ret = hugetlb_cgroup_charge_cgroup_rsvd(
2303                         idx, pages_per_huge_page(h), &h_cg);
2304                 if (ret)
2305                         goto out_subpool_put;
2306         }
2307
2308         ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
2309         if (ret)
2310                 goto out_uncharge_cgroup_reservation;
2311
2312         spin_lock_irq(&hugetlb_lock);
2313         /*
2314          * glb_chg is passed to indicate whether or not a page must be taken
2315          * from the global free pool (global change).  gbl_chg == 0 indicates
2316          * a reservation exists for the allocation.
2317          */
2318         page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
2319         if (!page) {
2320                 spin_unlock_irq(&hugetlb_lock);
2321                 page = alloc_buddy_huge_page_with_mpol(h, vma, addr);
2322                 if (!page)
2323                         goto out_uncharge_cgroup;
2324                 if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
2325                         SetHPageRestoreReserve(page);
2326                         h->resv_huge_pages--;
2327                 }
2328                 spin_lock_irq(&hugetlb_lock);
2329                 list_add(&page->lru, &h->hugepage_activelist);
2330                 /* Fall through */
2331         }
2332         hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
2333         /* If allocation is not consuming a reservation, also store the
2334          * hugetlb_cgroup pointer on the page.
2335          */
2336         if (deferred_reserve) {
2337                 hugetlb_cgroup_commit_charge_rsvd(idx, pages_per_huge_page(h),
2338                                                   h_cg, page);
2339         }
2340
2341         spin_unlock_irq(&hugetlb_lock);
2342
2343         hugetlb_set_page_subpool(page, spool);
2344
2345         map_commit = vma_commit_reservation(h, vma, addr);
2346         if (unlikely(map_chg > map_commit)) {
2347                 /*
2348                  * The page was added to the reservation map between
2349                  * vma_needs_reservation and vma_commit_reservation.
2350                  * This indicates a race with hugetlb_reserve_pages.
2351                  * Adjust for the subpool count incremented above AND
2352                  * in hugetlb_reserve_pages for the same page.  Also,
2353                  * the reservation count added in hugetlb_reserve_pages
2354                  * no longer applies.
2355                  */
2356                 long rsv_adjust;
2357
2358                 rsv_adjust = hugepage_subpool_put_pages(spool, 1);
2359                 hugetlb_acct_memory(h, -rsv_adjust);
2360                 if (deferred_reserve)
2361                         hugetlb_cgroup_uncharge_page_rsvd(hstate_index(h),
2362                                         pages_per_huge_page(h), page);
2363         }
2364         return page;
2365
2366 out_uncharge_cgroup:
2367         hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
2368 out_uncharge_cgroup_reservation:
2369         if (deferred_reserve)
2370                 hugetlb_cgroup_uncharge_cgroup_rsvd(idx, pages_per_huge_page(h),
2371                                                     h_cg);
2372 out_subpool_put:
2373         if (map_chg || avoid_reserve)
2374                 hugepage_subpool_put_pages(spool, 1);
2375         vma_end_reservation(h, vma, addr);
2376         return ERR_PTR(-ENOSPC);
2377 }
2378
2379 int alloc_bootmem_huge_page(struct hstate *h)
2380         __attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
2381 int __alloc_bootmem_huge_page(struct hstate *h)
2382 {
2383         struct huge_bootmem_page *m;
2384         int nr_nodes, node;
2385
2386         for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
2387                 void *addr;
2388
2389                 addr = memblock_alloc_try_nid_raw(
2390                                 huge_page_size(h), huge_page_size(h),
2391                                 0, MEMBLOCK_ALLOC_ACCESSIBLE, node);
2392                 if (addr) {
2393                         /*
2394                          * Use the beginning of the huge page to store the
2395                          * huge_bootmem_page struct (until gather_bootmem
2396                          * puts them into the mem_map).
2397                          */
2398                         m = addr;
2399                         goto found;
2400                 }
2401         }
2402         return 0;
2403
2404 found:
2405         BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h)));
2406         /* Put them into a private list first because mem_map is not up yet */
2407         INIT_LIST_HEAD(&m->list);
2408         list_add(&m->list, &huge_boot_pages);
2409         m->hstate = h;
2410         return 1;
2411 }
2412
2413 static void __init prep_compound_huge_page(struct page *page,
2414                 unsigned int order)
2415 {
2416         if (unlikely(order > (MAX_ORDER - 1)))
2417                 prep_compound_gigantic_page(page, order);
2418         else
2419                 prep_compound_page(page, order);
2420 }
2421
2422 /* Put bootmem huge pages into the standard lists after mem_map is up */
2423 static void __init gather_bootmem_prealloc(void)
2424 {
2425         struct huge_bootmem_page *m;
2426
2427         list_for_each_entry(m, &huge_boot_pages, list) {
2428                 struct page *page = virt_to_page(m);
2429                 struct hstate *h = m->hstate;
2430
2431                 WARN_ON(page_count(page) != 1);
2432                 prep_compound_huge_page(page, huge_page_order(h));
2433                 WARN_ON(PageReserved(page));
2434                 prep_new_huge_page(h, page, page_to_nid(page));
2435                 put_page(page); /* free it into the hugepage allocator */
2436
2437                 /*
2438                  * If we had gigantic hugepages allocated at boot time, we need
2439                  * to restore the 'stolen' pages to totalram_pages in order to
2440                  * fix confusing memory reports from free(1) and another
2441                  * side-effects, like CommitLimit going negative.
2442                  */
2443                 if (hstate_is_gigantic(h))
2444                         adjust_managed_page_count(page, pages_per_huge_page(h));
2445                 cond_resched();
2446         }
2447 }
2448
2449 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
2450 {
2451         unsigned long i;
2452         nodemask_t *node_alloc_noretry;
2453
2454         if (!hstate_is_gigantic(h)) {
2455                 /*
2456                  * Bit mask controlling how hard we retry per-node allocations.
2457                  * Ignore errors as lower level routines can deal with
2458                  * node_alloc_noretry == NULL.  If this kmalloc fails at boot
2459                  * time, we are likely in bigger trouble.
2460                  */
2461                 node_alloc_noretry = kmalloc(sizeof(*node_alloc_noretry),
2462                                                 GFP_KERNEL);
2463         } else {
2464                 /* allocations done at boot time */
2465                 node_alloc_noretry = NULL;
2466         }
2467
2468         /* bit mask controlling how hard we retry per-node allocations */
2469         if (node_alloc_noretry)
2470                 nodes_clear(*node_alloc_noretry);
2471
2472         for (i = 0; i < h->max_huge_pages; ++i) {
2473                 if (hstate_is_gigantic(h)) {
2474                         if (hugetlb_cma_size) {
2475                                 pr_warn_once("HugeTLB: hugetlb_cma is enabled, skip boot time allocation\n");
2476                                 goto free;
2477                         }
2478                         if (!alloc_bootmem_huge_page(h))
2479                                 break;
2480                 } else if (!alloc_pool_huge_page(h,
2481                                          &node_states[N_MEMORY],
2482                                          node_alloc_noretry))
2483                         break;
2484                 cond_resched();
2485         }
2486         if (i < h->max_huge_pages) {
2487                 char buf[32];
2488
2489                 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
2490                 pr_warn("HugeTLB: allocating %lu of page size %s failed.  Only allocated %lu hugepages.\n",
2491                         h->max_huge_pages, buf, i);
2492                 h->max_huge_pages = i;
2493         }
2494 free:
2495         kfree(node_alloc_noretry);
2496 }
2497
2498 static void __init hugetlb_init_hstates(void)
2499 {
2500         struct hstate *h;
2501
2502         for_each_hstate(h) {
2503                 if (minimum_order > huge_page_order(h))
2504                         minimum_order = huge_page_order(h);
2505
2506                 /* oversize hugepages were init'ed in early boot */
2507                 if (!hstate_is_gigantic(h))
2508                         hugetlb_hstate_alloc_pages(h);
2509         }
2510         VM_BUG_ON(minimum_order == UINT_MAX);
2511 }
2512
2513 static void __init report_hugepages(void)
2514 {
2515         struct hstate *h;
2516
2517         for_each_hstate(h) {
2518                 char buf[32];
2519
2520                 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
2521                 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
2522                         buf, h->free_huge_pages);
2523         }
2524 }
2525
2526 #ifdef CONFIG_HIGHMEM
2527 static void try_to_free_low(struct hstate *h, unsigned long count,
2528                                                 nodemask_t *nodes_allowed)
2529 {
2530         int i;
2531         LIST_HEAD(page_list);
2532
2533         if (hstate_is_gigantic(h))
2534                 return;
2535
2536         /*
2537          * Collect pages to be freed on a list, and free after dropping lock
2538          */
2539         for_each_node_mask(i, *nodes_allowed) {
2540                 struct page *page, *next;
2541                 struct list_head *freel = &h->hugepage_freelists[i];
2542                 list_for_each_entry_safe(page, next, freel, lru) {
2543                         if (count >= h->nr_huge_pages)
2544                                 goto out;
2545                         if (PageHighMem(page))
2546                                 continue;
2547                         remove_hugetlb_page(h, page, false);
2548                         list_add(&page->lru, &page_list);
2549                 }
2550         }
2551
2552 out:
2553         spin_unlock_irq(&hugetlb_lock);
2554         update_and_free_pages_bulk(h, &page_list);
2555         spin_lock_irq(&hugetlb_lock);
2556 }
2557 #else
2558 static inline void try_to_free_low(struct hstate *h, unsigned long count,
2559                                                 nodemask_t *nodes_allowed)
2560 {
2561 }
2562 #endif
2563
2564 /*
2565  * Increment or decrement surplus_huge_pages.  Keep node-specific counters
2566  * balanced by operating on them in a round-robin fashion.
2567  * Returns 1 if an adjustment was made.
2568  */
2569 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
2570                                 int delta)
2571 {
2572         int nr_nodes, node;
2573
2574         VM_BUG_ON(delta != -1 && delta != 1);
2575
2576         if (delta < 0) {
2577                 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
2578                         if (h->surplus_huge_pages_node[node])
2579                                 goto found;
2580                 }
2581         } else {
2582                 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2583                         if (h->surplus_huge_pages_node[node] <
2584                                         h->nr_huge_pages_node[node])
2585                                 goto found;
2586                 }
2587         }
2588         return 0;
2589
2590 found:
2591         h->surplus_huge_pages += delta;
2592         h->surplus_huge_pages_node[node] += delta;
2593         return 1;
2594 }
2595
2596 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
2597 static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid,
2598                               nodemask_t *nodes_allowed)
2599 {
2600         unsigned long min_count, ret;
2601         struct page *page;
2602         LIST_HEAD(page_list);
2603         NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL);
2604
2605         /*
2606          * Bit mask controlling how hard we retry per-node allocations.
2607          * If we can not allocate the bit mask, do not attempt to allocate
2608          * the requested huge pages.
2609          */
2610         if (node_alloc_noretry)
2611                 nodes_clear(*node_alloc_noretry);
2612         else
2613                 return -ENOMEM;
2614
2615         /*
2616          * resize_lock mutex prevents concurrent adjustments to number of
2617          * pages in hstate via the proc/sysfs interfaces.
2618          */
2619         mutex_lock(&h->resize_lock);
2620         spin_lock_irq(&hugetlb_lock);
2621
2622         /*
2623          * Check for a node specific request.
2624          * Changing node specific huge page count may require a corresponding
2625          * change to the global count.  In any case, the passed node mask
2626          * (nodes_allowed) will restrict alloc/free to the specified node.
2627          */
2628         if (nid != NUMA_NO_NODE) {
2629                 unsigned long old_count = count;
2630
2631                 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
2632                 /*
2633                  * User may have specified a large count value which caused the
2634                  * above calculation to overflow.  In this case, they wanted
2635                  * to allocate as many huge pages as possible.  Set count to
2636                  * largest possible value to align with their intention.
2637                  */
2638                 if (count < old_count)
2639                         count = ULONG_MAX;
2640         }
2641
2642         /*
2643          * Gigantic pages runtime allocation depend on the capability for large
2644          * page range allocation.
2645          * If the system does not provide this feature, return an error when
2646          * the user tries to allocate gigantic pages but let the user free the
2647          * boottime allocated gigantic pages.
2648          */
2649         if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) {
2650                 if (count > persistent_huge_pages(h)) {
2651                         spin_unlock_irq(&hugetlb_lock);
2652                         mutex_unlock(&h->resize_lock);
2653                         NODEMASK_FREE(node_alloc_noretry);
2654                         return -EINVAL;
2655                 }
2656                 /* Fall through to decrease pool */
2657         }
2658
2659         /*
2660          * Increase the pool size
2661          * First take pages out of surplus state.  Then make up the
2662          * remaining difference by allocating fresh huge pages.
2663          *
2664          * We might race with alloc_surplus_huge_page() here and be unable
2665          * to convert a surplus huge page to a normal huge page. That is
2666          * not critical, though, it just means the overall size of the
2667          * pool might be one hugepage larger than it needs to be, but
2668          * within all the constraints specified by the sysctls.
2669          */
2670         while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
2671                 if (!adjust_pool_surplus(h, nodes_allowed, -1))
2672                         break;
2673         }
2674
2675         while (count > persistent_huge_pages(h)) {
2676                 /*
2677                  * If this allocation races such that we no longer need the
2678                  * page, free_huge_page will handle it by freeing the page
2679                  * and reducing the surplus.
2680                  */
2681                 spin_unlock_irq(&hugetlb_lock);
2682
2683                 /* yield cpu to avoid soft lockup */
2684                 cond_resched();
2685
2686                 ret = alloc_pool_huge_page(h, nodes_allowed,
2687                                                 node_alloc_noretry);
2688                 spin_lock_irq(&hugetlb_lock);
2689                 if (!ret)
2690                         goto out;
2691
2692                 /* Bail for signals. Probably ctrl-c from user */
2693                 if (signal_pending(current))
2694                         goto out;
2695         }
2696
2697         /*
2698          * Decrease the pool size
2699          * First return free pages to the buddy allocator (being careful
2700          * to keep enough around to satisfy reservations).  Then place
2701          * pages into surplus state as needed so the pool will shrink
2702          * to the desired size as pages become free.
2703          *
2704          * By placing pages into the surplus state independent of the
2705          * overcommit value, we are allowing the surplus pool size to
2706          * exceed overcommit. There are few sane options here. Since
2707          * alloc_surplus_huge_page() is checking the global counter,
2708          * though, we'll note that we're not allowed to exceed surplus
2709          * and won't grow the pool anywhere else. Not until one of the
2710          * sysctls are changed, or the surplus pages go out of use.
2711          */
2712         min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
2713         min_count = max(count, min_count);
2714         try_to_free_low(h, min_count, nodes_allowed);
2715
2716         /*
2717          * Collect pages to be removed on list without dropping lock
2718          */
2719         while (min_count < persistent_huge_pages(h)) {
2720                 page = remove_pool_huge_page(h, nodes_allowed, 0);
2721                 if (!page)
2722                         break;
2723
2724                 list_add(&page->lru, &page_list);
2725         }
2726         /* free the pages after dropping lock */
2727         spin_unlock_irq(&hugetlb_lock);
2728         update_and_free_pages_bulk(h, &page_list);
2729         spin_lock_irq(&hugetlb_lock);
2730
2731         while (count < persistent_huge_pages(h)) {
2732                 if (!adjust_pool_surplus(h, nodes_allowed, 1))
2733                         break;
2734         }
2735 out:
2736         h->max_huge_pages = persistent_huge_pages(h);
2737         spin_unlock_irq(&hugetlb_lock);
2738         mutex_unlock(&h->resize_lock);
2739
2740         NODEMASK_FREE(node_alloc_noretry);
2741
2742         return 0;
2743 }
2744
2745 #define HSTATE_ATTR_RO(_name) \
2746         static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2747
2748 #define HSTATE_ATTR(_name) \
2749         static struct kobj_attribute _name##_attr = \
2750                 __ATTR(_name, 0644, _name##_show, _name##_store)
2751
2752 static struct kobject *hugepages_kobj;
2753 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2754
2755 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
2756
2757 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
2758 {
2759         int i;
2760
2761         for (i = 0; i < HUGE_MAX_HSTATE; i++)
2762                 if (hstate_kobjs[i] == kobj) {
2763                         if (nidp)
2764                                 *nidp = NUMA_NO_NODE;
2765                         return &hstates[i];
2766                 }
2767
2768         return kobj_to_node_hstate(kobj, nidp);
2769 }
2770
2771 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
2772                                         struct kobj_attribute *attr, char *buf)
2773 {
2774         struct hstate *h;
2775         unsigned long nr_huge_pages;
2776         int nid;
2777
2778         h = kobj_to_hstate(kobj, &nid);
2779         if (nid == NUMA_NO_NODE)
2780                 nr_huge_pages = h->nr_huge_pages;
2781         else
2782                 nr_huge_pages = h->nr_huge_pages_node[nid];
2783
2784         return sysfs_emit(buf, "%lu\n", nr_huge_pages);
2785 }
2786
2787 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
2788                                            struct hstate *h, int nid,
2789                                            unsigned long count, size_t len)
2790 {
2791         int err;
2792         nodemask_t nodes_allowed, *n_mask;
2793
2794         if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
2795                 return -EINVAL;
2796
2797         if (nid == NUMA_NO_NODE) {
2798                 /*
2799                  * global hstate attribute
2800                  */
2801                 if (!(obey_mempolicy &&
2802                                 init_nodemask_of_mempolicy(&nodes_allowed)))
2803                         n_mask = &node_states[N_MEMORY];
2804                 else
2805                         n_mask = &nodes_allowed;
2806         } else {
2807                 /*
2808                  * Node specific request.  count adjustment happens in
2809                  * set_max_huge_pages() after acquiring hugetlb_lock.
2810                  */
2811                 init_nodemask_of_node(&nodes_allowed, nid);
2812                 n_mask = &nodes_allowed;
2813         }
2814
2815         err = set_max_huge_pages(h, count, nid, n_mask);
2816
2817         return err ? err : len;
2818 }
2819
2820 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
2821                                          struct kobject *kobj, const char *buf,
2822                                          size_t len)
2823 {
2824         struct hstate *h;
2825         unsigned long count;
2826         int nid;
2827         int err;
2828
2829         err = kstrtoul(buf, 10, &count);
2830         if (err)
2831                 return err;
2832
2833         h = kobj_to_hstate(kobj, &nid);
2834         return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
2835 }
2836
2837 static ssize_t nr_hugepages_show(struct kobject *kobj,
2838                                        struct kobj_attribute *attr, char *buf)
2839 {
2840         return nr_hugepages_show_common(kobj, attr, buf);
2841 }
2842
2843 static ssize_t nr_hugepages_store(struct kobject *kobj,
2844                struct kobj_attribute *attr, const char *buf, size_t len)
2845 {
2846         return nr_hugepages_store_common(false, kobj, buf, len);
2847 }
2848 HSTATE_ATTR(nr_hugepages);
2849
2850 #ifdef CONFIG_NUMA
2851
2852 /*
2853  * hstate attribute for optionally mempolicy-based constraint on persistent
2854  * huge page alloc/free.
2855  */
2856 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
2857                                            struct kobj_attribute *attr,
2858                                            char *buf)
2859 {
2860         return nr_hugepages_show_common(kobj, attr, buf);
2861 }
2862
2863 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
2864                struct kobj_attribute *attr, const char *buf, size_t len)
2865 {
2866         return nr_hugepages_store_common(true, kobj, buf, len);
2867 }
2868 HSTATE_ATTR(nr_hugepages_mempolicy);
2869 #endif
2870
2871
2872 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
2873                                         struct kobj_attribute *attr, char *buf)
2874 {
2875         struct hstate *h = kobj_to_hstate(kobj, NULL);
2876         return sysfs_emit(buf, "%lu\n", h->nr_overcommit_huge_pages);
2877 }
2878
2879 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
2880                 struct kobj_attribute *attr, const char *buf, size_t count)
2881 {
2882         int err;
2883         unsigned long input;
2884         struct hstate *h = kobj_to_hstate(kobj, NULL);
2885
2886         if (hstate_is_gigantic(h))
2887                 return -EINVAL;
2888
2889         err = kstrtoul(buf, 10, &input);
2890         if (err)
2891                 return err;
2892
2893         spin_lock_irq(&hugetlb_lock);
2894         h->nr_overcommit_huge_pages = input;
2895         spin_unlock_irq(&hugetlb_lock);
2896
2897         return count;
2898 }
2899 HSTATE_ATTR(nr_overcommit_hugepages);
2900
2901 static ssize_t free_hugepages_show(struct kobject *kobj,
2902                                         struct kobj_attribute *attr, char *buf)
2903 {
2904         struct hstate *h;
2905         unsigned long free_huge_pages;
2906         int nid;
2907
2908         h = kobj_to_hstate(kobj, &nid);
2909         if (nid == NUMA_NO_NODE)
2910                 free_huge_pages = h->free_huge_pages;
2911         else
2912                 free_huge_pages = h->free_huge_pages_node[nid];
2913
2914         return sysfs_emit(buf, "%lu\n", free_huge_pages);
2915 }
2916 HSTATE_ATTR_RO(free_hugepages);
2917
2918 static ssize_t resv_hugepages_show(struct kobject *kobj,
2919                                         struct kobj_attribute *attr, char *buf)
2920 {
2921         struct hstate *h = kobj_to_hstate(kobj, NULL);
2922         return sysfs_emit(buf, "%lu\n", h->resv_huge_pages);
2923 }
2924 HSTATE_ATTR_RO(resv_hugepages);
2925
2926 static ssize_t surplus_hugepages_show(struct kobject *kobj,
2927                                         struct kobj_attribute *attr, char *buf)
2928 {
2929         struct hstate *h;
2930         unsigned long surplus_huge_pages;
2931         int nid;
2932
2933         h = kobj_to_hstate(kobj, &nid);
2934         if (nid == NUMA_NO_NODE)
2935                 surplus_huge_pages = h->surplus_huge_pages;
2936         else
2937                 surplus_huge_pages = h->surplus_huge_pages_node[nid];
2938
2939         return sysfs_emit(buf, "%lu\n", surplus_huge_pages);
2940 }
2941 HSTATE_ATTR_RO(surplus_hugepages);
2942
2943 static struct attribute *hstate_attrs[] = {
2944         &nr_hugepages_attr.attr,
2945         &nr_overcommit_hugepages_attr.attr,
2946         &free_hugepages_attr.attr,
2947         &resv_hugepages_attr.attr,
2948         &surplus_hugepages_attr.attr,
2949 #ifdef CONFIG_NUMA
2950         &nr_hugepages_mempolicy_attr.attr,
2951 #endif
2952         NULL,
2953 };
2954
2955 static const struct attribute_group hstate_attr_group = {
2956         .attrs = hstate_attrs,
2957 };
2958
2959 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
2960                                     struct kobject **hstate_kobjs,
2961                                     const struct attribute_group *hstate_attr_group)
2962 {
2963         int retval;
2964         int hi = hstate_index(h);
2965
2966         hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
2967         if (!hstate_kobjs[hi])
2968                 return -ENOMEM;
2969
2970         retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
2971         if (retval) {
2972                 kobject_put(hstate_kobjs[hi]);
2973                 hstate_kobjs[hi] = NULL;
2974         }
2975
2976         return retval;
2977 }
2978
2979 static void __init hugetlb_sysfs_init(void)
2980 {
2981         struct hstate *h;
2982         int err;
2983
2984         hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
2985         if (!hugepages_kobj)
2986                 return;
2987
2988         for_each_hstate(h) {
2989                 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
2990                                          hstate_kobjs, &hstate_attr_group);
2991                 if (err)
2992                         pr_err("HugeTLB: Unable to add hstate %s", h->name);
2993         }
2994 }
2995
2996 #ifdef CONFIG_NUMA
2997
2998 /*
2999  * node_hstate/s - associate per node hstate attributes, via their kobjects,
3000  * with node devices in node_devices[] using a parallel array.  The array
3001  * index of a node device or _hstate == node id.
3002  * This is here to avoid any static dependency of the node device driver, in
3003  * the base kernel, on the hugetlb module.
3004  */
3005 struct node_hstate {
3006         struct kobject          *hugepages_kobj;
3007         struct kobject          *hstate_kobjs[HUGE_MAX_HSTATE];
3008 };
3009 static struct node_hstate node_hstates[MAX_NUMNODES];
3010
3011 /*
3012  * A subset of global hstate attributes for node devices
3013  */
3014 static struct attribute *per_node_hstate_attrs[] = {
3015         &nr_hugepages_attr.attr,
3016         &free_hugepages_attr.attr,
3017         &surplus_hugepages_attr.attr,
3018         NULL,
3019 };
3020
3021 static const struct attribute_group per_node_hstate_attr_group = {
3022         .attrs = per_node_hstate_attrs,
3023 };
3024
3025 /*
3026  * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
3027  * Returns node id via non-NULL nidp.
3028  */
3029 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
3030 {
3031         int nid;
3032
3033         for (nid = 0; nid < nr_node_ids; nid++) {
3034                 struct node_hstate *nhs = &node_hstates[nid];
3035                 int i;
3036                 for (i = 0; i < HUGE_MAX_HSTATE; i++)
3037                         if (nhs->hstate_kobjs[i] == kobj) {
3038                                 if (nidp)
3039                                         *nidp = nid;
3040                                 return &hstates[i];
3041                         }
3042         }
3043
3044         BUG();
3045         return NULL;
3046 }
3047
3048 /*
3049  * Unregister hstate attributes from a single node device.
3050  * No-op if no hstate attributes attached.
3051  */
3052 static void hugetlb_unregister_node(struct node *node)
3053 {
3054         struct hstate *h;
3055         struct node_hstate *nhs = &node_hstates[node->dev.id];
3056
3057         if (!nhs->hugepages_kobj)
3058                 return;         /* no hstate attributes */
3059
3060         for_each_hstate(h) {
3061                 int idx = hstate_index(h);
3062                 if (nhs->hstate_kobjs[idx]) {
3063                         kobject_put(nhs->hstate_kobjs[idx]);
3064                         nhs->hstate_kobjs[idx] = NULL;
3065                 }
3066         }
3067
3068         kobject_put(nhs->hugepages_kobj);
3069         nhs->hugepages_kobj = NULL;
3070 }
3071
3072
3073 /*
3074  * Register hstate attributes for a single node device.
3075  * No-op if attributes already registered.
3076  */
3077 static void hugetlb_register_node(struct node *node)
3078 {
3079         struct hstate *h;
3080         struct node_hstate *nhs = &node_hstates[node->dev.id];
3081         int err;
3082
3083         if (nhs->hugepages_kobj)
3084                 return;         /* already allocated */
3085
3086         nhs->hugepages_kobj = kobject_create_and_add("hugepages",
3087                                                         &node->dev.kobj);
3088         if (!nhs->hugepages_kobj)
3089                 return;
3090
3091         for_each_hstate(h) {
3092                 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
3093                                                 nhs->hstate_kobjs,
3094                                                 &per_node_hstate_attr_group);
3095                 if (err) {
3096                         pr_err("HugeTLB: Unable to add hstate %s for node %d\n",
3097                                 h->name, node->dev.id);
3098                         hugetlb_unregister_node(node);
3099                         break;
3100                 }
3101         }
3102 }
3103
3104 /*
3105  * hugetlb init time:  register hstate attributes for all registered node
3106  * devices of nodes that have memory.  All on-line nodes should have
3107  * registered their associated device by this time.
3108  */
3109 static void __init hugetlb_register_all_nodes(void)
3110 {
3111         int nid;
3112
3113         for_each_node_state(nid, N_MEMORY) {
3114                 struct node *node = node_devices[nid];
3115                 if (node->dev.id == nid)
3116                         hugetlb_register_node(node);
3117         }
3118
3119         /*
3120          * Let the node device driver know we're here so it can
3121          * [un]register hstate attributes on node hotplug.
3122          */
3123         register_hugetlbfs_with_node(hugetlb_register_node,
3124                                      hugetlb_unregister_node);
3125 }
3126 #else   /* !CONFIG_NUMA */
3127
3128 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
3129 {
3130         BUG();
3131         if (nidp)
3132                 *nidp = -1;
3133         return NULL;
3134 }
3135
3136 static void hugetlb_register_all_nodes(void) { }
3137
3138 #endif
3139
3140 static int __init hugetlb_init(void)
3141 {
3142         int i;
3143
3144         BUILD_BUG_ON(sizeof_field(struct page, private) * BITS_PER_BYTE <
3145                         __NR_HPAGEFLAGS);
3146
3147         if (!hugepages_supported()) {
3148                 if (hugetlb_max_hstate || default_hstate_max_huge_pages)
3149                         pr_warn("HugeTLB: huge pages not supported, ignoring associated command-line parameters\n");
3150                 return 0;
3151         }
3152
3153         /*
3154          * Make sure HPAGE_SIZE (HUGETLB_PAGE_ORDER) hstate exists.  Some
3155          * architectures depend on setup being done here.
3156          */
3157         hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
3158         if (!parsed_default_hugepagesz) {
3159                 /*
3160                  * If we did not parse a default huge page size, set
3161                  * default_hstate_idx to HPAGE_SIZE hstate. And, if the
3162                  * number of huge pages for this default size was implicitly
3163                  * specified, set that here as well.
3164                  * Note that the implicit setting will overwrite an explicit
3165                  * setting.  A warning will be printed in this case.
3166                  */
3167                 default_hstate_idx = hstate_index(size_to_hstate(HPAGE_SIZE));
3168                 if (default_hstate_max_huge_pages) {
3169                         if (default_hstate.max_huge_pages) {
3170                                 char buf[32];
3171
3172                                 string_get_size(huge_page_size(&default_hstate),
3173                                         1, STRING_UNITS_2, buf, 32);
3174                                 pr_warn("HugeTLB: Ignoring hugepages=%lu associated with %s page size\n",
3175                                         default_hstate.max_huge_pages, buf);
3176                                 pr_warn("HugeTLB: Using hugepages=%lu for number of default huge pages\n",
3177                                         default_hstate_max_huge_pages);
3178                         }
3179                         default_hstate.max_huge_pages =
3180                                 default_hstate_max_huge_pages;
3181                 }
3182         }
3183
3184         hugetlb_cma_check();
3185         hugetlb_init_hstates();
3186         gather_bootmem_prealloc();
3187         report_hugepages();
3188
3189         hugetlb_sysfs_init();
3190         hugetlb_register_all_nodes();
3191         hugetlb_cgroup_file_init();
3192
3193 #ifdef CONFIG_SMP
3194         num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
3195 #else
3196         num_fault_mutexes = 1;
3197 #endif
3198         hugetlb_fault_mutex_table =
3199                 kmalloc_array(num_fault_mutexes, sizeof(struct mutex),
3200                               GFP_KERNEL);
3201         BUG_ON(!hugetlb_fault_mutex_table);
3202
3203         for (i = 0; i < num_fault_mutexes; i++)
3204                 mutex_init(&hugetlb_fault_mutex_table[i]);
3205         return 0;
3206 }
3207 subsys_initcall(hugetlb_init);
3208
3209 /* Overwritten by architectures with more huge page sizes */
3210 bool __init __attribute((weak)) arch_hugetlb_valid_size(unsigned long size)
3211 {
3212         return size == HPAGE_SIZE;
3213 }
3214
3215 void __init hugetlb_add_hstate(unsigned int order)
3216 {
3217         struct hstate *h;
3218         unsigned long i;
3219
3220         if (size_to_hstate(PAGE_SIZE << order)) {
3221                 return;
3222         }
3223         BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
3224         BUG_ON(order == 0);
3225         h = &hstates[hugetlb_max_hstate++];
3226         mutex_init(&h->resize_lock);
3227         h->order = order;
3228         h->mask = ~(huge_page_size(h) - 1);
3229         for (i = 0; i < MAX_NUMNODES; ++i)
3230                 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
3231         INIT_LIST_HEAD(&h->hugepage_activelist);
3232         h->next_nid_to_alloc = first_memory_node;
3233         h->next_nid_to_free = first_memory_node;
3234         snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
3235                                         huge_page_size(h)/1024);
3236
3237         parsed_hstate = h;
3238 }
3239
3240 /*
3241  * hugepages command line processing
3242  * hugepages normally follows a valid hugepagsz or default_hugepagsz
3243  * specification.  If not, ignore the hugepages value.  hugepages can also
3244  * be the first huge page command line  option in which case it implicitly
3245  * specifies the number of huge pages for the default size.
3246  */
3247 static int __init hugepages_setup(char *s)
3248 {
3249         unsigned long *mhp;
3250         static unsigned long *last_mhp;
3251
3252         if (!parsed_valid_hugepagesz) {
3253                 pr_warn("HugeTLB: hugepages=%s does not follow a valid hugepagesz, ignoring\n", s);
3254                 parsed_valid_hugepagesz = true;
3255                 return 0;
3256         }
3257
3258         /*
3259          * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter
3260          * yet, so this hugepages= parameter goes to the "default hstate".
3261          * Otherwise, it goes with the previously parsed hugepagesz or
3262          * default_hugepagesz.
3263          */
3264         else if (!hugetlb_max_hstate)
3265                 mhp = &default_hstate_max_huge_pages;
3266         else
3267                 mhp = &parsed_hstate->max_huge_pages;
3268
3269         if (mhp == last_mhp) {
3270                 pr_warn("HugeTLB: hugepages= specified twice without interleaving hugepagesz=, ignoring hugepages=%s\n", s);
3271                 return 0;
3272         }
3273
3274         if (sscanf(s, "%lu", mhp) <= 0)
3275                 *mhp = 0;
3276
3277         /*
3278          * Global state is always initialized later in hugetlb_init.
3279          * But we need to allocate gigantic hstates here early to still
3280          * use the bootmem allocator.
3281          */
3282         if (hugetlb_max_hstate && hstate_is_gigantic(parsed_hstate))
3283                 hugetlb_hstate_alloc_pages(parsed_hstate);
3284
3285         last_mhp = mhp;
3286
3287         return 1;
3288 }
3289 __setup("hugepages=", hugepages_setup);
3290
3291 /*
3292  * hugepagesz command line processing
3293  * A specific huge page size can only be specified once with hugepagesz.
3294  * hugepagesz is followed by hugepages on the command line.  The global
3295  * variable 'parsed_valid_hugepagesz' is used to determine if prior
3296  * hugepagesz argument was valid.
3297  */
3298 static int __init hugepagesz_setup(char *s)
3299 {
3300         unsigned long size;
3301         struct hstate *h;
3302
3303         parsed_valid_hugepagesz = false;
3304         size = (unsigned long)memparse(s, NULL);
3305
3306         if (!arch_hugetlb_valid_size(size)) {
3307                 pr_err("HugeTLB: unsupported hugepagesz=%s\n", s);
3308                 return 0;
3309         }
3310
3311         h = size_to_hstate(size);
3312         if (h) {
3313                 /*
3314                  * hstate for this size already exists.  This is normally
3315                  * an error, but is allowed if the existing hstate is the
3316                  * default hstate.  More specifically, it is only allowed if
3317                  * the number of huge pages for the default hstate was not
3318                  * previously specified.
3319                  */
3320                 if (!parsed_default_hugepagesz ||  h != &default_hstate ||
3321                     default_hstate.max_huge_pages) {
3322                         pr_warn("HugeTLB: hugepagesz=%s specified twice, ignoring\n", s);
3323                         return 0;
3324                 }
3325
3326                 /*
3327                  * No need to call hugetlb_add_hstate() as hstate already
3328                  * exists.  But, do set parsed_hstate so that a following
3329                  * hugepages= parameter will be applied to this hstate.
3330                  */
3331                 parsed_hstate = h;
3332                 parsed_valid_hugepagesz = true;
3333                 return 1;
3334         }
3335
3336         hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
3337         parsed_valid_hugepagesz = true;
3338         return 1;
3339 }
3340 __setup("hugepagesz=", hugepagesz_setup);
3341
3342 /*
3343  * default_hugepagesz command line input
3344  * Only one instance of default_hugepagesz allowed on command line.
3345  */
3346 static int __init default_hugepagesz_setup(char *s)
3347 {
3348         unsigned long size;
3349
3350         parsed_valid_hugepagesz = false;
3351         if (parsed_default_hugepagesz) {
3352                 pr_err("HugeTLB: default_hugepagesz previously specified, ignoring %s\n", s);
3353                 return 0;
3354         }
3355
3356         size = (unsigned long)memparse(s, NULL);
3357
3358         if (!arch_hugetlb_valid_size(size)) {
3359                 pr_err("HugeTLB: unsupported default_hugepagesz=%s\n", s);
3360                 return 0;
3361         }
3362
3363         hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
3364         parsed_valid_hugepagesz = true;
3365         parsed_default_hugepagesz = true;
3366         default_hstate_idx = hstate_index(size_to_hstate(size));
3367
3368         /*
3369          * The number of default huge pages (for this size) could have been
3370          * specified as the first hugetlb parameter: hugepages=X.  If so,
3371          * then default_hstate_max_huge_pages is set.  If the default huge
3372          * page size is gigantic (>= MAX_ORDER), then the pages must be
3373          * allocated here from bootmem allocator.
3374          */
3375         if (default_hstate_max_huge_pages) {
3376                 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
3377                 if (hstate_is_gigantic(&default_hstate))
3378                         hugetlb_hstate_alloc_pages(&default_hstate);
3379                 default_hstate_max_huge_pages = 0;
3380         }
3381
3382         return 1;
3383 }
3384 __setup("default_hugepagesz=", default_hugepagesz_setup);
3385
3386 static unsigned int allowed_mems_nr(struct hstate *h)
3387 {
3388         int node;
3389         unsigned int nr = 0;
3390         nodemask_t *mpol_allowed;
3391         unsigned int *array = h->free_huge_pages_node;
3392         gfp_t gfp_mask = htlb_alloc_mask(h);
3393
3394         mpol_allowed = policy_nodemask_current(gfp_mask);
3395
3396         for_each_node_mask(node, cpuset_current_mems_allowed) {
3397                 if (!mpol_allowed || node_isset(node, *mpol_allowed))
3398                         nr += array[node];
3399         }
3400
3401         return nr;
3402 }
3403
3404 #ifdef CONFIG_SYSCTL
3405 static int proc_hugetlb_doulongvec_minmax(struct ctl_table *table, int write,
3406                                           void *buffer, size_t *length,
3407                                           loff_t *ppos, unsigned long *out)
3408 {
3409         struct ctl_table dup_table;
3410
3411         /*
3412          * In order to avoid races with __do_proc_doulongvec_minmax(), we
3413          * can duplicate the @table and alter the duplicate of it.
3414          */
3415         dup_table = *table;
3416         dup_table.data = out;
3417
3418         return proc_doulongvec_minmax(&dup_table, write, buffer, length, ppos);
3419 }
3420
3421 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
3422                          struct ctl_table *table, int write,
3423                          void *buffer, size_t *length, loff_t *ppos)
3424 {
3425         struct hstate *h = &default_hstate;
3426         unsigned long tmp = h->max_huge_pages;
3427         int ret;
3428
3429         if (!hugepages_supported())
3430                 return -EOPNOTSUPP;
3431
3432         ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
3433                                              &tmp);
3434         if (ret)
3435                 goto out;
3436
3437         if (write)
3438                 ret = __nr_hugepages_store_common(obey_mempolicy, h,
3439                                                   NUMA_NO_NODE, tmp, *length);
3440 out:
3441         return ret;
3442 }
3443
3444 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
3445                           void *buffer, size_t *length, loff_t *ppos)
3446 {
3447
3448         return hugetlb_sysctl_handler_common(false, table, write,
3449                                                         buffer, length, ppos);
3450 }
3451
3452 #ifdef CONFIG_NUMA
3453 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
3454                           void *buffer, size_t *length, loff_t *ppos)
3455 {
3456         return hugetlb_sysctl_handler_common(true, table, write,
3457                                                         buffer, length, ppos);
3458 }
3459 #endif /* CONFIG_NUMA */
3460
3461 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
3462                 void *buffer, size_t *length, loff_t *ppos)
3463 {
3464         struct hstate *h = &default_hstate;
3465         unsigned long tmp;
3466         int ret;
3467
3468         if (!hugepages_supported())
3469                 return -EOPNOTSUPP;
3470
3471         tmp = h->nr_overcommit_huge_pages;
3472
3473         if (write && hstate_is_gigantic(h))
3474                 return -EINVAL;
3475
3476         ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
3477                                              &tmp);
3478         if (ret)
3479                 goto out;
3480
3481         if (write) {
3482                 spin_lock_irq(&hugetlb_lock);
3483                 h->nr_overcommit_huge_pages = tmp;
3484                 spin_unlock_irq(&hugetlb_lock);
3485         }
3486 out:
3487         return ret;
3488 }
3489
3490 #endif /* CONFIG_SYSCTL */
3491
3492 void hugetlb_report_meminfo(struct seq_file *m)
3493 {
3494         struct hstate *h;
3495         unsigned long total = 0;
3496
3497         if (!hugepages_supported())
3498                 return;
3499
3500         for_each_hstate(h) {
3501                 unsigned long count = h->nr_huge_pages;
3502
3503                 total += huge_page_size(h) * count;
3504
3505                 if (h == &default_hstate)
3506                         seq_printf(m,
3507                                    "HugePages_Total:   %5lu\n"
3508                                    "HugePages_Free:    %5lu\n"
3509                                    "HugePages_Rsvd:    %5lu\n"
3510                                    "HugePages_Surp:    %5lu\n"
3511                                    "Hugepagesize:   %8lu kB\n",
3512                                    count,
3513                                    h->free_huge_pages,
3514                                    h->resv_huge_pages,
3515                                    h->surplus_huge_pages,
3516                                    huge_page_size(h) / SZ_1K);
3517         }
3518
3519         seq_printf(m, "Hugetlb:        %8lu kB\n", total / SZ_1K);
3520 }
3521
3522 int hugetlb_report_node_meminfo(char *buf, int len, int nid)
3523 {
3524         struct hstate *h = &default_hstate;
3525
3526         if (!hugepages_supported())
3527                 return 0;
3528
3529         return sysfs_emit_at(buf, len,
3530                              "Node %d HugePages_Total: %5u\n"
3531                              "Node %d HugePages_Free:  %5u\n"
3532                              "Node %d HugePages_Surp:  %5u\n",
3533                              nid, h->nr_huge_pages_node[nid],
3534                              nid, h->free_huge_pages_node[nid],
3535                              nid, h->surplus_huge_pages_node[nid]);
3536 }
3537
3538 void hugetlb_show_meminfo(void)
3539 {
3540         struct hstate *h;
3541         int nid;
3542
3543         if (!hugepages_supported())
3544                 return;
3545
3546         for_each_node_state(nid, N_MEMORY)
3547                 for_each_hstate(h)
3548                         pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
3549                                 nid,
3550                                 h->nr_huge_pages_node[nid],
3551                                 h->free_huge_pages_node[nid],
3552                                 h->surplus_huge_pages_node[nid],
3553                                 huge_page_size(h) / SZ_1K);
3554 }
3555
3556 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
3557 {
3558         seq_printf(m, "HugetlbPages:\t%8lu kB\n",
3559                    atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
3560 }
3561
3562 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
3563 unsigned long hugetlb_total_pages(void)
3564 {
3565         struct hstate *h;
3566         unsigned long nr_total_pages = 0;
3567
3568         for_each_hstate(h)
3569                 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
3570         return nr_total_pages;
3571 }
3572
3573 static int hugetlb_acct_memory(struct hstate *h, long delta)
3574 {
3575         int ret = -ENOMEM;
3576
3577         if (!delta)
3578                 return 0;
3579
3580         spin_lock_irq(&hugetlb_lock);
3581         /*
3582          * When cpuset is configured, it breaks the strict hugetlb page
3583          * reservation as the accounting is done on a global variable. Such
3584          * reservation is completely rubbish in the presence of cpuset because
3585          * the reservation is not checked against page availability for the
3586          * current cpuset. Application can still potentially OOM'ed by kernel
3587          * with lack of free htlb page in cpuset that the task is in.
3588          * Attempt to enforce strict accounting with cpuset is almost
3589          * impossible (or too ugly) because cpuset is too fluid that
3590          * task or memory node can be dynamically moved between cpusets.
3591          *
3592          * The change of semantics for shared hugetlb mapping with cpuset is
3593          * undesirable. However, in order to preserve some of the semantics,
3594          * we fall back to check against current free page availability as
3595          * a best attempt and hopefully to minimize the impact of changing
3596          * semantics that cpuset has.
3597          *
3598          * Apart from cpuset, we also have memory policy mechanism that
3599          * also determines from which node the kernel will allocate memory
3600          * in a NUMA system. So similar to cpuset, we also should consider
3601          * the memory policy of the current task. Similar to the description
3602          * above.
3603          */
3604         if (delta > 0) {
3605                 if (gather_surplus_pages(h, delta) < 0)
3606                         goto out;
3607
3608                 if (delta > allowed_mems_nr(h)) {
3609                         return_unused_surplus_pages(h, delta);
3610                         goto out;
3611                 }
3612         }
3613
3614         ret = 0;
3615         if (delta < 0)
3616                 return_unused_surplus_pages(h, (unsigned long) -delta);
3617
3618 out:
3619         spin_unlock_irq(&hugetlb_lock);
3620         return ret;
3621 }
3622
3623 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
3624 {
3625         struct resv_map *resv = vma_resv_map(vma);
3626
3627         /*
3628          * This new VMA should share its siblings reservation map if present.
3629          * The VMA will only ever have a valid reservation map pointer where
3630          * it is being copied for another still existing VMA.  As that VMA
3631          * has a reference to the reservation map it cannot disappear until
3632          * after this open call completes.  It is therefore safe to take a
3633          * new reference here without additional locking.
3634          */
3635         if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3636                 kref_get(&resv->refs);
3637 }
3638
3639 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
3640 {
3641         struct hstate *h = hstate_vma(vma);
3642         struct resv_map *resv = vma_resv_map(vma);
3643         struct hugepage_subpool *spool = subpool_vma(vma);
3644         unsigned long reserve, start, end;
3645         long gbl_reserve;
3646
3647         if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3648                 return;
3649
3650         start = vma_hugecache_offset(h, vma, vma->vm_start);
3651         end = vma_hugecache_offset(h, vma, vma->vm_end);
3652
3653         reserve = (end - start) - region_count(resv, start, end);
3654         hugetlb_cgroup_uncharge_counter(resv, start, end);
3655         if (reserve) {
3656                 /*
3657                  * Decrement reserve counts.  The global reserve count may be
3658                  * adjusted if the subpool has a minimum size.
3659                  */
3660                 gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
3661                 hugetlb_acct_memory(h, -gbl_reserve);
3662         }
3663
3664         kref_put(&resv->refs, resv_map_release);
3665 }
3666
3667 static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
3668 {
3669         if (addr & ~(huge_page_mask(hstate_vma(vma))))
3670                 return -EINVAL;
3671         return 0;
3672 }
3673
3674 static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma)
3675 {
3676         return huge_page_size(hstate_vma(vma));
3677 }
3678
3679 /*
3680  * We cannot handle pagefaults against hugetlb pages at all.  They cause
3681  * handle_mm_fault() to try to instantiate regular-sized pages in the
3682  * hugepage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
3683  * this far.
3684  */
3685 static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf)
3686 {
3687         BUG();
3688         return 0;
3689 }
3690
3691 /*
3692  * When a new function is introduced to vm_operations_struct and added
3693  * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops.
3694  * This is because under System V memory model, mappings created via
3695  * shmget/shmat with "huge page" specified are backed by hugetlbfs files,
3696  * their original vm_ops are overwritten with shm_vm_ops.
3697  */
3698 const struct vm_operations_struct hugetlb_vm_ops = {
3699         .fault = hugetlb_vm_op_fault,
3700         .open = hugetlb_vm_op_open,
3701         .close = hugetlb_vm_op_close,
3702         .may_split = hugetlb_vm_op_split,
3703         .pagesize = hugetlb_vm_op_pagesize,
3704 };
3705
3706 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
3707                                 int writable)
3708 {
3709         pte_t entry;
3710
3711         if (writable) {
3712                 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
3713                                          vma->vm_page_prot)));
3714         } else {
3715                 entry = huge_pte_wrprotect(mk_huge_pte(page,
3716                                            vma->vm_page_prot));
3717         }
3718         entry = pte_mkyoung(entry);
3719         entry = pte_mkhuge(entry);
3720         entry = arch_make_huge_pte(entry, vma, page, writable);
3721
3722         return entry;
3723 }
3724
3725 static void set_huge_ptep_writable(struct vm_area_struct *vma,
3726                                    unsigned long address, pte_t *ptep)
3727 {
3728         pte_t entry;
3729
3730         entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
3731         if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
3732                 update_mmu_cache(vma, address, ptep);
3733 }
3734
3735 bool is_hugetlb_entry_migration(pte_t pte)
3736 {
3737         swp_entry_t swp;
3738
3739         if (huge_pte_none(pte) || pte_present(pte))
3740                 return false;
3741         swp = pte_to_swp_entry(pte);
3742         if (is_migration_entry(swp))
3743                 return true;
3744         else
3745                 return false;
3746 }
3747
3748 static bool is_hugetlb_entry_hwpoisoned(pte_t pte)
3749 {
3750         swp_entry_t swp;
3751
3752         if (huge_pte_none(pte) || pte_present(pte))
3753                 return false;
3754         swp = pte_to_swp_entry(pte);
3755         if (is_hwpoison_entry(swp))
3756                 return true;
3757         else
3758                 return false;
3759 }
3760
3761 static void
3762 hugetlb_install_page(struct vm_area_struct *vma, pte_t *ptep, unsigned long addr,
3763                      struct page *new_page)
3764 {
3765         __SetPageUptodate(new_page);
3766         set_huge_pte_at(vma->vm_mm, addr, ptep, make_huge_pte(vma, new_page, 1));
3767         hugepage_add_new_anon_rmap(new_page, vma, addr);
3768         hugetlb_count_add(pages_per_huge_page(hstate_vma(vma)), vma->vm_mm);
3769         ClearHPageRestoreReserve(new_page);
3770         SetHPageMigratable(new_page);
3771 }
3772
3773 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
3774                             struct vm_area_struct *vma)
3775 {
3776         pte_t *src_pte, *dst_pte, entry, dst_entry;
3777         struct page *ptepage;
3778         unsigned long addr;
3779         bool cow = is_cow_mapping(vma->vm_flags);
3780         struct hstate *h = hstate_vma(vma);
3781         unsigned long sz = huge_page_size(h);
3782         unsigned long npages = pages_per_huge_page(h);
3783         struct address_space *mapping = vma->vm_file->f_mapping;
3784         struct mmu_notifier_range range;
3785         int ret = 0;
3786
3787         if (cow) {
3788                 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, src,
3789                                         vma->vm_start,
3790                                         vma->vm_end);
3791                 mmu_notifier_invalidate_range_start(&range);
3792         } else {
3793                 /*
3794                  * For shared mappings i_mmap_rwsem must be held to call
3795                  * huge_pte_alloc, otherwise the returned ptep could go
3796                  * away if part of a shared pmd and another thread calls
3797                  * huge_pmd_unshare.
3798                  */
3799                 i_mmap_lock_read(mapping);
3800         }
3801
3802         for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
3803                 spinlock_t *src_ptl, *dst_ptl;
3804                 src_pte = huge_pte_offset(src, addr, sz);
3805                 if (!src_pte)
3806                         continue;
3807                 dst_pte = huge_pte_alloc(dst, vma, addr, sz);
3808                 if (!dst_pte) {
3809                         ret = -ENOMEM;
3810                         break;
3811                 }
3812
3813                 /*
3814                  * If the pagetables are shared don't copy or take references.
3815                  * dst_pte == src_pte is the common case of src/dest sharing.
3816                  *
3817                  * However, src could have 'unshared' and dst shares with
3818                  * another vma.  If dst_pte !none, this implies sharing.
3819                  * Check here before taking page table lock, and once again
3820                  * after taking the lock below.
3821                  */
3822                 dst_entry = huge_ptep_get(dst_pte);
3823                 if ((dst_pte == src_pte) || !huge_pte_none(dst_entry))
3824                         continue;
3825
3826                 dst_ptl = huge_pte_lock(h, dst, dst_pte);
3827                 src_ptl = huge_pte_lockptr(h, src, src_pte);
3828                 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
3829                 entry = huge_ptep_get(src_pte);
3830                 dst_entry = huge_ptep_get(dst_pte);
3831 again:
3832                 if (huge_pte_none(entry) || !huge_pte_none(dst_entry)) {
3833                         /*
3834                          * Skip if src entry none.  Also, skip in the
3835                          * unlikely case dst entry !none as this implies
3836                          * sharing with another vma.
3837                          */
3838                         ;
3839                 } else if (unlikely(is_hugetlb_entry_migration(entry) ||
3840                                     is_hugetlb_entry_hwpoisoned(entry))) {
3841                         swp_entry_t swp_entry = pte_to_swp_entry(entry);
3842
3843                         if (is_write_migration_entry(swp_entry) && cow) {
3844                                 /*
3845                                  * COW mappings require pages in both
3846                                  * parent and child to be set to read.
3847                                  */
3848                                 make_migration_entry_read(&swp_entry);
3849                                 entry = swp_entry_to_pte(swp_entry);
3850                                 set_huge_swap_pte_at(src, addr, src_pte,
3851                                                      entry, sz);
3852                         }
3853                         set_huge_swap_pte_at(dst, addr, dst_pte, entry, sz);
3854                 } else {
3855                         entry = huge_ptep_get(src_pte);
3856                         ptepage = pte_page(entry);
3857                         get_page(ptepage);
3858
3859                         /*
3860                          * This is a rare case where we see pinned hugetlb
3861                          * pages while they're prone to COW.  We need to do the
3862                          * COW earlier during fork.
3863                          *
3864                          * When pre-allocating the page or copying data, we
3865                          * need to be without the pgtable locks since we could
3866                          * sleep during the process.
3867                          */
3868                         if (unlikely(page_needs_cow_for_dma(vma, ptepage))) {
3869                                 pte_t src_pte_old = entry;
3870                                 struct page *new;
3871
3872                                 spin_unlock(src_ptl);
3873                                 spin_unlock(dst_ptl);
3874                                 /* Do not use reserve as it's private owned */
3875                                 new = alloc_huge_page(vma, addr, 1);
3876                                 if (IS_ERR(new)) {
3877                                         put_page(ptepage);
3878                                         ret = PTR_ERR(new);
3879                                         break;
3880                                 }
3881                                 copy_user_huge_page(new, ptepage, addr, vma,
3882                                                     npages);
3883                                 put_page(ptepage);
3884
3885                                 /* Install the new huge page if src pte stable */
3886                                 dst_ptl = huge_pte_lock(h, dst, dst_pte);
3887                                 src_ptl = huge_pte_lockptr(h, src, src_pte);
3888                                 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
3889                                 entry = huge_ptep_get(src_pte);
3890                                 if (!pte_same(src_pte_old, entry)) {
3891                                         put_page(new);
3892                                         /* dst_entry won't change as in child */
3893                                         goto again;
3894                                 }
3895                                 hugetlb_install_page(vma, dst_pte, addr, new);
3896                                 spin_unlock(src_ptl);
3897                                 spin_unlock(dst_ptl);
3898                                 continue;
3899                         }
3900
3901                         if (cow) {
3902                                 /*
3903                                  * No need to notify as we are downgrading page
3904                                  * table protection not changing it to point
3905                                  * to a new page.
3906                                  *
3907                                  * See Documentation/vm/mmu_notifier.rst
3908                                  */
3909                                 huge_ptep_set_wrprotect(src, addr, src_pte);
3910                         }
3911
3912                         page_dup_rmap(ptepage, true);
3913                         set_huge_pte_at(dst, addr, dst_pte, entry);
3914                         hugetlb_count_add(npages, dst);
3915                 }
3916                 spin_unlock(src_ptl);
3917                 spin_unlock(dst_ptl);
3918         }
3919
3920         if (cow)
3921                 mmu_notifier_invalidate_range_end(&range);
3922         else
3923                 i_mmap_unlock_read(mapping);
3924
3925         return ret;
3926 }
3927
3928 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
3929                             unsigned long start, unsigned long end,
3930                             struct page *ref_page)
3931 {
3932         struct mm_struct *mm = vma->vm_mm;
3933         unsigned long address;
3934         pte_t *ptep;
3935         pte_t pte;
3936         spinlock_t *ptl;
3937         struct page *page;
3938         struct hstate *h = hstate_vma(vma);
3939         unsigned long sz = huge_page_size(h);
3940         struct mmu_notifier_range range;
3941
3942         WARN_ON(!is_vm_hugetlb_page(vma));
3943         BUG_ON(start & ~huge_page_mask(h));
3944         BUG_ON(end & ~huge_page_mask(h));
3945
3946         /*
3947          * This is a hugetlb vma, all the pte entries should point
3948          * to huge page.
3949          */
3950         tlb_change_page_size(tlb, sz);
3951         tlb_start_vma(tlb, vma);
3952
3953         /*
3954          * If sharing possible, alert mmu notifiers of worst case.
3955          */
3956         mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, mm, start,
3957                                 end);
3958         adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
3959         mmu_notifier_invalidate_range_start(&range);
3960         address = start;
3961         for (; address < end; address += sz) {
3962                 ptep = huge_pte_offset(mm, address, sz);
3963                 if (!ptep)
3964                         continue;
3965
3966                 ptl = huge_pte_lock(h, mm, ptep);
3967                 if (huge_pmd_unshare(mm, vma, &address, ptep)) {
3968                         spin_unlock(ptl);
3969                         /*
3970                          * We just unmapped a page of PMDs by clearing a PUD.
3971                          * The caller's TLB flush range should cover this area.
3972                          */
3973                         continue;
3974                 }
3975
3976                 pte = huge_ptep_get(ptep);
3977                 if (huge_pte_none(pte)) {
3978                         spin_unlock(ptl);
3979                         continue;
3980                 }
3981
3982                 /*
3983                  * Migrating hugepage or HWPoisoned hugepage is already
3984                  * unmapped and its refcount is dropped, so just clear pte here.
3985                  */
3986                 if (unlikely(!pte_present(pte))) {
3987                         huge_pte_clear(mm, address, ptep, sz);
3988                         spin_unlock(ptl);
3989                         continue;
3990                 }
3991
3992                 page = pte_page(pte);
3993                 /*
3994                  * If a reference page is supplied, it is because a specific
3995                  * page is being unmapped, not a range. Ensure the page we
3996                  * are about to unmap is the actual page of interest.
3997                  */
3998                 if (ref_page) {
3999                         if (page != ref_page) {
4000                                 spin_unlock(ptl);
4001                                 continue;
4002                         }
4003                         /*
4004                          * Mark the VMA as having unmapped its page so that
4005                          * future faults in this VMA will fail rather than
4006                          * looking like data was lost
4007                          */
4008                         set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
4009                 }
4010
4011                 pte = huge_ptep_get_and_clear(mm, address, ptep);
4012                 tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
4013                 if (huge_pte_dirty(pte))
4014                         set_page_dirty(page);
4015
4016                 hugetlb_count_sub(pages_per_huge_page(h), mm);
4017                 page_remove_rmap(page, true);
4018
4019                 spin_unlock(ptl);
4020                 tlb_remove_page_size(tlb, page, huge_page_size(h));
4021                 /*
4022                  * Bail out after unmapping reference page if supplied
4023                  */
4024                 if (ref_page)
4025                         break;
4026         }
4027         mmu_notifier_invalidate_range_end(&range);
4028         tlb_end_vma(tlb, vma);
4029 }
4030
4031 void __unmap_hugepage_range_final(struct mmu_gather *tlb,
4032                           struct vm_area_struct *vma, unsigned long start,
4033                           unsigned long end, struct page *ref_page)
4034 {
4035         __unmap_hugepage_range(tlb, vma, start, end, ref_page);
4036
4037         /*
4038          * Clear this flag so that x86's huge_pmd_share page_table_shareable
4039          * test will fail on a vma being torn down, and not grab a page table
4040          * on its way out.  We're lucky that the flag has such an appropriate
4041          * name, and can in fact be safely cleared here. We could clear it
4042          * before the __unmap_hugepage_range above, but all that's necessary
4043          * is to clear it before releasing the i_mmap_rwsem. This works
4044          * because in the context this is called, the VMA is about to be
4045          * destroyed and the i_mmap_rwsem is held.
4046          */
4047         vma->vm_flags &= ~VM_MAYSHARE;
4048 }
4049
4050 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
4051                           unsigned long end, struct page *ref_page)
4052 {
4053         struct mmu_gather tlb;
4054
4055         tlb_gather_mmu(&tlb, vma->vm_mm);
4056         __unmap_hugepage_range(&tlb, vma, start, end, ref_page);
4057         tlb_finish_mmu(&tlb);
4058 }
4059
4060 /*
4061  * This is called when the original mapper is failing to COW a MAP_PRIVATE
4062  * mapping it owns the reserve page for. The intention is to unmap the page
4063  * from other VMAs and let the children be SIGKILLed if they are faulting the
4064  * same region.
4065  */
4066 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
4067                               struct page *page, unsigned long address)
4068 {
4069         struct hstate *h = hstate_vma(vma);
4070         struct vm_area_struct *iter_vma;
4071         struct address_space *mapping;
4072         pgoff_t pgoff;
4073
4074         /*
4075          * vm_pgoff is in PAGE_SIZE units, hence the different calculation
4076          * from page cache lookup which is in HPAGE_SIZE units.
4077          */
4078         address = address & huge_page_mask(h);
4079         pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
4080                         vma->vm_pgoff;
4081         mapping = vma->vm_file->f_mapping;
4082
4083         /*
4084          * Take the mapping lock for the duration of the table walk. As
4085          * this mapping should be shared between all the VMAs,
4086          * __unmap_hugepage_range() is called as the lock is already held
4087          */
4088         i_mmap_lock_write(mapping);
4089         vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
4090                 /* Do not unmap the current VMA */
4091                 if (iter_vma == vma)
4092                         continue;
4093
4094                 /*
4095                  * Shared VMAs have their own reserves and do not affect
4096                  * MAP_PRIVATE accounting but it is possible that a shared
4097                  * VMA is using the same page so check and skip such VMAs.
4098                  */
4099                 if (iter_vma->vm_flags & VM_MAYSHARE)
4100                         continue;
4101
4102                 /*
4103                  * Unmap the page from other VMAs without their own reserves.
4104                  * They get marked to be SIGKILLed if they fault in these
4105                  * areas. This is because a future no-page fault on this VMA
4106                  * could insert a zeroed page instead of the data existing
4107                  * from the time of fork. This would look like data corruption
4108                  */
4109                 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
4110                         unmap_hugepage_range(iter_vma, address,
4111                                              address + huge_page_size(h), page);
4112         }
4113         i_mmap_unlock_write(mapping);
4114 }
4115
4116 /*
4117  * Hugetlb_cow() should be called with page lock of the original hugepage held.
4118  * Called with hugetlb_instantiation_mutex held and pte_page locked so we
4119  * cannot race with other handlers or page migration.
4120  * Keep the pte_same checks anyway to make transition from the mutex easier.
4121  */
4122 static vm_fault_t hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
4123                        unsigned long address, pte_t *ptep,
4124                        struct page *pagecache_page, spinlock_t *ptl)
4125 {
4126         pte_t pte;
4127         struct hstate *h = hstate_vma(vma);
4128         struct page *old_page, *new_page;
4129         int outside_reserve = 0;
4130         vm_fault_t ret = 0;
4131         unsigned long haddr = address & huge_page_mask(h);
4132         struct mmu_notifier_range range;
4133
4134         pte = huge_ptep_get(ptep);
4135         old_page = pte_page(pte);
4136
4137 retry_avoidcopy:
4138         /* If no-one else is actually using this page, avoid the copy
4139          * and just make the page writable */
4140         if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
4141                 page_move_anon_rmap(old_page, vma);
4142                 set_huge_ptep_writable(vma, haddr, ptep);
4143                 return 0;
4144         }
4145
4146         /*
4147          * If the process that created a MAP_PRIVATE mapping is about to
4148          * perform a COW due to a shared page count, attempt to satisfy
4149          * the allocation without using the existing reserves. The pagecache
4150          * page is used to determine if the reserve at this address was
4151          * consumed or not. If reserves were used, a partial faulted mapping
4152          * at the time of fork() could consume its reserves on COW instead
4153          * of the full address range.
4154          */
4155         if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
4156                         old_page != pagecache_page)
4157                 outside_reserve = 1;
4158
4159         get_page(old_page);
4160
4161         /*
4162          * Drop page table lock as buddy allocator may be called. It will
4163          * be acquired again before returning to the caller, as expected.
4164          */
4165         spin_unlock(ptl);
4166         new_page = alloc_huge_page(vma, haddr, outside_reserve);
4167
4168         if (IS_ERR(new_page)) {
4169                 /*
4170                  * If a process owning a MAP_PRIVATE mapping fails to COW,
4171                  * it is due to references held by a child and an insufficient
4172                  * huge page pool. To guarantee the original mappers
4173                  * reliability, unmap the page from child processes. The child
4174                  * may get SIGKILLed if it later faults.
4175                  */
4176                 if (outside_reserve) {
4177                         struct address_space *mapping = vma->vm_file->f_mapping;
4178                         pgoff_t idx;
4179                         u32 hash;
4180
4181                         put_page(old_page);
4182                         BUG_ON(huge_pte_none(pte));
4183                         /*
4184                          * Drop hugetlb_fault_mutex and i_mmap_rwsem before
4185                          * unmapping.  unmapping needs to hold i_mmap_rwsem
4186                          * in write mode.  Dropping i_mmap_rwsem in read mode
4187                          * here is OK as COW mappings do not interact with
4188                          * PMD sharing.
4189                          *
4190                          * Reacquire both after unmap operation.
4191                          */
4192                         idx = vma_hugecache_offset(h, vma, haddr);
4193                         hash = hugetlb_fault_mutex_hash(mapping, idx);
4194                         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
4195                         i_mmap_unlock_read(mapping);
4196
4197                         unmap_ref_private(mm, vma, old_page, haddr);
4198
4199                         i_mmap_lock_read(mapping);
4200                         mutex_lock(&hugetlb_fault_mutex_table[hash]);
4201                         spin_lock(ptl);
4202                         ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
4203                         if (likely(ptep &&
4204                                    pte_same(huge_ptep_get(ptep), pte)))
4205                                 goto retry_avoidcopy;
4206                         /*
4207                          * race occurs while re-acquiring page table
4208                          * lock, and our job is done.
4209                          */
4210                         return 0;
4211                 }
4212
4213                 ret = vmf_error(PTR_ERR(new_page));
4214                 goto out_release_old;
4215         }
4216
4217         /*
4218          * When the original hugepage is shared one, it does not have
4219          * anon_vma prepared.
4220          */
4221         if (unlikely(anon_vma_prepare(vma))) {
4222                 ret = VM_FAULT_OOM;
4223                 goto out_release_all;
4224         }
4225
4226         copy_user_huge_page(new_page, old_page, address, vma,
4227                             pages_per_huge_page(h));
4228         __SetPageUptodate(new_page);
4229
4230         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, haddr,
4231                                 haddr + huge_page_size(h));
4232         mmu_notifier_invalidate_range_start(&range);
4233
4234         /*
4235          * Retake the page table lock to check for racing updates
4236          * before the page tables are altered
4237          */
4238         spin_lock(ptl);
4239         ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
4240         if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
4241                 ClearHPageRestoreReserve(new_page);
4242
4243                 /* Break COW */
4244                 huge_ptep_clear_flush(vma, haddr, ptep);
4245                 mmu_notifier_invalidate_range(mm, range.start, range.end);
4246                 set_huge_pte_at(mm, haddr, ptep,
4247                                 make_huge_pte(vma, new_page, 1));
4248                 page_remove_rmap(old_page, true);
4249                 hugepage_add_new_anon_rmap(new_page, vma, haddr);
4250                 SetHPageMigratable(new_page);
4251                 /* Make the old page be freed below */
4252                 new_page = old_page;
4253         }
4254         spin_unlock(ptl);
4255         mmu_notifier_invalidate_range_end(&range);
4256 out_release_all:
4257         restore_reserve_on_error(h, vma, haddr, new_page);
4258         put_page(new_page);
4259 out_release_old:
4260         put_page(old_page);
4261
4262         spin_lock(ptl); /* Caller expects lock to be held */
4263         return ret;
4264 }
4265
4266 /* Return the pagecache page at a given address within a VMA */
4267 static struct page *hugetlbfs_pagecache_page(struct hstate *h,
4268                         struct vm_area_struct *vma, unsigned long address)
4269 {
4270         struct address_space *mapping;
4271         pgoff_t idx;
4272
4273         mapping = vma->vm_file->f_mapping;
4274         idx = vma_hugecache_offset(h, vma, address);
4275
4276         return find_lock_page(mapping, idx);
4277 }
4278
4279 /*
4280  * Return whether there is a pagecache page to back given address within VMA.
4281  * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
4282  */
4283 static bool hugetlbfs_pagecache_present(struct hstate *h,
4284                         struct vm_area_struct *vma, unsigned long address)
4285 {
4286         struct address_space *mapping;
4287         pgoff_t idx;
4288         struct page *page;
4289
4290         mapping = vma->vm_file->f_mapping;
4291         idx = vma_hugecache_offset(h, vma, address);
4292
4293         page = find_get_page(mapping, idx);
4294         if (page)
4295                 put_page(page);
4296         return page != NULL;
4297 }
4298
4299 int huge_add_to_page_cache(struct page *page, struct address_space *mapping,
4300                            pgoff_t idx)
4301 {
4302         struct inode *inode = mapping->host;
4303         struct hstate *h = hstate_inode(inode);
4304         int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
4305
4306         if (err)
4307                 return err;
4308         ClearHPageRestoreReserve(page);
4309
4310         /*
4311          * set page dirty so that it will not be removed from cache/file
4312          * by non-hugetlbfs specific code paths.
4313          */
4314         set_page_dirty(page);
4315
4316         spin_lock(&inode->i_lock);
4317         inode->i_blocks += blocks_per_huge_page(h);
4318         spin_unlock(&inode->i_lock);
4319         return 0;
4320 }
4321
4322 static vm_fault_t hugetlb_no_page(struct mm_struct *mm,
4323                         struct vm_area_struct *vma,
4324                         struct address_space *mapping, pgoff_t idx,
4325                         unsigned long address, pte_t *ptep, unsigned int flags)
4326 {
4327         struct hstate *h = hstate_vma(vma);
4328         vm_fault_t ret = VM_FAULT_SIGBUS;
4329         int anon_rmap = 0;
4330         unsigned long size;
4331         struct page *page;
4332         pte_t new_pte;
4333         spinlock_t *ptl;
4334         unsigned long haddr = address & huge_page_mask(h);
4335         bool new_page = false;
4336
4337         /*
4338          * Currently, we are forced to kill the process in the event the
4339          * original mapper has unmapped pages from the child due to a failed
4340          * COW. Warn that such a situation has occurred as it may not be obvious
4341          */
4342         if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
4343                 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
4344                            current->pid);
4345                 return ret;
4346         }
4347
4348         /*
4349          * We can not race with truncation due to holding i_mmap_rwsem.
4350          * i_size is modified when holding i_mmap_rwsem, so check here
4351          * once for faults beyond end of file.
4352          */
4353         size = i_size_read(mapping->host) >> huge_page_shift(h);
4354         if (idx >= size)
4355                 goto out;
4356
4357 retry:
4358         page = find_lock_page(mapping, idx);
4359         if (!page) {
4360                 /*
4361                  * Check for page in userfault range
4362                  */
4363                 if (userfaultfd_missing(vma)) {
4364                         u32 hash;
4365                         struct vm_fault vmf = {
4366                                 .vma = vma,
4367                                 .address = haddr,
4368                                 .flags = flags,
4369                                 /*
4370                                  * Hard to debug if it ends up being
4371                                  * used by a callee that assumes
4372                                  * something about the other
4373                                  * uninitialized fields... same as in
4374                                  * memory.c
4375                                  */
4376                         };
4377
4378                         /*
4379                          * hugetlb_fault_mutex and i_mmap_rwsem must be
4380                          * dropped before handling userfault.  Reacquire
4381                          * after handling fault to make calling code simpler.
4382                          */
4383                         hash = hugetlb_fault_mutex_hash(mapping, idx);
4384                         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
4385                         i_mmap_unlock_read(mapping);
4386                         ret = handle_userfault(&vmf, VM_UFFD_MISSING);
4387                         i_mmap_lock_read(mapping);
4388                         mutex_lock(&hugetlb_fault_mutex_table[hash]);
4389                         goto out;
4390                 }
4391
4392                 page = alloc_huge_page(vma, haddr, 0);
4393                 if (IS_ERR(page)) {
4394                         /*
4395                          * Returning error will result in faulting task being
4396                          * sent SIGBUS.  The hugetlb fault mutex prevents two
4397                          * tasks from racing to fault in the same page which
4398                          * could result in false unable to allocate errors.
4399                          * Page migration does not take the fault mutex, but
4400                          * does a clear then write of pte's under page table
4401                          * lock.  Page fault code could race with migration,
4402                          * notice the clear pte and try to allocate a page
4403                          * here.  Before returning error, get ptl and make
4404                          * sure there really is no pte entry.
4405                          */
4406                         ptl = huge_pte_lock(h, mm, ptep);
4407                         ret = 0;
4408                         if (huge_pte_none(huge_ptep_get(ptep)))
4409                                 ret = vmf_error(PTR_ERR(page));
4410                         spin_unlock(ptl);
4411                         goto out;
4412                 }
4413                 clear_huge_page(page, address, pages_per_huge_page(h));
4414                 __SetPageUptodate(page);
4415                 new_page = true;
4416
4417                 if (vma->vm_flags & VM_MAYSHARE) {
4418                         int err = huge_add_to_page_cache(page, mapping, idx);
4419                         if (err) {
4420                                 put_page(page);
4421                                 if (err == -EEXIST)
4422                                         goto retry;
4423                                 goto out;
4424                         }
4425                 } else {
4426                         lock_page(page);
4427                         if (unlikely(anon_vma_prepare(vma))) {
4428                                 ret = VM_FAULT_OOM;
4429                                 goto backout_unlocked;
4430                         }
4431                         anon_rmap = 1;
4432                 }
4433         } else {
4434                 /*
4435                  * If memory error occurs between mmap() and fault, some process
4436                  * don't have hwpoisoned swap entry for errored virtual address.
4437                  * So we need to block hugepage fault by PG_hwpoison bit check.
4438                  */
4439                 if (unlikely(PageHWPoison(page))) {
4440                         ret = VM_FAULT_HWPOISON_LARGE |
4441                                 VM_FAULT_SET_HINDEX(hstate_index(h));
4442                         goto backout_unlocked;
4443                 }
4444         }
4445
4446         /*
4447          * If we are going to COW a private mapping later, we examine the
4448          * pending reservations for this page now. This will ensure that
4449          * any allocations necessary to record that reservation occur outside
4450          * the spinlock.
4451          */
4452         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
4453                 if (vma_needs_reservation(h, vma, haddr) < 0) {
4454                         ret = VM_FAULT_OOM;
4455                         goto backout_unlocked;
4456                 }
4457                 /* Just decrements count, does not deallocate */
4458                 vma_end_reservation(h, vma, haddr);
4459         }
4460
4461         ptl = huge_pte_lock(h, mm, ptep);
4462         ret = 0;
4463         if (!huge_pte_none(huge_ptep_get(ptep)))
4464                 goto backout;
4465
4466         if (anon_rmap) {
4467                 ClearHPageRestoreReserve(page);
4468                 hugepage_add_new_anon_rmap(page, vma, haddr);
4469         } else
4470                 page_dup_rmap(page, true);
4471         new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
4472                                 && (vma->vm_flags & VM_SHARED)));
4473         set_huge_pte_at(mm, haddr, ptep, new_pte);
4474
4475         hugetlb_count_add(pages_per_huge_page(h), mm);
4476         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
4477                 /* Optimization, do the COW without a second fault */
4478                 ret = hugetlb_cow(mm, vma, address, ptep, page, ptl);
4479         }
4480
4481         spin_unlock(ptl);
4482
4483         /*
4484          * Only set HPageMigratable in newly allocated pages.  Existing pages
4485          * found in the pagecache may not have HPageMigratableset if they have
4486          * been isolated for migration.
4487          */
4488         if (new_page)
4489                 SetHPageMigratable(page);
4490
4491         unlock_page(page);
4492 out:
4493         return ret;
4494
4495 backout:
4496         spin_unlock(ptl);
4497 backout_unlocked:
4498         unlock_page(page);
4499         restore_reserve_on_error(h, vma, haddr, page);
4500         put_page(page);
4501         goto out;
4502 }
4503
4504 #ifdef CONFIG_SMP
4505 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
4506 {
4507         unsigned long key[2];
4508         u32 hash;
4509
4510         key[0] = (unsigned long) mapping;
4511         key[1] = idx;
4512
4513         hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0);
4514
4515         return hash & (num_fault_mutexes - 1);
4516 }
4517 #else
4518 /*
4519  * For uniprocessor systems we always use a single mutex, so just
4520  * return 0 and avoid the hashing overhead.
4521  */
4522 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
4523 {
4524         return 0;
4525 }
4526 #endif
4527
4528 vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
4529                         unsigned long address, unsigned int flags)
4530 {
4531         pte_t *ptep, entry;
4532         spinlock_t *ptl;
4533         vm_fault_t ret;
4534         u32 hash;
4535         pgoff_t idx;
4536         struct page *page = NULL;
4537         struct page *pagecache_page = NULL;
4538         struct hstate *h = hstate_vma(vma);
4539         struct address_space *mapping;
4540         int need_wait_lock = 0;
4541         unsigned long haddr = address & huge_page_mask(h);
4542
4543         ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
4544         if (ptep) {
4545                 /*
4546                  * Since we hold no locks, ptep could be stale.  That is
4547                  * OK as we are only making decisions based on content and
4548                  * not actually modifying content here.
4549                  */
4550                 entry = huge_ptep_get(ptep);
4551                 if (unlikely(is_hugetlb_entry_migration(entry))) {
4552                         migration_entry_wait_huge(vma, mm, ptep);
4553                         return 0;
4554                 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
4555                         return VM_FAULT_HWPOISON_LARGE |
4556                                 VM_FAULT_SET_HINDEX(hstate_index(h));
4557         }
4558
4559         /*
4560          * Acquire i_mmap_rwsem before calling huge_pte_alloc and hold
4561          * until finished with ptep.  This serves two purposes:
4562          * 1) It prevents huge_pmd_unshare from being called elsewhere
4563          *    and making the ptep no longer valid.
4564          * 2) It synchronizes us with i_size modifications during truncation.
4565          *
4566          * ptep could have already be assigned via huge_pte_offset.  That
4567          * is OK, as huge_pte_alloc will return the same value unless
4568          * something has changed.
4569          */
4570         mapping = vma->vm_file->f_mapping;
4571         i_mmap_lock_read(mapping);
4572         ptep = huge_pte_alloc(mm, vma, haddr, huge_page_size(h));
4573         if (!ptep) {
4574                 i_mmap_unlock_read(mapping);
4575                 return VM_FAULT_OOM;
4576         }
4577
4578         /*
4579          * Serialize hugepage allocation and instantiation, so that we don't
4580          * get spurious allocation failures if two CPUs race to instantiate
4581          * the same page in the page cache.
4582          */
4583         idx = vma_hugecache_offset(h, vma, haddr);
4584         hash = hugetlb_fault_mutex_hash(mapping, idx);
4585         mutex_lock(&hugetlb_fault_mutex_table[hash]);
4586
4587         entry = huge_ptep_get(ptep);
4588         if (huge_pte_none(entry)) {
4589                 ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
4590                 goto out_mutex;
4591         }
4592
4593         ret = 0;
4594
4595         /*
4596          * entry could be a migration/hwpoison entry at this point, so this
4597          * check prevents the kernel from going below assuming that we have
4598          * an active hugepage in pagecache. This goto expects the 2nd page
4599          * fault, and is_hugetlb_entry_(migration|hwpoisoned) check will
4600          * properly handle it.
4601          */
4602         if (!pte_present(entry))
4603                 goto out_mutex;
4604
4605         /*
4606          * If we are going to COW the mapping later, we examine the pending
4607          * reservations for this page now. This will ensure that any
4608          * allocations necessary to record that reservation occur outside the
4609          * spinlock. For private mappings, we also lookup the pagecache
4610          * page now as it is used to determine if a reservation has been
4611          * consumed.
4612          */
4613         if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
4614                 if (vma_needs_reservation(h, vma, haddr) < 0) {
4615                         ret = VM_FAULT_OOM;
4616                         goto out_mutex;
4617                 }
4618                 /* Just decrements count, does not deallocate */
4619                 vma_end_reservation(h, vma, haddr);
4620
4621                 if (!(vma->vm_flags & VM_MAYSHARE))
4622                         pagecache_page = hugetlbfs_pagecache_page(h,
4623                                                                 vma, haddr);
4624         }
4625
4626         ptl = huge_pte_lock(h, mm, ptep);
4627
4628         /* Check for a racing update before calling hugetlb_cow */
4629         if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
4630                 goto out_ptl;
4631
4632         /*
4633          * hugetlb_cow() requires page locks of pte_page(entry) and
4634          * pagecache_page, so here we need take the former one
4635          * when page != pagecache_page or !pagecache_page.
4636          */
4637         page = pte_page(entry);
4638         if (page != pagecache_page)
4639                 if (!trylock_page(page)) {
4640                         need_wait_lock = 1;
4641                         goto out_ptl;
4642                 }
4643
4644         get_page(page);
4645
4646         if (flags & FAULT_FLAG_WRITE) {
4647                 if (!huge_pte_write(entry)) {
4648                         ret = hugetlb_cow(mm, vma, address, ptep,
4649                                           pagecache_page, ptl);
4650                         goto out_put_page;
4651                 }
4652                 entry = huge_pte_mkdirty(entry);
4653         }
4654         entry = pte_mkyoung(entry);
4655         if (huge_ptep_set_access_flags(vma, haddr, ptep, entry,
4656                                                 flags & FAULT_FLAG_WRITE))
4657                 update_mmu_cache(vma, haddr, ptep);
4658 out_put_page:
4659         if (page != pagecache_page)
4660                 unlock_page(page);
4661         put_page(page);
4662 out_ptl:
4663         spin_unlock(ptl);
4664
4665         if (pagecache_page) {
4666                 unlock_page(pagecache_page);
4667                 put_page(pagecache_page);
4668         }
4669 out_mutex:
4670         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
4671         i_mmap_unlock_read(mapping);
4672         /*
4673          * Generally it's safe to hold refcount during waiting page lock. But
4674          * here we just wait to defer the next page fault to avoid busy loop and
4675          * the page is not used after unlocked before returning from the current
4676          * page fault. So we are safe from accessing freed page, even if we wait
4677          * here without taking refcount.
4678          */
4679         if (need_wait_lock)
4680                 wait_on_page_locked(page);
4681         return ret;
4682 }
4683
4684 /*
4685  * Used by userfaultfd UFFDIO_COPY.  Based on mcopy_atomic_pte with
4686  * modifications for huge pages.
4687  */
4688 int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm,
4689                             pte_t *dst_pte,
4690                             struct vm_area_struct *dst_vma,
4691                             unsigned long dst_addr,
4692                             unsigned long src_addr,
4693                             struct page **pagep)
4694 {
4695         struct address_space *mapping;
4696         pgoff_t idx;
4697         unsigned long size;
4698         int vm_shared = dst_vma->vm_flags & VM_SHARED;
4699         struct hstate *h = hstate_vma(dst_vma);
4700         pte_t _dst_pte;
4701         spinlock_t *ptl;
4702         int ret;
4703         struct page *page;
4704
4705         if (!*pagep) {
4706                 ret = -ENOMEM;
4707                 page = alloc_huge_page(dst_vma, dst_addr, 0);
4708                 if (IS_ERR(page))
4709                         goto out;
4710
4711                 ret = copy_huge_page_from_user(page,
4712                                                 (const void __user *) src_addr,
4713                                                 pages_per_huge_page(h), false);
4714
4715                 /* fallback to copy_from_user outside mmap_lock */
4716                 if (unlikely(ret)) {
4717                         ret = -ENOENT;
4718                         *pagep = page;
4719                         /* don't free the page */
4720                         goto out;
4721                 }
4722         } else {
4723                 page = *pagep;
4724                 *pagep = NULL;
4725         }
4726
4727         /*
4728          * The memory barrier inside __SetPageUptodate makes sure that
4729          * preceding stores to the page contents become visible before
4730          * the set_pte_at() write.
4731          */
4732         __SetPageUptodate(page);
4733
4734         mapping = dst_vma->vm_file->f_mapping;
4735         idx = vma_hugecache_offset(h, dst_vma, dst_addr);
4736
4737         /*
4738          * If shared, add to page cache
4739          */
4740         if (vm_shared) {
4741                 size = i_size_read(mapping->host) >> huge_page_shift(h);
4742                 ret = -EFAULT;
4743                 if (idx >= size)
4744                         goto out_release_nounlock;
4745
4746                 /*
4747                  * Serialization between remove_inode_hugepages() and
4748                  * huge_add_to_page_cache() below happens through the
4749                  * hugetlb_fault_mutex_table that here must be hold by
4750                  * the caller.
4751                  */
4752                 ret = huge_add_to_page_cache(page, mapping, idx);
4753                 if (ret)
4754                         goto out_release_nounlock;
4755         }
4756
4757         ptl = huge_pte_lockptr(h, dst_mm, dst_pte);
4758         spin_lock(ptl);
4759
4760         /*
4761          * Recheck the i_size after holding PT lock to make sure not
4762          * to leave any page mapped (as page_mapped()) beyond the end
4763          * of the i_size (remove_inode_hugepages() is strict about
4764          * enforcing that). If we bail out here, we'll also leave a
4765          * page in the radix tree in the vm_shared case beyond the end
4766          * of the i_size, but remove_inode_hugepages() will take care
4767          * of it as soon as we drop the hugetlb_fault_mutex_table.
4768          */
4769         size = i_size_read(mapping->host) >> huge_page_shift(h);
4770         ret = -EFAULT;
4771         if (idx >= size)
4772                 goto out_release_unlock;
4773
4774         ret = -EEXIST;
4775         if (!huge_pte_none(huge_ptep_get(dst_pte)))
4776                 goto out_release_unlock;
4777
4778         if (vm_shared) {
4779                 page_dup_rmap(page, true);
4780         } else {
4781                 ClearHPageRestoreReserve(page);
4782                 hugepage_add_new_anon_rmap(page, dst_vma, dst_addr);
4783         }
4784
4785         _dst_pte = make_huge_pte(dst_vma, page, dst_vma->vm_flags & VM_WRITE);
4786         if (dst_vma->vm_flags & VM_WRITE)
4787                 _dst_pte = huge_pte_mkdirty(_dst_pte);
4788         _dst_pte = pte_mkyoung(_dst_pte);
4789
4790         set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
4791
4792         (void)huge_ptep_set_access_flags(dst_vma, dst_addr, dst_pte, _dst_pte,
4793                                         dst_vma->vm_flags & VM_WRITE);
4794         hugetlb_count_add(pages_per_huge_page(h), dst_mm);
4795
4796         /* No need to invalidate - it was non-present before */
4797         update_mmu_cache(dst_vma, dst_addr, dst_pte);
4798
4799         spin_unlock(ptl);
4800         SetHPageMigratable(page);
4801         if (vm_shared)
4802                 unlock_page(page);
4803         ret = 0;
4804 out:
4805         return ret;
4806 out_release_unlock:
4807         spin_unlock(ptl);
4808         if (vm_shared)
4809                 unlock_page(page);
4810 out_release_nounlock:
4811         put_page(page);
4812         goto out;
4813 }
4814
4815 static void record_subpages_vmas(struct page *page, struct vm_area_struct *vma,
4816                                  int refs, struct page **pages,
4817                                  struct vm_area_struct **vmas)
4818 {
4819         int nr;
4820
4821         for (nr = 0; nr < refs; nr++) {
4822                 if (likely(pages))
4823                         pages[nr] = mem_map_offset(page, nr);
4824                 if (vmas)
4825                         vmas[nr] = vma;
4826         }
4827 }
4828
4829 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
4830                          struct page **pages, struct vm_area_struct **vmas,
4831                          unsigned long *position, unsigned long *nr_pages,
4832                          long i, unsigned int flags, int *locked)
4833 {
4834         unsigned long pfn_offset;
4835         unsigned long vaddr = *position;
4836         unsigned long remainder = *nr_pages;
4837         struct hstate *h = hstate_vma(vma);
4838         int err = -EFAULT, refs;
4839
4840         while (vaddr < vma->vm_end && remainder) {
4841                 pte_t *pte;
4842                 spinlock_t *ptl = NULL;
4843                 int absent;
4844                 struct page *page;
4845
4846                 /*
4847                  * If we have a pending SIGKILL, don't keep faulting pages and
4848                  * potentially allocating memory.
4849                  */
4850                 if (fatal_signal_pending(current)) {
4851                         remainder = 0;
4852                         break;
4853                 }
4854
4855                 /*
4856                  * Some archs (sparc64, sh*) have multiple pte_ts to
4857                  * each hugepage.  We have to make sure we get the
4858                  * first, for the page indexing below to work.
4859                  *
4860                  * Note that page table lock is not held when pte is null.
4861                  */
4862                 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h),
4863                                       huge_page_size(h));
4864                 if (pte)
4865                         ptl = huge_pte_lock(h, mm, pte);
4866                 absent = !pte || huge_pte_none(huge_ptep_get(pte));
4867
4868                 /*
4869                  * When coredumping, it suits get_dump_page if we just return
4870                  * an error where there's an empty slot with no huge pagecache
4871                  * to back it.  This way, we avoid allocating a hugepage, and
4872                  * the sparse dumpfile avoids allocating disk blocks, but its
4873                  * huge holes still show up with zeroes where they need to be.
4874                  */
4875                 if (absent && (flags & FOLL_DUMP) &&
4876                     !hugetlbfs_pagecache_present(h, vma, vaddr)) {
4877                         if (pte)
4878                                 spin_unlock(ptl);
4879                         remainder = 0;
4880                         break;
4881                 }
4882
4883                 /*
4884                  * We need call hugetlb_fault for both hugepages under migration
4885                  * (in which case hugetlb_fault waits for the migration,) and
4886                  * hwpoisoned hugepages (in which case we need to prevent the
4887                  * caller from accessing to them.) In order to do this, we use
4888                  * here is_swap_pte instead of is_hugetlb_entry_migration and
4889                  * is_hugetlb_entry_hwpoisoned. This is because it simply covers
4890                  * both cases, and because we can't follow correct pages
4891                  * directly from any kind of swap entries.
4892                  */
4893                 if (absent || is_swap_pte(huge_ptep_get(pte)) ||
4894                     ((flags & FOLL_WRITE) &&
4895                       !huge_pte_write(huge_ptep_get(pte)))) {
4896                         vm_fault_t ret;
4897                         unsigned int fault_flags = 0;
4898
4899                         if (pte)
4900                                 spin_unlock(ptl);
4901                         if (flags & FOLL_WRITE)
4902                                 fault_flags |= FAULT_FLAG_WRITE;
4903                         if (locked)
4904                                 fault_flags |= FAULT_FLAG_ALLOW_RETRY |
4905                                         FAULT_FLAG_KILLABLE;
4906                         if (flags & FOLL_NOWAIT)
4907                                 fault_flags |= FAULT_FLAG_ALLOW_RETRY |
4908                                         FAULT_FLAG_RETRY_NOWAIT;
4909                         if (flags & FOLL_TRIED) {
4910                                 /*
4911                                  * Note: FAULT_FLAG_ALLOW_RETRY and
4912                                  * FAULT_FLAG_TRIED can co-exist
4913                                  */
4914                                 fault_flags |= FAULT_FLAG_TRIED;
4915                         }
4916                         ret = hugetlb_fault(mm, vma, vaddr, fault_flags);
4917                         if (ret & VM_FAULT_ERROR) {
4918                                 err = vm_fault_to_errno(ret, flags);
4919                                 remainder = 0;
4920                                 break;
4921                         }
4922                         if (ret & VM_FAULT_RETRY) {
4923                                 if (locked &&
4924                                     !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
4925                                         *locked = 0;
4926                                 *nr_pages = 0;
4927                                 /*
4928                                  * VM_FAULT_RETRY must not return an
4929                                  * error, it will return zero
4930                                  * instead.
4931                                  *
4932                                  * No need to update "position" as the
4933                                  * caller will not check it after
4934                                  * *nr_pages is set to 0.
4935                                  */
4936                                 return i;
4937                         }
4938                         continue;
4939                 }
4940
4941                 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
4942                 page = pte_page(huge_ptep_get(pte));
4943
4944                 /*
4945                  * If subpage information not requested, update counters
4946                  * and skip the same_page loop below.
4947                  */
4948                 if (!pages && !vmas && !pfn_offset &&
4949                     (vaddr + huge_page_size(h) < vma->vm_end) &&
4950                     (remainder >= pages_per_huge_page(h))) {
4951                         vaddr += huge_page_size(h);
4952                         remainder -= pages_per_huge_page(h);
4953                         i += pages_per_huge_page(h);
4954                         spin_unlock(ptl);
4955                         continue;
4956                 }
4957
4958                 refs = min3(pages_per_huge_page(h) - pfn_offset,
4959                             (vma->vm_end - vaddr) >> PAGE_SHIFT, remainder);
4960
4961                 if (pages || vmas)
4962                         record_subpages_vmas(mem_map_offset(page, pfn_offset),
4963                                              vma, refs,
4964                                              likely(pages) ? pages + i : NULL,
4965                                              vmas ? vmas + i : NULL);
4966
4967                 if (pages) {
4968                         /*
4969                          * try_grab_compound_head() should always succeed here,
4970                          * because: a) we hold the ptl lock, and b) we've just
4971                          * checked that the huge page is present in the page
4972                          * tables. If the huge page is present, then the tail
4973                          * pages must also be present. The ptl prevents the
4974                          * head page and tail pages from being rearranged in
4975                          * any way. So this page must be available at this
4976                          * point, unless the page refcount overflowed:
4977                          */
4978                         if (WARN_ON_ONCE(!try_grab_compound_head(pages[i],
4979                                                                  refs,
4980                                                                  flags))) {
4981                                 spin_unlock(ptl);
4982                                 remainder = 0;
4983                                 err = -ENOMEM;
4984                                 break;
4985                         }
4986                 }
4987
4988                 vaddr += (refs << PAGE_SHIFT);
4989                 remainder -= refs;
4990                 i += refs;
4991
4992                 spin_unlock(ptl);
4993         }
4994         *nr_pages = remainder;
4995         /*
4996          * setting position is actually required only if remainder is
4997          * not zero but it's faster not to add a "if (remainder)"
4998          * branch.
4999          */
5000         *position = vaddr;
5001
5002         return i ? i : err;
5003 }
5004
5005 unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
5006                 unsigned long address, unsigned long end, pgprot_t newprot)
5007 {
5008         struct mm_struct *mm = vma->vm_mm;
5009         unsigned long start = address;
5010         pte_t *ptep;
5011         pte_t pte;
5012         struct hstate *h = hstate_vma(vma);
5013         unsigned long pages = 0;
5014         bool shared_pmd = false;
5015         struct mmu_notifier_range range;
5016
5017         /*
5018          * In the case of shared PMDs, the area to flush could be beyond
5019          * start/end.  Set range.start/range.end to cover the maximum possible
5020          * range if PMD sharing is possible.
5021          */
5022         mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA,
5023                                 0, vma, mm, start, end);
5024         adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
5025
5026         BUG_ON(address >= end);
5027         flush_cache_range(vma, range.start, range.end);
5028
5029         mmu_notifier_invalidate_range_start(&range);
5030         i_mmap_lock_write(vma->vm_file->f_mapping);
5031         for (; address < end; address += huge_page_size(h)) {
5032                 spinlock_t *ptl;
5033                 ptep = huge_pte_offset(mm, address, huge_page_size(h));
5034                 if (!ptep)
5035                         continue;
5036                 ptl = huge_pte_lock(h, mm, ptep);
5037                 if (huge_pmd_unshare(mm, vma, &address, ptep)) {
5038                         pages++;
5039                         spin_unlock(ptl);
5040                         shared_pmd = true;
5041                         continue;
5042                 }
5043                 pte = huge_ptep_get(ptep);
5044                 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
5045                         spin_unlock(ptl);
5046                         continue;
5047                 }
5048                 if (unlikely(is_hugetlb_entry_migration(pte))) {
5049                         swp_entry_t entry = pte_to_swp_entry(pte);
5050
5051                         if (is_write_migration_entry(entry)) {
5052                                 pte_t newpte;
5053
5054                                 make_migration_entry_read(&entry);
5055                                 newpte = swp_entry_to_pte(entry);
5056                                 set_huge_swap_pte_at(mm, address, ptep,
5057                                                      newpte, huge_page_size(h));
5058                                 pages++;
5059                         }
5060                         spin_unlock(ptl);
5061                         continue;
5062                 }
5063                 if (!huge_pte_none(pte)) {
5064                         pte_t old_pte;
5065
5066                         old_pte = huge_ptep_modify_prot_start(vma, address, ptep);
5067                         pte = pte_mkhuge(huge_pte_modify(old_pte, newprot));
5068                         pte = arch_make_huge_pte(pte, vma, NULL, 0);
5069                         huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte);
5070                         pages++;
5071                 }
5072                 spin_unlock(ptl);
5073         }
5074         /*
5075          * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
5076          * may have cleared our pud entry and done put_page on the page table:
5077          * once we release i_mmap_rwsem, another task can do the final put_page
5078          * and that page table be reused and filled with junk.  If we actually
5079          * did unshare a page of pmds, flush the range corresponding to the pud.
5080          */
5081         if (shared_pmd)
5082                 flush_hugetlb_tlb_range(vma, range.start, range.end);
5083         else
5084                 flush_hugetlb_tlb_range(vma, start, end);
5085         /*
5086          * No need to call mmu_notifier_invalidate_range() we are downgrading
5087          * page table protection not changing it to point to a new page.
5088          *
5089          * See Documentation/vm/mmu_notifier.rst
5090          */
5091         i_mmap_unlock_write(vma->vm_file->f_mapping);
5092         mmu_notifier_invalidate_range_end(&range);
5093
5094         return pages << h->order;
5095 }
5096
5097 /* Return true if reservation was successful, false otherwise.  */
5098 bool hugetlb_reserve_pages(struct inode *inode,
5099                                         long from, long to,
5100                                         struct vm_area_struct *vma,
5101                                         vm_flags_t vm_flags)
5102 {
5103         long chg, add = -1;
5104         struct hstate *h = hstate_inode(inode);
5105         struct hugepage_subpool *spool = subpool_inode(inode);
5106         struct resv_map *resv_map;
5107         struct hugetlb_cgroup *h_cg = NULL;
5108         long gbl_reserve, regions_needed = 0;
5109
5110         /* This should never happen */
5111         if (from > to) {
5112                 VM_WARN(1, "%s called with a negative range\n", __func__);
5113                 return false;
5114         }
5115
5116         /*
5117          * Only apply hugepage reservation if asked. At fault time, an
5118          * attempt will be made for VM_NORESERVE to allocate a page
5119          * without using reserves
5120          */
5121         if (vm_flags & VM_NORESERVE)
5122                 return true;
5123
5124         /*
5125          * Shared mappings base their reservation on the number of pages that
5126          * are already allocated on behalf of the file. Private mappings need
5127          * to reserve the full area even if read-only as mprotect() may be
5128          * called to make the mapping read-write. Assume !vma is a shm mapping
5129          */
5130         if (!vma || vma->vm_flags & VM_MAYSHARE) {
5131                 /*
5132                  * resv_map can not be NULL as hugetlb_reserve_pages is only
5133                  * called for inodes for which resv_maps were created (see
5134                  * hugetlbfs_get_inode).
5135                  */
5136                 resv_map = inode_resv_map(inode);
5137
5138                 chg = region_chg(resv_map, from, to, &regions_needed);
5139
5140         } else {
5141                 /* Private mapping. */
5142                 resv_map = resv_map_alloc();
5143                 if (!resv_map)
5144                         return false;
5145
5146                 chg = to - from;
5147
5148                 set_vma_resv_map(vma, resv_map);
5149                 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
5150         }
5151
5152         if (chg < 0)
5153                 goto out_err;
5154
5155         if (hugetlb_cgroup_charge_cgroup_rsvd(hstate_index(h),
5156                                 chg * pages_per_huge_page(h), &h_cg) < 0)
5157                 goto out_err;
5158
5159         if (vma && !(vma->vm_flags & VM_MAYSHARE) && h_cg) {
5160                 /* For private mappings, the hugetlb_cgroup uncharge info hangs
5161                  * of the resv_map.
5162                  */
5163                 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, h_cg, h);
5164         }
5165
5166         /*
5167          * There must be enough pages in the subpool for the mapping. If
5168          * the subpool has a minimum size, there may be some global
5169          * reservations already in place (gbl_reserve).
5170          */
5171         gbl_reserve = hugepage_subpool_get_pages(spool, chg);
5172         if (gbl_reserve < 0)
5173                 goto out_uncharge_cgroup;
5174
5175         /*
5176          * Check enough hugepages are available for the reservation.
5177          * Hand the pages back to the subpool if there are not
5178          */
5179         if (hugetlb_acct_memory(h, gbl_reserve) < 0)
5180                 goto out_put_pages;
5181
5182         /*
5183          * Account for the reservations made. Shared mappings record regions
5184          * that have reservations as they are shared by multiple VMAs.
5185          * When the last VMA disappears, the region map says how much
5186          * the reservation was and the page cache tells how much of
5187          * the reservation was consumed. Private mappings are per-VMA and
5188          * only the consumed reservations are tracked. When the VMA
5189          * disappears, the original reservation is the VMA size and the
5190          * consumed reservations are stored in the map. Hence, nothing
5191          * else has to be done for private mappings here
5192          */
5193         if (!vma || vma->vm_flags & VM_MAYSHARE) {
5194                 add = region_add(resv_map, from, to, regions_needed, h, h_cg);
5195
5196                 if (unlikely(add < 0)) {
5197                         hugetlb_acct_memory(h, -gbl_reserve);
5198                         goto out_put_pages;
5199                 } else if (unlikely(chg > add)) {
5200                         /*
5201                          * pages in this range were added to the reserve
5202                          * map between region_chg and region_add.  This
5203                          * indicates a race with alloc_huge_page.  Adjust
5204                          * the subpool and reserve counts modified above
5205                          * based on the difference.
5206                          */
5207                         long rsv_adjust;
5208
5209                         /*
5210                          * hugetlb_cgroup_uncharge_cgroup_rsvd() will put the
5211                          * reference to h_cg->css. See comment below for detail.
5212                          */
5213                         hugetlb_cgroup_uncharge_cgroup_rsvd(
5214                                 hstate_index(h),
5215                                 (chg - add) * pages_per_huge_page(h), h_cg);
5216
5217                         rsv_adjust = hugepage_subpool_put_pages(spool,
5218                                                                 chg - add);
5219                         hugetlb_acct_memory(h, -rsv_adjust);
5220                 } else if (h_cg) {
5221                         /*
5222                          * The file_regions will hold their own reference to
5223                          * h_cg->css. So we should release the reference held
5224                          * via hugetlb_cgroup_charge_cgroup_rsvd() when we are
5225                          * done.
5226                          */
5227                         hugetlb_cgroup_put_rsvd_cgroup(h_cg);
5228                 }
5229         }
5230         return true;
5231
5232 out_put_pages:
5233         /* put back original number of pages, chg */
5234         (void)hugepage_subpool_put_pages(spool, chg);
5235 out_uncharge_cgroup:
5236         hugetlb_cgroup_uncharge_cgroup_rsvd(hstate_index(h),
5237                                             chg * pages_per_huge_page(h), h_cg);
5238 out_err:
5239         if (!vma || vma->vm_flags & VM_MAYSHARE)
5240                 /* Only call region_abort if the region_chg succeeded but the
5241                  * region_add failed or didn't run.
5242                  */
5243                 if (chg >= 0 && add < 0)
5244                         region_abort(resv_map, from, to, regions_needed);
5245         if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
5246                 kref_put(&resv_map->refs, resv_map_release);
5247         return false;
5248 }
5249
5250 long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
5251                                                                 long freed)
5252 {
5253         struct hstate *h = hstate_inode(inode);
5254         struct resv_map *resv_map = inode_resv_map(inode);
5255         long chg = 0;
5256         struct hugepage_subpool *spool = subpool_inode(inode);
5257         long gbl_reserve;
5258
5259         /*
5260          * Since this routine can be called in the evict inode path for all
5261          * hugetlbfs inodes, resv_map could be NULL.
5262          */
5263         if (resv_map) {
5264                 chg = region_del(resv_map, start, end);
5265                 /*
5266                  * region_del() can fail in the rare case where a region
5267                  * must be split and another region descriptor can not be
5268                  * allocated.  If end == LONG_MAX, it will not fail.
5269                  */
5270                 if (chg < 0)
5271                         return chg;
5272         }
5273
5274         spin_lock(&inode->i_lock);
5275         inode->i_blocks -= (blocks_per_huge_page(h) * freed);
5276         spin_unlock(&inode->i_lock);
5277
5278         /*
5279          * If the subpool has a minimum size, the number of global
5280          * reservations to be released may be adjusted.
5281          *
5282          * Note that !resv_map implies freed == 0. So (chg - freed)
5283          * won't go negative.
5284          */
5285         gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
5286         hugetlb_acct_memory(h, -gbl_reserve);
5287
5288         return 0;
5289 }
5290
5291 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
5292 static unsigned long page_table_shareable(struct vm_area_struct *svma,
5293                                 struct vm_area_struct *vma,
5294                                 unsigned long addr, pgoff_t idx)
5295 {
5296         unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
5297                                 svma->vm_start;
5298         unsigned long sbase = saddr & PUD_MASK;
5299         unsigned long s_end = sbase + PUD_SIZE;
5300
5301         /* Allow segments to share if only one is marked locked */
5302         unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
5303         unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
5304
5305         /*
5306          * match the virtual addresses, permission and the alignment of the
5307          * page table page.
5308          */
5309         if (pmd_index(addr) != pmd_index(saddr) ||
5310             vm_flags != svm_flags ||
5311             !range_in_vma(svma, sbase, s_end))
5312                 return 0;
5313
5314         return saddr;
5315 }
5316
5317 static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr)
5318 {
5319         unsigned long base = addr & PUD_MASK;
5320         unsigned long end = base + PUD_SIZE;
5321
5322         /*
5323          * check on proper vm_flags and page table alignment
5324          */
5325         if (vma->vm_flags & VM_MAYSHARE && range_in_vma(vma, base, end))
5326                 return true;
5327         return false;
5328 }
5329
5330 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
5331 {
5332 #ifdef CONFIG_USERFAULTFD
5333         if (uffd_disable_huge_pmd_share(vma))
5334                 return false;
5335 #endif
5336         return vma_shareable(vma, addr);
5337 }
5338
5339 /*
5340  * Determine if start,end range within vma could be mapped by shared pmd.
5341  * If yes, adjust start and end to cover range associated with possible
5342  * shared pmd mappings.
5343  */
5344 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
5345                                 unsigned long *start, unsigned long *end)
5346 {
5347         unsigned long v_start = ALIGN(vma->vm_start, PUD_SIZE),
5348                 v_end = ALIGN_DOWN(vma->vm_end, PUD_SIZE);
5349
5350         /*
5351          * vma need span at least one aligned PUD size and the start,end range
5352          * must at least partialy within it.
5353          */
5354         if (!(vma->vm_flags & VM_MAYSHARE) || !(v_end > v_start) ||
5355                 (*end <= v_start) || (*start >= v_end))
5356                 return;
5357
5358         /* Extend the range to be PUD aligned for a worst case scenario */
5359         if (*start > v_start)
5360                 *start = ALIGN_DOWN(*start, PUD_SIZE);
5361
5362         if (*end < v_end)
5363                 *end = ALIGN(*end, PUD_SIZE);
5364 }
5365
5366 /*
5367  * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
5368  * and returns the corresponding pte. While this is not necessary for the
5369  * !shared pmd case because we can allocate the pmd later as well, it makes the
5370  * code much cleaner.
5371  *
5372  * This routine must be called with i_mmap_rwsem held in at least read mode if
5373  * sharing is possible.  For hugetlbfs, this prevents removal of any page
5374  * table entries associated with the address space.  This is important as we
5375  * are setting up sharing based on existing page table entries (mappings).
5376  *
5377  * NOTE: This routine is only called from huge_pte_alloc.  Some callers of
5378  * huge_pte_alloc know that sharing is not possible and do not take
5379  * i_mmap_rwsem as a performance optimization.  This is handled by the
5380  * if !vma_shareable check at the beginning of the routine. i_mmap_rwsem is
5381  * only required for subsequent processing.
5382  */
5383 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
5384                       unsigned long addr, pud_t *pud)
5385 {
5386         struct address_space *mapping = vma->vm_file->f_mapping;
5387         pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
5388                         vma->vm_pgoff;
5389         struct vm_area_struct *svma;
5390         unsigned long saddr;
5391         pte_t *spte = NULL;
5392         pte_t *pte;
5393         spinlock_t *ptl;
5394
5395         i_mmap_assert_locked(mapping);
5396         vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
5397                 if (svma == vma)
5398                         continue;
5399
5400                 saddr = page_table_shareable(svma, vma, addr, idx);
5401                 if (saddr) {
5402                         spte = huge_pte_offset(svma->vm_mm, saddr,
5403                                                vma_mmu_pagesize(svma));
5404                         if (spte) {
5405                                 get_page(virt_to_page(spte));
5406                                 break;
5407                         }
5408                 }
5409         }
5410
5411         if (!spte)
5412                 goto out;
5413
5414         ptl = huge_pte_lock(hstate_vma(vma), mm, spte);
5415         if (pud_none(*pud)) {
5416                 pud_populate(mm, pud,
5417                                 (pmd_t *)((unsigned long)spte & PAGE_MASK));
5418                 mm_inc_nr_pmds(mm);
5419         } else {
5420                 put_page(virt_to_page(spte));
5421         }
5422         spin_unlock(ptl);
5423 out:
5424         pte = (pte_t *)pmd_alloc(mm, pud, addr);
5425         return pte;
5426 }
5427
5428 /*
5429  * unmap huge page backed by shared pte.
5430  *
5431  * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
5432  * indicated by page_count > 1, unmap is achieved by clearing pud and
5433  * decrementing the ref count. If count == 1, the pte page is not shared.
5434  *
5435  * Called with page table lock held and i_mmap_rwsem held in write mode.
5436  *
5437  * returns: 1 successfully unmapped a shared pte page
5438  *          0 the underlying pte page is not shared, or it is the last user
5439  */
5440 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
5441                                         unsigned long *addr, pte_t *ptep)
5442 {
5443         pgd_t *pgd = pgd_offset(mm, *addr);
5444         p4d_t *p4d = p4d_offset(pgd, *addr);
5445         pud_t *pud = pud_offset(p4d, *addr);
5446
5447         i_mmap_assert_write_locked(vma->vm_file->f_mapping);
5448         BUG_ON(page_count(virt_to_page(ptep)) == 0);
5449         if (page_count(virt_to_page(ptep)) == 1)
5450                 return 0;
5451
5452         pud_clear(pud);
5453         put_page(virt_to_page(ptep));
5454         mm_dec_nr_pmds(mm);
5455         *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
5456         return 1;
5457 }
5458
5459 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
5460 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
5461                       unsigned long addr, pud_t *pud)
5462 {
5463         return NULL;
5464 }
5465
5466 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
5467                                 unsigned long *addr, pte_t *ptep)
5468 {
5469         return 0;
5470 }
5471
5472 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
5473                                 unsigned long *start, unsigned long *end)
5474 {
5475 }
5476
5477 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
5478 {
5479         return false;
5480 }
5481 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
5482
5483 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
5484 pte_t *huge_pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
5485                         unsigned long addr, unsigned long sz)
5486 {
5487         pgd_t *pgd;
5488         p4d_t *p4d;
5489         pud_t *pud;
5490         pte_t *pte = NULL;
5491
5492         pgd = pgd_offset(mm, addr);
5493         p4d = p4d_alloc(mm, pgd, addr);
5494         if (!p4d)
5495                 return NULL;
5496         pud = pud_alloc(mm, p4d, addr);
5497         if (pud) {
5498                 if (sz == PUD_SIZE) {
5499                         pte = (pte_t *)pud;
5500                 } else {
5501                         BUG_ON(sz != PMD_SIZE);
5502                         if (want_pmd_share(vma, addr) && pud_none(*pud))
5503                                 pte = huge_pmd_share(mm, vma, addr, pud);
5504                         else
5505                                 pte = (pte_t *)pmd_alloc(mm, pud, addr);
5506                 }
5507         }
5508         BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte));
5509
5510         return pte;
5511 }
5512
5513 /*
5514  * huge_pte_offset() - Walk the page table to resolve the hugepage
5515  * entry at address @addr
5516  *
5517  * Return: Pointer to page table entry (PUD or PMD) for
5518  * address @addr, or NULL if a !p*d_present() entry is encountered and the
5519  * size @sz doesn't match the hugepage size at this level of the page
5520  * table.
5521  */
5522 pte_t *huge_pte_offset(struct mm_struct *mm,
5523                        unsigned long addr, unsigned long sz)
5524 {
5525         pgd_t *pgd;
5526         p4d_t *p4d;
5527         pud_t *pud;
5528         pmd_t *pmd;
5529
5530         pgd = pgd_offset(mm, addr);
5531         if (!pgd_present(*pgd))
5532                 return NULL;
5533         p4d = p4d_offset(pgd, addr);
5534         if (!p4d_present(*p4d))
5535                 return NULL;
5536
5537         pud = pud_offset(p4d, addr);
5538         if (sz == PUD_SIZE)
5539                 /* must be pud huge, non-present or none */
5540                 return (pte_t *)pud;
5541         if (!pud_present(*pud))
5542                 return NULL;
5543         /* must have a valid entry and size to go further */
5544
5545         pmd = pmd_offset(pud, addr);
5546         /* must be pmd huge, non-present or none */
5547         return (pte_t *)pmd;
5548 }
5549
5550 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
5551
5552 /*
5553  * These functions are overwritable if your architecture needs its own
5554  * behavior.
5555  */
5556 struct page * __weak
5557 follow_huge_addr(struct mm_struct *mm, unsigned long address,
5558                               int write)
5559 {
5560         return ERR_PTR(-EINVAL);
5561 }
5562
5563 struct page * __weak
5564 follow_huge_pd(struct vm_area_struct *vma,
5565                unsigned long address, hugepd_t hpd, int flags, int pdshift)
5566 {
5567         WARN(1, "hugepd follow called with no support for hugepage directory format\n");
5568         return NULL;
5569 }
5570
5571 struct page * __weak
5572 follow_huge_pmd(struct mm_struct *mm, unsigned long address,
5573                 pmd_t *pmd, int flags)
5574 {
5575         struct page *page = NULL;
5576         spinlock_t *ptl;
5577         pte_t pte;
5578
5579         /* FOLL_GET and FOLL_PIN are mutually exclusive. */
5580         if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
5581                          (FOLL_PIN | FOLL_GET)))
5582                 return NULL;
5583
5584 retry:
5585         ptl = pmd_lockptr(mm, pmd);
5586         spin_lock(ptl);
5587         /*
5588          * make sure that the address range covered by this pmd is not
5589          * unmapped from other threads.
5590          */
5591         if (!pmd_huge(*pmd))
5592                 goto out;
5593         pte = huge_ptep_get((pte_t *)pmd);
5594         if (pte_present(pte)) {
5595                 page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
5596                 /*
5597                  * try_grab_page() should always succeed here, because: a) we
5598                  * hold the pmd (ptl) lock, and b) we've just checked that the
5599                  * huge pmd (head) page is present in the page tables. The ptl
5600                  * prevents the head page and tail pages from being rearranged
5601                  * in any way. So this page must be available at this point,
5602                  * unless the page refcount overflowed:
5603                  */
5604                 if (WARN_ON_ONCE(!try_grab_page(page, flags))) {
5605                         page = NULL;
5606                         goto out;
5607                 }
5608         } else {
5609                 if (is_hugetlb_entry_migration(pte)) {
5610                         spin_unlock(ptl);
5611                         __migration_entry_wait(mm, (pte_t *)pmd, ptl);
5612                         goto retry;
5613                 }
5614                 /*
5615                  * hwpoisoned entry is treated as no_page_table in
5616                  * follow_page_mask().
5617                  */
5618         }
5619 out:
5620         spin_unlock(ptl);
5621         return page;
5622 }
5623
5624 struct page * __weak
5625 follow_huge_pud(struct mm_struct *mm, unsigned long address,
5626                 pud_t *pud, int flags)
5627 {
5628         if (flags & (FOLL_GET | FOLL_PIN))
5629                 return NULL;
5630
5631         return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
5632 }
5633
5634 struct page * __weak
5635 follow_huge_pgd(struct mm_struct *mm, unsigned long address, pgd_t *pgd, int flags)
5636 {
5637         if (flags & (FOLL_GET | FOLL_PIN))
5638                 return NULL;
5639
5640         return pte_page(*(pte_t *)pgd) + ((address & ~PGDIR_MASK) >> PAGE_SHIFT);
5641 }
5642
5643 bool isolate_huge_page(struct page *page, struct list_head *list)
5644 {
5645         bool ret = true;
5646
5647         spin_lock_irq(&hugetlb_lock);
5648         if (!PageHeadHuge(page) ||
5649             !HPageMigratable(page) ||
5650             !get_page_unless_zero(page)) {
5651                 ret = false;
5652                 goto unlock;
5653         }
5654         ClearHPageMigratable(page);
5655         list_move_tail(&page->lru, list);
5656 unlock:
5657         spin_unlock_irq(&hugetlb_lock);
5658         return ret;
5659 }
5660
5661 void putback_active_hugepage(struct page *page)
5662 {
5663         spin_lock_irq(&hugetlb_lock);
5664         SetHPageMigratable(page);
5665         list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
5666         spin_unlock_irq(&hugetlb_lock);
5667         put_page(page);
5668 }
5669
5670 void move_hugetlb_state(struct page *oldpage, struct page *newpage, int reason)
5671 {
5672         struct hstate *h = page_hstate(oldpage);
5673
5674         hugetlb_cgroup_migrate(oldpage, newpage);
5675         set_page_owner_migrate_reason(newpage, reason);
5676
5677         /*
5678          * transfer temporary state of the new huge page. This is
5679          * reverse to other transitions because the newpage is going to
5680          * be final while the old one will be freed so it takes over
5681          * the temporary status.
5682          *
5683          * Also note that we have to transfer the per-node surplus state
5684          * here as well otherwise the global surplus count will not match
5685          * the per-node's.
5686          */
5687         if (HPageTemporary(newpage)) {
5688                 int old_nid = page_to_nid(oldpage);
5689                 int new_nid = page_to_nid(newpage);
5690
5691                 SetHPageTemporary(oldpage);
5692                 ClearHPageTemporary(newpage);
5693
5694                 /*
5695                  * There is no need to transfer the per-node surplus state
5696                  * when we do not cross the node.
5697                  */
5698                 if (new_nid == old_nid)
5699                         return;
5700                 spin_lock_irq(&hugetlb_lock);
5701                 if (h->surplus_huge_pages_node[old_nid]) {
5702                         h->surplus_huge_pages_node[old_nid]--;
5703                         h->surplus_huge_pages_node[new_nid]++;
5704                 }
5705                 spin_unlock_irq(&hugetlb_lock);
5706         }
5707 }
5708
5709 /*
5710  * This function will unconditionally remove all the shared pmd pgtable entries
5711  * within the specific vma for a hugetlbfs memory range.
5712  */
5713 void hugetlb_unshare_all_pmds(struct vm_area_struct *vma)
5714 {
5715         struct hstate *h = hstate_vma(vma);
5716         unsigned long sz = huge_page_size(h);
5717         struct mm_struct *mm = vma->vm_mm;
5718         struct mmu_notifier_range range;
5719         unsigned long address, start, end;
5720         spinlock_t *ptl;
5721         pte_t *ptep;
5722
5723         if (!(vma->vm_flags & VM_MAYSHARE))
5724                 return;
5725
5726         start = ALIGN(vma->vm_start, PUD_SIZE);
5727         end = ALIGN_DOWN(vma->vm_end, PUD_SIZE);
5728
5729         if (start >= end)
5730                 return;
5731
5732         /*
5733          * No need to call adjust_range_if_pmd_sharing_possible(), because
5734          * we have already done the PUD_SIZE alignment.
5735          */
5736         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
5737                                 start, end);
5738         mmu_notifier_invalidate_range_start(&range);
5739         i_mmap_lock_write(vma->vm_file->f_mapping);
5740         for (address = start; address < end; address += PUD_SIZE) {
5741                 unsigned long tmp = address;
5742
5743                 ptep = huge_pte_offset(mm, address, sz);
5744                 if (!ptep)
5745                         continue;
5746                 ptl = huge_pte_lock(h, mm, ptep);
5747                 /* We don't want 'address' to be changed */
5748                 huge_pmd_unshare(mm, vma, &tmp, ptep);
5749                 spin_unlock(ptl);
5750         }
5751         flush_hugetlb_tlb_range(vma, start, end);
5752         i_mmap_unlock_write(vma->vm_file->f_mapping);
5753         /*
5754          * No need to call mmu_notifier_invalidate_range(), see
5755          * Documentation/vm/mmu_notifier.rst.
5756          */
5757         mmu_notifier_invalidate_range_end(&range);
5758 }
5759
5760 #ifdef CONFIG_CMA
5761 static bool cma_reserve_called __initdata;
5762
5763 static int __init cmdline_parse_hugetlb_cma(char *p)
5764 {
5765         hugetlb_cma_size = memparse(p, &p);
5766         return 0;
5767 }
5768
5769 early_param("hugetlb_cma", cmdline_parse_hugetlb_cma);
5770
5771 void __init hugetlb_cma_reserve(int order)
5772 {
5773         unsigned long size, reserved, per_node;
5774         int nid;
5775
5776         cma_reserve_called = true;
5777
5778         if (!hugetlb_cma_size)
5779                 return;
5780
5781         if (hugetlb_cma_size < (PAGE_SIZE << order)) {
5782                 pr_warn("hugetlb_cma: cma area should be at least %lu MiB\n",
5783                         (PAGE_SIZE << order) / SZ_1M);
5784                 return;
5785         }
5786
5787         /*
5788          * If 3 GB area is requested on a machine with 4 numa nodes,
5789          * let's allocate 1 GB on first three nodes and ignore the last one.
5790          */
5791         per_node = DIV_ROUND_UP(hugetlb_cma_size, nr_online_nodes);
5792         pr_info("hugetlb_cma: reserve %lu MiB, up to %lu MiB per node\n",
5793                 hugetlb_cma_size / SZ_1M, per_node / SZ_1M);
5794
5795         reserved = 0;
5796         for_each_node_state(nid, N_ONLINE) {
5797                 int res;
5798                 char name[CMA_MAX_NAME];
5799
5800                 size = min(per_node, hugetlb_cma_size - reserved);
5801                 size = round_up(size, PAGE_SIZE << order);
5802
5803                 snprintf(name, sizeof(name), "hugetlb%d", nid);
5804                 res = cma_declare_contiguous_nid(0, size, 0, PAGE_SIZE << order,
5805                                                  0, false, name,
5806                                                  &hugetlb_cma[nid], nid);
5807                 if (res) {
5808                         pr_warn("hugetlb_cma: reservation failed: err %d, node %d",
5809                                 res, nid);
5810                         continue;
5811                 }
5812
5813                 reserved += size;
5814                 pr_info("hugetlb_cma: reserved %lu MiB on node %d\n",
5815                         size / SZ_1M, nid);
5816
5817                 if (reserved >= hugetlb_cma_size)
5818                         break;
5819         }
5820 }
5821
5822 void __init hugetlb_cma_check(void)
5823 {
5824         if (!hugetlb_cma_size || cma_reserve_called)
5825                 return;
5826
5827         pr_warn("hugetlb_cma: the option isn't supported by current arch\n");
5828 }
5829
5830 #endif /* CONFIG_CMA */