mm/hugeltb: handle the error case in hugetlb_fix_reserve_counts()
[linux-2.6-microblaze.git] / mm / hugetlb.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Generic hugetlb support.
4  * (C) Nadia Yvette Chambers, April 2004
5  */
6 #include <linux/list.h>
7 #include <linux/init.h>
8 #include <linux/mm.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/compiler.h>
17 #include <linux/cpuset.h>
18 #include <linux/mutex.h>
19 #include <linux/memblock.h>
20 #include <linux/sysfs.h>
21 #include <linux/slab.h>
22 #include <linux/sched/mm.h>
23 #include <linux/mmdebug.h>
24 #include <linux/sched/signal.h>
25 #include <linux/rmap.h>
26 #include <linux/string_helpers.h>
27 #include <linux/swap.h>
28 #include <linux/swapops.h>
29 #include <linux/jhash.h>
30 #include <linux/numa.h>
31 #include <linux/llist.h>
32 #include <linux/cma.h>
33
34 #include <asm/page.h>
35 #include <asm/pgalloc.h>
36 #include <asm/tlb.h>
37
38 #include <linux/io.h>
39 #include <linux/hugetlb.h>
40 #include <linux/hugetlb_cgroup.h>
41 #include <linux/node.h>
42 #include <linux/userfaultfd_k.h>
43 #include <linux/page_owner.h>
44 #include "internal.h"
45
46 int hugetlb_max_hstate __read_mostly;
47 unsigned int default_hstate_idx;
48 struct hstate hstates[HUGE_MAX_HSTATE];
49
50 #ifdef CONFIG_CMA
51 static struct cma *hugetlb_cma[MAX_NUMNODES];
52 #endif
53 static unsigned long hugetlb_cma_size __initdata;
54
55 /*
56  * Minimum page order among possible hugepage sizes, set to a proper value
57  * at boot time.
58  */
59 static unsigned int minimum_order __read_mostly = UINT_MAX;
60
61 __initdata LIST_HEAD(huge_boot_pages);
62
63 /* for command line parsing */
64 static struct hstate * __initdata parsed_hstate;
65 static unsigned long __initdata default_hstate_max_huge_pages;
66 static bool __initdata parsed_valid_hugepagesz = true;
67 static bool __initdata parsed_default_hugepagesz;
68
69 /*
70  * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
71  * free_huge_pages, and surplus_huge_pages.
72  */
73 DEFINE_SPINLOCK(hugetlb_lock);
74
75 /*
76  * Serializes faults on the same logical page.  This is used to
77  * prevent spurious OOMs when the hugepage pool is fully utilized.
78  */
79 static int num_fault_mutexes;
80 struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
81
82 /* Forward declaration */
83 static int hugetlb_acct_memory(struct hstate *h, long delta);
84
85 static inline bool subpool_is_free(struct hugepage_subpool *spool)
86 {
87         if (spool->count)
88                 return false;
89         if (spool->max_hpages != -1)
90                 return spool->used_hpages == 0;
91         if (spool->min_hpages != -1)
92                 return spool->rsv_hpages == spool->min_hpages;
93
94         return true;
95 }
96
97 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
98 {
99         spin_unlock(&spool->lock);
100
101         /* If no pages are used, and no other handles to the subpool
102          * remain, give up any reservations based on minimum size and
103          * free the subpool */
104         if (subpool_is_free(spool)) {
105                 if (spool->min_hpages != -1)
106                         hugetlb_acct_memory(spool->hstate,
107                                                 -spool->min_hpages);
108                 kfree(spool);
109         }
110 }
111
112 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
113                                                 long min_hpages)
114 {
115         struct hugepage_subpool *spool;
116
117         spool = kzalloc(sizeof(*spool), GFP_KERNEL);
118         if (!spool)
119                 return NULL;
120
121         spin_lock_init(&spool->lock);
122         spool->count = 1;
123         spool->max_hpages = max_hpages;
124         spool->hstate = h;
125         spool->min_hpages = min_hpages;
126
127         if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
128                 kfree(spool);
129                 return NULL;
130         }
131         spool->rsv_hpages = min_hpages;
132
133         return spool;
134 }
135
136 void hugepage_put_subpool(struct hugepage_subpool *spool)
137 {
138         spin_lock(&spool->lock);
139         BUG_ON(!spool->count);
140         spool->count--;
141         unlock_or_release_subpool(spool);
142 }
143
144 /*
145  * Subpool accounting for allocating and reserving pages.
146  * Return -ENOMEM if there are not enough resources to satisfy the
147  * request.  Otherwise, return the number of pages by which the
148  * global pools must be adjusted (upward).  The returned value may
149  * only be different than the passed value (delta) in the case where
150  * a subpool minimum size must be maintained.
151  */
152 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
153                                       long delta)
154 {
155         long ret = delta;
156
157         if (!spool)
158                 return ret;
159
160         spin_lock(&spool->lock);
161
162         if (spool->max_hpages != -1) {          /* maximum size accounting */
163                 if ((spool->used_hpages + delta) <= spool->max_hpages)
164                         spool->used_hpages += delta;
165                 else {
166                         ret = -ENOMEM;
167                         goto unlock_ret;
168                 }
169         }
170
171         /* minimum size accounting */
172         if (spool->min_hpages != -1 && spool->rsv_hpages) {
173                 if (delta > spool->rsv_hpages) {
174                         /*
175                          * Asking for more reserves than those already taken on
176                          * behalf of subpool.  Return difference.
177                          */
178                         ret = delta - spool->rsv_hpages;
179                         spool->rsv_hpages = 0;
180                 } else {
181                         ret = 0;        /* reserves already accounted for */
182                         spool->rsv_hpages -= delta;
183                 }
184         }
185
186 unlock_ret:
187         spin_unlock(&spool->lock);
188         return ret;
189 }
190
191 /*
192  * Subpool accounting for freeing and unreserving pages.
193  * Return the number of global page reservations that must be dropped.
194  * The return value may only be different than the passed value (delta)
195  * in the case where a subpool minimum size must be maintained.
196  */
197 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
198                                        long delta)
199 {
200         long ret = delta;
201
202         if (!spool)
203                 return delta;
204
205         spin_lock(&spool->lock);
206
207         if (spool->max_hpages != -1)            /* maximum size accounting */
208                 spool->used_hpages -= delta;
209
210          /* minimum size accounting */
211         if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
212                 if (spool->rsv_hpages + delta <= spool->min_hpages)
213                         ret = 0;
214                 else
215                         ret = spool->rsv_hpages + delta - spool->min_hpages;
216
217                 spool->rsv_hpages += delta;
218                 if (spool->rsv_hpages > spool->min_hpages)
219                         spool->rsv_hpages = spool->min_hpages;
220         }
221
222         /*
223          * If hugetlbfs_put_super couldn't free spool due to an outstanding
224          * quota reference, free it now.
225          */
226         unlock_or_release_subpool(spool);
227
228         return ret;
229 }
230
231 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
232 {
233         return HUGETLBFS_SB(inode->i_sb)->spool;
234 }
235
236 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
237 {
238         return subpool_inode(file_inode(vma->vm_file));
239 }
240
241 /* Helper that removes a struct file_region from the resv_map cache and returns
242  * it for use.
243  */
244 static struct file_region *
245 get_file_region_entry_from_cache(struct resv_map *resv, long from, long to)
246 {
247         struct file_region *nrg = NULL;
248
249         VM_BUG_ON(resv->region_cache_count <= 0);
250
251         resv->region_cache_count--;
252         nrg = list_first_entry(&resv->region_cache, struct file_region, link);
253         list_del(&nrg->link);
254
255         nrg->from = from;
256         nrg->to = to;
257
258         return nrg;
259 }
260
261 static void copy_hugetlb_cgroup_uncharge_info(struct file_region *nrg,
262                                               struct file_region *rg)
263 {
264 #ifdef CONFIG_CGROUP_HUGETLB
265         nrg->reservation_counter = rg->reservation_counter;
266         nrg->css = rg->css;
267         if (rg->css)
268                 css_get(rg->css);
269 #endif
270 }
271
272 /* Helper that records hugetlb_cgroup uncharge info. */
273 static void record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup *h_cg,
274                                                 struct hstate *h,
275                                                 struct resv_map *resv,
276                                                 struct file_region *nrg)
277 {
278 #ifdef CONFIG_CGROUP_HUGETLB
279         if (h_cg) {
280                 nrg->reservation_counter =
281                         &h_cg->rsvd_hugepage[hstate_index(h)];
282                 nrg->css = &h_cg->css;
283                 /*
284                  * The caller will hold exactly one h_cg->css reference for the
285                  * whole contiguous reservation region. But this area might be
286                  * scattered when there are already some file_regions reside in
287                  * it. As a result, many file_regions may share only one css
288                  * reference. In order to ensure that one file_region must hold
289                  * exactly one h_cg->css reference, we should do css_get for
290                  * each file_region and leave the reference held by caller
291                  * untouched.
292                  */
293                 css_get(&h_cg->css);
294                 if (!resv->pages_per_hpage)
295                         resv->pages_per_hpage = pages_per_huge_page(h);
296                 /* pages_per_hpage should be the same for all entries in
297                  * a resv_map.
298                  */
299                 VM_BUG_ON(resv->pages_per_hpage != pages_per_huge_page(h));
300         } else {
301                 nrg->reservation_counter = NULL;
302                 nrg->css = NULL;
303         }
304 #endif
305 }
306
307 static void put_uncharge_info(struct file_region *rg)
308 {
309 #ifdef CONFIG_CGROUP_HUGETLB
310         if (rg->css)
311                 css_put(rg->css);
312 #endif
313 }
314
315 static bool has_same_uncharge_info(struct file_region *rg,
316                                    struct file_region *org)
317 {
318 #ifdef CONFIG_CGROUP_HUGETLB
319         return rg && org &&
320                rg->reservation_counter == org->reservation_counter &&
321                rg->css == org->css;
322
323 #else
324         return true;
325 #endif
326 }
327
328 static void coalesce_file_region(struct resv_map *resv, struct file_region *rg)
329 {
330         struct file_region *nrg = NULL, *prg = NULL;
331
332         prg = list_prev_entry(rg, link);
333         if (&prg->link != &resv->regions && prg->to == rg->from &&
334             has_same_uncharge_info(prg, rg)) {
335                 prg->to = rg->to;
336
337                 list_del(&rg->link);
338                 put_uncharge_info(rg);
339                 kfree(rg);
340
341                 rg = prg;
342         }
343
344         nrg = list_next_entry(rg, link);
345         if (&nrg->link != &resv->regions && nrg->from == rg->to &&
346             has_same_uncharge_info(nrg, rg)) {
347                 nrg->from = rg->from;
348
349                 list_del(&rg->link);
350                 put_uncharge_info(rg);
351                 kfree(rg);
352         }
353 }
354
355 static inline long
356 hugetlb_resv_map_add(struct resv_map *map, struct file_region *rg, long from,
357                      long to, struct hstate *h, struct hugetlb_cgroup *cg,
358                      long *regions_needed)
359 {
360         struct file_region *nrg;
361
362         if (!regions_needed) {
363                 nrg = get_file_region_entry_from_cache(map, from, to);
364                 record_hugetlb_cgroup_uncharge_info(cg, h, map, nrg);
365                 list_add(&nrg->link, rg->link.prev);
366                 coalesce_file_region(map, nrg);
367         } else
368                 *regions_needed += 1;
369
370         return to - from;
371 }
372
373 /*
374  * Must be called with resv->lock held.
375  *
376  * Calling this with regions_needed != NULL will count the number of pages
377  * to be added but will not modify the linked list. And regions_needed will
378  * indicate the number of file_regions needed in the cache to carry out to add
379  * the regions for this range.
380  */
381 static long add_reservation_in_range(struct resv_map *resv, long f, long t,
382                                      struct hugetlb_cgroup *h_cg,
383                                      struct hstate *h, long *regions_needed)
384 {
385         long add = 0;
386         struct list_head *head = &resv->regions;
387         long last_accounted_offset = f;
388         struct file_region *rg = NULL, *trg = NULL;
389
390         if (regions_needed)
391                 *regions_needed = 0;
392
393         /* In this loop, we essentially handle an entry for the range
394          * [last_accounted_offset, rg->from), at every iteration, with some
395          * bounds checking.
396          */
397         list_for_each_entry_safe(rg, trg, head, link) {
398                 /* Skip irrelevant regions that start before our range. */
399                 if (rg->from < f) {
400                         /* If this region ends after the last accounted offset,
401                          * then we need to update last_accounted_offset.
402                          */
403                         if (rg->to > last_accounted_offset)
404                                 last_accounted_offset = rg->to;
405                         continue;
406                 }
407
408                 /* When we find a region that starts beyond our range, we've
409                  * finished.
410                  */
411                 if (rg->from >= t)
412                         break;
413
414                 /* Add an entry for last_accounted_offset -> rg->from, and
415                  * update last_accounted_offset.
416                  */
417                 if (rg->from > last_accounted_offset)
418                         add += hugetlb_resv_map_add(resv, rg,
419                                                     last_accounted_offset,
420                                                     rg->from, h, h_cg,
421                                                     regions_needed);
422
423                 last_accounted_offset = rg->to;
424         }
425
426         /* Handle the case where our range extends beyond
427          * last_accounted_offset.
428          */
429         if (last_accounted_offset < t)
430                 add += hugetlb_resv_map_add(resv, rg, last_accounted_offset,
431                                             t, h, h_cg, regions_needed);
432
433         VM_BUG_ON(add < 0);
434         return add;
435 }
436
437 /* Must be called with resv->lock acquired. Will drop lock to allocate entries.
438  */
439 static int allocate_file_region_entries(struct resv_map *resv,
440                                         int regions_needed)
441         __must_hold(&resv->lock)
442 {
443         struct list_head allocated_regions;
444         int to_allocate = 0, i = 0;
445         struct file_region *trg = NULL, *rg = NULL;
446
447         VM_BUG_ON(regions_needed < 0);
448
449         INIT_LIST_HEAD(&allocated_regions);
450
451         /*
452          * Check for sufficient descriptors in the cache to accommodate
453          * the number of in progress add operations plus regions_needed.
454          *
455          * This is a while loop because when we drop the lock, some other call
456          * to region_add or region_del may have consumed some region_entries,
457          * so we keep looping here until we finally have enough entries for
458          * (adds_in_progress + regions_needed).
459          */
460         while (resv->region_cache_count <
461                (resv->adds_in_progress + regions_needed)) {
462                 to_allocate = resv->adds_in_progress + regions_needed -
463                               resv->region_cache_count;
464
465                 /* At this point, we should have enough entries in the cache
466                  * for all the existings adds_in_progress. We should only be
467                  * needing to allocate for regions_needed.
468                  */
469                 VM_BUG_ON(resv->region_cache_count < resv->adds_in_progress);
470
471                 spin_unlock(&resv->lock);
472                 for (i = 0; i < to_allocate; i++) {
473                         trg = kmalloc(sizeof(*trg), GFP_KERNEL);
474                         if (!trg)
475                                 goto out_of_memory;
476                         list_add(&trg->link, &allocated_regions);
477                 }
478
479                 spin_lock(&resv->lock);
480
481                 list_splice(&allocated_regions, &resv->region_cache);
482                 resv->region_cache_count += to_allocate;
483         }
484
485         return 0;
486
487 out_of_memory:
488         list_for_each_entry_safe(rg, trg, &allocated_regions, link) {
489                 list_del(&rg->link);
490                 kfree(rg);
491         }
492         return -ENOMEM;
493 }
494
495 /*
496  * Add the huge page range represented by [f, t) to the reserve
497  * map.  Regions will be taken from the cache to fill in this range.
498  * Sufficient regions should exist in the cache due to the previous
499  * call to region_chg with the same range, but in some cases the cache will not
500  * have sufficient entries due to races with other code doing region_add or
501  * region_del.  The extra needed entries will be allocated.
502  *
503  * regions_needed is the out value provided by a previous call to region_chg.
504  *
505  * Return the number of new huge pages added to the map.  This number is greater
506  * than or equal to zero.  If file_region entries needed to be allocated for
507  * this operation and we were not able to allocate, it returns -ENOMEM.
508  * region_add of regions of length 1 never allocate file_regions and cannot
509  * fail; region_chg will always allocate at least 1 entry and a region_add for
510  * 1 page will only require at most 1 entry.
511  */
512 static long region_add(struct resv_map *resv, long f, long t,
513                        long in_regions_needed, struct hstate *h,
514                        struct hugetlb_cgroup *h_cg)
515 {
516         long add = 0, actual_regions_needed = 0;
517
518         spin_lock(&resv->lock);
519 retry:
520
521         /* Count how many regions are actually needed to execute this add. */
522         add_reservation_in_range(resv, f, t, NULL, NULL,
523                                  &actual_regions_needed);
524
525         /*
526          * Check for sufficient descriptors in the cache to accommodate
527          * this add operation. Note that actual_regions_needed may be greater
528          * than in_regions_needed, as the resv_map may have been modified since
529          * the region_chg call. In this case, we need to make sure that we
530          * allocate extra entries, such that we have enough for all the
531          * existing adds_in_progress, plus the excess needed for this
532          * operation.
533          */
534         if (actual_regions_needed > in_regions_needed &&
535             resv->region_cache_count <
536                     resv->adds_in_progress +
537                             (actual_regions_needed - in_regions_needed)) {
538                 /* region_add operation of range 1 should never need to
539                  * allocate file_region entries.
540                  */
541                 VM_BUG_ON(t - f <= 1);
542
543                 if (allocate_file_region_entries(
544                             resv, actual_regions_needed - in_regions_needed)) {
545                         return -ENOMEM;
546                 }
547
548                 goto retry;
549         }
550
551         add = add_reservation_in_range(resv, f, t, h_cg, h, NULL);
552
553         resv->adds_in_progress -= in_regions_needed;
554
555         spin_unlock(&resv->lock);
556         return add;
557 }
558
559 /*
560  * Examine the existing reserve map and determine how many
561  * huge pages in the specified range [f, t) are NOT currently
562  * represented.  This routine is called before a subsequent
563  * call to region_add that will actually modify the reserve
564  * map to add the specified range [f, t).  region_chg does
565  * not change the number of huge pages represented by the
566  * map.  A number of new file_region structures is added to the cache as a
567  * placeholder, for the subsequent region_add call to use. At least 1
568  * file_region structure is added.
569  *
570  * out_regions_needed is the number of regions added to the
571  * resv->adds_in_progress.  This value needs to be provided to a follow up call
572  * to region_add or region_abort for proper accounting.
573  *
574  * Returns the number of huge pages that need to be added to the existing
575  * reservation map for the range [f, t).  This number is greater or equal to
576  * zero.  -ENOMEM is returned if a new file_region structure or cache entry
577  * is needed and can not be allocated.
578  */
579 static long region_chg(struct resv_map *resv, long f, long t,
580                        long *out_regions_needed)
581 {
582         long chg = 0;
583
584         spin_lock(&resv->lock);
585
586         /* Count how many hugepages in this range are NOT represented. */
587         chg = add_reservation_in_range(resv, f, t, NULL, NULL,
588                                        out_regions_needed);
589
590         if (*out_regions_needed == 0)
591                 *out_regions_needed = 1;
592
593         if (allocate_file_region_entries(resv, *out_regions_needed))
594                 return -ENOMEM;
595
596         resv->adds_in_progress += *out_regions_needed;
597
598         spin_unlock(&resv->lock);
599         return chg;
600 }
601
602 /*
603  * Abort the in progress add operation.  The adds_in_progress field
604  * of the resv_map keeps track of the operations in progress between
605  * calls to region_chg and region_add.  Operations are sometimes
606  * aborted after the call to region_chg.  In such cases, region_abort
607  * is called to decrement the adds_in_progress counter. regions_needed
608  * is the value returned by the region_chg call, it is used to decrement
609  * the adds_in_progress counter.
610  *
611  * NOTE: The range arguments [f, t) are not needed or used in this
612  * routine.  They are kept to make reading the calling code easier as
613  * arguments will match the associated region_chg call.
614  */
615 static void region_abort(struct resv_map *resv, long f, long t,
616                          long regions_needed)
617 {
618         spin_lock(&resv->lock);
619         VM_BUG_ON(!resv->region_cache_count);
620         resv->adds_in_progress -= regions_needed;
621         spin_unlock(&resv->lock);
622 }
623
624 /*
625  * Delete the specified range [f, t) from the reserve map.  If the
626  * t parameter is LONG_MAX, this indicates that ALL regions after f
627  * should be deleted.  Locate the regions which intersect [f, t)
628  * and either trim, delete or split the existing regions.
629  *
630  * Returns the number of huge pages deleted from the reserve map.
631  * In the normal case, the return value is zero or more.  In the
632  * case where a region must be split, a new region descriptor must
633  * be allocated.  If the allocation fails, -ENOMEM will be returned.
634  * NOTE: If the parameter t == LONG_MAX, then we will never split
635  * a region and possibly return -ENOMEM.  Callers specifying
636  * t == LONG_MAX do not need to check for -ENOMEM error.
637  */
638 static long region_del(struct resv_map *resv, long f, long t)
639 {
640         struct list_head *head = &resv->regions;
641         struct file_region *rg, *trg;
642         struct file_region *nrg = NULL;
643         long del = 0;
644
645 retry:
646         spin_lock(&resv->lock);
647         list_for_each_entry_safe(rg, trg, head, link) {
648                 /*
649                  * Skip regions before the range to be deleted.  file_region
650                  * ranges are normally of the form [from, to).  However, there
651                  * may be a "placeholder" entry in the map which is of the form
652                  * (from, to) with from == to.  Check for placeholder entries
653                  * at the beginning of the range to be deleted.
654                  */
655                 if (rg->to <= f && (rg->to != rg->from || rg->to != f))
656                         continue;
657
658                 if (rg->from >= t)
659                         break;
660
661                 if (f > rg->from && t < rg->to) { /* Must split region */
662                         /*
663                          * Check for an entry in the cache before dropping
664                          * lock and attempting allocation.
665                          */
666                         if (!nrg &&
667                             resv->region_cache_count > resv->adds_in_progress) {
668                                 nrg = list_first_entry(&resv->region_cache,
669                                                         struct file_region,
670                                                         link);
671                                 list_del(&nrg->link);
672                                 resv->region_cache_count--;
673                         }
674
675                         if (!nrg) {
676                                 spin_unlock(&resv->lock);
677                                 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
678                                 if (!nrg)
679                                         return -ENOMEM;
680                                 goto retry;
681                         }
682
683                         del += t - f;
684                         hugetlb_cgroup_uncharge_file_region(
685                                 resv, rg, t - f, false);
686
687                         /* New entry for end of split region */
688                         nrg->from = t;
689                         nrg->to = rg->to;
690
691                         copy_hugetlb_cgroup_uncharge_info(nrg, rg);
692
693                         INIT_LIST_HEAD(&nrg->link);
694
695                         /* Original entry is trimmed */
696                         rg->to = f;
697
698                         list_add(&nrg->link, &rg->link);
699                         nrg = NULL;
700                         break;
701                 }
702
703                 if (f <= rg->from && t >= rg->to) { /* Remove entire region */
704                         del += rg->to - rg->from;
705                         hugetlb_cgroup_uncharge_file_region(resv, rg,
706                                                             rg->to - rg->from, true);
707                         list_del(&rg->link);
708                         kfree(rg);
709                         continue;
710                 }
711
712                 if (f <= rg->from) {    /* Trim beginning of region */
713                         hugetlb_cgroup_uncharge_file_region(resv, rg,
714                                                             t - rg->from, false);
715
716                         del += t - rg->from;
717                         rg->from = t;
718                 } else {                /* Trim end of region */
719                         hugetlb_cgroup_uncharge_file_region(resv, rg,
720                                                             rg->to - f, false);
721
722                         del += rg->to - f;
723                         rg->to = f;
724                 }
725         }
726
727         spin_unlock(&resv->lock);
728         kfree(nrg);
729         return del;
730 }
731
732 /*
733  * A rare out of memory error was encountered which prevented removal of
734  * the reserve map region for a page.  The huge page itself was free'ed
735  * and removed from the page cache.  This routine will adjust the subpool
736  * usage count, and the global reserve count if needed.  By incrementing
737  * these counts, the reserve map entry which could not be deleted will
738  * appear as a "reserved" entry instead of simply dangling with incorrect
739  * counts.
740  */
741 void hugetlb_fix_reserve_counts(struct inode *inode)
742 {
743         struct hugepage_subpool *spool = subpool_inode(inode);
744         long rsv_adjust;
745         bool reserved = false;
746
747         rsv_adjust = hugepage_subpool_get_pages(spool, 1);
748         if (rsv_adjust > 0) {
749                 struct hstate *h = hstate_inode(inode);
750
751                 if (!hugetlb_acct_memory(h, 1))
752                         reserved = true;
753         } else if (!rsv_adjust) {
754                 reserved = true;
755         }
756
757         if (!reserved)
758                 pr_warn("hugetlb: Huge Page Reserved count may go negative.\n");
759 }
760
761 /*
762  * Count and return the number of huge pages in the reserve map
763  * that intersect with the range [f, t).
764  */
765 static long region_count(struct resv_map *resv, long f, long t)
766 {
767         struct list_head *head = &resv->regions;
768         struct file_region *rg;
769         long chg = 0;
770
771         spin_lock(&resv->lock);
772         /* Locate each segment we overlap with, and count that overlap. */
773         list_for_each_entry(rg, head, link) {
774                 long seg_from;
775                 long seg_to;
776
777                 if (rg->to <= f)
778                         continue;
779                 if (rg->from >= t)
780                         break;
781
782                 seg_from = max(rg->from, f);
783                 seg_to = min(rg->to, t);
784
785                 chg += seg_to - seg_from;
786         }
787         spin_unlock(&resv->lock);
788
789         return chg;
790 }
791
792 /*
793  * Convert the address within this vma to the page offset within
794  * the mapping, in pagecache page units; huge pages here.
795  */
796 static pgoff_t vma_hugecache_offset(struct hstate *h,
797                         struct vm_area_struct *vma, unsigned long address)
798 {
799         return ((address - vma->vm_start) >> huge_page_shift(h)) +
800                         (vma->vm_pgoff >> huge_page_order(h));
801 }
802
803 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
804                                      unsigned long address)
805 {
806         return vma_hugecache_offset(hstate_vma(vma), vma, address);
807 }
808 EXPORT_SYMBOL_GPL(linear_hugepage_index);
809
810 /*
811  * Return the size of the pages allocated when backing a VMA. In the majority
812  * cases this will be same size as used by the page table entries.
813  */
814 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
815 {
816         if (vma->vm_ops && vma->vm_ops->pagesize)
817                 return vma->vm_ops->pagesize(vma);
818         return PAGE_SIZE;
819 }
820 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
821
822 /*
823  * Return the page size being used by the MMU to back a VMA. In the majority
824  * of cases, the page size used by the kernel matches the MMU size. On
825  * architectures where it differs, an architecture-specific 'strong'
826  * version of this symbol is required.
827  */
828 __weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
829 {
830         return vma_kernel_pagesize(vma);
831 }
832
833 /*
834  * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
835  * bits of the reservation map pointer, which are always clear due to
836  * alignment.
837  */
838 #define HPAGE_RESV_OWNER    (1UL << 0)
839 #define HPAGE_RESV_UNMAPPED (1UL << 1)
840 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
841
842 /*
843  * These helpers are used to track how many pages are reserved for
844  * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
845  * is guaranteed to have their future faults succeed.
846  *
847  * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
848  * the reserve counters are updated with the hugetlb_lock held. It is safe
849  * to reset the VMA at fork() time as it is not in use yet and there is no
850  * chance of the global counters getting corrupted as a result of the values.
851  *
852  * The private mapping reservation is represented in a subtly different
853  * manner to a shared mapping.  A shared mapping has a region map associated
854  * with the underlying file, this region map represents the backing file
855  * pages which have ever had a reservation assigned which this persists even
856  * after the page is instantiated.  A private mapping has a region map
857  * associated with the original mmap which is attached to all VMAs which
858  * reference it, this region map represents those offsets which have consumed
859  * reservation ie. where pages have been instantiated.
860  */
861 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
862 {
863         return (unsigned long)vma->vm_private_data;
864 }
865
866 static void set_vma_private_data(struct vm_area_struct *vma,
867                                                         unsigned long value)
868 {
869         vma->vm_private_data = (void *)value;
870 }
871
872 static void
873 resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map *resv_map,
874                                           struct hugetlb_cgroup *h_cg,
875                                           struct hstate *h)
876 {
877 #ifdef CONFIG_CGROUP_HUGETLB
878         if (!h_cg || !h) {
879                 resv_map->reservation_counter = NULL;
880                 resv_map->pages_per_hpage = 0;
881                 resv_map->css = NULL;
882         } else {
883                 resv_map->reservation_counter =
884                         &h_cg->rsvd_hugepage[hstate_index(h)];
885                 resv_map->pages_per_hpage = pages_per_huge_page(h);
886                 resv_map->css = &h_cg->css;
887         }
888 #endif
889 }
890
891 struct resv_map *resv_map_alloc(void)
892 {
893         struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
894         struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
895
896         if (!resv_map || !rg) {
897                 kfree(resv_map);
898                 kfree(rg);
899                 return NULL;
900         }
901
902         kref_init(&resv_map->refs);
903         spin_lock_init(&resv_map->lock);
904         INIT_LIST_HEAD(&resv_map->regions);
905
906         resv_map->adds_in_progress = 0;
907         /*
908          * Initialize these to 0. On shared mappings, 0's here indicate these
909          * fields don't do cgroup accounting. On private mappings, these will be
910          * re-initialized to the proper values, to indicate that hugetlb cgroup
911          * reservations are to be un-charged from here.
912          */
913         resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, NULL, NULL);
914
915         INIT_LIST_HEAD(&resv_map->region_cache);
916         list_add(&rg->link, &resv_map->region_cache);
917         resv_map->region_cache_count = 1;
918
919         return resv_map;
920 }
921
922 void resv_map_release(struct kref *ref)
923 {
924         struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
925         struct list_head *head = &resv_map->region_cache;
926         struct file_region *rg, *trg;
927
928         /* Clear out any active regions before we release the map. */
929         region_del(resv_map, 0, LONG_MAX);
930
931         /* ... and any entries left in the cache */
932         list_for_each_entry_safe(rg, trg, head, link) {
933                 list_del(&rg->link);
934                 kfree(rg);
935         }
936
937         VM_BUG_ON(resv_map->adds_in_progress);
938
939         kfree(resv_map);
940 }
941
942 static inline struct resv_map *inode_resv_map(struct inode *inode)
943 {
944         /*
945          * At inode evict time, i_mapping may not point to the original
946          * address space within the inode.  This original address space
947          * contains the pointer to the resv_map.  So, always use the
948          * address space embedded within the inode.
949          * The VERY common case is inode->mapping == &inode->i_data but,
950          * this may not be true for device special inodes.
951          */
952         return (struct resv_map *)(&inode->i_data)->private_data;
953 }
954
955 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
956 {
957         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
958         if (vma->vm_flags & VM_MAYSHARE) {
959                 struct address_space *mapping = vma->vm_file->f_mapping;
960                 struct inode *inode = mapping->host;
961
962                 return inode_resv_map(inode);
963
964         } else {
965                 return (struct resv_map *)(get_vma_private_data(vma) &
966                                                         ~HPAGE_RESV_MASK);
967         }
968 }
969
970 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
971 {
972         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
973         VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
974
975         set_vma_private_data(vma, (get_vma_private_data(vma) &
976                                 HPAGE_RESV_MASK) | (unsigned long)map);
977 }
978
979 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
980 {
981         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
982         VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
983
984         set_vma_private_data(vma, get_vma_private_data(vma) | flags);
985 }
986
987 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
988 {
989         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
990
991         return (get_vma_private_data(vma) & flag) != 0;
992 }
993
994 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
995 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
996 {
997         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
998         if (!(vma->vm_flags & VM_MAYSHARE))
999                 vma->vm_private_data = (void *)0;
1000 }
1001
1002 /* Returns true if the VMA has associated reserve pages */
1003 static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
1004 {
1005         if (vma->vm_flags & VM_NORESERVE) {
1006                 /*
1007                  * This address is already reserved by other process(chg == 0),
1008                  * so, we should decrement reserved count. Without decrementing,
1009                  * reserve count remains after releasing inode, because this
1010                  * allocated page will go into page cache and is regarded as
1011                  * coming from reserved pool in releasing step.  Currently, we
1012                  * don't have any other solution to deal with this situation
1013                  * properly, so add work-around here.
1014                  */
1015                 if (vma->vm_flags & VM_MAYSHARE && chg == 0)
1016                         return true;
1017                 else
1018                         return false;
1019         }
1020
1021         /* Shared mappings always use reserves */
1022         if (vma->vm_flags & VM_MAYSHARE) {
1023                 /*
1024                  * We know VM_NORESERVE is not set.  Therefore, there SHOULD
1025                  * be a region map for all pages.  The only situation where
1026                  * there is no region map is if a hole was punched via
1027                  * fallocate.  In this case, there really are no reserves to
1028                  * use.  This situation is indicated if chg != 0.
1029                  */
1030                 if (chg)
1031                         return false;
1032                 else
1033                         return true;
1034         }
1035
1036         /*
1037          * Only the process that called mmap() has reserves for
1038          * private mappings.
1039          */
1040         if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1041                 /*
1042                  * Like the shared case above, a hole punch or truncate
1043                  * could have been performed on the private mapping.
1044                  * Examine the value of chg to determine if reserves
1045                  * actually exist or were previously consumed.
1046                  * Very Subtle - The value of chg comes from a previous
1047                  * call to vma_needs_reserves().  The reserve map for
1048                  * private mappings has different (opposite) semantics
1049                  * than that of shared mappings.  vma_needs_reserves()
1050                  * has already taken this difference in semantics into
1051                  * account.  Therefore, the meaning of chg is the same
1052                  * as in the shared case above.  Code could easily be
1053                  * combined, but keeping it separate draws attention to
1054                  * subtle differences.
1055                  */
1056                 if (chg)
1057                         return false;
1058                 else
1059                         return true;
1060         }
1061
1062         return false;
1063 }
1064
1065 static void enqueue_huge_page(struct hstate *h, struct page *page)
1066 {
1067         int nid = page_to_nid(page);
1068         list_move(&page->lru, &h->hugepage_freelists[nid]);
1069         h->free_huge_pages++;
1070         h->free_huge_pages_node[nid]++;
1071         SetHPageFreed(page);
1072 }
1073
1074 static struct page *dequeue_huge_page_node_exact(struct hstate *h, int nid)
1075 {
1076         struct page *page;
1077         bool nocma = !!(current->flags & PF_MEMALLOC_NOCMA);
1078
1079         list_for_each_entry(page, &h->hugepage_freelists[nid], lru) {
1080                 if (nocma && is_migrate_cma_page(page))
1081                         continue;
1082
1083                 if (PageHWPoison(page))
1084                         continue;
1085
1086                 list_move(&page->lru, &h->hugepage_activelist);
1087                 set_page_refcounted(page);
1088                 ClearHPageFreed(page);
1089                 h->free_huge_pages--;
1090                 h->free_huge_pages_node[nid]--;
1091                 return page;
1092         }
1093
1094         return NULL;
1095 }
1096
1097 static struct page *dequeue_huge_page_nodemask(struct hstate *h, gfp_t gfp_mask, int nid,
1098                 nodemask_t *nmask)
1099 {
1100         unsigned int cpuset_mems_cookie;
1101         struct zonelist *zonelist;
1102         struct zone *zone;
1103         struct zoneref *z;
1104         int node = NUMA_NO_NODE;
1105
1106         zonelist = node_zonelist(nid, gfp_mask);
1107
1108 retry_cpuset:
1109         cpuset_mems_cookie = read_mems_allowed_begin();
1110         for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
1111                 struct page *page;
1112
1113                 if (!cpuset_zone_allowed(zone, gfp_mask))
1114                         continue;
1115                 /*
1116                  * no need to ask again on the same node. Pool is node rather than
1117                  * zone aware
1118                  */
1119                 if (zone_to_nid(zone) == node)
1120                         continue;
1121                 node = zone_to_nid(zone);
1122
1123                 page = dequeue_huge_page_node_exact(h, node);
1124                 if (page)
1125                         return page;
1126         }
1127         if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
1128                 goto retry_cpuset;
1129
1130         return NULL;
1131 }
1132
1133 static struct page *dequeue_huge_page_vma(struct hstate *h,
1134                                 struct vm_area_struct *vma,
1135                                 unsigned long address, int avoid_reserve,
1136                                 long chg)
1137 {
1138         struct page *page;
1139         struct mempolicy *mpol;
1140         gfp_t gfp_mask;
1141         nodemask_t *nodemask;
1142         int nid;
1143
1144         /*
1145          * A child process with MAP_PRIVATE mappings created by their parent
1146          * have no page reserves. This check ensures that reservations are
1147          * not "stolen". The child may still get SIGKILLed
1148          */
1149         if (!vma_has_reserves(vma, chg) &&
1150                         h->free_huge_pages - h->resv_huge_pages == 0)
1151                 goto err;
1152
1153         /* If reserves cannot be used, ensure enough pages are in the pool */
1154         if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
1155                 goto err;
1156
1157         gfp_mask = htlb_alloc_mask(h);
1158         nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
1159         page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
1160         if (page && !avoid_reserve && vma_has_reserves(vma, chg)) {
1161                 SetHPageRestoreReserve(page);
1162                 h->resv_huge_pages--;
1163         }
1164
1165         mpol_cond_put(mpol);
1166         return page;
1167
1168 err:
1169         return NULL;
1170 }
1171
1172 /*
1173  * common helper functions for hstate_next_node_to_{alloc|free}.
1174  * We may have allocated or freed a huge page based on a different
1175  * nodes_allowed previously, so h->next_node_to_{alloc|free} might
1176  * be outside of *nodes_allowed.  Ensure that we use an allowed
1177  * node for alloc or free.
1178  */
1179 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
1180 {
1181         nid = next_node_in(nid, *nodes_allowed);
1182         VM_BUG_ON(nid >= MAX_NUMNODES);
1183
1184         return nid;
1185 }
1186
1187 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
1188 {
1189         if (!node_isset(nid, *nodes_allowed))
1190                 nid = next_node_allowed(nid, nodes_allowed);
1191         return nid;
1192 }
1193
1194 /*
1195  * returns the previously saved node ["this node"] from which to
1196  * allocate a persistent huge page for the pool and advance the
1197  * next node from which to allocate, handling wrap at end of node
1198  * mask.
1199  */
1200 static int hstate_next_node_to_alloc(struct hstate *h,
1201                                         nodemask_t *nodes_allowed)
1202 {
1203         int nid;
1204
1205         VM_BUG_ON(!nodes_allowed);
1206
1207         nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
1208         h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
1209
1210         return nid;
1211 }
1212
1213 /*
1214  * helper for free_pool_huge_page() - return the previously saved
1215  * node ["this node"] from which to free a huge page.  Advance the
1216  * next node id whether or not we find a free huge page to free so
1217  * that the next attempt to free addresses the next node.
1218  */
1219 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1220 {
1221         int nid;
1222
1223         VM_BUG_ON(!nodes_allowed);
1224
1225         nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1226         h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1227
1228         return nid;
1229 }
1230
1231 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask)           \
1232         for (nr_nodes = nodes_weight(*mask);                            \
1233                 nr_nodes > 0 &&                                         \
1234                 ((node = hstate_next_node_to_alloc(hs, mask)) || 1);    \
1235                 nr_nodes--)
1236
1237 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask)            \
1238         for (nr_nodes = nodes_weight(*mask);                            \
1239                 nr_nodes > 0 &&                                         \
1240                 ((node = hstate_next_node_to_free(hs, mask)) || 1);     \
1241                 nr_nodes--)
1242
1243 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
1244 static void destroy_compound_gigantic_page(struct page *page,
1245                                         unsigned int order)
1246 {
1247         int i;
1248         int nr_pages = 1 << order;
1249         struct page *p = page + 1;
1250
1251         atomic_set(compound_mapcount_ptr(page), 0);
1252         atomic_set(compound_pincount_ptr(page), 0);
1253
1254         for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1255                 clear_compound_head(p);
1256                 set_page_refcounted(p);
1257         }
1258
1259         set_compound_order(page, 0);
1260         page[1].compound_nr = 0;
1261         __ClearPageHead(page);
1262 }
1263
1264 static void free_gigantic_page(struct page *page, unsigned int order)
1265 {
1266         /*
1267          * If the page isn't allocated using the cma allocator,
1268          * cma_release() returns false.
1269          */
1270 #ifdef CONFIG_CMA
1271         if (cma_release(hugetlb_cma[page_to_nid(page)], page, 1 << order))
1272                 return;
1273 #endif
1274
1275         free_contig_range(page_to_pfn(page), 1 << order);
1276 }
1277
1278 #ifdef CONFIG_CONTIG_ALLOC
1279 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1280                 int nid, nodemask_t *nodemask)
1281 {
1282         unsigned long nr_pages = pages_per_huge_page(h);
1283         if (nid == NUMA_NO_NODE)
1284                 nid = numa_mem_id();
1285
1286 #ifdef CONFIG_CMA
1287         {
1288                 struct page *page;
1289                 int node;
1290
1291                 if (hugetlb_cma[nid]) {
1292                         page = cma_alloc(hugetlb_cma[nid], nr_pages,
1293                                         huge_page_order(h), true);
1294                         if (page)
1295                                 return page;
1296                 }
1297
1298                 if (!(gfp_mask & __GFP_THISNODE)) {
1299                         for_each_node_mask(node, *nodemask) {
1300                                 if (node == nid || !hugetlb_cma[node])
1301                                         continue;
1302
1303                                 page = cma_alloc(hugetlb_cma[node], nr_pages,
1304                                                 huge_page_order(h), true);
1305                                 if (page)
1306                                         return page;
1307                         }
1308                 }
1309         }
1310 #endif
1311
1312         return alloc_contig_pages(nr_pages, gfp_mask, nid, nodemask);
1313 }
1314
1315 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid);
1316 static void prep_compound_gigantic_page(struct page *page, unsigned int order);
1317 #else /* !CONFIG_CONTIG_ALLOC */
1318 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1319                                         int nid, nodemask_t *nodemask)
1320 {
1321         return NULL;
1322 }
1323 #endif /* CONFIG_CONTIG_ALLOC */
1324
1325 #else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
1326 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1327                                         int nid, nodemask_t *nodemask)
1328 {
1329         return NULL;
1330 }
1331 static inline void free_gigantic_page(struct page *page, unsigned int order) { }
1332 static inline void destroy_compound_gigantic_page(struct page *page,
1333                                                 unsigned int order) { }
1334 #endif
1335
1336 static void update_and_free_page(struct hstate *h, struct page *page)
1337 {
1338         int i;
1339         struct page *subpage = page;
1340
1341         if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1342                 return;
1343
1344         h->nr_huge_pages--;
1345         h->nr_huge_pages_node[page_to_nid(page)]--;
1346         for (i = 0; i < pages_per_huge_page(h);
1347              i++, subpage = mem_map_next(subpage, page, i)) {
1348                 subpage->flags &= ~(1 << PG_locked | 1 << PG_error |
1349                                 1 << PG_referenced | 1 << PG_dirty |
1350                                 1 << PG_active | 1 << PG_private |
1351                                 1 << PG_writeback);
1352         }
1353         VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
1354         VM_BUG_ON_PAGE(hugetlb_cgroup_from_page_rsvd(page), page);
1355         set_compound_page_dtor(page, NULL_COMPOUND_DTOR);
1356         set_page_refcounted(page);
1357         if (hstate_is_gigantic(h)) {
1358                 /*
1359                  * Temporarily drop the hugetlb_lock, because
1360                  * we might block in free_gigantic_page().
1361                  */
1362                 spin_unlock(&hugetlb_lock);
1363                 destroy_compound_gigantic_page(page, huge_page_order(h));
1364                 free_gigantic_page(page, huge_page_order(h));
1365                 spin_lock(&hugetlb_lock);
1366         } else {
1367                 __free_pages(page, huge_page_order(h));
1368         }
1369 }
1370
1371 struct hstate *size_to_hstate(unsigned long size)
1372 {
1373         struct hstate *h;
1374
1375         for_each_hstate(h) {
1376                 if (huge_page_size(h) == size)
1377                         return h;
1378         }
1379         return NULL;
1380 }
1381
1382 static void __free_huge_page(struct page *page)
1383 {
1384         /*
1385          * Can't pass hstate in here because it is called from the
1386          * compound page destructor.
1387          */
1388         struct hstate *h = page_hstate(page);
1389         int nid = page_to_nid(page);
1390         struct hugepage_subpool *spool = hugetlb_page_subpool(page);
1391         bool restore_reserve;
1392
1393         VM_BUG_ON_PAGE(page_count(page), page);
1394         VM_BUG_ON_PAGE(page_mapcount(page), page);
1395
1396         hugetlb_set_page_subpool(page, NULL);
1397         page->mapping = NULL;
1398         restore_reserve = HPageRestoreReserve(page);
1399         ClearHPageRestoreReserve(page);
1400
1401         /*
1402          * If HPageRestoreReserve was set on page, page allocation consumed a
1403          * reservation.  If the page was associated with a subpool, there
1404          * would have been a page reserved in the subpool before allocation
1405          * via hugepage_subpool_get_pages().  Since we are 'restoring' the
1406          * reservation, do not call hugepage_subpool_put_pages() as this will
1407          * remove the reserved page from the subpool.
1408          */
1409         if (!restore_reserve) {
1410                 /*
1411                  * A return code of zero implies that the subpool will be
1412                  * under its minimum size if the reservation is not restored
1413                  * after page is free.  Therefore, force restore_reserve
1414                  * operation.
1415                  */
1416                 if (hugepage_subpool_put_pages(spool, 1) == 0)
1417                         restore_reserve = true;
1418         }
1419
1420         spin_lock(&hugetlb_lock);
1421         ClearHPageMigratable(page);
1422         hugetlb_cgroup_uncharge_page(hstate_index(h),
1423                                      pages_per_huge_page(h), page);
1424         hugetlb_cgroup_uncharge_page_rsvd(hstate_index(h),
1425                                           pages_per_huge_page(h), page);
1426         if (restore_reserve)
1427                 h->resv_huge_pages++;
1428
1429         if (HPageTemporary(page)) {
1430                 list_del(&page->lru);
1431                 ClearHPageTemporary(page);
1432                 update_and_free_page(h, page);
1433         } else if (h->surplus_huge_pages_node[nid]) {
1434                 /* remove the page from active list */
1435                 list_del(&page->lru);
1436                 update_and_free_page(h, page);
1437                 h->surplus_huge_pages--;
1438                 h->surplus_huge_pages_node[nid]--;
1439         } else {
1440                 arch_clear_hugepage_flags(page);
1441                 enqueue_huge_page(h, page);
1442         }
1443         spin_unlock(&hugetlb_lock);
1444 }
1445
1446 /*
1447  * As free_huge_page() can be called from a non-task context, we have
1448  * to defer the actual freeing in a workqueue to prevent potential
1449  * hugetlb_lock deadlock.
1450  *
1451  * free_hpage_workfn() locklessly retrieves the linked list of pages to
1452  * be freed and frees them one-by-one. As the page->mapping pointer is
1453  * going to be cleared in __free_huge_page() anyway, it is reused as the
1454  * llist_node structure of a lockless linked list of huge pages to be freed.
1455  */
1456 static LLIST_HEAD(hpage_freelist);
1457
1458 static void free_hpage_workfn(struct work_struct *work)
1459 {
1460         struct llist_node *node;
1461         struct page *page;
1462
1463         node = llist_del_all(&hpage_freelist);
1464
1465         while (node) {
1466                 page = container_of((struct address_space **)node,
1467                                      struct page, mapping);
1468                 node = node->next;
1469                 __free_huge_page(page);
1470         }
1471 }
1472 static DECLARE_WORK(free_hpage_work, free_hpage_workfn);
1473
1474 void free_huge_page(struct page *page)
1475 {
1476         /*
1477          * Defer freeing if in non-task context to avoid hugetlb_lock deadlock.
1478          */
1479         if (!in_task()) {
1480                 /*
1481                  * Only call schedule_work() if hpage_freelist is previously
1482                  * empty. Otherwise, schedule_work() had been called but the
1483                  * workfn hasn't retrieved the list yet.
1484                  */
1485                 if (llist_add((struct llist_node *)&page->mapping,
1486                               &hpage_freelist))
1487                         schedule_work(&free_hpage_work);
1488                 return;
1489         }
1490
1491         __free_huge_page(page);
1492 }
1493
1494 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
1495 {
1496         INIT_LIST_HEAD(&page->lru);
1497         set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1498         hugetlb_set_page_subpool(page, NULL);
1499         set_hugetlb_cgroup(page, NULL);
1500         set_hugetlb_cgroup_rsvd(page, NULL);
1501         spin_lock(&hugetlb_lock);
1502         h->nr_huge_pages++;
1503         h->nr_huge_pages_node[nid]++;
1504         ClearHPageFreed(page);
1505         spin_unlock(&hugetlb_lock);
1506 }
1507
1508 static void prep_compound_gigantic_page(struct page *page, unsigned int order)
1509 {
1510         int i;
1511         int nr_pages = 1 << order;
1512         struct page *p = page + 1;
1513
1514         /* we rely on prep_new_huge_page to set the destructor */
1515         set_compound_order(page, order);
1516         __ClearPageReserved(page);
1517         __SetPageHead(page);
1518         for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1519                 /*
1520                  * For gigantic hugepages allocated through bootmem at
1521                  * boot, it's safer to be consistent with the not-gigantic
1522                  * hugepages and clear the PG_reserved bit from all tail pages
1523                  * too.  Otherwise drivers using get_user_pages() to access tail
1524                  * pages may get the reference counting wrong if they see
1525                  * PG_reserved set on a tail page (despite the head page not
1526                  * having PG_reserved set).  Enforcing this consistency between
1527                  * head and tail pages allows drivers to optimize away a check
1528                  * on the head page when they need know if put_page() is needed
1529                  * after get_user_pages().
1530                  */
1531                 __ClearPageReserved(p);
1532                 set_page_count(p, 0);
1533                 set_compound_head(p, page);
1534         }
1535         atomic_set(compound_mapcount_ptr(page), -1);
1536         atomic_set(compound_pincount_ptr(page), 0);
1537 }
1538
1539 /*
1540  * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1541  * transparent huge pages.  See the PageTransHuge() documentation for more
1542  * details.
1543  */
1544 int PageHuge(struct page *page)
1545 {
1546         if (!PageCompound(page))
1547                 return 0;
1548
1549         page = compound_head(page);
1550         return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
1551 }
1552 EXPORT_SYMBOL_GPL(PageHuge);
1553
1554 /*
1555  * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1556  * normal or transparent huge pages.
1557  */
1558 int PageHeadHuge(struct page *page_head)
1559 {
1560         if (!PageHead(page_head))
1561                 return 0;
1562
1563         return page_head[1].compound_dtor == HUGETLB_PAGE_DTOR;
1564 }
1565
1566 /*
1567  * Find and lock address space (mapping) in write mode.
1568  *
1569  * Upon entry, the page is locked which means that page_mapping() is
1570  * stable.  Due to locking order, we can only trylock_write.  If we can
1571  * not get the lock, simply return NULL to caller.
1572  */
1573 struct address_space *hugetlb_page_mapping_lock_write(struct page *hpage)
1574 {
1575         struct address_space *mapping = page_mapping(hpage);
1576
1577         if (!mapping)
1578                 return mapping;
1579
1580         if (i_mmap_trylock_write(mapping))
1581                 return mapping;
1582
1583         return NULL;
1584 }
1585
1586 pgoff_t __basepage_index(struct page *page)
1587 {
1588         struct page *page_head = compound_head(page);
1589         pgoff_t index = page_index(page_head);
1590         unsigned long compound_idx;
1591
1592         if (!PageHuge(page_head))
1593                 return page_index(page);
1594
1595         if (compound_order(page_head) >= MAX_ORDER)
1596                 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
1597         else
1598                 compound_idx = page - page_head;
1599
1600         return (index << compound_order(page_head)) + compound_idx;
1601 }
1602
1603 static struct page *alloc_buddy_huge_page(struct hstate *h,
1604                 gfp_t gfp_mask, int nid, nodemask_t *nmask,
1605                 nodemask_t *node_alloc_noretry)
1606 {
1607         int order = huge_page_order(h);
1608         struct page *page;
1609         bool alloc_try_hard = true;
1610
1611         /*
1612          * By default we always try hard to allocate the page with
1613          * __GFP_RETRY_MAYFAIL flag.  However, if we are allocating pages in
1614          * a loop (to adjust global huge page counts) and previous allocation
1615          * failed, do not continue to try hard on the same node.  Use the
1616          * node_alloc_noretry bitmap to manage this state information.
1617          */
1618         if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry))
1619                 alloc_try_hard = false;
1620         gfp_mask |= __GFP_COMP|__GFP_NOWARN;
1621         if (alloc_try_hard)
1622                 gfp_mask |= __GFP_RETRY_MAYFAIL;
1623         if (nid == NUMA_NO_NODE)
1624                 nid = numa_mem_id();
1625         page = __alloc_pages(gfp_mask, order, nid, nmask);
1626         if (page)
1627                 __count_vm_event(HTLB_BUDDY_PGALLOC);
1628         else
1629                 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1630
1631         /*
1632          * If we did not specify __GFP_RETRY_MAYFAIL, but still got a page this
1633          * indicates an overall state change.  Clear bit so that we resume
1634          * normal 'try hard' allocations.
1635          */
1636         if (node_alloc_noretry && page && !alloc_try_hard)
1637                 node_clear(nid, *node_alloc_noretry);
1638
1639         /*
1640          * If we tried hard to get a page but failed, set bit so that
1641          * subsequent attempts will not try as hard until there is an
1642          * overall state change.
1643          */
1644         if (node_alloc_noretry && !page && alloc_try_hard)
1645                 node_set(nid, *node_alloc_noretry);
1646
1647         return page;
1648 }
1649
1650 /*
1651  * Common helper to allocate a fresh hugetlb page. All specific allocators
1652  * should use this function to get new hugetlb pages
1653  */
1654 static struct page *alloc_fresh_huge_page(struct hstate *h,
1655                 gfp_t gfp_mask, int nid, nodemask_t *nmask,
1656                 nodemask_t *node_alloc_noretry)
1657 {
1658         struct page *page;
1659
1660         if (hstate_is_gigantic(h))
1661                 page = alloc_gigantic_page(h, gfp_mask, nid, nmask);
1662         else
1663                 page = alloc_buddy_huge_page(h, gfp_mask,
1664                                 nid, nmask, node_alloc_noretry);
1665         if (!page)
1666                 return NULL;
1667
1668         if (hstate_is_gigantic(h))
1669                 prep_compound_gigantic_page(page, huge_page_order(h));
1670         prep_new_huge_page(h, page, page_to_nid(page));
1671
1672         return page;
1673 }
1674
1675 /*
1676  * Allocates a fresh page to the hugetlb allocator pool in the node interleaved
1677  * manner.
1678  */
1679 static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1680                                 nodemask_t *node_alloc_noretry)
1681 {
1682         struct page *page;
1683         int nr_nodes, node;
1684         gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
1685
1686         for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1687                 page = alloc_fresh_huge_page(h, gfp_mask, node, nodes_allowed,
1688                                                 node_alloc_noretry);
1689                 if (page)
1690                         break;
1691         }
1692
1693         if (!page)
1694                 return 0;
1695
1696         put_page(page); /* free it into the hugepage allocator */
1697
1698         return 1;
1699 }
1700
1701 /*
1702  * Free huge page from pool from next node to free.
1703  * Attempt to keep persistent huge pages more or less
1704  * balanced over allowed nodes.
1705  * Called with hugetlb_lock locked.
1706  */
1707 static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1708                                                          bool acct_surplus)
1709 {
1710         int nr_nodes, node;
1711         int ret = 0;
1712
1713         for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1714                 /*
1715                  * If we're returning unused surplus pages, only examine
1716                  * nodes with surplus pages.
1717                  */
1718                 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
1719                     !list_empty(&h->hugepage_freelists[node])) {
1720                         struct page *page =
1721                                 list_entry(h->hugepage_freelists[node].next,
1722                                           struct page, lru);
1723                         list_del(&page->lru);
1724                         h->free_huge_pages--;
1725                         h->free_huge_pages_node[node]--;
1726                         if (acct_surplus) {
1727                                 h->surplus_huge_pages--;
1728                                 h->surplus_huge_pages_node[node]--;
1729                         }
1730                         update_and_free_page(h, page);
1731                         ret = 1;
1732                         break;
1733                 }
1734         }
1735
1736         return ret;
1737 }
1738
1739 /*
1740  * Dissolve a given free hugepage into free buddy pages. This function does
1741  * nothing for in-use hugepages and non-hugepages.
1742  * This function returns values like below:
1743  *
1744  *  -EBUSY: failed to dissolved free hugepages or the hugepage is in-use
1745  *          (allocated or reserved.)
1746  *       0: successfully dissolved free hugepages or the page is not a
1747  *          hugepage (considered as already dissolved)
1748  */
1749 int dissolve_free_huge_page(struct page *page)
1750 {
1751         int rc = -EBUSY;
1752
1753 retry:
1754         /* Not to disrupt normal path by vainly holding hugetlb_lock */
1755         if (!PageHuge(page))
1756                 return 0;
1757
1758         spin_lock(&hugetlb_lock);
1759         if (!PageHuge(page)) {
1760                 rc = 0;
1761                 goto out;
1762         }
1763
1764         if (!page_count(page)) {
1765                 struct page *head = compound_head(page);
1766                 struct hstate *h = page_hstate(head);
1767                 int nid = page_to_nid(head);
1768                 if (h->free_huge_pages - h->resv_huge_pages == 0)
1769                         goto out;
1770
1771                 /*
1772                  * We should make sure that the page is already on the free list
1773                  * when it is dissolved.
1774                  */
1775                 if (unlikely(!HPageFreed(head))) {
1776                         spin_unlock(&hugetlb_lock);
1777                         cond_resched();
1778
1779                         /*
1780                          * Theoretically, we should return -EBUSY when we
1781                          * encounter this race. In fact, we have a chance
1782                          * to successfully dissolve the page if we do a
1783                          * retry. Because the race window is quite small.
1784                          * If we seize this opportunity, it is an optimization
1785                          * for increasing the success rate of dissolving page.
1786                          */
1787                         goto retry;
1788                 }
1789
1790                 /*
1791                  * Move PageHWPoison flag from head page to the raw error page,
1792                  * which makes any subpages rather than the error page reusable.
1793                  */
1794                 if (PageHWPoison(head) && page != head) {
1795                         SetPageHWPoison(page);
1796                         ClearPageHWPoison(head);
1797                 }
1798                 list_del(&head->lru);
1799                 h->free_huge_pages--;
1800                 h->free_huge_pages_node[nid]--;
1801                 h->max_huge_pages--;
1802                 update_and_free_page(h, head);
1803                 rc = 0;
1804         }
1805 out:
1806         spin_unlock(&hugetlb_lock);
1807         return rc;
1808 }
1809
1810 /*
1811  * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
1812  * make specified memory blocks removable from the system.
1813  * Note that this will dissolve a free gigantic hugepage completely, if any
1814  * part of it lies within the given range.
1815  * Also note that if dissolve_free_huge_page() returns with an error, all
1816  * free hugepages that were dissolved before that error are lost.
1817  */
1818 int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
1819 {
1820         unsigned long pfn;
1821         struct page *page;
1822         int rc = 0;
1823
1824         if (!hugepages_supported())
1825                 return rc;
1826
1827         for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order) {
1828                 page = pfn_to_page(pfn);
1829                 rc = dissolve_free_huge_page(page);
1830                 if (rc)
1831                         break;
1832         }
1833
1834         return rc;
1835 }
1836
1837 /*
1838  * Allocates a fresh surplus page from the page allocator.
1839  */
1840 static struct page *alloc_surplus_huge_page(struct hstate *h, gfp_t gfp_mask,
1841                 int nid, nodemask_t *nmask)
1842 {
1843         struct page *page = NULL;
1844
1845         if (hstate_is_gigantic(h))
1846                 return NULL;
1847
1848         spin_lock(&hugetlb_lock);
1849         if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages)
1850                 goto out_unlock;
1851         spin_unlock(&hugetlb_lock);
1852
1853         page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
1854         if (!page)
1855                 return NULL;
1856
1857         spin_lock(&hugetlb_lock);
1858         /*
1859          * We could have raced with the pool size change.
1860          * Double check that and simply deallocate the new page
1861          * if we would end up overcommiting the surpluses. Abuse
1862          * temporary page to workaround the nasty free_huge_page
1863          * codeflow
1864          */
1865         if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
1866                 SetHPageTemporary(page);
1867                 spin_unlock(&hugetlb_lock);
1868                 put_page(page);
1869                 return NULL;
1870         } else {
1871                 h->surplus_huge_pages++;
1872                 h->surplus_huge_pages_node[page_to_nid(page)]++;
1873         }
1874
1875 out_unlock:
1876         spin_unlock(&hugetlb_lock);
1877
1878         return page;
1879 }
1880
1881 static struct page *alloc_migrate_huge_page(struct hstate *h, gfp_t gfp_mask,
1882                                      int nid, nodemask_t *nmask)
1883 {
1884         struct page *page;
1885
1886         if (hstate_is_gigantic(h))
1887                 return NULL;
1888
1889         page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
1890         if (!page)
1891                 return NULL;
1892
1893         /*
1894          * We do not account these pages as surplus because they are only
1895          * temporary and will be released properly on the last reference
1896          */
1897         SetHPageTemporary(page);
1898
1899         return page;
1900 }
1901
1902 /*
1903  * Use the VMA's mpolicy to allocate a huge page from the buddy.
1904  */
1905 static
1906 struct page *alloc_buddy_huge_page_with_mpol(struct hstate *h,
1907                 struct vm_area_struct *vma, unsigned long addr)
1908 {
1909         struct page *page;
1910         struct mempolicy *mpol;
1911         gfp_t gfp_mask = htlb_alloc_mask(h);
1912         int nid;
1913         nodemask_t *nodemask;
1914
1915         nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
1916         page = alloc_surplus_huge_page(h, gfp_mask, nid, nodemask);
1917         mpol_cond_put(mpol);
1918
1919         return page;
1920 }
1921
1922 /* page migration callback function */
1923 struct page *alloc_huge_page_nodemask(struct hstate *h, int preferred_nid,
1924                 nodemask_t *nmask, gfp_t gfp_mask)
1925 {
1926         spin_lock(&hugetlb_lock);
1927         if (h->free_huge_pages - h->resv_huge_pages > 0) {
1928                 struct page *page;
1929
1930                 page = dequeue_huge_page_nodemask(h, gfp_mask, preferred_nid, nmask);
1931                 if (page) {
1932                         spin_unlock(&hugetlb_lock);
1933                         return page;
1934                 }
1935         }
1936         spin_unlock(&hugetlb_lock);
1937
1938         return alloc_migrate_huge_page(h, gfp_mask, preferred_nid, nmask);
1939 }
1940
1941 /* mempolicy aware migration callback */
1942 struct page *alloc_huge_page_vma(struct hstate *h, struct vm_area_struct *vma,
1943                 unsigned long address)
1944 {
1945         struct mempolicy *mpol;
1946         nodemask_t *nodemask;
1947         struct page *page;
1948         gfp_t gfp_mask;
1949         int node;
1950
1951         gfp_mask = htlb_alloc_mask(h);
1952         node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
1953         page = alloc_huge_page_nodemask(h, node, nodemask, gfp_mask);
1954         mpol_cond_put(mpol);
1955
1956         return page;
1957 }
1958
1959 /*
1960  * Increase the hugetlb pool such that it can accommodate a reservation
1961  * of size 'delta'.
1962  */
1963 static int gather_surplus_pages(struct hstate *h, long delta)
1964         __must_hold(&hugetlb_lock)
1965 {
1966         struct list_head surplus_list;
1967         struct page *page, *tmp;
1968         int ret;
1969         long i;
1970         long needed, allocated;
1971         bool alloc_ok = true;
1972
1973         needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
1974         if (needed <= 0) {
1975                 h->resv_huge_pages += delta;
1976                 return 0;
1977         }
1978
1979         allocated = 0;
1980         INIT_LIST_HEAD(&surplus_list);
1981
1982         ret = -ENOMEM;
1983 retry:
1984         spin_unlock(&hugetlb_lock);
1985         for (i = 0; i < needed; i++) {
1986                 page = alloc_surplus_huge_page(h, htlb_alloc_mask(h),
1987                                 NUMA_NO_NODE, NULL);
1988                 if (!page) {
1989                         alloc_ok = false;
1990                         break;
1991                 }
1992                 list_add(&page->lru, &surplus_list);
1993                 cond_resched();
1994         }
1995         allocated += i;
1996
1997         /*
1998          * After retaking hugetlb_lock, we need to recalculate 'needed'
1999          * because either resv_huge_pages or free_huge_pages may have changed.
2000          */
2001         spin_lock(&hugetlb_lock);
2002         needed = (h->resv_huge_pages + delta) -
2003                         (h->free_huge_pages + allocated);
2004         if (needed > 0) {
2005                 if (alloc_ok)
2006                         goto retry;
2007                 /*
2008                  * We were not able to allocate enough pages to
2009                  * satisfy the entire reservation so we free what
2010                  * we've allocated so far.
2011                  */
2012                 goto free;
2013         }
2014         /*
2015          * The surplus_list now contains _at_least_ the number of extra pages
2016          * needed to accommodate the reservation.  Add the appropriate number
2017          * of pages to the hugetlb pool and free the extras back to the buddy
2018          * allocator.  Commit the entire reservation here to prevent another
2019          * process from stealing the pages as they are added to the pool but
2020          * before they are reserved.
2021          */
2022         needed += allocated;
2023         h->resv_huge_pages += delta;
2024         ret = 0;
2025
2026         /* Free the needed pages to the hugetlb pool */
2027         list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
2028                 int zeroed;
2029
2030                 if ((--needed) < 0)
2031                         break;
2032                 /*
2033                  * This page is now managed by the hugetlb allocator and has
2034                  * no users -- drop the buddy allocator's reference.
2035                  */
2036                 zeroed = put_page_testzero(page);
2037                 VM_BUG_ON_PAGE(!zeroed, page);
2038                 enqueue_huge_page(h, page);
2039         }
2040 free:
2041         spin_unlock(&hugetlb_lock);
2042
2043         /* Free unnecessary surplus pages to the buddy allocator */
2044         list_for_each_entry_safe(page, tmp, &surplus_list, lru)
2045                 put_page(page);
2046         spin_lock(&hugetlb_lock);
2047
2048         return ret;
2049 }
2050
2051 /*
2052  * This routine has two main purposes:
2053  * 1) Decrement the reservation count (resv_huge_pages) by the value passed
2054  *    in unused_resv_pages.  This corresponds to the prior adjustments made
2055  *    to the associated reservation map.
2056  * 2) Free any unused surplus pages that may have been allocated to satisfy
2057  *    the reservation.  As many as unused_resv_pages may be freed.
2058  *
2059  * Called with hugetlb_lock held.  However, the lock could be dropped (and
2060  * reacquired) during calls to cond_resched_lock.  Whenever dropping the lock,
2061  * we must make sure nobody else can claim pages we are in the process of
2062  * freeing.  Do this by ensuring resv_huge_page always is greater than the
2063  * number of huge pages we plan to free when dropping the lock.
2064  */
2065 static void return_unused_surplus_pages(struct hstate *h,
2066                                         unsigned long unused_resv_pages)
2067 {
2068         unsigned long nr_pages;
2069
2070         /* Cannot return gigantic pages currently */
2071         if (hstate_is_gigantic(h))
2072                 goto out;
2073
2074         /*
2075          * Part (or even all) of the reservation could have been backed
2076          * by pre-allocated pages. Only free surplus pages.
2077          */
2078         nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
2079
2080         /*
2081          * We want to release as many surplus pages as possible, spread
2082          * evenly across all nodes with memory. Iterate across these nodes
2083          * until we can no longer free unreserved surplus pages. This occurs
2084          * when the nodes with surplus pages have no free pages.
2085          * free_pool_huge_page() will balance the freed pages across the
2086          * on-line nodes with memory and will handle the hstate accounting.
2087          *
2088          * Note that we decrement resv_huge_pages as we free the pages.  If
2089          * we drop the lock, resv_huge_pages will still be sufficiently large
2090          * to cover subsequent pages we may free.
2091          */
2092         while (nr_pages--) {
2093                 h->resv_huge_pages--;
2094                 unused_resv_pages--;
2095                 if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
2096                         goto out;
2097                 cond_resched_lock(&hugetlb_lock);
2098         }
2099
2100 out:
2101         /* Fully uncommit the reservation */
2102         h->resv_huge_pages -= unused_resv_pages;
2103 }
2104
2105
2106 /*
2107  * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
2108  * are used by the huge page allocation routines to manage reservations.
2109  *
2110  * vma_needs_reservation is called to determine if the huge page at addr
2111  * within the vma has an associated reservation.  If a reservation is
2112  * needed, the value 1 is returned.  The caller is then responsible for
2113  * managing the global reservation and subpool usage counts.  After
2114  * the huge page has been allocated, vma_commit_reservation is called
2115  * to add the page to the reservation map.  If the page allocation fails,
2116  * the reservation must be ended instead of committed.  vma_end_reservation
2117  * is called in such cases.
2118  *
2119  * In the normal case, vma_commit_reservation returns the same value
2120  * as the preceding vma_needs_reservation call.  The only time this
2121  * is not the case is if a reserve map was changed between calls.  It
2122  * is the responsibility of the caller to notice the difference and
2123  * take appropriate action.
2124  *
2125  * vma_add_reservation is used in error paths where a reservation must
2126  * be restored when a newly allocated huge page must be freed.  It is
2127  * to be called after calling vma_needs_reservation to determine if a
2128  * reservation exists.
2129  */
2130 enum vma_resv_mode {
2131         VMA_NEEDS_RESV,
2132         VMA_COMMIT_RESV,
2133         VMA_END_RESV,
2134         VMA_ADD_RESV,
2135 };
2136 static long __vma_reservation_common(struct hstate *h,
2137                                 struct vm_area_struct *vma, unsigned long addr,
2138                                 enum vma_resv_mode mode)
2139 {
2140         struct resv_map *resv;
2141         pgoff_t idx;
2142         long ret;
2143         long dummy_out_regions_needed;
2144
2145         resv = vma_resv_map(vma);
2146         if (!resv)
2147                 return 1;
2148
2149         idx = vma_hugecache_offset(h, vma, addr);
2150         switch (mode) {
2151         case VMA_NEEDS_RESV:
2152                 ret = region_chg(resv, idx, idx + 1, &dummy_out_regions_needed);
2153                 /* We assume that vma_reservation_* routines always operate on
2154                  * 1 page, and that adding to resv map a 1 page entry can only
2155                  * ever require 1 region.
2156                  */
2157                 VM_BUG_ON(dummy_out_regions_needed != 1);
2158                 break;
2159         case VMA_COMMIT_RESV:
2160                 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2161                 /* region_add calls of range 1 should never fail. */
2162                 VM_BUG_ON(ret < 0);
2163                 break;
2164         case VMA_END_RESV:
2165                 region_abort(resv, idx, idx + 1, 1);
2166                 ret = 0;
2167                 break;
2168         case VMA_ADD_RESV:
2169                 if (vma->vm_flags & VM_MAYSHARE) {
2170                         ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2171                         /* region_add calls of range 1 should never fail. */
2172                         VM_BUG_ON(ret < 0);
2173                 } else {
2174                         region_abort(resv, idx, idx + 1, 1);
2175                         ret = region_del(resv, idx, idx + 1);
2176                 }
2177                 break;
2178         default:
2179                 BUG();
2180         }
2181
2182         if (vma->vm_flags & VM_MAYSHARE)
2183                 return ret;
2184         /*
2185          * We know private mapping must have HPAGE_RESV_OWNER set.
2186          *
2187          * In most cases, reserves always exist for private mappings.
2188          * However, a file associated with mapping could have been
2189          * hole punched or truncated after reserves were consumed.
2190          * As subsequent fault on such a range will not use reserves.
2191          * Subtle - The reserve map for private mappings has the
2192          * opposite meaning than that of shared mappings.  If NO
2193          * entry is in the reserve map, it means a reservation exists.
2194          * If an entry exists in the reserve map, it means the
2195          * reservation has already been consumed.  As a result, the
2196          * return value of this routine is the opposite of the
2197          * value returned from reserve map manipulation routines above.
2198          */
2199         if (ret > 0)
2200                 return 0;
2201         if (ret == 0)
2202                 return 1;
2203         return ret;
2204 }
2205
2206 static long vma_needs_reservation(struct hstate *h,
2207                         struct vm_area_struct *vma, unsigned long addr)
2208 {
2209         return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
2210 }
2211
2212 static long vma_commit_reservation(struct hstate *h,
2213                         struct vm_area_struct *vma, unsigned long addr)
2214 {
2215         return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
2216 }
2217
2218 static void vma_end_reservation(struct hstate *h,
2219                         struct vm_area_struct *vma, unsigned long addr)
2220 {
2221         (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
2222 }
2223
2224 static long vma_add_reservation(struct hstate *h,
2225                         struct vm_area_struct *vma, unsigned long addr)
2226 {
2227         return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
2228 }
2229
2230 /*
2231  * This routine is called to restore a reservation on error paths.  In the
2232  * specific error paths, a huge page was allocated (via alloc_huge_page)
2233  * and is about to be freed.  If a reservation for the page existed,
2234  * alloc_huge_page would have consumed the reservation and set
2235  * HPageRestoreReserve in the newly allocated page.  When the page is freed
2236  * via free_huge_page, the global reservation count will be incremented if
2237  * HPageRestoreReserve is set.  However, free_huge_page can not adjust the
2238  * reserve map.  Adjust the reserve map here to be consistent with global
2239  * reserve count adjustments to be made by free_huge_page.
2240  */
2241 static void restore_reserve_on_error(struct hstate *h,
2242                         struct vm_area_struct *vma, unsigned long address,
2243                         struct page *page)
2244 {
2245         if (unlikely(HPageRestoreReserve(page))) {
2246                 long rc = vma_needs_reservation(h, vma, address);
2247
2248                 if (unlikely(rc < 0)) {
2249                         /*
2250                          * Rare out of memory condition in reserve map
2251                          * manipulation.  Clear HPageRestoreReserve so that
2252                          * global reserve count will not be incremented
2253                          * by free_huge_page.  This will make it appear
2254                          * as though the reservation for this page was
2255                          * consumed.  This may prevent the task from
2256                          * faulting in the page at a later time.  This
2257                          * is better than inconsistent global huge page
2258                          * accounting of reserve counts.
2259                          */
2260                         ClearHPageRestoreReserve(page);
2261                 } else if (rc) {
2262                         rc = vma_add_reservation(h, vma, address);
2263                         if (unlikely(rc < 0))
2264                                 /*
2265                                  * See above comment about rare out of
2266                                  * memory condition.
2267                                  */
2268                                 ClearHPageRestoreReserve(page);
2269                 } else
2270                         vma_end_reservation(h, vma, address);
2271         }
2272 }
2273
2274 struct page *alloc_huge_page(struct vm_area_struct *vma,
2275                                     unsigned long addr, int avoid_reserve)
2276 {
2277         struct hugepage_subpool *spool = subpool_vma(vma);
2278         struct hstate *h = hstate_vma(vma);
2279         struct page *page;
2280         long map_chg, map_commit;
2281         long gbl_chg;
2282         int ret, idx;
2283         struct hugetlb_cgroup *h_cg;
2284         bool deferred_reserve;
2285
2286         idx = hstate_index(h);
2287         /*
2288          * Examine the region/reserve map to determine if the process
2289          * has a reservation for the page to be allocated.  A return
2290          * code of zero indicates a reservation exists (no change).
2291          */
2292         map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
2293         if (map_chg < 0)
2294                 return ERR_PTR(-ENOMEM);
2295
2296         /*
2297          * Processes that did not create the mapping will have no
2298          * reserves as indicated by the region/reserve map. Check
2299          * that the allocation will not exceed the subpool limit.
2300          * Allocations for MAP_NORESERVE mappings also need to be
2301          * checked against any subpool limit.
2302          */
2303         if (map_chg || avoid_reserve) {
2304                 gbl_chg = hugepage_subpool_get_pages(spool, 1);
2305                 if (gbl_chg < 0) {
2306                         vma_end_reservation(h, vma, addr);
2307                         return ERR_PTR(-ENOSPC);
2308                 }
2309
2310                 /*
2311                  * Even though there was no reservation in the region/reserve
2312                  * map, there could be reservations associated with the
2313                  * subpool that can be used.  This would be indicated if the
2314                  * return value of hugepage_subpool_get_pages() is zero.
2315                  * However, if avoid_reserve is specified we still avoid even
2316                  * the subpool reservations.
2317                  */
2318                 if (avoid_reserve)
2319                         gbl_chg = 1;
2320         }
2321
2322         /* If this allocation is not consuming a reservation, charge it now.
2323          */
2324         deferred_reserve = map_chg || avoid_reserve;
2325         if (deferred_reserve) {
2326                 ret = hugetlb_cgroup_charge_cgroup_rsvd(
2327                         idx, pages_per_huge_page(h), &h_cg);
2328                 if (ret)
2329                         goto out_subpool_put;
2330         }
2331
2332         ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
2333         if (ret)
2334                 goto out_uncharge_cgroup_reservation;
2335
2336         spin_lock(&hugetlb_lock);
2337         /*
2338          * glb_chg is passed to indicate whether or not a page must be taken
2339          * from the global free pool (global change).  gbl_chg == 0 indicates
2340          * a reservation exists for the allocation.
2341          */
2342         page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
2343         if (!page) {
2344                 spin_unlock(&hugetlb_lock);
2345                 page = alloc_buddy_huge_page_with_mpol(h, vma, addr);
2346                 if (!page)
2347                         goto out_uncharge_cgroup;
2348                 if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
2349                         SetHPageRestoreReserve(page);
2350                         h->resv_huge_pages--;
2351                 }
2352                 spin_lock(&hugetlb_lock);
2353                 list_add(&page->lru, &h->hugepage_activelist);
2354                 /* Fall through */
2355         }
2356         hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
2357         /* If allocation is not consuming a reservation, also store the
2358          * hugetlb_cgroup pointer on the page.
2359          */
2360         if (deferred_reserve) {
2361                 hugetlb_cgroup_commit_charge_rsvd(idx, pages_per_huge_page(h),
2362                                                   h_cg, page);
2363         }
2364
2365         spin_unlock(&hugetlb_lock);
2366
2367         hugetlb_set_page_subpool(page, spool);
2368
2369         map_commit = vma_commit_reservation(h, vma, addr);
2370         if (unlikely(map_chg > map_commit)) {
2371                 /*
2372                  * The page was added to the reservation map between
2373                  * vma_needs_reservation and vma_commit_reservation.
2374                  * This indicates a race with hugetlb_reserve_pages.
2375                  * Adjust for the subpool count incremented above AND
2376                  * in hugetlb_reserve_pages for the same page.  Also,
2377                  * the reservation count added in hugetlb_reserve_pages
2378                  * no longer applies.
2379                  */
2380                 long rsv_adjust;
2381
2382                 rsv_adjust = hugepage_subpool_put_pages(spool, 1);
2383                 hugetlb_acct_memory(h, -rsv_adjust);
2384                 if (deferred_reserve)
2385                         hugetlb_cgroup_uncharge_page_rsvd(hstate_index(h),
2386                                         pages_per_huge_page(h), page);
2387         }
2388         return page;
2389
2390 out_uncharge_cgroup:
2391         hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
2392 out_uncharge_cgroup_reservation:
2393         if (deferred_reserve)
2394                 hugetlb_cgroup_uncharge_cgroup_rsvd(idx, pages_per_huge_page(h),
2395                                                     h_cg);
2396 out_subpool_put:
2397         if (map_chg || avoid_reserve)
2398                 hugepage_subpool_put_pages(spool, 1);
2399         vma_end_reservation(h, vma, addr);
2400         return ERR_PTR(-ENOSPC);
2401 }
2402
2403 int alloc_bootmem_huge_page(struct hstate *h)
2404         __attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
2405 int __alloc_bootmem_huge_page(struct hstate *h)
2406 {
2407         struct huge_bootmem_page *m;
2408         int nr_nodes, node;
2409
2410         for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
2411                 void *addr;
2412
2413                 addr = memblock_alloc_try_nid_raw(
2414                                 huge_page_size(h), huge_page_size(h),
2415                                 0, MEMBLOCK_ALLOC_ACCESSIBLE, node);
2416                 if (addr) {
2417                         /*
2418                          * Use the beginning of the huge page to store the
2419                          * huge_bootmem_page struct (until gather_bootmem
2420                          * puts them into the mem_map).
2421                          */
2422                         m = addr;
2423                         goto found;
2424                 }
2425         }
2426         return 0;
2427
2428 found:
2429         BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h)));
2430         /* Put them into a private list first because mem_map is not up yet */
2431         INIT_LIST_HEAD(&m->list);
2432         list_add(&m->list, &huge_boot_pages);
2433         m->hstate = h;
2434         return 1;
2435 }
2436
2437 static void __init prep_compound_huge_page(struct page *page,
2438                 unsigned int order)
2439 {
2440         if (unlikely(order > (MAX_ORDER - 1)))
2441                 prep_compound_gigantic_page(page, order);
2442         else
2443                 prep_compound_page(page, order);
2444 }
2445
2446 /* Put bootmem huge pages into the standard lists after mem_map is up */
2447 static void __init gather_bootmem_prealloc(void)
2448 {
2449         struct huge_bootmem_page *m;
2450
2451         list_for_each_entry(m, &huge_boot_pages, list) {
2452                 struct page *page = virt_to_page(m);
2453                 struct hstate *h = m->hstate;
2454
2455                 WARN_ON(page_count(page) != 1);
2456                 prep_compound_huge_page(page, huge_page_order(h));
2457                 WARN_ON(PageReserved(page));
2458                 prep_new_huge_page(h, page, page_to_nid(page));
2459                 put_page(page); /* free it into the hugepage allocator */
2460
2461                 /*
2462                  * If we had gigantic hugepages allocated at boot time, we need
2463                  * to restore the 'stolen' pages to totalram_pages in order to
2464                  * fix confusing memory reports from free(1) and another
2465                  * side-effects, like CommitLimit going negative.
2466                  */
2467                 if (hstate_is_gigantic(h))
2468                         adjust_managed_page_count(page, pages_per_huge_page(h));
2469                 cond_resched();
2470         }
2471 }
2472
2473 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
2474 {
2475         unsigned long i;
2476         nodemask_t *node_alloc_noretry;
2477
2478         if (!hstate_is_gigantic(h)) {
2479                 /*
2480                  * Bit mask controlling how hard we retry per-node allocations.
2481                  * Ignore errors as lower level routines can deal with
2482                  * node_alloc_noretry == NULL.  If this kmalloc fails at boot
2483                  * time, we are likely in bigger trouble.
2484                  */
2485                 node_alloc_noretry = kmalloc(sizeof(*node_alloc_noretry),
2486                                                 GFP_KERNEL);
2487         } else {
2488                 /* allocations done at boot time */
2489                 node_alloc_noretry = NULL;
2490         }
2491
2492         /* bit mask controlling how hard we retry per-node allocations */
2493         if (node_alloc_noretry)
2494                 nodes_clear(*node_alloc_noretry);
2495
2496         for (i = 0; i < h->max_huge_pages; ++i) {
2497                 if (hstate_is_gigantic(h)) {
2498                         if (hugetlb_cma_size) {
2499                                 pr_warn_once("HugeTLB: hugetlb_cma is enabled, skip boot time allocation\n");
2500                                 goto free;
2501                         }
2502                         if (!alloc_bootmem_huge_page(h))
2503                                 break;
2504                 } else if (!alloc_pool_huge_page(h,
2505                                          &node_states[N_MEMORY],
2506                                          node_alloc_noretry))
2507                         break;
2508                 cond_resched();
2509         }
2510         if (i < h->max_huge_pages) {
2511                 char buf[32];
2512
2513                 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
2514                 pr_warn("HugeTLB: allocating %lu of page size %s failed.  Only allocated %lu hugepages.\n",
2515                         h->max_huge_pages, buf, i);
2516                 h->max_huge_pages = i;
2517         }
2518 free:
2519         kfree(node_alloc_noretry);
2520 }
2521
2522 static void __init hugetlb_init_hstates(void)
2523 {
2524         struct hstate *h;
2525
2526         for_each_hstate(h) {
2527                 if (minimum_order > huge_page_order(h))
2528                         minimum_order = huge_page_order(h);
2529
2530                 /* oversize hugepages were init'ed in early boot */
2531                 if (!hstate_is_gigantic(h))
2532                         hugetlb_hstate_alloc_pages(h);
2533         }
2534         VM_BUG_ON(minimum_order == UINT_MAX);
2535 }
2536
2537 static void __init report_hugepages(void)
2538 {
2539         struct hstate *h;
2540
2541         for_each_hstate(h) {
2542                 char buf[32];
2543
2544                 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
2545                 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
2546                         buf, h->free_huge_pages);
2547         }
2548 }
2549
2550 #ifdef CONFIG_HIGHMEM
2551 static void try_to_free_low(struct hstate *h, unsigned long count,
2552                                                 nodemask_t *nodes_allowed)
2553 {
2554         int i;
2555
2556         if (hstate_is_gigantic(h))
2557                 return;
2558
2559         for_each_node_mask(i, *nodes_allowed) {
2560                 struct page *page, *next;
2561                 struct list_head *freel = &h->hugepage_freelists[i];
2562                 list_for_each_entry_safe(page, next, freel, lru) {
2563                         if (count >= h->nr_huge_pages)
2564                                 return;
2565                         if (PageHighMem(page))
2566                                 continue;
2567                         list_del(&page->lru);
2568                         update_and_free_page(h, page);
2569                         h->free_huge_pages--;
2570                         h->free_huge_pages_node[page_to_nid(page)]--;
2571                 }
2572         }
2573 }
2574 #else
2575 static inline void try_to_free_low(struct hstate *h, unsigned long count,
2576                                                 nodemask_t *nodes_allowed)
2577 {
2578 }
2579 #endif
2580
2581 /*
2582  * Increment or decrement surplus_huge_pages.  Keep node-specific counters
2583  * balanced by operating on them in a round-robin fashion.
2584  * Returns 1 if an adjustment was made.
2585  */
2586 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
2587                                 int delta)
2588 {
2589         int nr_nodes, node;
2590
2591         VM_BUG_ON(delta != -1 && delta != 1);
2592
2593         if (delta < 0) {
2594                 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
2595                         if (h->surplus_huge_pages_node[node])
2596                                 goto found;
2597                 }
2598         } else {
2599                 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2600                         if (h->surplus_huge_pages_node[node] <
2601                                         h->nr_huge_pages_node[node])
2602                                 goto found;
2603                 }
2604         }
2605         return 0;
2606
2607 found:
2608         h->surplus_huge_pages += delta;
2609         h->surplus_huge_pages_node[node] += delta;
2610         return 1;
2611 }
2612
2613 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
2614 static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid,
2615                               nodemask_t *nodes_allowed)
2616 {
2617         unsigned long min_count, ret;
2618         NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL);
2619
2620         /*
2621          * Bit mask controlling how hard we retry per-node allocations.
2622          * If we can not allocate the bit mask, do not attempt to allocate
2623          * the requested huge pages.
2624          */
2625         if (node_alloc_noretry)
2626                 nodes_clear(*node_alloc_noretry);
2627         else
2628                 return -ENOMEM;
2629
2630         spin_lock(&hugetlb_lock);
2631
2632         /*
2633          * Check for a node specific request.
2634          * Changing node specific huge page count may require a corresponding
2635          * change to the global count.  In any case, the passed node mask
2636          * (nodes_allowed) will restrict alloc/free to the specified node.
2637          */
2638         if (nid != NUMA_NO_NODE) {
2639                 unsigned long old_count = count;
2640
2641                 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
2642                 /*
2643                  * User may have specified a large count value which caused the
2644                  * above calculation to overflow.  In this case, they wanted
2645                  * to allocate as many huge pages as possible.  Set count to
2646                  * largest possible value to align with their intention.
2647                  */
2648                 if (count < old_count)
2649                         count = ULONG_MAX;
2650         }
2651
2652         /*
2653          * Gigantic pages runtime allocation depend on the capability for large
2654          * page range allocation.
2655          * If the system does not provide this feature, return an error when
2656          * the user tries to allocate gigantic pages but let the user free the
2657          * boottime allocated gigantic pages.
2658          */
2659         if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) {
2660                 if (count > persistent_huge_pages(h)) {
2661                         spin_unlock(&hugetlb_lock);
2662                         NODEMASK_FREE(node_alloc_noretry);
2663                         return -EINVAL;
2664                 }
2665                 /* Fall through to decrease pool */
2666         }
2667
2668         /*
2669          * Increase the pool size
2670          * First take pages out of surplus state.  Then make up the
2671          * remaining difference by allocating fresh huge pages.
2672          *
2673          * We might race with alloc_surplus_huge_page() here and be unable
2674          * to convert a surplus huge page to a normal huge page. That is
2675          * not critical, though, it just means the overall size of the
2676          * pool might be one hugepage larger than it needs to be, but
2677          * within all the constraints specified by the sysctls.
2678          */
2679         while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
2680                 if (!adjust_pool_surplus(h, nodes_allowed, -1))
2681                         break;
2682         }
2683
2684         while (count > persistent_huge_pages(h)) {
2685                 /*
2686                  * If this allocation races such that we no longer need the
2687                  * page, free_huge_page will handle it by freeing the page
2688                  * and reducing the surplus.
2689                  */
2690                 spin_unlock(&hugetlb_lock);
2691
2692                 /* yield cpu to avoid soft lockup */
2693                 cond_resched();
2694
2695                 ret = alloc_pool_huge_page(h, nodes_allowed,
2696                                                 node_alloc_noretry);
2697                 spin_lock(&hugetlb_lock);
2698                 if (!ret)
2699                         goto out;
2700
2701                 /* Bail for signals. Probably ctrl-c from user */
2702                 if (signal_pending(current))
2703                         goto out;
2704         }
2705
2706         /*
2707          * Decrease the pool size
2708          * First return free pages to the buddy allocator (being careful
2709          * to keep enough around to satisfy reservations).  Then place
2710          * pages into surplus state as needed so the pool will shrink
2711          * to the desired size as pages become free.
2712          *
2713          * By placing pages into the surplus state independent of the
2714          * overcommit value, we are allowing the surplus pool size to
2715          * exceed overcommit. There are few sane options here. Since
2716          * alloc_surplus_huge_page() is checking the global counter,
2717          * though, we'll note that we're not allowed to exceed surplus
2718          * and won't grow the pool anywhere else. Not until one of the
2719          * sysctls are changed, or the surplus pages go out of use.
2720          */
2721         min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
2722         min_count = max(count, min_count);
2723         try_to_free_low(h, min_count, nodes_allowed);
2724         while (min_count < persistent_huge_pages(h)) {
2725                 if (!free_pool_huge_page(h, nodes_allowed, 0))
2726                         break;
2727                 cond_resched_lock(&hugetlb_lock);
2728         }
2729         while (count < persistent_huge_pages(h)) {
2730                 if (!adjust_pool_surplus(h, nodes_allowed, 1))
2731                         break;
2732         }
2733 out:
2734         h->max_huge_pages = persistent_huge_pages(h);
2735         spin_unlock(&hugetlb_lock);
2736
2737         NODEMASK_FREE(node_alloc_noretry);
2738
2739         return 0;
2740 }
2741
2742 #define HSTATE_ATTR_RO(_name) \
2743         static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2744
2745 #define HSTATE_ATTR(_name) \
2746         static struct kobj_attribute _name##_attr = \
2747                 __ATTR(_name, 0644, _name##_show, _name##_store)
2748
2749 static struct kobject *hugepages_kobj;
2750 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2751
2752 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
2753
2754 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
2755 {
2756         int i;
2757
2758         for (i = 0; i < HUGE_MAX_HSTATE; i++)
2759                 if (hstate_kobjs[i] == kobj) {
2760                         if (nidp)
2761                                 *nidp = NUMA_NO_NODE;
2762                         return &hstates[i];
2763                 }
2764
2765         return kobj_to_node_hstate(kobj, nidp);
2766 }
2767
2768 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
2769                                         struct kobj_attribute *attr, char *buf)
2770 {
2771         struct hstate *h;
2772         unsigned long nr_huge_pages;
2773         int nid;
2774
2775         h = kobj_to_hstate(kobj, &nid);
2776         if (nid == NUMA_NO_NODE)
2777                 nr_huge_pages = h->nr_huge_pages;
2778         else
2779                 nr_huge_pages = h->nr_huge_pages_node[nid];
2780
2781         return sysfs_emit(buf, "%lu\n", nr_huge_pages);
2782 }
2783
2784 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
2785                                            struct hstate *h, int nid,
2786                                            unsigned long count, size_t len)
2787 {
2788         int err;
2789         nodemask_t nodes_allowed, *n_mask;
2790
2791         if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
2792                 return -EINVAL;
2793
2794         if (nid == NUMA_NO_NODE) {
2795                 /*
2796                  * global hstate attribute
2797                  */
2798                 if (!(obey_mempolicy &&
2799                                 init_nodemask_of_mempolicy(&nodes_allowed)))
2800                         n_mask = &node_states[N_MEMORY];
2801                 else
2802                         n_mask = &nodes_allowed;
2803         } else {
2804                 /*
2805                  * Node specific request.  count adjustment happens in
2806                  * set_max_huge_pages() after acquiring hugetlb_lock.
2807                  */
2808                 init_nodemask_of_node(&nodes_allowed, nid);
2809                 n_mask = &nodes_allowed;
2810         }
2811
2812         err = set_max_huge_pages(h, count, nid, n_mask);
2813
2814         return err ? err : len;
2815 }
2816
2817 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
2818                                          struct kobject *kobj, const char *buf,
2819                                          size_t len)
2820 {
2821         struct hstate *h;
2822         unsigned long count;
2823         int nid;
2824         int err;
2825
2826         err = kstrtoul(buf, 10, &count);
2827         if (err)
2828                 return err;
2829
2830         h = kobj_to_hstate(kobj, &nid);
2831         return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
2832 }
2833
2834 static ssize_t nr_hugepages_show(struct kobject *kobj,
2835                                        struct kobj_attribute *attr, char *buf)
2836 {
2837         return nr_hugepages_show_common(kobj, attr, buf);
2838 }
2839
2840 static ssize_t nr_hugepages_store(struct kobject *kobj,
2841                struct kobj_attribute *attr, const char *buf, size_t len)
2842 {
2843         return nr_hugepages_store_common(false, kobj, buf, len);
2844 }
2845 HSTATE_ATTR(nr_hugepages);
2846
2847 #ifdef CONFIG_NUMA
2848
2849 /*
2850  * hstate attribute for optionally mempolicy-based constraint on persistent
2851  * huge page alloc/free.
2852  */
2853 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
2854                                            struct kobj_attribute *attr,
2855                                            char *buf)
2856 {
2857         return nr_hugepages_show_common(kobj, attr, buf);
2858 }
2859
2860 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
2861                struct kobj_attribute *attr, const char *buf, size_t len)
2862 {
2863         return nr_hugepages_store_common(true, kobj, buf, len);
2864 }
2865 HSTATE_ATTR(nr_hugepages_mempolicy);
2866 #endif
2867
2868
2869 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
2870                                         struct kobj_attribute *attr, char *buf)
2871 {
2872         struct hstate *h = kobj_to_hstate(kobj, NULL);
2873         return sysfs_emit(buf, "%lu\n", h->nr_overcommit_huge_pages);
2874 }
2875
2876 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
2877                 struct kobj_attribute *attr, const char *buf, size_t count)
2878 {
2879         int err;
2880         unsigned long input;
2881         struct hstate *h = kobj_to_hstate(kobj, NULL);
2882
2883         if (hstate_is_gigantic(h))
2884                 return -EINVAL;
2885
2886         err = kstrtoul(buf, 10, &input);
2887         if (err)
2888                 return err;
2889
2890         spin_lock(&hugetlb_lock);
2891         h->nr_overcommit_huge_pages = input;
2892         spin_unlock(&hugetlb_lock);
2893
2894         return count;
2895 }
2896 HSTATE_ATTR(nr_overcommit_hugepages);
2897
2898 static ssize_t free_hugepages_show(struct kobject *kobj,
2899                                         struct kobj_attribute *attr, char *buf)
2900 {
2901         struct hstate *h;
2902         unsigned long free_huge_pages;
2903         int nid;
2904
2905         h = kobj_to_hstate(kobj, &nid);
2906         if (nid == NUMA_NO_NODE)
2907                 free_huge_pages = h->free_huge_pages;
2908         else
2909                 free_huge_pages = h->free_huge_pages_node[nid];
2910
2911         return sysfs_emit(buf, "%lu\n", free_huge_pages);
2912 }
2913 HSTATE_ATTR_RO(free_hugepages);
2914
2915 static ssize_t resv_hugepages_show(struct kobject *kobj,
2916                                         struct kobj_attribute *attr, char *buf)
2917 {
2918         struct hstate *h = kobj_to_hstate(kobj, NULL);
2919         return sysfs_emit(buf, "%lu\n", h->resv_huge_pages);
2920 }
2921 HSTATE_ATTR_RO(resv_hugepages);
2922
2923 static ssize_t surplus_hugepages_show(struct kobject *kobj,
2924                                         struct kobj_attribute *attr, char *buf)
2925 {
2926         struct hstate *h;
2927         unsigned long surplus_huge_pages;
2928         int nid;
2929
2930         h = kobj_to_hstate(kobj, &nid);
2931         if (nid == NUMA_NO_NODE)
2932                 surplus_huge_pages = h->surplus_huge_pages;
2933         else
2934                 surplus_huge_pages = h->surplus_huge_pages_node[nid];
2935
2936         return sysfs_emit(buf, "%lu\n", surplus_huge_pages);
2937 }
2938 HSTATE_ATTR_RO(surplus_hugepages);
2939
2940 static struct attribute *hstate_attrs[] = {
2941         &nr_hugepages_attr.attr,
2942         &nr_overcommit_hugepages_attr.attr,
2943         &free_hugepages_attr.attr,
2944         &resv_hugepages_attr.attr,
2945         &surplus_hugepages_attr.attr,
2946 #ifdef CONFIG_NUMA
2947         &nr_hugepages_mempolicy_attr.attr,
2948 #endif
2949         NULL,
2950 };
2951
2952 static const struct attribute_group hstate_attr_group = {
2953         .attrs = hstate_attrs,
2954 };
2955
2956 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
2957                                     struct kobject **hstate_kobjs,
2958                                     const struct attribute_group *hstate_attr_group)
2959 {
2960         int retval;
2961         int hi = hstate_index(h);
2962
2963         hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
2964         if (!hstate_kobjs[hi])
2965                 return -ENOMEM;
2966
2967         retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
2968         if (retval) {
2969                 kobject_put(hstate_kobjs[hi]);
2970                 hstate_kobjs[hi] = NULL;
2971         }
2972
2973         return retval;
2974 }
2975
2976 static void __init hugetlb_sysfs_init(void)
2977 {
2978         struct hstate *h;
2979         int err;
2980
2981         hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
2982         if (!hugepages_kobj)
2983                 return;
2984
2985         for_each_hstate(h) {
2986                 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
2987                                          hstate_kobjs, &hstate_attr_group);
2988                 if (err)
2989                         pr_err("HugeTLB: Unable to add hstate %s", h->name);
2990         }
2991 }
2992
2993 #ifdef CONFIG_NUMA
2994
2995 /*
2996  * node_hstate/s - associate per node hstate attributes, via their kobjects,
2997  * with node devices in node_devices[] using a parallel array.  The array
2998  * index of a node device or _hstate == node id.
2999  * This is here to avoid any static dependency of the node device driver, in
3000  * the base kernel, on the hugetlb module.
3001  */
3002 struct node_hstate {
3003         struct kobject          *hugepages_kobj;
3004         struct kobject          *hstate_kobjs[HUGE_MAX_HSTATE];
3005 };
3006 static struct node_hstate node_hstates[MAX_NUMNODES];
3007
3008 /*
3009  * A subset of global hstate attributes for node devices
3010  */
3011 static struct attribute *per_node_hstate_attrs[] = {
3012         &nr_hugepages_attr.attr,
3013         &free_hugepages_attr.attr,
3014         &surplus_hugepages_attr.attr,
3015         NULL,
3016 };
3017
3018 static const struct attribute_group per_node_hstate_attr_group = {
3019         .attrs = per_node_hstate_attrs,
3020 };
3021
3022 /*
3023  * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
3024  * Returns node id via non-NULL nidp.
3025  */
3026 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
3027 {
3028         int nid;
3029
3030         for (nid = 0; nid < nr_node_ids; nid++) {
3031                 struct node_hstate *nhs = &node_hstates[nid];
3032                 int i;
3033                 for (i = 0; i < HUGE_MAX_HSTATE; i++)
3034                         if (nhs->hstate_kobjs[i] == kobj) {
3035                                 if (nidp)
3036                                         *nidp = nid;
3037                                 return &hstates[i];
3038                         }
3039         }
3040
3041         BUG();
3042         return NULL;
3043 }
3044
3045 /*
3046  * Unregister hstate attributes from a single node device.
3047  * No-op if no hstate attributes attached.
3048  */
3049 static void hugetlb_unregister_node(struct node *node)
3050 {
3051         struct hstate *h;
3052         struct node_hstate *nhs = &node_hstates[node->dev.id];
3053
3054         if (!nhs->hugepages_kobj)
3055                 return;         /* no hstate attributes */
3056
3057         for_each_hstate(h) {
3058                 int idx = hstate_index(h);
3059                 if (nhs->hstate_kobjs[idx]) {
3060                         kobject_put(nhs->hstate_kobjs[idx]);
3061                         nhs->hstate_kobjs[idx] = NULL;
3062                 }
3063         }
3064
3065         kobject_put(nhs->hugepages_kobj);
3066         nhs->hugepages_kobj = NULL;
3067 }
3068
3069
3070 /*
3071  * Register hstate attributes for a single node device.
3072  * No-op if attributes already registered.
3073  */
3074 static void hugetlb_register_node(struct node *node)
3075 {
3076         struct hstate *h;
3077         struct node_hstate *nhs = &node_hstates[node->dev.id];
3078         int err;
3079
3080         if (nhs->hugepages_kobj)
3081                 return;         /* already allocated */
3082
3083         nhs->hugepages_kobj = kobject_create_and_add("hugepages",
3084                                                         &node->dev.kobj);
3085         if (!nhs->hugepages_kobj)
3086                 return;
3087
3088         for_each_hstate(h) {
3089                 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
3090                                                 nhs->hstate_kobjs,
3091                                                 &per_node_hstate_attr_group);
3092                 if (err) {
3093                         pr_err("HugeTLB: Unable to add hstate %s for node %d\n",
3094                                 h->name, node->dev.id);
3095                         hugetlb_unregister_node(node);
3096                         break;
3097                 }
3098         }
3099 }
3100
3101 /*
3102  * hugetlb init time:  register hstate attributes for all registered node
3103  * devices of nodes that have memory.  All on-line nodes should have
3104  * registered their associated device by this time.
3105  */
3106 static void __init hugetlb_register_all_nodes(void)
3107 {
3108         int nid;
3109
3110         for_each_node_state(nid, N_MEMORY) {
3111                 struct node *node = node_devices[nid];
3112                 if (node->dev.id == nid)
3113                         hugetlb_register_node(node);
3114         }
3115
3116         /*
3117          * Let the node device driver know we're here so it can
3118          * [un]register hstate attributes on node hotplug.
3119          */
3120         register_hugetlbfs_with_node(hugetlb_register_node,
3121                                      hugetlb_unregister_node);
3122 }
3123 #else   /* !CONFIG_NUMA */
3124
3125 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
3126 {
3127         BUG();
3128         if (nidp)
3129                 *nidp = -1;
3130         return NULL;
3131 }
3132
3133 static void hugetlb_register_all_nodes(void) { }
3134
3135 #endif
3136
3137 static int __init hugetlb_init(void)
3138 {
3139         int i;
3140
3141         BUILD_BUG_ON(sizeof_field(struct page, private) * BITS_PER_BYTE <
3142                         __NR_HPAGEFLAGS);
3143
3144         if (!hugepages_supported()) {
3145                 if (hugetlb_max_hstate || default_hstate_max_huge_pages)
3146                         pr_warn("HugeTLB: huge pages not supported, ignoring associated command-line parameters\n");
3147                 return 0;
3148         }
3149
3150         /*
3151          * Make sure HPAGE_SIZE (HUGETLB_PAGE_ORDER) hstate exists.  Some
3152          * architectures depend on setup being done here.
3153          */
3154         hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
3155         if (!parsed_default_hugepagesz) {
3156                 /*
3157                  * If we did not parse a default huge page size, set
3158                  * default_hstate_idx to HPAGE_SIZE hstate. And, if the
3159                  * number of huge pages for this default size was implicitly
3160                  * specified, set that here as well.
3161                  * Note that the implicit setting will overwrite an explicit
3162                  * setting.  A warning will be printed in this case.
3163                  */
3164                 default_hstate_idx = hstate_index(size_to_hstate(HPAGE_SIZE));
3165                 if (default_hstate_max_huge_pages) {
3166                         if (default_hstate.max_huge_pages) {
3167                                 char buf[32];
3168
3169                                 string_get_size(huge_page_size(&default_hstate),
3170                                         1, STRING_UNITS_2, buf, 32);
3171                                 pr_warn("HugeTLB: Ignoring hugepages=%lu associated with %s page size\n",
3172                                         default_hstate.max_huge_pages, buf);
3173                                 pr_warn("HugeTLB: Using hugepages=%lu for number of default huge pages\n",
3174                                         default_hstate_max_huge_pages);
3175                         }
3176                         default_hstate.max_huge_pages =
3177                                 default_hstate_max_huge_pages;
3178                 }
3179         }
3180
3181         hugetlb_cma_check();
3182         hugetlb_init_hstates();
3183         gather_bootmem_prealloc();
3184         report_hugepages();
3185
3186         hugetlb_sysfs_init();
3187         hugetlb_register_all_nodes();
3188         hugetlb_cgroup_file_init();
3189
3190 #ifdef CONFIG_SMP
3191         num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
3192 #else
3193         num_fault_mutexes = 1;
3194 #endif
3195         hugetlb_fault_mutex_table =
3196                 kmalloc_array(num_fault_mutexes, sizeof(struct mutex),
3197                               GFP_KERNEL);
3198         BUG_ON(!hugetlb_fault_mutex_table);
3199
3200         for (i = 0; i < num_fault_mutexes; i++)
3201                 mutex_init(&hugetlb_fault_mutex_table[i]);
3202         return 0;
3203 }
3204 subsys_initcall(hugetlb_init);
3205
3206 /* Overwritten by architectures with more huge page sizes */
3207 bool __init __attribute((weak)) arch_hugetlb_valid_size(unsigned long size)
3208 {
3209         return size == HPAGE_SIZE;
3210 }
3211
3212 void __init hugetlb_add_hstate(unsigned int order)
3213 {
3214         struct hstate *h;
3215         unsigned long i;
3216
3217         if (size_to_hstate(PAGE_SIZE << order)) {
3218                 return;
3219         }
3220         BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
3221         BUG_ON(order == 0);
3222         h = &hstates[hugetlb_max_hstate++];
3223         h->order = order;
3224         h->mask = ~(huge_page_size(h) - 1);
3225         for (i = 0; i < MAX_NUMNODES; ++i)
3226                 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
3227         INIT_LIST_HEAD(&h->hugepage_activelist);
3228         h->next_nid_to_alloc = first_memory_node;
3229         h->next_nid_to_free = first_memory_node;
3230         snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
3231                                         huge_page_size(h)/1024);
3232
3233         parsed_hstate = h;
3234 }
3235
3236 /*
3237  * hugepages command line processing
3238  * hugepages normally follows a valid hugepagsz or default_hugepagsz
3239  * specification.  If not, ignore the hugepages value.  hugepages can also
3240  * be the first huge page command line  option in which case it implicitly
3241  * specifies the number of huge pages for the default size.
3242  */
3243 static int __init hugepages_setup(char *s)
3244 {
3245         unsigned long *mhp;
3246         static unsigned long *last_mhp;
3247
3248         if (!parsed_valid_hugepagesz) {
3249                 pr_warn("HugeTLB: hugepages=%s does not follow a valid hugepagesz, ignoring\n", s);
3250                 parsed_valid_hugepagesz = true;
3251                 return 0;
3252         }
3253
3254         /*
3255          * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter
3256          * yet, so this hugepages= parameter goes to the "default hstate".
3257          * Otherwise, it goes with the previously parsed hugepagesz or
3258          * default_hugepagesz.
3259          */
3260         else if (!hugetlb_max_hstate)
3261                 mhp = &default_hstate_max_huge_pages;
3262         else
3263                 mhp = &parsed_hstate->max_huge_pages;
3264
3265         if (mhp == last_mhp) {
3266                 pr_warn("HugeTLB: hugepages= specified twice without interleaving hugepagesz=, ignoring hugepages=%s\n", s);
3267                 return 0;
3268         }
3269
3270         if (sscanf(s, "%lu", mhp) <= 0)
3271                 *mhp = 0;
3272
3273         /*
3274          * Global state is always initialized later in hugetlb_init.
3275          * But we need to allocate gigantic hstates here early to still
3276          * use the bootmem allocator.
3277          */
3278         if (hugetlb_max_hstate && hstate_is_gigantic(parsed_hstate))
3279                 hugetlb_hstate_alloc_pages(parsed_hstate);
3280
3281         last_mhp = mhp;
3282
3283         return 1;
3284 }
3285 __setup("hugepages=", hugepages_setup);
3286
3287 /*
3288  * hugepagesz command line processing
3289  * A specific huge page size can only be specified once with hugepagesz.
3290  * hugepagesz is followed by hugepages on the command line.  The global
3291  * variable 'parsed_valid_hugepagesz' is used to determine if prior
3292  * hugepagesz argument was valid.
3293  */
3294 static int __init hugepagesz_setup(char *s)
3295 {
3296         unsigned long size;
3297         struct hstate *h;
3298
3299         parsed_valid_hugepagesz = false;
3300         size = (unsigned long)memparse(s, NULL);
3301
3302         if (!arch_hugetlb_valid_size(size)) {
3303                 pr_err("HugeTLB: unsupported hugepagesz=%s\n", s);
3304                 return 0;
3305         }
3306
3307         h = size_to_hstate(size);
3308         if (h) {
3309                 /*
3310                  * hstate for this size already exists.  This is normally
3311                  * an error, but is allowed if the existing hstate is the
3312                  * default hstate.  More specifically, it is only allowed if
3313                  * the number of huge pages for the default hstate was not
3314                  * previously specified.
3315                  */
3316                 if (!parsed_default_hugepagesz ||  h != &default_hstate ||
3317                     default_hstate.max_huge_pages) {
3318                         pr_warn("HugeTLB: hugepagesz=%s specified twice, ignoring\n", s);
3319                         return 0;
3320                 }
3321
3322                 /*
3323                  * No need to call hugetlb_add_hstate() as hstate already
3324                  * exists.  But, do set parsed_hstate so that a following
3325                  * hugepages= parameter will be applied to this hstate.
3326                  */
3327                 parsed_hstate = h;
3328                 parsed_valid_hugepagesz = true;
3329                 return 1;
3330         }
3331
3332         hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
3333         parsed_valid_hugepagesz = true;
3334         return 1;
3335 }
3336 __setup("hugepagesz=", hugepagesz_setup);
3337
3338 /*
3339  * default_hugepagesz command line input
3340  * Only one instance of default_hugepagesz allowed on command line.
3341  */
3342 static int __init default_hugepagesz_setup(char *s)
3343 {
3344         unsigned long size;
3345
3346         parsed_valid_hugepagesz = false;
3347         if (parsed_default_hugepagesz) {
3348                 pr_err("HugeTLB: default_hugepagesz previously specified, ignoring %s\n", s);
3349                 return 0;
3350         }
3351
3352         size = (unsigned long)memparse(s, NULL);
3353
3354         if (!arch_hugetlb_valid_size(size)) {
3355                 pr_err("HugeTLB: unsupported default_hugepagesz=%s\n", s);
3356                 return 0;
3357         }
3358
3359         hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
3360         parsed_valid_hugepagesz = true;
3361         parsed_default_hugepagesz = true;
3362         default_hstate_idx = hstate_index(size_to_hstate(size));
3363
3364         /*
3365          * The number of default huge pages (for this size) could have been
3366          * specified as the first hugetlb parameter: hugepages=X.  If so,
3367          * then default_hstate_max_huge_pages is set.  If the default huge
3368          * page size is gigantic (>= MAX_ORDER), then the pages must be
3369          * allocated here from bootmem allocator.
3370          */
3371         if (default_hstate_max_huge_pages) {
3372                 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
3373                 if (hstate_is_gigantic(&default_hstate))
3374                         hugetlb_hstate_alloc_pages(&default_hstate);
3375                 default_hstate_max_huge_pages = 0;
3376         }
3377
3378         return 1;
3379 }
3380 __setup("default_hugepagesz=", default_hugepagesz_setup);
3381
3382 static unsigned int allowed_mems_nr(struct hstate *h)
3383 {
3384         int node;
3385         unsigned int nr = 0;
3386         nodemask_t *mpol_allowed;
3387         unsigned int *array = h->free_huge_pages_node;
3388         gfp_t gfp_mask = htlb_alloc_mask(h);
3389
3390         mpol_allowed = policy_nodemask_current(gfp_mask);
3391
3392         for_each_node_mask(node, cpuset_current_mems_allowed) {
3393                 if (!mpol_allowed || node_isset(node, *mpol_allowed))
3394                         nr += array[node];
3395         }
3396
3397         return nr;
3398 }
3399
3400 #ifdef CONFIG_SYSCTL
3401 static int proc_hugetlb_doulongvec_minmax(struct ctl_table *table, int write,
3402                                           void *buffer, size_t *length,
3403                                           loff_t *ppos, unsigned long *out)
3404 {
3405         struct ctl_table dup_table;
3406
3407         /*
3408          * In order to avoid races with __do_proc_doulongvec_minmax(), we
3409          * can duplicate the @table and alter the duplicate of it.
3410          */
3411         dup_table = *table;
3412         dup_table.data = out;
3413
3414         return proc_doulongvec_minmax(&dup_table, write, buffer, length, ppos);
3415 }
3416
3417 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
3418                          struct ctl_table *table, int write,
3419                          void *buffer, size_t *length, loff_t *ppos)
3420 {
3421         struct hstate *h = &default_hstate;
3422         unsigned long tmp = h->max_huge_pages;
3423         int ret;
3424
3425         if (!hugepages_supported())
3426                 return -EOPNOTSUPP;
3427
3428         ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
3429                                              &tmp);
3430         if (ret)
3431                 goto out;
3432
3433         if (write)
3434                 ret = __nr_hugepages_store_common(obey_mempolicy, h,
3435                                                   NUMA_NO_NODE, tmp, *length);
3436 out:
3437         return ret;
3438 }
3439
3440 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
3441                           void *buffer, size_t *length, loff_t *ppos)
3442 {
3443
3444         return hugetlb_sysctl_handler_common(false, table, write,
3445                                                         buffer, length, ppos);
3446 }
3447
3448 #ifdef CONFIG_NUMA
3449 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
3450                           void *buffer, size_t *length, loff_t *ppos)
3451 {
3452         return hugetlb_sysctl_handler_common(true, table, write,
3453                                                         buffer, length, ppos);
3454 }
3455 #endif /* CONFIG_NUMA */
3456
3457 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
3458                 void *buffer, size_t *length, loff_t *ppos)
3459 {
3460         struct hstate *h = &default_hstate;
3461         unsigned long tmp;
3462         int ret;
3463
3464         if (!hugepages_supported())
3465                 return -EOPNOTSUPP;
3466
3467         tmp = h->nr_overcommit_huge_pages;
3468
3469         if (write && hstate_is_gigantic(h))
3470                 return -EINVAL;
3471
3472         ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
3473                                              &tmp);
3474         if (ret)
3475                 goto out;
3476
3477         if (write) {
3478                 spin_lock(&hugetlb_lock);
3479                 h->nr_overcommit_huge_pages = tmp;
3480                 spin_unlock(&hugetlb_lock);
3481         }
3482 out:
3483         return ret;
3484 }
3485
3486 #endif /* CONFIG_SYSCTL */
3487
3488 void hugetlb_report_meminfo(struct seq_file *m)
3489 {
3490         struct hstate *h;
3491         unsigned long total = 0;
3492
3493         if (!hugepages_supported())
3494                 return;
3495
3496         for_each_hstate(h) {
3497                 unsigned long count = h->nr_huge_pages;
3498
3499                 total += huge_page_size(h) * count;
3500
3501                 if (h == &default_hstate)
3502                         seq_printf(m,
3503                                    "HugePages_Total:   %5lu\n"
3504                                    "HugePages_Free:    %5lu\n"
3505                                    "HugePages_Rsvd:    %5lu\n"
3506                                    "HugePages_Surp:    %5lu\n"
3507                                    "Hugepagesize:   %8lu kB\n",
3508                                    count,
3509                                    h->free_huge_pages,
3510                                    h->resv_huge_pages,
3511                                    h->surplus_huge_pages,
3512                                    huge_page_size(h) / SZ_1K);
3513         }
3514
3515         seq_printf(m, "Hugetlb:        %8lu kB\n", total / SZ_1K);
3516 }
3517
3518 int hugetlb_report_node_meminfo(char *buf, int len, int nid)
3519 {
3520         struct hstate *h = &default_hstate;
3521
3522         if (!hugepages_supported())
3523                 return 0;
3524
3525         return sysfs_emit_at(buf, len,
3526                              "Node %d HugePages_Total: %5u\n"
3527                              "Node %d HugePages_Free:  %5u\n"
3528                              "Node %d HugePages_Surp:  %5u\n",
3529                              nid, h->nr_huge_pages_node[nid],
3530                              nid, h->free_huge_pages_node[nid],
3531                              nid, h->surplus_huge_pages_node[nid]);
3532 }
3533
3534 void hugetlb_show_meminfo(void)
3535 {
3536         struct hstate *h;
3537         int nid;
3538
3539         if (!hugepages_supported())
3540                 return;
3541
3542         for_each_node_state(nid, N_MEMORY)
3543                 for_each_hstate(h)
3544                         pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
3545                                 nid,
3546                                 h->nr_huge_pages_node[nid],
3547                                 h->free_huge_pages_node[nid],
3548                                 h->surplus_huge_pages_node[nid],
3549                                 huge_page_size(h) / SZ_1K);
3550 }
3551
3552 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
3553 {
3554         seq_printf(m, "HugetlbPages:\t%8lu kB\n",
3555                    atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
3556 }
3557
3558 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
3559 unsigned long hugetlb_total_pages(void)
3560 {
3561         struct hstate *h;
3562         unsigned long nr_total_pages = 0;
3563
3564         for_each_hstate(h)
3565                 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
3566         return nr_total_pages;
3567 }
3568
3569 static int hugetlb_acct_memory(struct hstate *h, long delta)
3570 {
3571         int ret = -ENOMEM;
3572
3573         if (!delta)
3574                 return 0;
3575
3576         spin_lock(&hugetlb_lock);
3577         /*
3578          * When cpuset is configured, it breaks the strict hugetlb page
3579          * reservation as the accounting is done on a global variable. Such
3580          * reservation is completely rubbish in the presence of cpuset because
3581          * the reservation is not checked against page availability for the
3582          * current cpuset. Application can still potentially OOM'ed by kernel
3583          * with lack of free htlb page in cpuset that the task is in.
3584          * Attempt to enforce strict accounting with cpuset is almost
3585          * impossible (or too ugly) because cpuset is too fluid that
3586          * task or memory node can be dynamically moved between cpusets.
3587          *
3588          * The change of semantics for shared hugetlb mapping with cpuset is
3589          * undesirable. However, in order to preserve some of the semantics,
3590          * we fall back to check against current free page availability as
3591          * a best attempt and hopefully to minimize the impact of changing
3592          * semantics that cpuset has.
3593          *
3594          * Apart from cpuset, we also have memory policy mechanism that
3595          * also determines from which node the kernel will allocate memory
3596          * in a NUMA system. So similar to cpuset, we also should consider
3597          * the memory policy of the current task. Similar to the description
3598          * above.
3599          */
3600         if (delta > 0) {
3601                 if (gather_surplus_pages(h, delta) < 0)
3602                         goto out;
3603
3604                 if (delta > allowed_mems_nr(h)) {
3605                         return_unused_surplus_pages(h, delta);
3606                         goto out;
3607                 }
3608         }
3609
3610         ret = 0;
3611         if (delta < 0)
3612                 return_unused_surplus_pages(h, (unsigned long) -delta);
3613
3614 out:
3615         spin_unlock(&hugetlb_lock);
3616         return ret;
3617 }
3618
3619 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
3620 {
3621         struct resv_map *resv = vma_resv_map(vma);
3622
3623         /*
3624          * This new VMA should share its siblings reservation map if present.
3625          * The VMA will only ever have a valid reservation map pointer where
3626          * it is being copied for another still existing VMA.  As that VMA
3627          * has a reference to the reservation map it cannot disappear until
3628          * after this open call completes.  It is therefore safe to take a
3629          * new reference here without additional locking.
3630          */
3631         if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3632                 kref_get(&resv->refs);
3633 }
3634
3635 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
3636 {
3637         struct hstate *h = hstate_vma(vma);
3638         struct resv_map *resv = vma_resv_map(vma);
3639         struct hugepage_subpool *spool = subpool_vma(vma);
3640         unsigned long reserve, start, end;
3641         long gbl_reserve;
3642
3643         if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3644                 return;
3645
3646         start = vma_hugecache_offset(h, vma, vma->vm_start);
3647         end = vma_hugecache_offset(h, vma, vma->vm_end);
3648
3649         reserve = (end - start) - region_count(resv, start, end);
3650         hugetlb_cgroup_uncharge_counter(resv, start, end);
3651         if (reserve) {
3652                 /*
3653                  * Decrement reserve counts.  The global reserve count may be
3654                  * adjusted if the subpool has a minimum size.
3655                  */
3656                 gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
3657                 hugetlb_acct_memory(h, -gbl_reserve);
3658         }
3659
3660         kref_put(&resv->refs, resv_map_release);
3661 }
3662
3663 static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
3664 {
3665         if (addr & ~(huge_page_mask(hstate_vma(vma))))
3666                 return -EINVAL;
3667         return 0;
3668 }
3669
3670 static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma)
3671 {
3672         return huge_page_size(hstate_vma(vma));
3673 }
3674
3675 /*
3676  * We cannot handle pagefaults against hugetlb pages at all.  They cause
3677  * handle_mm_fault() to try to instantiate regular-sized pages in the
3678  * hugepage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
3679  * this far.
3680  */
3681 static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf)
3682 {
3683         BUG();
3684         return 0;
3685 }
3686
3687 /*
3688  * When a new function is introduced to vm_operations_struct and added
3689  * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops.
3690  * This is because under System V memory model, mappings created via
3691  * shmget/shmat with "huge page" specified are backed by hugetlbfs files,
3692  * their original vm_ops are overwritten with shm_vm_ops.
3693  */
3694 const struct vm_operations_struct hugetlb_vm_ops = {
3695         .fault = hugetlb_vm_op_fault,
3696         .open = hugetlb_vm_op_open,
3697         .close = hugetlb_vm_op_close,
3698         .may_split = hugetlb_vm_op_split,
3699         .pagesize = hugetlb_vm_op_pagesize,
3700 };
3701
3702 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
3703                                 int writable)
3704 {
3705         pte_t entry;
3706
3707         if (writable) {
3708                 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
3709                                          vma->vm_page_prot)));
3710         } else {
3711                 entry = huge_pte_wrprotect(mk_huge_pte(page,
3712                                            vma->vm_page_prot));
3713         }
3714         entry = pte_mkyoung(entry);
3715         entry = pte_mkhuge(entry);
3716         entry = arch_make_huge_pte(entry, vma, page, writable);
3717
3718         return entry;
3719 }
3720
3721 static void set_huge_ptep_writable(struct vm_area_struct *vma,
3722                                    unsigned long address, pte_t *ptep)
3723 {
3724         pte_t entry;
3725
3726         entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
3727         if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
3728                 update_mmu_cache(vma, address, ptep);
3729 }
3730
3731 bool is_hugetlb_entry_migration(pte_t pte)
3732 {
3733         swp_entry_t swp;
3734
3735         if (huge_pte_none(pte) || pte_present(pte))
3736                 return false;
3737         swp = pte_to_swp_entry(pte);
3738         if (is_migration_entry(swp))
3739                 return true;
3740         else
3741                 return false;
3742 }
3743
3744 static bool is_hugetlb_entry_hwpoisoned(pte_t pte)
3745 {
3746         swp_entry_t swp;
3747
3748         if (huge_pte_none(pte) || pte_present(pte))
3749                 return false;
3750         swp = pte_to_swp_entry(pte);
3751         if (is_hwpoison_entry(swp))
3752                 return true;
3753         else
3754                 return false;
3755 }
3756
3757 static void
3758 hugetlb_install_page(struct vm_area_struct *vma, pte_t *ptep, unsigned long addr,
3759                      struct page *new_page)
3760 {
3761         __SetPageUptodate(new_page);
3762         set_huge_pte_at(vma->vm_mm, addr, ptep, make_huge_pte(vma, new_page, 1));
3763         hugepage_add_new_anon_rmap(new_page, vma, addr);
3764         hugetlb_count_add(pages_per_huge_page(hstate_vma(vma)), vma->vm_mm);
3765         ClearHPageRestoreReserve(new_page);
3766         SetHPageMigratable(new_page);
3767 }
3768
3769 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
3770                             struct vm_area_struct *vma)
3771 {
3772         pte_t *src_pte, *dst_pte, entry, dst_entry;
3773         struct page *ptepage;
3774         unsigned long addr;
3775         bool cow = is_cow_mapping(vma->vm_flags);
3776         struct hstate *h = hstate_vma(vma);
3777         unsigned long sz = huge_page_size(h);
3778         unsigned long npages = pages_per_huge_page(h);
3779         struct address_space *mapping = vma->vm_file->f_mapping;
3780         struct mmu_notifier_range range;
3781         int ret = 0;
3782
3783         if (cow) {
3784                 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, src,
3785                                         vma->vm_start,
3786                                         vma->vm_end);
3787                 mmu_notifier_invalidate_range_start(&range);
3788         } else {
3789                 /*
3790                  * For shared mappings i_mmap_rwsem must be held to call
3791                  * huge_pte_alloc, otherwise the returned ptep could go
3792                  * away if part of a shared pmd and another thread calls
3793                  * huge_pmd_unshare.
3794                  */
3795                 i_mmap_lock_read(mapping);
3796         }
3797
3798         for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
3799                 spinlock_t *src_ptl, *dst_ptl;
3800                 src_pte = huge_pte_offset(src, addr, sz);
3801                 if (!src_pte)
3802                         continue;
3803                 dst_pte = huge_pte_alloc(dst, vma, addr, sz);
3804                 if (!dst_pte) {
3805                         ret = -ENOMEM;
3806                         break;
3807                 }
3808
3809                 /*
3810                  * If the pagetables are shared don't copy or take references.
3811                  * dst_pte == src_pte is the common case of src/dest sharing.
3812                  *
3813                  * However, src could have 'unshared' and dst shares with
3814                  * another vma.  If dst_pte !none, this implies sharing.
3815                  * Check here before taking page table lock, and once again
3816                  * after taking the lock below.
3817                  */
3818                 dst_entry = huge_ptep_get(dst_pte);
3819                 if ((dst_pte == src_pte) || !huge_pte_none(dst_entry))
3820                         continue;
3821
3822                 dst_ptl = huge_pte_lock(h, dst, dst_pte);
3823                 src_ptl = huge_pte_lockptr(h, src, src_pte);
3824                 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
3825                 entry = huge_ptep_get(src_pte);
3826                 dst_entry = huge_ptep_get(dst_pte);
3827 again:
3828                 if (huge_pte_none(entry) || !huge_pte_none(dst_entry)) {
3829                         /*
3830                          * Skip if src entry none.  Also, skip in the
3831                          * unlikely case dst entry !none as this implies
3832                          * sharing with another vma.
3833                          */
3834                         ;
3835                 } else if (unlikely(is_hugetlb_entry_migration(entry) ||
3836                                     is_hugetlb_entry_hwpoisoned(entry))) {
3837                         swp_entry_t swp_entry = pte_to_swp_entry(entry);
3838
3839                         if (is_write_migration_entry(swp_entry) && cow) {
3840                                 /*
3841                                  * COW mappings require pages in both
3842                                  * parent and child to be set to read.
3843                                  */
3844                                 make_migration_entry_read(&swp_entry);
3845                                 entry = swp_entry_to_pte(swp_entry);
3846                                 set_huge_swap_pte_at(src, addr, src_pte,
3847                                                      entry, sz);
3848                         }
3849                         set_huge_swap_pte_at(dst, addr, dst_pte, entry, sz);
3850                 } else {
3851                         entry = huge_ptep_get(src_pte);
3852                         ptepage = pte_page(entry);
3853                         get_page(ptepage);
3854
3855                         /*
3856                          * This is a rare case where we see pinned hugetlb
3857                          * pages while they're prone to COW.  We need to do the
3858                          * COW earlier during fork.
3859                          *
3860                          * When pre-allocating the page or copying data, we
3861                          * need to be without the pgtable locks since we could
3862                          * sleep during the process.
3863                          */
3864                         if (unlikely(page_needs_cow_for_dma(vma, ptepage))) {
3865                                 pte_t src_pte_old = entry;
3866                                 struct page *new;
3867
3868                                 spin_unlock(src_ptl);
3869                                 spin_unlock(dst_ptl);
3870                                 /* Do not use reserve as it's private owned */
3871                                 new = alloc_huge_page(vma, addr, 1);
3872                                 if (IS_ERR(new)) {
3873                                         put_page(ptepage);
3874                                         ret = PTR_ERR(new);
3875                                         break;
3876                                 }
3877                                 copy_user_huge_page(new, ptepage, addr, vma,
3878                                                     npages);
3879                                 put_page(ptepage);
3880
3881                                 /* Install the new huge page if src pte stable */
3882                                 dst_ptl = huge_pte_lock(h, dst, dst_pte);
3883                                 src_ptl = huge_pte_lockptr(h, src, src_pte);
3884                                 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
3885                                 entry = huge_ptep_get(src_pte);
3886                                 if (!pte_same(src_pte_old, entry)) {
3887                                         put_page(new);
3888                                         /* dst_entry won't change as in child */
3889                                         goto again;
3890                                 }
3891                                 hugetlb_install_page(vma, dst_pte, addr, new);
3892                                 spin_unlock(src_ptl);
3893                                 spin_unlock(dst_ptl);
3894                                 continue;
3895                         }
3896
3897                         if (cow) {
3898                                 /*
3899                                  * No need to notify as we are downgrading page
3900                                  * table protection not changing it to point
3901                                  * to a new page.
3902                                  *
3903                                  * See Documentation/vm/mmu_notifier.rst
3904                                  */
3905                                 huge_ptep_set_wrprotect(src, addr, src_pte);
3906                         }
3907
3908                         page_dup_rmap(ptepage, true);
3909                         set_huge_pte_at(dst, addr, dst_pte, entry);
3910                         hugetlb_count_add(npages, dst);
3911                 }
3912                 spin_unlock(src_ptl);
3913                 spin_unlock(dst_ptl);
3914         }
3915
3916         if (cow)
3917                 mmu_notifier_invalidate_range_end(&range);
3918         else
3919                 i_mmap_unlock_read(mapping);
3920
3921         return ret;
3922 }
3923
3924 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
3925                             unsigned long start, unsigned long end,
3926                             struct page *ref_page)
3927 {
3928         struct mm_struct *mm = vma->vm_mm;
3929         unsigned long address;
3930         pte_t *ptep;
3931         pte_t pte;
3932         spinlock_t *ptl;
3933         struct page *page;
3934         struct hstate *h = hstate_vma(vma);
3935         unsigned long sz = huge_page_size(h);
3936         struct mmu_notifier_range range;
3937
3938         WARN_ON(!is_vm_hugetlb_page(vma));
3939         BUG_ON(start & ~huge_page_mask(h));
3940         BUG_ON(end & ~huge_page_mask(h));
3941
3942         /*
3943          * This is a hugetlb vma, all the pte entries should point
3944          * to huge page.
3945          */
3946         tlb_change_page_size(tlb, sz);
3947         tlb_start_vma(tlb, vma);
3948
3949         /*
3950          * If sharing possible, alert mmu notifiers of worst case.
3951          */
3952         mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, mm, start,
3953                                 end);
3954         adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
3955         mmu_notifier_invalidate_range_start(&range);
3956         address = start;
3957         for (; address < end; address += sz) {
3958                 ptep = huge_pte_offset(mm, address, sz);
3959                 if (!ptep)
3960                         continue;
3961
3962                 ptl = huge_pte_lock(h, mm, ptep);
3963                 if (huge_pmd_unshare(mm, vma, &address, ptep)) {
3964                         spin_unlock(ptl);
3965                         /*
3966                          * We just unmapped a page of PMDs by clearing a PUD.
3967                          * The caller's TLB flush range should cover this area.
3968                          */
3969                         continue;
3970                 }
3971
3972                 pte = huge_ptep_get(ptep);
3973                 if (huge_pte_none(pte)) {
3974                         spin_unlock(ptl);
3975                         continue;
3976                 }
3977
3978                 /*
3979                  * Migrating hugepage or HWPoisoned hugepage is already
3980                  * unmapped and its refcount is dropped, so just clear pte here.
3981                  */
3982                 if (unlikely(!pte_present(pte))) {
3983                         huge_pte_clear(mm, address, ptep, sz);
3984                         spin_unlock(ptl);
3985                         continue;
3986                 }
3987
3988                 page = pte_page(pte);
3989                 /*
3990                  * If a reference page is supplied, it is because a specific
3991                  * page is being unmapped, not a range. Ensure the page we
3992                  * are about to unmap is the actual page of interest.
3993                  */
3994                 if (ref_page) {
3995                         if (page != ref_page) {
3996                                 spin_unlock(ptl);
3997                                 continue;
3998                         }
3999                         /*
4000                          * Mark the VMA as having unmapped its page so that
4001                          * future faults in this VMA will fail rather than
4002                          * looking like data was lost
4003                          */
4004                         set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
4005                 }
4006
4007                 pte = huge_ptep_get_and_clear(mm, address, ptep);
4008                 tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
4009                 if (huge_pte_dirty(pte))
4010                         set_page_dirty(page);
4011
4012                 hugetlb_count_sub(pages_per_huge_page(h), mm);
4013                 page_remove_rmap(page, true);
4014
4015                 spin_unlock(ptl);
4016                 tlb_remove_page_size(tlb, page, huge_page_size(h));
4017                 /*
4018                  * Bail out after unmapping reference page if supplied
4019                  */
4020                 if (ref_page)
4021                         break;
4022         }
4023         mmu_notifier_invalidate_range_end(&range);
4024         tlb_end_vma(tlb, vma);
4025 }
4026
4027 void __unmap_hugepage_range_final(struct mmu_gather *tlb,
4028                           struct vm_area_struct *vma, unsigned long start,
4029                           unsigned long end, struct page *ref_page)
4030 {
4031         __unmap_hugepage_range(tlb, vma, start, end, ref_page);
4032
4033         /*
4034          * Clear this flag so that x86's huge_pmd_share page_table_shareable
4035          * test will fail on a vma being torn down, and not grab a page table
4036          * on its way out.  We're lucky that the flag has such an appropriate
4037          * name, and can in fact be safely cleared here. We could clear it
4038          * before the __unmap_hugepage_range above, but all that's necessary
4039          * is to clear it before releasing the i_mmap_rwsem. This works
4040          * because in the context this is called, the VMA is about to be
4041          * destroyed and the i_mmap_rwsem is held.
4042          */
4043         vma->vm_flags &= ~VM_MAYSHARE;
4044 }
4045
4046 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
4047                           unsigned long end, struct page *ref_page)
4048 {
4049         struct mmu_gather tlb;
4050
4051         tlb_gather_mmu(&tlb, vma->vm_mm);
4052         __unmap_hugepage_range(&tlb, vma, start, end, ref_page);
4053         tlb_finish_mmu(&tlb);
4054 }
4055
4056 /*
4057  * This is called when the original mapper is failing to COW a MAP_PRIVATE
4058  * mapping it owns the reserve page for. The intention is to unmap the page
4059  * from other VMAs and let the children be SIGKILLed if they are faulting the
4060  * same region.
4061  */
4062 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
4063                               struct page *page, unsigned long address)
4064 {
4065         struct hstate *h = hstate_vma(vma);
4066         struct vm_area_struct *iter_vma;
4067         struct address_space *mapping;
4068         pgoff_t pgoff;
4069
4070         /*
4071          * vm_pgoff is in PAGE_SIZE units, hence the different calculation
4072          * from page cache lookup which is in HPAGE_SIZE units.
4073          */
4074         address = address & huge_page_mask(h);
4075         pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
4076                         vma->vm_pgoff;
4077         mapping = vma->vm_file->f_mapping;
4078
4079         /*
4080          * Take the mapping lock for the duration of the table walk. As
4081          * this mapping should be shared between all the VMAs,
4082          * __unmap_hugepage_range() is called as the lock is already held
4083          */
4084         i_mmap_lock_write(mapping);
4085         vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
4086                 /* Do not unmap the current VMA */
4087                 if (iter_vma == vma)
4088                         continue;
4089
4090                 /*
4091                  * Shared VMAs have their own reserves and do not affect
4092                  * MAP_PRIVATE accounting but it is possible that a shared
4093                  * VMA is using the same page so check and skip such VMAs.
4094                  */
4095                 if (iter_vma->vm_flags & VM_MAYSHARE)
4096                         continue;
4097
4098                 /*
4099                  * Unmap the page from other VMAs without their own reserves.
4100                  * They get marked to be SIGKILLed if they fault in these
4101                  * areas. This is because a future no-page fault on this VMA
4102                  * could insert a zeroed page instead of the data existing
4103                  * from the time of fork. This would look like data corruption
4104                  */
4105                 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
4106                         unmap_hugepage_range(iter_vma, address,
4107                                              address + huge_page_size(h), page);
4108         }
4109         i_mmap_unlock_write(mapping);
4110 }
4111
4112 /*
4113  * Hugetlb_cow() should be called with page lock of the original hugepage held.
4114  * Called with hugetlb_instantiation_mutex held and pte_page locked so we
4115  * cannot race with other handlers or page migration.
4116  * Keep the pte_same checks anyway to make transition from the mutex easier.
4117  */
4118 static vm_fault_t hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
4119                        unsigned long address, pte_t *ptep,
4120                        struct page *pagecache_page, spinlock_t *ptl)
4121 {
4122         pte_t pte;
4123         struct hstate *h = hstate_vma(vma);
4124         struct page *old_page, *new_page;
4125         int outside_reserve = 0;
4126         vm_fault_t ret = 0;
4127         unsigned long haddr = address & huge_page_mask(h);
4128         struct mmu_notifier_range range;
4129
4130         pte = huge_ptep_get(ptep);
4131         old_page = pte_page(pte);
4132
4133 retry_avoidcopy:
4134         /* If no-one else is actually using this page, avoid the copy
4135          * and just make the page writable */
4136         if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
4137                 page_move_anon_rmap(old_page, vma);
4138                 set_huge_ptep_writable(vma, haddr, ptep);
4139                 return 0;
4140         }
4141
4142         /*
4143          * If the process that created a MAP_PRIVATE mapping is about to
4144          * perform a COW due to a shared page count, attempt to satisfy
4145          * the allocation without using the existing reserves. The pagecache
4146          * page is used to determine if the reserve at this address was
4147          * consumed or not. If reserves were used, a partial faulted mapping
4148          * at the time of fork() could consume its reserves on COW instead
4149          * of the full address range.
4150          */
4151         if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
4152                         old_page != pagecache_page)
4153                 outside_reserve = 1;
4154
4155         get_page(old_page);
4156
4157         /*
4158          * Drop page table lock as buddy allocator may be called. It will
4159          * be acquired again before returning to the caller, as expected.
4160          */
4161         spin_unlock(ptl);
4162         new_page = alloc_huge_page(vma, haddr, outside_reserve);
4163
4164         if (IS_ERR(new_page)) {
4165                 /*
4166                  * If a process owning a MAP_PRIVATE mapping fails to COW,
4167                  * it is due to references held by a child and an insufficient
4168                  * huge page pool. To guarantee the original mappers
4169                  * reliability, unmap the page from child processes. The child
4170                  * may get SIGKILLed if it later faults.
4171                  */
4172                 if (outside_reserve) {
4173                         struct address_space *mapping = vma->vm_file->f_mapping;
4174                         pgoff_t idx;
4175                         u32 hash;
4176
4177                         put_page(old_page);
4178                         BUG_ON(huge_pte_none(pte));
4179                         /*
4180                          * Drop hugetlb_fault_mutex and i_mmap_rwsem before
4181                          * unmapping.  unmapping needs to hold i_mmap_rwsem
4182                          * in write mode.  Dropping i_mmap_rwsem in read mode
4183                          * here is OK as COW mappings do not interact with
4184                          * PMD sharing.
4185                          *
4186                          * Reacquire both after unmap operation.
4187                          */
4188                         idx = vma_hugecache_offset(h, vma, haddr);
4189                         hash = hugetlb_fault_mutex_hash(mapping, idx);
4190                         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
4191                         i_mmap_unlock_read(mapping);
4192
4193                         unmap_ref_private(mm, vma, old_page, haddr);
4194
4195                         i_mmap_lock_read(mapping);
4196                         mutex_lock(&hugetlb_fault_mutex_table[hash]);
4197                         spin_lock(ptl);
4198                         ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
4199                         if (likely(ptep &&
4200                                    pte_same(huge_ptep_get(ptep), pte)))
4201                                 goto retry_avoidcopy;
4202                         /*
4203                          * race occurs while re-acquiring page table
4204                          * lock, and our job is done.
4205                          */
4206                         return 0;
4207                 }
4208
4209                 ret = vmf_error(PTR_ERR(new_page));
4210                 goto out_release_old;
4211         }
4212
4213         /*
4214          * When the original hugepage is shared one, it does not have
4215          * anon_vma prepared.
4216          */
4217         if (unlikely(anon_vma_prepare(vma))) {
4218                 ret = VM_FAULT_OOM;
4219                 goto out_release_all;
4220         }
4221
4222         copy_user_huge_page(new_page, old_page, address, vma,
4223                             pages_per_huge_page(h));
4224         __SetPageUptodate(new_page);
4225
4226         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, haddr,
4227                                 haddr + huge_page_size(h));
4228         mmu_notifier_invalidate_range_start(&range);
4229
4230         /*
4231          * Retake the page table lock to check for racing updates
4232          * before the page tables are altered
4233          */
4234         spin_lock(ptl);
4235         ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
4236         if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
4237                 ClearHPageRestoreReserve(new_page);
4238
4239                 /* Break COW */
4240                 huge_ptep_clear_flush(vma, haddr, ptep);
4241                 mmu_notifier_invalidate_range(mm, range.start, range.end);
4242                 set_huge_pte_at(mm, haddr, ptep,
4243                                 make_huge_pte(vma, new_page, 1));
4244                 page_remove_rmap(old_page, true);
4245                 hugepage_add_new_anon_rmap(new_page, vma, haddr);
4246                 SetHPageMigratable(new_page);
4247                 /* Make the old page be freed below */
4248                 new_page = old_page;
4249         }
4250         spin_unlock(ptl);
4251         mmu_notifier_invalidate_range_end(&range);
4252 out_release_all:
4253         restore_reserve_on_error(h, vma, haddr, new_page);
4254         put_page(new_page);
4255 out_release_old:
4256         put_page(old_page);
4257
4258         spin_lock(ptl); /* Caller expects lock to be held */
4259         return ret;
4260 }
4261
4262 /* Return the pagecache page at a given address within a VMA */
4263 static struct page *hugetlbfs_pagecache_page(struct hstate *h,
4264                         struct vm_area_struct *vma, unsigned long address)
4265 {
4266         struct address_space *mapping;
4267         pgoff_t idx;
4268
4269         mapping = vma->vm_file->f_mapping;
4270         idx = vma_hugecache_offset(h, vma, address);
4271
4272         return find_lock_page(mapping, idx);
4273 }
4274
4275 /*
4276  * Return whether there is a pagecache page to back given address within VMA.
4277  * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
4278  */
4279 static bool hugetlbfs_pagecache_present(struct hstate *h,
4280                         struct vm_area_struct *vma, unsigned long address)
4281 {
4282         struct address_space *mapping;
4283         pgoff_t idx;
4284         struct page *page;
4285
4286         mapping = vma->vm_file->f_mapping;
4287         idx = vma_hugecache_offset(h, vma, address);
4288
4289         page = find_get_page(mapping, idx);
4290         if (page)
4291                 put_page(page);
4292         return page != NULL;
4293 }
4294
4295 int huge_add_to_page_cache(struct page *page, struct address_space *mapping,
4296                            pgoff_t idx)
4297 {
4298         struct inode *inode = mapping->host;
4299         struct hstate *h = hstate_inode(inode);
4300         int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
4301
4302         if (err)
4303                 return err;
4304         ClearHPageRestoreReserve(page);
4305
4306         /*
4307          * set page dirty so that it will not be removed from cache/file
4308          * by non-hugetlbfs specific code paths.
4309          */
4310         set_page_dirty(page);
4311
4312         spin_lock(&inode->i_lock);
4313         inode->i_blocks += blocks_per_huge_page(h);
4314         spin_unlock(&inode->i_lock);
4315         return 0;
4316 }
4317
4318 static vm_fault_t hugetlb_no_page(struct mm_struct *mm,
4319                         struct vm_area_struct *vma,
4320                         struct address_space *mapping, pgoff_t idx,
4321                         unsigned long address, pte_t *ptep, unsigned int flags)
4322 {
4323         struct hstate *h = hstate_vma(vma);
4324         vm_fault_t ret = VM_FAULT_SIGBUS;
4325         int anon_rmap = 0;
4326         unsigned long size;
4327         struct page *page;
4328         pte_t new_pte;
4329         spinlock_t *ptl;
4330         unsigned long haddr = address & huge_page_mask(h);
4331         bool new_page = false;
4332
4333         /*
4334          * Currently, we are forced to kill the process in the event the
4335          * original mapper has unmapped pages from the child due to a failed
4336          * COW. Warn that such a situation has occurred as it may not be obvious
4337          */
4338         if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
4339                 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
4340                            current->pid);
4341                 return ret;
4342         }
4343
4344         /*
4345          * We can not race with truncation due to holding i_mmap_rwsem.
4346          * i_size is modified when holding i_mmap_rwsem, so check here
4347          * once for faults beyond end of file.
4348          */
4349         size = i_size_read(mapping->host) >> huge_page_shift(h);
4350         if (idx >= size)
4351                 goto out;
4352
4353 retry:
4354         page = find_lock_page(mapping, idx);
4355         if (!page) {
4356                 /*
4357                  * Check for page in userfault range
4358                  */
4359                 if (userfaultfd_missing(vma)) {
4360                         u32 hash;
4361                         struct vm_fault vmf = {
4362                                 .vma = vma,
4363                                 .address = haddr,
4364                                 .flags = flags,
4365                                 /*
4366                                  * Hard to debug if it ends up being
4367                                  * used by a callee that assumes
4368                                  * something about the other
4369                                  * uninitialized fields... same as in
4370                                  * memory.c
4371                                  */
4372                         };
4373
4374                         /*
4375                          * hugetlb_fault_mutex and i_mmap_rwsem must be
4376                          * dropped before handling userfault.  Reacquire
4377                          * after handling fault to make calling code simpler.
4378                          */
4379                         hash = hugetlb_fault_mutex_hash(mapping, idx);
4380                         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
4381                         i_mmap_unlock_read(mapping);
4382                         ret = handle_userfault(&vmf, VM_UFFD_MISSING);
4383                         i_mmap_lock_read(mapping);
4384                         mutex_lock(&hugetlb_fault_mutex_table[hash]);
4385                         goto out;
4386                 }
4387
4388                 page = alloc_huge_page(vma, haddr, 0);
4389                 if (IS_ERR(page)) {
4390                         /*
4391                          * Returning error will result in faulting task being
4392                          * sent SIGBUS.  The hugetlb fault mutex prevents two
4393                          * tasks from racing to fault in the same page which
4394                          * could result in false unable to allocate errors.
4395                          * Page migration does not take the fault mutex, but
4396                          * does a clear then write of pte's under page table
4397                          * lock.  Page fault code could race with migration,
4398                          * notice the clear pte and try to allocate a page
4399                          * here.  Before returning error, get ptl and make
4400                          * sure there really is no pte entry.
4401                          */
4402                         ptl = huge_pte_lock(h, mm, ptep);
4403                         ret = 0;
4404                         if (huge_pte_none(huge_ptep_get(ptep)))
4405                                 ret = vmf_error(PTR_ERR(page));
4406                         spin_unlock(ptl);
4407                         goto out;
4408                 }
4409                 clear_huge_page(page, address, pages_per_huge_page(h));
4410                 __SetPageUptodate(page);
4411                 new_page = true;
4412
4413                 if (vma->vm_flags & VM_MAYSHARE) {
4414                         int err = huge_add_to_page_cache(page, mapping, idx);
4415                         if (err) {
4416                                 put_page(page);
4417                                 if (err == -EEXIST)
4418                                         goto retry;
4419                                 goto out;
4420                         }
4421                 } else {
4422                         lock_page(page);
4423                         if (unlikely(anon_vma_prepare(vma))) {
4424                                 ret = VM_FAULT_OOM;
4425                                 goto backout_unlocked;
4426                         }
4427                         anon_rmap = 1;
4428                 }
4429         } else {
4430                 /*
4431                  * If memory error occurs between mmap() and fault, some process
4432                  * don't have hwpoisoned swap entry for errored virtual address.
4433                  * So we need to block hugepage fault by PG_hwpoison bit check.
4434                  */
4435                 if (unlikely(PageHWPoison(page))) {
4436                         ret = VM_FAULT_HWPOISON_LARGE |
4437                                 VM_FAULT_SET_HINDEX(hstate_index(h));
4438                         goto backout_unlocked;
4439                 }
4440         }
4441
4442         /*
4443          * If we are going to COW a private mapping later, we examine the
4444          * pending reservations for this page now. This will ensure that
4445          * any allocations necessary to record that reservation occur outside
4446          * the spinlock.
4447          */
4448         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
4449                 if (vma_needs_reservation(h, vma, haddr) < 0) {
4450                         ret = VM_FAULT_OOM;
4451                         goto backout_unlocked;
4452                 }
4453                 /* Just decrements count, does not deallocate */
4454                 vma_end_reservation(h, vma, haddr);
4455         }
4456
4457         ptl = huge_pte_lock(h, mm, ptep);
4458         ret = 0;
4459         if (!huge_pte_none(huge_ptep_get(ptep)))
4460                 goto backout;
4461
4462         if (anon_rmap) {
4463                 ClearHPageRestoreReserve(page);
4464                 hugepage_add_new_anon_rmap(page, vma, haddr);
4465         } else
4466                 page_dup_rmap(page, true);
4467         new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
4468                                 && (vma->vm_flags & VM_SHARED)));
4469         set_huge_pte_at(mm, haddr, ptep, new_pte);
4470
4471         hugetlb_count_add(pages_per_huge_page(h), mm);
4472         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
4473                 /* Optimization, do the COW without a second fault */
4474                 ret = hugetlb_cow(mm, vma, address, ptep, page, ptl);
4475         }
4476
4477         spin_unlock(ptl);
4478
4479         /*
4480          * Only set HPageMigratable in newly allocated pages.  Existing pages
4481          * found in the pagecache may not have HPageMigratableset if they have
4482          * been isolated for migration.
4483          */
4484         if (new_page)
4485                 SetHPageMigratable(page);
4486
4487         unlock_page(page);
4488 out:
4489         return ret;
4490
4491 backout:
4492         spin_unlock(ptl);
4493 backout_unlocked:
4494         unlock_page(page);
4495         restore_reserve_on_error(h, vma, haddr, page);
4496         put_page(page);
4497         goto out;
4498 }
4499
4500 #ifdef CONFIG_SMP
4501 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
4502 {
4503         unsigned long key[2];
4504         u32 hash;
4505
4506         key[0] = (unsigned long) mapping;
4507         key[1] = idx;
4508
4509         hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0);
4510
4511         return hash & (num_fault_mutexes - 1);
4512 }
4513 #else
4514 /*
4515  * For uniprocessor systems we always use a single mutex, so just
4516  * return 0 and avoid the hashing overhead.
4517  */
4518 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
4519 {
4520         return 0;
4521 }
4522 #endif
4523
4524 vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
4525                         unsigned long address, unsigned int flags)
4526 {
4527         pte_t *ptep, entry;
4528         spinlock_t *ptl;
4529         vm_fault_t ret;
4530         u32 hash;
4531         pgoff_t idx;
4532         struct page *page = NULL;
4533         struct page *pagecache_page = NULL;
4534         struct hstate *h = hstate_vma(vma);
4535         struct address_space *mapping;
4536         int need_wait_lock = 0;
4537         unsigned long haddr = address & huge_page_mask(h);
4538
4539         ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
4540         if (ptep) {
4541                 /*
4542                  * Since we hold no locks, ptep could be stale.  That is
4543                  * OK as we are only making decisions based on content and
4544                  * not actually modifying content here.
4545                  */
4546                 entry = huge_ptep_get(ptep);
4547                 if (unlikely(is_hugetlb_entry_migration(entry))) {
4548                         migration_entry_wait_huge(vma, mm, ptep);
4549                         return 0;
4550                 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
4551                         return VM_FAULT_HWPOISON_LARGE |
4552                                 VM_FAULT_SET_HINDEX(hstate_index(h));
4553         }
4554
4555         /*
4556          * Acquire i_mmap_rwsem before calling huge_pte_alloc and hold
4557          * until finished with ptep.  This serves two purposes:
4558          * 1) It prevents huge_pmd_unshare from being called elsewhere
4559          *    and making the ptep no longer valid.
4560          * 2) It synchronizes us with i_size modifications during truncation.
4561          *
4562          * ptep could have already be assigned via huge_pte_offset.  That
4563          * is OK, as huge_pte_alloc will return the same value unless
4564          * something has changed.
4565          */
4566         mapping = vma->vm_file->f_mapping;
4567         i_mmap_lock_read(mapping);
4568         ptep = huge_pte_alloc(mm, vma, haddr, huge_page_size(h));
4569         if (!ptep) {
4570                 i_mmap_unlock_read(mapping);
4571                 return VM_FAULT_OOM;
4572         }
4573
4574         /*
4575          * Serialize hugepage allocation and instantiation, so that we don't
4576          * get spurious allocation failures if two CPUs race to instantiate
4577          * the same page in the page cache.
4578          */
4579         idx = vma_hugecache_offset(h, vma, haddr);
4580         hash = hugetlb_fault_mutex_hash(mapping, idx);
4581         mutex_lock(&hugetlb_fault_mutex_table[hash]);
4582
4583         entry = huge_ptep_get(ptep);
4584         if (huge_pte_none(entry)) {
4585                 ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
4586                 goto out_mutex;
4587         }
4588
4589         ret = 0;
4590
4591         /*
4592          * entry could be a migration/hwpoison entry at this point, so this
4593          * check prevents the kernel from going below assuming that we have
4594          * an active hugepage in pagecache. This goto expects the 2nd page
4595          * fault, and is_hugetlb_entry_(migration|hwpoisoned) check will
4596          * properly handle it.
4597          */
4598         if (!pte_present(entry))
4599                 goto out_mutex;
4600
4601         /*
4602          * If we are going to COW the mapping later, we examine the pending
4603          * reservations for this page now. This will ensure that any
4604          * allocations necessary to record that reservation occur outside the
4605          * spinlock. For private mappings, we also lookup the pagecache
4606          * page now as it is used to determine if a reservation has been
4607          * consumed.
4608          */
4609         if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
4610                 if (vma_needs_reservation(h, vma, haddr) < 0) {
4611                         ret = VM_FAULT_OOM;
4612                         goto out_mutex;
4613                 }
4614                 /* Just decrements count, does not deallocate */
4615                 vma_end_reservation(h, vma, haddr);
4616
4617                 if (!(vma->vm_flags & VM_MAYSHARE))
4618                         pagecache_page = hugetlbfs_pagecache_page(h,
4619                                                                 vma, haddr);
4620         }
4621
4622         ptl = huge_pte_lock(h, mm, ptep);
4623
4624         /* Check for a racing update before calling hugetlb_cow */
4625         if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
4626                 goto out_ptl;
4627
4628         /*
4629          * hugetlb_cow() requires page locks of pte_page(entry) and
4630          * pagecache_page, so here we need take the former one
4631          * when page != pagecache_page or !pagecache_page.
4632          */
4633         page = pte_page(entry);
4634         if (page != pagecache_page)
4635                 if (!trylock_page(page)) {
4636                         need_wait_lock = 1;
4637                         goto out_ptl;
4638                 }
4639
4640         get_page(page);
4641
4642         if (flags & FAULT_FLAG_WRITE) {
4643                 if (!huge_pte_write(entry)) {
4644                         ret = hugetlb_cow(mm, vma, address, ptep,
4645                                           pagecache_page, ptl);
4646                         goto out_put_page;
4647                 }
4648                 entry = huge_pte_mkdirty(entry);
4649         }
4650         entry = pte_mkyoung(entry);
4651         if (huge_ptep_set_access_flags(vma, haddr, ptep, entry,
4652                                                 flags & FAULT_FLAG_WRITE))
4653                 update_mmu_cache(vma, haddr, ptep);
4654 out_put_page:
4655         if (page != pagecache_page)
4656                 unlock_page(page);
4657         put_page(page);
4658 out_ptl:
4659         spin_unlock(ptl);
4660
4661         if (pagecache_page) {
4662                 unlock_page(pagecache_page);
4663                 put_page(pagecache_page);
4664         }
4665 out_mutex:
4666         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
4667         i_mmap_unlock_read(mapping);
4668         /*
4669          * Generally it's safe to hold refcount during waiting page lock. But
4670          * here we just wait to defer the next page fault to avoid busy loop and
4671          * the page is not used after unlocked before returning from the current
4672          * page fault. So we are safe from accessing freed page, even if we wait
4673          * here without taking refcount.
4674          */
4675         if (need_wait_lock)
4676                 wait_on_page_locked(page);
4677         return ret;
4678 }
4679
4680 /*
4681  * Used by userfaultfd UFFDIO_COPY.  Based on mcopy_atomic_pte with
4682  * modifications for huge pages.
4683  */
4684 int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm,
4685                             pte_t *dst_pte,
4686                             struct vm_area_struct *dst_vma,
4687                             unsigned long dst_addr,
4688                             unsigned long src_addr,
4689                             struct page **pagep)
4690 {
4691         struct address_space *mapping;
4692         pgoff_t idx;
4693         unsigned long size;
4694         int vm_shared = dst_vma->vm_flags & VM_SHARED;
4695         struct hstate *h = hstate_vma(dst_vma);
4696         pte_t _dst_pte;
4697         spinlock_t *ptl;
4698         int ret;
4699         struct page *page;
4700
4701         if (!*pagep) {
4702                 ret = -ENOMEM;
4703                 page = alloc_huge_page(dst_vma, dst_addr, 0);
4704                 if (IS_ERR(page))
4705                         goto out;
4706
4707                 ret = copy_huge_page_from_user(page,
4708                                                 (const void __user *) src_addr,
4709                                                 pages_per_huge_page(h), false);
4710
4711                 /* fallback to copy_from_user outside mmap_lock */
4712                 if (unlikely(ret)) {
4713                         ret = -ENOENT;
4714                         *pagep = page;
4715                         /* don't free the page */
4716                         goto out;
4717                 }
4718         } else {
4719                 page = *pagep;
4720                 *pagep = NULL;
4721         }
4722
4723         /*
4724          * The memory barrier inside __SetPageUptodate makes sure that
4725          * preceding stores to the page contents become visible before
4726          * the set_pte_at() write.
4727          */
4728         __SetPageUptodate(page);
4729
4730         mapping = dst_vma->vm_file->f_mapping;
4731         idx = vma_hugecache_offset(h, dst_vma, dst_addr);
4732
4733         /*
4734          * If shared, add to page cache
4735          */
4736         if (vm_shared) {
4737                 size = i_size_read(mapping->host) >> huge_page_shift(h);
4738                 ret = -EFAULT;
4739                 if (idx >= size)
4740                         goto out_release_nounlock;
4741
4742                 /*
4743                  * Serialization between remove_inode_hugepages() and
4744                  * huge_add_to_page_cache() below happens through the
4745                  * hugetlb_fault_mutex_table that here must be hold by
4746                  * the caller.
4747                  */
4748                 ret = huge_add_to_page_cache(page, mapping, idx);
4749                 if (ret)
4750                         goto out_release_nounlock;
4751         }
4752
4753         ptl = huge_pte_lockptr(h, dst_mm, dst_pte);
4754         spin_lock(ptl);
4755
4756         /*
4757          * Recheck the i_size after holding PT lock to make sure not
4758          * to leave any page mapped (as page_mapped()) beyond the end
4759          * of the i_size (remove_inode_hugepages() is strict about
4760          * enforcing that). If we bail out here, we'll also leave a
4761          * page in the radix tree in the vm_shared case beyond the end
4762          * of the i_size, but remove_inode_hugepages() will take care
4763          * of it as soon as we drop the hugetlb_fault_mutex_table.
4764          */
4765         size = i_size_read(mapping->host) >> huge_page_shift(h);
4766         ret = -EFAULT;
4767         if (idx >= size)
4768                 goto out_release_unlock;
4769
4770         ret = -EEXIST;
4771         if (!huge_pte_none(huge_ptep_get(dst_pte)))
4772                 goto out_release_unlock;
4773
4774         if (vm_shared) {
4775                 page_dup_rmap(page, true);
4776         } else {
4777                 ClearHPageRestoreReserve(page);
4778                 hugepage_add_new_anon_rmap(page, dst_vma, dst_addr);
4779         }
4780
4781         _dst_pte = make_huge_pte(dst_vma, page, dst_vma->vm_flags & VM_WRITE);
4782         if (dst_vma->vm_flags & VM_WRITE)
4783                 _dst_pte = huge_pte_mkdirty(_dst_pte);
4784         _dst_pte = pte_mkyoung(_dst_pte);
4785
4786         set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
4787
4788         (void)huge_ptep_set_access_flags(dst_vma, dst_addr, dst_pte, _dst_pte,
4789                                         dst_vma->vm_flags & VM_WRITE);
4790         hugetlb_count_add(pages_per_huge_page(h), dst_mm);
4791
4792         /* No need to invalidate - it was non-present before */
4793         update_mmu_cache(dst_vma, dst_addr, dst_pte);
4794
4795         spin_unlock(ptl);
4796         SetHPageMigratable(page);
4797         if (vm_shared)
4798                 unlock_page(page);
4799         ret = 0;
4800 out:
4801         return ret;
4802 out_release_unlock:
4803         spin_unlock(ptl);
4804         if (vm_shared)
4805                 unlock_page(page);
4806 out_release_nounlock:
4807         put_page(page);
4808         goto out;
4809 }
4810
4811 static void record_subpages_vmas(struct page *page, struct vm_area_struct *vma,
4812                                  int refs, struct page **pages,
4813                                  struct vm_area_struct **vmas)
4814 {
4815         int nr;
4816
4817         for (nr = 0; nr < refs; nr++) {
4818                 if (likely(pages))
4819                         pages[nr] = mem_map_offset(page, nr);
4820                 if (vmas)
4821                         vmas[nr] = vma;
4822         }
4823 }
4824
4825 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
4826                          struct page **pages, struct vm_area_struct **vmas,
4827                          unsigned long *position, unsigned long *nr_pages,
4828                          long i, unsigned int flags, int *locked)
4829 {
4830         unsigned long pfn_offset;
4831         unsigned long vaddr = *position;
4832         unsigned long remainder = *nr_pages;
4833         struct hstate *h = hstate_vma(vma);
4834         int err = -EFAULT, refs;
4835
4836         while (vaddr < vma->vm_end && remainder) {
4837                 pte_t *pte;
4838                 spinlock_t *ptl = NULL;
4839                 int absent;
4840                 struct page *page;
4841
4842                 /*
4843                  * If we have a pending SIGKILL, don't keep faulting pages and
4844                  * potentially allocating memory.
4845                  */
4846                 if (fatal_signal_pending(current)) {
4847                         remainder = 0;
4848                         break;
4849                 }
4850
4851                 /*
4852                  * Some archs (sparc64, sh*) have multiple pte_ts to
4853                  * each hugepage.  We have to make sure we get the
4854                  * first, for the page indexing below to work.
4855                  *
4856                  * Note that page table lock is not held when pte is null.
4857                  */
4858                 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h),
4859                                       huge_page_size(h));
4860                 if (pte)
4861                         ptl = huge_pte_lock(h, mm, pte);
4862                 absent = !pte || huge_pte_none(huge_ptep_get(pte));
4863
4864                 /*
4865                  * When coredumping, it suits get_dump_page if we just return
4866                  * an error where there's an empty slot with no huge pagecache
4867                  * to back it.  This way, we avoid allocating a hugepage, and
4868                  * the sparse dumpfile avoids allocating disk blocks, but its
4869                  * huge holes still show up with zeroes where they need to be.
4870                  */
4871                 if (absent && (flags & FOLL_DUMP) &&
4872                     !hugetlbfs_pagecache_present(h, vma, vaddr)) {
4873                         if (pte)
4874                                 spin_unlock(ptl);
4875                         remainder = 0;
4876                         break;
4877                 }
4878
4879                 /*
4880                  * We need call hugetlb_fault for both hugepages under migration
4881                  * (in which case hugetlb_fault waits for the migration,) and
4882                  * hwpoisoned hugepages (in which case we need to prevent the
4883                  * caller from accessing to them.) In order to do this, we use
4884                  * here is_swap_pte instead of is_hugetlb_entry_migration and
4885                  * is_hugetlb_entry_hwpoisoned. This is because it simply covers
4886                  * both cases, and because we can't follow correct pages
4887                  * directly from any kind of swap entries.
4888                  */
4889                 if (absent || is_swap_pte(huge_ptep_get(pte)) ||
4890                     ((flags & FOLL_WRITE) &&
4891                       !huge_pte_write(huge_ptep_get(pte)))) {
4892                         vm_fault_t ret;
4893                         unsigned int fault_flags = 0;
4894
4895                         if (pte)
4896                                 spin_unlock(ptl);
4897                         if (flags & FOLL_WRITE)
4898                                 fault_flags |= FAULT_FLAG_WRITE;
4899                         if (locked)
4900                                 fault_flags |= FAULT_FLAG_ALLOW_RETRY |
4901                                         FAULT_FLAG_KILLABLE;
4902                         if (flags & FOLL_NOWAIT)
4903                                 fault_flags |= FAULT_FLAG_ALLOW_RETRY |
4904                                         FAULT_FLAG_RETRY_NOWAIT;
4905                         if (flags & FOLL_TRIED) {
4906                                 /*
4907                                  * Note: FAULT_FLAG_ALLOW_RETRY and
4908                                  * FAULT_FLAG_TRIED can co-exist
4909                                  */
4910                                 fault_flags |= FAULT_FLAG_TRIED;
4911                         }
4912                         ret = hugetlb_fault(mm, vma, vaddr, fault_flags);
4913                         if (ret & VM_FAULT_ERROR) {
4914                                 err = vm_fault_to_errno(ret, flags);
4915                                 remainder = 0;
4916                                 break;
4917                         }
4918                         if (ret & VM_FAULT_RETRY) {
4919                                 if (locked &&
4920                                     !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
4921                                         *locked = 0;
4922                                 *nr_pages = 0;
4923                                 /*
4924                                  * VM_FAULT_RETRY must not return an
4925                                  * error, it will return zero
4926                                  * instead.
4927                                  *
4928                                  * No need to update "position" as the
4929                                  * caller will not check it after
4930                                  * *nr_pages is set to 0.
4931                                  */
4932                                 return i;
4933                         }
4934                         continue;
4935                 }
4936
4937                 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
4938                 page = pte_page(huge_ptep_get(pte));
4939
4940                 /*
4941                  * If subpage information not requested, update counters
4942                  * and skip the same_page loop below.
4943                  */
4944                 if (!pages && !vmas && !pfn_offset &&
4945                     (vaddr + huge_page_size(h) < vma->vm_end) &&
4946                     (remainder >= pages_per_huge_page(h))) {
4947                         vaddr += huge_page_size(h);
4948                         remainder -= pages_per_huge_page(h);
4949                         i += pages_per_huge_page(h);
4950                         spin_unlock(ptl);
4951                         continue;
4952                 }
4953
4954                 refs = min3(pages_per_huge_page(h) - pfn_offset,
4955                             (vma->vm_end - vaddr) >> PAGE_SHIFT, remainder);
4956
4957                 if (pages || vmas)
4958                         record_subpages_vmas(mem_map_offset(page, pfn_offset),
4959                                              vma, refs,
4960                                              likely(pages) ? pages + i : NULL,
4961                                              vmas ? vmas + i : NULL);
4962
4963                 if (pages) {
4964                         /*
4965                          * try_grab_compound_head() should always succeed here,
4966                          * because: a) we hold the ptl lock, and b) we've just
4967                          * checked that the huge page is present in the page
4968                          * tables. If the huge page is present, then the tail
4969                          * pages must also be present. The ptl prevents the
4970                          * head page and tail pages from being rearranged in
4971                          * any way. So this page must be available at this
4972                          * point, unless the page refcount overflowed:
4973                          */
4974                         if (WARN_ON_ONCE(!try_grab_compound_head(pages[i],
4975                                                                  refs,
4976                                                                  flags))) {
4977                                 spin_unlock(ptl);
4978                                 remainder = 0;
4979                                 err = -ENOMEM;
4980                                 break;
4981                         }
4982                 }
4983
4984                 vaddr += (refs << PAGE_SHIFT);
4985                 remainder -= refs;
4986                 i += refs;
4987
4988                 spin_unlock(ptl);
4989         }
4990         *nr_pages = remainder;
4991         /*
4992          * setting position is actually required only if remainder is
4993          * not zero but it's faster not to add a "if (remainder)"
4994          * branch.
4995          */
4996         *position = vaddr;
4997
4998         return i ? i : err;
4999 }
5000
5001 unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
5002                 unsigned long address, unsigned long end, pgprot_t newprot)
5003 {
5004         struct mm_struct *mm = vma->vm_mm;
5005         unsigned long start = address;
5006         pte_t *ptep;
5007         pte_t pte;
5008         struct hstate *h = hstate_vma(vma);
5009         unsigned long pages = 0;
5010         bool shared_pmd = false;
5011         struct mmu_notifier_range range;
5012
5013         /*
5014          * In the case of shared PMDs, the area to flush could be beyond
5015          * start/end.  Set range.start/range.end to cover the maximum possible
5016          * range if PMD sharing is possible.
5017          */
5018         mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA,
5019                                 0, vma, mm, start, end);
5020         adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
5021
5022         BUG_ON(address >= end);
5023         flush_cache_range(vma, range.start, range.end);
5024
5025         mmu_notifier_invalidate_range_start(&range);
5026         i_mmap_lock_write(vma->vm_file->f_mapping);
5027         for (; address < end; address += huge_page_size(h)) {
5028                 spinlock_t *ptl;
5029                 ptep = huge_pte_offset(mm, address, huge_page_size(h));
5030                 if (!ptep)
5031                         continue;
5032                 ptl = huge_pte_lock(h, mm, ptep);
5033                 if (huge_pmd_unshare(mm, vma, &address, ptep)) {
5034                         pages++;
5035                         spin_unlock(ptl);
5036                         shared_pmd = true;
5037                         continue;
5038                 }
5039                 pte = huge_ptep_get(ptep);
5040                 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
5041                         spin_unlock(ptl);
5042                         continue;
5043                 }
5044                 if (unlikely(is_hugetlb_entry_migration(pte))) {
5045                         swp_entry_t entry = pte_to_swp_entry(pte);
5046
5047                         if (is_write_migration_entry(entry)) {
5048                                 pte_t newpte;
5049
5050                                 make_migration_entry_read(&entry);
5051                                 newpte = swp_entry_to_pte(entry);
5052                                 set_huge_swap_pte_at(mm, address, ptep,
5053                                                      newpte, huge_page_size(h));
5054                                 pages++;
5055                         }
5056                         spin_unlock(ptl);
5057                         continue;
5058                 }
5059                 if (!huge_pte_none(pte)) {
5060                         pte_t old_pte;
5061
5062                         old_pte = huge_ptep_modify_prot_start(vma, address, ptep);
5063                         pte = pte_mkhuge(huge_pte_modify(old_pte, newprot));
5064                         pte = arch_make_huge_pte(pte, vma, NULL, 0);
5065                         huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte);
5066                         pages++;
5067                 }
5068                 spin_unlock(ptl);
5069         }
5070         /*
5071          * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
5072          * may have cleared our pud entry and done put_page on the page table:
5073          * once we release i_mmap_rwsem, another task can do the final put_page
5074          * and that page table be reused and filled with junk.  If we actually
5075          * did unshare a page of pmds, flush the range corresponding to the pud.
5076          */
5077         if (shared_pmd)
5078                 flush_hugetlb_tlb_range(vma, range.start, range.end);
5079         else
5080                 flush_hugetlb_tlb_range(vma, start, end);
5081         /*
5082          * No need to call mmu_notifier_invalidate_range() we are downgrading
5083          * page table protection not changing it to point to a new page.
5084          *
5085          * See Documentation/vm/mmu_notifier.rst
5086          */
5087         i_mmap_unlock_write(vma->vm_file->f_mapping);
5088         mmu_notifier_invalidate_range_end(&range);
5089
5090         return pages << h->order;
5091 }
5092
5093 /* Return true if reservation was successful, false otherwise.  */
5094 bool hugetlb_reserve_pages(struct inode *inode,
5095                                         long from, long to,
5096                                         struct vm_area_struct *vma,
5097                                         vm_flags_t vm_flags)
5098 {
5099         long chg, add = -1;
5100         struct hstate *h = hstate_inode(inode);
5101         struct hugepage_subpool *spool = subpool_inode(inode);
5102         struct resv_map *resv_map;
5103         struct hugetlb_cgroup *h_cg = NULL;
5104         long gbl_reserve, regions_needed = 0;
5105
5106         /* This should never happen */
5107         if (from > to) {
5108                 VM_WARN(1, "%s called with a negative range\n", __func__);
5109                 return false;
5110         }
5111
5112         /*
5113          * Only apply hugepage reservation if asked. At fault time, an
5114          * attempt will be made for VM_NORESERVE to allocate a page
5115          * without using reserves
5116          */
5117         if (vm_flags & VM_NORESERVE)
5118                 return true;
5119
5120         /*
5121          * Shared mappings base their reservation on the number of pages that
5122          * are already allocated on behalf of the file. Private mappings need
5123          * to reserve the full area even if read-only as mprotect() may be
5124          * called to make the mapping read-write. Assume !vma is a shm mapping
5125          */
5126         if (!vma || vma->vm_flags & VM_MAYSHARE) {
5127                 /*
5128                  * resv_map can not be NULL as hugetlb_reserve_pages is only
5129                  * called for inodes for which resv_maps were created (see
5130                  * hugetlbfs_get_inode).
5131                  */
5132                 resv_map = inode_resv_map(inode);
5133
5134                 chg = region_chg(resv_map, from, to, &regions_needed);
5135
5136         } else {
5137                 /* Private mapping. */
5138                 resv_map = resv_map_alloc();
5139                 if (!resv_map)
5140                         return false;
5141
5142                 chg = to - from;
5143
5144                 set_vma_resv_map(vma, resv_map);
5145                 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
5146         }
5147
5148         if (chg < 0)
5149                 goto out_err;
5150
5151         if (hugetlb_cgroup_charge_cgroup_rsvd(hstate_index(h),
5152                                 chg * pages_per_huge_page(h), &h_cg) < 0)
5153                 goto out_err;
5154
5155         if (vma && !(vma->vm_flags & VM_MAYSHARE) && h_cg) {
5156                 /* For private mappings, the hugetlb_cgroup uncharge info hangs
5157                  * of the resv_map.
5158                  */
5159                 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, h_cg, h);
5160         }
5161
5162         /*
5163          * There must be enough pages in the subpool for the mapping. If
5164          * the subpool has a minimum size, there may be some global
5165          * reservations already in place (gbl_reserve).
5166          */
5167         gbl_reserve = hugepage_subpool_get_pages(spool, chg);
5168         if (gbl_reserve < 0)
5169                 goto out_uncharge_cgroup;
5170
5171         /*
5172          * Check enough hugepages are available for the reservation.
5173          * Hand the pages back to the subpool if there are not
5174          */
5175         if (hugetlb_acct_memory(h, gbl_reserve) < 0)
5176                 goto out_put_pages;
5177
5178         /*
5179          * Account for the reservations made. Shared mappings record regions
5180          * that have reservations as they are shared by multiple VMAs.
5181          * When the last VMA disappears, the region map says how much
5182          * the reservation was and the page cache tells how much of
5183          * the reservation was consumed. Private mappings are per-VMA and
5184          * only the consumed reservations are tracked. When the VMA
5185          * disappears, the original reservation is the VMA size and the
5186          * consumed reservations are stored in the map. Hence, nothing
5187          * else has to be done for private mappings here
5188          */
5189         if (!vma || vma->vm_flags & VM_MAYSHARE) {
5190                 add = region_add(resv_map, from, to, regions_needed, h, h_cg);
5191
5192                 if (unlikely(add < 0)) {
5193                         hugetlb_acct_memory(h, -gbl_reserve);
5194                         goto out_put_pages;
5195                 } else if (unlikely(chg > add)) {
5196                         /*
5197                          * pages in this range were added to the reserve
5198                          * map between region_chg and region_add.  This
5199                          * indicates a race with alloc_huge_page.  Adjust
5200                          * the subpool and reserve counts modified above
5201                          * based on the difference.
5202                          */
5203                         long rsv_adjust;
5204
5205                         /*
5206                          * hugetlb_cgroup_uncharge_cgroup_rsvd() will put the
5207                          * reference to h_cg->css. See comment below for detail.
5208                          */
5209                         hugetlb_cgroup_uncharge_cgroup_rsvd(
5210                                 hstate_index(h),
5211                                 (chg - add) * pages_per_huge_page(h), h_cg);
5212
5213                         rsv_adjust = hugepage_subpool_put_pages(spool,
5214                                                                 chg - add);
5215                         hugetlb_acct_memory(h, -rsv_adjust);
5216                 } else if (h_cg) {
5217                         /*
5218                          * The file_regions will hold their own reference to
5219                          * h_cg->css. So we should release the reference held
5220                          * via hugetlb_cgroup_charge_cgroup_rsvd() when we are
5221                          * done.
5222                          */
5223                         hugetlb_cgroup_put_rsvd_cgroup(h_cg);
5224                 }
5225         }
5226         return true;
5227
5228 out_put_pages:
5229         /* put back original number of pages, chg */
5230         (void)hugepage_subpool_put_pages(spool, chg);
5231 out_uncharge_cgroup:
5232         hugetlb_cgroup_uncharge_cgroup_rsvd(hstate_index(h),
5233                                             chg * pages_per_huge_page(h), h_cg);
5234 out_err:
5235         if (!vma || vma->vm_flags & VM_MAYSHARE)
5236                 /* Only call region_abort if the region_chg succeeded but the
5237                  * region_add failed or didn't run.
5238                  */
5239                 if (chg >= 0 && add < 0)
5240                         region_abort(resv_map, from, to, regions_needed);
5241         if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
5242                 kref_put(&resv_map->refs, resv_map_release);
5243         return false;
5244 }
5245
5246 long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
5247                                                                 long freed)
5248 {
5249         struct hstate *h = hstate_inode(inode);
5250         struct resv_map *resv_map = inode_resv_map(inode);
5251         long chg = 0;
5252         struct hugepage_subpool *spool = subpool_inode(inode);
5253         long gbl_reserve;
5254
5255         /*
5256          * Since this routine can be called in the evict inode path for all
5257          * hugetlbfs inodes, resv_map could be NULL.
5258          */
5259         if (resv_map) {
5260                 chg = region_del(resv_map, start, end);
5261                 /*
5262                  * region_del() can fail in the rare case where a region
5263                  * must be split and another region descriptor can not be
5264                  * allocated.  If end == LONG_MAX, it will not fail.
5265                  */
5266                 if (chg < 0)
5267                         return chg;
5268         }
5269
5270         spin_lock(&inode->i_lock);
5271         inode->i_blocks -= (blocks_per_huge_page(h) * freed);
5272         spin_unlock(&inode->i_lock);
5273
5274         /*
5275          * If the subpool has a minimum size, the number of global
5276          * reservations to be released may be adjusted.
5277          *
5278          * Note that !resv_map implies freed == 0. So (chg - freed)
5279          * won't go negative.
5280          */
5281         gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
5282         hugetlb_acct_memory(h, -gbl_reserve);
5283
5284         return 0;
5285 }
5286
5287 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
5288 static unsigned long page_table_shareable(struct vm_area_struct *svma,
5289                                 struct vm_area_struct *vma,
5290                                 unsigned long addr, pgoff_t idx)
5291 {
5292         unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
5293                                 svma->vm_start;
5294         unsigned long sbase = saddr & PUD_MASK;
5295         unsigned long s_end = sbase + PUD_SIZE;
5296
5297         /* Allow segments to share if only one is marked locked */
5298         unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
5299         unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
5300
5301         /*
5302          * match the virtual addresses, permission and the alignment of the
5303          * page table page.
5304          */
5305         if (pmd_index(addr) != pmd_index(saddr) ||
5306             vm_flags != svm_flags ||
5307             !range_in_vma(svma, sbase, s_end))
5308                 return 0;
5309
5310         return saddr;
5311 }
5312
5313 static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr)
5314 {
5315         unsigned long base = addr & PUD_MASK;
5316         unsigned long end = base + PUD_SIZE;
5317
5318         /*
5319          * check on proper vm_flags and page table alignment
5320          */
5321         if (vma->vm_flags & VM_MAYSHARE && range_in_vma(vma, base, end))
5322                 return true;
5323         return false;
5324 }
5325
5326 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
5327 {
5328 #ifdef CONFIG_USERFAULTFD
5329         if (uffd_disable_huge_pmd_share(vma))
5330                 return false;
5331 #endif
5332         return vma_shareable(vma, addr);
5333 }
5334
5335 /*
5336  * Determine if start,end range within vma could be mapped by shared pmd.
5337  * If yes, adjust start and end to cover range associated with possible
5338  * shared pmd mappings.
5339  */
5340 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
5341                                 unsigned long *start, unsigned long *end)
5342 {
5343         unsigned long v_start = ALIGN(vma->vm_start, PUD_SIZE),
5344                 v_end = ALIGN_DOWN(vma->vm_end, PUD_SIZE);
5345
5346         /*
5347          * vma need span at least one aligned PUD size and the start,end range
5348          * must at least partialy within it.
5349          */
5350         if (!(vma->vm_flags & VM_MAYSHARE) || !(v_end > v_start) ||
5351                 (*end <= v_start) || (*start >= v_end))
5352                 return;
5353
5354         /* Extend the range to be PUD aligned for a worst case scenario */
5355         if (*start > v_start)
5356                 *start = ALIGN_DOWN(*start, PUD_SIZE);
5357
5358         if (*end < v_end)
5359                 *end = ALIGN(*end, PUD_SIZE);
5360 }
5361
5362 /*
5363  * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
5364  * and returns the corresponding pte. While this is not necessary for the
5365  * !shared pmd case because we can allocate the pmd later as well, it makes the
5366  * code much cleaner.
5367  *
5368  * This routine must be called with i_mmap_rwsem held in at least read mode if
5369  * sharing is possible.  For hugetlbfs, this prevents removal of any page
5370  * table entries associated with the address space.  This is important as we
5371  * are setting up sharing based on existing page table entries (mappings).
5372  *
5373  * NOTE: This routine is only called from huge_pte_alloc.  Some callers of
5374  * huge_pte_alloc know that sharing is not possible and do not take
5375  * i_mmap_rwsem as a performance optimization.  This is handled by the
5376  * if !vma_shareable check at the beginning of the routine. i_mmap_rwsem is
5377  * only required for subsequent processing.
5378  */
5379 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
5380                       unsigned long addr, pud_t *pud)
5381 {
5382         struct address_space *mapping = vma->vm_file->f_mapping;
5383         pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
5384                         vma->vm_pgoff;
5385         struct vm_area_struct *svma;
5386         unsigned long saddr;
5387         pte_t *spte = NULL;
5388         pte_t *pte;
5389         spinlock_t *ptl;
5390
5391         i_mmap_assert_locked(mapping);
5392         vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
5393                 if (svma == vma)
5394                         continue;
5395
5396                 saddr = page_table_shareable(svma, vma, addr, idx);
5397                 if (saddr) {
5398                         spte = huge_pte_offset(svma->vm_mm, saddr,
5399                                                vma_mmu_pagesize(svma));
5400                         if (spte) {
5401                                 get_page(virt_to_page(spte));
5402                                 break;
5403                         }
5404                 }
5405         }
5406
5407         if (!spte)
5408                 goto out;
5409
5410         ptl = huge_pte_lock(hstate_vma(vma), mm, spte);
5411         if (pud_none(*pud)) {
5412                 pud_populate(mm, pud,
5413                                 (pmd_t *)((unsigned long)spte & PAGE_MASK));
5414                 mm_inc_nr_pmds(mm);
5415         } else {
5416                 put_page(virt_to_page(spte));
5417         }
5418         spin_unlock(ptl);
5419 out:
5420         pte = (pte_t *)pmd_alloc(mm, pud, addr);
5421         return pte;
5422 }
5423
5424 /*
5425  * unmap huge page backed by shared pte.
5426  *
5427  * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
5428  * indicated by page_count > 1, unmap is achieved by clearing pud and
5429  * decrementing the ref count. If count == 1, the pte page is not shared.
5430  *
5431  * Called with page table lock held and i_mmap_rwsem held in write mode.
5432  *
5433  * returns: 1 successfully unmapped a shared pte page
5434  *          0 the underlying pte page is not shared, or it is the last user
5435  */
5436 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
5437                                         unsigned long *addr, pte_t *ptep)
5438 {
5439         pgd_t *pgd = pgd_offset(mm, *addr);
5440         p4d_t *p4d = p4d_offset(pgd, *addr);
5441         pud_t *pud = pud_offset(p4d, *addr);
5442
5443         i_mmap_assert_write_locked(vma->vm_file->f_mapping);
5444         BUG_ON(page_count(virt_to_page(ptep)) == 0);
5445         if (page_count(virt_to_page(ptep)) == 1)
5446                 return 0;
5447
5448         pud_clear(pud);
5449         put_page(virt_to_page(ptep));
5450         mm_dec_nr_pmds(mm);
5451         *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
5452         return 1;
5453 }
5454
5455 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
5456 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
5457                       unsigned long addr, pud_t *pud)
5458 {
5459         return NULL;
5460 }
5461
5462 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
5463                                 unsigned long *addr, pte_t *ptep)
5464 {
5465         return 0;
5466 }
5467
5468 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
5469                                 unsigned long *start, unsigned long *end)
5470 {
5471 }
5472
5473 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
5474 {
5475         return false;
5476 }
5477 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
5478
5479 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
5480 pte_t *huge_pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
5481                         unsigned long addr, unsigned long sz)
5482 {
5483         pgd_t *pgd;
5484         p4d_t *p4d;
5485         pud_t *pud;
5486         pte_t *pte = NULL;
5487
5488         pgd = pgd_offset(mm, addr);
5489         p4d = p4d_alloc(mm, pgd, addr);
5490         if (!p4d)
5491                 return NULL;
5492         pud = pud_alloc(mm, p4d, addr);
5493         if (pud) {
5494                 if (sz == PUD_SIZE) {
5495                         pte = (pte_t *)pud;
5496                 } else {
5497                         BUG_ON(sz != PMD_SIZE);
5498                         if (want_pmd_share(vma, addr) && pud_none(*pud))
5499                                 pte = huge_pmd_share(mm, vma, addr, pud);
5500                         else
5501                                 pte = (pte_t *)pmd_alloc(mm, pud, addr);
5502                 }
5503         }
5504         BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte));
5505
5506         return pte;
5507 }
5508
5509 /*
5510  * huge_pte_offset() - Walk the page table to resolve the hugepage
5511  * entry at address @addr
5512  *
5513  * Return: Pointer to page table entry (PUD or PMD) for
5514  * address @addr, or NULL if a !p*d_present() entry is encountered and the
5515  * size @sz doesn't match the hugepage size at this level of the page
5516  * table.
5517  */
5518 pte_t *huge_pte_offset(struct mm_struct *mm,
5519                        unsigned long addr, unsigned long sz)
5520 {
5521         pgd_t *pgd;
5522         p4d_t *p4d;
5523         pud_t *pud;
5524         pmd_t *pmd;
5525
5526         pgd = pgd_offset(mm, addr);
5527         if (!pgd_present(*pgd))
5528                 return NULL;
5529         p4d = p4d_offset(pgd, addr);
5530         if (!p4d_present(*p4d))
5531                 return NULL;
5532
5533         pud = pud_offset(p4d, addr);
5534         if (sz == PUD_SIZE)
5535                 /* must be pud huge, non-present or none */
5536                 return (pte_t *)pud;
5537         if (!pud_present(*pud))
5538                 return NULL;
5539         /* must have a valid entry and size to go further */
5540
5541         pmd = pmd_offset(pud, addr);
5542         /* must be pmd huge, non-present or none */
5543         return (pte_t *)pmd;
5544 }
5545
5546 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
5547
5548 /*
5549  * These functions are overwritable if your architecture needs its own
5550  * behavior.
5551  */
5552 struct page * __weak
5553 follow_huge_addr(struct mm_struct *mm, unsigned long address,
5554                               int write)
5555 {
5556         return ERR_PTR(-EINVAL);
5557 }
5558
5559 struct page * __weak
5560 follow_huge_pd(struct vm_area_struct *vma,
5561                unsigned long address, hugepd_t hpd, int flags, int pdshift)
5562 {
5563         WARN(1, "hugepd follow called with no support for hugepage directory format\n");
5564         return NULL;
5565 }
5566
5567 struct page * __weak
5568 follow_huge_pmd(struct mm_struct *mm, unsigned long address,
5569                 pmd_t *pmd, int flags)
5570 {
5571         struct page *page = NULL;
5572         spinlock_t *ptl;
5573         pte_t pte;
5574
5575         /* FOLL_GET and FOLL_PIN are mutually exclusive. */
5576         if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
5577                          (FOLL_PIN | FOLL_GET)))
5578                 return NULL;
5579
5580 retry:
5581         ptl = pmd_lockptr(mm, pmd);
5582         spin_lock(ptl);
5583         /*
5584          * make sure that the address range covered by this pmd is not
5585          * unmapped from other threads.
5586          */
5587         if (!pmd_huge(*pmd))
5588                 goto out;
5589         pte = huge_ptep_get((pte_t *)pmd);
5590         if (pte_present(pte)) {
5591                 page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
5592                 /*
5593                  * try_grab_page() should always succeed here, because: a) we
5594                  * hold the pmd (ptl) lock, and b) we've just checked that the
5595                  * huge pmd (head) page is present in the page tables. The ptl
5596                  * prevents the head page and tail pages from being rearranged
5597                  * in any way. So this page must be available at this point,
5598                  * unless the page refcount overflowed:
5599                  */
5600                 if (WARN_ON_ONCE(!try_grab_page(page, flags))) {
5601                         page = NULL;
5602                         goto out;
5603                 }
5604         } else {
5605                 if (is_hugetlb_entry_migration(pte)) {
5606                         spin_unlock(ptl);
5607                         __migration_entry_wait(mm, (pte_t *)pmd, ptl);
5608                         goto retry;
5609                 }
5610                 /*
5611                  * hwpoisoned entry is treated as no_page_table in
5612                  * follow_page_mask().
5613                  */
5614         }
5615 out:
5616         spin_unlock(ptl);
5617         return page;
5618 }
5619
5620 struct page * __weak
5621 follow_huge_pud(struct mm_struct *mm, unsigned long address,
5622                 pud_t *pud, int flags)
5623 {
5624         if (flags & (FOLL_GET | FOLL_PIN))
5625                 return NULL;
5626
5627         return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
5628 }
5629
5630 struct page * __weak
5631 follow_huge_pgd(struct mm_struct *mm, unsigned long address, pgd_t *pgd, int flags)
5632 {
5633         if (flags & (FOLL_GET | FOLL_PIN))
5634                 return NULL;
5635
5636         return pte_page(*(pte_t *)pgd) + ((address & ~PGDIR_MASK) >> PAGE_SHIFT);
5637 }
5638
5639 bool isolate_huge_page(struct page *page, struct list_head *list)
5640 {
5641         bool ret = true;
5642
5643         spin_lock(&hugetlb_lock);
5644         if (!PageHeadHuge(page) ||
5645             !HPageMigratable(page) ||
5646             !get_page_unless_zero(page)) {
5647                 ret = false;
5648                 goto unlock;
5649         }
5650         ClearHPageMigratable(page);
5651         list_move_tail(&page->lru, list);
5652 unlock:
5653         spin_unlock(&hugetlb_lock);
5654         return ret;
5655 }
5656
5657 void putback_active_hugepage(struct page *page)
5658 {
5659         spin_lock(&hugetlb_lock);
5660         SetHPageMigratable(page);
5661         list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
5662         spin_unlock(&hugetlb_lock);
5663         put_page(page);
5664 }
5665
5666 void move_hugetlb_state(struct page *oldpage, struct page *newpage, int reason)
5667 {
5668         struct hstate *h = page_hstate(oldpage);
5669
5670         hugetlb_cgroup_migrate(oldpage, newpage);
5671         set_page_owner_migrate_reason(newpage, reason);
5672
5673         /*
5674          * transfer temporary state of the new huge page. This is
5675          * reverse to other transitions because the newpage is going to
5676          * be final while the old one will be freed so it takes over
5677          * the temporary status.
5678          *
5679          * Also note that we have to transfer the per-node surplus state
5680          * here as well otherwise the global surplus count will not match
5681          * the per-node's.
5682          */
5683         if (HPageTemporary(newpage)) {
5684                 int old_nid = page_to_nid(oldpage);
5685                 int new_nid = page_to_nid(newpage);
5686
5687                 SetHPageTemporary(oldpage);
5688                 ClearHPageTemporary(newpage);
5689
5690                 /*
5691                  * There is no need to transfer the per-node surplus state
5692                  * when we do not cross the node.
5693                  */
5694                 if (new_nid == old_nid)
5695                         return;
5696                 spin_lock(&hugetlb_lock);
5697                 if (h->surplus_huge_pages_node[old_nid]) {
5698                         h->surplus_huge_pages_node[old_nid]--;
5699                         h->surplus_huge_pages_node[new_nid]++;
5700                 }
5701                 spin_unlock(&hugetlb_lock);
5702         }
5703 }
5704
5705 /*
5706  * This function will unconditionally remove all the shared pmd pgtable entries
5707  * within the specific vma for a hugetlbfs memory range.
5708  */
5709 void hugetlb_unshare_all_pmds(struct vm_area_struct *vma)
5710 {
5711         struct hstate *h = hstate_vma(vma);
5712         unsigned long sz = huge_page_size(h);
5713         struct mm_struct *mm = vma->vm_mm;
5714         struct mmu_notifier_range range;
5715         unsigned long address, start, end;
5716         spinlock_t *ptl;
5717         pte_t *ptep;
5718
5719         if (!(vma->vm_flags & VM_MAYSHARE))
5720                 return;
5721
5722         start = ALIGN(vma->vm_start, PUD_SIZE);
5723         end = ALIGN_DOWN(vma->vm_end, PUD_SIZE);
5724
5725         if (start >= end)
5726                 return;
5727
5728         /*
5729          * No need to call adjust_range_if_pmd_sharing_possible(), because
5730          * we have already done the PUD_SIZE alignment.
5731          */
5732         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
5733                                 start, end);
5734         mmu_notifier_invalidate_range_start(&range);
5735         i_mmap_lock_write(vma->vm_file->f_mapping);
5736         for (address = start; address < end; address += PUD_SIZE) {
5737                 unsigned long tmp = address;
5738
5739                 ptep = huge_pte_offset(mm, address, sz);
5740                 if (!ptep)
5741                         continue;
5742                 ptl = huge_pte_lock(h, mm, ptep);
5743                 /* We don't want 'address' to be changed */
5744                 huge_pmd_unshare(mm, vma, &tmp, ptep);
5745                 spin_unlock(ptl);
5746         }
5747         flush_hugetlb_tlb_range(vma, start, end);
5748         i_mmap_unlock_write(vma->vm_file->f_mapping);
5749         /*
5750          * No need to call mmu_notifier_invalidate_range(), see
5751          * Documentation/vm/mmu_notifier.rst.
5752          */
5753         mmu_notifier_invalidate_range_end(&range);
5754 }
5755
5756 #ifdef CONFIG_CMA
5757 static bool cma_reserve_called __initdata;
5758
5759 static int __init cmdline_parse_hugetlb_cma(char *p)
5760 {
5761         hugetlb_cma_size = memparse(p, &p);
5762         return 0;
5763 }
5764
5765 early_param("hugetlb_cma", cmdline_parse_hugetlb_cma);
5766
5767 void __init hugetlb_cma_reserve(int order)
5768 {
5769         unsigned long size, reserved, per_node;
5770         int nid;
5771
5772         cma_reserve_called = true;
5773
5774         if (!hugetlb_cma_size)
5775                 return;
5776
5777         if (hugetlb_cma_size < (PAGE_SIZE << order)) {
5778                 pr_warn("hugetlb_cma: cma area should be at least %lu MiB\n",
5779                         (PAGE_SIZE << order) / SZ_1M);
5780                 return;
5781         }
5782
5783         /*
5784          * If 3 GB area is requested on a machine with 4 numa nodes,
5785          * let's allocate 1 GB on first three nodes and ignore the last one.
5786          */
5787         per_node = DIV_ROUND_UP(hugetlb_cma_size, nr_online_nodes);
5788         pr_info("hugetlb_cma: reserve %lu MiB, up to %lu MiB per node\n",
5789                 hugetlb_cma_size / SZ_1M, per_node / SZ_1M);
5790
5791         reserved = 0;
5792         for_each_node_state(nid, N_ONLINE) {
5793                 int res;
5794                 char name[CMA_MAX_NAME];
5795
5796                 size = min(per_node, hugetlb_cma_size - reserved);
5797                 size = round_up(size, PAGE_SIZE << order);
5798
5799                 snprintf(name, sizeof(name), "hugetlb%d", nid);
5800                 res = cma_declare_contiguous_nid(0, size, 0, PAGE_SIZE << order,
5801                                                  0, false, name,
5802                                                  &hugetlb_cma[nid], nid);
5803                 if (res) {
5804                         pr_warn("hugetlb_cma: reservation failed: err %d, node %d",
5805                                 res, nid);
5806                         continue;
5807                 }
5808
5809                 reserved += size;
5810                 pr_info("hugetlb_cma: reserved %lu MiB on node %d\n",
5811                         size / SZ_1M, nid);
5812
5813                 if (reserved >= hugetlb_cma_size)
5814                         break;
5815         }
5816 }
5817
5818 void __init hugetlb_cma_check(void)
5819 {
5820         if (!hugetlb_cma_size || cma_reserve_called)
5821                 return;
5822
5823         pr_warn("hugetlb_cma: the option isn't supported by current arch\n");
5824 }
5825
5826 #endif /* CONFIG_CMA */