mm,hugetlb: split prep_new_huge_page functionality
[linux-2.6-microblaze.git] / mm / hugetlb.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Generic hugetlb support.
4  * (C) Nadia Yvette Chambers, April 2004
5  */
6 #include <linux/list.h>
7 #include <linux/init.h>
8 #include <linux/mm.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/compiler.h>
17 #include <linux/cpuset.h>
18 #include <linux/mutex.h>
19 #include <linux/memblock.h>
20 #include <linux/sysfs.h>
21 #include <linux/slab.h>
22 #include <linux/sched/mm.h>
23 #include <linux/mmdebug.h>
24 #include <linux/sched/signal.h>
25 #include <linux/rmap.h>
26 #include <linux/string_helpers.h>
27 #include <linux/swap.h>
28 #include <linux/swapops.h>
29 #include <linux/jhash.h>
30 #include <linux/numa.h>
31 #include <linux/llist.h>
32 #include <linux/cma.h>
33
34 #include <asm/page.h>
35 #include <asm/pgalloc.h>
36 #include <asm/tlb.h>
37
38 #include <linux/io.h>
39 #include <linux/hugetlb.h>
40 #include <linux/hugetlb_cgroup.h>
41 #include <linux/node.h>
42 #include <linux/userfaultfd_k.h>
43 #include <linux/page_owner.h>
44 #include "internal.h"
45
46 int hugetlb_max_hstate __read_mostly;
47 unsigned int default_hstate_idx;
48 struct hstate hstates[HUGE_MAX_HSTATE];
49
50 #ifdef CONFIG_CMA
51 static struct cma *hugetlb_cma[MAX_NUMNODES];
52 #endif
53 static unsigned long hugetlb_cma_size __initdata;
54
55 /*
56  * Minimum page order among possible hugepage sizes, set to a proper value
57  * at boot time.
58  */
59 static unsigned int minimum_order __read_mostly = UINT_MAX;
60
61 __initdata LIST_HEAD(huge_boot_pages);
62
63 /* for command line parsing */
64 static struct hstate * __initdata parsed_hstate;
65 static unsigned long __initdata default_hstate_max_huge_pages;
66 static bool __initdata parsed_valid_hugepagesz = true;
67 static bool __initdata parsed_default_hugepagesz;
68
69 /*
70  * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
71  * free_huge_pages, and surplus_huge_pages.
72  */
73 DEFINE_SPINLOCK(hugetlb_lock);
74
75 /*
76  * Serializes faults on the same logical page.  This is used to
77  * prevent spurious OOMs when the hugepage pool is fully utilized.
78  */
79 static int num_fault_mutexes;
80 struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
81
82 /* Forward declaration */
83 static int hugetlb_acct_memory(struct hstate *h, long delta);
84
85 static inline bool subpool_is_free(struct hugepage_subpool *spool)
86 {
87         if (spool->count)
88                 return false;
89         if (spool->max_hpages != -1)
90                 return spool->used_hpages == 0;
91         if (spool->min_hpages != -1)
92                 return spool->rsv_hpages == spool->min_hpages;
93
94         return true;
95 }
96
97 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool,
98                                                 unsigned long irq_flags)
99 {
100         spin_unlock_irqrestore(&spool->lock, irq_flags);
101
102         /* If no pages are used, and no other handles to the subpool
103          * remain, give up any reservations based on minimum size and
104          * free the subpool */
105         if (subpool_is_free(spool)) {
106                 if (spool->min_hpages != -1)
107                         hugetlb_acct_memory(spool->hstate,
108                                                 -spool->min_hpages);
109                 kfree(spool);
110         }
111 }
112
113 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
114                                                 long min_hpages)
115 {
116         struct hugepage_subpool *spool;
117
118         spool = kzalloc(sizeof(*spool), GFP_KERNEL);
119         if (!spool)
120                 return NULL;
121
122         spin_lock_init(&spool->lock);
123         spool->count = 1;
124         spool->max_hpages = max_hpages;
125         spool->hstate = h;
126         spool->min_hpages = min_hpages;
127
128         if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
129                 kfree(spool);
130                 return NULL;
131         }
132         spool->rsv_hpages = min_hpages;
133
134         return spool;
135 }
136
137 void hugepage_put_subpool(struct hugepage_subpool *spool)
138 {
139         unsigned long flags;
140
141         spin_lock_irqsave(&spool->lock, flags);
142         BUG_ON(!spool->count);
143         spool->count--;
144         unlock_or_release_subpool(spool, flags);
145 }
146
147 /*
148  * Subpool accounting for allocating and reserving pages.
149  * Return -ENOMEM if there are not enough resources to satisfy the
150  * request.  Otherwise, return the number of pages by which the
151  * global pools must be adjusted (upward).  The returned value may
152  * only be different than the passed value (delta) in the case where
153  * a subpool minimum size must be maintained.
154  */
155 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
156                                       long delta)
157 {
158         long ret = delta;
159
160         if (!spool)
161                 return ret;
162
163         spin_lock_irq(&spool->lock);
164
165         if (spool->max_hpages != -1) {          /* maximum size accounting */
166                 if ((spool->used_hpages + delta) <= spool->max_hpages)
167                         spool->used_hpages += delta;
168                 else {
169                         ret = -ENOMEM;
170                         goto unlock_ret;
171                 }
172         }
173
174         /* minimum size accounting */
175         if (spool->min_hpages != -1 && spool->rsv_hpages) {
176                 if (delta > spool->rsv_hpages) {
177                         /*
178                          * Asking for more reserves than those already taken on
179                          * behalf of subpool.  Return difference.
180                          */
181                         ret = delta - spool->rsv_hpages;
182                         spool->rsv_hpages = 0;
183                 } else {
184                         ret = 0;        /* reserves already accounted for */
185                         spool->rsv_hpages -= delta;
186                 }
187         }
188
189 unlock_ret:
190         spin_unlock_irq(&spool->lock);
191         return ret;
192 }
193
194 /*
195  * Subpool accounting for freeing and unreserving pages.
196  * Return the number of global page reservations that must be dropped.
197  * The return value may only be different than the passed value (delta)
198  * in the case where a subpool minimum size must be maintained.
199  */
200 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
201                                        long delta)
202 {
203         long ret = delta;
204         unsigned long flags;
205
206         if (!spool)
207                 return delta;
208
209         spin_lock_irqsave(&spool->lock, flags);
210
211         if (spool->max_hpages != -1)            /* maximum size accounting */
212                 spool->used_hpages -= delta;
213
214          /* minimum size accounting */
215         if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
216                 if (spool->rsv_hpages + delta <= spool->min_hpages)
217                         ret = 0;
218                 else
219                         ret = spool->rsv_hpages + delta - spool->min_hpages;
220
221                 spool->rsv_hpages += delta;
222                 if (spool->rsv_hpages > spool->min_hpages)
223                         spool->rsv_hpages = spool->min_hpages;
224         }
225
226         /*
227          * If hugetlbfs_put_super couldn't free spool due to an outstanding
228          * quota reference, free it now.
229          */
230         unlock_or_release_subpool(spool, flags);
231
232         return ret;
233 }
234
235 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
236 {
237         return HUGETLBFS_SB(inode->i_sb)->spool;
238 }
239
240 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
241 {
242         return subpool_inode(file_inode(vma->vm_file));
243 }
244
245 /* Helper that removes a struct file_region from the resv_map cache and returns
246  * it for use.
247  */
248 static struct file_region *
249 get_file_region_entry_from_cache(struct resv_map *resv, long from, long to)
250 {
251         struct file_region *nrg = NULL;
252
253         VM_BUG_ON(resv->region_cache_count <= 0);
254
255         resv->region_cache_count--;
256         nrg = list_first_entry(&resv->region_cache, struct file_region, link);
257         list_del(&nrg->link);
258
259         nrg->from = from;
260         nrg->to = to;
261
262         return nrg;
263 }
264
265 static void copy_hugetlb_cgroup_uncharge_info(struct file_region *nrg,
266                                               struct file_region *rg)
267 {
268 #ifdef CONFIG_CGROUP_HUGETLB
269         nrg->reservation_counter = rg->reservation_counter;
270         nrg->css = rg->css;
271         if (rg->css)
272                 css_get(rg->css);
273 #endif
274 }
275
276 /* Helper that records hugetlb_cgroup uncharge info. */
277 static void record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup *h_cg,
278                                                 struct hstate *h,
279                                                 struct resv_map *resv,
280                                                 struct file_region *nrg)
281 {
282 #ifdef CONFIG_CGROUP_HUGETLB
283         if (h_cg) {
284                 nrg->reservation_counter =
285                         &h_cg->rsvd_hugepage[hstate_index(h)];
286                 nrg->css = &h_cg->css;
287                 /*
288                  * The caller will hold exactly one h_cg->css reference for the
289                  * whole contiguous reservation region. But this area might be
290                  * scattered when there are already some file_regions reside in
291                  * it. As a result, many file_regions may share only one css
292                  * reference. In order to ensure that one file_region must hold
293                  * exactly one h_cg->css reference, we should do css_get for
294                  * each file_region and leave the reference held by caller
295                  * untouched.
296                  */
297                 css_get(&h_cg->css);
298                 if (!resv->pages_per_hpage)
299                         resv->pages_per_hpage = pages_per_huge_page(h);
300                 /* pages_per_hpage should be the same for all entries in
301                  * a resv_map.
302                  */
303                 VM_BUG_ON(resv->pages_per_hpage != pages_per_huge_page(h));
304         } else {
305                 nrg->reservation_counter = NULL;
306                 nrg->css = NULL;
307         }
308 #endif
309 }
310
311 static void put_uncharge_info(struct file_region *rg)
312 {
313 #ifdef CONFIG_CGROUP_HUGETLB
314         if (rg->css)
315                 css_put(rg->css);
316 #endif
317 }
318
319 static bool has_same_uncharge_info(struct file_region *rg,
320                                    struct file_region *org)
321 {
322 #ifdef CONFIG_CGROUP_HUGETLB
323         return rg && org &&
324                rg->reservation_counter == org->reservation_counter &&
325                rg->css == org->css;
326
327 #else
328         return true;
329 #endif
330 }
331
332 static void coalesce_file_region(struct resv_map *resv, struct file_region *rg)
333 {
334         struct file_region *nrg = NULL, *prg = NULL;
335
336         prg = list_prev_entry(rg, link);
337         if (&prg->link != &resv->regions && prg->to == rg->from &&
338             has_same_uncharge_info(prg, rg)) {
339                 prg->to = rg->to;
340
341                 list_del(&rg->link);
342                 put_uncharge_info(rg);
343                 kfree(rg);
344
345                 rg = prg;
346         }
347
348         nrg = list_next_entry(rg, link);
349         if (&nrg->link != &resv->regions && nrg->from == rg->to &&
350             has_same_uncharge_info(nrg, rg)) {
351                 nrg->from = rg->from;
352
353                 list_del(&rg->link);
354                 put_uncharge_info(rg);
355                 kfree(rg);
356         }
357 }
358
359 static inline long
360 hugetlb_resv_map_add(struct resv_map *map, struct file_region *rg, long from,
361                      long to, struct hstate *h, struct hugetlb_cgroup *cg,
362                      long *regions_needed)
363 {
364         struct file_region *nrg;
365
366         if (!regions_needed) {
367                 nrg = get_file_region_entry_from_cache(map, from, to);
368                 record_hugetlb_cgroup_uncharge_info(cg, h, map, nrg);
369                 list_add(&nrg->link, rg->link.prev);
370                 coalesce_file_region(map, nrg);
371         } else
372                 *regions_needed += 1;
373
374         return to - from;
375 }
376
377 /*
378  * Must be called with resv->lock held.
379  *
380  * Calling this with regions_needed != NULL will count the number of pages
381  * to be added but will not modify the linked list. And regions_needed will
382  * indicate the number of file_regions needed in the cache to carry out to add
383  * the regions for this range.
384  */
385 static long add_reservation_in_range(struct resv_map *resv, long f, long t,
386                                      struct hugetlb_cgroup *h_cg,
387                                      struct hstate *h, long *regions_needed)
388 {
389         long add = 0;
390         struct list_head *head = &resv->regions;
391         long last_accounted_offset = f;
392         struct file_region *rg = NULL, *trg = NULL;
393
394         if (regions_needed)
395                 *regions_needed = 0;
396
397         /* In this loop, we essentially handle an entry for the range
398          * [last_accounted_offset, rg->from), at every iteration, with some
399          * bounds checking.
400          */
401         list_for_each_entry_safe(rg, trg, head, link) {
402                 /* Skip irrelevant regions that start before our range. */
403                 if (rg->from < f) {
404                         /* If this region ends after the last accounted offset,
405                          * then we need to update last_accounted_offset.
406                          */
407                         if (rg->to > last_accounted_offset)
408                                 last_accounted_offset = rg->to;
409                         continue;
410                 }
411
412                 /* When we find a region that starts beyond our range, we've
413                  * finished.
414                  */
415                 if (rg->from >= t)
416                         break;
417
418                 /* Add an entry for last_accounted_offset -> rg->from, and
419                  * update last_accounted_offset.
420                  */
421                 if (rg->from > last_accounted_offset)
422                         add += hugetlb_resv_map_add(resv, rg,
423                                                     last_accounted_offset,
424                                                     rg->from, h, h_cg,
425                                                     regions_needed);
426
427                 last_accounted_offset = rg->to;
428         }
429
430         /* Handle the case where our range extends beyond
431          * last_accounted_offset.
432          */
433         if (last_accounted_offset < t)
434                 add += hugetlb_resv_map_add(resv, rg, last_accounted_offset,
435                                             t, h, h_cg, regions_needed);
436
437         VM_BUG_ON(add < 0);
438         return add;
439 }
440
441 /* Must be called with resv->lock acquired. Will drop lock to allocate entries.
442  */
443 static int allocate_file_region_entries(struct resv_map *resv,
444                                         int regions_needed)
445         __must_hold(&resv->lock)
446 {
447         struct list_head allocated_regions;
448         int to_allocate = 0, i = 0;
449         struct file_region *trg = NULL, *rg = NULL;
450
451         VM_BUG_ON(regions_needed < 0);
452
453         INIT_LIST_HEAD(&allocated_regions);
454
455         /*
456          * Check for sufficient descriptors in the cache to accommodate
457          * the number of in progress add operations plus regions_needed.
458          *
459          * This is a while loop because when we drop the lock, some other call
460          * to region_add or region_del may have consumed some region_entries,
461          * so we keep looping here until we finally have enough entries for
462          * (adds_in_progress + regions_needed).
463          */
464         while (resv->region_cache_count <
465                (resv->adds_in_progress + regions_needed)) {
466                 to_allocate = resv->adds_in_progress + regions_needed -
467                               resv->region_cache_count;
468
469                 /* At this point, we should have enough entries in the cache
470                  * for all the existings adds_in_progress. We should only be
471                  * needing to allocate for regions_needed.
472                  */
473                 VM_BUG_ON(resv->region_cache_count < resv->adds_in_progress);
474
475                 spin_unlock(&resv->lock);
476                 for (i = 0; i < to_allocate; i++) {
477                         trg = kmalloc(sizeof(*trg), GFP_KERNEL);
478                         if (!trg)
479                                 goto out_of_memory;
480                         list_add(&trg->link, &allocated_regions);
481                 }
482
483                 spin_lock(&resv->lock);
484
485                 list_splice(&allocated_regions, &resv->region_cache);
486                 resv->region_cache_count += to_allocate;
487         }
488
489         return 0;
490
491 out_of_memory:
492         list_for_each_entry_safe(rg, trg, &allocated_regions, link) {
493                 list_del(&rg->link);
494                 kfree(rg);
495         }
496         return -ENOMEM;
497 }
498
499 /*
500  * Add the huge page range represented by [f, t) to the reserve
501  * map.  Regions will be taken from the cache to fill in this range.
502  * Sufficient regions should exist in the cache due to the previous
503  * call to region_chg with the same range, but in some cases the cache will not
504  * have sufficient entries due to races with other code doing region_add or
505  * region_del.  The extra needed entries will be allocated.
506  *
507  * regions_needed is the out value provided by a previous call to region_chg.
508  *
509  * Return the number of new huge pages added to the map.  This number is greater
510  * than or equal to zero.  If file_region entries needed to be allocated for
511  * this operation and we were not able to allocate, it returns -ENOMEM.
512  * region_add of regions of length 1 never allocate file_regions and cannot
513  * fail; region_chg will always allocate at least 1 entry and a region_add for
514  * 1 page will only require at most 1 entry.
515  */
516 static long region_add(struct resv_map *resv, long f, long t,
517                        long in_regions_needed, struct hstate *h,
518                        struct hugetlb_cgroup *h_cg)
519 {
520         long add = 0, actual_regions_needed = 0;
521
522         spin_lock(&resv->lock);
523 retry:
524
525         /* Count how many regions are actually needed to execute this add. */
526         add_reservation_in_range(resv, f, t, NULL, NULL,
527                                  &actual_regions_needed);
528
529         /*
530          * Check for sufficient descriptors in the cache to accommodate
531          * this add operation. Note that actual_regions_needed may be greater
532          * than in_regions_needed, as the resv_map may have been modified since
533          * the region_chg call. In this case, we need to make sure that we
534          * allocate extra entries, such that we have enough for all the
535          * existing adds_in_progress, plus the excess needed for this
536          * operation.
537          */
538         if (actual_regions_needed > in_regions_needed &&
539             resv->region_cache_count <
540                     resv->adds_in_progress +
541                             (actual_regions_needed - in_regions_needed)) {
542                 /* region_add operation of range 1 should never need to
543                  * allocate file_region entries.
544                  */
545                 VM_BUG_ON(t - f <= 1);
546
547                 if (allocate_file_region_entries(
548                             resv, actual_regions_needed - in_regions_needed)) {
549                         return -ENOMEM;
550                 }
551
552                 goto retry;
553         }
554
555         add = add_reservation_in_range(resv, f, t, h_cg, h, NULL);
556
557         resv->adds_in_progress -= in_regions_needed;
558
559         spin_unlock(&resv->lock);
560         return add;
561 }
562
563 /*
564  * Examine the existing reserve map and determine how many
565  * huge pages in the specified range [f, t) are NOT currently
566  * represented.  This routine is called before a subsequent
567  * call to region_add that will actually modify the reserve
568  * map to add the specified range [f, t).  region_chg does
569  * not change the number of huge pages represented by the
570  * map.  A number of new file_region structures is added to the cache as a
571  * placeholder, for the subsequent region_add call to use. At least 1
572  * file_region structure is added.
573  *
574  * out_regions_needed is the number of regions added to the
575  * resv->adds_in_progress.  This value needs to be provided to a follow up call
576  * to region_add or region_abort for proper accounting.
577  *
578  * Returns the number of huge pages that need to be added to the existing
579  * reservation map for the range [f, t).  This number is greater or equal to
580  * zero.  -ENOMEM is returned if a new file_region structure or cache entry
581  * is needed and can not be allocated.
582  */
583 static long region_chg(struct resv_map *resv, long f, long t,
584                        long *out_regions_needed)
585 {
586         long chg = 0;
587
588         spin_lock(&resv->lock);
589
590         /* Count how many hugepages in this range are NOT represented. */
591         chg = add_reservation_in_range(resv, f, t, NULL, NULL,
592                                        out_regions_needed);
593
594         if (*out_regions_needed == 0)
595                 *out_regions_needed = 1;
596
597         if (allocate_file_region_entries(resv, *out_regions_needed))
598                 return -ENOMEM;
599
600         resv->adds_in_progress += *out_regions_needed;
601
602         spin_unlock(&resv->lock);
603         return chg;
604 }
605
606 /*
607  * Abort the in progress add operation.  The adds_in_progress field
608  * of the resv_map keeps track of the operations in progress between
609  * calls to region_chg and region_add.  Operations are sometimes
610  * aborted after the call to region_chg.  In such cases, region_abort
611  * is called to decrement the adds_in_progress counter. regions_needed
612  * is the value returned by the region_chg call, it is used to decrement
613  * the adds_in_progress counter.
614  *
615  * NOTE: The range arguments [f, t) are not needed or used in this
616  * routine.  They are kept to make reading the calling code easier as
617  * arguments will match the associated region_chg call.
618  */
619 static void region_abort(struct resv_map *resv, long f, long t,
620                          long regions_needed)
621 {
622         spin_lock(&resv->lock);
623         VM_BUG_ON(!resv->region_cache_count);
624         resv->adds_in_progress -= regions_needed;
625         spin_unlock(&resv->lock);
626 }
627
628 /*
629  * Delete the specified range [f, t) from the reserve map.  If the
630  * t parameter is LONG_MAX, this indicates that ALL regions after f
631  * should be deleted.  Locate the regions which intersect [f, t)
632  * and either trim, delete or split the existing regions.
633  *
634  * Returns the number of huge pages deleted from the reserve map.
635  * In the normal case, the return value is zero or more.  In the
636  * case where a region must be split, a new region descriptor must
637  * be allocated.  If the allocation fails, -ENOMEM will be returned.
638  * NOTE: If the parameter t == LONG_MAX, then we will never split
639  * a region and possibly return -ENOMEM.  Callers specifying
640  * t == LONG_MAX do not need to check for -ENOMEM error.
641  */
642 static long region_del(struct resv_map *resv, long f, long t)
643 {
644         struct list_head *head = &resv->regions;
645         struct file_region *rg, *trg;
646         struct file_region *nrg = NULL;
647         long del = 0;
648
649 retry:
650         spin_lock(&resv->lock);
651         list_for_each_entry_safe(rg, trg, head, link) {
652                 /*
653                  * Skip regions before the range to be deleted.  file_region
654                  * ranges are normally of the form [from, to).  However, there
655                  * may be a "placeholder" entry in the map which is of the form
656                  * (from, to) with from == to.  Check for placeholder entries
657                  * at the beginning of the range to be deleted.
658                  */
659                 if (rg->to <= f && (rg->to != rg->from || rg->to != f))
660                         continue;
661
662                 if (rg->from >= t)
663                         break;
664
665                 if (f > rg->from && t < rg->to) { /* Must split region */
666                         /*
667                          * Check for an entry in the cache before dropping
668                          * lock and attempting allocation.
669                          */
670                         if (!nrg &&
671                             resv->region_cache_count > resv->adds_in_progress) {
672                                 nrg = list_first_entry(&resv->region_cache,
673                                                         struct file_region,
674                                                         link);
675                                 list_del(&nrg->link);
676                                 resv->region_cache_count--;
677                         }
678
679                         if (!nrg) {
680                                 spin_unlock(&resv->lock);
681                                 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
682                                 if (!nrg)
683                                         return -ENOMEM;
684                                 goto retry;
685                         }
686
687                         del += t - f;
688                         hugetlb_cgroup_uncharge_file_region(
689                                 resv, rg, t - f, false);
690
691                         /* New entry for end of split region */
692                         nrg->from = t;
693                         nrg->to = rg->to;
694
695                         copy_hugetlb_cgroup_uncharge_info(nrg, rg);
696
697                         INIT_LIST_HEAD(&nrg->link);
698
699                         /* Original entry is trimmed */
700                         rg->to = f;
701
702                         list_add(&nrg->link, &rg->link);
703                         nrg = NULL;
704                         break;
705                 }
706
707                 if (f <= rg->from && t >= rg->to) { /* Remove entire region */
708                         del += rg->to - rg->from;
709                         hugetlb_cgroup_uncharge_file_region(resv, rg,
710                                                             rg->to - rg->from, true);
711                         list_del(&rg->link);
712                         kfree(rg);
713                         continue;
714                 }
715
716                 if (f <= rg->from) {    /* Trim beginning of region */
717                         hugetlb_cgroup_uncharge_file_region(resv, rg,
718                                                             t - rg->from, false);
719
720                         del += t - rg->from;
721                         rg->from = t;
722                 } else {                /* Trim end of region */
723                         hugetlb_cgroup_uncharge_file_region(resv, rg,
724                                                             rg->to - f, false);
725
726                         del += rg->to - f;
727                         rg->to = f;
728                 }
729         }
730
731         spin_unlock(&resv->lock);
732         kfree(nrg);
733         return del;
734 }
735
736 /*
737  * A rare out of memory error was encountered which prevented removal of
738  * the reserve map region for a page.  The huge page itself was free'ed
739  * and removed from the page cache.  This routine will adjust the subpool
740  * usage count, and the global reserve count if needed.  By incrementing
741  * these counts, the reserve map entry which could not be deleted will
742  * appear as a "reserved" entry instead of simply dangling with incorrect
743  * counts.
744  */
745 void hugetlb_fix_reserve_counts(struct inode *inode)
746 {
747         struct hugepage_subpool *spool = subpool_inode(inode);
748         long rsv_adjust;
749         bool reserved = false;
750
751         rsv_adjust = hugepage_subpool_get_pages(spool, 1);
752         if (rsv_adjust > 0) {
753                 struct hstate *h = hstate_inode(inode);
754
755                 if (!hugetlb_acct_memory(h, 1))
756                         reserved = true;
757         } else if (!rsv_adjust) {
758                 reserved = true;
759         }
760
761         if (!reserved)
762                 pr_warn("hugetlb: Huge Page Reserved count may go negative.\n");
763 }
764
765 /*
766  * Count and return the number of huge pages in the reserve map
767  * that intersect with the range [f, t).
768  */
769 static long region_count(struct resv_map *resv, long f, long t)
770 {
771         struct list_head *head = &resv->regions;
772         struct file_region *rg;
773         long chg = 0;
774
775         spin_lock(&resv->lock);
776         /* Locate each segment we overlap with, and count that overlap. */
777         list_for_each_entry(rg, head, link) {
778                 long seg_from;
779                 long seg_to;
780
781                 if (rg->to <= f)
782                         continue;
783                 if (rg->from >= t)
784                         break;
785
786                 seg_from = max(rg->from, f);
787                 seg_to = min(rg->to, t);
788
789                 chg += seg_to - seg_from;
790         }
791         spin_unlock(&resv->lock);
792
793         return chg;
794 }
795
796 /*
797  * Convert the address within this vma to the page offset within
798  * the mapping, in pagecache page units; huge pages here.
799  */
800 static pgoff_t vma_hugecache_offset(struct hstate *h,
801                         struct vm_area_struct *vma, unsigned long address)
802 {
803         return ((address - vma->vm_start) >> huge_page_shift(h)) +
804                         (vma->vm_pgoff >> huge_page_order(h));
805 }
806
807 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
808                                      unsigned long address)
809 {
810         return vma_hugecache_offset(hstate_vma(vma), vma, address);
811 }
812 EXPORT_SYMBOL_GPL(linear_hugepage_index);
813
814 /*
815  * Return the size of the pages allocated when backing a VMA. In the majority
816  * cases this will be same size as used by the page table entries.
817  */
818 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
819 {
820         if (vma->vm_ops && vma->vm_ops->pagesize)
821                 return vma->vm_ops->pagesize(vma);
822         return PAGE_SIZE;
823 }
824 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
825
826 /*
827  * Return the page size being used by the MMU to back a VMA. In the majority
828  * of cases, the page size used by the kernel matches the MMU size. On
829  * architectures where it differs, an architecture-specific 'strong'
830  * version of this symbol is required.
831  */
832 __weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
833 {
834         return vma_kernel_pagesize(vma);
835 }
836
837 /*
838  * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
839  * bits of the reservation map pointer, which are always clear due to
840  * alignment.
841  */
842 #define HPAGE_RESV_OWNER    (1UL << 0)
843 #define HPAGE_RESV_UNMAPPED (1UL << 1)
844 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
845
846 /*
847  * These helpers are used to track how many pages are reserved for
848  * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
849  * is guaranteed to have their future faults succeed.
850  *
851  * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
852  * the reserve counters are updated with the hugetlb_lock held. It is safe
853  * to reset the VMA at fork() time as it is not in use yet and there is no
854  * chance of the global counters getting corrupted as a result of the values.
855  *
856  * The private mapping reservation is represented in a subtly different
857  * manner to a shared mapping.  A shared mapping has a region map associated
858  * with the underlying file, this region map represents the backing file
859  * pages which have ever had a reservation assigned which this persists even
860  * after the page is instantiated.  A private mapping has a region map
861  * associated with the original mmap which is attached to all VMAs which
862  * reference it, this region map represents those offsets which have consumed
863  * reservation ie. where pages have been instantiated.
864  */
865 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
866 {
867         return (unsigned long)vma->vm_private_data;
868 }
869
870 static void set_vma_private_data(struct vm_area_struct *vma,
871                                                         unsigned long value)
872 {
873         vma->vm_private_data = (void *)value;
874 }
875
876 static void
877 resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map *resv_map,
878                                           struct hugetlb_cgroup *h_cg,
879                                           struct hstate *h)
880 {
881 #ifdef CONFIG_CGROUP_HUGETLB
882         if (!h_cg || !h) {
883                 resv_map->reservation_counter = NULL;
884                 resv_map->pages_per_hpage = 0;
885                 resv_map->css = NULL;
886         } else {
887                 resv_map->reservation_counter =
888                         &h_cg->rsvd_hugepage[hstate_index(h)];
889                 resv_map->pages_per_hpage = pages_per_huge_page(h);
890                 resv_map->css = &h_cg->css;
891         }
892 #endif
893 }
894
895 struct resv_map *resv_map_alloc(void)
896 {
897         struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
898         struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
899
900         if (!resv_map || !rg) {
901                 kfree(resv_map);
902                 kfree(rg);
903                 return NULL;
904         }
905
906         kref_init(&resv_map->refs);
907         spin_lock_init(&resv_map->lock);
908         INIT_LIST_HEAD(&resv_map->regions);
909
910         resv_map->adds_in_progress = 0;
911         /*
912          * Initialize these to 0. On shared mappings, 0's here indicate these
913          * fields don't do cgroup accounting. On private mappings, these will be
914          * re-initialized to the proper values, to indicate that hugetlb cgroup
915          * reservations are to be un-charged from here.
916          */
917         resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, NULL, NULL);
918
919         INIT_LIST_HEAD(&resv_map->region_cache);
920         list_add(&rg->link, &resv_map->region_cache);
921         resv_map->region_cache_count = 1;
922
923         return resv_map;
924 }
925
926 void resv_map_release(struct kref *ref)
927 {
928         struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
929         struct list_head *head = &resv_map->region_cache;
930         struct file_region *rg, *trg;
931
932         /* Clear out any active regions before we release the map. */
933         region_del(resv_map, 0, LONG_MAX);
934
935         /* ... and any entries left in the cache */
936         list_for_each_entry_safe(rg, trg, head, link) {
937                 list_del(&rg->link);
938                 kfree(rg);
939         }
940
941         VM_BUG_ON(resv_map->adds_in_progress);
942
943         kfree(resv_map);
944 }
945
946 static inline struct resv_map *inode_resv_map(struct inode *inode)
947 {
948         /*
949          * At inode evict time, i_mapping may not point to the original
950          * address space within the inode.  This original address space
951          * contains the pointer to the resv_map.  So, always use the
952          * address space embedded within the inode.
953          * The VERY common case is inode->mapping == &inode->i_data but,
954          * this may not be true for device special inodes.
955          */
956         return (struct resv_map *)(&inode->i_data)->private_data;
957 }
958
959 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
960 {
961         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
962         if (vma->vm_flags & VM_MAYSHARE) {
963                 struct address_space *mapping = vma->vm_file->f_mapping;
964                 struct inode *inode = mapping->host;
965
966                 return inode_resv_map(inode);
967
968         } else {
969                 return (struct resv_map *)(get_vma_private_data(vma) &
970                                                         ~HPAGE_RESV_MASK);
971         }
972 }
973
974 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
975 {
976         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
977         VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
978
979         set_vma_private_data(vma, (get_vma_private_data(vma) &
980                                 HPAGE_RESV_MASK) | (unsigned long)map);
981 }
982
983 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
984 {
985         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
986         VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
987
988         set_vma_private_data(vma, get_vma_private_data(vma) | flags);
989 }
990
991 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
992 {
993         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
994
995         return (get_vma_private_data(vma) & flag) != 0;
996 }
997
998 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
999 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
1000 {
1001         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1002         if (!(vma->vm_flags & VM_MAYSHARE))
1003                 vma->vm_private_data = (void *)0;
1004 }
1005
1006 /* Returns true if the VMA has associated reserve pages */
1007 static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
1008 {
1009         if (vma->vm_flags & VM_NORESERVE) {
1010                 /*
1011                  * This address is already reserved by other process(chg == 0),
1012                  * so, we should decrement reserved count. Without decrementing,
1013                  * reserve count remains after releasing inode, because this
1014                  * allocated page will go into page cache and is regarded as
1015                  * coming from reserved pool in releasing step.  Currently, we
1016                  * don't have any other solution to deal with this situation
1017                  * properly, so add work-around here.
1018                  */
1019                 if (vma->vm_flags & VM_MAYSHARE && chg == 0)
1020                         return true;
1021                 else
1022                         return false;
1023         }
1024
1025         /* Shared mappings always use reserves */
1026         if (vma->vm_flags & VM_MAYSHARE) {
1027                 /*
1028                  * We know VM_NORESERVE is not set.  Therefore, there SHOULD
1029                  * be a region map for all pages.  The only situation where
1030                  * there is no region map is if a hole was punched via
1031                  * fallocate.  In this case, there really are no reserves to
1032                  * use.  This situation is indicated if chg != 0.
1033                  */
1034                 if (chg)
1035                         return false;
1036                 else
1037                         return true;
1038         }
1039
1040         /*
1041          * Only the process that called mmap() has reserves for
1042          * private mappings.
1043          */
1044         if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1045                 /*
1046                  * Like the shared case above, a hole punch or truncate
1047                  * could have been performed on the private mapping.
1048                  * Examine the value of chg to determine if reserves
1049                  * actually exist or were previously consumed.
1050                  * Very Subtle - The value of chg comes from a previous
1051                  * call to vma_needs_reserves().  The reserve map for
1052                  * private mappings has different (opposite) semantics
1053                  * than that of shared mappings.  vma_needs_reserves()
1054                  * has already taken this difference in semantics into
1055                  * account.  Therefore, the meaning of chg is the same
1056                  * as in the shared case above.  Code could easily be
1057                  * combined, but keeping it separate draws attention to
1058                  * subtle differences.
1059                  */
1060                 if (chg)
1061                         return false;
1062                 else
1063                         return true;
1064         }
1065
1066         return false;
1067 }
1068
1069 static void enqueue_huge_page(struct hstate *h, struct page *page)
1070 {
1071         int nid = page_to_nid(page);
1072
1073         lockdep_assert_held(&hugetlb_lock);
1074         list_move(&page->lru, &h->hugepage_freelists[nid]);
1075         h->free_huge_pages++;
1076         h->free_huge_pages_node[nid]++;
1077         SetHPageFreed(page);
1078 }
1079
1080 static struct page *dequeue_huge_page_node_exact(struct hstate *h, int nid)
1081 {
1082         struct page *page;
1083         bool nocma = !!(current->flags & PF_MEMALLOC_NOCMA);
1084
1085         lockdep_assert_held(&hugetlb_lock);
1086         list_for_each_entry(page, &h->hugepage_freelists[nid], lru) {
1087                 if (nocma && is_migrate_cma_page(page))
1088                         continue;
1089
1090                 if (PageHWPoison(page))
1091                         continue;
1092
1093                 list_move(&page->lru, &h->hugepage_activelist);
1094                 set_page_refcounted(page);
1095                 ClearHPageFreed(page);
1096                 h->free_huge_pages--;
1097                 h->free_huge_pages_node[nid]--;
1098                 return page;
1099         }
1100
1101         return NULL;
1102 }
1103
1104 static struct page *dequeue_huge_page_nodemask(struct hstate *h, gfp_t gfp_mask, int nid,
1105                 nodemask_t *nmask)
1106 {
1107         unsigned int cpuset_mems_cookie;
1108         struct zonelist *zonelist;
1109         struct zone *zone;
1110         struct zoneref *z;
1111         int node = NUMA_NO_NODE;
1112
1113         zonelist = node_zonelist(nid, gfp_mask);
1114
1115 retry_cpuset:
1116         cpuset_mems_cookie = read_mems_allowed_begin();
1117         for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
1118                 struct page *page;
1119
1120                 if (!cpuset_zone_allowed(zone, gfp_mask))
1121                         continue;
1122                 /*
1123                  * no need to ask again on the same node. Pool is node rather than
1124                  * zone aware
1125                  */
1126                 if (zone_to_nid(zone) == node)
1127                         continue;
1128                 node = zone_to_nid(zone);
1129
1130                 page = dequeue_huge_page_node_exact(h, node);
1131                 if (page)
1132                         return page;
1133         }
1134         if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
1135                 goto retry_cpuset;
1136
1137         return NULL;
1138 }
1139
1140 static struct page *dequeue_huge_page_vma(struct hstate *h,
1141                                 struct vm_area_struct *vma,
1142                                 unsigned long address, int avoid_reserve,
1143                                 long chg)
1144 {
1145         struct page *page;
1146         struct mempolicy *mpol;
1147         gfp_t gfp_mask;
1148         nodemask_t *nodemask;
1149         int nid;
1150
1151         /*
1152          * A child process with MAP_PRIVATE mappings created by their parent
1153          * have no page reserves. This check ensures that reservations are
1154          * not "stolen". The child may still get SIGKILLed
1155          */
1156         if (!vma_has_reserves(vma, chg) &&
1157                         h->free_huge_pages - h->resv_huge_pages == 0)
1158                 goto err;
1159
1160         /* If reserves cannot be used, ensure enough pages are in the pool */
1161         if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
1162                 goto err;
1163
1164         gfp_mask = htlb_alloc_mask(h);
1165         nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
1166         page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
1167         if (page && !avoid_reserve && vma_has_reserves(vma, chg)) {
1168                 SetHPageRestoreReserve(page);
1169                 h->resv_huge_pages--;
1170         }
1171
1172         mpol_cond_put(mpol);
1173         return page;
1174
1175 err:
1176         return NULL;
1177 }
1178
1179 /*
1180  * common helper functions for hstate_next_node_to_{alloc|free}.
1181  * We may have allocated or freed a huge page based on a different
1182  * nodes_allowed previously, so h->next_node_to_{alloc|free} might
1183  * be outside of *nodes_allowed.  Ensure that we use an allowed
1184  * node for alloc or free.
1185  */
1186 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
1187 {
1188         nid = next_node_in(nid, *nodes_allowed);
1189         VM_BUG_ON(nid >= MAX_NUMNODES);
1190
1191         return nid;
1192 }
1193
1194 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
1195 {
1196         if (!node_isset(nid, *nodes_allowed))
1197                 nid = next_node_allowed(nid, nodes_allowed);
1198         return nid;
1199 }
1200
1201 /*
1202  * returns the previously saved node ["this node"] from which to
1203  * allocate a persistent huge page for the pool and advance the
1204  * next node from which to allocate, handling wrap at end of node
1205  * mask.
1206  */
1207 static int hstate_next_node_to_alloc(struct hstate *h,
1208                                         nodemask_t *nodes_allowed)
1209 {
1210         int nid;
1211
1212         VM_BUG_ON(!nodes_allowed);
1213
1214         nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
1215         h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
1216
1217         return nid;
1218 }
1219
1220 /*
1221  * helper for remove_pool_huge_page() - return the previously saved
1222  * node ["this node"] from which to free a huge page.  Advance the
1223  * next node id whether or not we find a free huge page to free so
1224  * that the next attempt to free addresses the next node.
1225  */
1226 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1227 {
1228         int nid;
1229
1230         VM_BUG_ON(!nodes_allowed);
1231
1232         nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1233         h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1234
1235         return nid;
1236 }
1237
1238 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask)           \
1239         for (nr_nodes = nodes_weight(*mask);                            \
1240                 nr_nodes > 0 &&                                         \
1241                 ((node = hstate_next_node_to_alloc(hs, mask)) || 1);    \
1242                 nr_nodes--)
1243
1244 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask)            \
1245         for (nr_nodes = nodes_weight(*mask);                            \
1246                 nr_nodes > 0 &&                                         \
1247                 ((node = hstate_next_node_to_free(hs, mask)) || 1);     \
1248                 nr_nodes--)
1249
1250 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
1251 static void destroy_compound_gigantic_page(struct page *page,
1252                                         unsigned int order)
1253 {
1254         int i;
1255         int nr_pages = 1 << order;
1256         struct page *p = page + 1;
1257
1258         atomic_set(compound_mapcount_ptr(page), 0);
1259         atomic_set(compound_pincount_ptr(page), 0);
1260
1261         for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1262                 clear_compound_head(p);
1263                 set_page_refcounted(p);
1264         }
1265
1266         set_compound_order(page, 0);
1267         page[1].compound_nr = 0;
1268         __ClearPageHead(page);
1269 }
1270
1271 static void free_gigantic_page(struct page *page, unsigned int order)
1272 {
1273         /*
1274          * If the page isn't allocated using the cma allocator,
1275          * cma_release() returns false.
1276          */
1277 #ifdef CONFIG_CMA
1278         if (cma_release(hugetlb_cma[page_to_nid(page)], page, 1 << order))
1279                 return;
1280 #endif
1281
1282         free_contig_range(page_to_pfn(page), 1 << order);
1283 }
1284
1285 #ifdef CONFIG_CONTIG_ALLOC
1286 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1287                 int nid, nodemask_t *nodemask)
1288 {
1289         unsigned long nr_pages = pages_per_huge_page(h);
1290         if (nid == NUMA_NO_NODE)
1291                 nid = numa_mem_id();
1292
1293 #ifdef CONFIG_CMA
1294         {
1295                 struct page *page;
1296                 int node;
1297
1298                 if (hugetlb_cma[nid]) {
1299                         page = cma_alloc(hugetlb_cma[nid], nr_pages,
1300                                         huge_page_order(h), true);
1301                         if (page)
1302                                 return page;
1303                 }
1304
1305                 if (!(gfp_mask & __GFP_THISNODE)) {
1306                         for_each_node_mask(node, *nodemask) {
1307                                 if (node == nid || !hugetlb_cma[node])
1308                                         continue;
1309
1310                                 page = cma_alloc(hugetlb_cma[node], nr_pages,
1311                                                 huge_page_order(h), true);
1312                                 if (page)
1313                                         return page;
1314                         }
1315                 }
1316         }
1317 #endif
1318
1319         return alloc_contig_pages(nr_pages, gfp_mask, nid, nodemask);
1320 }
1321
1322 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid);
1323 static void prep_compound_gigantic_page(struct page *page, unsigned int order);
1324 #else /* !CONFIG_CONTIG_ALLOC */
1325 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1326                                         int nid, nodemask_t *nodemask)
1327 {
1328         return NULL;
1329 }
1330 #endif /* CONFIG_CONTIG_ALLOC */
1331
1332 #else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
1333 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1334                                         int nid, nodemask_t *nodemask)
1335 {
1336         return NULL;
1337 }
1338 static inline void free_gigantic_page(struct page *page, unsigned int order) { }
1339 static inline void destroy_compound_gigantic_page(struct page *page,
1340                                                 unsigned int order) { }
1341 #endif
1342
1343 /*
1344  * Remove hugetlb page from lists, and update dtor so that page appears
1345  * as just a compound page.  A reference is held on the page.
1346  *
1347  * Must be called with hugetlb lock held.
1348  */
1349 static void remove_hugetlb_page(struct hstate *h, struct page *page,
1350                                                         bool adjust_surplus)
1351 {
1352         int nid = page_to_nid(page);
1353
1354         VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
1355         VM_BUG_ON_PAGE(hugetlb_cgroup_from_page_rsvd(page), page);
1356
1357         lockdep_assert_held(&hugetlb_lock);
1358         if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1359                 return;
1360
1361         list_del(&page->lru);
1362
1363         if (HPageFreed(page)) {
1364                 h->free_huge_pages--;
1365                 h->free_huge_pages_node[nid]--;
1366         }
1367         if (adjust_surplus) {
1368                 h->surplus_huge_pages--;
1369                 h->surplus_huge_pages_node[nid]--;
1370         }
1371
1372         set_page_refcounted(page);
1373         set_compound_page_dtor(page, NULL_COMPOUND_DTOR);
1374
1375         h->nr_huge_pages--;
1376         h->nr_huge_pages_node[nid]--;
1377 }
1378
1379 static void update_and_free_page(struct hstate *h, struct page *page)
1380 {
1381         int i;
1382         struct page *subpage = page;
1383
1384         if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1385                 return;
1386
1387         for (i = 0; i < pages_per_huge_page(h);
1388              i++, subpage = mem_map_next(subpage, page, i)) {
1389                 subpage->flags &= ~(1 << PG_locked | 1 << PG_error |
1390                                 1 << PG_referenced | 1 << PG_dirty |
1391                                 1 << PG_active | 1 << PG_private |
1392                                 1 << PG_writeback);
1393         }
1394         if (hstate_is_gigantic(h)) {
1395                 destroy_compound_gigantic_page(page, huge_page_order(h));
1396                 free_gigantic_page(page, huge_page_order(h));
1397         } else {
1398                 __free_pages(page, huge_page_order(h));
1399         }
1400 }
1401
1402 static void update_and_free_pages_bulk(struct hstate *h, struct list_head *list)
1403 {
1404         struct page *page, *t_page;
1405
1406         list_for_each_entry_safe(page, t_page, list, lru) {
1407                 update_and_free_page(h, page);
1408                 cond_resched();
1409         }
1410 }
1411
1412 struct hstate *size_to_hstate(unsigned long size)
1413 {
1414         struct hstate *h;
1415
1416         for_each_hstate(h) {
1417                 if (huge_page_size(h) == size)
1418                         return h;
1419         }
1420         return NULL;
1421 }
1422
1423 void free_huge_page(struct page *page)
1424 {
1425         /*
1426          * Can't pass hstate in here because it is called from the
1427          * compound page destructor.
1428          */
1429         struct hstate *h = page_hstate(page);
1430         int nid = page_to_nid(page);
1431         struct hugepage_subpool *spool = hugetlb_page_subpool(page);
1432         bool restore_reserve;
1433         unsigned long flags;
1434
1435         VM_BUG_ON_PAGE(page_count(page), page);
1436         VM_BUG_ON_PAGE(page_mapcount(page), page);
1437
1438         hugetlb_set_page_subpool(page, NULL);
1439         page->mapping = NULL;
1440         restore_reserve = HPageRestoreReserve(page);
1441         ClearHPageRestoreReserve(page);
1442
1443         /*
1444          * If HPageRestoreReserve was set on page, page allocation consumed a
1445          * reservation.  If the page was associated with a subpool, there
1446          * would have been a page reserved in the subpool before allocation
1447          * via hugepage_subpool_get_pages().  Since we are 'restoring' the
1448          * reservation, do not call hugepage_subpool_put_pages() as this will
1449          * remove the reserved page from the subpool.
1450          */
1451         if (!restore_reserve) {
1452                 /*
1453                  * A return code of zero implies that the subpool will be
1454                  * under its minimum size if the reservation is not restored
1455                  * after page is free.  Therefore, force restore_reserve
1456                  * operation.
1457                  */
1458                 if (hugepage_subpool_put_pages(spool, 1) == 0)
1459                         restore_reserve = true;
1460         }
1461
1462         spin_lock_irqsave(&hugetlb_lock, flags);
1463         ClearHPageMigratable(page);
1464         hugetlb_cgroup_uncharge_page(hstate_index(h),
1465                                      pages_per_huge_page(h), page);
1466         hugetlb_cgroup_uncharge_page_rsvd(hstate_index(h),
1467                                           pages_per_huge_page(h), page);
1468         if (restore_reserve)
1469                 h->resv_huge_pages++;
1470
1471         if (HPageTemporary(page)) {
1472                 remove_hugetlb_page(h, page, false);
1473                 spin_unlock_irqrestore(&hugetlb_lock, flags);
1474                 update_and_free_page(h, page);
1475         } else if (h->surplus_huge_pages_node[nid]) {
1476                 /* remove the page from active list */
1477                 remove_hugetlb_page(h, page, true);
1478                 spin_unlock_irqrestore(&hugetlb_lock, flags);
1479                 update_and_free_page(h, page);
1480         } else {
1481                 arch_clear_hugepage_flags(page);
1482                 enqueue_huge_page(h, page);
1483                 spin_unlock_irqrestore(&hugetlb_lock, flags);
1484         }
1485 }
1486
1487 /*
1488  * Must be called with the hugetlb lock held
1489  */
1490 static void __prep_account_new_huge_page(struct hstate *h, int nid)
1491 {
1492         lockdep_assert_held(&hugetlb_lock);
1493         h->nr_huge_pages++;
1494         h->nr_huge_pages_node[nid]++;
1495 }
1496
1497 static void __prep_new_huge_page(struct page *page)
1498 {
1499         INIT_LIST_HEAD(&page->lru);
1500         set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1501         hugetlb_set_page_subpool(page, NULL);
1502         set_hugetlb_cgroup(page, NULL);
1503         set_hugetlb_cgroup_rsvd(page, NULL);
1504 }
1505
1506 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
1507 {
1508         __prep_new_huge_page(page);
1509         spin_lock_irq(&hugetlb_lock);
1510         __prep_account_new_huge_page(h, nid);
1511         spin_unlock_irq(&hugetlb_lock);
1512 }
1513
1514 static void prep_compound_gigantic_page(struct page *page, unsigned int order)
1515 {
1516         int i;
1517         int nr_pages = 1 << order;
1518         struct page *p = page + 1;
1519
1520         /* we rely on prep_new_huge_page to set the destructor */
1521         set_compound_order(page, order);
1522         __ClearPageReserved(page);
1523         __SetPageHead(page);
1524         for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1525                 /*
1526                  * For gigantic hugepages allocated through bootmem at
1527                  * boot, it's safer to be consistent with the not-gigantic
1528                  * hugepages and clear the PG_reserved bit from all tail pages
1529                  * too.  Otherwise drivers using get_user_pages() to access tail
1530                  * pages may get the reference counting wrong if they see
1531                  * PG_reserved set on a tail page (despite the head page not
1532                  * having PG_reserved set).  Enforcing this consistency between
1533                  * head and tail pages allows drivers to optimize away a check
1534                  * on the head page when they need know if put_page() is needed
1535                  * after get_user_pages().
1536                  */
1537                 __ClearPageReserved(p);
1538                 set_page_count(p, 0);
1539                 set_compound_head(p, page);
1540         }
1541         atomic_set(compound_mapcount_ptr(page), -1);
1542         atomic_set(compound_pincount_ptr(page), 0);
1543 }
1544
1545 /*
1546  * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1547  * transparent huge pages.  See the PageTransHuge() documentation for more
1548  * details.
1549  */
1550 int PageHuge(struct page *page)
1551 {
1552         if (!PageCompound(page))
1553                 return 0;
1554
1555         page = compound_head(page);
1556         return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
1557 }
1558 EXPORT_SYMBOL_GPL(PageHuge);
1559
1560 /*
1561  * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1562  * normal or transparent huge pages.
1563  */
1564 int PageHeadHuge(struct page *page_head)
1565 {
1566         if (!PageHead(page_head))
1567                 return 0;
1568
1569         return page_head[1].compound_dtor == HUGETLB_PAGE_DTOR;
1570 }
1571
1572 /*
1573  * Find and lock address space (mapping) in write mode.
1574  *
1575  * Upon entry, the page is locked which means that page_mapping() is
1576  * stable.  Due to locking order, we can only trylock_write.  If we can
1577  * not get the lock, simply return NULL to caller.
1578  */
1579 struct address_space *hugetlb_page_mapping_lock_write(struct page *hpage)
1580 {
1581         struct address_space *mapping = page_mapping(hpage);
1582
1583         if (!mapping)
1584                 return mapping;
1585
1586         if (i_mmap_trylock_write(mapping))
1587                 return mapping;
1588
1589         return NULL;
1590 }
1591
1592 pgoff_t __basepage_index(struct page *page)
1593 {
1594         struct page *page_head = compound_head(page);
1595         pgoff_t index = page_index(page_head);
1596         unsigned long compound_idx;
1597
1598         if (!PageHuge(page_head))
1599                 return page_index(page);
1600
1601         if (compound_order(page_head) >= MAX_ORDER)
1602                 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
1603         else
1604                 compound_idx = page - page_head;
1605
1606         return (index << compound_order(page_head)) + compound_idx;
1607 }
1608
1609 static struct page *alloc_buddy_huge_page(struct hstate *h,
1610                 gfp_t gfp_mask, int nid, nodemask_t *nmask,
1611                 nodemask_t *node_alloc_noretry)
1612 {
1613         int order = huge_page_order(h);
1614         struct page *page;
1615         bool alloc_try_hard = true;
1616
1617         /*
1618          * By default we always try hard to allocate the page with
1619          * __GFP_RETRY_MAYFAIL flag.  However, if we are allocating pages in
1620          * a loop (to adjust global huge page counts) and previous allocation
1621          * failed, do not continue to try hard on the same node.  Use the
1622          * node_alloc_noretry bitmap to manage this state information.
1623          */
1624         if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry))
1625                 alloc_try_hard = false;
1626         gfp_mask |= __GFP_COMP|__GFP_NOWARN;
1627         if (alloc_try_hard)
1628                 gfp_mask |= __GFP_RETRY_MAYFAIL;
1629         if (nid == NUMA_NO_NODE)
1630                 nid = numa_mem_id();
1631         page = __alloc_pages(gfp_mask, order, nid, nmask);
1632         if (page)
1633                 __count_vm_event(HTLB_BUDDY_PGALLOC);
1634         else
1635                 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1636
1637         /*
1638          * If we did not specify __GFP_RETRY_MAYFAIL, but still got a page this
1639          * indicates an overall state change.  Clear bit so that we resume
1640          * normal 'try hard' allocations.
1641          */
1642         if (node_alloc_noretry && page && !alloc_try_hard)
1643                 node_clear(nid, *node_alloc_noretry);
1644
1645         /*
1646          * If we tried hard to get a page but failed, set bit so that
1647          * subsequent attempts will not try as hard until there is an
1648          * overall state change.
1649          */
1650         if (node_alloc_noretry && !page && alloc_try_hard)
1651                 node_set(nid, *node_alloc_noretry);
1652
1653         return page;
1654 }
1655
1656 /*
1657  * Common helper to allocate a fresh hugetlb page. All specific allocators
1658  * should use this function to get new hugetlb pages
1659  */
1660 static struct page *alloc_fresh_huge_page(struct hstate *h,
1661                 gfp_t gfp_mask, int nid, nodemask_t *nmask,
1662                 nodemask_t *node_alloc_noretry)
1663 {
1664         struct page *page;
1665
1666         if (hstate_is_gigantic(h))
1667                 page = alloc_gigantic_page(h, gfp_mask, nid, nmask);
1668         else
1669                 page = alloc_buddy_huge_page(h, gfp_mask,
1670                                 nid, nmask, node_alloc_noretry);
1671         if (!page)
1672                 return NULL;
1673
1674         if (hstate_is_gigantic(h))
1675                 prep_compound_gigantic_page(page, huge_page_order(h));
1676         prep_new_huge_page(h, page, page_to_nid(page));
1677
1678         return page;
1679 }
1680
1681 /*
1682  * Allocates a fresh page to the hugetlb allocator pool in the node interleaved
1683  * manner.
1684  */
1685 static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1686                                 nodemask_t *node_alloc_noretry)
1687 {
1688         struct page *page;
1689         int nr_nodes, node;
1690         gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
1691
1692         for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1693                 page = alloc_fresh_huge_page(h, gfp_mask, node, nodes_allowed,
1694                                                 node_alloc_noretry);
1695                 if (page)
1696                         break;
1697         }
1698
1699         if (!page)
1700                 return 0;
1701
1702         put_page(page); /* free it into the hugepage allocator */
1703
1704         return 1;
1705 }
1706
1707 /*
1708  * Remove huge page from pool from next node to free.  Attempt to keep
1709  * persistent huge pages more or less balanced over allowed nodes.
1710  * This routine only 'removes' the hugetlb page.  The caller must make
1711  * an additional call to free the page to low level allocators.
1712  * Called with hugetlb_lock locked.
1713  */
1714 static struct page *remove_pool_huge_page(struct hstate *h,
1715                                                 nodemask_t *nodes_allowed,
1716                                                  bool acct_surplus)
1717 {
1718         int nr_nodes, node;
1719         struct page *page = NULL;
1720
1721         lockdep_assert_held(&hugetlb_lock);
1722         for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1723                 /*
1724                  * If we're returning unused surplus pages, only examine
1725                  * nodes with surplus pages.
1726                  */
1727                 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
1728                     !list_empty(&h->hugepage_freelists[node])) {
1729                         page = list_entry(h->hugepage_freelists[node].next,
1730                                           struct page, lru);
1731                         remove_hugetlb_page(h, page, acct_surplus);
1732                         break;
1733                 }
1734         }
1735
1736         return page;
1737 }
1738
1739 /*
1740  * Dissolve a given free hugepage into free buddy pages. This function does
1741  * nothing for in-use hugepages and non-hugepages.
1742  * This function returns values like below:
1743  *
1744  *  -EBUSY: failed to dissolved free hugepages or the hugepage is in-use
1745  *          (allocated or reserved.)
1746  *       0: successfully dissolved free hugepages or the page is not a
1747  *          hugepage (considered as already dissolved)
1748  */
1749 int dissolve_free_huge_page(struct page *page)
1750 {
1751         int rc = -EBUSY;
1752
1753 retry:
1754         /* Not to disrupt normal path by vainly holding hugetlb_lock */
1755         if (!PageHuge(page))
1756                 return 0;
1757
1758         spin_lock_irq(&hugetlb_lock);
1759         if (!PageHuge(page)) {
1760                 rc = 0;
1761                 goto out;
1762         }
1763
1764         if (!page_count(page)) {
1765                 struct page *head = compound_head(page);
1766                 struct hstate *h = page_hstate(head);
1767                 if (h->free_huge_pages - h->resv_huge_pages == 0)
1768                         goto out;
1769
1770                 /*
1771                  * We should make sure that the page is already on the free list
1772                  * when it is dissolved.
1773                  */
1774                 if (unlikely(!HPageFreed(head))) {
1775                         spin_unlock_irq(&hugetlb_lock);
1776                         cond_resched();
1777
1778                         /*
1779                          * Theoretically, we should return -EBUSY when we
1780                          * encounter this race. In fact, we have a chance
1781                          * to successfully dissolve the page if we do a
1782                          * retry. Because the race window is quite small.
1783                          * If we seize this opportunity, it is an optimization
1784                          * for increasing the success rate of dissolving page.
1785                          */
1786                         goto retry;
1787                 }
1788
1789                 /*
1790                  * Move PageHWPoison flag from head page to the raw error page,
1791                  * which makes any subpages rather than the error page reusable.
1792                  */
1793                 if (PageHWPoison(head) && page != head) {
1794                         SetPageHWPoison(page);
1795                         ClearPageHWPoison(head);
1796                 }
1797                 remove_hugetlb_page(h, page, false);
1798                 h->max_huge_pages--;
1799                 spin_unlock_irq(&hugetlb_lock);
1800                 update_and_free_page(h, head);
1801                 return 0;
1802         }
1803 out:
1804         spin_unlock_irq(&hugetlb_lock);
1805         return rc;
1806 }
1807
1808 /*
1809  * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
1810  * make specified memory blocks removable from the system.
1811  * Note that this will dissolve a free gigantic hugepage completely, if any
1812  * part of it lies within the given range.
1813  * Also note that if dissolve_free_huge_page() returns with an error, all
1814  * free hugepages that were dissolved before that error are lost.
1815  */
1816 int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
1817 {
1818         unsigned long pfn;
1819         struct page *page;
1820         int rc = 0;
1821
1822         if (!hugepages_supported())
1823                 return rc;
1824
1825         for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order) {
1826                 page = pfn_to_page(pfn);
1827                 rc = dissolve_free_huge_page(page);
1828                 if (rc)
1829                         break;
1830         }
1831
1832         return rc;
1833 }
1834
1835 /*
1836  * Allocates a fresh surplus page from the page allocator.
1837  */
1838 static struct page *alloc_surplus_huge_page(struct hstate *h, gfp_t gfp_mask,
1839                 int nid, nodemask_t *nmask)
1840 {
1841         struct page *page = NULL;
1842
1843         if (hstate_is_gigantic(h))
1844                 return NULL;
1845
1846         spin_lock_irq(&hugetlb_lock);
1847         if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages)
1848                 goto out_unlock;
1849         spin_unlock_irq(&hugetlb_lock);
1850
1851         page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
1852         if (!page)
1853                 return NULL;
1854
1855         spin_lock_irq(&hugetlb_lock);
1856         /*
1857          * We could have raced with the pool size change.
1858          * Double check that and simply deallocate the new page
1859          * if we would end up overcommiting the surpluses. Abuse
1860          * temporary page to workaround the nasty free_huge_page
1861          * codeflow
1862          */
1863         if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
1864                 SetHPageTemporary(page);
1865                 spin_unlock_irq(&hugetlb_lock);
1866                 put_page(page);
1867                 return NULL;
1868         } else {
1869                 h->surplus_huge_pages++;
1870                 h->surplus_huge_pages_node[page_to_nid(page)]++;
1871         }
1872
1873 out_unlock:
1874         spin_unlock_irq(&hugetlb_lock);
1875
1876         return page;
1877 }
1878
1879 static struct page *alloc_migrate_huge_page(struct hstate *h, gfp_t gfp_mask,
1880                                      int nid, nodemask_t *nmask)
1881 {
1882         struct page *page;
1883
1884         if (hstate_is_gigantic(h))
1885                 return NULL;
1886
1887         page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
1888         if (!page)
1889                 return NULL;
1890
1891         /*
1892          * We do not account these pages as surplus because they are only
1893          * temporary and will be released properly on the last reference
1894          */
1895         SetHPageTemporary(page);
1896
1897         return page;
1898 }
1899
1900 /*
1901  * Use the VMA's mpolicy to allocate a huge page from the buddy.
1902  */
1903 static
1904 struct page *alloc_buddy_huge_page_with_mpol(struct hstate *h,
1905                 struct vm_area_struct *vma, unsigned long addr)
1906 {
1907         struct page *page;
1908         struct mempolicy *mpol;
1909         gfp_t gfp_mask = htlb_alloc_mask(h);
1910         int nid;
1911         nodemask_t *nodemask;
1912
1913         nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
1914         page = alloc_surplus_huge_page(h, gfp_mask, nid, nodemask);
1915         mpol_cond_put(mpol);
1916
1917         return page;
1918 }
1919
1920 /* page migration callback function */
1921 struct page *alloc_huge_page_nodemask(struct hstate *h, int preferred_nid,
1922                 nodemask_t *nmask, gfp_t gfp_mask)
1923 {
1924         spin_lock_irq(&hugetlb_lock);
1925         if (h->free_huge_pages - h->resv_huge_pages > 0) {
1926                 struct page *page;
1927
1928                 page = dequeue_huge_page_nodemask(h, gfp_mask, preferred_nid, nmask);
1929                 if (page) {
1930                         spin_unlock_irq(&hugetlb_lock);
1931                         return page;
1932                 }
1933         }
1934         spin_unlock_irq(&hugetlb_lock);
1935
1936         return alloc_migrate_huge_page(h, gfp_mask, preferred_nid, nmask);
1937 }
1938
1939 /* mempolicy aware migration callback */
1940 struct page *alloc_huge_page_vma(struct hstate *h, struct vm_area_struct *vma,
1941                 unsigned long address)
1942 {
1943         struct mempolicy *mpol;
1944         nodemask_t *nodemask;
1945         struct page *page;
1946         gfp_t gfp_mask;
1947         int node;
1948
1949         gfp_mask = htlb_alloc_mask(h);
1950         node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
1951         page = alloc_huge_page_nodemask(h, node, nodemask, gfp_mask);
1952         mpol_cond_put(mpol);
1953
1954         return page;
1955 }
1956
1957 /*
1958  * Increase the hugetlb pool such that it can accommodate a reservation
1959  * of size 'delta'.
1960  */
1961 static int gather_surplus_pages(struct hstate *h, long delta)
1962         __must_hold(&hugetlb_lock)
1963 {
1964         struct list_head surplus_list;
1965         struct page *page, *tmp;
1966         int ret;
1967         long i;
1968         long needed, allocated;
1969         bool alloc_ok = true;
1970
1971         lockdep_assert_held(&hugetlb_lock);
1972         needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
1973         if (needed <= 0) {
1974                 h->resv_huge_pages += delta;
1975                 return 0;
1976         }
1977
1978         allocated = 0;
1979         INIT_LIST_HEAD(&surplus_list);
1980
1981         ret = -ENOMEM;
1982 retry:
1983         spin_unlock_irq(&hugetlb_lock);
1984         for (i = 0; i < needed; i++) {
1985                 page = alloc_surplus_huge_page(h, htlb_alloc_mask(h),
1986                                 NUMA_NO_NODE, NULL);
1987                 if (!page) {
1988                         alloc_ok = false;
1989                         break;
1990                 }
1991                 list_add(&page->lru, &surplus_list);
1992                 cond_resched();
1993         }
1994         allocated += i;
1995
1996         /*
1997          * After retaking hugetlb_lock, we need to recalculate 'needed'
1998          * because either resv_huge_pages or free_huge_pages may have changed.
1999          */
2000         spin_lock_irq(&hugetlb_lock);
2001         needed = (h->resv_huge_pages + delta) -
2002                         (h->free_huge_pages + allocated);
2003         if (needed > 0) {
2004                 if (alloc_ok)
2005                         goto retry;
2006                 /*
2007                  * We were not able to allocate enough pages to
2008                  * satisfy the entire reservation so we free what
2009                  * we've allocated so far.
2010                  */
2011                 goto free;
2012         }
2013         /*
2014          * The surplus_list now contains _at_least_ the number of extra pages
2015          * needed to accommodate the reservation.  Add the appropriate number
2016          * of pages to the hugetlb pool and free the extras back to the buddy
2017          * allocator.  Commit the entire reservation here to prevent another
2018          * process from stealing the pages as they are added to the pool but
2019          * before they are reserved.
2020          */
2021         needed += allocated;
2022         h->resv_huge_pages += delta;
2023         ret = 0;
2024
2025         /* Free the needed pages to the hugetlb pool */
2026         list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
2027                 int zeroed;
2028
2029                 if ((--needed) < 0)
2030                         break;
2031                 /*
2032                  * This page is now managed by the hugetlb allocator and has
2033                  * no users -- drop the buddy allocator's reference.
2034                  */
2035                 zeroed = put_page_testzero(page);
2036                 VM_BUG_ON_PAGE(!zeroed, page);
2037                 enqueue_huge_page(h, page);
2038         }
2039 free:
2040         spin_unlock_irq(&hugetlb_lock);
2041
2042         /* Free unnecessary surplus pages to the buddy allocator */
2043         list_for_each_entry_safe(page, tmp, &surplus_list, lru)
2044                 put_page(page);
2045         spin_lock_irq(&hugetlb_lock);
2046
2047         return ret;
2048 }
2049
2050 /*
2051  * This routine has two main purposes:
2052  * 1) Decrement the reservation count (resv_huge_pages) by the value passed
2053  *    in unused_resv_pages.  This corresponds to the prior adjustments made
2054  *    to the associated reservation map.
2055  * 2) Free any unused surplus pages that may have been allocated to satisfy
2056  *    the reservation.  As many as unused_resv_pages may be freed.
2057  */
2058 static void return_unused_surplus_pages(struct hstate *h,
2059                                         unsigned long unused_resv_pages)
2060 {
2061         unsigned long nr_pages;
2062         struct page *page;
2063         LIST_HEAD(page_list);
2064
2065         lockdep_assert_held(&hugetlb_lock);
2066         /* Uncommit the reservation */
2067         h->resv_huge_pages -= unused_resv_pages;
2068
2069         /* Cannot return gigantic pages currently */
2070         if (hstate_is_gigantic(h))
2071                 goto out;
2072
2073         /*
2074          * Part (or even all) of the reservation could have been backed
2075          * by pre-allocated pages. Only free surplus pages.
2076          */
2077         nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
2078
2079         /*
2080          * We want to release as many surplus pages as possible, spread
2081          * evenly across all nodes with memory. Iterate across these nodes
2082          * until we can no longer free unreserved surplus pages. This occurs
2083          * when the nodes with surplus pages have no free pages.
2084          * remove_pool_huge_page() will balance the freed pages across the
2085          * on-line nodes with memory and will handle the hstate accounting.
2086          */
2087         while (nr_pages--) {
2088                 page = remove_pool_huge_page(h, &node_states[N_MEMORY], 1);
2089                 if (!page)
2090                         goto out;
2091
2092                 list_add(&page->lru, &page_list);
2093         }
2094
2095 out:
2096         spin_unlock_irq(&hugetlb_lock);
2097         update_and_free_pages_bulk(h, &page_list);
2098         spin_lock_irq(&hugetlb_lock);
2099 }
2100
2101
2102 /*
2103  * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
2104  * are used by the huge page allocation routines to manage reservations.
2105  *
2106  * vma_needs_reservation is called to determine if the huge page at addr
2107  * within the vma has an associated reservation.  If a reservation is
2108  * needed, the value 1 is returned.  The caller is then responsible for
2109  * managing the global reservation and subpool usage counts.  After
2110  * the huge page has been allocated, vma_commit_reservation is called
2111  * to add the page to the reservation map.  If the page allocation fails,
2112  * the reservation must be ended instead of committed.  vma_end_reservation
2113  * is called in such cases.
2114  *
2115  * In the normal case, vma_commit_reservation returns the same value
2116  * as the preceding vma_needs_reservation call.  The only time this
2117  * is not the case is if a reserve map was changed between calls.  It
2118  * is the responsibility of the caller to notice the difference and
2119  * take appropriate action.
2120  *
2121  * vma_add_reservation is used in error paths where a reservation must
2122  * be restored when a newly allocated huge page must be freed.  It is
2123  * to be called after calling vma_needs_reservation to determine if a
2124  * reservation exists.
2125  */
2126 enum vma_resv_mode {
2127         VMA_NEEDS_RESV,
2128         VMA_COMMIT_RESV,
2129         VMA_END_RESV,
2130         VMA_ADD_RESV,
2131 };
2132 static long __vma_reservation_common(struct hstate *h,
2133                                 struct vm_area_struct *vma, unsigned long addr,
2134                                 enum vma_resv_mode mode)
2135 {
2136         struct resv_map *resv;
2137         pgoff_t idx;
2138         long ret;
2139         long dummy_out_regions_needed;
2140
2141         resv = vma_resv_map(vma);
2142         if (!resv)
2143                 return 1;
2144
2145         idx = vma_hugecache_offset(h, vma, addr);
2146         switch (mode) {
2147         case VMA_NEEDS_RESV:
2148                 ret = region_chg(resv, idx, idx + 1, &dummy_out_regions_needed);
2149                 /* We assume that vma_reservation_* routines always operate on
2150                  * 1 page, and that adding to resv map a 1 page entry can only
2151                  * ever require 1 region.
2152                  */
2153                 VM_BUG_ON(dummy_out_regions_needed != 1);
2154                 break;
2155         case VMA_COMMIT_RESV:
2156                 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2157                 /* region_add calls of range 1 should never fail. */
2158                 VM_BUG_ON(ret < 0);
2159                 break;
2160         case VMA_END_RESV:
2161                 region_abort(resv, idx, idx + 1, 1);
2162                 ret = 0;
2163                 break;
2164         case VMA_ADD_RESV:
2165                 if (vma->vm_flags & VM_MAYSHARE) {
2166                         ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2167                         /* region_add calls of range 1 should never fail. */
2168                         VM_BUG_ON(ret < 0);
2169                 } else {
2170                         region_abort(resv, idx, idx + 1, 1);
2171                         ret = region_del(resv, idx, idx + 1);
2172                 }
2173                 break;
2174         default:
2175                 BUG();
2176         }
2177
2178         if (vma->vm_flags & VM_MAYSHARE)
2179                 return ret;
2180         /*
2181          * We know private mapping must have HPAGE_RESV_OWNER set.
2182          *
2183          * In most cases, reserves always exist for private mappings.
2184          * However, a file associated with mapping could have been
2185          * hole punched or truncated after reserves were consumed.
2186          * As subsequent fault on such a range will not use reserves.
2187          * Subtle - The reserve map for private mappings has the
2188          * opposite meaning than that of shared mappings.  If NO
2189          * entry is in the reserve map, it means a reservation exists.
2190          * If an entry exists in the reserve map, it means the
2191          * reservation has already been consumed.  As a result, the
2192          * return value of this routine is the opposite of the
2193          * value returned from reserve map manipulation routines above.
2194          */
2195         if (ret > 0)
2196                 return 0;
2197         if (ret == 0)
2198                 return 1;
2199         return ret;
2200 }
2201
2202 static long vma_needs_reservation(struct hstate *h,
2203                         struct vm_area_struct *vma, unsigned long addr)
2204 {
2205         return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
2206 }
2207
2208 static long vma_commit_reservation(struct hstate *h,
2209                         struct vm_area_struct *vma, unsigned long addr)
2210 {
2211         return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
2212 }
2213
2214 static void vma_end_reservation(struct hstate *h,
2215                         struct vm_area_struct *vma, unsigned long addr)
2216 {
2217         (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
2218 }
2219
2220 static long vma_add_reservation(struct hstate *h,
2221                         struct vm_area_struct *vma, unsigned long addr)
2222 {
2223         return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
2224 }
2225
2226 /*
2227  * This routine is called to restore a reservation on error paths.  In the
2228  * specific error paths, a huge page was allocated (via alloc_huge_page)
2229  * and is about to be freed.  If a reservation for the page existed,
2230  * alloc_huge_page would have consumed the reservation and set
2231  * HPageRestoreReserve in the newly allocated page.  When the page is freed
2232  * via free_huge_page, the global reservation count will be incremented if
2233  * HPageRestoreReserve is set.  However, free_huge_page can not adjust the
2234  * reserve map.  Adjust the reserve map here to be consistent with global
2235  * reserve count adjustments to be made by free_huge_page.
2236  */
2237 static void restore_reserve_on_error(struct hstate *h,
2238                         struct vm_area_struct *vma, unsigned long address,
2239                         struct page *page)
2240 {
2241         if (unlikely(HPageRestoreReserve(page))) {
2242                 long rc = vma_needs_reservation(h, vma, address);
2243
2244                 if (unlikely(rc < 0)) {
2245                         /*
2246                          * Rare out of memory condition in reserve map
2247                          * manipulation.  Clear HPageRestoreReserve so that
2248                          * global reserve count will not be incremented
2249                          * by free_huge_page.  This will make it appear
2250                          * as though the reservation for this page was
2251                          * consumed.  This may prevent the task from
2252                          * faulting in the page at a later time.  This
2253                          * is better than inconsistent global huge page
2254                          * accounting of reserve counts.
2255                          */
2256                         ClearHPageRestoreReserve(page);
2257                 } else if (rc) {
2258                         rc = vma_add_reservation(h, vma, address);
2259                         if (unlikely(rc < 0))
2260                                 /*
2261                                  * See above comment about rare out of
2262                                  * memory condition.
2263                                  */
2264                                 ClearHPageRestoreReserve(page);
2265                 } else
2266                         vma_end_reservation(h, vma, address);
2267         }
2268 }
2269
2270 struct page *alloc_huge_page(struct vm_area_struct *vma,
2271                                     unsigned long addr, int avoid_reserve)
2272 {
2273         struct hugepage_subpool *spool = subpool_vma(vma);
2274         struct hstate *h = hstate_vma(vma);
2275         struct page *page;
2276         long map_chg, map_commit;
2277         long gbl_chg;
2278         int ret, idx;
2279         struct hugetlb_cgroup *h_cg;
2280         bool deferred_reserve;
2281
2282         idx = hstate_index(h);
2283         /*
2284          * Examine the region/reserve map to determine if the process
2285          * has a reservation for the page to be allocated.  A return
2286          * code of zero indicates a reservation exists (no change).
2287          */
2288         map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
2289         if (map_chg < 0)
2290                 return ERR_PTR(-ENOMEM);
2291
2292         /*
2293          * Processes that did not create the mapping will have no
2294          * reserves as indicated by the region/reserve map. Check
2295          * that the allocation will not exceed the subpool limit.
2296          * Allocations for MAP_NORESERVE mappings also need to be
2297          * checked against any subpool limit.
2298          */
2299         if (map_chg || avoid_reserve) {
2300                 gbl_chg = hugepage_subpool_get_pages(spool, 1);
2301                 if (gbl_chg < 0) {
2302                         vma_end_reservation(h, vma, addr);
2303                         return ERR_PTR(-ENOSPC);
2304                 }
2305
2306                 /*
2307                  * Even though there was no reservation in the region/reserve
2308                  * map, there could be reservations associated with the
2309                  * subpool that can be used.  This would be indicated if the
2310                  * return value of hugepage_subpool_get_pages() is zero.
2311                  * However, if avoid_reserve is specified we still avoid even
2312                  * the subpool reservations.
2313                  */
2314                 if (avoid_reserve)
2315                         gbl_chg = 1;
2316         }
2317
2318         /* If this allocation is not consuming a reservation, charge it now.
2319          */
2320         deferred_reserve = map_chg || avoid_reserve;
2321         if (deferred_reserve) {
2322                 ret = hugetlb_cgroup_charge_cgroup_rsvd(
2323                         idx, pages_per_huge_page(h), &h_cg);
2324                 if (ret)
2325                         goto out_subpool_put;
2326         }
2327
2328         ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
2329         if (ret)
2330                 goto out_uncharge_cgroup_reservation;
2331
2332         spin_lock_irq(&hugetlb_lock);
2333         /*
2334          * glb_chg is passed to indicate whether or not a page must be taken
2335          * from the global free pool (global change).  gbl_chg == 0 indicates
2336          * a reservation exists for the allocation.
2337          */
2338         page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
2339         if (!page) {
2340                 spin_unlock_irq(&hugetlb_lock);
2341                 page = alloc_buddy_huge_page_with_mpol(h, vma, addr);
2342                 if (!page)
2343                         goto out_uncharge_cgroup;
2344                 if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
2345                         SetHPageRestoreReserve(page);
2346                         h->resv_huge_pages--;
2347                 }
2348                 spin_lock_irq(&hugetlb_lock);
2349                 list_add(&page->lru, &h->hugepage_activelist);
2350                 /* Fall through */
2351         }
2352         hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
2353         /* If allocation is not consuming a reservation, also store the
2354          * hugetlb_cgroup pointer on the page.
2355          */
2356         if (deferred_reserve) {
2357                 hugetlb_cgroup_commit_charge_rsvd(idx, pages_per_huge_page(h),
2358                                                   h_cg, page);
2359         }
2360
2361         spin_unlock_irq(&hugetlb_lock);
2362
2363         hugetlb_set_page_subpool(page, spool);
2364
2365         map_commit = vma_commit_reservation(h, vma, addr);
2366         if (unlikely(map_chg > map_commit)) {
2367                 /*
2368                  * The page was added to the reservation map between
2369                  * vma_needs_reservation and vma_commit_reservation.
2370                  * This indicates a race with hugetlb_reserve_pages.
2371                  * Adjust for the subpool count incremented above AND
2372                  * in hugetlb_reserve_pages for the same page.  Also,
2373                  * the reservation count added in hugetlb_reserve_pages
2374                  * no longer applies.
2375                  */
2376                 long rsv_adjust;
2377
2378                 rsv_adjust = hugepage_subpool_put_pages(spool, 1);
2379                 hugetlb_acct_memory(h, -rsv_adjust);
2380                 if (deferred_reserve)
2381                         hugetlb_cgroup_uncharge_page_rsvd(hstate_index(h),
2382                                         pages_per_huge_page(h), page);
2383         }
2384         return page;
2385
2386 out_uncharge_cgroup:
2387         hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
2388 out_uncharge_cgroup_reservation:
2389         if (deferred_reserve)
2390                 hugetlb_cgroup_uncharge_cgroup_rsvd(idx, pages_per_huge_page(h),
2391                                                     h_cg);
2392 out_subpool_put:
2393         if (map_chg || avoid_reserve)
2394                 hugepage_subpool_put_pages(spool, 1);
2395         vma_end_reservation(h, vma, addr);
2396         return ERR_PTR(-ENOSPC);
2397 }
2398
2399 int alloc_bootmem_huge_page(struct hstate *h)
2400         __attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
2401 int __alloc_bootmem_huge_page(struct hstate *h)
2402 {
2403         struct huge_bootmem_page *m;
2404         int nr_nodes, node;
2405
2406         for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
2407                 void *addr;
2408
2409                 addr = memblock_alloc_try_nid_raw(
2410                                 huge_page_size(h), huge_page_size(h),
2411                                 0, MEMBLOCK_ALLOC_ACCESSIBLE, node);
2412                 if (addr) {
2413                         /*
2414                          * Use the beginning of the huge page to store the
2415                          * huge_bootmem_page struct (until gather_bootmem
2416                          * puts them into the mem_map).
2417                          */
2418                         m = addr;
2419                         goto found;
2420                 }
2421         }
2422         return 0;
2423
2424 found:
2425         BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h)));
2426         /* Put them into a private list first because mem_map is not up yet */
2427         INIT_LIST_HEAD(&m->list);
2428         list_add(&m->list, &huge_boot_pages);
2429         m->hstate = h;
2430         return 1;
2431 }
2432
2433 static void __init prep_compound_huge_page(struct page *page,
2434                 unsigned int order)
2435 {
2436         if (unlikely(order > (MAX_ORDER - 1)))
2437                 prep_compound_gigantic_page(page, order);
2438         else
2439                 prep_compound_page(page, order);
2440 }
2441
2442 /* Put bootmem huge pages into the standard lists after mem_map is up */
2443 static void __init gather_bootmem_prealloc(void)
2444 {
2445         struct huge_bootmem_page *m;
2446
2447         list_for_each_entry(m, &huge_boot_pages, list) {
2448                 struct page *page = virt_to_page(m);
2449                 struct hstate *h = m->hstate;
2450
2451                 WARN_ON(page_count(page) != 1);
2452                 prep_compound_huge_page(page, huge_page_order(h));
2453                 WARN_ON(PageReserved(page));
2454                 prep_new_huge_page(h, page, page_to_nid(page));
2455                 put_page(page); /* free it into the hugepage allocator */
2456
2457                 /*
2458                  * If we had gigantic hugepages allocated at boot time, we need
2459                  * to restore the 'stolen' pages to totalram_pages in order to
2460                  * fix confusing memory reports from free(1) and another
2461                  * side-effects, like CommitLimit going negative.
2462                  */
2463                 if (hstate_is_gigantic(h))
2464                         adjust_managed_page_count(page, pages_per_huge_page(h));
2465                 cond_resched();
2466         }
2467 }
2468
2469 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
2470 {
2471         unsigned long i;
2472         nodemask_t *node_alloc_noretry;
2473
2474         if (!hstate_is_gigantic(h)) {
2475                 /*
2476                  * Bit mask controlling how hard we retry per-node allocations.
2477                  * Ignore errors as lower level routines can deal with
2478                  * node_alloc_noretry == NULL.  If this kmalloc fails at boot
2479                  * time, we are likely in bigger trouble.
2480                  */
2481                 node_alloc_noretry = kmalloc(sizeof(*node_alloc_noretry),
2482                                                 GFP_KERNEL);
2483         } else {
2484                 /* allocations done at boot time */
2485                 node_alloc_noretry = NULL;
2486         }
2487
2488         /* bit mask controlling how hard we retry per-node allocations */
2489         if (node_alloc_noretry)
2490                 nodes_clear(*node_alloc_noretry);
2491
2492         for (i = 0; i < h->max_huge_pages; ++i) {
2493                 if (hstate_is_gigantic(h)) {
2494                         if (hugetlb_cma_size) {
2495                                 pr_warn_once("HugeTLB: hugetlb_cma is enabled, skip boot time allocation\n");
2496                                 goto free;
2497                         }
2498                         if (!alloc_bootmem_huge_page(h))
2499                                 break;
2500                 } else if (!alloc_pool_huge_page(h,
2501                                          &node_states[N_MEMORY],
2502                                          node_alloc_noretry))
2503                         break;
2504                 cond_resched();
2505         }
2506         if (i < h->max_huge_pages) {
2507                 char buf[32];
2508
2509                 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
2510                 pr_warn("HugeTLB: allocating %lu of page size %s failed.  Only allocated %lu hugepages.\n",
2511                         h->max_huge_pages, buf, i);
2512                 h->max_huge_pages = i;
2513         }
2514 free:
2515         kfree(node_alloc_noretry);
2516 }
2517
2518 static void __init hugetlb_init_hstates(void)
2519 {
2520         struct hstate *h;
2521
2522         for_each_hstate(h) {
2523                 if (minimum_order > huge_page_order(h))
2524                         minimum_order = huge_page_order(h);
2525
2526                 /* oversize hugepages were init'ed in early boot */
2527                 if (!hstate_is_gigantic(h))
2528                         hugetlb_hstate_alloc_pages(h);
2529         }
2530         VM_BUG_ON(minimum_order == UINT_MAX);
2531 }
2532
2533 static void __init report_hugepages(void)
2534 {
2535         struct hstate *h;
2536
2537         for_each_hstate(h) {
2538                 char buf[32];
2539
2540                 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
2541                 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
2542                         buf, h->free_huge_pages);
2543         }
2544 }
2545
2546 #ifdef CONFIG_HIGHMEM
2547 static void try_to_free_low(struct hstate *h, unsigned long count,
2548                                                 nodemask_t *nodes_allowed)
2549 {
2550         int i;
2551         LIST_HEAD(page_list);
2552
2553         lockdep_assert_held(&hugetlb_lock);
2554         if (hstate_is_gigantic(h))
2555                 return;
2556
2557         /*
2558          * Collect pages to be freed on a list, and free after dropping lock
2559          */
2560         for_each_node_mask(i, *nodes_allowed) {
2561                 struct page *page, *next;
2562                 struct list_head *freel = &h->hugepage_freelists[i];
2563                 list_for_each_entry_safe(page, next, freel, lru) {
2564                         if (count >= h->nr_huge_pages)
2565                                 goto out;
2566                         if (PageHighMem(page))
2567                                 continue;
2568                         remove_hugetlb_page(h, page, false);
2569                         list_add(&page->lru, &page_list);
2570                 }
2571         }
2572
2573 out:
2574         spin_unlock_irq(&hugetlb_lock);
2575         update_and_free_pages_bulk(h, &page_list);
2576         spin_lock_irq(&hugetlb_lock);
2577 }
2578 #else
2579 static inline void try_to_free_low(struct hstate *h, unsigned long count,
2580                                                 nodemask_t *nodes_allowed)
2581 {
2582 }
2583 #endif
2584
2585 /*
2586  * Increment or decrement surplus_huge_pages.  Keep node-specific counters
2587  * balanced by operating on them in a round-robin fashion.
2588  * Returns 1 if an adjustment was made.
2589  */
2590 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
2591                                 int delta)
2592 {
2593         int nr_nodes, node;
2594
2595         lockdep_assert_held(&hugetlb_lock);
2596         VM_BUG_ON(delta != -1 && delta != 1);
2597
2598         if (delta < 0) {
2599                 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
2600                         if (h->surplus_huge_pages_node[node])
2601                                 goto found;
2602                 }
2603         } else {
2604                 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2605                         if (h->surplus_huge_pages_node[node] <
2606                                         h->nr_huge_pages_node[node])
2607                                 goto found;
2608                 }
2609         }
2610         return 0;
2611
2612 found:
2613         h->surplus_huge_pages += delta;
2614         h->surplus_huge_pages_node[node] += delta;
2615         return 1;
2616 }
2617
2618 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
2619 static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid,
2620                               nodemask_t *nodes_allowed)
2621 {
2622         unsigned long min_count, ret;
2623         struct page *page;
2624         LIST_HEAD(page_list);
2625         NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL);
2626
2627         /*
2628          * Bit mask controlling how hard we retry per-node allocations.
2629          * If we can not allocate the bit mask, do not attempt to allocate
2630          * the requested huge pages.
2631          */
2632         if (node_alloc_noretry)
2633                 nodes_clear(*node_alloc_noretry);
2634         else
2635                 return -ENOMEM;
2636
2637         /*
2638          * resize_lock mutex prevents concurrent adjustments to number of
2639          * pages in hstate via the proc/sysfs interfaces.
2640          */
2641         mutex_lock(&h->resize_lock);
2642         spin_lock_irq(&hugetlb_lock);
2643
2644         /*
2645          * Check for a node specific request.
2646          * Changing node specific huge page count may require a corresponding
2647          * change to the global count.  In any case, the passed node mask
2648          * (nodes_allowed) will restrict alloc/free to the specified node.
2649          */
2650         if (nid != NUMA_NO_NODE) {
2651                 unsigned long old_count = count;
2652
2653                 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
2654                 /*
2655                  * User may have specified a large count value which caused the
2656                  * above calculation to overflow.  In this case, they wanted
2657                  * to allocate as many huge pages as possible.  Set count to
2658                  * largest possible value to align with their intention.
2659                  */
2660                 if (count < old_count)
2661                         count = ULONG_MAX;
2662         }
2663
2664         /*
2665          * Gigantic pages runtime allocation depend on the capability for large
2666          * page range allocation.
2667          * If the system does not provide this feature, return an error when
2668          * the user tries to allocate gigantic pages but let the user free the
2669          * boottime allocated gigantic pages.
2670          */
2671         if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) {
2672                 if (count > persistent_huge_pages(h)) {
2673                         spin_unlock_irq(&hugetlb_lock);
2674                         mutex_unlock(&h->resize_lock);
2675                         NODEMASK_FREE(node_alloc_noretry);
2676                         return -EINVAL;
2677                 }
2678                 /* Fall through to decrease pool */
2679         }
2680
2681         /*
2682          * Increase the pool size
2683          * First take pages out of surplus state.  Then make up the
2684          * remaining difference by allocating fresh huge pages.
2685          *
2686          * We might race with alloc_surplus_huge_page() here and be unable
2687          * to convert a surplus huge page to a normal huge page. That is
2688          * not critical, though, it just means the overall size of the
2689          * pool might be one hugepage larger than it needs to be, but
2690          * within all the constraints specified by the sysctls.
2691          */
2692         while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
2693                 if (!adjust_pool_surplus(h, nodes_allowed, -1))
2694                         break;
2695         }
2696
2697         while (count > persistent_huge_pages(h)) {
2698                 /*
2699                  * If this allocation races such that we no longer need the
2700                  * page, free_huge_page will handle it by freeing the page
2701                  * and reducing the surplus.
2702                  */
2703                 spin_unlock_irq(&hugetlb_lock);
2704
2705                 /* yield cpu to avoid soft lockup */
2706                 cond_resched();
2707
2708                 ret = alloc_pool_huge_page(h, nodes_allowed,
2709                                                 node_alloc_noretry);
2710                 spin_lock_irq(&hugetlb_lock);
2711                 if (!ret)
2712                         goto out;
2713
2714                 /* Bail for signals. Probably ctrl-c from user */
2715                 if (signal_pending(current))
2716                         goto out;
2717         }
2718
2719         /*
2720          * Decrease the pool size
2721          * First return free pages to the buddy allocator (being careful
2722          * to keep enough around to satisfy reservations).  Then place
2723          * pages into surplus state as needed so the pool will shrink
2724          * to the desired size as pages become free.
2725          *
2726          * By placing pages into the surplus state independent of the
2727          * overcommit value, we are allowing the surplus pool size to
2728          * exceed overcommit. There are few sane options here. Since
2729          * alloc_surplus_huge_page() is checking the global counter,
2730          * though, we'll note that we're not allowed to exceed surplus
2731          * and won't grow the pool anywhere else. Not until one of the
2732          * sysctls are changed, or the surplus pages go out of use.
2733          */
2734         min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
2735         min_count = max(count, min_count);
2736         try_to_free_low(h, min_count, nodes_allowed);
2737
2738         /*
2739          * Collect pages to be removed on list without dropping lock
2740          */
2741         while (min_count < persistent_huge_pages(h)) {
2742                 page = remove_pool_huge_page(h, nodes_allowed, 0);
2743                 if (!page)
2744                         break;
2745
2746                 list_add(&page->lru, &page_list);
2747         }
2748         /* free the pages after dropping lock */
2749         spin_unlock_irq(&hugetlb_lock);
2750         update_and_free_pages_bulk(h, &page_list);
2751         spin_lock_irq(&hugetlb_lock);
2752
2753         while (count < persistent_huge_pages(h)) {
2754                 if (!adjust_pool_surplus(h, nodes_allowed, 1))
2755                         break;
2756         }
2757 out:
2758         h->max_huge_pages = persistent_huge_pages(h);
2759         spin_unlock_irq(&hugetlb_lock);
2760         mutex_unlock(&h->resize_lock);
2761
2762         NODEMASK_FREE(node_alloc_noretry);
2763
2764         return 0;
2765 }
2766
2767 #define HSTATE_ATTR_RO(_name) \
2768         static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2769
2770 #define HSTATE_ATTR(_name) \
2771         static struct kobj_attribute _name##_attr = \
2772                 __ATTR(_name, 0644, _name##_show, _name##_store)
2773
2774 static struct kobject *hugepages_kobj;
2775 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2776
2777 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
2778
2779 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
2780 {
2781         int i;
2782
2783         for (i = 0; i < HUGE_MAX_HSTATE; i++)
2784                 if (hstate_kobjs[i] == kobj) {
2785                         if (nidp)
2786                                 *nidp = NUMA_NO_NODE;
2787                         return &hstates[i];
2788                 }
2789
2790         return kobj_to_node_hstate(kobj, nidp);
2791 }
2792
2793 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
2794                                         struct kobj_attribute *attr, char *buf)
2795 {
2796         struct hstate *h;
2797         unsigned long nr_huge_pages;
2798         int nid;
2799
2800         h = kobj_to_hstate(kobj, &nid);
2801         if (nid == NUMA_NO_NODE)
2802                 nr_huge_pages = h->nr_huge_pages;
2803         else
2804                 nr_huge_pages = h->nr_huge_pages_node[nid];
2805
2806         return sysfs_emit(buf, "%lu\n", nr_huge_pages);
2807 }
2808
2809 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
2810                                            struct hstate *h, int nid,
2811                                            unsigned long count, size_t len)
2812 {
2813         int err;
2814         nodemask_t nodes_allowed, *n_mask;
2815
2816         if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
2817                 return -EINVAL;
2818
2819         if (nid == NUMA_NO_NODE) {
2820                 /*
2821                  * global hstate attribute
2822                  */
2823                 if (!(obey_mempolicy &&
2824                                 init_nodemask_of_mempolicy(&nodes_allowed)))
2825                         n_mask = &node_states[N_MEMORY];
2826                 else
2827                         n_mask = &nodes_allowed;
2828         } else {
2829                 /*
2830                  * Node specific request.  count adjustment happens in
2831                  * set_max_huge_pages() after acquiring hugetlb_lock.
2832                  */
2833                 init_nodemask_of_node(&nodes_allowed, nid);
2834                 n_mask = &nodes_allowed;
2835         }
2836
2837         err = set_max_huge_pages(h, count, nid, n_mask);
2838
2839         return err ? err : len;
2840 }
2841
2842 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
2843                                          struct kobject *kobj, const char *buf,
2844                                          size_t len)
2845 {
2846         struct hstate *h;
2847         unsigned long count;
2848         int nid;
2849         int err;
2850
2851         err = kstrtoul(buf, 10, &count);
2852         if (err)
2853                 return err;
2854
2855         h = kobj_to_hstate(kobj, &nid);
2856         return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
2857 }
2858
2859 static ssize_t nr_hugepages_show(struct kobject *kobj,
2860                                        struct kobj_attribute *attr, char *buf)
2861 {
2862         return nr_hugepages_show_common(kobj, attr, buf);
2863 }
2864
2865 static ssize_t nr_hugepages_store(struct kobject *kobj,
2866                struct kobj_attribute *attr, const char *buf, size_t len)
2867 {
2868         return nr_hugepages_store_common(false, kobj, buf, len);
2869 }
2870 HSTATE_ATTR(nr_hugepages);
2871
2872 #ifdef CONFIG_NUMA
2873
2874 /*
2875  * hstate attribute for optionally mempolicy-based constraint on persistent
2876  * huge page alloc/free.
2877  */
2878 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
2879                                            struct kobj_attribute *attr,
2880                                            char *buf)
2881 {
2882         return nr_hugepages_show_common(kobj, attr, buf);
2883 }
2884
2885 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
2886                struct kobj_attribute *attr, const char *buf, size_t len)
2887 {
2888         return nr_hugepages_store_common(true, kobj, buf, len);
2889 }
2890 HSTATE_ATTR(nr_hugepages_mempolicy);
2891 #endif
2892
2893
2894 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
2895                                         struct kobj_attribute *attr, char *buf)
2896 {
2897         struct hstate *h = kobj_to_hstate(kobj, NULL);
2898         return sysfs_emit(buf, "%lu\n", h->nr_overcommit_huge_pages);
2899 }
2900
2901 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
2902                 struct kobj_attribute *attr, const char *buf, size_t count)
2903 {
2904         int err;
2905         unsigned long input;
2906         struct hstate *h = kobj_to_hstate(kobj, NULL);
2907
2908         if (hstate_is_gigantic(h))
2909                 return -EINVAL;
2910
2911         err = kstrtoul(buf, 10, &input);
2912         if (err)
2913                 return err;
2914
2915         spin_lock_irq(&hugetlb_lock);
2916         h->nr_overcommit_huge_pages = input;
2917         spin_unlock_irq(&hugetlb_lock);
2918
2919         return count;
2920 }
2921 HSTATE_ATTR(nr_overcommit_hugepages);
2922
2923 static ssize_t free_hugepages_show(struct kobject *kobj,
2924                                         struct kobj_attribute *attr, char *buf)
2925 {
2926         struct hstate *h;
2927         unsigned long free_huge_pages;
2928         int nid;
2929
2930         h = kobj_to_hstate(kobj, &nid);
2931         if (nid == NUMA_NO_NODE)
2932                 free_huge_pages = h->free_huge_pages;
2933         else
2934                 free_huge_pages = h->free_huge_pages_node[nid];
2935
2936         return sysfs_emit(buf, "%lu\n", free_huge_pages);
2937 }
2938 HSTATE_ATTR_RO(free_hugepages);
2939
2940 static ssize_t resv_hugepages_show(struct kobject *kobj,
2941                                         struct kobj_attribute *attr, char *buf)
2942 {
2943         struct hstate *h = kobj_to_hstate(kobj, NULL);
2944         return sysfs_emit(buf, "%lu\n", h->resv_huge_pages);
2945 }
2946 HSTATE_ATTR_RO(resv_hugepages);
2947
2948 static ssize_t surplus_hugepages_show(struct kobject *kobj,
2949                                         struct kobj_attribute *attr, char *buf)
2950 {
2951         struct hstate *h;
2952         unsigned long surplus_huge_pages;
2953         int nid;
2954
2955         h = kobj_to_hstate(kobj, &nid);
2956         if (nid == NUMA_NO_NODE)
2957                 surplus_huge_pages = h->surplus_huge_pages;
2958         else
2959                 surplus_huge_pages = h->surplus_huge_pages_node[nid];
2960
2961         return sysfs_emit(buf, "%lu\n", surplus_huge_pages);
2962 }
2963 HSTATE_ATTR_RO(surplus_hugepages);
2964
2965 static struct attribute *hstate_attrs[] = {
2966         &nr_hugepages_attr.attr,
2967         &nr_overcommit_hugepages_attr.attr,
2968         &free_hugepages_attr.attr,
2969         &resv_hugepages_attr.attr,
2970         &surplus_hugepages_attr.attr,
2971 #ifdef CONFIG_NUMA
2972         &nr_hugepages_mempolicy_attr.attr,
2973 #endif
2974         NULL,
2975 };
2976
2977 static const struct attribute_group hstate_attr_group = {
2978         .attrs = hstate_attrs,
2979 };
2980
2981 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
2982                                     struct kobject **hstate_kobjs,
2983                                     const struct attribute_group *hstate_attr_group)
2984 {
2985         int retval;
2986         int hi = hstate_index(h);
2987
2988         hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
2989         if (!hstate_kobjs[hi])
2990                 return -ENOMEM;
2991
2992         retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
2993         if (retval) {
2994                 kobject_put(hstate_kobjs[hi]);
2995                 hstate_kobjs[hi] = NULL;
2996         }
2997
2998         return retval;
2999 }
3000
3001 static void __init hugetlb_sysfs_init(void)
3002 {
3003         struct hstate *h;
3004         int err;
3005
3006         hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
3007         if (!hugepages_kobj)
3008                 return;
3009
3010         for_each_hstate(h) {
3011                 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
3012                                          hstate_kobjs, &hstate_attr_group);
3013                 if (err)
3014                         pr_err("HugeTLB: Unable to add hstate %s", h->name);
3015         }
3016 }
3017
3018 #ifdef CONFIG_NUMA
3019
3020 /*
3021  * node_hstate/s - associate per node hstate attributes, via their kobjects,
3022  * with node devices in node_devices[] using a parallel array.  The array
3023  * index of a node device or _hstate == node id.
3024  * This is here to avoid any static dependency of the node device driver, in
3025  * the base kernel, on the hugetlb module.
3026  */
3027 struct node_hstate {
3028         struct kobject          *hugepages_kobj;
3029         struct kobject          *hstate_kobjs[HUGE_MAX_HSTATE];
3030 };
3031 static struct node_hstate node_hstates[MAX_NUMNODES];
3032
3033 /*
3034  * A subset of global hstate attributes for node devices
3035  */
3036 static struct attribute *per_node_hstate_attrs[] = {
3037         &nr_hugepages_attr.attr,
3038         &free_hugepages_attr.attr,
3039         &surplus_hugepages_attr.attr,
3040         NULL,
3041 };
3042
3043 static const struct attribute_group per_node_hstate_attr_group = {
3044         .attrs = per_node_hstate_attrs,
3045 };
3046
3047 /*
3048  * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
3049  * Returns node id via non-NULL nidp.
3050  */
3051 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
3052 {
3053         int nid;
3054
3055         for (nid = 0; nid < nr_node_ids; nid++) {
3056                 struct node_hstate *nhs = &node_hstates[nid];
3057                 int i;
3058                 for (i = 0; i < HUGE_MAX_HSTATE; i++)
3059                         if (nhs->hstate_kobjs[i] == kobj) {
3060                                 if (nidp)
3061                                         *nidp = nid;
3062                                 return &hstates[i];
3063                         }
3064         }
3065
3066         BUG();
3067         return NULL;
3068 }
3069
3070 /*
3071  * Unregister hstate attributes from a single node device.
3072  * No-op if no hstate attributes attached.
3073  */
3074 static void hugetlb_unregister_node(struct node *node)
3075 {
3076         struct hstate *h;
3077         struct node_hstate *nhs = &node_hstates[node->dev.id];
3078
3079         if (!nhs->hugepages_kobj)
3080                 return;         /* no hstate attributes */
3081
3082         for_each_hstate(h) {
3083                 int idx = hstate_index(h);
3084                 if (nhs->hstate_kobjs[idx]) {
3085                         kobject_put(nhs->hstate_kobjs[idx]);
3086                         nhs->hstate_kobjs[idx] = NULL;
3087                 }
3088         }
3089
3090         kobject_put(nhs->hugepages_kobj);
3091         nhs->hugepages_kobj = NULL;
3092 }
3093
3094
3095 /*
3096  * Register hstate attributes for a single node device.
3097  * No-op if attributes already registered.
3098  */
3099 static void hugetlb_register_node(struct node *node)
3100 {
3101         struct hstate *h;
3102         struct node_hstate *nhs = &node_hstates[node->dev.id];
3103         int err;
3104
3105         if (nhs->hugepages_kobj)
3106                 return;         /* already allocated */
3107
3108         nhs->hugepages_kobj = kobject_create_and_add("hugepages",
3109                                                         &node->dev.kobj);
3110         if (!nhs->hugepages_kobj)
3111                 return;
3112
3113         for_each_hstate(h) {
3114                 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
3115                                                 nhs->hstate_kobjs,
3116                                                 &per_node_hstate_attr_group);
3117                 if (err) {
3118                         pr_err("HugeTLB: Unable to add hstate %s for node %d\n",
3119                                 h->name, node->dev.id);
3120                         hugetlb_unregister_node(node);
3121                         break;
3122                 }
3123         }
3124 }
3125
3126 /*
3127  * hugetlb init time:  register hstate attributes for all registered node
3128  * devices of nodes that have memory.  All on-line nodes should have
3129  * registered their associated device by this time.
3130  */
3131 static void __init hugetlb_register_all_nodes(void)
3132 {
3133         int nid;
3134
3135         for_each_node_state(nid, N_MEMORY) {
3136                 struct node *node = node_devices[nid];
3137                 if (node->dev.id == nid)
3138                         hugetlb_register_node(node);
3139         }
3140
3141         /*
3142          * Let the node device driver know we're here so it can
3143          * [un]register hstate attributes on node hotplug.
3144          */
3145         register_hugetlbfs_with_node(hugetlb_register_node,
3146                                      hugetlb_unregister_node);
3147 }
3148 #else   /* !CONFIG_NUMA */
3149
3150 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
3151 {
3152         BUG();
3153         if (nidp)
3154                 *nidp = -1;
3155         return NULL;
3156 }
3157
3158 static void hugetlb_register_all_nodes(void) { }
3159
3160 #endif
3161
3162 static int __init hugetlb_init(void)
3163 {
3164         int i;
3165
3166         BUILD_BUG_ON(sizeof_field(struct page, private) * BITS_PER_BYTE <
3167                         __NR_HPAGEFLAGS);
3168
3169         if (!hugepages_supported()) {
3170                 if (hugetlb_max_hstate || default_hstate_max_huge_pages)
3171                         pr_warn("HugeTLB: huge pages not supported, ignoring associated command-line parameters\n");
3172                 return 0;
3173         }
3174
3175         /*
3176          * Make sure HPAGE_SIZE (HUGETLB_PAGE_ORDER) hstate exists.  Some
3177          * architectures depend on setup being done here.
3178          */
3179         hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
3180         if (!parsed_default_hugepagesz) {
3181                 /*
3182                  * If we did not parse a default huge page size, set
3183                  * default_hstate_idx to HPAGE_SIZE hstate. And, if the
3184                  * number of huge pages for this default size was implicitly
3185                  * specified, set that here as well.
3186                  * Note that the implicit setting will overwrite an explicit
3187                  * setting.  A warning will be printed in this case.
3188                  */
3189                 default_hstate_idx = hstate_index(size_to_hstate(HPAGE_SIZE));
3190                 if (default_hstate_max_huge_pages) {
3191                         if (default_hstate.max_huge_pages) {
3192                                 char buf[32];
3193
3194                                 string_get_size(huge_page_size(&default_hstate),
3195                                         1, STRING_UNITS_2, buf, 32);
3196                                 pr_warn("HugeTLB: Ignoring hugepages=%lu associated with %s page size\n",
3197                                         default_hstate.max_huge_pages, buf);
3198                                 pr_warn("HugeTLB: Using hugepages=%lu for number of default huge pages\n",
3199                                         default_hstate_max_huge_pages);
3200                         }
3201                         default_hstate.max_huge_pages =
3202                                 default_hstate_max_huge_pages;
3203                 }
3204         }
3205
3206         hugetlb_cma_check();
3207         hugetlb_init_hstates();
3208         gather_bootmem_prealloc();
3209         report_hugepages();
3210
3211         hugetlb_sysfs_init();
3212         hugetlb_register_all_nodes();
3213         hugetlb_cgroup_file_init();
3214
3215 #ifdef CONFIG_SMP
3216         num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
3217 #else
3218         num_fault_mutexes = 1;
3219 #endif
3220         hugetlb_fault_mutex_table =
3221                 kmalloc_array(num_fault_mutexes, sizeof(struct mutex),
3222                               GFP_KERNEL);
3223         BUG_ON(!hugetlb_fault_mutex_table);
3224
3225         for (i = 0; i < num_fault_mutexes; i++)
3226                 mutex_init(&hugetlb_fault_mutex_table[i]);
3227         return 0;
3228 }
3229 subsys_initcall(hugetlb_init);
3230
3231 /* Overwritten by architectures with more huge page sizes */
3232 bool __init __attribute((weak)) arch_hugetlb_valid_size(unsigned long size)
3233 {
3234         return size == HPAGE_SIZE;
3235 }
3236
3237 void __init hugetlb_add_hstate(unsigned int order)
3238 {
3239         struct hstate *h;
3240         unsigned long i;
3241
3242         if (size_to_hstate(PAGE_SIZE << order)) {
3243                 return;
3244         }
3245         BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
3246         BUG_ON(order == 0);
3247         h = &hstates[hugetlb_max_hstate++];
3248         mutex_init(&h->resize_lock);
3249         h->order = order;
3250         h->mask = ~(huge_page_size(h) - 1);
3251         for (i = 0; i < MAX_NUMNODES; ++i)
3252                 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
3253         INIT_LIST_HEAD(&h->hugepage_activelist);
3254         h->next_nid_to_alloc = first_memory_node;
3255         h->next_nid_to_free = first_memory_node;
3256         snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
3257                                         huge_page_size(h)/1024);
3258
3259         parsed_hstate = h;
3260 }
3261
3262 /*
3263  * hugepages command line processing
3264  * hugepages normally follows a valid hugepagsz or default_hugepagsz
3265  * specification.  If not, ignore the hugepages value.  hugepages can also
3266  * be the first huge page command line  option in which case it implicitly
3267  * specifies the number of huge pages for the default size.
3268  */
3269 static int __init hugepages_setup(char *s)
3270 {
3271         unsigned long *mhp;
3272         static unsigned long *last_mhp;
3273
3274         if (!parsed_valid_hugepagesz) {
3275                 pr_warn("HugeTLB: hugepages=%s does not follow a valid hugepagesz, ignoring\n", s);
3276                 parsed_valid_hugepagesz = true;
3277                 return 0;
3278         }
3279
3280         /*
3281          * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter
3282          * yet, so this hugepages= parameter goes to the "default hstate".
3283          * Otherwise, it goes with the previously parsed hugepagesz or
3284          * default_hugepagesz.
3285          */
3286         else if (!hugetlb_max_hstate)
3287                 mhp = &default_hstate_max_huge_pages;
3288         else
3289                 mhp = &parsed_hstate->max_huge_pages;
3290
3291         if (mhp == last_mhp) {
3292                 pr_warn("HugeTLB: hugepages= specified twice without interleaving hugepagesz=, ignoring hugepages=%s\n", s);
3293                 return 0;
3294         }
3295
3296         if (sscanf(s, "%lu", mhp) <= 0)
3297                 *mhp = 0;
3298
3299         /*
3300          * Global state is always initialized later in hugetlb_init.
3301          * But we need to allocate gigantic hstates here early to still
3302          * use the bootmem allocator.
3303          */
3304         if (hugetlb_max_hstate && hstate_is_gigantic(parsed_hstate))
3305                 hugetlb_hstate_alloc_pages(parsed_hstate);
3306
3307         last_mhp = mhp;
3308
3309         return 1;
3310 }
3311 __setup("hugepages=", hugepages_setup);
3312
3313 /*
3314  * hugepagesz command line processing
3315  * A specific huge page size can only be specified once with hugepagesz.
3316  * hugepagesz is followed by hugepages on the command line.  The global
3317  * variable 'parsed_valid_hugepagesz' is used to determine if prior
3318  * hugepagesz argument was valid.
3319  */
3320 static int __init hugepagesz_setup(char *s)
3321 {
3322         unsigned long size;
3323         struct hstate *h;
3324
3325         parsed_valid_hugepagesz = false;
3326         size = (unsigned long)memparse(s, NULL);
3327
3328         if (!arch_hugetlb_valid_size(size)) {
3329                 pr_err("HugeTLB: unsupported hugepagesz=%s\n", s);
3330                 return 0;
3331         }
3332
3333         h = size_to_hstate(size);
3334         if (h) {
3335                 /*
3336                  * hstate for this size already exists.  This is normally
3337                  * an error, but is allowed if the existing hstate is the
3338                  * default hstate.  More specifically, it is only allowed if
3339                  * the number of huge pages for the default hstate was not
3340                  * previously specified.
3341                  */
3342                 if (!parsed_default_hugepagesz ||  h != &default_hstate ||
3343                     default_hstate.max_huge_pages) {
3344                         pr_warn("HugeTLB: hugepagesz=%s specified twice, ignoring\n", s);
3345                         return 0;
3346                 }
3347
3348                 /*
3349                  * No need to call hugetlb_add_hstate() as hstate already
3350                  * exists.  But, do set parsed_hstate so that a following
3351                  * hugepages= parameter will be applied to this hstate.
3352                  */
3353                 parsed_hstate = h;
3354                 parsed_valid_hugepagesz = true;
3355                 return 1;
3356         }
3357
3358         hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
3359         parsed_valid_hugepagesz = true;
3360         return 1;
3361 }
3362 __setup("hugepagesz=", hugepagesz_setup);
3363
3364 /*
3365  * default_hugepagesz command line input
3366  * Only one instance of default_hugepagesz allowed on command line.
3367  */
3368 static int __init default_hugepagesz_setup(char *s)
3369 {
3370         unsigned long size;
3371
3372         parsed_valid_hugepagesz = false;
3373         if (parsed_default_hugepagesz) {
3374                 pr_err("HugeTLB: default_hugepagesz previously specified, ignoring %s\n", s);
3375                 return 0;
3376         }
3377
3378         size = (unsigned long)memparse(s, NULL);
3379
3380         if (!arch_hugetlb_valid_size(size)) {
3381                 pr_err("HugeTLB: unsupported default_hugepagesz=%s\n", s);
3382                 return 0;
3383         }
3384
3385         hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
3386         parsed_valid_hugepagesz = true;
3387         parsed_default_hugepagesz = true;
3388         default_hstate_idx = hstate_index(size_to_hstate(size));
3389
3390         /*
3391          * The number of default huge pages (for this size) could have been
3392          * specified as the first hugetlb parameter: hugepages=X.  If so,
3393          * then default_hstate_max_huge_pages is set.  If the default huge
3394          * page size is gigantic (>= MAX_ORDER), then the pages must be
3395          * allocated here from bootmem allocator.
3396          */
3397         if (default_hstate_max_huge_pages) {
3398                 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
3399                 if (hstate_is_gigantic(&default_hstate))
3400                         hugetlb_hstate_alloc_pages(&default_hstate);
3401                 default_hstate_max_huge_pages = 0;
3402         }
3403
3404         return 1;
3405 }
3406 __setup("default_hugepagesz=", default_hugepagesz_setup);
3407
3408 static unsigned int allowed_mems_nr(struct hstate *h)
3409 {
3410         int node;
3411         unsigned int nr = 0;
3412         nodemask_t *mpol_allowed;
3413         unsigned int *array = h->free_huge_pages_node;
3414         gfp_t gfp_mask = htlb_alloc_mask(h);
3415
3416         mpol_allowed = policy_nodemask_current(gfp_mask);
3417
3418         for_each_node_mask(node, cpuset_current_mems_allowed) {
3419                 if (!mpol_allowed || node_isset(node, *mpol_allowed))
3420                         nr += array[node];
3421         }
3422
3423         return nr;
3424 }
3425
3426 #ifdef CONFIG_SYSCTL
3427 static int proc_hugetlb_doulongvec_minmax(struct ctl_table *table, int write,
3428                                           void *buffer, size_t *length,
3429                                           loff_t *ppos, unsigned long *out)
3430 {
3431         struct ctl_table dup_table;
3432
3433         /*
3434          * In order to avoid races with __do_proc_doulongvec_minmax(), we
3435          * can duplicate the @table and alter the duplicate of it.
3436          */
3437         dup_table = *table;
3438         dup_table.data = out;
3439
3440         return proc_doulongvec_minmax(&dup_table, write, buffer, length, ppos);
3441 }
3442
3443 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
3444                          struct ctl_table *table, int write,
3445                          void *buffer, size_t *length, loff_t *ppos)
3446 {
3447         struct hstate *h = &default_hstate;
3448         unsigned long tmp = h->max_huge_pages;
3449         int ret;
3450
3451         if (!hugepages_supported())
3452                 return -EOPNOTSUPP;
3453
3454         ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
3455                                              &tmp);
3456         if (ret)
3457                 goto out;
3458
3459         if (write)
3460                 ret = __nr_hugepages_store_common(obey_mempolicy, h,
3461                                                   NUMA_NO_NODE, tmp, *length);
3462 out:
3463         return ret;
3464 }
3465
3466 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
3467                           void *buffer, size_t *length, loff_t *ppos)
3468 {
3469
3470         return hugetlb_sysctl_handler_common(false, table, write,
3471                                                         buffer, length, ppos);
3472 }
3473
3474 #ifdef CONFIG_NUMA
3475 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
3476                           void *buffer, size_t *length, loff_t *ppos)
3477 {
3478         return hugetlb_sysctl_handler_common(true, table, write,
3479                                                         buffer, length, ppos);
3480 }
3481 #endif /* CONFIG_NUMA */
3482
3483 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
3484                 void *buffer, size_t *length, loff_t *ppos)
3485 {
3486         struct hstate *h = &default_hstate;
3487         unsigned long tmp;
3488         int ret;
3489
3490         if (!hugepages_supported())
3491                 return -EOPNOTSUPP;
3492
3493         tmp = h->nr_overcommit_huge_pages;
3494
3495         if (write && hstate_is_gigantic(h))
3496                 return -EINVAL;
3497
3498         ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
3499                                              &tmp);
3500         if (ret)
3501                 goto out;
3502
3503         if (write) {
3504                 spin_lock_irq(&hugetlb_lock);
3505                 h->nr_overcommit_huge_pages = tmp;
3506                 spin_unlock_irq(&hugetlb_lock);
3507         }
3508 out:
3509         return ret;
3510 }
3511
3512 #endif /* CONFIG_SYSCTL */
3513
3514 void hugetlb_report_meminfo(struct seq_file *m)
3515 {
3516         struct hstate *h;
3517         unsigned long total = 0;
3518
3519         if (!hugepages_supported())
3520                 return;
3521
3522         for_each_hstate(h) {
3523                 unsigned long count = h->nr_huge_pages;
3524
3525                 total += huge_page_size(h) * count;
3526
3527                 if (h == &default_hstate)
3528                         seq_printf(m,
3529                                    "HugePages_Total:   %5lu\n"
3530                                    "HugePages_Free:    %5lu\n"
3531                                    "HugePages_Rsvd:    %5lu\n"
3532                                    "HugePages_Surp:    %5lu\n"
3533                                    "Hugepagesize:   %8lu kB\n",
3534                                    count,
3535                                    h->free_huge_pages,
3536                                    h->resv_huge_pages,
3537                                    h->surplus_huge_pages,
3538                                    huge_page_size(h) / SZ_1K);
3539         }
3540
3541         seq_printf(m, "Hugetlb:        %8lu kB\n", total / SZ_1K);
3542 }
3543
3544 int hugetlb_report_node_meminfo(char *buf, int len, int nid)
3545 {
3546         struct hstate *h = &default_hstate;
3547
3548         if (!hugepages_supported())
3549                 return 0;
3550
3551         return sysfs_emit_at(buf, len,
3552                              "Node %d HugePages_Total: %5u\n"
3553                              "Node %d HugePages_Free:  %5u\n"
3554                              "Node %d HugePages_Surp:  %5u\n",
3555                              nid, h->nr_huge_pages_node[nid],
3556                              nid, h->free_huge_pages_node[nid],
3557                              nid, h->surplus_huge_pages_node[nid]);
3558 }
3559
3560 void hugetlb_show_meminfo(void)
3561 {
3562         struct hstate *h;
3563         int nid;
3564
3565         if (!hugepages_supported())
3566                 return;
3567
3568         for_each_node_state(nid, N_MEMORY)
3569                 for_each_hstate(h)
3570                         pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
3571                                 nid,
3572                                 h->nr_huge_pages_node[nid],
3573                                 h->free_huge_pages_node[nid],
3574                                 h->surplus_huge_pages_node[nid],
3575                                 huge_page_size(h) / SZ_1K);
3576 }
3577
3578 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
3579 {
3580         seq_printf(m, "HugetlbPages:\t%8lu kB\n",
3581                    atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
3582 }
3583
3584 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
3585 unsigned long hugetlb_total_pages(void)
3586 {
3587         struct hstate *h;
3588         unsigned long nr_total_pages = 0;
3589
3590         for_each_hstate(h)
3591                 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
3592         return nr_total_pages;
3593 }
3594
3595 static int hugetlb_acct_memory(struct hstate *h, long delta)
3596 {
3597         int ret = -ENOMEM;
3598
3599         if (!delta)
3600                 return 0;
3601
3602         spin_lock_irq(&hugetlb_lock);
3603         /*
3604          * When cpuset is configured, it breaks the strict hugetlb page
3605          * reservation as the accounting is done on a global variable. Such
3606          * reservation is completely rubbish in the presence of cpuset because
3607          * the reservation is not checked against page availability for the
3608          * current cpuset. Application can still potentially OOM'ed by kernel
3609          * with lack of free htlb page in cpuset that the task is in.
3610          * Attempt to enforce strict accounting with cpuset is almost
3611          * impossible (or too ugly) because cpuset is too fluid that
3612          * task or memory node can be dynamically moved between cpusets.
3613          *
3614          * The change of semantics for shared hugetlb mapping with cpuset is
3615          * undesirable. However, in order to preserve some of the semantics,
3616          * we fall back to check against current free page availability as
3617          * a best attempt and hopefully to minimize the impact of changing
3618          * semantics that cpuset has.
3619          *
3620          * Apart from cpuset, we also have memory policy mechanism that
3621          * also determines from which node the kernel will allocate memory
3622          * in a NUMA system. So similar to cpuset, we also should consider
3623          * the memory policy of the current task. Similar to the description
3624          * above.
3625          */
3626         if (delta > 0) {
3627                 if (gather_surplus_pages(h, delta) < 0)
3628                         goto out;
3629
3630                 if (delta > allowed_mems_nr(h)) {
3631                         return_unused_surplus_pages(h, delta);
3632                         goto out;
3633                 }
3634         }
3635
3636         ret = 0;
3637         if (delta < 0)
3638                 return_unused_surplus_pages(h, (unsigned long) -delta);
3639
3640 out:
3641         spin_unlock_irq(&hugetlb_lock);
3642         return ret;
3643 }
3644
3645 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
3646 {
3647         struct resv_map *resv = vma_resv_map(vma);
3648
3649         /*
3650          * This new VMA should share its siblings reservation map if present.
3651          * The VMA will only ever have a valid reservation map pointer where
3652          * it is being copied for another still existing VMA.  As that VMA
3653          * has a reference to the reservation map it cannot disappear until
3654          * after this open call completes.  It is therefore safe to take a
3655          * new reference here without additional locking.
3656          */
3657         if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3658                 kref_get(&resv->refs);
3659 }
3660
3661 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
3662 {
3663         struct hstate *h = hstate_vma(vma);
3664         struct resv_map *resv = vma_resv_map(vma);
3665         struct hugepage_subpool *spool = subpool_vma(vma);
3666         unsigned long reserve, start, end;
3667         long gbl_reserve;
3668
3669         if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3670                 return;
3671
3672         start = vma_hugecache_offset(h, vma, vma->vm_start);
3673         end = vma_hugecache_offset(h, vma, vma->vm_end);
3674
3675         reserve = (end - start) - region_count(resv, start, end);
3676         hugetlb_cgroup_uncharge_counter(resv, start, end);
3677         if (reserve) {
3678                 /*
3679                  * Decrement reserve counts.  The global reserve count may be
3680                  * adjusted if the subpool has a minimum size.
3681                  */
3682                 gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
3683                 hugetlb_acct_memory(h, -gbl_reserve);
3684         }
3685
3686         kref_put(&resv->refs, resv_map_release);
3687 }
3688
3689 static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
3690 {
3691         if (addr & ~(huge_page_mask(hstate_vma(vma))))
3692                 return -EINVAL;
3693         return 0;
3694 }
3695
3696 static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma)
3697 {
3698         return huge_page_size(hstate_vma(vma));
3699 }
3700
3701 /*
3702  * We cannot handle pagefaults against hugetlb pages at all.  They cause
3703  * handle_mm_fault() to try to instantiate regular-sized pages in the
3704  * hugepage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
3705  * this far.
3706  */
3707 static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf)
3708 {
3709         BUG();
3710         return 0;
3711 }
3712
3713 /*
3714  * When a new function is introduced to vm_operations_struct and added
3715  * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops.
3716  * This is because under System V memory model, mappings created via
3717  * shmget/shmat with "huge page" specified are backed by hugetlbfs files,
3718  * their original vm_ops are overwritten with shm_vm_ops.
3719  */
3720 const struct vm_operations_struct hugetlb_vm_ops = {
3721         .fault = hugetlb_vm_op_fault,
3722         .open = hugetlb_vm_op_open,
3723         .close = hugetlb_vm_op_close,
3724         .may_split = hugetlb_vm_op_split,
3725         .pagesize = hugetlb_vm_op_pagesize,
3726 };
3727
3728 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
3729                                 int writable)
3730 {
3731         pte_t entry;
3732
3733         if (writable) {
3734                 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
3735                                          vma->vm_page_prot)));
3736         } else {
3737                 entry = huge_pte_wrprotect(mk_huge_pte(page,
3738                                            vma->vm_page_prot));
3739         }
3740         entry = pte_mkyoung(entry);
3741         entry = pte_mkhuge(entry);
3742         entry = arch_make_huge_pte(entry, vma, page, writable);
3743
3744         return entry;
3745 }
3746
3747 static void set_huge_ptep_writable(struct vm_area_struct *vma,
3748                                    unsigned long address, pte_t *ptep)
3749 {
3750         pte_t entry;
3751
3752         entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
3753         if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
3754                 update_mmu_cache(vma, address, ptep);
3755 }
3756
3757 bool is_hugetlb_entry_migration(pte_t pte)
3758 {
3759         swp_entry_t swp;
3760
3761         if (huge_pte_none(pte) || pte_present(pte))
3762                 return false;
3763         swp = pte_to_swp_entry(pte);
3764         if (is_migration_entry(swp))
3765                 return true;
3766         else
3767                 return false;
3768 }
3769
3770 static bool is_hugetlb_entry_hwpoisoned(pte_t pte)
3771 {
3772         swp_entry_t swp;
3773
3774         if (huge_pte_none(pte) || pte_present(pte))
3775                 return false;
3776         swp = pte_to_swp_entry(pte);
3777         if (is_hwpoison_entry(swp))
3778                 return true;
3779         else
3780                 return false;
3781 }
3782
3783 static void
3784 hugetlb_install_page(struct vm_area_struct *vma, pte_t *ptep, unsigned long addr,
3785                      struct page *new_page)
3786 {
3787         __SetPageUptodate(new_page);
3788         set_huge_pte_at(vma->vm_mm, addr, ptep, make_huge_pte(vma, new_page, 1));
3789         hugepage_add_new_anon_rmap(new_page, vma, addr);
3790         hugetlb_count_add(pages_per_huge_page(hstate_vma(vma)), vma->vm_mm);
3791         ClearHPageRestoreReserve(new_page);
3792         SetHPageMigratable(new_page);
3793 }
3794
3795 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
3796                             struct vm_area_struct *vma)
3797 {
3798         pte_t *src_pte, *dst_pte, entry, dst_entry;
3799         struct page *ptepage;
3800         unsigned long addr;
3801         bool cow = is_cow_mapping(vma->vm_flags);
3802         struct hstate *h = hstate_vma(vma);
3803         unsigned long sz = huge_page_size(h);
3804         unsigned long npages = pages_per_huge_page(h);
3805         struct address_space *mapping = vma->vm_file->f_mapping;
3806         struct mmu_notifier_range range;
3807         int ret = 0;
3808
3809         if (cow) {
3810                 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, src,
3811                                         vma->vm_start,
3812                                         vma->vm_end);
3813                 mmu_notifier_invalidate_range_start(&range);
3814         } else {
3815                 /*
3816                  * For shared mappings i_mmap_rwsem must be held to call
3817                  * huge_pte_alloc, otherwise the returned ptep could go
3818                  * away if part of a shared pmd and another thread calls
3819                  * huge_pmd_unshare.
3820                  */
3821                 i_mmap_lock_read(mapping);
3822         }
3823
3824         for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
3825                 spinlock_t *src_ptl, *dst_ptl;
3826                 src_pte = huge_pte_offset(src, addr, sz);
3827                 if (!src_pte)
3828                         continue;
3829                 dst_pte = huge_pte_alloc(dst, vma, addr, sz);
3830                 if (!dst_pte) {
3831                         ret = -ENOMEM;
3832                         break;
3833                 }
3834
3835                 /*
3836                  * If the pagetables are shared don't copy or take references.
3837                  * dst_pte == src_pte is the common case of src/dest sharing.
3838                  *
3839                  * However, src could have 'unshared' and dst shares with
3840                  * another vma.  If dst_pte !none, this implies sharing.
3841                  * Check here before taking page table lock, and once again
3842                  * after taking the lock below.
3843                  */
3844                 dst_entry = huge_ptep_get(dst_pte);
3845                 if ((dst_pte == src_pte) || !huge_pte_none(dst_entry))
3846                         continue;
3847
3848                 dst_ptl = huge_pte_lock(h, dst, dst_pte);
3849                 src_ptl = huge_pte_lockptr(h, src, src_pte);
3850                 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
3851                 entry = huge_ptep_get(src_pte);
3852                 dst_entry = huge_ptep_get(dst_pte);
3853 again:
3854                 if (huge_pte_none(entry) || !huge_pte_none(dst_entry)) {
3855                         /*
3856                          * Skip if src entry none.  Also, skip in the
3857                          * unlikely case dst entry !none as this implies
3858                          * sharing with another vma.
3859                          */
3860                         ;
3861                 } else if (unlikely(is_hugetlb_entry_migration(entry) ||
3862                                     is_hugetlb_entry_hwpoisoned(entry))) {
3863                         swp_entry_t swp_entry = pte_to_swp_entry(entry);
3864
3865                         if (is_write_migration_entry(swp_entry) && cow) {
3866                                 /*
3867                                  * COW mappings require pages in both
3868                                  * parent and child to be set to read.
3869                                  */
3870                                 make_migration_entry_read(&swp_entry);
3871                                 entry = swp_entry_to_pte(swp_entry);
3872                                 set_huge_swap_pte_at(src, addr, src_pte,
3873                                                      entry, sz);
3874                         }
3875                         set_huge_swap_pte_at(dst, addr, dst_pte, entry, sz);
3876                 } else {
3877                         entry = huge_ptep_get(src_pte);
3878                         ptepage = pte_page(entry);
3879                         get_page(ptepage);
3880
3881                         /*
3882                          * This is a rare case where we see pinned hugetlb
3883                          * pages while they're prone to COW.  We need to do the
3884                          * COW earlier during fork.
3885                          *
3886                          * When pre-allocating the page or copying data, we
3887                          * need to be without the pgtable locks since we could
3888                          * sleep during the process.
3889                          */
3890                         if (unlikely(page_needs_cow_for_dma(vma, ptepage))) {
3891                                 pte_t src_pte_old = entry;
3892                                 struct page *new;
3893
3894                                 spin_unlock(src_ptl);
3895                                 spin_unlock(dst_ptl);
3896                                 /* Do not use reserve as it's private owned */
3897                                 new = alloc_huge_page(vma, addr, 1);
3898                                 if (IS_ERR(new)) {
3899                                         put_page(ptepage);
3900                                         ret = PTR_ERR(new);
3901                                         break;
3902                                 }
3903                                 copy_user_huge_page(new, ptepage, addr, vma,
3904                                                     npages);
3905                                 put_page(ptepage);
3906
3907                                 /* Install the new huge page if src pte stable */
3908                                 dst_ptl = huge_pte_lock(h, dst, dst_pte);
3909                                 src_ptl = huge_pte_lockptr(h, src, src_pte);
3910                                 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
3911                                 entry = huge_ptep_get(src_pte);
3912                                 if (!pte_same(src_pte_old, entry)) {
3913                                         put_page(new);
3914                                         /* dst_entry won't change as in child */
3915                                         goto again;
3916                                 }
3917                                 hugetlb_install_page(vma, dst_pte, addr, new);
3918                                 spin_unlock(src_ptl);
3919                                 spin_unlock(dst_ptl);
3920                                 continue;
3921                         }
3922
3923                         if (cow) {
3924                                 /*
3925                                  * No need to notify as we are downgrading page
3926                                  * table protection not changing it to point
3927                                  * to a new page.
3928                                  *
3929                                  * See Documentation/vm/mmu_notifier.rst
3930                                  */
3931                                 huge_ptep_set_wrprotect(src, addr, src_pte);
3932                         }
3933
3934                         page_dup_rmap(ptepage, true);
3935                         set_huge_pte_at(dst, addr, dst_pte, entry);
3936                         hugetlb_count_add(npages, dst);
3937                 }
3938                 spin_unlock(src_ptl);
3939                 spin_unlock(dst_ptl);
3940         }
3941
3942         if (cow)
3943                 mmu_notifier_invalidate_range_end(&range);
3944         else
3945                 i_mmap_unlock_read(mapping);
3946
3947         return ret;
3948 }
3949
3950 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
3951                             unsigned long start, unsigned long end,
3952                             struct page *ref_page)
3953 {
3954         struct mm_struct *mm = vma->vm_mm;
3955         unsigned long address;
3956         pte_t *ptep;
3957         pte_t pte;
3958         spinlock_t *ptl;
3959         struct page *page;
3960         struct hstate *h = hstate_vma(vma);
3961         unsigned long sz = huge_page_size(h);
3962         struct mmu_notifier_range range;
3963
3964         WARN_ON(!is_vm_hugetlb_page(vma));
3965         BUG_ON(start & ~huge_page_mask(h));
3966         BUG_ON(end & ~huge_page_mask(h));
3967
3968         /*
3969          * This is a hugetlb vma, all the pte entries should point
3970          * to huge page.
3971          */
3972         tlb_change_page_size(tlb, sz);
3973         tlb_start_vma(tlb, vma);
3974
3975         /*
3976          * If sharing possible, alert mmu notifiers of worst case.
3977          */
3978         mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, mm, start,
3979                                 end);
3980         adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
3981         mmu_notifier_invalidate_range_start(&range);
3982         address = start;
3983         for (; address < end; address += sz) {
3984                 ptep = huge_pte_offset(mm, address, sz);
3985                 if (!ptep)
3986                         continue;
3987
3988                 ptl = huge_pte_lock(h, mm, ptep);
3989                 if (huge_pmd_unshare(mm, vma, &address, ptep)) {
3990                         spin_unlock(ptl);
3991                         /*
3992                          * We just unmapped a page of PMDs by clearing a PUD.
3993                          * The caller's TLB flush range should cover this area.
3994                          */
3995                         continue;
3996                 }
3997
3998                 pte = huge_ptep_get(ptep);
3999                 if (huge_pte_none(pte)) {
4000                         spin_unlock(ptl);
4001                         continue;
4002                 }
4003
4004                 /*
4005                  * Migrating hugepage or HWPoisoned hugepage is already
4006                  * unmapped and its refcount is dropped, so just clear pte here.
4007                  */
4008                 if (unlikely(!pte_present(pte))) {
4009                         huge_pte_clear(mm, address, ptep, sz);
4010                         spin_unlock(ptl);
4011                         continue;
4012                 }
4013
4014                 page = pte_page(pte);
4015                 /*
4016                  * If a reference page is supplied, it is because a specific
4017                  * page is being unmapped, not a range. Ensure the page we
4018                  * are about to unmap is the actual page of interest.
4019                  */
4020                 if (ref_page) {
4021                         if (page != ref_page) {
4022                                 spin_unlock(ptl);
4023                                 continue;
4024                         }
4025                         /*
4026                          * Mark the VMA as having unmapped its page so that
4027                          * future faults in this VMA will fail rather than
4028                          * looking like data was lost
4029                          */
4030                         set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
4031                 }
4032
4033                 pte = huge_ptep_get_and_clear(mm, address, ptep);
4034                 tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
4035                 if (huge_pte_dirty(pte))
4036                         set_page_dirty(page);
4037
4038                 hugetlb_count_sub(pages_per_huge_page(h), mm);
4039                 page_remove_rmap(page, true);
4040
4041                 spin_unlock(ptl);
4042                 tlb_remove_page_size(tlb, page, huge_page_size(h));
4043                 /*
4044                  * Bail out after unmapping reference page if supplied
4045                  */
4046                 if (ref_page)
4047                         break;
4048         }
4049         mmu_notifier_invalidate_range_end(&range);
4050         tlb_end_vma(tlb, vma);
4051 }
4052
4053 void __unmap_hugepage_range_final(struct mmu_gather *tlb,
4054                           struct vm_area_struct *vma, unsigned long start,
4055                           unsigned long end, struct page *ref_page)
4056 {
4057         __unmap_hugepage_range(tlb, vma, start, end, ref_page);
4058
4059         /*
4060          * Clear this flag so that x86's huge_pmd_share page_table_shareable
4061          * test will fail on a vma being torn down, and not grab a page table
4062          * on its way out.  We're lucky that the flag has such an appropriate
4063          * name, and can in fact be safely cleared here. We could clear it
4064          * before the __unmap_hugepage_range above, but all that's necessary
4065          * is to clear it before releasing the i_mmap_rwsem. This works
4066          * because in the context this is called, the VMA is about to be
4067          * destroyed and the i_mmap_rwsem is held.
4068          */
4069         vma->vm_flags &= ~VM_MAYSHARE;
4070 }
4071
4072 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
4073                           unsigned long end, struct page *ref_page)
4074 {
4075         struct mmu_gather tlb;
4076
4077         tlb_gather_mmu(&tlb, vma->vm_mm);
4078         __unmap_hugepage_range(&tlb, vma, start, end, ref_page);
4079         tlb_finish_mmu(&tlb);
4080 }
4081
4082 /*
4083  * This is called when the original mapper is failing to COW a MAP_PRIVATE
4084  * mapping it owns the reserve page for. The intention is to unmap the page
4085  * from other VMAs and let the children be SIGKILLed if they are faulting the
4086  * same region.
4087  */
4088 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
4089                               struct page *page, unsigned long address)
4090 {
4091         struct hstate *h = hstate_vma(vma);
4092         struct vm_area_struct *iter_vma;
4093         struct address_space *mapping;
4094         pgoff_t pgoff;
4095
4096         /*
4097          * vm_pgoff is in PAGE_SIZE units, hence the different calculation
4098          * from page cache lookup which is in HPAGE_SIZE units.
4099          */
4100         address = address & huge_page_mask(h);
4101         pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
4102                         vma->vm_pgoff;
4103         mapping = vma->vm_file->f_mapping;
4104
4105         /*
4106          * Take the mapping lock for the duration of the table walk. As
4107          * this mapping should be shared between all the VMAs,
4108          * __unmap_hugepage_range() is called as the lock is already held
4109          */
4110         i_mmap_lock_write(mapping);
4111         vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
4112                 /* Do not unmap the current VMA */
4113                 if (iter_vma == vma)
4114                         continue;
4115
4116                 /*
4117                  * Shared VMAs have their own reserves and do not affect
4118                  * MAP_PRIVATE accounting but it is possible that a shared
4119                  * VMA is using the same page so check and skip such VMAs.
4120                  */
4121                 if (iter_vma->vm_flags & VM_MAYSHARE)
4122                         continue;
4123
4124                 /*
4125                  * Unmap the page from other VMAs without their own reserves.
4126                  * They get marked to be SIGKILLed if they fault in these
4127                  * areas. This is because a future no-page fault on this VMA
4128                  * could insert a zeroed page instead of the data existing
4129                  * from the time of fork. This would look like data corruption
4130                  */
4131                 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
4132                         unmap_hugepage_range(iter_vma, address,
4133                                              address + huge_page_size(h), page);
4134         }
4135         i_mmap_unlock_write(mapping);
4136 }
4137
4138 /*
4139  * Hugetlb_cow() should be called with page lock of the original hugepage held.
4140  * Called with hugetlb_instantiation_mutex held and pte_page locked so we
4141  * cannot race with other handlers or page migration.
4142  * Keep the pte_same checks anyway to make transition from the mutex easier.
4143  */
4144 static vm_fault_t hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
4145                        unsigned long address, pte_t *ptep,
4146                        struct page *pagecache_page, spinlock_t *ptl)
4147 {
4148         pte_t pte;
4149         struct hstate *h = hstate_vma(vma);
4150         struct page *old_page, *new_page;
4151         int outside_reserve = 0;
4152         vm_fault_t ret = 0;
4153         unsigned long haddr = address & huge_page_mask(h);
4154         struct mmu_notifier_range range;
4155
4156         pte = huge_ptep_get(ptep);
4157         old_page = pte_page(pte);
4158
4159 retry_avoidcopy:
4160         /* If no-one else is actually using this page, avoid the copy
4161          * and just make the page writable */
4162         if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
4163                 page_move_anon_rmap(old_page, vma);
4164                 set_huge_ptep_writable(vma, haddr, ptep);
4165                 return 0;
4166         }
4167
4168         /*
4169          * If the process that created a MAP_PRIVATE mapping is about to
4170          * perform a COW due to a shared page count, attempt to satisfy
4171          * the allocation without using the existing reserves. The pagecache
4172          * page is used to determine if the reserve at this address was
4173          * consumed or not. If reserves were used, a partial faulted mapping
4174          * at the time of fork() could consume its reserves on COW instead
4175          * of the full address range.
4176          */
4177         if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
4178                         old_page != pagecache_page)
4179                 outside_reserve = 1;
4180
4181         get_page(old_page);
4182
4183         /*
4184          * Drop page table lock as buddy allocator may be called. It will
4185          * be acquired again before returning to the caller, as expected.
4186          */
4187         spin_unlock(ptl);
4188         new_page = alloc_huge_page(vma, haddr, outside_reserve);
4189
4190         if (IS_ERR(new_page)) {
4191                 /*
4192                  * If a process owning a MAP_PRIVATE mapping fails to COW,
4193                  * it is due to references held by a child and an insufficient
4194                  * huge page pool. To guarantee the original mappers
4195                  * reliability, unmap the page from child processes. The child
4196                  * may get SIGKILLed if it later faults.
4197                  */
4198                 if (outside_reserve) {
4199                         struct address_space *mapping = vma->vm_file->f_mapping;
4200                         pgoff_t idx;
4201                         u32 hash;
4202
4203                         put_page(old_page);
4204                         BUG_ON(huge_pte_none(pte));
4205                         /*
4206                          * Drop hugetlb_fault_mutex and i_mmap_rwsem before
4207                          * unmapping.  unmapping needs to hold i_mmap_rwsem
4208                          * in write mode.  Dropping i_mmap_rwsem in read mode
4209                          * here is OK as COW mappings do not interact with
4210                          * PMD sharing.
4211                          *
4212                          * Reacquire both after unmap operation.
4213                          */
4214                         idx = vma_hugecache_offset(h, vma, haddr);
4215                         hash = hugetlb_fault_mutex_hash(mapping, idx);
4216                         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
4217                         i_mmap_unlock_read(mapping);
4218
4219                         unmap_ref_private(mm, vma, old_page, haddr);
4220
4221                         i_mmap_lock_read(mapping);
4222                         mutex_lock(&hugetlb_fault_mutex_table[hash]);
4223                         spin_lock(ptl);
4224                         ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
4225                         if (likely(ptep &&
4226                                    pte_same(huge_ptep_get(ptep), pte)))
4227                                 goto retry_avoidcopy;
4228                         /*
4229                          * race occurs while re-acquiring page table
4230                          * lock, and our job is done.
4231                          */
4232                         return 0;
4233                 }
4234
4235                 ret = vmf_error(PTR_ERR(new_page));
4236                 goto out_release_old;
4237         }
4238
4239         /*
4240          * When the original hugepage is shared one, it does not have
4241          * anon_vma prepared.
4242          */
4243         if (unlikely(anon_vma_prepare(vma))) {
4244                 ret = VM_FAULT_OOM;
4245                 goto out_release_all;
4246         }
4247
4248         copy_user_huge_page(new_page, old_page, address, vma,
4249                             pages_per_huge_page(h));
4250         __SetPageUptodate(new_page);
4251
4252         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, haddr,
4253                                 haddr + huge_page_size(h));
4254         mmu_notifier_invalidate_range_start(&range);
4255
4256         /*
4257          * Retake the page table lock to check for racing updates
4258          * before the page tables are altered
4259          */
4260         spin_lock(ptl);
4261         ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
4262         if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
4263                 ClearHPageRestoreReserve(new_page);
4264
4265                 /* Break COW */
4266                 huge_ptep_clear_flush(vma, haddr, ptep);
4267                 mmu_notifier_invalidate_range(mm, range.start, range.end);
4268                 set_huge_pte_at(mm, haddr, ptep,
4269                                 make_huge_pte(vma, new_page, 1));
4270                 page_remove_rmap(old_page, true);
4271                 hugepage_add_new_anon_rmap(new_page, vma, haddr);
4272                 SetHPageMigratable(new_page);
4273                 /* Make the old page be freed below */
4274                 new_page = old_page;
4275         }
4276         spin_unlock(ptl);
4277         mmu_notifier_invalidate_range_end(&range);
4278 out_release_all:
4279         restore_reserve_on_error(h, vma, haddr, new_page);
4280         put_page(new_page);
4281 out_release_old:
4282         put_page(old_page);
4283
4284         spin_lock(ptl); /* Caller expects lock to be held */
4285         return ret;
4286 }
4287
4288 /* Return the pagecache page at a given address within a VMA */
4289 static struct page *hugetlbfs_pagecache_page(struct hstate *h,
4290                         struct vm_area_struct *vma, unsigned long address)
4291 {
4292         struct address_space *mapping;
4293         pgoff_t idx;
4294
4295         mapping = vma->vm_file->f_mapping;
4296         idx = vma_hugecache_offset(h, vma, address);
4297
4298         return find_lock_page(mapping, idx);
4299 }
4300
4301 /*
4302  * Return whether there is a pagecache page to back given address within VMA.
4303  * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
4304  */
4305 static bool hugetlbfs_pagecache_present(struct hstate *h,
4306                         struct vm_area_struct *vma, unsigned long address)
4307 {
4308         struct address_space *mapping;
4309         pgoff_t idx;
4310         struct page *page;
4311
4312         mapping = vma->vm_file->f_mapping;
4313         idx = vma_hugecache_offset(h, vma, address);
4314
4315         page = find_get_page(mapping, idx);
4316         if (page)
4317                 put_page(page);
4318         return page != NULL;
4319 }
4320
4321 int huge_add_to_page_cache(struct page *page, struct address_space *mapping,
4322                            pgoff_t idx)
4323 {
4324         struct inode *inode = mapping->host;
4325         struct hstate *h = hstate_inode(inode);
4326         int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
4327
4328         if (err)
4329                 return err;
4330         ClearHPageRestoreReserve(page);
4331
4332         /*
4333          * set page dirty so that it will not be removed from cache/file
4334          * by non-hugetlbfs specific code paths.
4335          */
4336         set_page_dirty(page);
4337
4338         spin_lock(&inode->i_lock);
4339         inode->i_blocks += blocks_per_huge_page(h);
4340         spin_unlock(&inode->i_lock);
4341         return 0;
4342 }
4343
4344 static vm_fault_t hugetlb_no_page(struct mm_struct *mm,
4345                         struct vm_area_struct *vma,
4346                         struct address_space *mapping, pgoff_t idx,
4347                         unsigned long address, pte_t *ptep, unsigned int flags)
4348 {
4349         struct hstate *h = hstate_vma(vma);
4350         vm_fault_t ret = VM_FAULT_SIGBUS;
4351         int anon_rmap = 0;
4352         unsigned long size;
4353         struct page *page;
4354         pte_t new_pte;
4355         spinlock_t *ptl;
4356         unsigned long haddr = address & huge_page_mask(h);
4357         bool new_page = false;
4358
4359         /*
4360          * Currently, we are forced to kill the process in the event the
4361          * original mapper has unmapped pages from the child due to a failed
4362          * COW. Warn that such a situation has occurred as it may not be obvious
4363          */
4364         if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
4365                 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
4366                            current->pid);
4367                 return ret;
4368         }
4369
4370         /*
4371          * We can not race with truncation due to holding i_mmap_rwsem.
4372          * i_size is modified when holding i_mmap_rwsem, so check here
4373          * once for faults beyond end of file.
4374          */
4375         size = i_size_read(mapping->host) >> huge_page_shift(h);
4376         if (idx >= size)
4377                 goto out;
4378
4379 retry:
4380         page = find_lock_page(mapping, idx);
4381         if (!page) {
4382                 /*
4383                  * Check for page in userfault range
4384                  */
4385                 if (userfaultfd_missing(vma)) {
4386                         u32 hash;
4387                         struct vm_fault vmf = {
4388                                 .vma = vma,
4389                                 .address = haddr,
4390                                 .flags = flags,
4391                                 /*
4392                                  * Hard to debug if it ends up being
4393                                  * used by a callee that assumes
4394                                  * something about the other
4395                                  * uninitialized fields... same as in
4396                                  * memory.c
4397                                  */
4398                         };
4399
4400                         /*
4401                          * hugetlb_fault_mutex and i_mmap_rwsem must be
4402                          * dropped before handling userfault.  Reacquire
4403                          * after handling fault to make calling code simpler.
4404                          */
4405                         hash = hugetlb_fault_mutex_hash(mapping, idx);
4406                         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
4407                         i_mmap_unlock_read(mapping);
4408                         ret = handle_userfault(&vmf, VM_UFFD_MISSING);
4409                         i_mmap_lock_read(mapping);
4410                         mutex_lock(&hugetlb_fault_mutex_table[hash]);
4411                         goto out;
4412                 }
4413
4414                 page = alloc_huge_page(vma, haddr, 0);
4415                 if (IS_ERR(page)) {
4416                         /*
4417                          * Returning error will result in faulting task being
4418                          * sent SIGBUS.  The hugetlb fault mutex prevents two
4419                          * tasks from racing to fault in the same page which
4420                          * could result in false unable to allocate errors.
4421                          * Page migration does not take the fault mutex, but
4422                          * does a clear then write of pte's under page table
4423                          * lock.  Page fault code could race with migration,
4424                          * notice the clear pte and try to allocate a page
4425                          * here.  Before returning error, get ptl and make
4426                          * sure there really is no pte entry.
4427                          */
4428                         ptl = huge_pte_lock(h, mm, ptep);
4429                         ret = 0;
4430                         if (huge_pte_none(huge_ptep_get(ptep)))
4431                                 ret = vmf_error(PTR_ERR(page));
4432                         spin_unlock(ptl);
4433                         goto out;
4434                 }
4435                 clear_huge_page(page, address, pages_per_huge_page(h));
4436                 __SetPageUptodate(page);
4437                 new_page = true;
4438
4439                 if (vma->vm_flags & VM_MAYSHARE) {
4440                         int err = huge_add_to_page_cache(page, mapping, idx);
4441                         if (err) {
4442                                 put_page(page);
4443                                 if (err == -EEXIST)
4444                                         goto retry;
4445                                 goto out;
4446                         }
4447                 } else {
4448                         lock_page(page);
4449                         if (unlikely(anon_vma_prepare(vma))) {
4450                                 ret = VM_FAULT_OOM;
4451                                 goto backout_unlocked;
4452                         }
4453                         anon_rmap = 1;
4454                 }
4455         } else {
4456                 /*
4457                  * If memory error occurs between mmap() and fault, some process
4458                  * don't have hwpoisoned swap entry for errored virtual address.
4459                  * So we need to block hugepage fault by PG_hwpoison bit check.
4460                  */
4461                 if (unlikely(PageHWPoison(page))) {
4462                         ret = VM_FAULT_HWPOISON_LARGE |
4463                                 VM_FAULT_SET_HINDEX(hstate_index(h));
4464                         goto backout_unlocked;
4465                 }
4466         }
4467
4468         /*
4469          * If we are going to COW a private mapping later, we examine the
4470          * pending reservations for this page now. This will ensure that
4471          * any allocations necessary to record that reservation occur outside
4472          * the spinlock.
4473          */
4474         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
4475                 if (vma_needs_reservation(h, vma, haddr) < 0) {
4476                         ret = VM_FAULT_OOM;
4477                         goto backout_unlocked;
4478                 }
4479                 /* Just decrements count, does not deallocate */
4480                 vma_end_reservation(h, vma, haddr);
4481         }
4482
4483         ptl = huge_pte_lock(h, mm, ptep);
4484         ret = 0;
4485         if (!huge_pte_none(huge_ptep_get(ptep)))
4486                 goto backout;
4487
4488         if (anon_rmap) {
4489                 ClearHPageRestoreReserve(page);
4490                 hugepage_add_new_anon_rmap(page, vma, haddr);
4491         } else
4492                 page_dup_rmap(page, true);
4493         new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
4494                                 && (vma->vm_flags & VM_SHARED)));
4495         set_huge_pte_at(mm, haddr, ptep, new_pte);
4496
4497         hugetlb_count_add(pages_per_huge_page(h), mm);
4498         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
4499                 /* Optimization, do the COW without a second fault */
4500                 ret = hugetlb_cow(mm, vma, address, ptep, page, ptl);
4501         }
4502
4503         spin_unlock(ptl);
4504
4505         /*
4506          * Only set HPageMigratable in newly allocated pages.  Existing pages
4507          * found in the pagecache may not have HPageMigratableset if they have
4508          * been isolated for migration.
4509          */
4510         if (new_page)
4511                 SetHPageMigratable(page);
4512
4513         unlock_page(page);
4514 out:
4515         return ret;
4516
4517 backout:
4518         spin_unlock(ptl);
4519 backout_unlocked:
4520         unlock_page(page);
4521         restore_reserve_on_error(h, vma, haddr, page);
4522         put_page(page);
4523         goto out;
4524 }
4525
4526 #ifdef CONFIG_SMP
4527 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
4528 {
4529         unsigned long key[2];
4530         u32 hash;
4531
4532         key[0] = (unsigned long) mapping;
4533         key[1] = idx;
4534
4535         hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0);
4536
4537         return hash & (num_fault_mutexes - 1);
4538 }
4539 #else
4540 /*
4541  * For uniprocessor systems we always use a single mutex, so just
4542  * return 0 and avoid the hashing overhead.
4543  */
4544 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
4545 {
4546         return 0;
4547 }
4548 #endif
4549
4550 vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
4551                         unsigned long address, unsigned int flags)
4552 {
4553         pte_t *ptep, entry;
4554         spinlock_t *ptl;
4555         vm_fault_t ret;
4556         u32 hash;
4557         pgoff_t idx;
4558         struct page *page = NULL;
4559         struct page *pagecache_page = NULL;
4560         struct hstate *h = hstate_vma(vma);
4561         struct address_space *mapping;
4562         int need_wait_lock = 0;
4563         unsigned long haddr = address & huge_page_mask(h);
4564
4565         ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
4566         if (ptep) {
4567                 /*
4568                  * Since we hold no locks, ptep could be stale.  That is
4569                  * OK as we are only making decisions based on content and
4570                  * not actually modifying content here.
4571                  */
4572                 entry = huge_ptep_get(ptep);
4573                 if (unlikely(is_hugetlb_entry_migration(entry))) {
4574                         migration_entry_wait_huge(vma, mm, ptep);
4575                         return 0;
4576                 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
4577                         return VM_FAULT_HWPOISON_LARGE |
4578                                 VM_FAULT_SET_HINDEX(hstate_index(h));
4579         }
4580
4581         /*
4582          * Acquire i_mmap_rwsem before calling huge_pte_alloc and hold
4583          * until finished with ptep.  This serves two purposes:
4584          * 1) It prevents huge_pmd_unshare from being called elsewhere
4585          *    and making the ptep no longer valid.
4586          * 2) It synchronizes us with i_size modifications during truncation.
4587          *
4588          * ptep could have already be assigned via huge_pte_offset.  That
4589          * is OK, as huge_pte_alloc will return the same value unless
4590          * something has changed.
4591          */
4592         mapping = vma->vm_file->f_mapping;
4593         i_mmap_lock_read(mapping);
4594         ptep = huge_pte_alloc(mm, vma, haddr, huge_page_size(h));
4595         if (!ptep) {
4596                 i_mmap_unlock_read(mapping);
4597                 return VM_FAULT_OOM;
4598         }
4599
4600         /*
4601          * Serialize hugepage allocation and instantiation, so that we don't
4602          * get spurious allocation failures if two CPUs race to instantiate
4603          * the same page in the page cache.
4604          */
4605         idx = vma_hugecache_offset(h, vma, haddr);
4606         hash = hugetlb_fault_mutex_hash(mapping, idx);
4607         mutex_lock(&hugetlb_fault_mutex_table[hash]);
4608
4609         entry = huge_ptep_get(ptep);
4610         if (huge_pte_none(entry)) {
4611                 ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
4612                 goto out_mutex;
4613         }
4614
4615         ret = 0;
4616
4617         /*
4618          * entry could be a migration/hwpoison entry at this point, so this
4619          * check prevents the kernel from going below assuming that we have
4620          * an active hugepage in pagecache. This goto expects the 2nd page
4621          * fault, and is_hugetlb_entry_(migration|hwpoisoned) check will
4622          * properly handle it.
4623          */
4624         if (!pte_present(entry))
4625                 goto out_mutex;
4626
4627         /*
4628          * If we are going to COW the mapping later, we examine the pending
4629          * reservations for this page now. This will ensure that any
4630          * allocations necessary to record that reservation occur outside the
4631          * spinlock. For private mappings, we also lookup the pagecache
4632          * page now as it is used to determine if a reservation has been
4633          * consumed.
4634          */
4635         if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
4636                 if (vma_needs_reservation(h, vma, haddr) < 0) {
4637                         ret = VM_FAULT_OOM;
4638                         goto out_mutex;
4639                 }
4640                 /* Just decrements count, does not deallocate */
4641                 vma_end_reservation(h, vma, haddr);
4642
4643                 if (!(vma->vm_flags & VM_MAYSHARE))
4644                         pagecache_page = hugetlbfs_pagecache_page(h,
4645                                                                 vma, haddr);
4646         }
4647
4648         ptl = huge_pte_lock(h, mm, ptep);
4649
4650         /* Check for a racing update before calling hugetlb_cow */
4651         if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
4652                 goto out_ptl;
4653
4654         /*
4655          * hugetlb_cow() requires page locks of pte_page(entry) and
4656          * pagecache_page, so here we need take the former one
4657          * when page != pagecache_page or !pagecache_page.
4658          */
4659         page = pte_page(entry);
4660         if (page != pagecache_page)
4661                 if (!trylock_page(page)) {
4662                         need_wait_lock = 1;
4663                         goto out_ptl;
4664                 }
4665
4666         get_page(page);
4667
4668         if (flags & FAULT_FLAG_WRITE) {
4669                 if (!huge_pte_write(entry)) {
4670                         ret = hugetlb_cow(mm, vma, address, ptep,
4671                                           pagecache_page, ptl);
4672                         goto out_put_page;
4673                 }
4674                 entry = huge_pte_mkdirty(entry);
4675         }
4676         entry = pte_mkyoung(entry);
4677         if (huge_ptep_set_access_flags(vma, haddr, ptep, entry,
4678                                                 flags & FAULT_FLAG_WRITE))
4679                 update_mmu_cache(vma, haddr, ptep);
4680 out_put_page:
4681         if (page != pagecache_page)
4682                 unlock_page(page);
4683         put_page(page);
4684 out_ptl:
4685         spin_unlock(ptl);
4686
4687         if (pagecache_page) {
4688                 unlock_page(pagecache_page);
4689                 put_page(pagecache_page);
4690         }
4691 out_mutex:
4692         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
4693         i_mmap_unlock_read(mapping);
4694         /*
4695          * Generally it's safe to hold refcount during waiting page lock. But
4696          * here we just wait to defer the next page fault to avoid busy loop and
4697          * the page is not used after unlocked before returning from the current
4698          * page fault. So we are safe from accessing freed page, even if we wait
4699          * here without taking refcount.
4700          */
4701         if (need_wait_lock)
4702                 wait_on_page_locked(page);
4703         return ret;
4704 }
4705
4706 /*
4707  * Used by userfaultfd UFFDIO_COPY.  Based on mcopy_atomic_pte with
4708  * modifications for huge pages.
4709  */
4710 int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm,
4711                             pte_t *dst_pte,
4712                             struct vm_area_struct *dst_vma,
4713                             unsigned long dst_addr,
4714                             unsigned long src_addr,
4715                             struct page **pagep)
4716 {
4717         struct address_space *mapping;
4718         pgoff_t idx;
4719         unsigned long size;
4720         int vm_shared = dst_vma->vm_flags & VM_SHARED;
4721         struct hstate *h = hstate_vma(dst_vma);
4722         pte_t _dst_pte;
4723         spinlock_t *ptl;
4724         int ret;
4725         struct page *page;
4726
4727         if (!*pagep) {
4728                 ret = -ENOMEM;
4729                 page = alloc_huge_page(dst_vma, dst_addr, 0);
4730                 if (IS_ERR(page))
4731                         goto out;
4732
4733                 ret = copy_huge_page_from_user(page,
4734                                                 (const void __user *) src_addr,
4735                                                 pages_per_huge_page(h), false);
4736
4737                 /* fallback to copy_from_user outside mmap_lock */
4738                 if (unlikely(ret)) {
4739                         ret = -ENOENT;
4740                         *pagep = page;
4741                         /* don't free the page */
4742                         goto out;
4743                 }
4744         } else {
4745                 page = *pagep;
4746                 *pagep = NULL;
4747         }
4748
4749         /*
4750          * The memory barrier inside __SetPageUptodate makes sure that
4751          * preceding stores to the page contents become visible before
4752          * the set_pte_at() write.
4753          */
4754         __SetPageUptodate(page);
4755
4756         mapping = dst_vma->vm_file->f_mapping;
4757         idx = vma_hugecache_offset(h, dst_vma, dst_addr);
4758
4759         /*
4760          * If shared, add to page cache
4761          */
4762         if (vm_shared) {
4763                 size = i_size_read(mapping->host) >> huge_page_shift(h);
4764                 ret = -EFAULT;
4765                 if (idx >= size)
4766                         goto out_release_nounlock;
4767
4768                 /*
4769                  * Serialization between remove_inode_hugepages() and
4770                  * huge_add_to_page_cache() below happens through the
4771                  * hugetlb_fault_mutex_table that here must be hold by
4772                  * the caller.
4773                  */
4774                 ret = huge_add_to_page_cache(page, mapping, idx);
4775                 if (ret)
4776                         goto out_release_nounlock;
4777         }
4778
4779         ptl = huge_pte_lockptr(h, dst_mm, dst_pte);
4780         spin_lock(ptl);
4781
4782         /*
4783          * Recheck the i_size after holding PT lock to make sure not
4784          * to leave any page mapped (as page_mapped()) beyond the end
4785          * of the i_size (remove_inode_hugepages() is strict about
4786          * enforcing that). If we bail out here, we'll also leave a
4787          * page in the radix tree in the vm_shared case beyond the end
4788          * of the i_size, but remove_inode_hugepages() will take care
4789          * of it as soon as we drop the hugetlb_fault_mutex_table.
4790          */
4791         size = i_size_read(mapping->host) >> huge_page_shift(h);
4792         ret = -EFAULT;
4793         if (idx >= size)
4794                 goto out_release_unlock;
4795
4796         ret = -EEXIST;
4797         if (!huge_pte_none(huge_ptep_get(dst_pte)))
4798                 goto out_release_unlock;
4799
4800         if (vm_shared) {
4801                 page_dup_rmap(page, true);
4802         } else {
4803                 ClearHPageRestoreReserve(page);
4804                 hugepage_add_new_anon_rmap(page, dst_vma, dst_addr);
4805         }
4806
4807         _dst_pte = make_huge_pte(dst_vma, page, dst_vma->vm_flags & VM_WRITE);
4808         if (dst_vma->vm_flags & VM_WRITE)
4809                 _dst_pte = huge_pte_mkdirty(_dst_pte);
4810         _dst_pte = pte_mkyoung(_dst_pte);
4811
4812         set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
4813
4814         (void)huge_ptep_set_access_flags(dst_vma, dst_addr, dst_pte, _dst_pte,
4815                                         dst_vma->vm_flags & VM_WRITE);
4816         hugetlb_count_add(pages_per_huge_page(h), dst_mm);
4817
4818         /* No need to invalidate - it was non-present before */
4819         update_mmu_cache(dst_vma, dst_addr, dst_pte);
4820
4821         spin_unlock(ptl);
4822         SetHPageMigratable(page);
4823         if (vm_shared)
4824                 unlock_page(page);
4825         ret = 0;
4826 out:
4827         return ret;
4828 out_release_unlock:
4829         spin_unlock(ptl);
4830         if (vm_shared)
4831                 unlock_page(page);
4832 out_release_nounlock:
4833         put_page(page);
4834         goto out;
4835 }
4836
4837 static void record_subpages_vmas(struct page *page, struct vm_area_struct *vma,
4838                                  int refs, struct page **pages,
4839                                  struct vm_area_struct **vmas)
4840 {
4841         int nr;
4842
4843         for (nr = 0; nr < refs; nr++) {
4844                 if (likely(pages))
4845                         pages[nr] = mem_map_offset(page, nr);
4846                 if (vmas)
4847                         vmas[nr] = vma;
4848         }
4849 }
4850
4851 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
4852                          struct page **pages, struct vm_area_struct **vmas,
4853                          unsigned long *position, unsigned long *nr_pages,
4854                          long i, unsigned int flags, int *locked)
4855 {
4856         unsigned long pfn_offset;
4857         unsigned long vaddr = *position;
4858         unsigned long remainder = *nr_pages;
4859         struct hstate *h = hstate_vma(vma);
4860         int err = -EFAULT, refs;
4861
4862         while (vaddr < vma->vm_end && remainder) {
4863                 pte_t *pte;
4864                 spinlock_t *ptl = NULL;
4865                 int absent;
4866                 struct page *page;
4867
4868                 /*
4869                  * If we have a pending SIGKILL, don't keep faulting pages and
4870                  * potentially allocating memory.
4871                  */
4872                 if (fatal_signal_pending(current)) {
4873                         remainder = 0;
4874                         break;
4875                 }
4876
4877                 /*
4878                  * Some archs (sparc64, sh*) have multiple pte_ts to
4879                  * each hugepage.  We have to make sure we get the
4880                  * first, for the page indexing below to work.
4881                  *
4882                  * Note that page table lock is not held when pte is null.
4883                  */
4884                 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h),
4885                                       huge_page_size(h));
4886                 if (pte)
4887                         ptl = huge_pte_lock(h, mm, pte);
4888                 absent = !pte || huge_pte_none(huge_ptep_get(pte));
4889
4890                 /*
4891                  * When coredumping, it suits get_dump_page if we just return
4892                  * an error where there's an empty slot with no huge pagecache
4893                  * to back it.  This way, we avoid allocating a hugepage, and
4894                  * the sparse dumpfile avoids allocating disk blocks, but its
4895                  * huge holes still show up with zeroes where they need to be.
4896                  */
4897                 if (absent && (flags & FOLL_DUMP) &&
4898                     !hugetlbfs_pagecache_present(h, vma, vaddr)) {
4899                         if (pte)
4900                                 spin_unlock(ptl);
4901                         remainder = 0;
4902                         break;
4903                 }
4904
4905                 /*
4906                  * We need call hugetlb_fault for both hugepages under migration
4907                  * (in which case hugetlb_fault waits for the migration,) and
4908                  * hwpoisoned hugepages (in which case we need to prevent the
4909                  * caller from accessing to them.) In order to do this, we use
4910                  * here is_swap_pte instead of is_hugetlb_entry_migration and
4911                  * is_hugetlb_entry_hwpoisoned. This is because it simply covers
4912                  * both cases, and because we can't follow correct pages
4913                  * directly from any kind of swap entries.
4914                  */
4915                 if (absent || is_swap_pte(huge_ptep_get(pte)) ||
4916                     ((flags & FOLL_WRITE) &&
4917                       !huge_pte_write(huge_ptep_get(pte)))) {
4918                         vm_fault_t ret;
4919                         unsigned int fault_flags = 0;
4920
4921                         if (pte)
4922                                 spin_unlock(ptl);
4923                         if (flags & FOLL_WRITE)
4924                                 fault_flags |= FAULT_FLAG_WRITE;
4925                         if (locked)
4926                                 fault_flags |= FAULT_FLAG_ALLOW_RETRY |
4927                                         FAULT_FLAG_KILLABLE;
4928                         if (flags & FOLL_NOWAIT)
4929                                 fault_flags |= FAULT_FLAG_ALLOW_RETRY |
4930                                         FAULT_FLAG_RETRY_NOWAIT;
4931                         if (flags & FOLL_TRIED) {
4932                                 /*
4933                                  * Note: FAULT_FLAG_ALLOW_RETRY and
4934                                  * FAULT_FLAG_TRIED can co-exist
4935                                  */
4936                                 fault_flags |= FAULT_FLAG_TRIED;
4937                         }
4938                         ret = hugetlb_fault(mm, vma, vaddr, fault_flags);
4939                         if (ret & VM_FAULT_ERROR) {
4940                                 err = vm_fault_to_errno(ret, flags);
4941                                 remainder = 0;
4942                                 break;
4943                         }
4944                         if (ret & VM_FAULT_RETRY) {
4945                                 if (locked &&
4946                                     !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
4947                                         *locked = 0;
4948                                 *nr_pages = 0;
4949                                 /*
4950                                  * VM_FAULT_RETRY must not return an
4951                                  * error, it will return zero
4952                                  * instead.
4953                                  *
4954                                  * No need to update "position" as the
4955                                  * caller will not check it after
4956                                  * *nr_pages is set to 0.
4957                                  */
4958                                 return i;
4959                         }
4960                         continue;
4961                 }
4962
4963                 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
4964                 page = pte_page(huge_ptep_get(pte));
4965
4966                 /*
4967                  * If subpage information not requested, update counters
4968                  * and skip the same_page loop below.
4969                  */
4970                 if (!pages && !vmas && !pfn_offset &&
4971                     (vaddr + huge_page_size(h) < vma->vm_end) &&
4972                     (remainder >= pages_per_huge_page(h))) {
4973                         vaddr += huge_page_size(h);
4974                         remainder -= pages_per_huge_page(h);
4975                         i += pages_per_huge_page(h);
4976                         spin_unlock(ptl);
4977                         continue;
4978                 }
4979
4980                 refs = min3(pages_per_huge_page(h) - pfn_offset,
4981                             (vma->vm_end - vaddr) >> PAGE_SHIFT, remainder);
4982
4983                 if (pages || vmas)
4984                         record_subpages_vmas(mem_map_offset(page, pfn_offset),
4985                                              vma, refs,
4986                                              likely(pages) ? pages + i : NULL,
4987                                              vmas ? vmas + i : NULL);
4988
4989                 if (pages) {
4990                         /*
4991                          * try_grab_compound_head() should always succeed here,
4992                          * because: a) we hold the ptl lock, and b) we've just
4993                          * checked that the huge page is present in the page
4994                          * tables. If the huge page is present, then the tail
4995                          * pages must also be present. The ptl prevents the
4996                          * head page and tail pages from being rearranged in
4997                          * any way. So this page must be available at this
4998                          * point, unless the page refcount overflowed:
4999                          */
5000                         if (WARN_ON_ONCE(!try_grab_compound_head(pages[i],
5001                                                                  refs,
5002                                                                  flags))) {
5003                                 spin_unlock(ptl);
5004                                 remainder = 0;
5005                                 err = -ENOMEM;
5006                                 break;
5007                         }
5008                 }
5009
5010                 vaddr += (refs << PAGE_SHIFT);
5011                 remainder -= refs;
5012                 i += refs;
5013
5014                 spin_unlock(ptl);
5015         }
5016         *nr_pages = remainder;
5017         /*
5018          * setting position is actually required only if remainder is
5019          * not zero but it's faster not to add a "if (remainder)"
5020          * branch.
5021          */
5022         *position = vaddr;
5023
5024         return i ? i : err;
5025 }
5026
5027 unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
5028                 unsigned long address, unsigned long end, pgprot_t newprot)
5029 {
5030         struct mm_struct *mm = vma->vm_mm;
5031         unsigned long start = address;
5032         pte_t *ptep;
5033         pte_t pte;
5034         struct hstate *h = hstate_vma(vma);
5035         unsigned long pages = 0;
5036         bool shared_pmd = false;
5037         struct mmu_notifier_range range;
5038
5039         /*
5040          * In the case of shared PMDs, the area to flush could be beyond
5041          * start/end.  Set range.start/range.end to cover the maximum possible
5042          * range if PMD sharing is possible.
5043          */
5044         mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA,
5045                                 0, vma, mm, start, end);
5046         adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
5047
5048         BUG_ON(address >= end);
5049         flush_cache_range(vma, range.start, range.end);
5050
5051         mmu_notifier_invalidate_range_start(&range);
5052         i_mmap_lock_write(vma->vm_file->f_mapping);
5053         for (; address < end; address += huge_page_size(h)) {
5054                 spinlock_t *ptl;
5055                 ptep = huge_pte_offset(mm, address, huge_page_size(h));
5056                 if (!ptep)
5057                         continue;
5058                 ptl = huge_pte_lock(h, mm, ptep);
5059                 if (huge_pmd_unshare(mm, vma, &address, ptep)) {
5060                         pages++;
5061                         spin_unlock(ptl);
5062                         shared_pmd = true;
5063                         continue;
5064                 }
5065                 pte = huge_ptep_get(ptep);
5066                 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
5067                         spin_unlock(ptl);
5068                         continue;
5069                 }
5070                 if (unlikely(is_hugetlb_entry_migration(pte))) {
5071                         swp_entry_t entry = pte_to_swp_entry(pte);
5072
5073                         if (is_write_migration_entry(entry)) {
5074                                 pte_t newpte;
5075
5076                                 make_migration_entry_read(&entry);
5077                                 newpte = swp_entry_to_pte(entry);
5078                                 set_huge_swap_pte_at(mm, address, ptep,
5079                                                      newpte, huge_page_size(h));
5080                                 pages++;
5081                         }
5082                         spin_unlock(ptl);
5083                         continue;
5084                 }
5085                 if (!huge_pte_none(pte)) {
5086                         pte_t old_pte;
5087
5088                         old_pte = huge_ptep_modify_prot_start(vma, address, ptep);
5089                         pte = pte_mkhuge(huge_pte_modify(old_pte, newprot));
5090                         pte = arch_make_huge_pte(pte, vma, NULL, 0);
5091                         huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte);
5092                         pages++;
5093                 }
5094                 spin_unlock(ptl);
5095         }
5096         /*
5097          * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
5098          * may have cleared our pud entry and done put_page on the page table:
5099          * once we release i_mmap_rwsem, another task can do the final put_page
5100          * and that page table be reused and filled with junk.  If we actually
5101          * did unshare a page of pmds, flush the range corresponding to the pud.
5102          */
5103         if (shared_pmd)
5104                 flush_hugetlb_tlb_range(vma, range.start, range.end);
5105         else
5106                 flush_hugetlb_tlb_range(vma, start, end);
5107         /*
5108          * No need to call mmu_notifier_invalidate_range() we are downgrading
5109          * page table protection not changing it to point to a new page.
5110          *
5111          * See Documentation/vm/mmu_notifier.rst
5112          */
5113         i_mmap_unlock_write(vma->vm_file->f_mapping);
5114         mmu_notifier_invalidate_range_end(&range);
5115
5116         return pages << h->order;
5117 }
5118
5119 /* Return true if reservation was successful, false otherwise.  */
5120 bool hugetlb_reserve_pages(struct inode *inode,
5121                                         long from, long to,
5122                                         struct vm_area_struct *vma,
5123                                         vm_flags_t vm_flags)
5124 {
5125         long chg, add = -1;
5126         struct hstate *h = hstate_inode(inode);
5127         struct hugepage_subpool *spool = subpool_inode(inode);
5128         struct resv_map *resv_map;
5129         struct hugetlb_cgroup *h_cg = NULL;
5130         long gbl_reserve, regions_needed = 0;
5131
5132         /* This should never happen */
5133         if (from > to) {
5134                 VM_WARN(1, "%s called with a negative range\n", __func__);
5135                 return false;
5136         }
5137
5138         /*
5139          * Only apply hugepage reservation if asked. At fault time, an
5140          * attempt will be made for VM_NORESERVE to allocate a page
5141          * without using reserves
5142          */
5143         if (vm_flags & VM_NORESERVE)
5144                 return true;
5145
5146         /*
5147          * Shared mappings base their reservation on the number of pages that
5148          * are already allocated on behalf of the file. Private mappings need
5149          * to reserve the full area even if read-only as mprotect() may be
5150          * called to make the mapping read-write. Assume !vma is a shm mapping
5151          */
5152         if (!vma || vma->vm_flags & VM_MAYSHARE) {
5153                 /*
5154                  * resv_map can not be NULL as hugetlb_reserve_pages is only
5155                  * called for inodes for which resv_maps were created (see
5156                  * hugetlbfs_get_inode).
5157                  */
5158                 resv_map = inode_resv_map(inode);
5159
5160                 chg = region_chg(resv_map, from, to, &regions_needed);
5161
5162         } else {
5163                 /* Private mapping. */
5164                 resv_map = resv_map_alloc();
5165                 if (!resv_map)
5166                         return false;
5167
5168                 chg = to - from;
5169
5170                 set_vma_resv_map(vma, resv_map);
5171                 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
5172         }
5173
5174         if (chg < 0)
5175                 goto out_err;
5176
5177         if (hugetlb_cgroup_charge_cgroup_rsvd(hstate_index(h),
5178                                 chg * pages_per_huge_page(h), &h_cg) < 0)
5179                 goto out_err;
5180
5181         if (vma && !(vma->vm_flags & VM_MAYSHARE) && h_cg) {
5182                 /* For private mappings, the hugetlb_cgroup uncharge info hangs
5183                  * of the resv_map.
5184                  */
5185                 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, h_cg, h);
5186         }
5187
5188         /*
5189          * There must be enough pages in the subpool for the mapping. If
5190          * the subpool has a minimum size, there may be some global
5191          * reservations already in place (gbl_reserve).
5192          */
5193         gbl_reserve = hugepage_subpool_get_pages(spool, chg);
5194         if (gbl_reserve < 0)
5195                 goto out_uncharge_cgroup;
5196
5197         /*
5198          * Check enough hugepages are available for the reservation.
5199          * Hand the pages back to the subpool if there are not
5200          */
5201         if (hugetlb_acct_memory(h, gbl_reserve) < 0)
5202                 goto out_put_pages;
5203
5204         /*
5205          * Account for the reservations made. Shared mappings record regions
5206          * that have reservations as they are shared by multiple VMAs.
5207          * When the last VMA disappears, the region map says how much
5208          * the reservation was and the page cache tells how much of
5209          * the reservation was consumed. Private mappings are per-VMA and
5210          * only the consumed reservations are tracked. When the VMA
5211          * disappears, the original reservation is the VMA size and the
5212          * consumed reservations are stored in the map. Hence, nothing
5213          * else has to be done for private mappings here
5214          */
5215         if (!vma || vma->vm_flags & VM_MAYSHARE) {
5216                 add = region_add(resv_map, from, to, regions_needed, h, h_cg);
5217
5218                 if (unlikely(add < 0)) {
5219                         hugetlb_acct_memory(h, -gbl_reserve);
5220                         goto out_put_pages;
5221                 } else if (unlikely(chg > add)) {
5222                         /*
5223                          * pages in this range were added to the reserve
5224                          * map between region_chg and region_add.  This
5225                          * indicates a race with alloc_huge_page.  Adjust
5226                          * the subpool and reserve counts modified above
5227                          * based on the difference.
5228                          */
5229                         long rsv_adjust;
5230
5231                         /*
5232                          * hugetlb_cgroup_uncharge_cgroup_rsvd() will put the
5233                          * reference to h_cg->css. See comment below for detail.
5234                          */
5235                         hugetlb_cgroup_uncharge_cgroup_rsvd(
5236                                 hstate_index(h),
5237                                 (chg - add) * pages_per_huge_page(h), h_cg);
5238
5239                         rsv_adjust = hugepage_subpool_put_pages(spool,
5240                                                                 chg - add);
5241                         hugetlb_acct_memory(h, -rsv_adjust);
5242                 } else if (h_cg) {
5243                         /*
5244                          * The file_regions will hold their own reference to
5245                          * h_cg->css. So we should release the reference held
5246                          * via hugetlb_cgroup_charge_cgroup_rsvd() when we are
5247                          * done.
5248                          */
5249                         hugetlb_cgroup_put_rsvd_cgroup(h_cg);
5250                 }
5251         }
5252         return true;
5253
5254 out_put_pages:
5255         /* put back original number of pages, chg */
5256         (void)hugepage_subpool_put_pages(spool, chg);
5257 out_uncharge_cgroup:
5258         hugetlb_cgroup_uncharge_cgroup_rsvd(hstate_index(h),
5259                                             chg * pages_per_huge_page(h), h_cg);
5260 out_err:
5261         if (!vma || vma->vm_flags & VM_MAYSHARE)
5262                 /* Only call region_abort if the region_chg succeeded but the
5263                  * region_add failed or didn't run.
5264                  */
5265                 if (chg >= 0 && add < 0)
5266                         region_abort(resv_map, from, to, regions_needed);
5267         if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
5268                 kref_put(&resv_map->refs, resv_map_release);
5269         return false;
5270 }
5271
5272 long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
5273                                                                 long freed)
5274 {
5275         struct hstate *h = hstate_inode(inode);
5276         struct resv_map *resv_map = inode_resv_map(inode);
5277         long chg = 0;
5278         struct hugepage_subpool *spool = subpool_inode(inode);
5279         long gbl_reserve;
5280
5281         /*
5282          * Since this routine can be called in the evict inode path for all
5283          * hugetlbfs inodes, resv_map could be NULL.
5284          */
5285         if (resv_map) {
5286                 chg = region_del(resv_map, start, end);
5287                 /*
5288                  * region_del() can fail in the rare case where a region
5289                  * must be split and another region descriptor can not be
5290                  * allocated.  If end == LONG_MAX, it will not fail.
5291                  */
5292                 if (chg < 0)
5293                         return chg;
5294         }
5295
5296         spin_lock(&inode->i_lock);
5297         inode->i_blocks -= (blocks_per_huge_page(h) * freed);
5298         spin_unlock(&inode->i_lock);
5299
5300         /*
5301          * If the subpool has a minimum size, the number of global
5302          * reservations to be released may be adjusted.
5303          *
5304          * Note that !resv_map implies freed == 0. So (chg - freed)
5305          * won't go negative.
5306          */
5307         gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
5308         hugetlb_acct_memory(h, -gbl_reserve);
5309
5310         return 0;
5311 }
5312
5313 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
5314 static unsigned long page_table_shareable(struct vm_area_struct *svma,
5315                                 struct vm_area_struct *vma,
5316                                 unsigned long addr, pgoff_t idx)
5317 {
5318         unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
5319                                 svma->vm_start;
5320         unsigned long sbase = saddr & PUD_MASK;
5321         unsigned long s_end = sbase + PUD_SIZE;
5322
5323         /* Allow segments to share if only one is marked locked */
5324         unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
5325         unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
5326
5327         /*
5328          * match the virtual addresses, permission and the alignment of the
5329          * page table page.
5330          */
5331         if (pmd_index(addr) != pmd_index(saddr) ||
5332             vm_flags != svm_flags ||
5333             !range_in_vma(svma, sbase, s_end))
5334                 return 0;
5335
5336         return saddr;
5337 }
5338
5339 static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr)
5340 {
5341         unsigned long base = addr & PUD_MASK;
5342         unsigned long end = base + PUD_SIZE;
5343
5344         /*
5345          * check on proper vm_flags and page table alignment
5346          */
5347         if (vma->vm_flags & VM_MAYSHARE && range_in_vma(vma, base, end))
5348                 return true;
5349         return false;
5350 }
5351
5352 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
5353 {
5354 #ifdef CONFIG_USERFAULTFD
5355         if (uffd_disable_huge_pmd_share(vma))
5356                 return false;
5357 #endif
5358         return vma_shareable(vma, addr);
5359 }
5360
5361 /*
5362  * Determine if start,end range within vma could be mapped by shared pmd.
5363  * If yes, adjust start and end to cover range associated with possible
5364  * shared pmd mappings.
5365  */
5366 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
5367                                 unsigned long *start, unsigned long *end)
5368 {
5369         unsigned long v_start = ALIGN(vma->vm_start, PUD_SIZE),
5370                 v_end = ALIGN_DOWN(vma->vm_end, PUD_SIZE);
5371
5372         /*
5373          * vma need span at least one aligned PUD size and the start,end range
5374          * must at least partialy within it.
5375          */
5376         if (!(vma->vm_flags & VM_MAYSHARE) || !(v_end > v_start) ||
5377                 (*end <= v_start) || (*start >= v_end))
5378                 return;
5379
5380         /* Extend the range to be PUD aligned for a worst case scenario */
5381         if (*start > v_start)
5382                 *start = ALIGN_DOWN(*start, PUD_SIZE);
5383
5384         if (*end < v_end)
5385                 *end = ALIGN(*end, PUD_SIZE);
5386 }
5387
5388 /*
5389  * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
5390  * and returns the corresponding pte. While this is not necessary for the
5391  * !shared pmd case because we can allocate the pmd later as well, it makes the
5392  * code much cleaner.
5393  *
5394  * This routine must be called with i_mmap_rwsem held in at least read mode if
5395  * sharing is possible.  For hugetlbfs, this prevents removal of any page
5396  * table entries associated with the address space.  This is important as we
5397  * are setting up sharing based on existing page table entries (mappings).
5398  *
5399  * NOTE: This routine is only called from huge_pte_alloc.  Some callers of
5400  * huge_pte_alloc know that sharing is not possible and do not take
5401  * i_mmap_rwsem as a performance optimization.  This is handled by the
5402  * if !vma_shareable check at the beginning of the routine. i_mmap_rwsem is
5403  * only required for subsequent processing.
5404  */
5405 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
5406                       unsigned long addr, pud_t *pud)
5407 {
5408         struct address_space *mapping = vma->vm_file->f_mapping;
5409         pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
5410                         vma->vm_pgoff;
5411         struct vm_area_struct *svma;
5412         unsigned long saddr;
5413         pte_t *spte = NULL;
5414         pte_t *pte;
5415         spinlock_t *ptl;
5416
5417         i_mmap_assert_locked(mapping);
5418         vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
5419                 if (svma == vma)
5420                         continue;
5421
5422                 saddr = page_table_shareable(svma, vma, addr, idx);
5423                 if (saddr) {
5424                         spte = huge_pte_offset(svma->vm_mm, saddr,
5425                                                vma_mmu_pagesize(svma));
5426                         if (spte) {
5427                                 get_page(virt_to_page(spte));
5428                                 break;
5429                         }
5430                 }
5431         }
5432
5433         if (!spte)
5434                 goto out;
5435
5436         ptl = huge_pte_lock(hstate_vma(vma), mm, spte);
5437         if (pud_none(*pud)) {
5438                 pud_populate(mm, pud,
5439                                 (pmd_t *)((unsigned long)spte & PAGE_MASK));
5440                 mm_inc_nr_pmds(mm);
5441         } else {
5442                 put_page(virt_to_page(spte));
5443         }
5444         spin_unlock(ptl);
5445 out:
5446         pte = (pte_t *)pmd_alloc(mm, pud, addr);
5447         return pte;
5448 }
5449
5450 /*
5451  * unmap huge page backed by shared pte.
5452  *
5453  * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
5454  * indicated by page_count > 1, unmap is achieved by clearing pud and
5455  * decrementing the ref count. If count == 1, the pte page is not shared.
5456  *
5457  * Called with page table lock held and i_mmap_rwsem held in write mode.
5458  *
5459  * returns: 1 successfully unmapped a shared pte page
5460  *          0 the underlying pte page is not shared, or it is the last user
5461  */
5462 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
5463                                         unsigned long *addr, pte_t *ptep)
5464 {
5465         pgd_t *pgd = pgd_offset(mm, *addr);
5466         p4d_t *p4d = p4d_offset(pgd, *addr);
5467         pud_t *pud = pud_offset(p4d, *addr);
5468
5469         i_mmap_assert_write_locked(vma->vm_file->f_mapping);
5470         BUG_ON(page_count(virt_to_page(ptep)) == 0);
5471         if (page_count(virt_to_page(ptep)) == 1)
5472                 return 0;
5473
5474         pud_clear(pud);
5475         put_page(virt_to_page(ptep));
5476         mm_dec_nr_pmds(mm);
5477         *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
5478         return 1;
5479 }
5480
5481 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
5482 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
5483                       unsigned long addr, pud_t *pud)
5484 {
5485         return NULL;
5486 }
5487
5488 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
5489                                 unsigned long *addr, pte_t *ptep)
5490 {
5491         return 0;
5492 }
5493
5494 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
5495                                 unsigned long *start, unsigned long *end)
5496 {
5497 }
5498
5499 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
5500 {
5501         return false;
5502 }
5503 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
5504
5505 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
5506 pte_t *huge_pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
5507                         unsigned long addr, unsigned long sz)
5508 {
5509         pgd_t *pgd;
5510         p4d_t *p4d;
5511         pud_t *pud;
5512         pte_t *pte = NULL;
5513
5514         pgd = pgd_offset(mm, addr);
5515         p4d = p4d_alloc(mm, pgd, addr);
5516         if (!p4d)
5517                 return NULL;
5518         pud = pud_alloc(mm, p4d, addr);
5519         if (pud) {
5520                 if (sz == PUD_SIZE) {
5521                         pte = (pte_t *)pud;
5522                 } else {
5523                         BUG_ON(sz != PMD_SIZE);
5524                         if (want_pmd_share(vma, addr) && pud_none(*pud))
5525                                 pte = huge_pmd_share(mm, vma, addr, pud);
5526                         else
5527                                 pte = (pte_t *)pmd_alloc(mm, pud, addr);
5528                 }
5529         }
5530         BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte));
5531
5532         return pte;
5533 }
5534
5535 /*
5536  * huge_pte_offset() - Walk the page table to resolve the hugepage
5537  * entry at address @addr
5538  *
5539  * Return: Pointer to page table entry (PUD or PMD) for
5540  * address @addr, or NULL if a !p*d_present() entry is encountered and the
5541  * size @sz doesn't match the hugepage size at this level of the page
5542  * table.
5543  */
5544 pte_t *huge_pte_offset(struct mm_struct *mm,
5545                        unsigned long addr, unsigned long sz)
5546 {
5547         pgd_t *pgd;
5548         p4d_t *p4d;
5549         pud_t *pud;
5550         pmd_t *pmd;
5551
5552         pgd = pgd_offset(mm, addr);
5553         if (!pgd_present(*pgd))
5554                 return NULL;
5555         p4d = p4d_offset(pgd, addr);
5556         if (!p4d_present(*p4d))
5557                 return NULL;
5558
5559         pud = pud_offset(p4d, addr);
5560         if (sz == PUD_SIZE)
5561                 /* must be pud huge, non-present or none */
5562                 return (pte_t *)pud;
5563         if (!pud_present(*pud))
5564                 return NULL;
5565         /* must have a valid entry and size to go further */
5566
5567         pmd = pmd_offset(pud, addr);
5568         /* must be pmd huge, non-present or none */
5569         return (pte_t *)pmd;
5570 }
5571
5572 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
5573
5574 /*
5575  * These functions are overwritable if your architecture needs its own
5576  * behavior.
5577  */
5578 struct page * __weak
5579 follow_huge_addr(struct mm_struct *mm, unsigned long address,
5580                               int write)
5581 {
5582         return ERR_PTR(-EINVAL);
5583 }
5584
5585 struct page * __weak
5586 follow_huge_pd(struct vm_area_struct *vma,
5587                unsigned long address, hugepd_t hpd, int flags, int pdshift)
5588 {
5589         WARN(1, "hugepd follow called with no support for hugepage directory format\n");
5590         return NULL;
5591 }
5592
5593 struct page * __weak
5594 follow_huge_pmd(struct mm_struct *mm, unsigned long address,
5595                 pmd_t *pmd, int flags)
5596 {
5597         struct page *page = NULL;
5598         spinlock_t *ptl;
5599         pte_t pte;
5600
5601         /* FOLL_GET and FOLL_PIN are mutually exclusive. */
5602         if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
5603                          (FOLL_PIN | FOLL_GET)))
5604                 return NULL;
5605
5606 retry:
5607         ptl = pmd_lockptr(mm, pmd);
5608         spin_lock(ptl);
5609         /*
5610          * make sure that the address range covered by this pmd is not
5611          * unmapped from other threads.
5612          */
5613         if (!pmd_huge(*pmd))
5614                 goto out;
5615         pte = huge_ptep_get((pte_t *)pmd);
5616         if (pte_present(pte)) {
5617                 page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
5618                 /*
5619                  * try_grab_page() should always succeed here, because: a) we
5620                  * hold the pmd (ptl) lock, and b) we've just checked that the
5621                  * huge pmd (head) page is present in the page tables. The ptl
5622                  * prevents the head page and tail pages from being rearranged
5623                  * in any way. So this page must be available at this point,
5624                  * unless the page refcount overflowed:
5625                  */
5626                 if (WARN_ON_ONCE(!try_grab_page(page, flags))) {
5627                         page = NULL;
5628                         goto out;
5629                 }
5630         } else {
5631                 if (is_hugetlb_entry_migration(pte)) {
5632                         spin_unlock(ptl);
5633                         __migration_entry_wait(mm, (pte_t *)pmd, ptl);
5634                         goto retry;
5635                 }
5636                 /*
5637                  * hwpoisoned entry is treated as no_page_table in
5638                  * follow_page_mask().
5639                  */
5640         }
5641 out:
5642         spin_unlock(ptl);
5643         return page;
5644 }
5645
5646 struct page * __weak
5647 follow_huge_pud(struct mm_struct *mm, unsigned long address,
5648                 pud_t *pud, int flags)
5649 {
5650         if (flags & (FOLL_GET | FOLL_PIN))
5651                 return NULL;
5652
5653         return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
5654 }
5655
5656 struct page * __weak
5657 follow_huge_pgd(struct mm_struct *mm, unsigned long address, pgd_t *pgd, int flags)
5658 {
5659         if (flags & (FOLL_GET | FOLL_PIN))
5660                 return NULL;
5661
5662         return pte_page(*(pte_t *)pgd) + ((address & ~PGDIR_MASK) >> PAGE_SHIFT);
5663 }
5664
5665 bool isolate_huge_page(struct page *page, struct list_head *list)
5666 {
5667         bool ret = true;
5668
5669         spin_lock_irq(&hugetlb_lock);
5670         if (!PageHeadHuge(page) ||
5671             !HPageMigratable(page) ||
5672             !get_page_unless_zero(page)) {
5673                 ret = false;
5674                 goto unlock;
5675         }
5676         ClearHPageMigratable(page);
5677         list_move_tail(&page->lru, list);
5678 unlock:
5679         spin_unlock_irq(&hugetlb_lock);
5680         return ret;
5681 }
5682
5683 void putback_active_hugepage(struct page *page)
5684 {
5685         spin_lock_irq(&hugetlb_lock);
5686         SetHPageMigratable(page);
5687         list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
5688         spin_unlock_irq(&hugetlb_lock);
5689         put_page(page);
5690 }
5691
5692 void move_hugetlb_state(struct page *oldpage, struct page *newpage, int reason)
5693 {
5694         struct hstate *h = page_hstate(oldpage);
5695
5696         hugetlb_cgroup_migrate(oldpage, newpage);
5697         set_page_owner_migrate_reason(newpage, reason);
5698
5699         /*
5700          * transfer temporary state of the new huge page. This is
5701          * reverse to other transitions because the newpage is going to
5702          * be final while the old one will be freed so it takes over
5703          * the temporary status.
5704          *
5705          * Also note that we have to transfer the per-node surplus state
5706          * here as well otherwise the global surplus count will not match
5707          * the per-node's.
5708          */
5709         if (HPageTemporary(newpage)) {
5710                 int old_nid = page_to_nid(oldpage);
5711                 int new_nid = page_to_nid(newpage);
5712
5713                 SetHPageTemporary(oldpage);
5714                 ClearHPageTemporary(newpage);
5715
5716                 /*
5717                  * There is no need to transfer the per-node surplus state
5718                  * when we do not cross the node.
5719                  */
5720                 if (new_nid == old_nid)
5721                         return;
5722                 spin_lock_irq(&hugetlb_lock);
5723                 if (h->surplus_huge_pages_node[old_nid]) {
5724                         h->surplus_huge_pages_node[old_nid]--;
5725                         h->surplus_huge_pages_node[new_nid]++;
5726                 }
5727                 spin_unlock_irq(&hugetlb_lock);
5728         }
5729 }
5730
5731 /*
5732  * This function will unconditionally remove all the shared pmd pgtable entries
5733  * within the specific vma for a hugetlbfs memory range.
5734  */
5735 void hugetlb_unshare_all_pmds(struct vm_area_struct *vma)
5736 {
5737         struct hstate *h = hstate_vma(vma);
5738         unsigned long sz = huge_page_size(h);
5739         struct mm_struct *mm = vma->vm_mm;
5740         struct mmu_notifier_range range;
5741         unsigned long address, start, end;
5742         spinlock_t *ptl;
5743         pte_t *ptep;
5744
5745         if (!(vma->vm_flags & VM_MAYSHARE))
5746                 return;
5747
5748         start = ALIGN(vma->vm_start, PUD_SIZE);
5749         end = ALIGN_DOWN(vma->vm_end, PUD_SIZE);
5750
5751         if (start >= end)
5752                 return;
5753
5754         /*
5755          * No need to call adjust_range_if_pmd_sharing_possible(), because
5756          * we have already done the PUD_SIZE alignment.
5757          */
5758         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
5759                                 start, end);
5760         mmu_notifier_invalidate_range_start(&range);
5761         i_mmap_lock_write(vma->vm_file->f_mapping);
5762         for (address = start; address < end; address += PUD_SIZE) {
5763                 unsigned long tmp = address;
5764
5765                 ptep = huge_pte_offset(mm, address, sz);
5766                 if (!ptep)
5767                         continue;
5768                 ptl = huge_pte_lock(h, mm, ptep);
5769                 /* We don't want 'address' to be changed */
5770                 huge_pmd_unshare(mm, vma, &tmp, ptep);
5771                 spin_unlock(ptl);
5772         }
5773         flush_hugetlb_tlb_range(vma, start, end);
5774         i_mmap_unlock_write(vma->vm_file->f_mapping);
5775         /*
5776          * No need to call mmu_notifier_invalidate_range(), see
5777          * Documentation/vm/mmu_notifier.rst.
5778          */
5779         mmu_notifier_invalidate_range_end(&range);
5780 }
5781
5782 #ifdef CONFIG_CMA
5783 static bool cma_reserve_called __initdata;
5784
5785 static int __init cmdline_parse_hugetlb_cma(char *p)
5786 {
5787         hugetlb_cma_size = memparse(p, &p);
5788         return 0;
5789 }
5790
5791 early_param("hugetlb_cma", cmdline_parse_hugetlb_cma);
5792
5793 void __init hugetlb_cma_reserve(int order)
5794 {
5795         unsigned long size, reserved, per_node;
5796         int nid;
5797
5798         cma_reserve_called = true;
5799
5800         if (!hugetlb_cma_size)
5801                 return;
5802
5803         if (hugetlb_cma_size < (PAGE_SIZE << order)) {
5804                 pr_warn("hugetlb_cma: cma area should be at least %lu MiB\n",
5805                         (PAGE_SIZE << order) / SZ_1M);
5806                 return;
5807         }
5808
5809         /*
5810          * If 3 GB area is requested on a machine with 4 numa nodes,
5811          * let's allocate 1 GB on first three nodes and ignore the last one.
5812          */
5813         per_node = DIV_ROUND_UP(hugetlb_cma_size, nr_online_nodes);
5814         pr_info("hugetlb_cma: reserve %lu MiB, up to %lu MiB per node\n",
5815                 hugetlb_cma_size / SZ_1M, per_node / SZ_1M);
5816
5817         reserved = 0;
5818         for_each_node_state(nid, N_ONLINE) {
5819                 int res;
5820                 char name[CMA_MAX_NAME];
5821
5822                 size = min(per_node, hugetlb_cma_size - reserved);
5823                 size = round_up(size, PAGE_SIZE << order);
5824
5825                 snprintf(name, sizeof(name), "hugetlb%d", nid);
5826                 res = cma_declare_contiguous_nid(0, size, 0, PAGE_SIZE << order,
5827                                                  0, false, name,
5828                                                  &hugetlb_cma[nid], nid);
5829                 if (res) {
5830                         pr_warn("hugetlb_cma: reservation failed: err %d, node %d",
5831                                 res, nid);
5832                         continue;
5833                 }
5834
5835                 reserved += size;
5836                 pr_info("hugetlb_cma: reserved %lu MiB on node %d\n",
5837                         size / SZ_1M, nid);
5838
5839                 if (reserved >= hugetlb_cma_size)
5840                         break;
5841         }
5842 }
5843
5844 void __init hugetlb_cma_check(void)
5845 {
5846         if (!hugetlb_cma_size || cma_reserve_called)
5847                 return;
5848
5849         pr_warn("hugetlb_cma: the option isn't supported by current arch\n");
5850 }
5851
5852 #endif /* CONFIG_CMA */