1 // SPDX-License-Identifier: GPL-2.0-only
3 * Generic hugetlb support.
4 * (C) Nadia Yvette Chambers, April 2004
6 #include <linux/list.h>
7 #include <linux/init.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/compiler.h>
17 #include <linux/cpuset.h>
18 #include <linux/mutex.h>
19 #include <linux/memblock.h>
20 #include <linux/sysfs.h>
21 #include <linux/slab.h>
22 #include <linux/mmdebug.h>
23 #include <linux/sched/signal.h>
24 #include <linux/rmap.h>
25 #include <linux/string_helpers.h>
26 #include <linux/swap.h>
27 #include <linux/swapops.h>
28 #include <linux/jhash.h>
29 #include <linux/numa.h>
30 #include <linux/llist.h>
33 #include <asm/pgtable.h>
37 #include <linux/hugetlb.h>
38 #include <linux/hugetlb_cgroup.h>
39 #include <linux/node.h>
40 #include <linux/userfaultfd_k.h>
41 #include <linux/page_owner.h>
44 int hugetlb_max_hstate __read_mostly;
45 unsigned int default_hstate_idx;
46 struct hstate hstates[HUGE_MAX_HSTATE];
48 * Minimum page order among possible hugepage sizes, set to a proper value
51 static unsigned int minimum_order __read_mostly = UINT_MAX;
53 __initdata LIST_HEAD(huge_boot_pages);
55 /* for command line parsing */
56 static struct hstate * __initdata parsed_hstate;
57 static unsigned long __initdata default_hstate_max_huge_pages;
58 static unsigned long __initdata default_hstate_size;
59 static bool __initdata parsed_valid_hugepagesz = true;
62 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
63 * free_huge_pages, and surplus_huge_pages.
65 DEFINE_SPINLOCK(hugetlb_lock);
68 * Serializes faults on the same logical page. This is used to
69 * prevent spurious OOMs when the hugepage pool is fully utilized.
71 static int num_fault_mutexes;
72 struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
74 /* Forward declaration */
75 static int hugetlb_acct_memory(struct hstate *h, long delta);
77 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
79 bool free = (spool->count == 0) && (spool->used_hpages == 0);
81 spin_unlock(&spool->lock);
83 /* If no pages are used, and no other handles to the subpool
84 * remain, give up any reservations mased on minimum size and
87 if (spool->min_hpages != -1)
88 hugetlb_acct_memory(spool->hstate,
94 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
97 struct hugepage_subpool *spool;
99 spool = kzalloc(sizeof(*spool), GFP_KERNEL);
103 spin_lock_init(&spool->lock);
105 spool->max_hpages = max_hpages;
107 spool->min_hpages = min_hpages;
109 if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
113 spool->rsv_hpages = min_hpages;
118 void hugepage_put_subpool(struct hugepage_subpool *spool)
120 spin_lock(&spool->lock);
121 BUG_ON(!spool->count);
123 unlock_or_release_subpool(spool);
127 * Subpool accounting for allocating and reserving pages.
128 * Return -ENOMEM if there are not enough resources to satisfy the
129 * the request. Otherwise, return the number of pages by which the
130 * global pools must be adjusted (upward). The returned value may
131 * only be different than the passed value (delta) in the case where
132 * a subpool minimum size must be manitained.
134 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
142 spin_lock(&spool->lock);
144 if (spool->max_hpages != -1) { /* maximum size accounting */
145 if ((spool->used_hpages + delta) <= spool->max_hpages)
146 spool->used_hpages += delta;
153 /* minimum size accounting */
154 if (spool->min_hpages != -1 && spool->rsv_hpages) {
155 if (delta > spool->rsv_hpages) {
157 * Asking for more reserves than those already taken on
158 * behalf of subpool. Return difference.
160 ret = delta - spool->rsv_hpages;
161 spool->rsv_hpages = 0;
163 ret = 0; /* reserves already accounted for */
164 spool->rsv_hpages -= delta;
169 spin_unlock(&spool->lock);
174 * Subpool accounting for freeing and unreserving pages.
175 * Return the number of global page reservations that must be dropped.
176 * The return value may only be different than the passed value (delta)
177 * in the case where a subpool minimum size must be maintained.
179 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
187 spin_lock(&spool->lock);
189 if (spool->max_hpages != -1) /* maximum size accounting */
190 spool->used_hpages -= delta;
192 /* minimum size accounting */
193 if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
194 if (spool->rsv_hpages + delta <= spool->min_hpages)
197 ret = spool->rsv_hpages + delta - spool->min_hpages;
199 spool->rsv_hpages += delta;
200 if (spool->rsv_hpages > spool->min_hpages)
201 spool->rsv_hpages = spool->min_hpages;
205 * If hugetlbfs_put_super couldn't free spool due to an outstanding
206 * quota reference, free it now.
208 unlock_or_release_subpool(spool);
213 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
215 return HUGETLBFS_SB(inode->i_sb)->spool;
218 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
220 return subpool_inode(file_inode(vma->vm_file));
223 /* Helper that removes a struct file_region from the resv_map cache and returns
226 static struct file_region *
227 get_file_region_entry_from_cache(struct resv_map *resv, long from, long to)
229 struct file_region *nrg = NULL;
231 VM_BUG_ON(resv->region_cache_count <= 0);
233 resv->region_cache_count--;
234 nrg = list_first_entry(&resv->region_cache, struct file_region, link);
236 list_del(&nrg->link);
244 static void copy_hugetlb_cgroup_uncharge_info(struct file_region *nrg,
245 struct file_region *rg)
247 #ifdef CONFIG_CGROUP_HUGETLB
248 nrg->reservation_counter = rg->reservation_counter;
255 /* Helper that records hugetlb_cgroup uncharge info. */
256 static void record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup *h_cg,
258 struct resv_map *resv,
259 struct file_region *nrg)
261 #ifdef CONFIG_CGROUP_HUGETLB
263 nrg->reservation_counter =
264 &h_cg->rsvd_hugepage[hstate_index(h)];
265 nrg->css = &h_cg->css;
266 if (!resv->pages_per_hpage)
267 resv->pages_per_hpage = pages_per_huge_page(h);
268 /* pages_per_hpage should be the same for all entries in
271 VM_BUG_ON(resv->pages_per_hpage != pages_per_huge_page(h));
273 nrg->reservation_counter = NULL;
279 static bool has_same_uncharge_info(struct file_region *rg,
280 struct file_region *org)
282 #ifdef CONFIG_CGROUP_HUGETLB
284 rg->reservation_counter == org->reservation_counter &&
292 static void coalesce_file_region(struct resv_map *resv, struct file_region *rg)
294 struct file_region *nrg = NULL, *prg = NULL;
296 prg = list_prev_entry(rg, link);
297 if (&prg->link != &resv->regions && prg->to == rg->from &&
298 has_same_uncharge_info(prg, rg)) {
304 coalesce_file_region(resv, prg);
308 nrg = list_next_entry(rg, link);
309 if (&nrg->link != &resv->regions && nrg->from == rg->to &&
310 has_same_uncharge_info(nrg, rg)) {
311 nrg->from = rg->from;
316 coalesce_file_region(resv, nrg);
321 /* Must be called with resv->lock held. Calling this with count_only == true
322 * will count the number of pages to be added but will not modify the linked
323 * list. If regions_needed != NULL and count_only == true, then regions_needed
324 * will indicate the number of file_regions needed in the cache to carry out to
325 * add the regions for this range.
327 static long add_reservation_in_range(struct resv_map *resv, long f, long t,
328 struct hugetlb_cgroup *h_cg,
329 struct hstate *h, long *regions_needed,
333 struct list_head *head = &resv->regions;
334 long last_accounted_offset = f;
335 struct file_region *rg = NULL, *trg = NULL, *nrg = NULL;
340 /* In this loop, we essentially handle an entry for the range
341 * [last_accounted_offset, rg->from), at every iteration, with some
344 list_for_each_entry_safe(rg, trg, head, link) {
345 /* Skip irrelevant regions that start before our range. */
347 /* If this region ends after the last accounted offset,
348 * then we need to update last_accounted_offset.
350 if (rg->to > last_accounted_offset)
351 last_accounted_offset = rg->to;
355 /* When we find a region that starts beyond our range, we've
361 /* Add an entry for last_accounted_offset -> rg->from, and
362 * update last_accounted_offset.
364 if (rg->from > last_accounted_offset) {
365 add += rg->from - last_accounted_offset;
367 nrg = get_file_region_entry_from_cache(
368 resv, last_accounted_offset, rg->from);
369 record_hugetlb_cgroup_uncharge_info(h_cg, h,
371 list_add(&nrg->link, rg->link.prev);
372 coalesce_file_region(resv, nrg);
373 } else if (regions_needed)
374 *regions_needed += 1;
377 last_accounted_offset = rg->to;
380 /* Handle the case where our range extends beyond
381 * last_accounted_offset.
383 if (last_accounted_offset < t) {
384 add += t - last_accounted_offset;
386 nrg = get_file_region_entry_from_cache(
387 resv, last_accounted_offset, t);
388 record_hugetlb_cgroup_uncharge_info(h_cg, h, resv, nrg);
389 list_add(&nrg->link, rg->link.prev);
390 coalesce_file_region(resv, nrg);
391 } else if (regions_needed)
392 *regions_needed += 1;
399 /* Must be called with resv->lock acquired. Will drop lock to allocate entries.
401 static int allocate_file_region_entries(struct resv_map *resv,
403 __must_hold(&resv->lock)
405 struct list_head allocated_regions;
406 int to_allocate = 0, i = 0;
407 struct file_region *trg = NULL, *rg = NULL;
409 VM_BUG_ON(regions_needed < 0);
411 INIT_LIST_HEAD(&allocated_regions);
414 * Check for sufficient descriptors in the cache to accommodate
415 * the number of in progress add operations plus regions_needed.
417 * This is a while loop because when we drop the lock, some other call
418 * to region_add or region_del may have consumed some region_entries,
419 * so we keep looping here until we finally have enough entries for
420 * (adds_in_progress + regions_needed).
422 while (resv->region_cache_count <
423 (resv->adds_in_progress + regions_needed)) {
424 to_allocate = resv->adds_in_progress + regions_needed -
425 resv->region_cache_count;
427 /* At this point, we should have enough entries in the cache
428 * for all the existings adds_in_progress. We should only be
429 * needing to allocate for regions_needed.
431 VM_BUG_ON(resv->region_cache_count < resv->adds_in_progress);
433 spin_unlock(&resv->lock);
434 for (i = 0; i < to_allocate; i++) {
435 trg = kmalloc(sizeof(*trg), GFP_KERNEL);
438 list_add(&trg->link, &allocated_regions);
441 spin_lock(&resv->lock);
443 list_for_each_entry_safe(rg, trg, &allocated_regions, link) {
445 list_add(&rg->link, &resv->region_cache);
446 resv->region_cache_count++;
453 list_for_each_entry_safe(rg, trg, &allocated_regions, link) {
461 * Add the huge page range represented by [f, t) to the reserve
462 * map. Regions will be taken from the cache to fill in this range.
463 * Sufficient regions should exist in the cache due to the previous
464 * call to region_chg with the same range, but in some cases the cache will not
465 * have sufficient entries due to races with other code doing region_add or
466 * region_del. The extra needed entries will be allocated.
468 * regions_needed is the out value provided by a previous call to region_chg.
470 * Return the number of new huge pages added to the map. This number is greater
471 * than or equal to zero. If file_region entries needed to be allocated for
472 * this operation and we were not able to allocate, it ruturns -ENOMEM.
473 * region_add of regions of length 1 never allocate file_regions and cannot
474 * fail; region_chg will always allocate at least 1 entry and a region_add for
475 * 1 page will only require at most 1 entry.
477 static long region_add(struct resv_map *resv, long f, long t,
478 long in_regions_needed, struct hstate *h,
479 struct hugetlb_cgroup *h_cg)
481 long add = 0, actual_regions_needed = 0;
483 spin_lock(&resv->lock);
486 /* Count how many regions are actually needed to execute this add. */
487 add_reservation_in_range(resv, f, t, NULL, NULL, &actual_regions_needed,
491 * Check for sufficient descriptors in the cache to accommodate
492 * this add operation. Note that actual_regions_needed may be greater
493 * than in_regions_needed, as the resv_map may have been modified since
494 * the region_chg call. In this case, we need to make sure that we
495 * allocate extra entries, such that we have enough for all the
496 * existing adds_in_progress, plus the excess needed for this
499 if (actual_regions_needed > in_regions_needed &&
500 resv->region_cache_count <
501 resv->adds_in_progress +
502 (actual_regions_needed - in_regions_needed)) {
503 /* region_add operation of range 1 should never need to
504 * allocate file_region entries.
506 VM_BUG_ON(t - f <= 1);
508 if (allocate_file_region_entries(
509 resv, actual_regions_needed - in_regions_needed)) {
516 add = add_reservation_in_range(resv, f, t, h_cg, h, NULL, false);
518 resv->adds_in_progress -= in_regions_needed;
520 spin_unlock(&resv->lock);
526 * Examine the existing reserve map and determine how many
527 * huge pages in the specified range [f, t) are NOT currently
528 * represented. This routine is called before a subsequent
529 * call to region_add that will actually modify the reserve
530 * map to add the specified range [f, t). region_chg does
531 * not change the number of huge pages represented by the
532 * map. A number of new file_region structures is added to the cache as a
533 * placeholder, for the subsequent region_add call to use. At least 1
534 * file_region structure is added.
536 * out_regions_needed is the number of regions added to the
537 * resv->adds_in_progress. This value needs to be provided to a follow up call
538 * to region_add or region_abort for proper accounting.
540 * Returns the number of huge pages that need to be added to the existing
541 * reservation map for the range [f, t). This number is greater or equal to
542 * zero. -ENOMEM is returned if a new file_region structure or cache entry
543 * is needed and can not be allocated.
545 static long region_chg(struct resv_map *resv, long f, long t,
546 long *out_regions_needed)
550 spin_lock(&resv->lock);
552 /* Count how many hugepages in this range are NOT respresented. */
553 chg = add_reservation_in_range(resv, f, t, NULL, NULL,
554 out_regions_needed, true);
556 if (*out_regions_needed == 0)
557 *out_regions_needed = 1;
559 if (allocate_file_region_entries(resv, *out_regions_needed))
562 resv->adds_in_progress += *out_regions_needed;
564 spin_unlock(&resv->lock);
569 * Abort the in progress add operation. The adds_in_progress field
570 * of the resv_map keeps track of the operations in progress between
571 * calls to region_chg and region_add. Operations are sometimes
572 * aborted after the call to region_chg. In such cases, region_abort
573 * is called to decrement the adds_in_progress counter. regions_needed
574 * is the value returned by the region_chg call, it is used to decrement
575 * the adds_in_progress counter.
577 * NOTE: The range arguments [f, t) are not needed or used in this
578 * routine. They are kept to make reading the calling code easier as
579 * arguments will match the associated region_chg call.
581 static void region_abort(struct resv_map *resv, long f, long t,
584 spin_lock(&resv->lock);
585 VM_BUG_ON(!resv->region_cache_count);
586 resv->adds_in_progress -= regions_needed;
587 spin_unlock(&resv->lock);
591 * Delete the specified range [f, t) from the reserve map. If the
592 * t parameter is LONG_MAX, this indicates that ALL regions after f
593 * should be deleted. Locate the regions which intersect [f, t)
594 * and either trim, delete or split the existing regions.
596 * Returns the number of huge pages deleted from the reserve map.
597 * In the normal case, the return value is zero or more. In the
598 * case where a region must be split, a new region descriptor must
599 * be allocated. If the allocation fails, -ENOMEM will be returned.
600 * NOTE: If the parameter t == LONG_MAX, then we will never split
601 * a region and possibly return -ENOMEM. Callers specifying
602 * t == LONG_MAX do not need to check for -ENOMEM error.
604 static long region_del(struct resv_map *resv, long f, long t)
606 struct list_head *head = &resv->regions;
607 struct file_region *rg, *trg;
608 struct file_region *nrg = NULL;
612 spin_lock(&resv->lock);
613 list_for_each_entry_safe(rg, trg, head, link) {
615 * Skip regions before the range to be deleted. file_region
616 * ranges are normally of the form [from, to). However, there
617 * may be a "placeholder" entry in the map which is of the form
618 * (from, to) with from == to. Check for placeholder entries
619 * at the beginning of the range to be deleted.
621 if (rg->to <= f && (rg->to != rg->from || rg->to != f))
627 if (f > rg->from && t < rg->to) { /* Must split region */
629 * Check for an entry in the cache before dropping
630 * lock and attempting allocation.
633 resv->region_cache_count > resv->adds_in_progress) {
634 nrg = list_first_entry(&resv->region_cache,
637 list_del(&nrg->link);
638 resv->region_cache_count--;
642 spin_unlock(&resv->lock);
643 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
651 /* New entry for end of split region */
655 copy_hugetlb_cgroup_uncharge_info(nrg, rg);
657 INIT_LIST_HEAD(&nrg->link);
659 /* Original entry is trimmed */
662 hugetlb_cgroup_uncharge_file_region(
663 resv, rg, nrg->to - nrg->from);
665 list_add(&nrg->link, &rg->link);
670 if (f <= rg->from && t >= rg->to) { /* Remove entire region */
671 del += rg->to - rg->from;
672 hugetlb_cgroup_uncharge_file_region(resv, rg,
679 if (f <= rg->from) { /* Trim beginning of region */
683 hugetlb_cgroup_uncharge_file_region(resv, rg,
685 } else { /* Trim end of region */
689 hugetlb_cgroup_uncharge_file_region(resv, rg,
694 spin_unlock(&resv->lock);
700 * A rare out of memory error was encountered which prevented removal of
701 * the reserve map region for a page. The huge page itself was free'ed
702 * and removed from the page cache. This routine will adjust the subpool
703 * usage count, and the global reserve count if needed. By incrementing
704 * these counts, the reserve map entry which could not be deleted will
705 * appear as a "reserved" entry instead of simply dangling with incorrect
708 void hugetlb_fix_reserve_counts(struct inode *inode)
710 struct hugepage_subpool *spool = subpool_inode(inode);
713 rsv_adjust = hugepage_subpool_get_pages(spool, 1);
715 struct hstate *h = hstate_inode(inode);
717 hugetlb_acct_memory(h, 1);
722 * Count and return the number of huge pages in the reserve map
723 * that intersect with the range [f, t).
725 static long region_count(struct resv_map *resv, long f, long t)
727 struct list_head *head = &resv->regions;
728 struct file_region *rg;
731 spin_lock(&resv->lock);
732 /* Locate each segment we overlap with, and count that overlap. */
733 list_for_each_entry(rg, head, link) {
742 seg_from = max(rg->from, f);
743 seg_to = min(rg->to, t);
745 chg += seg_to - seg_from;
747 spin_unlock(&resv->lock);
753 * Convert the address within this vma to the page offset within
754 * the mapping, in pagecache page units; huge pages here.
756 static pgoff_t vma_hugecache_offset(struct hstate *h,
757 struct vm_area_struct *vma, unsigned long address)
759 return ((address - vma->vm_start) >> huge_page_shift(h)) +
760 (vma->vm_pgoff >> huge_page_order(h));
763 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
764 unsigned long address)
766 return vma_hugecache_offset(hstate_vma(vma), vma, address);
768 EXPORT_SYMBOL_GPL(linear_hugepage_index);
771 * Return the size of the pages allocated when backing a VMA. In the majority
772 * cases this will be same size as used by the page table entries.
774 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
776 if (vma->vm_ops && vma->vm_ops->pagesize)
777 return vma->vm_ops->pagesize(vma);
780 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
783 * Return the page size being used by the MMU to back a VMA. In the majority
784 * of cases, the page size used by the kernel matches the MMU size. On
785 * architectures where it differs, an architecture-specific 'strong'
786 * version of this symbol is required.
788 __weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
790 return vma_kernel_pagesize(vma);
794 * Flags for MAP_PRIVATE reservations. These are stored in the bottom
795 * bits of the reservation map pointer, which are always clear due to
798 #define HPAGE_RESV_OWNER (1UL << 0)
799 #define HPAGE_RESV_UNMAPPED (1UL << 1)
800 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
803 * These helpers are used to track how many pages are reserved for
804 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
805 * is guaranteed to have their future faults succeed.
807 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
808 * the reserve counters are updated with the hugetlb_lock held. It is safe
809 * to reset the VMA at fork() time as it is not in use yet and there is no
810 * chance of the global counters getting corrupted as a result of the values.
812 * The private mapping reservation is represented in a subtly different
813 * manner to a shared mapping. A shared mapping has a region map associated
814 * with the underlying file, this region map represents the backing file
815 * pages which have ever had a reservation assigned which this persists even
816 * after the page is instantiated. A private mapping has a region map
817 * associated with the original mmap which is attached to all VMAs which
818 * reference it, this region map represents those offsets which have consumed
819 * reservation ie. where pages have been instantiated.
821 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
823 return (unsigned long)vma->vm_private_data;
826 static void set_vma_private_data(struct vm_area_struct *vma,
829 vma->vm_private_data = (void *)value;
833 resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map *resv_map,
834 struct hugetlb_cgroup *h_cg,
837 #ifdef CONFIG_CGROUP_HUGETLB
839 resv_map->reservation_counter = NULL;
840 resv_map->pages_per_hpage = 0;
841 resv_map->css = NULL;
843 resv_map->reservation_counter =
844 &h_cg->rsvd_hugepage[hstate_index(h)];
845 resv_map->pages_per_hpage = pages_per_huge_page(h);
846 resv_map->css = &h_cg->css;
851 struct resv_map *resv_map_alloc(void)
853 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
854 struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
856 if (!resv_map || !rg) {
862 kref_init(&resv_map->refs);
863 spin_lock_init(&resv_map->lock);
864 INIT_LIST_HEAD(&resv_map->regions);
866 resv_map->adds_in_progress = 0;
868 * Initialize these to 0. On shared mappings, 0's here indicate these
869 * fields don't do cgroup accounting. On private mappings, these will be
870 * re-initialized to the proper values, to indicate that hugetlb cgroup
871 * reservations are to be un-charged from here.
873 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, NULL, NULL);
875 INIT_LIST_HEAD(&resv_map->region_cache);
876 list_add(&rg->link, &resv_map->region_cache);
877 resv_map->region_cache_count = 1;
882 void resv_map_release(struct kref *ref)
884 struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
885 struct list_head *head = &resv_map->region_cache;
886 struct file_region *rg, *trg;
888 /* Clear out any active regions before we release the map. */
889 region_del(resv_map, 0, LONG_MAX);
891 /* ... and any entries left in the cache */
892 list_for_each_entry_safe(rg, trg, head, link) {
897 VM_BUG_ON(resv_map->adds_in_progress);
902 static inline struct resv_map *inode_resv_map(struct inode *inode)
905 * At inode evict time, i_mapping may not point to the original
906 * address space within the inode. This original address space
907 * contains the pointer to the resv_map. So, always use the
908 * address space embedded within the inode.
909 * The VERY common case is inode->mapping == &inode->i_data but,
910 * this may not be true for device special inodes.
912 return (struct resv_map *)(&inode->i_data)->private_data;
915 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
917 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
918 if (vma->vm_flags & VM_MAYSHARE) {
919 struct address_space *mapping = vma->vm_file->f_mapping;
920 struct inode *inode = mapping->host;
922 return inode_resv_map(inode);
925 return (struct resv_map *)(get_vma_private_data(vma) &
930 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
932 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
933 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
935 set_vma_private_data(vma, (get_vma_private_data(vma) &
936 HPAGE_RESV_MASK) | (unsigned long)map);
939 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
941 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
942 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
944 set_vma_private_data(vma, get_vma_private_data(vma) | flags);
947 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
949 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
951 return (get_vma_private_data(vma) & flag) != 0;
954 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
955 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
957 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
958 if (!(vma->vm_flags & VM_MAYSHARE))
959 vma->vm_private_data = (void *)0;
962 /* Returns true if the VMA has associated reserve pages */
963 static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
965 if (vma->vm_flags & VM_NORESERVE) {
967 * This address is already reserved by other process(chg == 0),
968 * so, we should decrement reserved count. Without decrementing,
969 * reserve count remains after releasing inode, because this
970 * allocated page will go into page cache and is regarded as
971 * coming from reserved pool in releasing step. Currently, we
972 * don't have any other solution to deal with this situation
973 * properly, so add work-around here.
975 if (vma->vm_flags & VM_MAYSHARE && chg == 0)
981 /* Shared mappings always use reserves */
982 if (vma->vm_flags & VM_MAYSHARE) {
984 * We know VM_NORESERVE is not set. Therefore, there SHOULD
985 * be a region map for all pages. The only situation where
986 * there is no region map is if a hole was punched via
987 * fallocate. In this case, there really are no reverves to
988 * use. This situation is indicated if chg != 0.
997 * Only the process that called mmap() has reserves for
1000 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1002 * Like the shared case above, a hole punch or truncate
1003 * could have been performed on the private mapping.
1004 * Examine the value of chg to determine if reserves
1005 * actually exist or were previously consumed.
1006 * Very Subtle - The value of chg comes from a previous
1007 * call to vma_needs_reserves(). The reserve map for
1008 * private mappings has different (opposite) semantics
1009 * than that of shared mappings. vma_needs_reserves()
1010 * has already taken this difference in semantics into
1011 * account. Therefore, the meaning of chg is the same
1012 * as in the shared case above. Code could easily be
1013 * combined, but keeping it separate draws attention to
1014 * subtle differences.
1025 static void enqueue_huge_page(struct hstate *h, struct page *page)
1027 int nid = page_to_nid(page);
1028 list_move(&page->lru, &h->hugepage_freelists[nid]);
1029 h->free_huge_pages++;
1030 h->free_huge_pages_node[nid]++;
1033 static struct page *dequeue_huge_page_node_exact(struct hstate *h, int nid)
1037 list_for_each_entry(page, &h->hugepage_freelists[nid], lru)
1038 if (!PageHWPoison(page))
1041 * if 'non-isolated free hugepage' not found on the list,
1042 * the allocation fails.
1044 if (&h->hugepage_freelists[nid] == &page->lru)
1046 list_move(&page->lru, &h->hugepage_activelist);
1047 set_page_refcounted(page);
1048 h->free_huge_pages--;
1049 h->free_huge_pages_node[nid]--;
1053 static struct page *dequeue_huge_page_nodemask(struct hstate *h, gfp_t gfp_mask, int nid,
1056 unsigned int cpuset_mems_cookie;
1057 struct zonelist *zonelist;
1060 int node = NUMA_NO_NODE;
1062 zonelist = node_zonelist(nid, gfp_mask);
1065 cpuset_mems_cookie = read_mems_allowed_begin();
1066 for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
1069 if (!cpuset_zone_allowed(zone, gfp_mask))
1072 * no need to ask again on the same node. Pool is node rather than
1075 if (zone_to_nid(zone) == node)
1077 node = zone_to_nid(zone);
1079 page = dequeue_huge_page_node_exact(h, node);
1083 if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
1089 /* Movability of hugepages depends on migration support. */
1090 static inline gfp_t htlb_alloc_mask(struct hstate *h)
1092 if (hugepage_movable_supported(h))
1093 return GFP_HIGHUSER_MOVABLE;
1095 return GFP_HIGHUSER;
1098 static struct page *dequeue_huge_page_vma(struct hstate *h,
1099 struct vm_area_struct *vma,
1100 unsigned long address, int avoid_reserve,
1104 struct mempolicy *mpol;
1106 nodemask_t *nodemask;
1110 * A child process with MAP_PRIVATE mappings created by their parent
1111 * have no page reserves. This check ensures that reservations are
1112 * not "stolen". The child may still get SIGKILLed
1114 if (!vma_has_reserves(vma, chg) &&
1115 h->free_huge_pages - h->resv_huge_pages == 0)
1118 /* If reserves cannot be used, ensure enough pages are in the pool */
1119 if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
1122 gfp_mask = htlb_alloc_mask(h);
1123 nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
1124 page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
1125 if (page && !avoid_reserve && vma_has_reserves(vma, chg)) {
1126 SetPagePrivate(page);
1127 h->resv_huge_pages--;
1130 mpol_cond_put(mpol);
1138 * common helper functions for hstate_next_node_to_{alloc|free}.
1139 * We may have allocated or freed a huge page based on a different
1140 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
1141 * be outside of *nodes_allowed. Ensure that we use an allowed
1142 * node for alloc or free.
1144 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
1146 nid = next_node_in(nid, *nodes_allowed);
1147 VM_BUG_ON(nid >= MAX_NUMNODES);
1152 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
1154 if (!node_isset(nid, *nodes_allowed))
1155 nid = next_node_allowed(nid, nodes_allowed);
1160 * returns the previously saved node ["this node"] from which to
1161 * allocate a persistent huge page for the pool and advance the
1162 * next node from which to allocate, handling wrap at end of node
1165 static int hstate_next_node_to_alloc(struct hstate *h,
1166 nodemask_t *nodes_allowed)
1170 VM_BUG_ON(!nodes_allowed);
1172 nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
1173 h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
1179 * helper for free_pool_huge_page() - return the previously saved
1180 * node ["this node"] from which to free a huge page. Advance the
1181 * next node id whether or not we find a free huge page to free so
1182 * that the next attempt to free addresses the next node.
1184 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1188 VM_BUG_ON(!nodes_allowed);
1190 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1191 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1196 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask) \
1197 for (nr_nodes = nodes_weight(*mask); \
1199 ((node = hstate_next_node_to_alloc(hs, mask)) || 1); \
1202 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \
1203 for (nr_nodes = nodes_weight(*mask); \
1205 ((node = hstate_next_node_to_free(hs, mask)) || 1); \
1208 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
1209 static void destroy_compound_gigantic_page(struct page *page,
1213 int nr_pages = 1 << order;
1214 struct page *p = page + 1;
1216 atomic_set(compound_mapcount_ptr(page), 0);
1217 if (hpage_pincount_available(page))
1218 atomic_set(compound_pincount_ptr(page), 0);
1220 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1221 clear_compound_head(p);
1222 set_page_refcounted(p);
1225 set_compound_order(page, 0);
1226 __ClearPageHead(page);
1229 static void free_gigantic_page(struct page *page, unsigned int order)
1231 free_contig_range(page_to_pfn(page), 1 << order);
1234 #ifdef CONFIG_CONTIG_ALLOC
1235 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1236 int nid, nodemask_t *nodemask)
1238 unsigned long nr_pages = 1UL << huge_page_order(h);
1240 return alloc_contig_pages(nr_pages, gfp_mask, nid, nodemask);
1243 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid);
1244 static void prep_compound_gigantic_page(struct page *page, unsigned int order);
1245 #else /* !CONFIG_CONTIG_ALLOC */
1246 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1247 int nid, nodemask_t *nodemask)
1251 #endif /* CONFIG_CONTIG_ALLOC */
1253 #else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
1254 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1255 int nid, nodemask_t *nodemask)
1259 static inline void free_gigantic_page(struct page *page, unsigned int order) { }
1260 static inline void destroy_compound_gigantic_page(struct page *page,
1261 unsigned int order) { }
1264 static void update_and_free_page(struct hstate *h, struct page *page)
1268 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1272 h->nr_huge_pages_node[page_to_nid(page)]--;
1273 for (i = 0; i < pages_per_huge_page(h); i++) {
1274 page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
1275 1 << PG_referenced | 1 << PG_dirty |
1276 1 << PG_active | 1 << PG_private |
1279 VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
1280 VM_BUG_ON_PAGE(hugetlb_cgroup_from_page_rsvd(page), page);
1281 set_compound_page_dtor(page, NULL_COMPOUND_DTOR);
1282 set_page_refcounted(page);
1283 if (hstate_is_gigantic(h)) {
1284 destroy_compound_gigantic_page(page, huge_page_order(h));
1285 free_gigantic_page(page, huge_page_order(h));
1287 __free_pages(page, huge_page_order(h));
1291 struct hstate *size_to_hstate(unsigned long size)
1295 for_each_hstate(h) {
1296 if (huge_page_size(h) == size)
1303 * Test to determine whether the hugepage is "active/in-use" (i.e. being linked
1304 * to hstate->hugepage_activelist.)
1306 * This function can be called for tail pages, but never returns true for them.
1308 bool page_huge_active(struct page *page)
1310 VM_BUG_ON_PAGE(!PageHuge(page), page);
1311 return PageHead(page) && PagePrivate(&page[1]);
1314 /* never called for tail page */
1315 static void set_page_huge_active(struct page *page)
1317 VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1318 SetPagePrivate(&page[1]);
1321 static void clear_page_huge_active(struct page *page)
1323 VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1324 ClearPagePrivate(&page[1]);
1328 * Internal hugetlb specific page flag. Do not use outside of the hugetlb
1331 static inline bool PageHugeTemporary(struct page *page)
1333 if (!PageHuge(page))
1336 return (unsigned long)page[2].mapping == -1U;
1339 static inline void SetPageHugeTemporary(struct page *page)
1341 page[2].mapping = (void *)-1U;
1344 static inline void ClearPageHugeTemporary(struct page *page)
1346 page[2].mapping = NULL;
1349 static void __free_huge_page(struct page *page)
1352 * Can't pass hstate in here because it is called from the
1353 * compound page destructor.
1355 struct hstate *h = page_hstate(page);
1356 int nid = page_to_nid(page);
1357 struct hugepage_subpool *spool =
1358 (struct hugepage_subpool *)page_private(page);
1359 bool restore_reserve;
1361 VM_BUG_ON_PAGE(page_count(page), page);
1362 VM_BUG_ON_PAGE(page_mapcount(page), page);
1364 set_page_private(page, 0);
1365 page->mapping = NULL;
1366 restore_reserve = PagePrivate(page);
1367 ClearPagePrivate(page);
1370 * If PagePrivate() was set on page, page allocation consumed a
1371 * reservation. If the page was associated with a subpool, there
1372 * would have been a page reserved in the subpool before allocation
1373 * via hugepage_subpool_get_pages(). Since we are 'restoring' the
1374 * reservtion, do not call hugepage_subpool_put_pages() as this will
1375 * remove the reserved page from the subpool.
1377 if (!restore_reserve) {
1379 * A return code of zero implies that the subpool will be
1380 * under its minimum size if the reservation is not restored
1381 * after page is free. Therefore, force restore_reserve
1384 if (hugepage_subpool_put_pages(spool, 1) == 0)
1385 restore_reserve = true;
1388 spin_lock(&hugetlb_lock);
1389 clear_page_huge_active(page);
1390 hugetlb_cgroup_uncharge_page(hstate_index(h),
1391 pages_per_huge_page(h), page);
1392 hugetlb_cgroup_uncharge_page_rsvd(hstate_index(h),
1393 pages_per_huge_page(h), page);
1394 if (restore_reserve)
1395 h->resv_huge_pages++;
1397 if (PageHugeTemporary(page)) {
1398 list_del(&page->lru);
1399 ClearPageHugeTemporary(page);
1400 update_and_free_page(h, page);
1401 } else if (h->surplus_huge_pages_node[nid]) {
1402 /* remove the page from active list */
1403 list_del(&page->lru);
1404 update_and_free_page(h, page);
1405 h->surplus_huge_pages--;
1406 h->surplus_huge_pages_node[nid]--;
1408 arch_clear_hugepage_flags(page);
1409 enqueue_huge_page(h, page);
1411 spin_unlock(&hugetlb_lock);
1415 * As free_huge_page() can be called from a non-task context, we have
1416 * to defer the actual freeing in a workqueue to prevent potential
1417 * hugetlb_lock deadlock.
1419 * free_hpage_workfn() locklessly retrieves the linked list of pages to
1420 * be freed and frees them one-by-one. As the page->mapping pointer is
1421 * going to be cleared in __free_huge_page() anyway, it is reused as the
1422 * llist_node structure of a lockless linked list of huge pages to be freed.
1424 static LLIST_HEAD(hpage_freelist);
1426 static void free_hpage_workfn(struct work_struct *work)
1428 struct llist_node *node;
1431 node = llist_del_all(&hpage_freelist);
1434 page = container_of((struct address_space **)node,
1435 struct page, mapping);
1437 __free_huge_page(page);
1440 static DECLARE_WORK(free_hpage_work, free_hpage_workfn);
1442 void free_huge_page(struct page *page)
1445 * Defer freeing if in non-task context to avoid hugetlb_lock deadlock.
1449 * Only call schedule_work() if hpage_freelist is previously
1450 * empty. Otherwise, schedule_work() had been called but the
1451 * workfn hasn't retrieved the list yet.
1453 if (llist_add((struct llist_node *)&page->mapping,
1455 schedule_work(&free_hpage_work);
1459 __free_huge_page(page);
1462 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
1464 INIT_LIST_HEAD(&page->lru);
1465 set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1466 spin_lock(&hugetlb_lock);
1467 set_hugetlb_cgroup(page, NULL);
1468 set_hugetlb_cgroup_rsvd(page, NULL);
1470 h->nr_huge_pages_node[nid]++;
1471 spin_unlock(&hugetlb_lock);
1474 static void prep_compound_gigantic_page(struct page *page, unsigned int order)
1477 int nr_pages = 1 << order;
1478 struct page *p = page + 1;
1480 /* we rely on prep_new_huge_page to set the destructor */
1481 set_compound_order(page, order);
1482 __ClearPageReserved(page);
1483 __SetPageHead(page);
1484 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1486 * For gigantic hugepages allocated through bootmem at
1487 * boot, it's safer to be consistent with the not-gigantic
1488 * hugepages and clear the PG_reserved bit from all tail pages
1489 * too. Otherwse drivers using get_user_pages() to access tail
1490 * pages may get the reference counting wrong if they see
1491 * PG_reserved set on a tail page (despite the head page not
1492 * having PG_reserved set). Enforcing this consistency between
1493 * head and tail pages allows drivers to optimize away a check
1494 * on the head page when they need know if put_page() is needed
1495 * after get_user_pages().
1497 __ClearPageReserved(p);
1498 set_page_count(p, 0);
1499 set_compound_head(p, page);
1501 atomic_set(compound_mapcount_ptr(page), -1);
1503 if (hpage_pincount_available(page))
1504 atomic_set(compound_pincount_ptr(page), 0);
1508 * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1509 * transparent huge pages. See the PageTransHuge() documentation for more
1512 int PageHuge(struct page *page)
1514 if (!PageCompound(page))
1517 page = compound_head(page);
1518 return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
1520 EXPORT_SYMBOL_GPL(PageHuge);
1523 * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1524 * normal or transparent huge pages.
1526 int PageHeadHuge(struct page *page_head)
1528 if (!PageHead(page_head))
1531 return page_head[1].compound_dtor == HUGETLB_PAGE_DTOR;
1535 * Find address_space associated with hugetlbfs page.
1536 * Upon entry page is locked and page 'was' mapped although mapped state
1537 * could change. If necessary, use anon_vma to find vma and associated
1538 * address space. The returned mapping may be stale, but it can not be
1539 * invalid as page lock (which is held) is required to destroy mapping.
1541 static struct address_space *_get_hugetlb_page_mapping(struct page *hpage)
1543 struct anon_vma *anon_vma;
1544 pgoff_t pgoff_start, pgoff_end;
1545 struct anon_vma_chain *avc;
1546 struct address_space *mapping = page_mapping(hpage);
1548 /* Simple file based mapping */
1553 * Even anonymous hugetlbfs mappings are associated with an
1554 * underlying hugetlbfs file (see hugetlb_file_setup in mmap
1555 * code). Find a vma associated with the anonymous vma, and
1556 * use the file pointer to get address_space.
1558 anon_vma = page_lock_anon_vma_read(hpage);
1560 return mapping; /* NULL */
1562 /* Use first found vma */
1563 pgoff_start = page_to_pgoff(hpage);
1564 pgoff_end = pgoff_start + hpage_nr_pages(hpage) - 1;
1565 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root,
1566 pgoff_start, pgoff_end) {
1567 struct vm_area_struct *vma = avc->vma;
1569 mapping = vma->vm_file->f_mapping;
1573 anon_vma_unlock_read(anon_vma);
1578 * Find and lock address space (mapping) in write mode.
1580 * Upon entry, the page is locked which allows us to find the mapping
1581 * even in the case of an anon page. However, locking order dictates
1582 * the i_mmap_rwsem be acquired BEFORE the page lock. This is hugetlbfs
1583 * specific. So, we first try to lock the sema while still holding the
1584 * page lock. If this works, great! If not, then we need to drop the
1585 * page lock and then acquire i_mmap_rwsem and reacquire page lock. Of
1586 * course, need to revalidate state along the way.
1588 struct address_space *hugetlb_page_mapping_lock_write(struct page *hpage)
1590 struct address_space *mapping, *mapping2;
1592 mapping = _get_hugetlb_page_mapping(hpage);
1598 * If no contention, take lock and return
1600 if (i_mmap_trylock_write(mapping))
1604 * Must drop page lock and wait on mapping sema.
1605 * Note: Once page lock is dropped, mapping could become invalid.
1606 * As a hack, increase map count until we lock page again.
1608 atomic_inc(&hpage->_mapcount);
1610 i_mmap_lock_write(mapping);
1612 atomic_add_negative(-1, &hpage->_mapcount);
1614 /* verify page is still mapped */
1615 if (!page_mapped(hpage)) {
1616 i_mmap_unlock_write(mapping);
1621 * Get address space again and verify it is the same one
1622 * we locked. If not, drop lock and retry.
1624 mapping2 = _get_hugetlb_page_mapping(hpage);
1625 if (mapping2 != mapping) {
1626 i_mmap_unlock_write(mapping);
1634 pgoff_t __basepage_index(struct page *page)
1636 struct page *page_head = compound_head(page);
1637 pgoff_t index = page_index(page_head);
1638 unsigned long compound_idx;
1640 if (!PageHuge(page_head))
1641 return page_index(page);
1643 if (compound_order(page_head) >= MAX_ORDER)
1644 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
1646 compound_idx = page - page_head;
1648 return (index << compound_order(page_head)) + compound_idx;
1651 static struct page *alloc_buddy_huge_page(struct hstate *h,
1652 gfp_t gfp_mask, int nid, nodemask_t *nmask,
1653 nodemask_t *node_alloc_noretry)
1655 int order = huge_page_order(h);
1657 bool alloc_try_hard = true;
1660 * By default we always try hard to allocate the page with
1661 * __GFP_RETRY_MAYFAIL flag. However, if we are allocating pages in
1662 * a loop (to adjust global huge page counts) and previous allocation
1663 * failed, do not continue to try hard on the same node. Use the
1664 * node_alloc_noretry bitmap to manage this state information.
1666 if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry))
1667 alloc_try_hard = false;
1668 gfp_mask |= __GFP_COMP|__GFP_NOWARN;
1670 gfp_mask |= __GFP_RETRY_MAYFAIL;
1671 if (nid == NUMA_NO_NODE)
1672 nid = numa_mem_id();
1673 page = __alloc_pages_nodemask(gfp_mask, order, nid, nmask);
1675 __count_vm_event(HTLB_BUDDY_PGALLOC);
1677 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1680 * If we did not specify __GFP_RETRY_MAYFAIL, but still got a page this
1681 * indicates an overall state change. Clear bit so that we resume
1682 * normal 'try hard' allocations.
1684 if (node_alloc_noretry && page && !alloc_try_hard)
1685 node_clear(nid, *node_alloc_noretry);
1688 * If we tried hard to get a page but failed, set bit so that
1689 * subsequent attempts will not try as hard until there is an
1690 * overall state change.
1692 if (node_alloc_noretry && !page && alloc_try_hard)
1693 node_set(nid, *node_alloc_noretry);
1699 * Common helper to allocate a fresh hugetlb page. All specific allocators
1700 * should use this function to get new hugetlb pages
1702 static struct page *alloc_fresh_huge_page(struct hstate *h,
1703 gfp_t gfp_mask, int nid, nodemask_t *nmask,
1704 nodemask_t *node_alloc_noretry)
1708 if (hstate_is_gigantic(h))
1709 page = alloc_gigantic_page(h, gfp_mask, nid, nmask);
1711 page = alloc_buddy_huge_page(h, gfp_mask,
1712 nid, nmask, node_alloc_noretry);
1716 if (hstate_is_gigantic(h))
1717 prep_compound_gigantic_page(page, huge_page_order(h));
1718 prep_new_huge_page(h, page, page_to_nid(page));
1724 * Allocates a fresh page to the hugetlb allocator pool in the node interleaved
1727 static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1728 nodemask_t *node_alloc_noretry)
1732 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
1734 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1735 page = alloc_fresh_huge_page(h, gfp_mask, node, nodes_allowed,
1736 node_alloc_noretry);
1744 put_page(page); /* free it into the hugepage allocator */
1750 * Free huge page from pool from next node to free.
1751 * Attempt to keep persistent huge pages more or less
1752 * balanced over allowed nodes.
1753 * Called with hugetlb_lock locked.
1755 static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1761 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1763 * If we're returning unused surplus pages, only examine
1764 * nodes with surplus pages.
1766 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
1767 !list_empty(&h->hugepage_freelists[node])) {
1769 list_entry(h->hugepage_freelists[node].next,
1771 list_del(&page->lru);
1772 h->free_huge_pages--;
1773 h->free_huge_pages_node[node]--;
1775 h->surplus_huge_pages--;
1776 h->surplus_huge_pages_node[node]--;
1778 update_and_free_page(h, page);
1788 * Dissolve a given free hugepage into free buddy pages. This function does
1789 * nothing for in-use hugepages and non-hugepages.
1790 * This function returns values like below:
1792 * -EBUSY: failed to dissolved free hugepages or the hugepage is in-use
1793 * (allocated or reserved.)
1794 * 0: successfully dissolved free hugepages or the page is not a
1795 * hugepage (considered as already dissolved)
1797 int dissolve_free_huge_page(struct page *page)
1801 /* Not to disrupt normal path by vainly holding hugetlb_lock */
1802 if (!PageHuge(page))
1805 spin_lock(&hugetlb_lock);
1806 if (!PageHuge(page)) {
1811 if (!page_count(page)) {
1812 struct page *head = compound_head(page);
1813 struct hstate *h = page_hstate(head);
1814 int nid = page_to_nid(head);
1815 if (h->free_huge_pages - h->resv_huge_pages == 0)
1818 * Move PageHWPoison flag from head page to the raw error page,
1819 * which makes any subpages rather than the error page reusable.
1821 if (PageHWPoison(head) && page != head) {
1822 SetPageHWPoison(page);
1823 ClearPageHWPoison(head);
1825 list_del(&head->lru);
1826 h->free_huge_pages--;
1827 h->free_huge_pages_node[nid]--;
1828 h->max_huge_pages--;
1829 update_and_free_page(h, head);
1833 spin_unlock(&hugetlb_lock);
1838 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
1839 * make specified memory blocks removable from the system.
1840 * Note that this will dissolve a free gigantic hugepage completely, if any
1841 * part of it lies within the given range.
1842 * Also note that if dissolve_free_huge_page() returns with an error, all
1843 * free hugepages that were dissolved before that error are lost.
1845 int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
1851 if (!hugepages_supported())
1854 for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order) {
1855 page = pfn_to_page(pfn);
1856 rc = dissolve_free_huge_page(page);
1865 * Allocates a fresh surplus page from the page allocator.
1867 static struct page *alloc_surplus_huge_page(struct hstate *h, gfp_t gfp_mask,
1868 int nid, nodemask_t *nmask)
1870 struct page *page = NULL;
1872 if (hstate_is_gigantic(h))
1875 spin_lock(&hugetlb_lock);
1876 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages)
1878 spin_unlock(&hugetlb_lock);
1880 page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
1884 spin_lock(&hugetlb_lock);
1886 * We could have raced with the pool size change.
1887 * Double check that and simply deallocate the new page
1888 * if we would end up overcommiting the surpluses. Abuse
1889 * temporary page to workaround the nasty free_huge_page
1892 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
1893 SetPageHugeTemporary(page);
1894 spin_unlock(&hugetlb_lock);
1898 h->surplus_huge_pages++;
1899 h->surplus_huge_pages_node[page_to_nid(page)]++;
1903 spin_unlock(&hugetlb_lock);
1908 struct page *alloc_migrate_huge_page(struct hstate *h, gfp_t gfp_mask,
1909 int nid, nodemask_t *nmask)
1913 if (hstate_is_gigantic(h))
1916 page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
1921 * We do not account these pages as surplus because they are only
1922 * temporary and will be released properly on the last reference
1924 SetPageHugeTemporary(page);
1930 * Use the VMA's mpolicy to allocate a huge page from the buddy.
1933 struct page *alloc_buddy_huge_page_with_mpol(struct hstate *h,
1934 struct vm_area_struct *vma, unsigned long addr)
1937 struct mempolicy *mpol;
1938 gfp_t gfp_mask = htlb_alloc_mask(h);
1940 nodemask_t *nodemask;
1942 nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
1943 page = alloc_surplus_huge_page(h, gfp_mask, nid, nodemask);
1944 mpol_cond_put(mpol);
1949 /* page migration callback function */
1950 struct page *alloc_huge_page_node(struct hstate *h, int nid)
1952 gfp_t gfp_mask = htlb_alloc_mask(h);
1953 struct page *page = NULL;
1955 if (nid != NUMA_NO_NODE)
1956 gfp_mask |= __GFP_THISNODE;
1958 spin_lock(&hugetlb_lock);
1959 if (h->free_huge_pages - h->resv_huge_pages > 0)
1960 page = dequeue_huge_page_nodemask(h, gfp_mask, nid, NULL);
1961 spin_unlock(&hugetlb_lock);
1964 page = alloc_migrate_huge_page(h, gfp_mask, nid, NULL);
1969 /* page migration callback function */
1970 struct page *alloc_huge_page_nodemask(struct hstate *h, int preferred_nid,
1973 gfp_t gfp_mask = htlb_alloc_mask(h);
1975 spin_lock(&hugetlb_lock);
1976 if (h->free_huge_pages - h->resv_huge_pages > 0) {
1979 page = dequeue_huge_page_nodemask(h, gfp_mask, preferred_nid, nmask);
1981 spin_unlock(&hugetlb_lock);
1985 spin_unlock(&hugetlb_lock);
1987 return alloc_migrate_huge_page(h, gfp_mask, preferred_nid, nmask);
1990 /* mempolicy aware migration callback */
1991 struct page *alloc_huge_page_vma(struct hstate *h, struct vm_area_struct *vma,
1992 unsigned long address)
1994 struct mempolicy *mpol;
1995 nodemask_t *nodemask;
2000 gfp_mask = htlb_alloc_mask(h);
2001 node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
2002 page = alloc_huge_page_nodemask(h, node, nodemask);
2003 mpol_cond_put(mpol);
2009 * Increase the hugetlb pool such that it can accommodate a reservation
2012 static int gather_surplus_pages(struct hstate *h, int delta)
2013 __must_hold(&hugetlb_lock)
2015 struct list_head surplus_list;
2016 struct page *page, *tmp;
2018 int needed, allocated;
2019 bool alloc_ok = true;
2021 needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
2023 h->resv_huge_pages += delta;
2028 INIT_LIST_HEAD(&surplus_list);
2032 spin_unlock(&hugetlb_lock);
2033 for (i = 0; i < needed; i++) {
2034 page = alloc_surplus_huge_page(h, htlb_alloc_mask(h),
2035 NUMA_NO_NODE, NULL);
2040 list_add(&page->lru, &surplus_list);
2046 * After retaking hugetlb_lock, we need to recalculate 'needed'
2047 * because either resv_huge_pages or free_huge_pages may have changed.
2049 spin_lock(&hugetlb_lock);
2050 needed = (h->resv_huge_pages + delta) -
2051 (h->free_huge_pages + allocated);
2056 * We were not able to allocate enough pages to
2057 * satisfy the entire reservation so we free what
2058 * we've allocated so far.
2063 * The surplus_list now contains _at_least_ the number of extra pages
2064 * needed to accommodate the reservation. Add the appropriate number
2065 * of pages to the hugetlb pool and free the extras back to the buddy
2066 * allocator. Commit the entire reservation here to prevent another
2067 * process from stealing the pages as they are added to the pool but
2068 * before they are reserved.
2070 needed += allocated;
2071 h->resv_huge_pages += delta;
2074 /* Free the needed pages to the hugetlb pool */
2075 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
2079 * This page is now managed by the hugetlb allocator and has
2080 * no users -- drop the buddy allocator's reference.
2082 put_page_testzero(page);
2083 VM_BUG_ON_PAGE(page_count(page), page);
2084 enqueue_huge_page(h, page);
2087 spin_unlock(&hugetlb_lock);
2089 /* Free unnecessary surplus pages to the buddy allocator */
2090 list_for_each_entry_safe(page, tmp, &surplus_list, lru)
2092 spin_lock(&hugetlb_lock);
2098 * This routine has two main purposes:
2099 * 1) Decrement the reservation count (resv_huge_pages) by the value passed
2100 * in unused_resv_pages. This corresponds to the prior adjustments made
2101 * to the associated reservation map.
2102 * 2) Free any unused surplus pages that may have been allocated to satisfy
2103 * the reservation. As many as unused_resv_pages may be freed.
2105 * Called with hugetlb_lock held. However, the lock could be dropped (and
2106 * reacquired) during calls to cond_resched_lock. Whenever dropping the lock,
2107 * we must make sure nobody else can claim pages we are in the process of
2108 * freeing. Do this by ensuring resv_huge_page always is greater than the
2109 * number of huge pages we plan to free when dropping the lock.
2111 static void return_unused_surplus_pages(struct hstate *h,
2112 unsigned long unused_resv_pages)
2114 unsigned long nr_pages;
2116 /* Cannot return gigantic pages currently */
2117 if (hstate_is_gigantic(h))
2121 * Part (or even all) of the reservation could have been backed
2122 * by pre-allocated pages. Only free surplus pages.
2124 nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
2127 * We want to release as many surplus pages as possible, spread
2128 * evenly across all nodes with memory. Iterate across these nodes
2129 * until we can no longer free unreserved surplus pages. This occurs
2130 * when the nodes with surplus pages have no free pages.
2131 * free_pool_huge_page() will balance the the freed pages across the
2132 * on-line nodes with memory and will handle the hstate accounting.
2134 * Note that we decrement resv_huge_pages as we free the pages. If
2135 * we drop the lock, resv_huge_pages will still be sufficiently large
2136 * to cover subsequent pages we may free.
2138 while (nr_pages--) {
2139 h->resv_huge_pages--;
2140 unused_resv_pages--;
2141 if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
2143 cond_resched_lock(&hugetlb_lock);
2147 /* Fully uncommit the reservation */
2148 h->resv_huge_pages -= unused_resv_pages;
2153 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
2154 * are used by the huge page allocation routines to manage reservations.
2156 * vma_needs_reservation is called to determine if the huge page at addr
2157 * within the vma has an associated reservation. If a reservation is
2158 * needed, the value 1 is returned. The caller is then responsible for
2159 * managing the global reservation and subpool usage counts. After
2160 * the huge page has been allocated, vma_commit_reservation is called
2161 * to add the page to the reservation map. If the page allocation fails,
2162 * the reservation must be ended instead of committed. vma_end_reservation
2163 * is called in such cases.
2165 * In the normal case, vma_commit_reservation returns the same value
2166 * as the preceding vma_needs_reservation call. The only time this
2167 * is not the case is if a reserve map was changed between calls. It
2168 * is the responsibility of the caller to notice the difference and
2169 * take appropriate action.
2171 * vma_add_reservation is used in error paths where a reservation must
2172 * be restored when a newly allocated huge page must be freed. It is
2173 * to be called after calling vma_needs_reservation to determine if a
2174 * reservation exists.
2176 enum vma_resv_mode {
2182 static long __vma_reservation_common(struct hstate *h,
2183 struct vm_area_struct *vma, unsigned long addr,
2184 enum vma_resv_mode mode)
2186 struct resv_map *resv;
2189 long dummy_out_regions_needed;
2191 resv = vma_resv_map(vma);
2195 idx = vma_hugecache_offset(h, vma, addr);
2197 case VMA_NEEDS_RESV:
2198 ret = region_chg(resv, idx, idx + 1, &dummy_out_regions_needed);
2199 /* We assume that vma_reservation_* routines always operate on
2200 * 1 page, and that adding to resv map a 1 page entry can only
2201 * ever require 1 region.
2203 VM_BUG_ON(dummy_out_regions_needed != 1);
2205 case VMA_COMMIT_RESV:
2206 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2207 /* region_add calls of range 1 should never fail. */
2211 region_abort(resv, idx, idx + 1, 1);
2215 if (vma->vm_flags & VM_MAYSHARE) {
2216 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2217 /* region_add calls of range 1 should never fail. */
2220 region_abort(resv, idx, idx + 1, 1);
2221 ret = region_del(resv, idx, idx + 1);
2228 if (vma->vm_flags & VM_MAYSHARE)
2230 else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && ret >= 0) {
2232 * In most cases, reserves always exist for private mappings.
2233 * However, a file associated with mapping could have been
2234 * hole punched or truncated after reserves were consumed.
2235 * As subsequent fault on such a range will not use reserves.
2236 * Subtle - The reserve map for private mappings has the
2237 * opposite meaning than that of shared mappings. If NO
2238 * entry is in the reserve map, it means a reservation exists.
2239 * If an entry exists in the reserve map, it means the
2240 * reservation has already been consumed. As a result, the
2241 * return value of this routine is the opposite of the
2242 * value returned from reserve map manipulation routines above.
2250 return ret < 0 ? ret : 0;
2253 static long vma_needs_reservation(struct hstate *h,
2254 struct vm_area_struct *vma, unsigned long addr)
2256 return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
2259 static long vma_commit_reservation(struct hstate *h,
2260 struct vm_area_struct *vma, unsigned long addr)
2262 return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
2265 static void vma_end_reservation(struct hstate *h,
2266 struct vm_area_struct *vma, unsigned long addr)
2268 (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
2271 static long vma_add_reservation(struct hstate *h,
2272 struct vm_area_struct *vma, unsigned long addr)
2274 return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
2278 * This routine is called to restore a reservation on error paths. In the
2279 * specific error paths, a huge page was allocated (via alloc_huge_page)
2280 * and is about to be freed. If a reservation for the page existed,
2281 * alloc_huge_page would have consumed the reservation and set PagePrivate
2282 * in the newly allocated page. When the page is freed via free_huge_page,
2283 * the global reservation count will be incremented if PagePrivate is set.
2284 * However, free_huge_page can not adjust the reserve map. Adjust the
2285 * reserve map here to be consistent with global reserve count adjustments
2286 * to be made by free_huge_page.
2288 static void restore_reserve_on_error(struct hstate *h,
2289 struct vm_area_struct *vma, unsigned long address,
2292 if (unlikely(PagePrivate(page))) {
2293 long rc = vma_needs_reservation(h, vma, address);
2295 if (unlikely(rc < 0)) {
2297 * Rare out of memory condition in reserve map
2298 * manipulation. Clear PagePrivate so that
2299 * global reserve count will not be incremented
2300 * by free_huge_page. This will make it appear
2301 * as though the reservation for this page was
2302 * consumed. This may prevent the task from
2303 * faulting in the page at a later time. This
2304 * is better than inconsistent global huge page
2305 * accounting of reserve counts.
2307 ClearPagePrivate(page);
2309 rc = vma_add_reservation(h, vma, address);
2310 if (unlikely(rc < 0))
2312 * See above comment about rare out of
2315 ClearPagePrivate(page);
2317 vma_end_reservation(h, vma, address);
2321 struct page *alloc_huge_page(struct vm_area_struct *vma,
2322 unsigned long addr, int avoid_reserve)
2324 struct hugepage_subpool *spool = subpool_vma(vma);
2325 struct hstate *h = hstate_vma(vma);
2327 long map_chg, map_commit;
2330 struct hugetlb_cgroup *h_cg;
2331 bool deferred_reserve;
2333 idx = hstate_index(h);
2335 * Examine the region/reserve map to determine if the process
2336 * has a reservation for the page to be allocated. A return
2337 * code of zero indicates a reservation exists (no change).
2339 map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
2341 return ERR_PTR(-ENOMEM);
2344 * Processes that did not create the mapping will have no
2345 * reserves as indicated by the region/reserve map. Check
2346 * that the allocation will not exceed the subpool limit.
2347 * Allocations for MAP_NORESERVE mappings also need to be
2348 * checked against any subpool limit.
2350 if (map_chg || avoid_reserve) {
2351 gbl_chg = hugepage_subpool_get_pages(spool, 1);
2353 vma_end_reservation(h, vma, addr);
2354 return ERR_PTR(-ENOSPC);
2358 * Even though there was no reservation in the region/reserve
2359 * map, there could be reservations associated with the
2360 * subpool that can be used. This would be indicated if the
2361 * return value of hugepage_subpool_get_pages() is zero.
2362 * However, if avoid_reserve is specified we still avoid even
2363 * the subpool reservations.
2369 /* If this allocation is not consuming a reservation, charge it now.
2371 deferred_reserve = map_chg || avoid_reserve || !vma_resv_map(vma);
2372 if (deferred_reserve) {
2373 ret = hugetlb_cgroup_charge_cgroup_rsvd(
2374 idx, pages_per_huge_page(h), &h_cg);
2376 goto out_subpool_put;
2379 ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
2381 goto out_uncharge_cgroup_reservation;
2383 spin_lock(&hugetlb_lock);
2385 * glb_chg is passed to indicate whether or not a page must be taken
2386 * from the global free pool (global change). gbl_chg == 0 indicates
2387 * a reservation exists for the allocation.
2389 page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
2391 spin_unlock(&hugetlb_lock);
2392 page = alloc_buddy_huge_page_with_mpol(h, vma, addr);
2394 goto out_uncharge_cgroup;
2395 if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
2396 SetPagePrivate(page);
2397 h->resv_huge_pages--;
2399 spin_lock(&hugetlb_lock);
2400 list_move(&page->lru, &h->hugepage_activelist);
2403 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
2404 /* If allocation is not consuming a reservation, also store the
2405 * hugetlb_cgroup pointer on the page.
2407 if (deferred_reserve) {
2408 hugetlb_cgroup_commit_charge_rsvd(idx, pages_per_huge_page(h),
2412 spin_unlock(&hugetlb_lock);
2414 set_page_private(page, (unsigned long)spool);
2416 map_commit = vma_commit_reservation(h, vma, addr);
2417 if (unlikely(map_chg > map_commit)) {
2419 * The page was added to the reservation map between
2420 * vma_needs_reservation and vma_commit_reservation.
2421 * This indicates a race with hugetlb_reserve_pages.
2422 * Adjust for the subpool count incremented above AND
2423 * in hugetlb_reserve_pages for the same page. Also,
2424 * the reservation count added in hugetlb_reserve_pages
2425 * no longer applies.
2429 rsv_adjust = hugepage_subpool_put_pages(spool, 1);
2430 hugetlb_acct_memory(h, -rsv_adjust);
2434 out_uncharge_cgroup:
2435 hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
2436 out_uncharge_cgroup_reservation:
2437 if (deferred_reserve)
2438 hugetlb_cgroup_uncharge_cgroup_rsvd(idx, pages_per_huge_page(h),
2441 if (map_chg || avoid_reserve)
2442 hugepage_subpool_put_pages(spool, 1);
2443 vma_end_reservation(h, vma, addr);
2444 return ERR_PTR(-ENOSPC);
2447 int alloc_bootmem_huge_page(struct hstate *h)
2448 __attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
2449 int __alloc_bootmem_huge_page(struct hstate *h)
2451 struct huge_bootmem_page *m;
2454 for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
2457 addr = memblock_alloc_try_nid_raw(
2458 huge_page_size(h), huge_page_size(h),
2459 0, MEMBLOCK_ALLOC_ACCESSIBLE, node);
2462 * Use the beginning of the huge page to store the
2463 * huge_bootmem_page struct (until gather_bootmem
2464 * puts them into the mem_map).
2473 BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h)));
2474 /* Put them into a private list first because mem_map is not up yet */
2475 INIT_LIST_HEAD(&m->list);
2476 list_add(&m->list, &huge_boot_pages);
2481 static void __init prep_compound_huge_page(struct page *page,
2484 if (unlikely(order > (MAX_ORDER - 1)))
2485 prep_compound_gigantic_page(page, order);
2487 prep_compound_page(page, order);
2490 /* Put bootmem huge pages into the standard lists after mem_map is up */
2491 static void __init gather_bootmem_prealloc(void)
2493 struct huge_bootmem_page *m;
2495 list_for_each_entry(m, &huge_boot_pages, list) {
2496 struct page *page = virt_to_page(m);
2497 struct hstate *h = m->hstate;
2499 WARN_ON(page_count(page) != 1);
2500 prep_compound_huge_page(page, h->order);
2501 WARN_ON(PageReserved(page));
2502 prep_new_huge_page(h, page, page_to_nid(page));
2503 put_page(page); /* free it into the hugepage allocator */
2506 * If we had gigantic hugepages allocated at boot time, we need
2507 * to restore the 'stolen' pages to totalram_pages in order to
2508 * fix confusing memory reports from free(1) and another
2509 * side-effects, like CommitLimit going negative.
2511 if (hstate_is_gigantic(h))
2512 adjust_managed_page_count(page, 1 << h->order);
2517 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
2520 nodemask_t *node_alloc_noretry;
2522 if (!hstate_is_gigantic(h)) {
2524 * Bit mask controlling how hard we retry per-node allocations.
2525 * Ignore errors as lower level routines can deal with
2526 * node_alloc_noretry == NULL. If this kmalloc fails at boot
2527 * time, we are likely in bigger trouble.
2529 node_alloc_noretry = kmalloc(sizeof(*node_alloc_noretry),
2532 /* allocations done at boot time */
2533 node_alloc_noretry = NULL;
2536 /* bit mask controlling how hard we retry per-node allocations */
2537 if (node_alloc_noretry)
2538 nodes_clear(*node_alloc_noretry);
2540 for (i = 0; i < h->max_huge_pages; ++i) {
2541 if (hstate_is_gigantic(h)) {
2542 if (!alloc_bootmem_huge_page(h))
2544 } else if (!alloc_pool_huge_page(h,
2545 &node_states[N_MEMORY],
2546 node_alloc_noretry))
2550 if (i < h->max_huge_pages) {
2553 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
2554 pr_warn("HugeTLB: allocating %lu of page size %s failed. Only allocated %lu hugepages.\n",
2555 h->max_huge_pages, buf, i);
2556 h->max_huge_pages = i;
2559 kfree(node_alloc_noretry);
2562 static void __init hugetlb_init_hstates(void)
2566 for_each_hstate(h) {
2567 if (minimum_order > huge_page_order(h))
2568 minimum_order = huge_page_order(h);
2570 /* oversize hugepages were init'ed in early boot */
2571 if (!hstate_is_gigantic(h))
2572 hugetlb_hstate_alloc_pages(h);
2574 VM_BUG_ON(minimum_order == UINT_MAX);
2577 static void __init report_hugepages(void)
2581 for_each_hstate(h) {
2584 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
2585 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
2586 buf, h->free_huge_pages);
2590 #ifdef CONFIG_HIGHMEM
2591 static void try_to_free_low(struct hstate *h, unsigned long count,
2592 nodemask_t *nodes_allowed)
2596 if (hstate_is_gigantic(h))
2599 for_each_node_mask(i, *nodes_allowed) {
2600 struct page *page, *next;
2601 struct list_head *freel = &h->hugepage_freelists[i];
2602 list_for_each_entry_safe(page, next, freel, lru) {
2603 if (count >= h->nr_huge_pages)
2605 if (PageHighMem(page))
2607 list_del(&page->lru);
2608 update_and_free_page(h, page);
2609 h->free_huge_pages--;
2610 h->free_huge_pages_node[page_to_nid(page)]--;
2615 static inline void try_to_free_low(struct hstate *h, unsigned long count,
2616 nodemask_t *nodes_allowed)
2622 * Increment or decrement surplus_huge_pages. Keep node-specific counters
2623 * balanced by operating on them in a round-robin fashion.
2624 * Returns 1 if an adjustment was made.
2626 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
2631 VM_BUG_ON(delta != -1 && delta != 1);
2634 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
2635 if (h->surplus_huge_pages_node[node])
2639 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2640 if (h->surplus_huge_pages_node[node] <
2641 h->nr_huge_pages_node[node])
2648 h->surplus_huge_pages += delta;
2649 h->surplus_huge_pages_node[node] += delta;
2653 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
2654 static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid,
2655 nodemask_t *nodes_allowed)
2657 unsigned long min_count, ret;
2658 NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL);
2661 * Bit mask controlling how hard we retry per-node allocations.
2662 * If we can not allocate the bit mask, do not attempt to allocate
2663 * the requested huge pages.
2665 if (node_alloc_noretry)
2666 nodes_clear(*node_alloc_noretry);
2670 spin_lock(&hugetlb_lock);
2673 * Check for a node specific request.
2674 * Changing node specific huge page count may require a corresponding
2675 * change to the global count. In any case, the passed node mask
2676 * (nodes_allowed) will restrict alloc/free to the specified node.
2678 if (nid != NUMA_NO_NODE) {
2679 unsigned long old_count = count;
2681 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
2683 * User may have specified a large count value which caused the
2684 * above calculation to overflow. In this case, they wanted
2685 * to allocate as many huge pages as possible. Set count to
2686 * largest possible value to align with their intention.
2688 if (count < old_count)
2693 * Gigantic pages runtime allocation depend on the capability for large
2694 * page range allocation.
2695 * If the system does not provide this feature, return an error when
2696 * the user tries to allocate gigantic pages but let the user free the
2697 * boottime allocated gigantic pages.
2699 if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) {
2700 if (count > persistent_huge_pages(h)) {
2701 spin_unlock(&hugetlb_lock);
2702 NODEMASK_FREE(node_alloc_noretry);
2705 /* Fall through to decrease pool */
2709 * Increase the pool size
2710 * First take pages out of surplus state. Then make up the
2711 * remaining difference by allocating fresh huge pages.
2713 * We might race with alloc_surplus_huge_page() here and be unable
2714 * to convert a surplus huge page to a normal huge page. That is
2715 * not critical, though, it just means the overall size of the
2716 * pool might be one hugepage larger than it needs to be, but
2717 * within all the constraints specified by the sysctls.
2719 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
2720 if (!adjust_pool_surplus(h, nodes_allowed, -1))
2724 while (count > persistent_huge_pages(h)) {
2726 * If this allocation races such that we no longer need the
2727 * page, free_huge_page will handle it by freeing the page
2728 * and reducing the surplus.
2730 spin_unlock(&hugetlb_lock);
2732 /* yield cpu to avoid soft lockup */
2735 ret = alloc_pool_huge_page(h, nodes_allowed,
2736 node_alloc_noretry);
2737 spin_lock(&hugetlb_lock);
2741 /* Bail for signals. Probably ctrl-c from user */
2742 if (signal_pending(current))
2747 * Decrease the pool size
2748 * First return free pages to the buddy allocator (being careful
2749 * to keep enough around to satisfy reservations). Then place
2750 * pages into surplus state as needed so the pool will shrink
2751 * to the desired size as pages become free.
2753 * By placing pages into the surplus state independent of the
2754 * overcommit value, we are allowing the surplus pool size to
2755 * exceed overcommit. There are few sane options here. Since
2756 * alloc_surplus_huge_page() is checking the global counter,
2757 * though, we'll note that we're not allowed to exceed surplus
2758 * and won't grow the pool anywhere else. Not until one of the
2759 * sysctls are changed, or the surplus pages go out of use.
2761 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
2762 min_count = max(count, min_count);
2763 try_to_free_low(h, min_count, nodes_allowed);
2764 while (min_count < persistent_huge_pages(h)) {
2765 if (!free_pool_huge_page(h, nodes_allowed, 0))
2767 cond_resched_lock(&hugetlb_lock);
2769 while (count < persistent_huge_pages(h)) {
2770 if (!adjust_pool_surplus(h, nodes_allowed, 1))
2774 h->max_huge_pages = persistent_huge_pages(h);
2775 spin_unlock(&hugetlb_lock);
2777 NODEMASK_FREE(node_alloc_noretry);
2782 #define HSTATE_ATTR_RO(_name) \
2783 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2785 #define HSTATE_ATTR(_name) \
2786 static struct kobj_attribute _name##_attr = \
2787 __ATTR(_name, 0644, _name##_show, _name##_store)
2789 static struct kobject *hugepages_kobj;
2790 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2792 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
2794 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
2798 for (i = 0; i < HUGE_MAX_HSTATE; i++)
2799 if (hstate_kobjs[i] == kobj) {
2801 *nidp = NUMA_NO_NODE;
2805 return kobj_to_node_hstate(kobj, nidp);
2808 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
2809 struct kobj_attribute *attr, char *buf)
2812 unsigned long nr_huge_pages;
2815 h = kobj_to_hstate(kobj, &nid);
2816 if (nid == NUMA_NO_NODE)
2817 nr_huge_pages = h->nr_huge_pages;
2819 nr_huge_pages = h->nr_huge_pages_node[nid];
2821 return sprintf(buf, "%lu\n", nr_huge_pages);
2824 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
2825 struct hstate *h, int nid,
2826 unsigned long count, size_t len)
2829 nodemask_t nodes_allowed, *n_mask;
2831 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
2834 if (nid == NUMA_NO_NODE) {
2836 * global hstate attribute
2838 if (!(obey_mempolicy &&
2839 init_nodemask_of_mempolicy(&nodes_allowed)))
2840 n_mask = &node_states[N_MEMORY];
2842 n_mask = &nodes_allowed;
2845 * Node specific request. count adjustment happens in
2846 * set_max_huge_pages() after acquiring hugetlb_lock.
2848 init_nodemask_of_node(&nodes_allowed, nid);
2849 n_mask = &nodes_allowed;
2852 err = set_max_huge_pages(h, count, nid, n_mask);
2854 return err ? err : len;
2857 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
2858 struct kobject *kobj, const char *buf,
2862 unsigned long count;
2866 err = kstrtoul(buf, 10, &count);
2870 h = kobj_to_hstate(kobj, &nid);
2871 return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
2874 static ssize_t nr_hugepages_show(struct kobject *kobj,
2875 struct kobj_attribute *attr, char *buf)
2877 return nr_hugepages_show_common(kobj, attr, buf);
2880 static ssize_t nr_hugepages_store(struct kobject *kobj,
2881 struct kobj_attribute *attr, const char *buf, size_t len)
2883 return nr_hugepages_store_common(false, kobj, buf, len);
2885 HSTATE_ATTR(nr_hugepages);
2890 * hstate attribute for optionally mempolicy-based constraint on persistent
2891 * huge page alloc/free.
2893 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
2894 struct kobj_attribute *attr, char *buf)
2896 return nr_hugepages_show_common(kobj, attr, buf);
2899 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
2900 struct kobj_attribute *attr, const char *buf, size_t len)
2902 return nr_hugepages_store_common(true, kobj, buf, len);
2904 HSTATE_ATTR(nr_hugepages_mempolicy);
2908 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
2909 struct kobj_attribute *attr, char *buf)
2911 struct hstate *h = kobj_to_hstate(kobj, NULL);
2912 return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
2915 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
2916 struct kobj_attribute *attr, const char *buf, size_t count)
2919 unsigned long input;
2920 struct hstate *h = kobj_to_hstate(kobj, NULL);
2922 if (hstate_is_gigantic(h))
2925 err = kstrtoul(buf, 10, &input);
2929 spin_lock(&hugetlb_lock);
2930 h->nr_overcommit_huge_pages = input;
2931 spin_unlock(&hugetlb_lock);
2935 HSTATE_ATTR(nr_overcommit_hugepages);
2937 static ssize_t free_hugepages_show(struct kobject *kobj,
2938 struct kobj_attribute *attr, char *buf)
2941 unsigned long free_huge_pages;
2944 h = kobj_to_hstate(kobj, &nid);
2945 if (nid == NUMA_NO_NODE)
2946 free_huge_pages = h->free_huge_pages;
2948 free_huge_pages = h->free_huge_pages_node[nid];
2950 return sprintf(buf, "%lu\n", free_huge_pages);
2952 HSTATE_ATTR_RO(free_hugepages);
2954 static ssize_t resv_hugepages_show(struct kobject *kobj,
2955 struct kobj_attribute *attr, char *buf)
2957 struct hstate *h = kobj_to_hstate(kobj, NULL);
2958 return sprintf(buf, "%lu\n", h->resv_huge_pages);
2960 HSTATE_ATTR_RO(resv_hugepages);
2962 static ssize_t surplus_hugepages_show(struct kobject *kobj,
2963 struct kobj_attribute *attr, char *buf)
2966 unsigned long surplus_huge_pages;
2969 h = kobj_to_hstate(kobj, &nid);
2970 if (nid == NUMA_NO_NODE)
2971 surplus_huge_pages = h->surplus_huge_pages;
2973 surplus_huge_pages = h->surplus_huge_pages_node[nid];
2975 return sprintf(buf, "%lu\n", surplus_huge_pages);
2977 HSTATE_ATTR_RO(surplus_hugepages);
2979 static struct attribute *hstate_attrs[] = {
2980 &nr_hugepages_attr.attr,
2981 &nr_overcommit_hugepages_attr.attr,
2982 &free_hugepages_attr.attr,
2983 &resv_hugepages_attr.attr,
2984 &surplus_hugepages_attr.attr,
2986 &nr_hugepages_mempolicy_attr.attr,
2991 static const struct attribute_group hstate_attr_group = {
2992 .attrs = hstate_attrs,
2995 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
2996 struct kobject **hstate_kobjs,
2997 const struct attribute_group *hstate_attr_group)
3000 int hi = hstate_index(h);
3002 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
3003 if (!hstate_kobjs[hi])
3006 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
3008 kobject_put(hstate_kobjs[hi]);
3013 static void __init hugetlb_sysfs_init(void)
3018 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
3019 if (!hugepages_kobj)
3022 for_each_hstate(h) {
3023 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
3024 hstate_kobjs, &hstate_attr_group);
3026 pr_err("Hugetlb: Unable to add hstate %s", h->name);
3033 * node_hstate/s - associate per node hstate attributes, via their kobjects,
3034 * with node devices in node_devices[] using a parallel array. The array
3035 * index of a node device or _hstate == node id.
3036 * This is here to avoid any static dependency of the node device driver, in
3037 * the base kernel, on the hugetlb module.
3039 struct node_hstate {
3040 struct kobject *hugepages_kobj;
3041 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
3043 static struct node_hstate node_hstates[MAX_NUMNODES];
3046 * A subset of global hstate attributes for node devices
3048 static struct attribute *per_node_hstate_attrs[] = {
3049 &nr_hugepages_attr.attr,
3050 &free_hugepages_attr.attr,
3051 &surplus_hugepages_attr.attr,
3055 static const struct attribute_group per_node_hstate_attr_group = {
3056 .attrs = per_node_hstate_attrs,
3060 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
3061 * Returns node id via non-NULL nidp.
3063 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
3067 for (nid = 0; nid < nr_node_ids; nid++) {
3068 struct node_hstate *nhs = &node_hstates[nid];
3070 for (i = 0; i < HUGE_MAX_HSTATE; i++)
3071 if (nhs->hstate_kobjs[i] == kobj) {
3083 * Unregister hstate attributes from a single node device.
3084 * No-op if no hstate attributes attached.
3086 static void hugetlb_unregister_node(struct node *node)
3089 struct node_hstate *nhs = &node_hstates[node->dev.id];
3091 if (!nhs->hugepages_kobj)
3092 return; /* no hstate attributes */
3094 for_each_hstate(h) {
3095 int idx = hstate_index(h);
3096 if (nhs->hstate_kobjs[idx]) {
3097 kobject_put(nhs->hstate_kobjs[idx]);
3098 nhs->hstate_kobjs[idx] = NULL;
3102 kobject_put(nhs->hugepages_kobj);
3103 nhs->hugepages_kobj = NULL;
3108 * Register hstate attributes for a single node device.
3109 * No-op if attributes already registered.
3111 static void hugetlb_register_node(struct node *node)
3114 struct node_hstate *nhs = &node_hstates[node->dev.id];
3117 if (nhs->hugepages_kobj)
3118 return; /* already allocated */
3120 nhs->hugepages_kobj = kobject_create_and_add("hugepages",
3122 if (!nhs->hugepages_kobj)
3125 for_each_hstate(h) {
3126 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
3128 &per_node_hstate_attr_group);
3130 pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
3131 h->name, node->dev.id);
3132 hugetlb_unregister_node(node);
3139 * hugetlb init time: register hstate attributes for all registered node
3140 * devices of nodes that have memory. All on-line nodes should have
3141 * registered their associated device by this time.
3143 static void __init hugetlb_register_all_nodes(void)
3147 for_each_node_state(nid, N_MEMORY) {
3148 struct node *node = node_devices[nid];
3149 if (node->dev.id == nid)
3150 hugetlb_register_node(node);
3154 * Let the node device driver know we're here so it can
3155 * [un]register hstate attributes on node hotplug.
3157 register_hugetlbfs_with_node(hugetlb_register_node,
3158 hugetlb_unregister_node);
3160 #else /* !CONFIG_NUMA */
3162 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
3170 static void hugetlb_register_all_nodes(void) { }
3174 static int __init hugetlb_init(void)
3178 if (!hugepages_supported())
3181 if (!size_to_hstate(default_hstate_size)) {
3182 if (default_hstate_size != 0) {
3183 pr_err("HugeTLB: unsupported default_hugepagesz %lu. Reverting to %lu\n",
3184 default_hstate_size, HPAGE_SIZE);
3187 default_hstate_size = HPAGE_SIZE;
3188 if (!size_to_hstate(default_hstate_size))
3189 hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
3191 default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
3192 if (default_hstate_max_huge_pages) {
3193 if (!default_hstate.max_huge_pages)
3194 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
3197 hugetlb_init_hstates();
3198 gather_bootmem_prealloc();
3201 hugetlb_sysfs_init();
3202 hugetlb_register_all_nodes();
3203 hugetlb_cgroup_file_init();
3206 num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
3208 num_fault_mutexes = 1;
3210 hugetlb_fault_mutex_table =
3211 kmalloc_array(num_fault_mutexes, sizeof(struct mutex),
3213 BUG_ON(!hugetlb_fault_mutex_table);
3215 for (i = 0; i < num_fault_mutexes; i++)
3216 mutex_init(&hugetlb_fault_mutex_table[i]);
3219 subsys_initcall(hugetlb_init);
3221 /* Should be called on processing a hugepagesz=... option */
3222 void __init hugetlb_bad_size(void)
3224 parsed_valid_hugepagesz = false;
3227 void __init hugetlb_add_hstate(unsigned int order)
3232 if (size_to_hstate(PAGE_SIZE << order)) {
3233 pr_warn("hugepagesz= specified twice, ignoring\n");
3236 BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
3238 h = &hstates[hugetlb_max_hstate++];
3240 h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
3241 h->nr_huge_pages = 0;
3242 h->free_huge_pages = 0;
3243 for (i = 0; i < MAX_NUMNODES; ++i)
3244 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
3245 INIT_LIST_HEAD(&h->hugepage_activelist);
3246 h->next_nid_to_alloc = first_memory_node;
3247 h->next_nid_to_free = first_memory_node;
3248 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
3249 huge_page_size(h)/1024);
3254 static int __init hugetlb_nrpages_setup(char *s)
3257 static unsigned long *last_mhp;
3259 if (!parsed_valid_hugepagesz) {
3260 pr_warn("hugepages = %s preceded by "
3261 "an unsupported hugepagesz, ignoring\n", s);
3262 parsed_valid_hugepagesz = true;
3266 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
3267 * so this hugepages= parameter goes to the "default hstate".
3269 else if (!hugetlb_max_hstate)
3270 mhp = &default_hstate_max_huge_pages;
3272 mhp = &parsed_hstate->max_huge_pages;
3274 if (mhp == last_mhp) {
3275 pr_warn("hugepages= specified twice without interleaving hugepagesz=, ignoring\n");
3279 if (sscanf(s, "%lu", mhp) <= 0)
3283 * Global state is always initialized later in hugetlb_init.
3284 * But we need to allocate >= MAX_ORDER hstates here early to still
3285 * use the bootmem allocator.
3287 if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
3288 hugetlb_hstate_alloc_pages(parsed_hstate);
3294 __setup("hugepages=", hugetlb_nrpages_setup);
3296 static int __init hugetlb_default_setup(char *s)
3298 default_hstate_size = memparse(s, &s);
3301 __setup("default_hugepagesz=", hugetlb_default_setup);
3303 static unsigned int cpuset_mems_nr(unsigned int *array)
3306 unsigned int nr = 0;
3308 for_each_node_mask(node, cpuset_current_mems_allowed)
3314 #ifdef CONFIG_SYSCTL
3315 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
3316 struct ctl_table *table, int write,
3317 void __user *buffer, size_t *length, loff_t *ppos)
3319 struct hstate *h = &default_hstate;
3320 unsigned long tmp = h->max_huge_pages;
3323 if (!hugepages_supported())
3327 table->maxlen = sizeof(unsigned long);
3328 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
3333 ret = __nr_hugepages_store_common(obey_mempolicy, h,
3334 NUMA_NO_NODE, tmp, *length);
3339 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
3340 void __user *buffer, size_t *length, loff_t *ppos)
3343 return hugetlb_sysctl_handler_common(false, table, write,
3344 buffer, length, ppos);
3348 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
3349 void __user *buffer, size_t *length, loff_t *ppos)
3351 return hugetlb_sysctl_handler_common(true, table, write,
3352 buffer, length, ppos);
3354 #endif /* CONFIG_NUMA */
3356 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
3357 void __user *buffer,
3358 size_t *length, loff_t *ppos)
3360 struct hstate *h = &default_hstate;
3364 if (!hugepages_supported())
3367 tmp = h->nr_overcommit_huge_pages;
3369 if (write && hstate_is_gigantic(h))
3373 table->maxlen = sizeof(unsigned long);
3374 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
3379 spin_lock(&hugetlb_lock);
3380 h->nr_overcommit_huge_pages = tmp;
3381 spin_unlock(&hugetlb_lock);
3387 #endif /* CONFIG_SYSCTL */
3389 void hugetlb_report_meminfo(struct seq_file *m)
3392 unsigned long total = 0;
3394 if (!hugepages_supported())
3397 for_each_hstate(h) {
3398 unsigned long count = h->nr_huge_pages;
3400 total += (PAGE_SIZE << huge_page_order(h)) * count;
3402 if (h == &default_hstate)
3404 "HugePages_Total: %5lu\n"
3405 "HugePages_Free: %5lu\n"
3406 "HugePages_Rsvd: %5lu\n"
3407 "HugePages_Surp: %5lu\n"
3408 "Hugepagesize: %8lu kB\n",
3412 h->surplus_huge_pages,
3413 (PAGE_SIZE << huge_page_order(h)) / 1024);
3416 seq_printf(m, "Hugetlb: %8lu kB\n", total / 1024);
3419 int hugetlb_report_node_meminfo(int nid, char *buf)
3421 struct hstate *h = &default_hstate;
3422 if (!hugepages_supported())
3425 "Node %d HugePages_Total: %5u\n"
3426 "Node %d HugePages_Free: %5u\n"
3427 "Node %d HugePages_Surp: %5u\n",
3428 nid, h->nr_huge_pages_node[nid],
3429 nid, h->free_huge_pages_node[nid],
3430 nid, h->surplus_huge_pages_node[nid]);
3433 void hugetlb_show_meminfo(void)
3438 if (!hugepages_supported())
3441 for_each_node_state(nid, N_MEMORY)
3443 pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
3445 h->nr_huge_pages_node[nid],
3446 h->free_huge_pages_node[nid],
3447 h->surplus_huge_pages_node[nid],
3448 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
3451 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
3453 seq_printf(m, "HugetlbPages:\t%8lu kB\n",
3454 atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
3457 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
3458 unsigned long hugetlb_total_pages(void)
3461 unsigned long nr_total_pages = 0;
3464 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
3465 return nr_total_pages;
3468 static int hugetlb_acct_memory(struct hstate *h, long delta)
3472 spin_lock(&hugetlb_lock);
3474 * When cpuset is configured, it breaks the strict hugetlb page
3475 * reservation as the accounting is done on a global variable. Such
3476 * reservation is completely rubbish in the presence of cpuset because
3477 * the reservation is not checked against page availability for the
3478 * current cpuset. Application can still potentially OOM'ed by kernel
3479 * with lack of free htlb page in cpuset that the task is in.
3480 * Attempt to enforce strict accounting with cpuset is almost
3481 * impossible (or too ugly) because cpuset is too fluid that
3482 * task or memory node can be dynamically moved between cpusets.
3484 * The change of semantics for shared hugetlb mapping with cpuset is
3485 * undesirable. However, in order to preserve some of the semantics,
3486 * we fall back to check against current free page availability as
3487 * a best attempt and hopefully to minimize the impact of changing
3488 * semantics that cpuset has.
3491 if (gather_surplus_pages(h, delta) < 0)
3494 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
3495 return_unused_surplus_pages(h, delta);
3502 return_unused_surplus_pages(h, (unsigned long) -delta);
3505 spin_unlock(&hugetlb_lock);
3509 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
3511 struct resv_map *resv = vma_resv_map(vma);
3514 * This new VMA should share its siblings reservation map if present.
3515 * The VMA will only ever have a valid reservation map pointer where
3516 * it is being copied for another still existing VMA. As that VMA
3517 * has a reference to the reservation map it cannot disappear until
3518 * after this open call completes. It is therefore safe to take a
3519 * new reference here without additional locking.
3521 if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3522 kref_get(&resv->refs);
3525 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
3527 struct hstate *h = hstate_vma(vma);
3528 struct resv_map *resv = vma_resv_map(vma);
3529 struct hugepage_subpool *spool = subpool_vma(vma);
3530 unsigned long reserve, start, end;
3533 if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3536 start = vma_hugecache_offset(h, vma, vma->vm_start);
3537 end = vma_hugecache_offset(h, vma, vma->vm_end);
3539 reserve = (end - start) - region_count(resv, start, end);
3540 hugetlb_cgroup_uncharge_counter(resv, start, end);
3543 * Decrement reserve counts. The global reserve count may be
3544 * adjusted if the subpool has a minimum size.
3546 gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
3547 hugetlb_acct_memory(h, -gbl_reserve);
3550 kref_put(&resv->refs, resv_map_release);
3553 static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
3555 if (addr & ~(huge_page_mask(hstate_vma(vma))))
3560 static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma)
3562 struct hstate *hstate = hstate_vma(vma);
3564 return 1UL << huge_page_shift(hstate);
3568 * We cannot handle pagefaults against hugetlb pages at all. They cause
3569 * handle_mm_fault() to try to instantiate regular-sized pages in the
3570 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
3573 static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf)
3580 * When a new function is introduced to vm_operations_struct and added
3581 * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops.
3582 * This is because under System V memory model, mappings created via
3583 * shmget/shmat with "huge page" specified are backed by hugetlbfs files,
3584 * their original vm_ops are overwritten with shm_vm_ops.
3586 const struct vm_operations_struct hugetlb_vm_ops = {
3587 .fault = hugetlb_vm_op_fault,
3588 .open = hugetlb_vm_op_open,
3589 .close = hugetlb_vm_op_close,
3590 .split = hugetlb_vm_op_split,
3591 .pagesize = hugetlb_vm_op_pagesize,
3594 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
3600 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
3601 vma->vm_page_prot)));
3603 entry = huge_pte_wrprotect(mk_huge_pte(page,
3604 vma->vm_page_prot));
3606 entry = pte_mkyoung(entry);
3607 entry = pte_mkhuge(entry);
3608 entry = arch_make_huge_pte(entry, vma, page, writable);
3613 static void set_huge_ptep_writable(struct vm_area_struct *vma,
3614 unsigned long address, pte_t *ptep)
3618 entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
3619 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
3620 update_mmu_cache(vma, address, ptep);
3623 bool is_hugetlb_entry_migration(pte_t pte)
3627 if (huge_pte_none(pte) || pte_present(pte))
3629 swp = pte_to_swp_entry(pte);
3630 if (non_swap_entry(swp) && is_migration_entry(swp))
3636 static int is_hugetlb_entry_hwpoisoned(pte_t pte)
3640 if (huge_pte_none(pte) || pte_present(pte))
3642 swp = pte_to_swp_entry(pte);
3643 if (non_swap_entry(swp) && is_hwpoison_entry(swp))
3649 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
3650 struct vm_area_struct *vma)
3652 pte_t *src_pte, *dst_pte, entry, dst_entry;
3653 struct page *ptepage;
3656 struct hstate *h = hstate_vma(vma);
3657 unsigned long sz = huge_page_size(h);
3658 struct address_space *mapping = vma->vm_file->f_mapping;
3659 struct mmu_notifier_range range;
3662 cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
3665 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, src,
3668 mmu_notifier_invalidate_range_start(&range);
3671 * For shared mappings i_mmap_rwsem must be held to call
3672 * huge_pte_alloc, otherwise the returned ptep could go
3673 * away if part of a shared pmd and another thread calls
3676 i_mmap_lock_read(mapping);
3679 for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
3680 spinlock_t *src_ptl, *dst_ptl;
3681 src_pte = huge_pte_offset(src, addr, sz);
3684 dst_pte = huge_pte_alloc(dst, addr, sz);
3691 * If the pagetables are shared don't copy or take references.
3692 * dst_pte == src_pte is the common case of src/dest sharing.
3694 * However, src could have 'unshared' and dst shares with
3695 * another vma. If dst_pte !none, this implies sharing.
3696 * Check here before taking page table lock, and once again
3697 * after taking the lock below.
3699 dst_entry = huge_ptep_get(dst_pte);
3700 if ((dst_pte == src_pte) || !huge_pte_none(dst_entry))
3703 dst_ptl = huge_pte_lock(h, dst, dst_pte);
3704 src_ptl = huge_pte_lockptr(h, src, src_pte);
3705 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
3706 entry = huge_ptep_get(src_pte);
3707 dst_entry = huge_ptep_get(dst_pte);
3708 if (huge_pte_none(entry) || !huge_pte_none(dst_entry)) {
3710 * Skip if src entry none. Also, skip in the
3711 * unlikely case dst entry !none as this implies
3712 * sharing with another vma.
3715 } else if (unlikely(is_hugetlb_entry_migration(entry) ||
3716 is_hugetlb_entry_hwpoisoned(entry))) {
3717 swp_entry_t swp_entry = pte_to_swp_entry(entry);
3719 if (is_write_migration_entry(swp_entry) && cow) {
3721 * COW mappings require pages in both
3722 * parent and child to be set to read.
3724 make_migration_entry_read(&swp_entry);
3725 entry = swp_entry_to_pte(swp_entry);
3726 set_huge_swap_pte_at(src, addr, src_pte,
3729 set_huge_swap_pte_at(dst, addr, dst_pte, entry, sz);
3733 * No need to notify as we are downgrading page
3734 * table protection not changing it to point
3737 * See Documentation/vm/mmu_notifier.rst
3739 huge_ptep_set_wrprotect(src, addr, src_pte);
3741 entry = huge_ptep_get(src_pte);
3742 ptepage = pte_page(entry);
3744 page_dup_rmap(ptepage, true);
3745 set_huge_pte_at(dst, addr, dst_pte, entry);
3746 hugetlb_count_add(pages_per_huge_page(h), dst);
3748 spin_unlock(src_ptl);
3749 spin_unlock(dst_ptl);
3753 mmu_notifier_invalidate_range_end(&range);
3755 i_mmap_unlock_read(mapping);
3760 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
3761 unsigned long start, unsigned long end,
3762 struct page *ref_page)
3764 struct mm_struct *mm = vma->vm_mm;
3765 unsigned long address;
3770 struct hstate *h = hstate_vma(vma);
3771 unsigned long sz = huge_page_size(h);
3772 struct mmu_notifier_range range;
3774 WARN_ON(!is_vm_hugetlb_page(vma));
3775 BUG_ON(start & ~huge_page_mask(h));
3776 BUG_ON(end & ~huge_page_mask(h));
3779 * This is a hugetlb vma, all the pte entries should point
3782 tlb_change_page_size(tlb, sz);
3783 tlb_start_vma(tlb, vma);
3786 * If sharing possible, alert mmu notifiers of worst case.
3788 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, mm, start,
3790 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
3791 mmu_notifier_invalidate_range_start(&range);
3793 for (; address < end; address += sz) {
3794 ptep = huge_pte_offset(mm, address, sz);
3798 ptl = huge_pte_lock(h, mm, ptep);
3799 if (huge_pmd_unshare(mm, &address, ptep)) {
3802 * We just unmapped a page of PMDs by clearing a PUD.
3803 * The caller's TLB flush range should cover this area.
3808 pte = huge_ptep_get(ptep);
3809 if (huge_pte_none(pte)) {
3815 * Migrating hugepage or HWPoisoned hugepage is already
3816 * unmapped and its refcount is dropped, so just clear pte here.
3818 if (unlikely(!pte_present(pte))) {
3819 huge_pte_clear(mm, address, ptep, sz);
3824 page = pte_page(pte);
3826 * If a reference page is supplied, it is because a specific
3827 * page is being unmapped, not a range. Ensure the page we
3828 * are about to unmap is the actual page of interest.
3831 if (page != ref_page) {
3836 * Mark the VMA as having unmapped its page so that
3837 * future faults in this VMA will fail rather than
3838 * looking like data was lost
3840 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
3843 pte = huge_ptep_get_and_clear(mm, address, ptep);
3844 tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
3845 if (huge_pte_dirty(pte))
3846 set_page_dirty(page);
3848 hugetlb_count_sub(pages_per_huge_page(h), mm);
3849 page_remove_rmap(page, true);
3852 tlb_remove_page_size(tlb, page, huge_page_size(h));
3854 * Bail out after unmapping reference page if supplied
3859 mmu_notifier_invalidate_range_end(&range);
3860 tlb_end_vma(tlb, vma);
3863 void __unmap_hugepage_range_final(struct mmu_gather *tlb,
3864 struct vm_area_struct *vma, unsigned long start,
3865 unsigned long end, struct page *ref_page)
3867 __unmap_hugepage_range(tlb, vma, start, end, ref_page);
3870 * Clear this flag so that x86's huge_pmd_share page_table_shareable
3871 * test will fail on a vma being torn down, and not grab a page table
3872 * on its way out. We're lucky that the flag has such an appropriate
3873 * name, and can in fact be safely cleared here. We could clear it
3874 * before the __unmap_hugepage_range above, but all that's necessary
3875 * is to clear it before releasing the i_mmap_rwsem. This works
3876 * because in the context this is called, the VMA is about to be
3877 * destroyed and the i_mmap_rwsem is held.
3879 vma->vm_flags &= ~VM_MAYSHARE;
3882 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
3883 unsigned long end, struct page *ref_page)
3885 struct mm_struct *mm;
3886 struct mmu_gather tlb;
3887 unsigned long tlb_start = start;
3888 unsigned long tlb_end = end;
3891 * If shared PMDs were possibly used within this vma range, adjust
3892 * start/end for worst case tlb flushing.
3893 * Note that we can not be sure if PMDs are shared until we try to
3894 * unmap pages. However, we want to make sure TLB flushing covers
3895 * the largest possible range.
3897 adjust_range_if_pmd_sharing_possible(vma, &tlb_start, &tlb_end);
3901 tlb_gather_mmu(&tlb, mm, tlb_start, tlb_end);
3902 __unmap_hugepage_range(&tlb, vma, start, end, ref_page);
3903 tlb_finish_mmu(&tlb, tlb_start, tlb_end);
3907 * This is called when the original mapper is failing to COW a MAP_PRIVATE
3908 * mappping it owns the reserve page for. The intention is to unmap the page
3909 * from other VMAs and let the children be SIGKILLed if they are faulting the
3912 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
3913 struct page *page, unsigned long address)
3915 struct hstate *h = hstate_vma(vma);
3916 struct vm_area_struct *iter_vma;
3917 struct address_space *mapping;
3921 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
3922 * from page cache lookup which is in HPAGE_SIZE units.
3924 address = address & huge_page_mask(h);
3925 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
3927 mapping = vma->vm_file->f_mapping;
3930 * Take the mapping lock for the duration of the table walk. As
3931 * this mapping should be shared between all the VMAs,
3932 * __unmap_hugepage_range() is called as the lock is already held
3934 i_mmap_lock_write(mapping);
3935 vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
3936 /* Do not unmap the current VMA */
3937 if (iter_vma == vma)
3941 * Shared VMAs have their own reserves and do not affect
3942 * MAP_PRIVATE accounting but it is possible that a shared
3943 * VMA is using the same page so check and skip such VMAs.
3945 if (iter_vma->vm_flags & VM_MAYSHARE)
3949 * Unmap the page from other VMAs without their own reserves.
3950 * They get marked to be SIGKILLed if they fault in these
3951 * areas. This is because a future no-page fault on this VMA
3952 * could insert a zeroed page instead of the data existing
3953 * from the time of fork. This would look like data corruption
3955 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
3956 unmap_hugepage_range(iter_vma, address,
3957 address + huge_page_size(h), page);
3959 i_mmap_unlock_write(mapping);
3963 * Hugetlb_cow() should be called with page lock of the original hugepage held.
3964 * Called with hugetlb_instantiation_mutex held and pte_page locked so we
3965 * cannot race with other handlers or page migration.
3966 * Keep the pte_same checks anyway to make transition from the mutex easier.
3968 static vm_fault_t hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
3969 unsigned long address, pte_t *ptep,
3970 struct page *pagecache_page, spinlock_t *ptl)
3973 struct hstate *h = hstate_vma(vma);
3974 struct page *old_page, *new_page;
3975 int outside_reserve = 0;
3977 unsigned long haddr = address & huge_page_mask(h);
3978 struct mmu_notifier_range range;
3980 pte = huge_ptep_get(ptep);
3981 old_page = pte_page(pte);
3984 /* If no-one else is actually using this page, avoid the copy
3985 * and just make the page writable */
3986 if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
3987 page_move_anon_rmap(old_page, vma);
3988 set_huge_ptep_writable(vma, haddr, ptep);
3993 * If the process that created a MAP_PRIVATE mapping is about to
3994 * perform a COW due to a shared page count, attempt to satisfy
3995 * the allocation without using the existing reserves. The pagecache
3996 * page is used to determine if the reserve at this address was
3997 * consumed or not. If reserves were used, a partial faulted mapping
3998 * at the time of fork() could consume its reserves on COW instead
3999 * of the full address range.
4001 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
4002 old_page != pagecache_page)
4003 outside_reserve = 1;
4008 * Drop page table lock as buddy allocator may be called. It will
4009 * be acquired again before returning to the caller, as expected.
4012 new_page = alloc_huge_page(vma, haddr, outside_reserve);
4014 if (IS_ERR(new_page)) {
4016 * If a process owning a MAP_PRIVATE mapping fails to COW,
4017 * it is due to references held by a child and an insufficient
4018 * huge page pool. To guarantee the original mappers
4019 * reliability, unmap the page from child processes. The child
4020 * may get SIGKILLed if it later faults.
4022 if (outside_reserve) {
4024 BUG_ON(huge_pte_none(pte));
4025 unmap_ref_private(mm, vma, old_page, haddr);
4026 BUG_ON(huge_pte_none(pte));
4028 ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
4030 pte_same(huge_ptep_get(ptep), pte)))
4031 goto retry_avoidcopy;
4033 * race occurs while re-acquiring page table
4034 * lock, and our job is done.
4039 ret = vmf_error(PTR_ERR(new_page));
4040 goto out_release_old;
4044 * When the original hugepage is shared one, it does not have
4045 * anon_vma prepared.
4047 if (unlikely(anon_vma_prepare(vma))) {
4049 goto out_release_all;
4052 copy_user_huge_page(new_page, old_page, address, vma,
4053 pages_per_huge_page(h));
4054 __SetPageUptodate(new_page);
4056 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, haddr,
4057 haddr + huge_page_size(h));
4058 mmu_notifier_invalidate_range_start(&range);
4061 * Retake the page table lock to check for racing updates
4062 * before the page tables are altered
4065 ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
4066 if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
4067 ClearPagePrivate(new_page);
4070 huge_ptep_clear_flush(vma, haddr, ptep);
4071 mmu_notifier_invalidate_range(mm, range.start, range.end);
4072 set_huge_pte_at(mm, haddr, ptep,
4073 make_huge_pte(vma, new_page, 1));
4074 page_remove_rmap(old_page, true);
4075 hugepage_add_new_anon_rmap(new_page, vma, haddr);
4076 set_page_huge_active(new_page);
4077 /* Make the old page be freed below */
4078 new_page = old_page;
4081 mmu_notifier_invalidate_range_end(&range);
4083 restore_reserve_on_error(h, vma, haddr, new_page);
4088 spin_lock(ptl); /* Caller expects lock to be held */
4092 /* Return the pagecache page at a given address within a VMA */
4093 static struct page *hugetlbfs_pagecache_page(struct hstate *h,
4094 struct vm_area_struct *vma, unsigned long address)
4096 struct address_space *mapping;
4099 mapping = vma->vm_file->f_mapping;
4100 idx = vma_hugecache_offset(h, vma, address);
4102 return find_lock_page(mapping, idx);
4106 * Return whether there is a pagecache page to back given address within VMA.
4107 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
4109 static bool hugetlbfs_pagecache_present(struct hstate *h,
4110 struct vm_area_struct *vma, unsigned long address)
4112 struct address_space *mapping;
4116 mapping = vma->vm_file->f_mapping;
4117 idx = vma_hugecache_offset(h, vma, address);
4119 page = find_get_page(mapping, idx);
4122 return page != NULL;
4125 int huge_add_to_page_cache(struct page *page, struct address_space *mapping,
4128 struct inode *inode = mapping->host;
4129 struct hstate *h = hstate_inode(inode);
4130 int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
4134 ClearPagePrivate(page);
4137 * set page dirty so that it will not be removed from cache/file
4138 * by non-hugetlbfs specific code paths.
4140 set_page_dirty(page);
4142 spin_lock(&inode->i_lock);
4143 inode->i_blocks += blocks_per_huge_page(h);
4144 spin_unlock(&inode->i_lock);
4148 static vm_fault_t hugetlb_no_page(struct mm_struct *mm,
4149 struct vm_area_struct *vma,
4150 struct address_space *mapping, pgoff_t idx,
4151 unsigned long address, pte_t *ptep, unsigned int flags)
4153 struct hstate *h = hstate_vma(vma);
4154 vm_fault_t ret = VM_FAULT_SIGBUS;
4160 unsigned long haddr = address & huge_page_mask(h);
4161 bool new_page = false;
4164 * Currently, we are forced to kill the process in the event the
4165 * original mapper has unmapped pages from the child due to a failed
4166 * COW. Warn that such a situation has occurred as it may not be obvious
4168 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
4169 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
4175 * We can not race with truncation due to holding i_mmap_rwsem.
4176 * i_size is modified when holding i_mmap_rwsem, so check here
4177 * once for faults beyond end of file.
4179 size = i_size_read(mapping->host) >> huge_page_shift(h);
4184 page = find_lock_page(mapping, idx);
4187 * Check for page in userfault range
4189 if (userfaultfd_missing(vma)) {
4191 struct vm_fault vmf = {
4196 * Hard to debug if it ends up being
4197 * used by a callee that assumes
4198 * something about the other
4199 * uninitialized fields... same as in
4205 * hugetlb_fault_mutex and i_mmap_rwsem must be
4206 * dropped before handling userfault. Reacquire
4207 * after handling fault to make calling code simpler.
4209 hash = hugetlb_fault_mutex_hash(mapping, idx);
4210 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
4211 i_mmap_unlock_read(mapping);
4212 ret = handle_userfault(&vmf, VM_UFFD_MISSING);
4213 i_mmap_lock_read(mapping);
4214 mutex_lock(&hugetlb_fault_mutex_table[hash]);
4218 page = alloc_huge_page(vma, haddr, 0);
4221 * Returning error will result in faulting task being
4222 * sent SIGBUS. The hugetlb fault mutex prevents two
4223 * tasks from racing to fault in the same page which
4224 * could result in false unable to allocate errors.
4225 * Page migration does not take the fault mutex, but
4226 * does a clear then write of pte's under page table
4227 * lock. Page fault code could race with migration,
4228 * notice the clear pte and try to allocate a page
4229 * here. Before returning error, get ptl and make
4230 * sure there really is no pte entry.
4232 ptl = huge_pte_lock(h, mm, ptep);
4233 if (!huge_pte_none(huge_ptep_get(ptep))) {
4239 ret = vmf_error(PTR_ERR(page));
4242 clear_huge_page(page, address, pages_per_huge_page(h));
4243 __SetPageUptodate(page);
4246 if (vma->vm_flags & VM_MAYSHARE) {
4247 int err = huge_add_to_page_cache(page, mapping, idx);
4256 if (unlikely(anon_vma_prepare(vma))) {
4258 goto backout_unlocked;
4264 * If memory error occurs between mmap() and fault, some process
4265 * don't have hwpoisoned swap entry for errored virtual address.
4266 * So we need to block hugepage fault by PG_hwpoison bit check.
4268 if (unlikely(PageHWPoison(page))) {
4269 ret = VM_FAULT_HWPOISON |
4270 VM_FAULT_SET_HINDEX(hstate_index(h));
4271 goto backout_unlocked;
4276 * If we are going to COW a private mapping later, we examine the
4277 * pending reservations for this page now. This will ensure that
4278 * any allocations necessary to record that reservation occur outside
4281 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
4282 if (vma_needs_reservation(h, vma, haddr) < 0) {
4284 goto backout_unlocked;
4286 /* Just decrements count, does not deallocate */
4287 vma_end_reservation(h, vma, haddr);
4290 ptl = huge_pte_lock(h, mm, ptep);
4292 if (!huge_pte_none(huge_ptep_get(ptep)))
4296 ClearPagePrivate(page);
4297 hugepage_add_new_anon_rmap(page, vma, haddr);
4299 page_dup_rmap(page, true);
4300 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
4301 && (vma->vm_flags & VM_SHARED)));
4302 set_huge_pte_at(mm, haddr, ptep, new_pte);
4304 hugetlb_count_add(pages_per_huge_page(h), mm);
4305 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
4306 /* Optimization, do the COW without a second fault */
4307 ret = hugetlb_cow(mm, vma, address, ptep, page, ptl);
4313 * Only make newly allocated pages active. Existing pages found
4314 * in the pagecache could be !page_huge_active() if they have been
4315 * isolated for migration.
4318 set_page_huge_active(page);
4328 restore_reserve_on_error(h, vma, haddr, page);
4334 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
4336 unsigned long key[2];
4339 key[0] = (unsigned long) mapping;
4342 hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0);
4344 return hash & (num_fault_mutexes - 1);
4348 * For uniprocesor systems we always use a single mutex, so just
4349 * return 0 and avoid the hashing overhead.
4351 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
4357 vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
4358 unsigned long address, unsigned int flags)
4365 struct page *page = NULL;
4366 struct page *pagecache_page = NULL;
4367 struct hstate *h = hstate_vma(vma);
4368 struct address_space *mapping;
4369 int need_wait_lock = 0;
4370 unsigned long haddr = address & huge_page_mask(h);
4372 ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
4375 * Since we hold no locks, ptep could be stale. That is
4376 * OK as we are only making decisions based on content and
4377 * not actually modifying content here.
4379 entry = huge_ptep_get(ptep);
4380 if (unlikely(is_hugetlb_entry_migration(entry))) {
4381 migration_entry_wait_huge(vma, mm, ptep);
4383 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
4384 return VM_FAULT_HWPOISON_LARGE |
4385 VM_FAULT_SET_HINDEX(hstate_index(h));
4387 ptep = huge_pte_alloc(mm, haddr, huge_page_size(h));
4389 return VM_FAULT_OOM;
4393 * Acquire i_mmap_rwsem before calling huge_pte_alloc and hold
4394 * until finished with ptep. This serves two purposes:
4395 * 1) It prevents huge_pmd_unshare from being called elsewhere
4396 * and making the ptep no longer valid.
4397 * 2) It synchronizes us with i_size modifications during truncation.
4399 * ptep could have already be assigned via huge_pte_offset. That
4400 * is OK, as huge_pte_alloc will return the same value unless
4401 * something has changed.
4403 mapping = vma->vm_file->f_mapping;
4404 i_mmap_lock_read(mapping);
4405 ptep = huge_pte_alloc(mm, haddr, huge_page_size(h));
4407 i_mmap_unlock_read(mapping);
4408 return VM_FAULT_OOM;
4412 * Serialize hugepage allocation and instantiation, so that we don't
4413 * get spurious allocation failures if two CPUs race to instantiate
4414 * the same page in the page cache.
4416 idx = vma_hugecache_offset(h, vma, haddr);
4417 hash = hugetlb_fault_mutex_hash(mapping, idx);
4418 mutex_lock(&hugetlb_fault_mutex_table[hash]);
4420 entry = huge_ptep_get(ptep);
4421 if (huge_pte_none(entry)) {
4422 ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
4429 * entry could be a migration/hwpoison entry at this point, so this
4430 * check prevents the kernel from going below assuming that we have
4431 * a active hugepage in pagecache. This goto expects the 2nd page fault,
4432 * and is_hugetlb_entry_(migration|hwpoisoned) check will properly
4435 if (!pte_present(entry))
4439 * If we are going to COW the mapping later, we examine the pending
4440 * reservations for this page now. This will ensure that any
4441 * allocations necessary to record that reservation occur outside the
4442 * spinlock. For private mappings, we also lookup the pagecache
4443 * page now as it is used to determine if a reservation has been
4446 if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
4447 if (vma_needs_reservation(h, vma, haddr) < 0) {
4451 /* Just decrements count, does not deallocate */
4452 vma_end_reservation(h, vma, haddr);
4454 if (!(vma->vm_flags & VM_MAYSHARE))
4455 pagecache_page = hugetlbfs_pagecache_page(h,
4459 ptl = huge_pte_lock(h, mm, ptep);
4461 /* Check for a racing update before calling hugetlb_cow */
4462 if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
4466 * hugetlb_cow() requires page locks of pte_page(entry) and
4467 * pagecache_page, so here we need take the former one
4468 * when page != pagecache_page or !pagecache_page.
4470 page = pte_page(entry);
4471 if (page != pagecache_page)
4472 if (!trylock_page(page)) {
4479 if (flags & FAULT_FLAG_WRITE) {
4480 if (!huge_pte_write(entry)) {
4481 ret = hugetlb_cow(mm, vma, address, ptep,
4482 pagecache_page, ptl);
4485 entry = huge_pte_mkdirty(entry);
4487 entry = pte_mkyoung(entry);
4488 if (huge_ptep_set_access_flags(vma, haddr, ptep, entry,
4489 flags & FAULT_FLAG_WRITE))
4490 update_mmu_cache(vma, haddr, ptep);
4492 if (page != pagecache_page)
4498 if (pagecache_page) {
4499 unlock_page(pagecache_page);
4500 put_page(pagecache_page);
4503 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
4504 i_mmap_unlock_read(mapping);
4506 * Generally it's safe to hold refcount during waiting page lock. But
4507 * here we just wait to defer the next page fault to avoid busy loop and
4508 * the page is not used after unlocked before returning from the current
4509 * page fault. So we are safe from accessing freed page, even if we wait
4510 * here without taking refcount.
4513 wait_on_page_locked(page);
4518 * Used by userfaultfd UFFDIO_COPY. Based on mcopy_atomic_pte with
4519 * modifications for huge pages.
4521 int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm,
4523 struct vm_area_struct *dst_vma,
4524 unsigned long dst_addr,
4525 unsigned long src_addr,
4526 struct page **pagep)
4528 struct address_space *mapping;
4531 int vm_shared = dst_vma->vm_flags & VM_SHARED;
4532 struct hstate *h = hstate_vma(dst_vma);
4540 page = alloc_huge_page(dst_vma, dst_addr, 0);
4544 ret = copy_huge_page_from_user(page,
4545 (const void __user *) src_addr,
4546 pages_per_huge_page(h), false);
4548 /* fallback to copy_from_user outside mmap_sem */
4549 if (unlikely(ret)) {
4552 /* don't free the page */
4561 * The memory barrier inside __SetPageUptodate makes sure that
4562 * preceding stores to the page contents become visible before
4563 * the set_pte_at() write.
4565 __SetPageUptodate(page);
4567 mapping = dst_vma->vm_file->f_mapping;
4568 idx = vma_hugecache_offset(h, dst_vma, dst_addr);
4571 * If shared, add to page cache
4574 size = i_size_read(mapping->host) >> huge_page_shift(h);
4577 goto out_release_nounlock;
4580 * Serialization between remove_inode_hugepages() and
4581 * huge_add_to_page_cache() below happens through the
4582 * hugetlb_fault_mutex_table that here must be hold by
4585 ret = huge_add_to_page_cache(page, mapping, idx);
4587 goto out_release_nounlock;
4590 ptl = huge_pte_lockptr(h, dst_mm, dst_pte);
4594 * Recheck the i_size after holding PT lock to make sure not
4595 * to leave any page mapped (as page_mapped()) beyond the end
4596 * of the i_size (remove_inode_hugepages() is strict about
4597 * enforcing that). If we bail out here, we'll also leave a
4598 * page in the radix tree in the vm_shared case beyond the end
4599 * of the i_size, but remove_inode_hugepages() will take care
4600 * of it as soon as we drop the hugetlb_fault_mutex_table.
4602 size = i_size_read(mapping->host) >> huge_page_shift(h);
4605 goto out_release_unlock;
4608 if (!huge_pte_none(huge_ptep_get(dst_pte)))
4609 goto out_release_unlock;
4612 page_dup_rmap(page, true);
4614 ClearPagePrivate(page);
4615 hugepage_add_new_anon_rmap(page, dst_vma, dst_addr);
4618 _dst_pte = make_huge_pte(dst_vma, page, dst_vma->vm_flags & VM_WRITE);
4619 if (dst_vma->vm_flags & VM_WRITE)
4620 _dst_pte = huge_pte_mkdirty(_dst_pte);
4621 _dst_pte = pte_mkyoung(_dst_pte);
4623 set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
4625 (void)huge_ptep_set_access_flags(dst_vma, dst_addr, dst_pte, _dst_pte,
4626 dst_vma->vm_flags & VM_WRITE);
4627 hugetlb_count_add(pages_per_huge_page(h), dst_mm);
4629 /* No need to invalidate - it was non-present before */
4630 update_mmu_cache(dst_vma, dst_addr, dst_pte);
4633 set_page_huge_active(page);
4643 out_release_nounlock:
4648 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
4649 struct page **pages, struct vm_area_struct **vmas,
4650 unsigned long *position, unsigned long *nr_pages,
4651 long i, unsigned int flags, int *locked)
4653 unsigned long pfn_offset;
4654 unsigned long vaddr = *position;
4655 unsigned long remainder = *nr_pages;
4656 struct hstate *h = hstate_vma(vma);
4659 while (vaddr < vma->vm_end && remainder) {
4661 spinlock_t *ptl = NULL;
4666 * If we have a pending SIGKILL, don't keep faulting pages and
4667 * potentially allocating memory.
4669 if (fatal_signal_pending(current)) {
4675 * Some archs (sparc64, sh*) have multiple pte_ts to
4676 * each hugepage. We have to make sure we get the
4677 * first, for the page indexing below to work.
4679 * Note that page table lock is not held when pte is null.
4681 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h),
4684 ptl = huge_pte_lock(h, mm, pte);
4685 absent = !pte || huge_pte_none(huge_ptep_get(pte));
4688 * When coredumping, it suits get_dump_page if we just return
4689 * an error where there's an empty slot with no huge pagecache
4690 * to back it. This way, we avoid allocating a hugepage, and
4691 * the sparse dumpfile avoids allocating disk blocks, but its
4692 * huge holes still show up with zeroes where they need to be.
4694 if (absent && (flags & FOLL_DUMP) &&
4695 !hugetlbfs_pagecache_present(h, vma, vaddr)) {
4703 * We need call hugetlb_fault for both hugepages under migration
4704 * (in which case hugetlb_fault waits for the migration,) and
4705 * hwpoisoned hugepages (in which case we need to prevent the
4706 * caller from accessing to them.) In order to do this, we use
4707 * here is_swap_pte instead of is_hugetlb_entry_migration and
4708 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
4709 * both cases, and because we can't follow correct pages
4710 * directly from any kind of swap entries.
4712 if (absent || is_swap_pte(huge_ptep_get(pte)) ||
4713 ((flags & FOLL_WRITE) &&
4714 !huge_pte_write(huge_ptep_get(pte)))) {
4716 unsigned int fault_flags = 0;
4720 if (flags & FOLL_WRITE)
4721 fault_flags |= FAULT_FLAG_WRITE;
4723 fault_flags |= FAULT_FLAG_ALLOW_RETRY |
4724 FAULT_FLAG_KILLABLE;
4725 if (flags & FOLL_NOWAIT)
4726 fault_flags |= FAULT_FLAG_ALLOW_RETRY |
4727 FAULT_FLAG_RETRY_NOWAIT;
4728 if (flags & FOLL_TRIED) {
4730 * Note: FAULT_FLAG_ALLOW_RETRY and
4731 * FAULT_FLAG_TRIED can co-exist
4733 fault_flags |= FAULT_FLAG_TRIED;
4735 ret = hugetlb_fault(mm, vma, vaddr, fault_flags);
4736 if (ret & VM_FAULT_ERROR) {
4737 err = vm_fault_to_errno(ret, flags);
4741 if (ret & VM_FAULT_RETRY) {
4743 !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
4747 * VM_FAULT_RETRY must not return an
4748 * error, it will return zero
4751 * No need to update "position" as the
4752 * caller will not check it after
4753 * *nr_pages is set to 0.
4760 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
4761 page = pte_page(huge_ptep_get(pte));
4764 * If subpage information not requested, update counters
4765 * and skip the same_page loop below.
4767 if (!pages && !vmas && !pfn_offset &&
4768 (vaddr + huge_page_size(h) < vma->vm_end) &&
4769 (remainder >= pages_per_huge_page(h))) {
4770 vaddr += huge_page_size(h);
4771 remainder -= pages_per_huge_page(h);
4772 i += pages_per_huge_page(h);
4779 pages[i] = mem_map_offset(page, pfn_offset);
4781 * try_grab_page() should always succeed here, because:
4782 * a) we hold the ptl lock, and b) we've just checked
4783 * that the huge page is present in the page tables. If
4784 * the huge page is present, then the tail pages must
4785 * also be present. The ptl prevents the head page and
4786 * tail pages from being rearranged in any way. So this
4787 * page must be available at this point, unless the page
4788 * refcount overflowed:
4790 if (WARN_ON_ONCE(!try_grab_page(pages[i], flags))) {
4805 if (vaddr < vma->vm_end && remainder &&
4806 pfn_offset < pages_per_huge_page(h)) {
4808 * We use pfn_offset to avoid touching the pageframes
4809 * of this compound page.
4815 *nr_pages = remainder;
4817 * setting position is actually required only if remainder is
4818 * not zero but it's faster not to add a "if (remainder)"
4826 #ifndef __HAVE_ARCH_FLUSH_HUGETLB_TLB_RANGE
4828 * ARCHes with special requirements for evicting HUGETLB backing TLB entries can
4831 #define flush_hugetlb_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end)
4834 unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
4835 unsigned long address, unsigned long end, pgprot_t newprot)
4837 struct mm_struct *mm = vma->vm_mm;
4838 unsigned long start = address;
4841 struct hstate *h = hstate_vma(vma);
4842 unsigned long pages = 0;
4843 bool shared_pmd = false;
4844 struct mmu_notifier_range range;
4847 * In the case of shared PMDs, the area to flush could be beyond
4848 * start/end. Set range.start/range.end to cover the maximum possible
4849 * range if PMD sharing is possible.
4851 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA,
4852 0, vma, mm, start, end);
4853 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
4855 BUG_ON(address >= end);
4856 flush_cache_range(vma, range.start, range.end);
4858 mmu_notifier_invalidate_range_start(&range);
4859 i_mmap_lock_write(vma->vm_file->f_mapping);
4860 for (; address < end; address += huge_page_size(h)) {
4862 ptep = huge_pte_offset(mm, address, huge_page_size(h));
4865 ptl = huge_pte_lock(h, mm, ptep);
4866 if (huge_pmd_unshare(mm, &address, ptep)) {
4872 pte = huge_ptep_get(ptep);
4873 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
4877 if (unlikely(is_hugetlb_entry_migration(pte))) {
4878 swp_entry_t entry = pte_to_swp_entry(pte);
4880 if (is_write_migration_entry(entry)) {
4883 make_migration_entry_read(&entry);
4884 newpte = swp_entry_to_pte(entry);
4885 set_huge_swap_pte_at(mm, address, ptep,
4886 newpte, huge_page_size(h));
4892 if (!huge_pte_none(pte)) {
4895 old_pte = huge_ptep_modify_prot_start(vma, address, ptep);
4896 pte = pte_mkhuge(huge_pte_modify(old_pte, newprot));
4897 pte = arch_make_huge_pte(pte, vma, NULL, 0);
4898 huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte);
4904 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
4905 * may have cleared our pud entry and done put_page on the page table:
4906 * once we release i_mmap_rwsem, another task can do the final put_page
4907 * and that page table be reused and filled with junk. If we actually
4908 * did unshare a page of pmds, flush the range corresponding to the pud.
4911 flush_hugetlb_tlb_range(vma, range.start, range.end);
4913 flush_hugetlb_tlb_range(vma, start, end);
4915 * No need to call mmu_notifier_invalidate_range() we are downgrading
4916 * page table protection not changing it to point to a new page.
4918 * See Documentation/vm/mmu_notifier.rst
4920 i_mmap_unlock_write(vma->vm_file->f_mapping);
4921 mmu_notifier_invalidate_range_end(&range);
4923 return pages << h->order;
4926 int hugetlb_reserve_pages(struct inode *inode,
4928 struct vm_area_struct *vma,
4929 vm_flags_t vm_flags)
4931 long ret, chg, add = -1;
4932 struct hstate *h = hstate_inode(inode);
4933 struct hugepage_subpool *spool = subpool_inode(inode);
4934 struct resv_map *resv_map;
4935 struct hugetlb_cgroup *h_cg = NULL;
4936 long gbl_reserve, regions_needed = 0;
4938 /* This should never happen */
4940 VM_WARN(1, "%s called with a negative range\n", __func__);
4945 * Only apply hugepage reservation if asked. At fault time, an
4946 * attempt will be made for VM_NORESERVE to allocate a page
4947 * without using reserves
4949 if (vm_flags & VM_NORESERVE)
4953 * Shared mappings base their reservation on the number of pages that
4954 * are already allocated on behalf of the file. Private mappings need
4955 * to reserve the full area even if read-only as mprotect() may be
4956 * called to make the mapping read-write. Assume !vma is a shm mapping
4958 if (!vma || vma->vm_flags & VM_MAYSHARE) {
4960 * resv_map can not be NULL as hugetlb_reserve_pages is only
4961 * called for inodes for which resv_maps were created (see
4962 * hugetlbfs_get_inode).
4964 resv_map = inode_resv_map(inode);
4966 chg = region_chg(resv_map, from, to, ®ions_needed);
4969 /* Private mapping. */
4970 resv_map = resv_map_alloc();
4976 set_vma_resv_map(vma, resv_map);
4977 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
4985 ret = hugetlb_cgroup_charge_cgroup_rsvd(
4986 hstate_index(h), chg * pages_per_huge_page(h), &h_cg);
4993 if (vma && !(vma->vm_flags & VM_MAYSHARE) && h_cg) {
4994 /* For private mappings, the hugetlb_cgroup uncharge info hangs
4997 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, h_cg, h);
5001 * There must be enough pages in the subpool for the mapping. If
5002 * the subpool has a minimum size, there may be some global
5003 * reservations already in place (gbl_reserve).
5005 gbl_reserve = hugepage_subpool_get_pages(spool, chg);
5006 if (gbl_reserve < 0) {
5008 goto out_uncharge_cgroup;
5012 * Check enough hugepages are available for the reservation.
5013 * Hand the pages back to the subpool if there are not
5015 ret = hugetlb_acct_memory(h, gbl_reserve);
5021 * Account for the reservations made. Shared mappings record regions
5022 * that have reservations as they are shared by multiple VMAs.
5023 * When the last VMA disappears, the region map says how much
5024 * the reservation was and the page cache tells how much of
5025 * the reservation was consumed. Private mappings are per-VMA and
5026 * only the consumed reservations are tracked. When the VMA
5027 * disappears, the original reservation is the VMA size and the
5028 * consumed reservations are stored in the map. Hence, nothing
5029 * else has to be done for private mappings here
5031 if (!vma || vma->vm_flags & VM_MAYSHARE) {
5032 add = region_add(resv_map, from, to, regions_needed, h, h_cg);
5034 if (unlikely(add < 0)) {
5035 hugetlb_acct_memory(h, -gbl_reserve);
5037 } else if (unlikely(chg > add)) {
5039 * pages in this range were added to the reserve
5040 * map between region_chg and region_add. This
5041 * indicates a race with alloc_huge_page. Adjust
5042 * the subpool and reserve counts modified above
5043 * based on the difference.
5047 hugetlb_cgroup_uncharge_cgroup_rsvd(
5049 (chg - add) * pages_per_huge_page(h), h_cg);
5051 rsv_adjust = hugepage_subpool_put_pages(spool,
5053 hugetlb_acct_memory(h, -rsv_adjust);
5058 /* put back original number of pages, chg */
5059 (void)hugepage_subpool_put_pages(spool, chg);
5060 out_uncharge_cgroup:
5061 hugetlb_cgroup_uncharge_cgroup_rsvd(hstate_index(h),
5062 chg * pages_per_huge_page(h), h_cg);
5064 if (!vma || vma->vm_flags & VM_MAYSHARE)
5065 /* Only call region_abort if the region_chg succeeded but the
5066 * region_add failed or didn't run.
5068 if (chg >= 0 && add < 0)
5069 region_abort(resv_map, from, to, regions_needed);
5070 if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
5071 kref_put(&resv_map->refs, resv_map_release);
5075 long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
5078 struct hstate *h = hstate_inode(inode);
5079 struct resv_map *resv_map = inode_resv_map(inode);
5081 struct hugepage_subpool *spool = subpool_inode(inode);
5085 * Since this routine can be called in the evict inode path for all
5086 * hugetlbfs inodes, resv_map could be NULL.
5089 chg = region_del(resv_map, start, end);
5091 * region_del() can fail in the rare case where a region
5092 * must be split and another region descriptor can not be
5093 * allocated. If end == LONG_MAX, it will not fail.
5099 spin_lock(&inode->i_lock);
5100 inode->i_blocks -= (blocks_per_huge_page(h) * freed);
5101 spin_unlock(&inode->i_lock);
5104 * If the subpool has a minimum size, the number of global
5105 * reservations to be released may be adjusted.
5107 gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
5108 hugetlb_acct_memory(h, -gbl_reserve);
5113 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
5114 static unsigned long page_table_shareable(struct vm_area_struct *svma,
5115 struct vm_area_struct *vma,
5116 unsigned long addr, pgoff_t idx)
5118 unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
5120 unsigned long sbase = saddr & PUD_MASK;
5121 unsigned long s_end = sbase + PUD_SIZE;
5123 /* Allow segments to share if only one is marked locked */
5124 unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
5125 unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
5128 * match the virtual addresses, permission and the alignment of the
5131 if (pmd_index(addr) != pmd_index(saddr) ||
5132 vm_flags != svm_flags ||
5133 sbase < svma->vm_start || svma->vm_end < s_end)
5139 static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr)
5141 unsigned long base = addr & PUD_MASK;
5142 unsigned long end = base + PUD_SIZE;
5145 * check on proper vm_flags and page table alignment
5147 if (vma->vm_flags & VM_MAYSHARE && range_in_vma(vma, base, end))
5153 * Determine if start,end range within vma could be mapped by shared pmd.
5154 * If yes, adjust start and end to cover range associated with possible
5155 * shared pmd mappings.
5157 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
5158 unsigned long *start, unsigned long *end)
5160 unsigned long check_addr;
5162 if (!(vma->vm_flags & VM_MAYSHARE))
5165 for (check_addr = *start; check_addr < *end; check_addr += PUD_SIZE) {
5166 unsigned long a_start = check_addr & PUD_MASK;
5167 unsigned long a_end = a_start + PUD_SIZE;
5170 * If sharing is possible, adjust start/end if necessary.
5172 if (range_in_vma(vma, a_start, a_end)) {
5173 if (a_start < *start)
5182 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
5183 * and returns the corresponding pte. While this is not necessary for the
5184 * !shared pmd case because we can allocate the pmd later as well, it makes the
5185 * code much cleaner.
5187 * This routine must be called with i_mmap_rwsem held in at least read mode.
5188 * For hugetlbfs, this prevents removal of any page table entries associated
5189 * with the address space. This is important as we are setting up sharing
5190 * based on existing page table entries (mappings).
5192 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
5194 struct vm_area_struct *vma = find_vma(mm, addr);
5195 struct address_space *mapping = vma->vm_file->f_mapping;
5196 pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
5198 struct vm_area_struct *svma;
5199 unsigned long saddr;
5204 if (!vma_shareable(vma, addr))
5205 return (pte_t *)pmd_alloc(mm, pud, addr);
5207 vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
5211 saddr = page_table_shareable(svma, vma, addr, idx);
5213 spte = huge_pte_offset(svma->vm_mm, saddr,
5214 vma_mmu_pagesize(svma));
5216 get_page(virt_to_page(spte));
5225 ptl = huge_pte_lock(hstate_vma(vma), mm, spte);
5226 if (pud_none(*pud)) {
5227 pud_populate(mm, pud,
5228 (pmd_t *)((unsigned long)spte & PAGE_MASK));
5231 put_page(virt_to_page(spte));
5235 pte = (pte_t *)pmd_alloc(mm, pud, addr);
5240 * unmap huge page backed by shared pte.
5242 * Hugetlb pte page is ref counted at the time of mapping. If pte is shared
5243 * indicated by page_count > 1, unmap is achieved by clearing pud and
5244 * decrementing the ref count. If count == 1, the pte page is not shared.
5246 * Called with page table lock held and i_mmap_rwsem held in write mode.
5248 * returns: 1 successfully unmapped a shared pte page
5249 * 0 the underlying pte page is not shared, or it is the last user
5251 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
5253 pgd_t *pgd = pgd_offset(mm, *addr);
5254 p4d_t *p4d = p4d_offset(pgd, *addr);
5255 pud_t *pud = pud_offset(p4d, *addr);
5257 BUG_ON(page_count(virt_to_page(ptep)) == 0);
5258 if (page_count(virt_to_page(ptep)) == 1)
5262 put_page(virt_to_page(ptep));
5264 *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
5267 #define want_pmd_share() (1)
5268 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
5269 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
5274 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
5279 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
5280 unsigned long *start, unsigned long *end)
5283 #define want_pmd_share() (0)
5284 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
5286 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
5287 pte_t *huge_pte_alloc(struct mm_struct *mm,
5288 unsigned long addr, unsigned long sz)
5295 pgd = pgd_offset(mm, addr);
5296 p4d = p4d_alloc(mm, pgd, addr);
5299 pud = pud_alloc(mm, p4d, addr);
5301 if (sz == PUD_SIZE) {
5304 BUG_ON(sz != PMD_SIZE);
5305 if (want_pmd_share() && pud_none(*pud))
5306 pte = huge_pmd_share(mm, addr, pud);
5308 pte = (pte_t *)pmd_alloc(mm, pud, addr);
5311 BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte));
5317 * huge_pte_offset() - Walk the page table to resolve the hugepage
5318 * entry at address @addr
5320 * Return: Pointer to page table or swap entry (PUD or PMD) for
5321 * address @addr, or NULL if a p*d_none() entry is encountered and the
5322 * size @sz doesn't match the hugepage size at this level of the page
5325 pte_t *huge_pte_offset(struct mm_struct *mm,
5326 unsigned long addr, unsigned long sz)
5333 pgd = pgd_offset(mm, addr);
5334 if (!pgd_present(*pgd))
5336 p4d = p4d_offset(pgd, addr);
5337 if (!p4d_present(*p4d))
5340 pud = pud_offset(p4d, addr);
5341 if (sz != PUD_SIZE && pud_none(*pud))
5343 /* hugepage or swap? */
5344 if (pud_huge(*pud) || !pud_present(*pud))
5345 return (pte_t *)pud;
5347 pmd = pmd_offset(pud, addr);
5348 if (sz != PMD_SIZE && pmd_none(*pmd))
5350 /* hugepage or swap? */
5351 if (pmd_huge(*pmd) || !pmd_present(*pmd))
5352 return (pte_t *)pmd;
5357 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
5360 * These functions are overwritable if your architecture needs its own
5363 struct page * __weak
5364 follow_huge_addr(struct mm_struct *mm, unsigned long address,
5367 return ERR_PTR(-EINVAL);
5370 struct page * __weak
5371 follow_huge_pd(struct vm_area_struct *vma,
5372 unsigned long address, hugepd_t hpd, int flags, int pdshift)
5374 WARN(1, "hugepd follow called with no support for hugepage directory format\n");
5378 struct page * __weak
5379 follow_huge_pmd(struct mm_struct *mm, unsigned long address,
5380 pmd_t *pmd, int flags)
5382 struct page *page = NULL;
5386 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
5387 if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
5388 (FOLL_PIN | FOLL_GET)))
5392 ptl = pmd_lockptr(mm, pmd);
5395 * make sure that the address range covered by this pmd is not
5396 * unmapped from other threads.
5398 if (!pmd_huge(*pmd))
5400 pte = huge_ptep_get((pte_t *)pmd);
5401 if (pte_present(pte)) {
5402 page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
5404 * try_grab_page() should always succeed here, because: a) we
5405 * hold the pmd (ptl) lock, and b) we've just checked that the
5406 * huge pmd (head) page is present in the page tables. The ptl
5407 * prevents the head page and tail pages from being rearranged
5408 * in any way. So this page must be available at this point,
5409 * unless the page refcount overflowed:
5411 if (WARN_ON_ONCE(!try_grab_page(page, flags))) {
5416 if (is_hugetlb_entry_migration(pte)) {
5418 __migration_entry_wait(mm, (pte_t *)pmd, ptl);
5422 * hwpoisoned entry is treated as no_page_table in
5423 * follow_page_mask().
5431 struct page * __weak
5432 follow_huge_pud(struct mm_struct *mm, unsigned long address,
5433 pud_t *pud, int flags)
5435 if (flags & (FOLL_GET | FOLL_PIN))
5438 return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
5441 struct page * __weak
5442 follow_huge_pgd(struct mm_struct *mm, unsigned long address, pgd_t *pgd, int flags)
5444 if (flags & (FOLL_GET | FOLL_PIN))
5447 return pte_page(*(pte_t *)pgd) + ((address & ~PGDIR_MASK) >> PAGE_SHIFT);
5450 bool isolate_huge_page(struct page *page, struct list_head *list)
5454 VM_BUG_ON_PAGE(!PageHead(page), page);
5455 spin_lock(&hugetlb_lock);
5456 if (!page_huge_active(page) || !get_page_unless_zero(page)) {
5460 clear_page_huge_active(page);
5461 list_move_tail(&page->lru, list);
5463 spin_unlock(&hugetlb_lock);
5467 void putback_active_hugepage(struct page *page)
5469 VM_BUG_ON_PAGE(!PageHead(page), page);
5470 spin_lock(&hugetlb_lock);
5471 set_page_huge_active(page);
5472 list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
5473 spin_unlock(&hugetlb_lock);
5477 void move_hugetlb_state(struct page *oldpage, struct page *newpage, int reason)
5479 struct hstate *h = page_hstate(oldpage);
5481 hugetlb_cgroup_migrate(oldpage, newpage);
5482 set_page_owner_migrate_reason(newpage, reason);
5485 * transfer temporary state of the new huge page. This is
5486 * reverse to other transitions because the newpage is going to
5487 * be final while the old one will be freed so it takes over
5488 * the temporary status.
5490 * Also note that we have to transfer the per-node surplus state
5491 * here as well otherwise the global surplus count will not match
5494 if (PageHugeTemporary(newpage)) {
5495 int old_nid = page_to_nid(oldpage);
5496 int new_nid = page_to_nid(newpage);
5498 SetPageHugeTemporary(oldpage);
5499 ClearPageHugeTemporary(newpage);
5501 spin_lock(&hugetlb_lock);
5502 if (h->surplus_huge_pages_node[old_nid]) {
5503 h->surplus_huge_pages_node[old_nid]--;
5504 h->surplus_huge_pages_node[new_nid]++;
5506 spin_unlock(&hugetlb_lock);