Merge branch 'md-fixes' of https://git.kernel.org/pub/scm/linux/kernel/git/song/md...
[linux-2.6-microblaze.git] / mm / hugetlb.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Generic hugetlb support.
4  * (C) Nadia Yvette Chambers, April 2004
5  */
6 #include <linux/list.h>
7 #include <linux/init.h>
8 #include <linux/mm.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/compiler.h>
17 #include <linux/cpuset.h>
18 #include <linux/mutex.h>
19 #include <linux/memblock.h>
20 #include <linux/sysfs.h>
21 #include <linux/slab.h>
22 #include <linux/sched/mm.h>
23 #include <linux/mmdebug.h>
24 #include <linux/sched/signal.h>
25 #include <linux/rmap.h>
26 #include <linux/string_helpers.h>
27 #include <linux/swap.h>
28 #include <linux/swapops.h>
29 #include <linux/jhash.h>
30 #include <linux/numa.h>
31 #include <linux/llist.h>
32 #include <linux/cma.h>
33
34 #include <asm/page.h>
35 #include <asm/pgalloc.h>
36 #include <asm/tlb.h>
37
38 #include <linux/io.h>
39 #include <linux/hugetlb.h>
40 #include <linux/hugetlb_cgroup.h>
41 #include <linux/node.h>
42 #include <linux/page_owner.h>
43 #include "internal.h"
44
45 int hugetlb_max_hstate __read_mostly;
46 unsigned int default_hstate_idx;
47 struct hstate hstates[HUGE_MAX_HSTATE];
48
49 #ifdef CONFIG_CMA
50 static struct cma *hugetlb_cma[MAX_NUMNODES];
51 #endif
52 static unsigned long hugetlb_cma_size __initdata;
53
54 /*
55  * Minimum page order among possible hugepage sizes, set to a proper value
56  * at boot time.
57  */
58 static unsigned int minimum_order __read_mostly = UINT_MAX;
59
60 __initdata LIST_HEAD(huge_boot_pages);
61
62 /* for command line parsing */
63 static struct hstate * __initdata parsed_hstate;
64 static unsigned long __initdata default_hstate_max_huge_pages;
65 static bool __initdata parsed_valid_hugepagesz = true;
66 static bool __initdata parsed_default_hugepagesz;
67
68 /*
69  * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
70  * free_huge_pages, and surplus_huge_pages.
71  */
72 DEFINE_SPINLOCK(hugetlb_lock);
73
74 /*
75  * Serializes faults on the same logical page.  This is used to
76  * prevent spurious OOMs when the hugepage pool is fully utilized.
77  */
78 static int num_fault_mutexes;
79 struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
80
81 /* Forward declaration */
82 static int hugetlb_acct_memory(struct hstate *h, long delta);
83
84 static inline bool subpool_is_free(struct hugepage_subpool *spool)
85 {
86         if (spool->count)
87                 return false;
88         if (spool->max_hpages != -1)
89                 return spool->used_hpages == 0;
90         if (spool->min_hpages != -1)
91                 return spool->rsv_hpages == spool->min_hpages;
92
93         return true;
94 }
95
96 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool,
97                                                 unsigned long irq_flags)
98 {
99         spin_unlock_irqrestore(&spool->lock, irq_flags);
100
101         /* If no pages are used, and no other handles to the subpool
102          * remain, give up any reservations based on minimum size and
103          * free the subpool */
104         if (subpool_is_free(spool)) {
105                 if (spool->min_hpages != -1)
106                         hugetlb_acct_memory(spool->hstate,
107                                                 -spool->min_hpages);
108                 kfree(spool);
109         }
110 }
111
112 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
113                                                 long min_hpages)
114 {
115         struct hugepage_subpool *spool;
116
117         spool = kzalloc(sizeof(*spool), GFP_KERNEL);
118         if (!spool)
119                 return NULL;
120
121         spin_lock_init(&spool->lock);
122         spool->count = 1;
123         spool->max_hpages = max_hpages;
124         spool->hstate = h;
125         spool->min_hpages = min_hpages;
126
127         if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
128                 kfree(spool);
129                 return NULL;
130         }
131         spool->rsv_hpages = min_hpages;
132
133         return spool;
134 }
135
136 void hugepage_put_subpool(struct hugepage_subpool *spool)
137 {
138         unsigned long flags;
139
140         spin_lock_irqsave(&spool->lock, flags);
141         BUG_ON(!spool->count);
142         spool->count--;
143         unlock_or_release_subpool(spool, flags);
144 }
145
146 /*
147  * Subpool accounting for allocating and reserving pages.
148  * Return -ENOMEM if there are not enough resources to satisfy the
149  * request.  Otherwise, return the number of pages by which the
150  * global pools must be adjusted (upward).  The returned value may
151  * only be different than the passed value (delta) in the case where
152  * a subpool minimum size must be maintained.
153  */
154 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
155                                       long delta)
156 {
157         long ret = delta;
158
159         if (!spool)
160                 return ret;
161
162         spin_lock_irq(&spool->lock);
163
164         if (spool->max_hpages != -1) {          /* maximum size accounting */
165                 if ((spool->used_hpages + delta) <= spool->max_hpages)
166                         spool->used_hpages += delta;
167                 else {
168                         ret = -ENOMEM;
169                         goto unlock_ret;
170                 }
171         }
172
173         /* minimum size accounting */
174         if (spool->min_hpages != -1 && spool->rsv_hpages) {
175                 if (delta > spool->rsv_hpages) {
176                         /*
177                          * Asking for more reserves than those already taken on
178                          * behalf of subpool.  Return difference.
179                          */
180                         ret = delta - spool->rsv_hpages;
181                         spool->rsv_hpages = 0;
182                 } else {
183                         ret = 0;        /* reserves already accounted for */
184                         spool->rsv_hpages -= delta;
185                 }
186         }
187
188 unlock_ret:
189         spin_unlock_irq(&spool->lock);
190         return ret;
191 }
192
193 /*
194  * Subpool accounting for freeing and unreserving pages.
195  * Return the number of global page reservations that must be dropped.
196  * The return value may only be different than the passed value (delta)
197  * in the case where a subpool minimum size must be maintained.
198  */
199 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
200                                        long delta)
201 {
202         long ret = delta;
203         unsigned long flags;
204
205         if (!spool)
206                 return delta;
207
208         spin_lock_irqsave(&spool->lock, flags);
209
210         if (spool->max_hpages != -1)            /* maximum size accounting */
211                 spool->used_hpages -= delta;
212
213          /* minimum size accounting */
214         if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
215                 if (spool->rsv_hpages + delta <= spool->min_hpages)
216                         ret = 0;
217                 else
218                         ret = spool->rsv_hpages + delta - spool->min_hpages;
219
220                 spool->rsv_hpages += delta;
221                 if (spool->rsv_hpages > spool->min_hpages)
222                         spool->rsv_hpages = spool->min_hpages;
223         }
224
225         /*
226          * If hugetlbfs_put_super couldn't free spool due to an outstanding
227          * quota reference, free it now.
228          */
229         unlock_or_release_subpool(spool, flags);
230
231         return ret;
232 }
233
234 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
235 {
236         return HUGETLBFS_SB(inode->i_sb)->spool;
237 }
238
239 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
240 {
241         return subpool_inode(file_inode(vma->vm_file));
242 }
243
244 /* Helper that removes a struct file_region from the resv_map cache and returns
245  * it for use.
246  */
247 static struct file_region *
248 get_file_region_entry_from_cache(struct resv_map *resv, long from, long to)
249 {
250         struct file_region *nrg = NULL;
251
252         VM_BUG_ON(resv->region_cache_count <= 0);
253
254         resv->region_cache_count--;
255         nrg = list_first_entry(&resv->region_cache, struct file_region, link);
256         list_del(&nrg->link);
257
258         nrg->from = from;
259         nrg->to = to;
260
261         return nrg;
262 }
263
264 static void copy_hugetlb_cgroup_uncharge_info(struct file_region *nrg,
265                                               struct file_region *rg)
266 {
267 #ifdef CONFIG_CGROUP_HUGETLB
268         nrg->reservation_counter = rg->reservation_counter;
269         nrg->css = rg->css;
270         if (rg->css)
271                 css_get(rg->css);
272 #endif
273 }
274
275 /* Helper that records hugetlb_cgroup uncharge info. */
276 static void record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup *h_cg,
277                                                 struct hstate *h,
278                                                 struct resv_map *resv,
279                                                 struct file_region *nrg)
280 {
281 #ifdef CONFIG_CGROUP_HUGETLB
282         if (h_cg) {
283                 nrg->reservation_counter =
284                         &h_cg->rsvd_hugepage[hstate_index(h)];
285                 nrg->css = &h_cg->css;
286                 /*
287                  * The caller will hold exactly one h_cg->css reference for the
288                  * whole contiguous reservation region. But this area might be
289                  * scattered when there are already some file_regions reside in
290                  * it. As a result, many file_regions may share only one css
291                  * reference. In order to ensure that one file_region must hold
292                  * exactly one h_cg->css reference, we should do css_get for
293                  * each file_region and leave the reference held by caller
294                  * untouched.
295                  */
296                 css_get(&h_cg->css);
297                 if (!resv->pages_per_hpage)
298                         resv->pages_per_hpage = pages_per_huge_page(h);
299                 /* pages_per_hpage should be the same for all entries in
300                  * a resv_map.
301                  */
302                 VM_BUG_ON(resv->pages_per_hpage != pages_per_huge_page(h));
303         } else {
304                 nrg->reservation_counter = NULL;
305                 nrg->css = NULL;
306         }
307 #endif
308 }
309
310 static void put_uncharge_info(struct file_region *rg)
311 {
312 #ifdef CONFIG_CGROUP_HUGETLB
313         if (rg->css)
314                 css_put(rg->css);
315 #endif
316 }
317
318 static bool has_same_uncharge_info(struct file_region *rg,
319                                    struct file_region *org)
320 {
321 #ifdef CONFIG_CGROUP_HUGETLB
322         return rg && org &&
323                rg->reservation_counter == org->reservation_counter &&
324                rg->css == org->css;
325
326 #else
327         return true;
328 #endif
329 }
330
331 static void coalesce_file_region(struct resv_map *resv, struct file_region *rg)
332 {
333         struct file_region *nrg = NULL, *prg = NULL;
334
335         prg = list_prev_entry(rg, link);
336         if (&prg->link != &resv->regions && prg->to == rg->from &&
337             has_same_uncharge_info(prg, rg)) {
338                 prg->to = rg->to;
339
340                 list_del(&rg->link);
341                 put_uncharge_info(rg);
342                 kfree(rg);
343
344                 rg = prg;
345         }
346
347         nrg = list_next_entry(rg, link);
348         if (&nrg->link != &resv->regions && nrg->from == rg->to &&
349             has_same_uncharge_info(nrg, rg)) {
350                 nrg->from = rg->from;
351
352                 list_del(&rg->link);
353                 put_uncharge_info(rg);
354                 kfree(rg);
355         }
356 }
357
358 static inline long
359 hugetlb_resv_map_add(struct resv_map *map, struct file_region *rg, long from,
360                      long to, struct hstate *h, struct hugetlb_cgroup *cg,
361                      long *regions_needed)
362 {
363         struct file_region *nrg;
364
365         if (!regions_needed) {
366                 nrg = get_file_region_entry_from_cache(map, from, to);
367                 record_hugetlb_cgroup_uncharge_info(cg, h, map, nrg);
368                 list_add(&nrg->link, rg->link.prev);
369                 coalesce_file_region(map, nrg);
370         } else
371                 *regions_needed += 1;
372
373         return to - from;
374 }
375
376 /*
377  * Must be called with resv->lock held.
378  *
379  * Calling this with regions_needed != NULL will count the number of pages
380  * to be added but will not modify the linked list. And regions_needed will
381  * indicate the number of file_regions needed in the cache to carry out to add
382  * the regions for this range.
383  */
384 static long add_reservation_in_range(struct resv_map *resv, long f, long t,
385                                      struct hugetlb_cgroup *h_cg,
386                                      struct hstate *h, long *regions_needed)
387 {
388         long add = 0;
389         struct list_head *head = &resv->regions;
390         long last_accounted_offset = f;
391         struct file_region *rg = NULL, *trg = NULL;
392
393         if (regions_needed)
394                 *regions_needed = 0;
395
396         /* In this loop, we essentially handle an entry for the range
397          * [last_accounted_offset, rg->from), at every iteration, with some
398          * bounds checking.
399          */
400         list_for_each_entry_safe(rg, trg, head, link) {
401                 /* Skip irrelevant regions that start before our range. */
402                 if (rg->from < f) {
403                         /* If this region ends after the last accounted offset,
404                          * then we need to update last_accounted_offset.
405                          */
406                         if (rg->to > last_accounted_offset)
407                                 last_accounted_offset = rg->to;
408                         continue;
409                 }
410
411                 /* When we find a region that starts beyond our range, we've
412                  * finished.
413                  */
414                 if (rg->from >= t)
415                         break;
416
417                 /* Add an entry for last_accounted_offset -> rg->from, and
418                  * update last_accounted_offset.
419                  */
420                 if (rg->from > last_accounted_offset)
421                         add += hugetlb_resv_map_add(resv, rg,
422                                                     last_accounted_offset,
423                                                     rg->from, h, h_cg,
424                                                     regions_needed);
425
426                 last_accounted_offset = rg->to;
427         }
428
429         /* Handle the case where our range extends beyond
430          * last_accounted_offset.
431          */
432         if (last_accounted_offset < t)
433                 add += hugetlb_resv_map_add(resv, rg, last_accounted_offset,
434                                             t, h, h_cg, regions_needed);
435
436         VM_BUG_ON(add < 0);
437         return add;
438 }
439
440 /* Must be called with resv->lock acquired. Will drop lock to allocate entries.
441  */
442 static int allocate_file_region_entries(struct resv_map *resv,
443                                         int regions_needed)
444         __must_hold(&resv->lock)
445 {
446         struct list_head allocated_regions;
447         int to_allocate = 0, i = 0;
448         struct file_region *trg = NULL, *rg = NULL;
449
450         VM_BUG_ON(regions_needed < 0);
451
452         INIT_LIST_HEAD(&allocated_regions);
453
454         /*
455          * Check for sufficient descriptors in the cache to accommodate
456          * the number of in progress add operations plus regions_needed.
457          *
458          * This is a while loop because when we drop the lock, some other call
459          * to region_add or region_del may have consumed some region_entries,
460          * so we keep looping here until we finally have enough entries for
461          * (adds_in_progress + regions_needed).
462          */
463         while (resv->region_cache_count <
464                (resv->adds_in_progress + regions_needed)) {
465                 to_allocate = resv->adds_in_progress + regions_needed -
466                               resv->region_cache_count;
467
468                 /* At this point, we should have enough entries in the cache
469                  * for all the existing adds_in_progress. We should only be
470                  * needing to allocate for regions_needed.
471                  */
472                 VM_BUG_ON(resv->region_cache_count < resv->adds_in_progress);
473
474                 spin_unlock(&resv->lock);
475                 for (i = 0; i < to_allocate; i++) {
476                         trg = kmalloc(sizeof(*trg), GFP_KERNEL);
477                         if (!trg)
478                                 goto out_of_memory;
479                         list_add(&trg->link, &allocated_regions);
480                 }
481
482                 spin_lock(&resv->lock);
483
484                 list_splice(&allocated_regions, &resv->region_cache);
485                 resv->region_cache_count += to_allocate;
486         }
487
488         return 0;
489
490 out_of_memory:
491         list_for_each_entry_safe(rg, trg, &allocated_regions, link) {
492                 list_del(&rg->link);
493                 kfree(rg);
494         }
495         return -ENOMEM;
496 }
497
498 /*
499  * Add the huge page range represented by [f, t) to the reserve
500  * map.  Regions will be taken from the cache to fill in this range.
501  * Sufficient regions should exist in the cache due to the previous
502  * call to region_chg with the same range, but in some cases the cache will not
503  * have sufficient entries due to races with other code doing region_add or
504  * region_del.  The extra needed entries will be allocated.
505  *
506  * regions_needed is the out value provided by a previous call to region_chg.
507  *
508  * Return the number of new huge pages added to the map.  This number is greater
509  * than or equal to zero.  If file_region entries needed to be allocated for
510  * this operation and we were not able to allocate, it returns -ENOMEM.
511  * region_add of regions of length 1 never allocate file_regions and cannot
512  * fail; region_chg will always allocate at least 1 entry and a region_add for
513  * 1 page will only require at most 1 entry.
514  */
515 static long region_add(struct resv_map *resv, long f, long t,
516                        long in_regions_needed, struct hstate *h,
517                        struct hugetlb_cgroup *h_cg)
518 {
519         long add = 0, actual_regions_needed = 0;
520
521         spin_lock(&resv->lock);
522 retry:
523
524         /* Count how many regions are actually needed to execute this add. */
525         add_reservation_in_range(resv, f, t, NULL, NULL,
526                                  &actual_regions_needed);
527
528         /*
529          * Check for sufficient descriptors in the cache to accommodate
530          * this add operation. Note that actual_regions_needed may be greater
531          * than in_regions_needed, as the resv_map may have been modified since
532          * the region_chg call. In this case, we need to make sure that we
533          * allocate extra entries, such that we have enough for all the
534          * existing adds_in_progress, plus the excess needed for this
535          * operation.
536          */
537         if (actual_regions_needed > in_regions_needed &&
538             resv->region_cache_count <
539                     resv->adds_in_progress +
540                             (actual_regions_needed - in_regions_needed)) {
541                 /* region_add operation of range 1 should never need to
542                  * allocate file_region entries.
543                  */
544                 VM_BUG_ON(t - f <= 1);
545
546                 if (allocate_file_region_entries(
547                             resv, actual_regions_needed - in_regions_needed)) {
548                         return -ENOMEM;
549                 }
550
551                 goto retry;
552         }
553
554         add = add_reservation_in_range(resv, f, t, h_cg, h, NULL);
555
556         resv->adds_in_progress -= in_regions_needed;
557
558         spin_unlock(&resv->lock);
559         return add;
560 }
561
562 /*
563  * Examine the existing reserve map and determine how many
564  * huge pages in the specified range [f, t) are NOT currently
565  * represented.  This routine is called before a subsequent
566  * call to region_add that will actually modify the reserve
567  * map to add the specified range [f, t).  region_chg does
568  * not change the number of huge pages represented by the
569  * map.  A number of new file_region structures is added to the cache as a
570  * placeholder, for the subsequent region_add call to use. At least 1
571  * file_region structure is added.
572  *
573  * out_regions_needed is the number of regions added to the
574  * resv->adds_in_progress.  This value needs to be provided to a follow up call
575  * to region_add or region_abort for proper accounting.
576  *
577  * Returns the number of huge pages that need to be added to the existing
578  * reservation map for the range [f, t).  This number is greater or equal to
579  * zero.  -ENOMEM is returned if a new file_region structure or cache entry
580  * is needed and can not be allocated.
581  */
582 static long region_chg(struct resv_map *resv, long f, long t,
583                        long *out_regions_needed)
584 {
585         long chg = 0;
586
587         spin_lock(&resv->lock);
588
589         /* Count how many hugepages in this range are NOT represented. */
590         chg = add_reservation_in_range(resv, f, t, NULL, NULL,
591                                        out_regions_needed);
592
593         if (*out_regions_needed == 0)
594                 *out_regions_needed = 1;
595
596         if (allocate_file_region_entries(resv, *out_regions_needed))
597                 return -ENOMEM;
598
599         resv->adds_in_progress += *out_regions_needed;
600
601         spin_unlock(&resv->lock);
602         return chg;
603 }
604
605 /*
606  * Abort the in progress add operation.  The adds_in_progress field
607  * of the resv_map keeps track of the operations in progress between
608  * calls to region_chg and region_add.  Operations are sometimes
609  * aborted after the call to region_chg.  In such cases, region_abort
610  * is called to decrement the adds_in_progress counter. regions_needed
611  * is the value returned by the region_chg call, it is used to decrement
612  * the adds_in_progress counter.
613  *
614  * NOTE: The range arguments [f, t) are not needed or used in this
615  * routine.  They are kept to make reading the calling code easier as
616  * arguments will match the associated region_chg call.
617  */
618 static void region_abort(struct resv_map *resv, long f, long t,
619                          long regions_needed)
620 {
621         spin_lock(&resv->lock);
622         VM_BUG_ON(!resv->region_cache_count);
623         resv->adds_in_progress -= regions_needed;
624         spin_unlock(&resv->lock);
625 }
626
627 /*
628  * Delete the specified range [f, t) from the reserve map.  If the
629  * t parameter is LONG_MAX, this indicates that ALL regions after f
630  * should be deleted.  Locate the regions which intersect [f, t)
631  * and either trim, delete or split the existing regions.
632  *
633  * Returns the number of huge pages deleted from the reserve map.
634  * In the normal case, the return value is zero or more.  In the
635  * case where a region must be split, a new region descriptor must
636  * be allocated.  If the allocation fails, -ENOMEM will be returned.
637  * NOTE: If the parameter t == LONG_MAX, then we will never split
638  * a region and possibly return -ENOMEM.  Callers specifying
639  * t == LONG_MAX do not need to check for -ENOMEM error.
640  */
641 static long region_del(struct resv_map *resv, long f, long t)
642 {
643         struct list_head *head = &resv->regions;
644         struct file_region *rg, *trg;
645         struct file_region *nrg = NULL;
646         long del = 0;
647
648 retry:
649         spin_lock(&resv->lock);
650         list_for_each_entry_safe(rg, trg, head, link) {
651                 /*
652                  * Skip regions before the range to be deleted.  file_region
653                  * ranges are normally of the form [from, to).  However, there
654                  * may be a "placeholder" entry in the map which is of the form
655                  * (from, to) with from == to.  Check for placeholder entries
656                  * at the beginning of the range to be deleted.
657                  */
658                 if (rg->to <= f && (rg->to != rg->from || rg->to != f))
659                         continue;
660
661                 if (rg->from >= t)
662                         break;
663
664                 if (f > rg->from && t < rg->to) { /* Must split region */
665                         /*
666                          * Check for an entry in the cache before dropping
667                          * lock and attempting allocation.
668                          */
669                         if (!nrg &&
670                             resv->region_cache_count > resv->adds_in_progress) {
671                                 nrg = list_first_entry(&resv->region_cache,
672                                                         struct file_region,
673                                                         link);
674                                 list_del(&nrg->link);
675                                 resv->region_cache_count--;
676                         }
677
678                         if (!nrg) {
679                                 spin_unlock(&resv->lock);
680                                 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
681                                 if (!nrg)
682                                         return -ENOMEM;
683                                 goto retry;
684                         }
685
686                         del += t - f;
687                         hugetlb_cgroup_uncharge_file_region(
688                                 resv, rg, t - f, false);
689
690                         /* New entry for end of split region */
691                         nrg->from = t;
692                         nrg->to = rg->to;
693
694                         copy_hugetlb_cgroup_uncharge_info(nrg, rg);
695
696                         INIT_LIST_HEAD(&nrg->link);
697
698                         /* Original entry is trimmed */
699                         rg->to = f;
700
701                         list_add(&nrg->link, &rg->link);
702                         nrg = NULL;
703                         break;
704                 }
705
706                 if (f <= rg->from && t >= rg->to) { /* Remove entire region */
707                         del += rg->to - rg->from;
708                         hugetlb_cgroup_uncharge_file_region(resv, rg,
709                                                             rg->to - rg->from, true);
710                         list_del(&rg->link);
711                         kfree(rg);
712                         continue;
713                 }
714
715                 if (f <= rg->from) {    /* Trim beginning of region */
716                         hugetlb_cgroup_uncharge_file_region(resv, rg,
717                                                             t - rg->from, false);
718
719                         del += t - rg->from;
720                         rg->from = t;
721                 } else {                /* Trim end of region */
722                         hugetlb_cgroup_uncharge_file_region(resv, rg,
723                                                             rg->to - f, false);
724
725                         del += rg->to - f;
726                         rg->to = f;
727                 }
728         }
729
730         spin_unlock(&resv->lock);
731         kfree(nrg);
732         return del;
733 }
734
735 /*
736  * A rare out of memory error was encountered which prevented removal of
737  * the reserve map region for a page.  The huge page itself was free'ed
738  * and removed from the page cache.  This routine will adjust the subpool
739  * usage count, and the global reserve count if needed.  By incrementing
740  * these counts, the reserve map entry which could not be deleted will
741  * appear as a "reserved" entry instead of simply dangling with incorrect
742  * counts.
743  */
744 void hugetlb_fix_reserve_counts(struct inode *inode)
745 {
746         struct hugepage_subpool *spool = subpool_inode(inode);
747         long rsv_adjust;
748         bool reserved = false;
749
750         rsv_adjust = hugepage_subpool_get_pages(spool, 1);
751         if (rsv_adjust > 0) {
752                 struct hstate *h = hstate_inode(inode);
753
754                 if (!hugetlb_acct_memory(h, 1))
755                         reserved = true;
756         } else if (!rsv_adjust) {
757                 reserved = true;
758         }
759
760         if (!reserved)
761                 pr_warn("hugetlb: Huge Page Reserved count may go negative.\n");
762 }
763
764 /*
765  * Count and return the number of huge pages in the reserve map
766  * that intersect with the range [f, t).
767  */
768 static long region_count(struct resv_map *resv, long f, long t)
769 {
770         struct list_head *head = &resv->regions;
771         struct file_region *rg;
772         long chg = 0;
773
774         spin_lock(&resv->lock);
775         /* Locate each segment we overlap with, and count that overlap. */
776         list_for_each_entry(rg, head, link) {
777                 long seg_from;
778                 long seg_to;
779
780                 if (rg->to <= f)
781                         continue;
782                 if (rg->from >= t)
783                         break;
784
785                 seg_from = max(rg->from, f);
786                 seg_to = min(rg->to, t);
787
788                 chg += seg_to - seg_from;
789         }
790         spin_unlock(&resv->lock);
791
792         return chg;
793 }
794
795 /*
796  * Convert the address within this vma to the page offset within
797  * the mapping, in pagecache page units; huge pages here.
798  */
799 static pgoff_t vma_hugecache_offset(struct hstate *h,
800                         struct vm_area_struct *vma, unsigned long address)
801 {
802         return ((address - vma->vm_start) >> huge_page_shift(h)) +
803                         (vma->vm_pgoff >> huge_page_order(h));
804 }
805
806 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
807                                      unsigned long address)
808 {
809         return vma_hugecache_offset(hstate_vma(vma), vma, address);
810 }
811 EXPORT_SYMBOL_GPL(linear_hugepage_index);
812
813 /*
814  * Return the size of the pages allocated when backing a VMA. In the majority
815  * cases this will be same size as used by the page table entries.
816  */
817 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
818 {
819         if (vma->vm_ops && vma->vm_ops->pagesize)
820                 return vma->vm_ops->pagesize(vma);
821         return PAGE_SIZE;
822 }
823 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
824
825 /*
826  * Return the page size being used by the MMU to back a VMA. In the majority
827  * of cases, the page size used by the kernel matches the MMU size. On
828  * architectures where it differs, an architecture-specific 'strong'
829  * version of this symbol is required.
830  */
831 __weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
832 {
833         return vma_kernel_pagesize(vma);
834 }
835
836 /*
837  * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
838  * bits of the reservation map pointer, which are always clear due to
839  * alignment.
840  */
841 #define HPAGE_RESV_OWNER    (1UL << 0)
842 #define HPAGE_RESV_UNMAPPED (1UL << 1)
843 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
844
845 /*
846  * These helpers are used to track how many pages are reserved for
847  * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
848  * is guaranteed to have their future faults succeed.
849  *
850  * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
851  * the reserve counters are updated with the hugetlb_lock held. It is safe
852  * to reset the VMA at fork() time as it is not in use yet and there is no
853  * chance of the global counters getting corrupted as a result of the values.
854  *
855  * The private mapping reservation is represented in a subtly different
856  * manner to a shared mapping.  A shared mapping has a region map associated
857  * with the underlying file, this region map represents the backing file
858  * pages which have ever had a reservation assigned which this persists even
859  * after the page is instantiated.  A private mapping has a region map
860  * associated with the original mmap which is attached to all VMAs which
861  * reference it, this region map represents those offsets which have consumed
862  * reservation ie. where pages have been instantiated.
863  */
864 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
865 {
866         return (unsigned long)vma->vm_private_data;
867 }
868
869 static void set_vma_private_data(struct vm_area_struct *vma,
870                                                         unsigned long value)
871 {
872         vma->vm_private_data = (void *)value;
873 }
874
875 static void
876 resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map *resv_map,
877                                           struct hugetlb_cgroup *h_cg,
878                                           struct hstate *h)
879 {
880 #ifdef CONFIG_CGROUP_HUGETLB
881         if (!h_cg || !h) {
882                 resv_map->reservation_counter = NULL;
883                 resv_map->pages_per_hpage = 0;
884                 resv_map->css = NULL;
885         } else {
886                 resv_map->reservation_counter =
887                         &h_cg->rsvd_hugepage[hstate_index(h)];
888                 resv_map->pages_per_hpage = pages_per_huge_page(h);
889                 resv_map->css = &h_cg->css;
890         }
891 #endif
892 }
893
894 struct resv_map *resv_map_alloc(void)
895 {
896         struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
897         struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
898
899         if (!resv_map || !rg) {
900                 kfree(resv_map);
901                 kfree(rg);
902                 return NULL;
903         }
904
905         kref_init(&resv_map->refs);
906         spin_lock_init(&resv_map->lock);
907         INIT_LIST_HEAD(&resv_map->regions);
908
909         resv_map->adds_in_progress = 0;
910         /*
911          * Initialize these to 0. On shared mappings, 0's here indicate these
912          * fields don't do cgroup accounting. On private mappings, these will be
913          * re-initialized to the proper values, to indicate that hugetlb cgroup
914          * reservations are to be un-charged from here.
915          */
916         resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, NULL, NULL);
917
918         INIT_LIST_HEAD(&resv_map->region_cache);
919         list_add(&rg->link, &resv_map->region_cache);
920         resv_map->region_cache_count = 1;
921
922         return resv_map;
923 }
924
925 void resv_map_release(struct kref *ref)
926 {
927         struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
928         struct list_head *head = &resv_map->region_cache;
929         struct file_region *rg, *trg;
930
931         /* Clear out any active regions before we release the map. */
932         region_del(resv_map, 0, LONG_MAX);
933
934         /* ... and any entries left in the cache */
935         list_for_each_entry_safe(rg, trg, head, link) {
936                 list_del(&rg->link);
937                 kfree(rg);
938         }
939
940         VM_BUG_ON(resv_map->adds_in_progress);
941
942         kfree(resv_map);
943 }
944
945 static inline struct resv_map *inode_resv_map(struct inode *inode)
946 {
947         /*
948          * At inode evict time, i_mapping may not point to the original
949          * address space within the inode.  This original address space
950          * contains the pointer to the resv_map.  So, always use the
951          * address space embedded within the inode.
952          * The VERY common case is inode->mapping == &inode->i_data but,
953          * this may not be true for device special inodes.
954          */
955         return (struct resv_map *)(&inode->i_data)->private_data;
956 }
957
958 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
959 {
960         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
961         if (vma->vm_flags & VM_MAYSHARE) {
962                 struct address_space *mapping = vma->vm_file->f_mapping;
963                 struct inode *inode = mapping->host;
964
965                 return inode_resv_map(inode);
966
967         } else {
968                 return (struct resv_map *)(get_vma_private_data(vma) &
969                                                         ~HPAGE_RESV_MASK);
970         }
971 }
972
973 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
974 {
975         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
976         VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
977
978         set_vma_private_data(vma, (get_vma_private_data(vma) &
979                                 HPAGE_RESV_MASK) | (unsigned long)map);
980 }
981
982 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
983 {
984         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
985         VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
986
987         set_vma_private_data(vma, get_vma_private_data(vma) | flags);
988 }
989
990 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
991 {
992         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
993
994         return (get_vma_private_data(vma) & flag) != 0;
995 }
996
997 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
998 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
999 {
1000         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1001         if (!(vma->vm_flags & VM_MAYSHARE))
1002                 vma->vm_private_data = (void *)0;
1003 }
1004
1005 /* Returns true if the VMA has associated reserve pages */
1006 static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
1007 {
1008         if (vma->vm_flags & VM_NORESERVE) {
1009                 /*
1010                  * This address is already reserved by other process(chg == 0),
1011                  * so, we should decrement reserved count. Without decrementing,
1012                  * reserve count remains after releasing inode, because this
1013                  * allocated page will go into page cache and is regarded as
1014                  * coming from reserved pool in releasing step.  Currently, we
1015                  * don't have any other solution to deal with this situation
1016                  * properly, so add work-around here.
1017                  */
1018                 if (vma->vm_flags & VM_MAYSHARE && chg == 0)
1019                         return true;
1020                 else
1021                         return false;
1022         }
1023
1024         /* Shared mappings always use reserves */
1025         if (vma->vm_flags & VM_MAYSHARE) {
1026                 /*
1027                  * We know VM_NORESERVE is not set.  Therefore, there SHOULD
1028                  * be a region map for all pages.  The only situation where
1029                  * there is no region map is if a hole was punched via
1030                  * fallocate.  In this case, there really are no reserves to
1031                  * use.  This situation is indicated if chg != 0.
1032                  */
1033                 if (chg)
1034                         return false;
1035                 else
1036                         return true;
1037         }
1038
1039         /*
1040          * Only the process that called mmap() has reserves for
1041          * private mappings.
1042          */
1043         if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1044                 /*
1045                  * Like the shared case above, a hole punch or truncate
1046                  * could have been performed on the private mapping.
1047                  * Examine the value of chg to determine if reserves
1048                  * actually exist or were previously consumed.
1049                  * Very Subtle - The value of chg comes from a previous
1050                  * call to vma_needs_reserves().  The reserve map for
1051                  * private mappings has different (opposite) semantics
1052                  * than that of shared mappings.  vma_needs_reserves()
1053                  * has already taken this difference in semantics into
1054                  * account.  Therefore, the meaning of chg is the same
1055                  * as in the shared case above.  Code could easily be
1056                  * combined, but keeping it separate draws attention to
1057                  * subtle differences.
1058                  */
1059                 if (chg)
1060                         return false;
1061                 else
1062                         return true;
1063         }
1064
1065         return false;
1066 }
1067
1068 static void enqueue_huge_page(struct hstate *h, struct page *page)
1069 {
1070         int nid = page_to_nid(page);
1071
1072         lockdep_assert_held(&hugetlb_lock);
1073         list_move(&page->lru, &h->hugepage_freelists[nid]);
1074         h->free_huge_pages++;
1075         h->free_huge_pages_node[nid]++;
1076         SetHPageFreed(page);
1077 }
1078
1079 static struct page *dequeue_huge_page_node_exact(struct hstate *h, int nid)
1080 {
1081         struct page *page;
1082         bool pin = !!(current->flags & PF_MEMALLOC_PIN);
1083
1084         lockdep_assert_held(&hugetlb_lock);
1085         list_for_each_entry(page, &h->hugepage_freelists[nid], lru) {
1086                 if (pin && !is_pinnable_page(page))
1087                         continue;
1088
1089                 if (PageHWPoison(page))
1090                         continue;
1091
1092                 list_move(&page->lru, &h->hugepage_activelist);
1093                 set_page_refcounted(page);
1094                 ClearHPageFreed(page);
1095                 h->free_huge_pages--;
1096                 h->free_huge_pages_node[nid]--;
1097                 return page;
1098         }
1099
1100         return NULL;
1101 }
1102
1103 static struct page *dequeue_huge_page_nodemask(struct hstate *h, gfp_t gfp_mask, int nid,
1104                 nodemask_t *nmask)
1105 {
1106         unsigned int cpuset_mems_cookie;
1107         struct zonelist *zonelist;
1108         struct zone *zone;
1109         struct zoneref *z;
1110         int node = NUMA_NO_NODE;
1111
1112         zonelist = node_zonelist(nid, gfp_mask);
1113
1114 retry_cpuset:
1115         cpuset_mems_cookie = read_mems_allowed_begin();
1116         for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
1117                 struct page *page;
1118
1119                 if (!cpuset_zone_allowed(zone, gfp_mask))
1120                         continue;
1121                 /*
1122                  * no need to ask again on the same node. Pool is node rather than
1123                  * zone aware
1124                  */
1125                 if (zone_to_nid(zone) == node)
1126                         continue;
1127                 node = zone_to_nid(zone);
1128
1129                 page = dequeue_huge_page_node_exact(h, node);
1130                 if (page)
1131                         return page;
1132         }
1133         if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
1134                 goto retry_cpuset;
1135
1136         return NULL;
1137 }
1138
1139 static struct page *dequeue_huge_page_vma(struct hstate *h,
1140                                 struct vm_area_struct *vma,
1141                                 unsigned long address, int avoid_reserve,
1142                                 long chg)
1143 {
1144         struct page *page;
1145         struct mempolicy *mpol;
1146         gfp_t gfp_mask;
1147         nodemask_t *nodemask;
1148         int nid;
1149
1150         /*
1151          * A child process with MAP_PRIVATE mappings created by their parent
1152          * have no page reserves. This check ensures that reservations are
1153          * not "stolen". The child may still get SIGKILLed
1154          */
1155         if (!vma_has_reserves(vma, chg) &&
1156                         h->free_huge_pages - h->resv_huge_pages == 0)
1157                 goto err;
1158
1159         /* If reserves cannot be used, ensure enough pages are in the pool */
1160         if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
1161                 goto err;
1162
1163         gfp_mask = htlb_alloc_mask(h);
1164         nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
1165         page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
1166         if (page && !avoid_reserve && vma_has_reserves(vma, chg)) {
1167                 SetHPageRestoreReserve(page);
1168                 h->resv_huge_pages--;
1169         }
1170
1171         mpol_cond_put(mpol);
1172         return page;
1173
1174 err:
1175         return NULL;
1176 }
1177
1178 /*
1179  * common helper functions for hstate_next_node_to_{alloc|free}.
1180  * We may have allocated or freed a huge page based on a different
1181  * nodes_allowed previously, so h->next_node_to_{alloc|free} might
1182  * be outside of *nodes_allowed.  Ensure that we use an allowed
1183  * node for alloc or free.
1184  */
1185 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
1186 {
1187         nid = next_node_in(nid, *nodes_allowed);
1188         VM_BUG_ON(nid >= MAX_NUMNODES);
1189
1190         return nid;
1191 }
1192
1193 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
1194 {
1195         if (!node_isset(nid, *nodes_allowed))
1196                 nid = next_node_allowed(nid, nodes_allowed);
1197         return nid;
1198 }
1199
1200 /*
1201  * returns the previously saved node ["this node"] from which to
1202  * allocate a persistent huge page for the pool and advance the
1203  * next node from which to allocate, handling wrap at end of node
1204  * mask.
1205  */
1206 static int hstate_next_node_to_alloc(struct hstate *h,
1207                                         nodemask_t *nodes_allowed)
1208 {
1209         int nid;
1210
1211         VM_BUG_ON(!nodes_allowed);
1212
1213         nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
1214         h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
1215
1216         return nid;
1217 }
1218
1219 /*
1220  * helper for remove_pool_huge_page() - return the previously saved
1221  * node ["this node"] from which to free a huge page.  Advance the
1222  * next node id whether or not we find a free huge page to free so
1223  * that the next attempt to free addresses the next node.
1224  */
1225 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1226 {
1227         int nid;
1228
1229         VM_BUG_ON(!nodes_allowed);
1230
1231         nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1232         h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1233
1234         return nid;
1235 }
1236
1237 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask)           \
1238         for (nr_nodes = nodes_weight(*mask);                            \
1239                 nr_nodes > 0 &&                                         \
1240                 ((node = hstate_next_node_to_alloc(hs, mask)) || 1);    \
1241                 nr_nodes--)
1242
1243 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask)            \
1244         for (nr_nodes = nodes_weight(*mask);                            \
1245                 nr_nodes > 0 &&                                         \
1246                 ((node = hstate_next_node_to_free(hs, mask)) || 1);     \
1247                 nr_nodes--)
1248
1249 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
1250 static void destroy_compound_gigantic_page(struct page *page,
1251                                         unsigned int order)
1252 {
1253         int i;
1254         int nr_pages = 1 << order;
1255         struct page *p = page + 1;
1256
1257         atomic_set(compound_mapcount_ptr(page), 0);
1258         atomic_set(compound_pincount_ptr(page), 0);
1259
1260         for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1261                 clear_compound_head(p);
1262                 set_page_refcounted(p);
1263         }
1264
1265         set_compound_order(page, 0);
1266         page[1].compound_nr = 0;
1267         __ClearPageHead(page);
1268 }
1269
1270 static void free_gigantic_page(struct page *page, unsigned int order)
1271 {
1272         /*
1273          * If the page isn't allocated using the cma allocator,
1274          * cma_release() returns false.
1275          */
1276 #ifdef CONFIG_CMA
1277         if (cma_release(hugetlb_cma[page_to_nid(page)], page, 1 << order))
1278                 return;
1279 #endif
1280
1281         free_contig_range(page_to_pfn(page), 1 << order);
1282 }
1283
1284 #ifdef CONFIG_CONTIG_ALLOC
1285 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1286                 int nid, nodemask_t *nodemask)
1287 {
1288         unsigned long nr_pages = pages_per_huge_page(h);
1289         if (nid == NUMA_NO_NODE)
1290                 nid = numa_mem_id();
1291
1292 #ifdef CONFIG_CMA
1293         {
1294                 struct page *page;
1295                 int node;
1296
1297                 if (hugetlb_cma[nid]) {
1298                         page = cma_alloc(hugetlb_cma[nid], nr_pages,
1299                                         huge_page_order(h), true);
1300                         if (page)
1301                                 return page;
1302                 }
1303
1304                 if (!(gfp_mask & __GFP_THISNODE)) {
1305                         for_each_node_mask(node, *nodemask) {
1306                                 if (node == nid || !hugetlb_cma[node])
1307                                         continue;
1308
1309                                 page = cma_alloc(hugetlb_cma[node], nr_pages,
1310                                                 huge_page_order(h), true);
1311                                 if (page)
1312                                         return page;
1313                         }
1314                 }
1315         }
1316 #endif
1317
1318         return alloc_contig_pages(nr_pages, gfp_mask, nid, nodemask);
1319 }
1320
1321 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid);
1322 static void prep_compound_gigantic_page(struct page *page, unsigned int order);
1323 #else /* !CONFIG_CONTIG_ALLOC */
1324 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1325                                         int nid, nodemask_t *nodemask)
1326 {
1327         return NULL;
1328 }
1329 #endif /* CONFIG_CONTIG_ALLOC */
1330
1331 #else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
1332 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1333                                         int nid, nodemask_t *nodemask)
1334 {
1335         return NULL;
1336 }
1337 static inline void free_gigantic_page(struct page *page, unsigned int order) { }
1338 static inline void destroy_compound_gigantic_page(struct page *page,
1339                                                 unsigned int order) { }
1340 #endif
1341
1342 /*
1343  * Remove hugetlb page from lists, and update dtor so that page appears
1344  * as just a compound page.  A reference is held on the page.
1345  *
1346  * Must be called with hugetlb lock held.
1347  */
1348 static void remove_hugetlb_page(struct hstate *h, struct page *page,
1349                                                         bool adjust_surplus)
1350 {
1351         int nid = page_to_nid(page);
1352
1353         VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
1354         VM_BUG_ON_PAGE(hugetlb_cgroup_from_page_rsvd(page), page);
1355
1356         lockdep_assert_held(&hugetlb_lock);
1357         if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1358                 return;
1359
1360         list_del(&page->lru);
1361
1362         if (HPageFreed(page)) {
1363                 h->free_huge_pages--;
1364                 h->free_huge_pages_node[nid]--;
1365         }
1366         if (adjust_surplus) {
1367                 h->surplus_huge_pages--;
1368                 h->surplus_huge_pages_node[nid]--;
1369         }
1370
1371         set_page_refcounted(page);
1372         set_compound_page_dtor(page, NULL_COMPOUND_DTOR);
1373
1374         h->nr_huge_pages--;
1375         h->nr_huge_pages_node[nid]--;
1376 }
1377
1378 static void update_and_free_page(struct hstate *h, struct page *page)
1379 {
1380         int i;
1381         struct page *subpage = page;
1382
1383         if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1384                 return;
1385
1386         for (i = 0; i < pages_per_huge_page(h);
1387              i++, subpage = mem_map_next(subpage, page, i)) {
1388                 subpage->flags &= ~(1 << PG_locked | 1 << PG_error |
1389                                 1 << PG_referenced | 1 << PG_dirty |
1390                                 1 << PG_active | 1 << PG_private |
1391                                 1 << PG_writeback);
1392         }
1393         if (hstate_is_gigantic(h)) {
1394                 destroy_compound_gigantic_page(page, huge_page_order(h));
1395                 free_gigantic_page(page, huge_page_order(h));
1396         } else {
1397                 __free_pages(page, huge_page_order(h));
1398         }
1399 }
1400
1401 static void update_and_free_pages_bulk(struct hstate *h, struct list_head *list)
1402 {
1403         struct page *page, *t_page;
1404
1405         list_for_each_entry_safe(page, t_page, list, lru) {
1406                 update_and_free_page(h, page);
1407                 cond_resched();
1408         }
1409 }
1410
1411 struct hstate *size_to_hstate(unsigned long size)
1412 {
1413         struct hstate *h;
1414
1415         for_each_hstate(h) {
1416                 if (huge_page_size(h) == size)
1417                         return h;
1418         }
1419         return NULL;
1420 }
1421
1422 void free_huge_page(struct page *page)
1423 {
1424         /*
1425          * Can't pass hstate in here because it is called from the
1426          * compound page destructor.
1427          */
1428         struct hstate *h = page_hstate(page);
1429         int nid = page_to_nid(page);
1430         struct hugepage_subpool *spool = hugetlb_page_subpool(page);
1431         bool restore_reserve;
1432         unsigned long flags;
1433
1434         VM_BUG_ON_PAGE(page_count(page), page);
1435         VM_BUG_ON_PAGE(page_mapcount(page), page);
1436
1437         hugetlb_set_page_subpool(page, NULL);
1438         page->mapping = NULL;
1439         restore_reserve = HPageRestoreReserve(page);
1440         ClearHPageRestoreReserve(page);
1441
1442         /*
1443          * If HPageRestoreReserve was set on page, page allocation consumed a
1444          * reservation.  If the page was associated with a subpool, there
1445          * would have been a page reserved in the subpool before allocation
1446          * via hugepage_subpool_get_pages().  Since we are 'restoring' the
1447          * reservation, do not call hugepage_subpool_put_pages() as this will
1448          * remove the reserved page from the subpool.
1449          */
1450         if (!restore_reserve) {
1451                 /*
1452                  * A return code of zero implies that the subpool will be
1453                  * under its minimum size if the reservation is not restored
1454                  * after page is free.  Therefore, force restore_reserve
1455                  * operation.
1456                  */
1457                 if (hugepage_subpool_put_pages(spool, 1) == 0)
1458                         restore_reserve = true;
1459         }
1460
1461         spin_lock_irqsave(&hugetlb_lock, flags);
1462         ClearHPageMigratable(page);
1463         hugetlb_cgroup_uncharge_page(hstate_index(h),
1464                                      pages_per_huge_page(h), page);
1465         hugetlb_cgroup_uncharge_page_rsvd(hstate_index(h),
1466                                           pages_per_huge_page(h), page);
1467         if (restore_reserve)
1468                 h->resv_huge_pages++;
1469
1470         if (HPageTemporary(page)) {
1471                 remove_hugetlb_page(h, page, false);
1472                 spin_unlock_irqrestore(&hugetlb_lock, flags);
1473                 update_and_free_page(h, page);
1474         } else if (h->surplus_huge_pages_node[nid]) {
1475                 /* remove the page from active list */
1476                 remove_hugetlb_page(h, page, true);
1477                 spin_unlock_irqrestore(&hugetlb_lock, flags);
1478                 update_and_free_page(h, page);
1479         } else {
1480                 arch_clear_hugepage_flags(page);
1481                 enqueue_huge_page(h, page);
1482                 spin_unlock_irqrestore(&hugetlb_lock, flags);
1483         }
1484 }
1485
1486 /*
1487  * Must be called with the hugetlb lock held
1488  */
1489 static void __prep_account_new_huge_page(struct hstate *h, int nid)
1490 {
1491         lockdep_assert_held(&hugetlb_lock);
1492         h->nr_huge_pages++;
1493         h->nr_huge_pages_node[nid]++;
1494 }
1495
1496 static void __prep_new_huge_page(struct page *page)
1497 {
1498         INIT_LIST_HEAD(&page->lru);
1499         set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1500         hugetlb_set_page_subpool(page, NULL);
1501         set_hugetlb_cgroup(page, NULL);
1502         set_hugetlb_cgroup_rsvd(page, NULL);
1503 }
1504
1505 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
1506 {
1507         __prep_new_huge_page(page);
1508         spin_lock_irq(&hugetlb_lock);
1509         __prep_account_new_huge_page(h, nid);
1510         spin_unlock_irq(&hugetlb_lock);
1511 }
1512
1513 static void prep_compound_gigantic_page(struct page *page, unsigned int order)
1514 {
1515         int i;
1516         int nr_pages = 1 << order;
1517         struct page *p = page + 1;
1518
1519         /* we rely on prep_new_huge_page to set the destructor */
1520         set_compound_order(page, order);
1521         __ClearPageReserved(page);
1522         __SetPageHead(page);
1523         for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1524                 /*
1525                  * For gigantic hugepages allocated through bootmem at
1526                  * boot, it's safer to be consistent with the not-gigantic
1527                  * hugepages and clear the PG_reserved bit from all tail pages
1528                  * too.  Otherwise drivers using get_user_pages() to access tail
1529                  * pages may get the reference counting wrong if they see
1530                  * PG_reserved set on a tail page (despite the head page not
1531                  * having PG_reserved set).  Enforcing this consistency between
1532                  * head and tail pages allows drivers to optimize away a check
1533                  * on the head page when they need know if put_page() is needed
1534                  * after get_user_pages().
1535                  */
1536                 __ClearPageReserved(p);
1537                 set_page_count(p, 0);
1538                 set_compound_head(p, page);
1539         }
1540         atomic_set(compound_mapcount_ptr(page), -1);
1541         atomic_set(compound_pincount_ptr(page), 0);
1542 }
1543
1544 /*
1545  * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1546  * transparent huge pages.  See the PageTransHuge() documentation for more
1547  * details.
1548  */
1549 int PageHuge(struct page *page)
1550 {
1551         if (!PageCompound(page))
1552                 return 0;
1553
1554         page = compound_head(page);
1555         return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
1556 }
1557 EXPORT_SYMBOL_GPL(PageHuge);
1558
1559 /*
1560  * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1561  * normal or transparent huge pages.
1562  */
1563 int PageHeadHuge(struct page *page_head)
1564 {
1565         if (!PageHead(page_head))
1566                 return 0;
1567
1568         return page_head[1].compound_dtor == HUGETLB_PAGE_DTOR;
1569 }
1570
1571 /*
1572  * Find and lock address space (mapping) in write mode.
1573  *
1574  * Upon entry, the page is locked which means that page_mapping() is
1575  * stable.  Due to locking order, we can only trylock_write.  If we can
1576  * not get the lock, simply return NULL to caller.
1577  */
1578 struct address_space *hugetlb_page_mapping_lock_write(struct page *hpage)
1579 {
1580         struct address_space *mapping = page_mapping(hpage);
1581
1582         if (!mapping)
1583                 return mapping;
1584
1585         if (i_mmap_trylock_write(mapping))
1586                 return mapping;
1587
1588         return NULL;
1589 }
1590
1591 pgoff_t hugetlb_basepage_index(struct page *page)
1592 {
1593         struct page *page_head = compound_head(page);
1594         pgoff_t index = page_index(page_head);
1595         unsigned long compound_idx;
1596
1597         if (compound_order(page_head) >= MAX_ORDER)
1598                 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
1599         else
1600                 compound_idx = page - page_head;
1601
1602         return (index << compound_order(page_head)) + compound_idx;
1603 }
1604
1605 static struct page *alloc_buddy_huge_page(struct hstate *h,
1606                 gfp_t gfp_mask, int nid, nodemask_t *nmask,
1607                 nodemask_t *node_alloc_noretry)
1608 {
1609         int order = huge_page_order(h);
1610         struct page *page;
1611         bool alloc_try_hard = true;
1612
1613         /*
1614          * By default we always try hard to allocate the page with
1615          * __GFP_RETRY_MAYFAIL flag.  However, if we are allocating pages in
1616          * a loop (to adjust global huge page counts) and previous allocation
1617          * failed, do not continue to try hard on the same node.  Use the
1618          * node_alloc_noretry bitmap to manage this state information.
1619          */
1620         if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry))
1621                 alloc_try_hard = false;
1622         gfp_mask |= __GFP_COMP|__GFP_NOWARN;
1623         if (alloc_try_hard)
1624                 gfp_mask |= __GFP_RETRY_MAYFAIL;
1625         if (nid == NUMA_NO_NODE)
1626                 nid = numa_mem_id();
1627         page = __alloc_pages(gfp_mask, order, nid, nmask);
1628         if (page)
1629                 __count_vm_event(HTLB_BUDDY_PGALLOC);
1630         else
1631                 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1632
1633         /*
1634          * If we did not specify __GFP_RETRY_MAYFAIL, but still got a page this
1635          * indicates an overall state change.  Clear bit so that we resume
1636          * normal 'try hard' allocations.
1637          */
1638         if (node_alloc_noretry && page && !alloc_try_hard)
1639                 node_clear(nid, *node_alloc_noretry);
1640
1641         /*
1642          * If we tried hard to get a page but failed, set bit so that
1643          * subsequent attempts will not try as hard until there is an
1644          * overall state change.
1645          */
1646         if (node_alloc_noretry && !page && alloc_try_hard)
1647                 node_set(nid, *node_alloc_noretry);
1648
1649         return page;
1650 }
1651
1652 /*
1653  * Common helper to allocate a fresh hugetlb page. All specific allocators
1654  * should use this function to get new hugetlb pages
1655  */
1656 static struct page *alloc_fresh_huge_page(struct hstate *h,
1657                 gfp_t gfp_mask, int nid, nodemask_t *nmask,
1658                 nodemask_t *node_alloc_noretry)
1659 {
1660         struct page *page;
1661
1662         if (hstate_is_gigantic(h))
1663                 page = alloc_gigantic_page(h, gfp_mask, nid, nmask);
1664         else
1665                 page = alloc_buddy_huge_page(h, gfp_mask,
1666                                 nid, nmask, node_alloc_noretry);
1667         if (!page)
1668                 return NULL;
1669
1670         if (hstate_is_gigantic(h))
1671                 prep_compound_gigantic_page(page, huge_page_order(h));
1672         prep_new_huge_page(h, page, page_to_nid(page));
1673
1674         return page;
1675 }
1676
1677 /*
1678  * Allocates a fresh page to the hugetlb allocator pool in the node interleaved
1679  * manner.
1680  */
1681 static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1682                                 nodemask_t *node_alloc_noretry)
1683 {
1684         struct page *page;
1685         int nr_nodes, node;
1686         gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
1687
1688         for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1689                 page = alloc_fresh_huge_page(h, gfp_mask, node, nodes_allowed,
1690                                                 node_alloc_noretry);
1691                 if (page)
1692                         break;
1693         }
1694
1695         if (!page)
1696                 return 0;
1697
1698         put_page(page); /* free it into the hugepage allocator */
1699
1700         return 1;
1701 }
1702
1703 /*
1704  * Remove huge page from pool from next node to free.  Attempt to keep
1705  * persistent huge pages more or less balanced over allowed nodes.
1706  * This routine only 'removes' the hugetlb page.  The caller must make
1707  * an additional call to free the page to low level allocators.
1708  * Called with hugetlb_lock locked.
1709  */
1710 static struct page *remove_pool_huge_page(struct hstate *h,
1711                                                 nodemask_t *nodes_allowed,
1712                                                  bool acct_surplus)
1713 {
1714         int nr_nodes, node;
1715         struct page *page = NULL;
1716
1717         lockdep_assert_held(&hugetlb_lock);
1718         for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1719                 /*
1720                  * If we're returning unused surplus pages, only examine
1721                  * nodes with surplus pages.
1722                  */
1723                 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
1724                     !list_empty(&h->hugepage_freelists[node])) {
1725                         page = list_entry(h->hugepage_freelists[node].next,
1726                                           struct page, lru);
1727                         remove_hugetlb_page(h, page, acct_surplus);
1728                         break;
1729                 }
1730         }
1731
1732         return page;
1733 }
1734
1735 /*
1736  * Dissolve a given free hugepage into free buddy pages. This function does
1737  * nothing for in-use hugepages and non-hugepages.
1738  * This function returns values like below:
1739  *
1740  *  -EBUSY: failed to dissolved free hugepages or the hugepage is in-use
1741  *          (allocated or reserved.)
1742  *       0: successfully dissolved free hugepages or the page is not a
1743  *          hugepage (considered as already dissolved)
1744  */
1745 int dissolve_free_huge_page(struct page *page)
1746 {
1747         int rc = -EBUSY;
1748
1749 retry:
1750         /* Not to disrupt normal path by vainly holding hugetlb_lock */
1751         if (!PageHuge(page))
1752                 return 0;
1753
1754         spin_lock_irq(&hugetlb_lock);
1755         if (!PageHuge(page)) {
1756                 rc = 0;
1757                 goto out;
1758         }
1759
1760         if (!page_count(page)) {
1761                 struct page *head = compound_head(page);
1762                 struct hstate *h = page_hstate(head);
1763                 if (h->free_huge_pages - h->resv_huge_pages == 0)
1764                         goto out;
1765
1766                 /*
1767                  * We should make sure that the page is already on the free list
1768                  * when it is dissolved.
1769                  */
1770                 if (unlikely(!HPageFreed(head))) {
1771                         spin_unlock_irq(&hugetlb_lock);
1772                         cond_resched();
1773
1774                         /*
1775                          * Theoretically, we should return -EBUSY when we
1776                          * encounter this race. In fact, we have a chance
1777                          * to successfully dissolve the page if we do a
1778                          * retry. Because the race window is quite small.
1779                          * If we seize this opportunity, it is an optimization
1780                          * for increasing the success rate of dissolving page.
1781                          */
1782                         goto retry;
1783                 }
1784
1785                 /*
1786                  * Move PageHWPoison flag from head page to the raw error page,
1787                  * which makes any subpages rather than the error page reusable.
1788                  */
1789                 if (PageHWPoison(head) && page != head) {
1790                         SetPageHWPoison(page);
1791                         ClearPageHWPoison(head);
1792                 }
1793                 remove_hugetlb_page(h, head, false);
1794                 h->max_huge_pages--;
1795                 spin_unlock_irq(&hugetlb_lock);
1796                 update_and_free_page(h, head);
1797                 return 0;
1798         }
1799 out:
1800         spin_unlock_irq(&hugetlb_lock);
1801         return rc;
1802 }
1803
1804 /*
1805  * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
1806  * make specified memory blocks removable from the system.
1807  * Note that this will dissolve a free gigantic hugepage completely, if any
1808  * part of it lies within the given range.
1809  * Also note that if dissolve_free_huge_page() returns with an error, all
1810  * free hugepages that were dissolved before that error are lost.
1811  */
1812 int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
1813 {
1814         unsigned long pfn;
1815         struct page *page;
1816         int rc = 0;
1817
1818         if (!hugepages_supported())
1819                 return rc;
1820
1821         for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order) {
1822                 page = pfn_to_page(pfn);
1823                 rc = dissolve_free_huge_page(page);
1824                 if (rc)
1825                         break;
1826         }
1827
1828         return rc;
1829 }
1830
1831 /*
1832  * Allocates a fresh surplus page from the page allocator.
1833  */
1834 static struct page *alloc_surplus_huge_page(struct hstate *h, gfp_t gfp_mask,
1835                 int nid, nodemask_t *nmask)
1836 {
1837         struct page *page = NULL;
1838
1839         if (hstate_is_gigantic(h))
1840                 return NULL;
1841
1842         spin_lock_irq(&hugetlb_lock);
1843         if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages)
1844                 goto out_unlock;
1845         spin_unlock_irq(&hugetlb_lock);
1846
1847         page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
1848         if (!page)
1849                 return NULL;
1850
1851         spin_lock_irq(&hugetlb_lock);
1852         /*
1853          * We could have raced with the pool size change.
1854          * Double check that and simply deallocate the new page
1855          * if we would end up overcommiting the surpluses. Abuse
1856          * temporary page to workaround the nasty free_huge_page
1857          * codeflow
1858          */
1859         if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
1860                 SetHPageTemporary(page);
1861                 spin_unlock_irq(&hugetlb_lock);
1862                 put_page(page);
1863                 return NULL;
1864         } else {
1865                 h->surplus_huge_pages++;
1866                 h->surplus_huge_pages_node[page_to_nid(page)]++;
1867         }
1868
1869 out_unlock:
1870         spin_unlock_irq(&hugetlb_lock);
1871
1872         return page;
1873 }
1874
1875 static struct page *alloc_migrate_huge_page(struct hstate *h, gfp_t gfp_mask,
1876                                      int nid, nodemask_t *nmask)
1877 {
1878         struct page *page;
1879
1880         if (hstate_is_gigantic(h))
1881                 return NULL;
1882
1883         page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
1884         if (!page)
1885                 return NULL;
1886
1887         /*
1888          * We do not account these pages as surplus because they are only
1889          * temporary and will be released properly on the last reference
1890          */
1891         SetHPageTemporary(page);
1892
1893         return page;
1894 }
1895
1896 /*
1897  * Use the VMA's mpolicy to allocate a huge page from the buddy.
1898  */
1899 static
1900 struct page *alloc_buddy_huge_page_with_mpol(struct hstate *h,
1901                 struct vm_area_struct *vma, unsigned long addr)
1902 {
1903         struct page *page;
1904         struct mempolicy *mpol;
1905         gfp_t gfp_mask = htlb_alloc_mask(h);
1906         int nid;
1907         nodemask_t *nodemask;
1908
1909         nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
1910         page = alloc_surplus_huge_page(h, gfp_mask, nid, nodemask);
1911         mpol_cond_put(mpol);
1912
1913         return page;
1914 }
1915
1916 /* page migration callback function */
1917 struct page *alloc_huge_page_nodemask(struct hstate *h, int preferred_nid,
1918                 nodemask_t *nmask, gfp_t gfp_mask)
1919 {
1920         spin_lock_irq(&hugetlb_lock);
1921         if (h->free_huge_pages - h->resv_huge_pages > 0) {
1922                 struct page *page;
1923
1924                 page = dequeue_huge_page_nodemask(h, gfp_mask, preferred_nid, nmask);
1925                 if (page) {
1926                         spin_unlock_irq(&hugetlb_lock);
1927                         return page;
1928                 }
1929         }
1930         spin_unlock_irq(&hugetlb_lock);
1931
1932         return alloc_migrate_huge_page(h, gfp_mask, preferred_nid, nmask);
1933 }
1934
1935 /* mempolicy aware migration callback */
1936 struct page *alloc_huge_page_vma(struct hstate *h, struct vm_area_struct *vma,
1937                 unsigned long address)
1938 {
1939         struct mempolicy *mpol;
1940         nodemask_t *nodemask;
1941         struct page *page;
1942         gfp_t gfp_mask;
1943         int node;
1944
1945         gfp_mask = htlb_alloc_mask(h);
1946         node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
1947         page = alloc_huge_page_nodemask(h, node, nodemask, gfp_mask);
1948         mpol_cond_put(mpol);
1949
1950         return page;
1951 }
1952
1953 /*
1954  * Increase the hugetlb pool such that it can accommodate a reservation
1955  * of size 'delta'.
1956  */
1957 static int gather_surplus_pages(struct hstate *h, long delta)
1958         __must_hold(&hugetlb_lock)
1959 {
1960         struct list_head surplus_list;
1961         struct page *page, *tmp;
1962         int ret;
1963         long i;
1964         long needed, allocated;
1965         bool alloc_ok = true;
1966
1967         lockdep_assert_held(&hugetlb_lock);
1968         needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
1969         if (needed <= 0) {
1970                 h->resv_huge_pages += delta;
1971                 return 0;
1972         }
1973
1974         allocated = 0;
1975         INIT_LIST_HEAD(&surplus_list);
1976
1977         ret = -ENOMEM;
1978 retry:
1979         spin_unlock_irq(&hugetlb_lock);
1980         for (i = 0; i < needed; i++) {
1981                 page = alloc_surplus_huge_page(h, htlb_alloc_mask(h),
1982                                 NUMA_NO_NODE, NULL);
1983                 if (!page) {
1984                         alloc_ok = false;
1985                         break;
1986                 }
1987                 list_add(&page->lru, &surplus_list);
1988                 cond_resched();
1989         }
1990         allocated += i;
1991
1992         /*
1993          * After retaking hugetlb_lock, we need to recalculate 'needed'
1994          * because either resv_huge_pages or free_huge_pages may have changed.
1995          */
1996         spin_lock_irq(&hugetlb_lock);
1997         needed = (h->resv_huge_pages + delta) -
1998                         (h->free_huge_pages + allocated);
1999         if (needed > 0) {
2000                 if (alloc_ok)
2001                         goto retry;
2002                 /*
2003                  * We were not able to allocate enough pages to
2004                  * satisfy the entire reservation so we free what
2005                  * we've allocated so far.
2006                  */
2007                 goto free;
2008         }
2009         /*
2010          * The surplus_list now contains _at_least_ the number of extra pages
2011          * needed to accommodate the reservation.  Add the appropriate number
2012          * of pages to the hugetlb pool and free the extras back to the buddy
2013          * allocator.  Commit the entire reservation here to prevent another
2014          * process from stealing the pages as they are added to the pool but
2015          * before they are reserved.
2016          */
2017         needed += allocated;
2018         h->resv_huge_pages += delta;
2019         ret = 0;
2020
2021         /* Free the needed pages to the hugetlb pool */
2022         list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
2023                 int zeroed;
2024
2025                 if ((--needed) < 0)
2026                         break;
2027                 /*
2028                  * This page is now managed by the hugetlb allocator and has
2029                  * no users -- drop the buddy allocator's reference.
2030                  */
2031                 zeroed = put_page_testzero(page);
2032                 VM_BUG_ON_PAGE(!zeroed, page);
2033                 enqueue_huge_page(h, page);
2034         }
2035 free:
2036         spin_unlock_irq(&hugetlb_lock);
2037
2038         /* Free unnecessary surplus pages to the buddy allocator */
2039         list_for_each_entry_safe(page, tmp, &surplus_list, lru)
2040                 put_page(page);
2041         spin_lock_irq(&hugetlb_lock);
2042
2043         return ret;
2044 }
2045
2046 /*
2047  * This routine has two main purposes:
2048  * 1) Decrement the reservation count (resv_huge_pages) by the value passed
2049  *    in unused_resv_pages.  This corresponds to the prior adjustments made
2050  *    to the associated reservation map.
2051  * 2) Free any unused surplus pages that may have been allocated to satisfy
2052  *    the reservation.  As many as unused_resv_pages may be freed.
2053  */
2054 static void return_unused_surplus_pages(struct hstate *h,
2055                                         unsigned long unused_resv_pages)
2056 {
2057         unsigned long nr_pages;
2058         struct page *page;
2059         LIST_HEAD(page_list);
2060
2061         lockdep_assert_held(&hugetlb_lock);
2062         /* Uncommit the reservation */
2063         h->resv_huge_pages -= unused_resv_pages;
2064
2065         /* Cannot return gigantic pages currently */
2066         if (hstate_is_gigantic(h))
2067                 goto out;
2068
2069         /*
2070          * Part (or even all) of the reservation could have been backed
2071          * by pre-allocated pages. Only free surplus pages.
2072          */
2073         nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
2074
2075         /*
2076          * We want to release as many surplus pages as possible, spread
2077          * evenly across all nodes with memory. Iterate across these nodes
2078          * until we can no longer free unreserved surplus pages. This occurs
2079          * when the nodes with surplus pages have no free pages.
2080          * remove_pool_huge_page() will balance the freed pages across the
2081          * on-line nodes with memory and will handle the hstate accounting.
2082          */
2083         while (nr_pages--) {
2084                 page = remove_pool_huge_page(h, &node_states[N_MEMORY], 1);
2085                 if (!page)
2086                         goto out;
2087
2088                 list_add(&page->lru, &page_list);
2089         }
2090
2091 out:
2092         spin_unlock_irq(&hugetlb_lock);
2093         update_and_free_pages_bulk(h, &page_list);
2094         spin_lock_irq(&hugetlb_lock);
2095 }
2096
2097
2098 /*
2099  * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
2100  * are used by the huge page allocation routines to manage reservations.
2101  *
2102  * vma_needs_reservation is called to determine if the huge page at addr
2103  * within the vma has an associated reservation.  If a reservation is
2104  * needed, the value 1 is returned.  The caller is then responsible for
2105  * managing the global reservation and subpool usage counts.  After
2106  * the huge page has been allocated, vma_commit_reservation is called
2107  * to add the page to the reservation map.  If the page allocation fails,
2108  * the reservation must be ended instead of committed.  vma_end_reservation
2109  * is called in such cases.
2110  *
2111  * In the normal case, vma_commit_reservation returns the same value
2112  * as the preceding vma_needs_reservation call.  The only time this
2113  * is not the case is if a reserve map was changed between calls.  It
2114  * is the responsibility of the caller to notice the difference and
2115  * take appropriate action.
2116  *
2117  * vma_add_reservation is used in error paths where a reservation must
2118  * be restored when a newly allocated huge page must be freed.  It is
2119  * to be called after calling vma_needs_reservation to determine if a
2120  * reservation exists.
2121  *
2122  * vma_del_reservation is used in error paths where an entry in the reserve
2123  * map was created during huge page allocation and must be removed.  It is to
2124  * be called after calling vma_needs_reservation to determine if a reservation
2125  * exists.
2126  */
2127 enum vma_resv_mode {
2128         VMA_NEEDS_RESV,
2129         VMA_COMMIT_RESV,
2130         VMA_END_RESV,
2131         VMA_ADD_RESV,
2132         VMA_DEL_RESV,
2133 };
2134 static long __vma_reservation_common(struct hstate *h,
2135                                 struct vm_area_struct *vma, unsigned long addr,
2136                                 enum vma_resv_mode mode)
2137 {
2138         struct resv_map *resv;
2139         pgoff_t idx;
2140         long ret;
2141         long dummy_out_regions_needed;
2142
2143         resv = vma_resv_map(vma);
2144         if (!resv)
2145                 return 1;
2146
2147         idx = vma_hugecache_offset(h, vma, addr);
2148         switch (mode) {
2149         case VMA_NEEDS_RESV:
2150                 ret = region_chg(resv, idx, idx + 1, &dummy_out_regions_needed);
2151                 /* We assume that vma_reservation_* routines always operate on
2152                  * 1 page, and that adding to resv map a 1 page entry can only
2153                  * ever require 1 region.
2154                  */
2155                 VM_BUG_ON(dummy_out_regions_needed != 1);
2156                 break;
2157         case VMA_COMMIT_RESV:
2158                 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2159                 /* region_add calls of range 1 should never fail. */
2160                 VM_BUG_ON(ret < 0);
2161                 break;
2162         case VMA_END_RESV:
2163                 region_abort(resv, idx, idx + 1, 1);
2164                 ret = 0;
2165                 break;
2166         case VMA_ADD_RESV:
2167                 if (vma->vm_flags & VM_MAYSHARE) {
2168                         ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2169                         /* region_add calls of range 1 should never fail. */
2170                         VM_BUG_ON(ret < 0);
2171                 } else {
2172                         region_abort(resv, idx, idx + 1, 1);
2173                         ret = region_del(resv, idx, idx + 1);
2174                 }
2175                 break;
2176         case VMA_DEL_RESV:
2177                 if (vma->vm_flags & VM_MAYSHARE) {
2178                         region_abort(resv, idx, idx + 1, 1);
2179                         ret = region_del(resv, idx, idx + 1);
2180                 } else {
2181                         ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2182                         /* region_add calls of range 1 should never fail. */
2183                         VM_BUG_ON(ret < 0);
2184                 }
2185                 break;
2186         default:
2187                 BUG();
2188         }
2189
2190         if (vma->vm_flags & VM_MAYSHARE || mode == VMA_DEL_RESV)
2191                 return ret;
2192         /*
2193          * We know private mapping must have HPAGE_RESV_OWNER set.
2194          *
2195          * In most cases, reserves always exist for private mappings.
2196          * However, a file associated with mapping could have been
2197          * hole punched or truncated after reserves were consumed.
2198          * As subsequent fault on such a range will not use reserves.
2199          * Subtle - The reserve map for private mappings has the
2200          * opposite meaning than that of shared mappings.  If NO
2201          * entry is in the reserve map, it means a reservation exists.
2202          * If an entry exists in the reserve map, it means the
2203          * reservation has already been consumed.  As a result, the
2204          * return value of this routine is the opposite of the
2205          * value returned from reserve map manipulation routines above.
2206          */
2207         if (ret > 0)
2208                 return 0;
2209         if (ret == 0)
2210                 return 1;
2211         return ret;
2212 }
2213
2214 static long vma_needs_reservation(struct hstate *h,
2215                         struct vm_area_struct *vma, unsigned long addr)
2216 {
2217         return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
2218 }
2219
2220 static long vma_commit_reservation(struct hstate *h,
2221                         struct vm_area_struct *vma, unsigned long addr)
2222 {
2223         return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
2224 }
2225
2226 static void vma_end_reservation(struct hstate *h,
2227                         struct vm_area_struct *vma, unsigned long addr)
2228 {
2229         (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
2230 }
2231
2232 static long vma_add_reservation(struct hstate *h,
2233                         struct vm_area_struct *vma, unsigned long addr)
2234 {
2235         return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
2236 }
2237
2238 static long vma_del_reservation(struct hstate *h,
2239                         struct vm_area_struct *vma, unsigned long addr)
2240 {
2241         return __vma_reservation_common(h, vma, addr, VMA_DEL_RESV);
2242 }
2243
2244 /*
2245  * This routine is called to restore reservation information on error paths.
2246  * It should ONLY be called for pages allocated via alloc_huge_page(), and
2247  * the hugetlb mutex should remain held when calling this routine.
2248  *
2249  * It handles two specific cases:
2250  * 1) A reservation was in place and the page consumed the reservation.
2251  *    HPageRestoreReserve is set in the page.
2252  * 2) No reservation was in place for the page, so HPageRestoreReserve is
2253  *    not set.  However, alloc_huge_page always updates the reserve map.
2254  *
2255  * In case 1, free_huge_page later in the error path will increment the
2256  * global reserve count.  But, free_huge_page does not have enough context
2257  * to adjust the reservation map.  This case deals primarily with private
2258  * mappings.  Adjust the reserve map here to be consistent with global
2259  * reserve count adjustments to be made by free_huge_page.  Make sure the
2260  * reserve map indicates there is a reservation present.
2261  *
2262  * In case 2, simply undo reserve map modifications done by alloc_huge_page.
2263  */
2264 void restore_reserve_on_error(struct hstate *h, struct vm_area_struct *vma,
2265                         unsigned long address, struct page *page)
2266 {
2267         long rc = vma_needs_reservation(h, vma, address);
2268
2269         if (HPageRestoreReserve(page)) {
2270                 if (unlikely(rc < 0))
2271                         /*
2272                          * Rare out of memory condition in reserve map
2273                          * manipulation.  Clear HPageRestoreReserve so that
2274                          * global reserve count will not be incremented
2275                          * by free_huge_page.  This will make it appear
2276                          * as though the reservation for this page was
2277                          * consumed.  This may prevent the task from
2278                          * faulting in the page at a later time.  This
2279                          * is better than inconsistent global huge page
2280                          * accounting of reserve counts.
2281                          */
2282                         ClearHPageRestoreReserve(page);
2283                 else if (rc)
2284                         (void)vma_add_reservation(h, vma, address);
2285                 else
2286                         vma_end_reservation(h, vma, address);
2287         } else {
2288                 if (!rc) {
2289                         /*
2290                          * This indicates there is an entry in the reserve map
2291                          * added by alloc_huge_page.  We know it was added
2292                          * before the alloc_huge_page call, otherwise
2293                          * HPageRestoreReserve would be set on the page.
2294                          * Remove the entry so that a subsequent allocation
2295                          * does not consume a reservation.
2296                          */
2297                         rc = vma_del_reservation(h, vma, address);
2298                         if (rc < 0)
2299                                 /*
2300                                  * VERY rare out of memory condition.  Since
2301                                  * we can not delete the entry, set
2302                                  * HPageRestoreReserve so that the reserve
2303                                  * count will be incremented when the page
2304                                  * is freed.  This reserve will be consumed
2305                                  * on a subsequent allocation.
2306                                  */
2307                                 SetHPageRestoreReserve(page);
2308                 } else if (rc < 0) {
2309                         /*
2310                          * Rare out of memory condition from
2311                          * vma_needs_reservation call.  Memory allocation is
2312                          * only attempted if a new entry is needed.  Therefore,
2313                          * this implies there is not an entry in the
2314                          * reserve map.
2315                          *
2316                          * For shared mappings, no entry in the map indicates
2317                          * no reservation.  We are done.
2318                          */
2319                         if (!(vma->vm_flags & VM_MAYSHARE))
2320                                 /*
2321                                  * For private mappings, no entry indicates
2322                                  * a reservation is present.  Since we can
2323                                  * not add an entry, set SetHPageRestoreReserve
2324                                  * on the page so reserve count will be
2325                                  * incremented when freed.  This reserve will
2326                                  * be consumed on a subsequent allocation.
2327                                  */
2328                                 SetHPageRestoreReserve(page);
2329                 } else
2330                         /*
2331                          * No reservation present, do nothing
2332                          */
2333                          vma_end_reservation(h, vma, address);
2334         }
2335 }
2336
2337 /*
2338  * alloc_and_dissolve_huge_page - Allocate a new page and dissolve the old one
2339  * @h: struct hstate old page belongs to
2340  * @old_page: Old page to dissolve
2341  * @list: List to isolate the page in case we need to
2342  * Returns 0 on success, otherwise negated error.
2343  */
2344 static int alloc_and_dissolve_huge_page(struct hstate *h, struct page *old_page,
2345                                         struct list_head *list)
2346 {
2347         gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
2348         int nid = page_to_nid(old_page);
2349         struct page *new_page;
2350         int ret = 0;
2351
2352         /*
2353          * Before dissolving the page, we need to allocate a new one for the
2354          * pool to remain stable. Using alloc_buddy_huge_page() allows us to
2355          * not having to deal with prep_new_huge_page() and avoids dealing of any
2356          * counters. This simplifies and let us do the whole thing under the
2357          * lock.
2358          */
2359         new_page = alloc_buddy_huge_page(h, gfp_mask, nid, NULL, NULL);
2360         if (!new_page)
2361                 return -ENOMEM;
2362
2363 retry:
2364         spin_lock_irq(&hugetlb_lock);
2365         if (!PageHuge(old_page)) {
2366                 /*
2367                  * Freed from under us. Drop new_page too.
2368                  */
2369                 goto free_new;
2370         } else if (page_count(old_page)) {
2371                 /*
2372                  * Someone has grabbed the page, try to isolate it here.
2373                  * Fail with -EBUSY if not possible.
2374                  */
2375                 spin_unlock_irq(&hugetlb_lock);
2376                 if (!isolate_huge_page(old_page, list))
2377                         ret = -EBUSY;
2378                 spin_lock_irq(&hugetlb_lock);
2379                 goto free_new;
2380         } else if (!HPageFreed(old_page)) {
2381                 /*
2382                  * Page's refcount is 0 but it has not been enqueued in the
2383                  * freelist yet. Race window is small, so we can succeed here if
2384                  * we retry.
2385                  */
2386                 spin_unlock_irq(&hugetlb_lock);
2387                 cond_resched();
2388                 goto retry;
2389         } else {
2390                 /*
2391                  * Ok, old_page is still a genuine free hugepage. Remove it from
2392                  * the freelist and decrease the counters. These will be
2393                  * incremented again when calling __prep_account_new_huge_page()
2394                  * and enqueue_huge_page() for new_page. The counters will remain
2395                  * stable since this happens under the lock.
2396                  */
2397                 remove_hugetlb_page(h, old_page, false);
2398
2399                 /*
2400                  * new_page needs to be initialized with the standard hugetlb
2401                  * state. This is normally done by prep_new_huge_page() but
2402                  * that takes hugetlb_lock which is already held so we need to
2403                  * open code it here.
2404                  * Reference count trick is needed because allocator gives us
2405                  * referenced page but the pool requires pages with 0 refcount.
2406                  */
2407                 __prep_new_huge_page(new_page);
2408                 __prep_account_new_huge_page(h, nid);
2409                 page_ref_dec(new_page);
2410                 enqueue_huge_page(h, new_page);
2411
2412                 /*
2413                  * Pages have been replaced, we can safely free the old one.
2414                  */
2415                 spin_unlock_irq(&hugetlb_lock);
2416                 update_and_free_page(h, old_page);
2417         }
2418
2419         return ret;
2420
2421 free_new:
2422         spin_unlock_irq(&hugetlb_lock);
2423         __free_pages(new_page, huge_page_order(h));
2424
2425         return ret;
2426 }
2427
2428 int isolate_or_dissolve_huge_page(struct page *page, struct list_head *list)
2429 {
2430         struct hstate *h;
2431         struct page *head;
2432         int ret = -EBUSY;
2433
2434         /*
2435          * The page might have been dissolved from under our feet, so make sure
2436          * to carefully check the state under the lock.
2437          * Return success when racing as if we dissolved the page ourselves.
2438          */
2439         spin_lock_irq(&hugetlb_lock);
2440         if (PageHuge(page)) {
2441                 head = compound_head(page);
2442                 h = page_hstate(head);
2443         } else {
2444                 spin_unlock_irq(&hugetlb_lock);
2445                 return 0;
2446         }
2447         spin_unlock_irq(&hugetlb_lock);
2448
2449         /*
2450          * Fence off gigantic pages as there is a cyclic dependency between
2451          * alloc_contig_range and them. Return -ENOMEM as this has the effect
2452          * of bailing out right away without further retrying.
2453          */
2454         if (hstate_is_gigantic(h))
2455                 return -ENOMEM;
2456
2457         if (page_count(head) && isolate_huge_page(head, list))
2458                 ret = 0;
2459         else if (!page_count(head))
2460                 ret = alloc_and_dissolve_huge_page(h, head, list);
2461
2462         return ret;
2463 }
2464
2465 struct page *alloc_huge_page(struct vm_area_struct *vma,
2466                                     unsigned long addr, int avoid_reserve)
2467 {
2468         struct hugepage_subpool *spool = subpool_vma(vma);
2469         struct hstate *h = hstate_vma(vma);
2470         struct page *page;
2471         long map_chg, map_commit;
2472         long gbl_chg;
2473         int ret, idx;
2474         struct hugetlb_cgroup *h_cg;
2475         bool deferred_reserve;
2476
2477         idx = hstate_index(h);
2478         /*
2479          * Examine the region/reserve map to determine if the process
2480          * has a reservation for the page to be allocated.  A return
2481          * code of zero indicates a reservation exists (no change).
2482          */
2483         map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
2484         if (map_chg < 0)
2485                 return ERR_PTR(-ENOMEM);
2486
2487         /*
2488          * Processes that did not create the mapping will have no
2489          * reserves as indicated by the region/reserve map. Check
2490          * that the allocation will not exceed the subpool limit.
2491          * Allocations for MAP_NORESERVE mappings also need to be
2492          * checked against any subpool limit.
2493          */
2494         if (map_chg || avoid_reserve) {
2495                 gbl_chg = hugepage_subpool_get_pages(spool, 1);
2496                 if (gbl_chg < 0) {
2497                         vma_end_reservation(h, vma, addr);
2498                         return ERR_PTR(-ENOSPC);
2499                 }
2500
2501                 /*
2502                  * Even though there was no reservation in the region/reserve
2503                  * map, there could be reservations associated with the
2504                  * subpool that can be used.  This would be indicated if the
2505                  * return value of hugepage_subpool_get_pages() is zero.
2506                  * However, if avoid_reserve is specified we still avoid even
2507                  * the subpool reservations.
2508                  */
2509                 if (avoid_reserve)
2510                         gbl_chg = 1;
2511         }
2512
2513         /* If this allocation is not consuming a reservation, charge it now.
2514          */
2515         deferred_reserve = map_chg || avoid_reserve;
2516         if (deferred_reserve) {
2517                 ret = hugetlb_cgroup_charge_cgroup_rsvd(
2518                         idx, pages_per_huge_page(h), &h_cg);
2519                 if (ret)
2520                         goto out_subpool_put;
2521         }
2522
2523         ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
2524         if (ret)
2525                 goto out_uncharge_cgroup_reservation;
2526
2527         spin_lock_irq(&hugetlb_lock);
2528         /*
2529          * glb_chg is passed to indicate whether or not a page must be taken
2530          * from the global free pool (global change).  gbl_chg == 0 indicates
2531          * a reservation exists for the allocation.
2532          */
2533         page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
2534         if (!page) {
2535                 spin_unlock_irq(&hugetlb_lock);
2536                 page = alloc_buddy_huge_page_with_mpol(h, vma, addr);
2537                 if (!page)
2538                         goto out_uncharge_cgroup;
2539                 if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
2540                         SetHPageRestoreReserve(page);
2541                         h->resv_huge_pages--;
2542                 }
2543                 spin_lock_irq(&hugetlb_lock);
2544                 list_add(&page->lru, &h->hugepage_activelist);
2545                 /* Fall through */
2546         }
2547         hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
2548         /* If allocation is not consuming a reservation, also store the
2549          * hugetlb_cgroup pointer on the page.
2550          */
2551         if (deferred_reserve) {
2552                 hugetlb_cgroup_commit_charge_rsvd(idx, pages_per_huge_page(h),
2553                                                   h_cg, page);
2554         }
2555
2556         spin_unlock_irq(&hugetlb_lock);
2557
2558         hugetlb_set_page_subpool(page, spool);
2559
2560         map_commit = vma_commit_reservation(h, vma, addr);
2561         if (unlikely(map_chg > map_commit)) {
2562                 /*
2563                  * The page was added to the reservation map between
2564                  * vma_needs_reservation and vma_commit_reservation.
2565                  * This indicates a race with hugetlb_reserve_pages.
2566                  * Adjust for the subpool count incremented above AND
2567                  * in hugetlb_reserve_pages for the same page.  Also,
2568                  * the reservation count added in hugetlb_reserve_pages
2569                  * no longer applies.
2570                  */
2571                 long rsv_adjust;
2572
2573                 rsv_adjust = hugepage_subpool_put_pages(spool, 1);
2574                 hugetlb_acct_memory(h, -rsv_adjust);
2575                 if (deferred_reserve)
2576                         hugetlb_cgroup_uncharge_page_rsvd(hstate_index(h),
2577                                         pages_per_huge_page(h), page);
2578         }
2579         return page;
2580
2581 out_uncharge_cgroup:
2582         hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
2583 out_uncharge_cgroup_reservation:
2584         if (deferred_reserve)
2585                 hugetlb_cgroup_uncharge_cgroup_rsvd(idx, pages_per_huge_page(h),
2586                                                     h_cg);
2587 out_subpool_put:
2588         if (map_chg || avoid_reserve)
2589                 hugepage_subpool_put_pages(spool, 1);
2590         vma_end_reservation(h, vma, addr);
2591         return ERR_PTR(-ENOSPC);
2592 }
2593
2594 int alloc_bootmem_huge_page(struct hstate *h)
2595         __attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
2596 int __alloc_bootmem_huge_page(struct hstate *h)
2597 {
2598         struct huge_bootmem_page *m;
2599         int nr_nodes, node;
2600
2601         for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
2602                 void *addr;
2603
2604                 addr = memblock_alloc_try_nid_raw(
2605                                 huge_page_size(h), huge_page_size(h),
2606                                 0, MEMBLOCK_ALLOC_ACCESSIBLE, node);
2607                 if (addr) {
2608                         /*
2609                          * Use the beginning of the huge page to store the
2610                          * huge_bootmem_page struct (until gather_bootmem
2611                          * puts them into the mem_map).
2612                          */
2613                         m = addr;
2614                         goto found;
2615                 }
2616         }
2617         return 0;
2618
2619 found:
2620         BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h)));
2621         /* Put them into a private list first because mem_map is not up yet */
2622         INIT_LIST_HEAD(&m->list);
2623         list_add(&m->list, &huge_boot_pages);
2624         m->hstate = h;
2625         return 1;
2626 }
2627
2628 static void __init prep_compound_huge_page(struct page *page,
2629                 unsigned int order)
2630 {
2631         if (unlikely(order > (MAX_ORDER - 1)))
2632                 prep_compound_gigantic_page(page, order);
2633         else
2634                 prep_compound_page(page, order);
2635 }
2636
2637 /* Put bootmem huge pages into the standard lists after mem_map is up */
2638 static void __init gather_bootmem_prealloc(void)
2639 {
2640         struct huge_bootmem_page *m;
2641
2642         list_for_each_entry(m, &huge_boot_pages, list) {
2643                 struct page *page = virt_to_page(m);
2644                 struct hstate *h = m->hstate;
2645
2646                 WARN_ON(page_count(page) != 1);
2647                 prep_compound_huge_page(page, huge_page_order(h));
2648                 WARN_ON(PageReserved(page));
2649                 prep_new_huge_page(h, page, page_to_nid(page));
2650                 put_page(page); /* free it into the hugepage allocator */
2651
2652                 /*
2653                  * If we had gigantic hugepages allocated at boot time, we need
2654                  * to restore the 'stolen' pages to totalram_pages in order to
2655                  * fix confusing memory reports from free(1) and another
2656                  * side-effects, like CommitLimit going negative.
2657                  */
2658                 if (hstate_is_gigantic(h))
2659                         adjust_managed_page_count(page, pages_per_huge_page(h));
2660                 cond_resched();
2661         }
2662 }
2663
2664 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
2665 {
2666         unsigned long i;
2667         nodemask_t *node_alloc_noretry;
2668
2669         if (!hstate_is_gigantic(h)) {
2670                 /*
2671                  * Bit mask controlling how hard we retry per-node allocations.
2672                  * Ignore errors as lower level routines can deal with
2673                  * node_alloc_noretry == NULL.  If this kmalloc fails at boot
2674                  * time, we are likely in bigger trouble.
2675                  */
2676                 node_alloc_noretry = kmalloc(sizeof(*node_alloc_noretry),
2677                                                 GFP_KERNEL);
2678         } else {
2679                 /* allocations done at boot time */
2680                 node_alloc_noretry = NULL;
2681         }
2682
2683         /* bit mask controlling how hard we retry per-node allocations */
2684         if (node_alloc_noretry)
2685                 nodes_clear(*node_alloc_noretry);
2686
2687         for (i = 0; i < h->max_huge_pages; ++i) {
2688                 if (hstate_is_gigantic(h)) {
2689                         if (hugetlb_cma_size) {
2690                                 pr_warn_once("HugeTLB: hugetlb_cma is enabled, skip boot time allocation\n");
2691                                 goto free;
2692                         }
2693                         if (!alloc_bootmem_huge_page(h))
2694                                 break;
2695                 } else if (!alloc_pool_huge_page(h,
2696                                          &node_states[N_MEMORY],
2697                                          node_alloc_noretry))
2698                         break;
2699                 cond_resched();
2700         }
2701         if (i < h->max_huge_pages) {
2702                 char buf[32];
2703
2704                 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
2705                 pr_warn("HugeTLB: allocating %lu of page size %s failed.  Only allocated %lu hugepages.\n",
2706                         h->max_huge_pages, buf, i);
2707                 h->max_huge_pages = i;
2708         }
2709 free:
2710         kfree(node_alloc_noretry);
2711 }
2712
2713 static void __init hugetlb_init_hstates(void)
2714 {
2715         struct hstate *h;
2716
2717         for_each_hstate(h) {
2718                 if (minimum_order > huge_page_order(h))
2719                         minimum_order = huge_page_order(h);
2720
2721                 /* oversize hugepages were init'ed in early boot */
2722                 if (!hstate_is_gigantic(h))
2723                         hugetlb_hstate_alloc_pages(h);
2724         }
2725         VM_BUG_ON(minimum_order == UINT_MAX);
2726 }
2727
2728 static void __init report_hugepages(void)
2729 {
2730         struct hstate *h;
2731
2732         for_each_hstate(h) {
2733                 char buf[32];
2734
2735                 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
2736                 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
2737                         buf, h->free_huge_pages);
2738         }
2739 }
2740
2741 #ifdef CONFIG_HIGHMEM
2742 static void try_to_free_low(struct hstate *h, unsigned long count,
2743                                                 nodemask_t *nodes_allowed)
2744 {
2745         int i;
2746         LIST_HEAD(page_list);
2747
2748         lockdep_assert_held(&hugetlb_lock);
2749         if (hstate_is_gigantic(h))
2750                 return;
2751
2752         /*
2753          * Collect pages to be freed on a list, and free after dropping lock
2754          */
2755         for_each_node_mask(i, *nodes_allowed) {
2756                 struct page *page, *next;
2757                 struct list_head *freel = &h->hugepage_freelists[i];
2758                 list_for_each_entry_safe(page, next, freel, lru) {
2759                         if (count >= h->nr_huge_pages)
2760                                 goto out;
2761                         if (PageHighMem(page))
2762                                 continue;
2763                         remove_hugetlb_page(h, page, false);
2764                         list_add(&page->lru, &page_list);
2765                 }
2766         }
2767
2768 out:
2769         spin_unlock_irq(&hugetlb_lock);
2770         update_and_free_pages_bulk(h, &page_list);
2771         spin_lock_irq(&hugetlb_lock);
2772 }
2773 #else
2774 static inline void try_to_free_low(struct hstate *h, unsigned long count,
2775                                                 nodemask_t *nodes_allowed)
2776 {
2777 }
2778 #endif
2779
2780 /*
2781  * Increment or decrement surplus_huge_pages.  Keep node-specific counters
2782  * balanced by operating on them in a round-robin fashion.
2783  * Returns 1 if an adjustment was made.
2784  */
2785 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
2786                                 int delta)
2787 {
2788         int nr_nodes, node;
2789
2790         lockdep_assert_held(&hugetlb_lock);
2791         VM_BUG_ON(delta != -1 && delta != 1);
2792
2793         if (delta < 0) {
2794                 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
2795                         if (h->surplus_huge_pages_node[node])
2796                                 goto found;
2797                 }
2798         } else {
2799                 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2800                         if (h->surplus_huge_pages_node[node] <
2801                                         h->nr_huge_pages_node[node])
2802                                 goto found;
2803                 }
2804         }
2805         return 0;
2806
2807 found:
2808         h->surplus_huge_pages += delta;
2809         h->surplus_huge_pages_node[node] += delta;
2810         return 1;
2811 }
2812
2813 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
2814 static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid,
2815                               nodemask_t *nodes_allowed)
2816 {
2817         unsigned long min_count, ret;
2818         struct page *page;
2819         LIST_HEAD(page_list);
2820         NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL);
2821
2822         /*
2823          * Bit mask controlling how hard we retry per-node allocations.
2824          * If we can not allocate the bit mask, do not attempt to allocate
2825          * the requested huge pages.
2826          */
2827         if (node_alloc_noretry)
2828                 nodes_clear(*node_alloc_noretry);
2829         else
2830                 return -ENOMEM;
2831
2832         /*
2833          * resize_lock mutex prevents concurrent adjustments to number of
2834          * pages in hstate via the proc/sysfs interfaces.
2835          */
2836         mutex_lock(&h->resize_lock);
2837         spin_lock_irq(&hugetlb_lock);
2838
2839         /*
2840          * Check for a node specific request.
2841          * Changing node specific huge page count may require a corresponding
2842          * change to the global count.  In any case, the passed node mask
2843          * (nodes_allowed) will restrict alloc/free to the specified node.
2844          */
2845         if (nid != NUMA_NO_NODE) {
2846                 unsigned long old_count = count;
2847
2848                 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
2849                 /*
2850                  * User may have specified a large count value which caused the
2851                  * above calculation to overflow.  In this case, they wanted
2852                  * to allocate as many huge pages as possible.  Set count to
2853                  * largest possible value to align with their intention.
2854                  */
2855                 if (count < old_count)
2856                         count = ULONG_MAX;
2857         }
2858
2859         /*
2860          * Gigantic pages runtime allocation depend on the capability for large
2861          * page range allocation.
2862          * If the system does not provide this feature, return an error when
2863          * the user tries to allocate gigantic pages but let the user free the
2864          * boottime allocated gigantic pages.
2865          */
2866         if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) {
2867                 if (count > persistent_huge_pages(h)) {
2868                         spin_unlock_irq(&hugetlb_lock);
2869                         mutex_unlock(&h->resize_lock);
2870                         NODEMASK_FREE(node_alloc_noretry);
2871                         return -EINVAL;
2872                 }
2873                 /* Fall through to decrease pool */
2874         }
2875
2876         /*
2877          * Increase the pool size
2878          * First take pages out of surplus state.  Then make up the
2879          * remaining difference by allocating fresh huge pages.
2880          *
2881          * We might race with alloc_surplus_huge_page() here and be unable
2882          * to convert a surplus huge page to a normal huge page. That is
2883          * not critical, though, it just means the overall size of the
2884          * pool might be one hugepage larger than it needs to be, but
2885          * within all the constraints specified by the sysctls.
2886          */
2887         while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
2888                 if (!adjust_pool_surplus(h, nodes_allowed, -1))
2889                         break;
2890         }
2891
2892         while (count > persistent_huge_pages(h)) {
2893                 /*
2894                  * If this allocation races such that we no longer need the
2895                  * page, free_huge_page will handle it by freeing the page
2896                  * and reducing the surplus.
2897                  */
2898                 spin_unlock_irq(&hugetlb_lock);
2899
2900                 /* yield cpu to avoid soft lockup */
2901                 cond_resched();
2902
2903                 ret = alloc_pool_huge_page(h, nodes_allowed,
2904                                                 node_alloc_noretry);
2905                 spin_lock_irq(&hugetlb_lock);
2906                 if (!ret)
2907                         goto out;
2908
2909                 /* Bail for signals. Probably ctrl-c from user */
2910                 if (signal_pending(current))
2911                         goto out;
2912         }
2913
2914         /*
2915          * Decrease the pool size
2916          * First return free pages to the buddy allocator (being careful
2917          * to keep enough around to satisfy reservations).  Then place
2918          * pages into surplus state as needed so the pool will shrink
2919          * to the desired size as pages become free.
2920          *
2921          * By placing pages into the surplus state independent of the
2922          * overcommit value, we are allowing the surplus pool size to
2923          * exceed overcommit. There are few sane options here. Since
2924          * alloc_surplus_huge_page() is checking the global counter,
2925          * though, we'll note that we're not allowed to exceed surplus
2926          * and won't grow the pool anywhere else. Not until one of the
2927          * sysctls are changed, or the surplus pages go out of use.
2928          */
2929         min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
2930         min_count = max(count, min_count);
2931         try_to_free_low(h, min_count, nodes_allowed);
2932
2933         /*
2934          * Collect pages to be removed on list without dropping lock
2935          */
2936         while (min_count < persistent_huge_pages(h)) {
2937                 page = remove_pool_huge_page(h, nodes_allowed, 0);
2938                 if (!page)
2939                         break;
2940
2941                 list_add(&page->lru, &page_list);
2942         }
2943         /* free the pages after dropping lock */
2944         spin_unlock_irq(&hugetlb_lock);
2945         update_and_free_pages_bulk(h, &page_list);
2946         spin_lock_irq(&hugetlb_lock);
2947
2948         while (count < persistent_huge_pages(h)) {
2949                 if (!adjust_pool_surplus(h, nodes_allowed, 1))
2950                         break;
2951         }
2952 out:
2953         h->max_huge_pages = persistent_huge_pages(h);
2954         spin_unlock_irq(&hugetlb_lock);
2955         mutex_unlock(&h->resize_lock);
2956
2957         NODEMASK_FREE(node_alloc_noretry);
2958
2959         return 0;
2960 }
2961
2962 #define HSTATE_ATTR_RO(_name) \
2963         static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2964
2965 #define HSTATE_ATTR(_name) \
2966         static struct kobj_attribute _name##_attr = \
2967                 __ATTR(_name, 0644, _name##_show, _name##_store)
2968
2969 static struct kobject *hugepages_kobj;
2970 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2971
2972 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
2973
2974 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
2975 {
2976         int i;
2977
2978         for (i = 0; i < HUGE_MAX_HSTATE; i++)
2979                 if (hstate_kobjs[i] == kobj) {
2980                         if (nidp)
2981                                 *nidp = NUMA_NO_NODE;
2982                         return &hstates[i];
2983                 }
2984
2985         return kobj_to_node_hstate(kobj, nidp);
2986 }
2987
2988 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
2989                                         struct kobj_attribute *attr, char *buf)
2990 {
2991         struct hstate *h;
2992         unsigned long nr_huge_pages;
2993         int nid;
2994
2995         h = kobj_to_hstate(kobj, &nid);
2996         if (nid == NUMA_NO_NODE)
2997                 nr_huge_pages = h->nr_huge_pages;
2998         else
2999                 nr_huge_pages = h->nr_huge_pages_node[nid];
3000
3001         return sysfs_emit(buf, "%lu\n", nr_huge_pages);
3002 }
3003
3004 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
3005                                            struct hstate *h, int nid,
3006                                            unsigned long count, size_t len)
3007 {
3008         int err;
3009         nodemask_t nodes_allowed, *n_mask;
3010
3011         if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
3012                 return -EINVAL;
3013
3014         if (nid == NUMA_NO_NODE) {
3015                 /*
3016                  * global hstate attribute
3017                  */
3018                 if (!(obey_mempolicy &&
3019                                 init_nodemask_of_mempolicy(&nodes_allowed)))
3020                         n_mask = &node_states[N_MEMORY];
3021                 else
3022                         n_mask = &nodes_allowed;
3023         } else {
3024                 /*
3025                  * Node specific request.  count adjustment happens in
3026                  * set_max_huge_pages() after acquiring hugetlb_lock.
3027                  */
3028                 init_nodemask_of_node(&nodes_allowed, nid);
3029                 n_mask = &nodes_allowed;
3030         }
3031
3032         err = set_max_huge_pages(h, count, nid, n_mask);
3033
3034         return err ? err : len;
3035 }
3036
3037 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
3038                                          struct kobject *kobj, const char *buf,
3039                                          size_t len)
3040 {
3041         struct hstate *h;
3042         unsigned long count;
3043         int nid;
3044         int err;
3045
3046         err = kstrtoul(buf, 10, &count);
3047         if (err)
3048                 return err;
3049
3050         h = kobj_to_hstate(kobj, &nid);
3051         return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
3052 }
3053
3054 static ssize_t nr_hugepages_show(struct kobject *kobj,
3055                                        struct kobj_attribute *attr, char *buf)
3056 {
3057         return nr_hugepages_show_common(kobj, attr, buf);
3058 }
3059
3060 static ssize_t nr_hugepages_store(struct kobject *kobj,
3061                struct kobj_attribute *attr, const char *buf, size_t len)
3062 {
3063         return nr_hugepages_store_common(false, kobj, buf, len);
3064 }
3065 HSTATE_ATTR(nr_hugepages);
3066
3067 #ifdef CONFIG_NUMA
3068
3069 /*
3070  * hstate attribute for optionally mempolicy-based constraint on persistent
3071  * huge page alloc/free.
3072  */
3073 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
3074                                            struct kobj_attribute *attr,
3075                                            char *buf)
3076 {
3077         return nr_hugepages_show_common(kobj, attr, buf);
3078 }
3079
3080 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
3081                struct kobj_attribute *attr, const char *buf, size_t len)
3082 {
3083         return nr_hugepages_store_common(true, kobj, buf, len);
3084 }
3085 HSTATE_ATTR(nr_hugepages_mempolicy);
3086 #endif
3087
3088
3089 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
3090                                         struct kobj_attribute *attr, char *buf)
3091 {
3092         struct hstate *h = kobj_to_hstate(kobj, NULL);
3093         return sysfs_emit(buf, "%lu\n", h->nr_overcommit_huge_pages);
3094 }
3095
3096 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
3097                 struct kobj_attribute *attr, const char *buf, size_t count)
3098 {
3099         int err;
3100         unsigned long input;
3101         struct hstate *h = kobj_to_hstate(kobj, NULL);
3102
3103         if (hstate_is_gigantic(h))
3104                 return -EINVAL;
3105
3106         err = kstrtoul(buf, 10, &input);
3107         if (err)
3108                 return err;
3109
3110         spin_lock_irq(&hugetlb_lock);
3111         h->nr_overcommit_huge_pages = input;
3112         spin_unlock_irq(&hugetlb_lock);
3113
3114         return count;
3115 }
3116 HSTATE_ATTR(nr_overcommit_hugepages);
3117
3118 static ssize_t free_hugepages_show(struct kobject *kobj,
3119                                         struct kobj_attribute *attr, char *buf)
3120 {
3121         struct hstate *h;
3122         unsigned long free_huge_pages;
3123         int nid;
3124
3125         h = kobj_to_hstate(kobj, &nid);
3126         if (nid == NUMA_NO_NODE)
3127                 free_huge_pages = h->free_huge_pages;
3128         else
3129                 free_huge_pages = h->free_huge_pages_node[nid];
3130
3131         return sysfs_emit(buf, "%lu\n", free_huge_pages);
3132 }
3133 HSTATE_ATTR_RO(free_hugepages);
3134
3135 static ssize_t resv_hugepages_show(struct kobject *kobj,
3136                                         struct kobj_attribute *attr, char *buf)
3137 {
3138         struct hstate *h = kobj_to_hstate(kobj, NULL);
3139         return sysfs_emit(buf, "%lu\n", h->resv_huge_pages);
3140 }
3141 HSTATE_ATTR_RO(resv_hugepages);
3142
3143 static ssize_t surplus_hugepages_show(struct kobject *kobj,
3144                                         struct kobj_attribute *attr, char *buf)
3145 {
3146         struct hstate *h;
3147         unsigned long surplus_huge_pages;
3148         int nid;
3149
3150         h = kobj_to_hstate(kobj, &nid);
3151         if (nid == NUMA_NO_NODE)
3152                 surplus_huge_pages = h->surplus_huge_pages;
3153         else
3154                 surplus_huge_pages = h->surplus_huge_pages_node[nid];
3155
3156         return sysfs_emit(buf, "%lu\n", surplus_huge_pages);
3157 }
3158 HSTATE_ATTR_RO(surplus_hugepages);
3159
3160 static struct attribute *hstate_attrs[] = {
3161         &nr_hugepages_attr.attr,
3162         &nr_overcommit_hugepages_attr.attr,
3163         &free_hugepages_attr.attr,
3164         &resv_hugepages_attr.attr,
3165         &surplus_hugepages_attr.attr,
3166 #ifdef CONFIG_NUMA
3167         &nr_hugepages_mempolicy_attr.attr,
3168 #endif
3169         NULL,
3170 };
3171
3172 static const struct attribute_group hstate_attr_group = {
3173         .attrs = hstate_attrs,
3174 };
3175
3176 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
3177                                     struct kobject **hstate_kobjs,
3178                                     const struct attribute_group *hstate_attr_group)
3179 {
3180         int retval;
3181         int hi = hstate_index(h);
3182
3183         hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
3184         if (!hstate_kobjs[hi])
3185                 return -ENOMEM;
3186
3187         retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
3188         if (retval) {
3189                 kobject_put(hstate_kobjs[hi]);
3190                 hstate_kobjs[hi] = NULL;
3191         }
3192
3193         return retval;
3194 }
3195
3196 static void __init hugetlb_sysfs_init(void)
3197 {
3198         struct hstate *h;
3199         int err;
3200
3201         hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
3202         if (!hugepages_kobj)
3203                 return;
3204
3205         for_each_hstate(h) {
3206                 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
3207                                          hstate_kobjs, &hstate_attr_group);
3208                 if (err)
3209                         pr_err("HugeTLB: Unable to add hstate %s", h->name);
3210         }
3211 }
3212
3213 #ifdef CONFIG_NUMA
3214
3215 /*
3216  * node_hstate/s - associate per node hstate attributes, via their kobjects,
3217  * with node devices in node_devices[] using a parallel array.  The array
3218  * index of a node device or _hstate == node id.
3219  * This is here to avoid any static dependency of the node device driver, in
3220  * the base kernel, on the hugetlb module.
3221  */
3222 struct node_hstate {
3223         struct kobject          *hugepages_kobj;
3224         struct kobject          *hstate_kobjs[HUGE_MAX_HSTATE];
3225 };
3226 static struct node_hstate node_hstates[MAX_NUMNODES];
3227
3228 /*
3229  * A subset of global hstate attributes for node devices
3230  */
3231 static struct attribute *per_node_hstate_attrs[] = {
3232         &nr_hugepages_attr.attr,
3233         &free_hugepages_attr.attr,
3234         &surplus_hugepages_attr.attr,
3235         NULL,
3236 };
3237
3238 static const struct attribute_group per_node_hstate_attr_group = {
3239         .attrs = per_node_hstate_attrs,
3240 };
3241
3242 /*
3243  * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
3244  * Returns node id via non-NULL nidp.
3245  */
3246 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
3247 {
3248         int nid;
3249
3250         for (nid = 0; nid < nr_node_ids; nid++) {
3251                 struct node_hstate *nhs = &node_hstates[nid];
3252                 int i;
3253                 for (i = 0; i < HUGE_MAX_HSTATE; i++)
3254                         if (nhs->hstate_kobjs[i] == kobj) {
3255                                 if (nidp)
3256                                         *nidp = nid;
3257                                 return &hstates[i];
3258                         }
3259         }
3260
3261         BUG();
3262         return NULL;
3263 }
3264
3265 /*
3266  * Unregister hstate attributes from a single node device.
3267  * No-op if no hstate attributes attached.
3268  */
3269 static void hugetlb_unregister_node(struct node *node)
3270 {
3271         struct hstate *h;
3272         struct node_hstate *nhs = &node_hstates[node->dev.id];
3273
3274         if (!nhs->hugepages_kobj)
3275                 return;         /* no hstate attributes */
3276
3277         for_each_hstate(h) {
3278                 int idx = hstate_index(h);
3279                 if (nhs->hstate_kobjs[idx]) {
3280                         kobject_put(nhs->hstate_kobjs[idx]);
3281                         nhs->hstate_kobjs[idx] = NULL;
3282                 }
3283         }
3284
3285         kobject_put(nhs->hugepages_kobj);
3286         nhs->hugepages_kobj = NULL;
3287 }
3288
3289
3290 /*
3291  * Register hstate attributes for a single node device.
3292  * No-op if attributes already registered.
3293  */
3294 static void hugetlb_register_node(struct node *node)
3295 {
3296         struct hstate *h;
3297         struct node_hstate *nhs = &node_hstates[node->dev.id];
3298         int err;
3299
3300         if (nhs->hugepages_kobj)
3301                 return;         /* already allocated */
3302
3303         nhs->hugepages_kobj = kobject_create_and_add("hugepages",
3304                                                         &node->dev.kobj);
3305         if (!nhs->hugepages_kobj)
3306                 return;
3307
3308         for_each_hstate(h) {
3309                 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
3310                                                 nhs->hstate_kobjs,
3311                                                 &per_node_hstate_attr_group);
3312                 if (err) {
3313                         pr_err("HugeTLB: Unable to add hstate %s for node %d\n",
3314                                 h->name, node->dev.id);
3315                         hugetlb_unregister_node(node);
3316                         break;
3317                 }
3318         }
3319 }
3320
3321 /*
3322  * hugetlb init time:  register hstate attributes for all registered node
3323  * devices of nodes that have memory.  All on-line nodes should have
3324  * registered their associated device by this time.
3325  */
3326 static void __init hugetlb_register_all_nodes(void)
3327 {
3328         int nid;
3329
3330         for_each_node_state(nid, N_MEMORY) {
3331                 struct node *node = node_devices[nid];
3332                 if (node->dev.id == nid)
3333                         hugetlb_register_node(node);
3334         }
3335
3336         /*
3337          * Let the node device driver know we're here so it can
3338          * [un]register hstate attributes on node hotplug.
3339          */
3340         register_hugetlbfs_with_node(hugetlb_register_node,
3341                                      hugetlb_unregister_node);
3342 }
3343 #else   /* !CONFIG_NUMA */
3344
3345 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
3346 {
3347         BUG();
3348         if (nidp)
3349                 *nidp = -1;
3350         return NULL;
3351 }
3352
3353 static void hugetlb_register_all_nodes(void) { }
3354
3355 #endif
3356
3357 static int __init hugetlb_init(void)
3358 {
3359         int i;
3360
3361         BUILD_BUG_ON(sizeof_field(struct page, private) * BITS_PER_BYTE <
3362                         __NR_HPAGEFLAGS);
3363
3364         if (!hugepages_supported()) {
3365                 if (hugetlb_max_hstate || default_hstate_max_huge_pages)
3366                         pr_warn("HugeTLB: huge pages not supported, ignoring associated command-line parameters\n");
3367                 return 0;
3368         }
3369
3370         /*
3371          * Make sure HPAGE_SIZE (HUGETLB_PAGE_ORDER) hstate exists.  Some
3372          * architectures depend on setup being done here.
3373          */
3374         hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
3375         if (!parsed_default_hugepagesz) {
3376                 /*
3377                  * If we did not parse a default huge page size, set
3378                  * default_hstate_idx to HPAGE_SIZE hstate. And, if the
3379                  * number of huge pages for this default size was implicitly
3380                  * specified, set that here as well.
3381                  * Note that the implicit setting will overwrite an explicit
3382                  * setting.  A warning will be printed in this case.
3383                  */
3384                 default_hstate_idx = hstate_index(size_to_hstate(HPAGE_SIZE));
3385                 if (default_hstate_max_huge_pages) {
3386                         if (default_hstate.max_huge_pages) {
3387                                 char buf[32];
3388
3389                                 string_get_size(huge_page_size(&default_hstate),
3390                                         1, STRING_UNITS_2, buf, 32);
3391                                 pr_warn("HugeTLB: Ignoring hugepages=%lu associated with %s page size\n",
3392                                         default_hstate.max_huge_pages, buf);
3393                                 pr_warn("HugeTLB: Using hugepages=%lu for number of default huge pages\n",
3394                                         default_hstate_max_huge_pages);
3395                         }
3396                         default_hstate.max_huge_pages =
3397                                 default_hstate_max_huge_pages;
3398                 }
3399         }
3400
3401         hugetlb_cma_check();
3402         hugetlb_init_hstates();
3403         gather_bootmem_prealloc();
3404         report_hugepages();
3405
3406         hugetlb_sysfs_init();
3407         hugetlb_register_all_nodes();
3408         hugetlb_cgroup_file_init();
3409
3410 #ifdef CONFIG_SMP
3411         num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
3412 #else
3413         num_fault_mutexes = 1;
3414 #endif
3415         hugetlb_fault_mutex_table =
3416                 kmalloc_array(num_fault_mutexes, sizeof(struct mutex),
3417                               GFP_KERNEL);
3418         BUG_ON(!hugetlb_fault_mutex_table);
3419
3420         for (i = 0; i < num_fault_mutexes; i++)
3421                 mutex_init(&hugetlb_fault_mutex_table[i]);
3422         return 0;
3423 }
3424 subsys_initcall(hugetlb_init);
3425
3426 /* Overwritten by architectures with more huge page sizes */
3427 bool __init __attribute((weak)) arch_hugetlb_valid_size(unsigned long size)
3428 {
3429         return size == HPAGE_SIZE;
3430 }
3431
3432 void __init hugetlb_add_hstate(unsigned int order)
3433 {
3434         struct hstate *h;
3435         unsigned long i;
3436
3437         if (size_to_hstate(PAGE_SIZE << order)) {
3438                 return;
3439         }
3440         BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
3441         BUG_ON(order == 0);
3442         h = &hstates[hugetlb_max_hstate++];
3443         mutex_init(&h->resize_lock);
3444         h->order = order;
3445         h->mask = ~(huge_page_size(h) - 1);
3446         for (i = 0; i < MAX_NUMNODES; ++i)
3447                 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
3448         INIT_LIST_HEAD(&h->hugepage_activelist);
3449         h->next_nid_to_alloc = first_memory_node;
3450         h->next_nid_to_free = first_memory_node;
3451         snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
3452                                         huge_page_size(h)/1024);
3453
3454         parsed_hstate = h;
3455 }
3456
3457 /*
3458  * hugepages command line processing
3459  * hugepages normally follows a valid hugepagsz or default_hugepagsz
3460  * specification.  If not, ignore the hugepages value.  hugepages can also
3461  * be the first huge page command line  option in which case it implicitly
3462  * specifies the number of huge pages for the default size.
3463  */
3464 static int __init hugepages_setup(char *s)
3465 {
3466         unsigned long *mhp;
3467         static unsigned long *last_mhp;
3468
3469         if (!parsed_valid_hugepagesz) {
3470                 pr_warn("HugeTLB: hugepages=%s does not follow a valid hugepagesz, ignoring\n", s);
3471                 parsed_valid_hugepagesz = true;
3472                 return 0;
3473         }
3474
3475         /*
3476          * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter
3477          * yet, so this hugepages= parameter goes to the "default hstate".
3478          * Otherwise, it goes with the previously parsed hugepagesz or
3479          * default_hugepagesz.
3480          */
3481         else if (!hugetlb_max_hstate)
3482                 mhp = &default_hstate_max_huge_pages;
3483         else
3484                 mhp = &parsed_hstate->max_huge_pages;
3485
3486         if (mhp == last_mhp) {
3487                 pr_warn("HugeTLB: hugepages= specified twice without interleaving hugepagesz=, ignoring hugepages=%s\n", s);
3488                 return 0;
3489         }
3490
3491         if (sscanf(s, "%lu", mhp) <= 0)
3492                 *mhp = 0;
3493
3494         /*
3495          * Global state is always initialized later in hugetlb_init.
3496          * But we need to allocate gigantic hstates here early to still
3497          * use the bootmem allocator.
3498          */
3499         if (hugetlb_max_hstate && hstate_is_gigantic(parsed_hstate))
3500                 hugetlb_hstate_alloc_pages(parsed_hstate);
3501
3502         last_mhp = mhp;
3503
3504         return 1;
3505 }
3506 __setup("hugepages=", hugepages_setup);
3507
3508 /*
3509  * hugepagesz command line processing
3510  * A specific huge page size can only be specified once with hugepagesz.
3511  * hugepagesz is followed by hugepages on the command line.  The global
3512  * variable 'parsed_valid_hugepagesz' is used to determine if prior
3513  * hugepagesz argument was valid.
3514  */
3515 static int __init hugepagesz_setup(char *s)
3516 {
3517         unsigned long size;
3518         struct hstate *h;
3519
3520         parsed_valid_hugepagesz = false;
3521         size = (unsigned long)memparse(s, NULL);
3522
3523         if (!arch_hugetlb_valid_size(size)) {
3524                 pr_err("HugeTLB: unsupported hugepagesz=%s\n", s);
3525                 return 0;
3526         }
3527
3528         h = size_to_hstate(size);
3529         if (h) {
3530                 /*
3531                  * hstate for this size already exists.  This is normally
3532                  * an error, but is allowed if the existing hstate is the
3533                  * default hstate.  More specifically, it is only allowed if
3534                  * the number of huge pages for the default hstate was not
3535                  * previously specified.
3536                  */
3537                 if (!parsed_default_hugepagesz ||  h != &default_hstate ||
3538                     default_hstate.max_huge_pages) {
3539                         pr_warn("HugeTLB: hugepagesz=%s specified twice, ignoring\n", s);
3540                         return 0;
3541                 }
3542
3543                 /*
3544                  * No need to call hugetlb_add_hstate() as hstate already
3545                  * exists.  But, do set parsed_hstate so that a following
3546                  * hugepages= parameter will be applied to this hstate.
3547                  */
3548                 parsed_hstate = h;
3549                 parsed_valid_hugepagesz = true;
3550                 return 1;
3551         }
3552
3553         hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
3554         parsed_valid_hugepagesz = true;
3555         return 1;
3556 }
3557 __setup("hugepagesz=", hugepagesz_setup);
3558
3559 /*
3560  * default_hugepagesz command line input
3561  * Only one instance of default_hugepagesz allowed on command line.
3562  */
3563 static int __init default_hugepagesz_setup(char *s)
3564 {
3565         unsigned long size;
3566
3567         parsed_valid_hugepagesz = false;
3568         if (parsed_default_hugepagesz) {
3569                 pr_err("HugeTLB: default_hugepagesz previously specified, ignoring %s\n", s);
3570                 return 0;
3571         }
3572
3573         size = (unsigned long)memparse(s, NULL);
3574
3575         if (!arch_hugetlb_valid_size(size)) {
3576                 pr_err("HugeTLB: unsupported default_hugepagesz=%s\n", s);
3577                 return 0;
3578         }
3579
3580         hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
3581         parsed_valid_hugepagesz = true;
3582         parsed_default_hugepagesz = true;
3583         default_hstate_idx = hstate_index(size_to_hstate(size));
3584
3585         /*
3586          * The number of default huge pages (for this size) could have been
3587          * specified as the first hugetlb parameter: hugepages=X.  If so,
3588          * then default_hstate_max_huge_pages is set.  If the default huge
3589          * page size is gigantic (>= MAX_ORDER), then the pages must be
3590          * allocated here from bootmem allocator.
3591          */
3592         if (default_hstate_max_huge_pages) {
3593                 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
3594                 if (hstate_is_gigantic(&default_hstate))
3595                         hugetlb_hstate_alloc_pages(&default_hstate);
3596                 default_hstate_max_huge_pages = 0;
3597         }
3598
3599         return 1;
3600 }
3601 __setup("default_hugepagesz=", default_hugepagesz_setup);
3602
3603 static unsigned int allowed_mems_nr(struct hstate *h)
3604 {
3605         int node;
3606         unsigned int nr = 0;
3607         nodemask_t *mpol_allowed;
3608         unsigned int *array = h->free_huge_pages_node;
3609         gfp_t gfp_mask = htlb_alloc_mask(h);
3610
3611         mpol_allowed = policy_nodemask_current(gfp_mask);
3612
3613         for_each_node_mask(node, cpuset_current_mems_allowed) {
3614                 if (!mpol_allowed || node_isset(node, *mpol_allowed))
3615                         nr += array[node];
3616         }
3617
3618         return nr;
3619 }
3620
3621 #ifdef CONFIG_SYSCTL
3622 static int proc_hugetlb_doulongvec_minmax(struct ctl_table *table, int write,
3623                                           void *buffer, size_t *length,
3624                                           loff_t *ppos, unsigned long *out)
3625 {
3626         struct ctl_table dup_table;
3627
3628         /*
3629          * In order to avoid races with __do_proc_doulongvec_minmax(), we
3630          * can duplicate the @table and alter the duplicate of it.
3631          */
3632         dup_table = *table;
3633         dup_table.data = out;
3634
3635         return proc_doulongvec_minmax(&dup_table, write, buffer, length, ppos);
3636 }
3637
3638 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
3639                          struct ctl_table *table, int write,
3640                          void *buffer, size_t *length, loff_t *ppos)
3641 {
3642         struct hstate *h = &default_hstate;
3643         unsigned long tmp = h->max_huge_pages;
3644         int ret;
3645
3646         if (!hugepages_supported())
3647                 return -EOPNOTSUPP;
3648
3649         ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
3650                                              &tmp);
3651         if (ret)
3652                 goto out;
3653
3654         if (write)
3655                 ret = __nr_hugepages_store_common(obey_mempolicy, h,
3656                                                   NUMA_NO_NODE, tmp, *length);
3657 out:
3658         return ret;
3659 }
3660
3661 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
3662                           void *buffer, size_t *length, loff_t *ppos)
3663 {
3664
3665         return hugetlb_sysctl_handler_common(false, table, write,
3666                                                         buffer, length, ppos);
3667 }
3668
3669 #ifdef CONFIG_NUMA
3670 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
3671                           void *buffer, size_t *length, loff_t *ppos)
3672 {
3673         return hugetlb_sysctl_handler_common(true, table, write,
3674                                                         buffer, length, ppos);
3675 }
3676 #endif /* CONFIG_NUMA */
3677
3678 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
3679                 void *buffer, size_t *length, loff_t *ppos)
3680 {
3681         struct hstate *h = &default_hstate;
3682         unsigned long tmp;
3683         int ret;
3684
3685         if (!hugepages_supported())
3686                 return -EOPNOTSUPP;
3687
3688         tmp = h->nr_overcommit_huge_pages;
3689
3690         if (write && hstate_is_gigantic(h))
3691                 return -EINVAL;
3692
3693         ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
3694                                              &tmp);
3695         if (ret)
3696                 goto out;
3697
3698         if (write) {
3699                 spin_lock_irq(&hugetlb_lock);
3700                 h->nr_overcommit_huge_pages = tmp;
3701                 spin_unlock_irq(&hugetlb_lock);
3702         }
3703 out:
3704         return ret;
3705 }
3706
3707 #endif /* CONFIG_SYSCTL */
3708
3709 void hugetlb_report_meminfo(struct seq_file *m)
3710 {
3711         struct hstate *h;
3712         unsigned long total = 0;
3713
3714         if (!hugepages_supported())
3715                 return;
3716
3717         for_each_hstate(h) {
3718                 unsigned long count = h->nr_huge_pages;
3719
3720                 total += huge_page_size(h) * count;
3721
3722                 if (h == &default_hstate)
3723                         seq_printf(m,
3724                                    "HugePages_Total:   %5lu\n"
3725                                    "HugePages_Free:    %5lu\n"
3726                                    "HugePages_Rsvd:    %5lu\n"
3727                                    "HugePages_Surp:    %5lu\n"
3728                                    "Hugepagesize:   %8lu kB\n",
3729                                    count,
3730                                    h->free_huge_pages,
3731                                    h->resv_huge_pages,
3732                                    h->surplus_huge_pages,
3733                                    huge_page_size(h) / SZ_1K);
3734         }
3735
3736         seq_printf(m, "Hugetlb:        %8lu kB\n", total / SZ_1K);
3737 }
3738
3739 int hugetlb_report_node_meminfo(char *buf, int len, int nid)
3740 {
3741         struct hstate *h = &default_hstate;
3742
3743         if (!hugepages_supported())
3744                 return 0;
3745
3746         return sysfs_emit_at(buf, len,
3747                              "Node %d HugePages_Total: %5u\n"
3748                              "Node %d HugePages_Free:  %5u\n"
3749                              "Node %d HugePages_Surp:  %5u\n",
3750                              nid, h->nr_huge_pages_node[nid],
3751                              nid, h->free_huge_pages_node[nid],
3752                              nid, h->surplus_huge_pages_node[nid]);
3753 }
3754
3755 void hugetlb_show_meminfo(void)
3756 {
3757         struct hstate *h;
3758         int nid;
3759
3760         if (!hugepages_supported())
3761                 return;
3762
3763         for_each_node_state(nid, N_MEMORY)
3764                 for_each_hstate(h)
3765                         pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
3766                                 nid,
3767                                 h->nr_huge_pages_node[nid],
3768                                 h->free_huge_pages_node[nid],
3769                                 h->surplus_huge_pages_node[nid],
3770                                 huge_page_size(h) / SZ_1K);
3771 }
3772
3773 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
3774 {
3775         seq_printf(m, "HugetlbPages:\t%8lu kB\n",
3776                    atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
3777 }
3778
3779 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
3780 unsigned long hugetlb_total_pages(void)
3781 {
3782         struct hstate *h;
3783         unsigned long nr_total_pages = 0;
3784
3785         for_each_hstate(h)
3786                 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
3787         return nr_total_pages;
3788 }
3789
3790 static int hugetlb_acct_memory(struct hstate *h, long delta)
3791 {
3792         int ret = -ENOMEM;
3793
3794         if (!delta)
3795                 return 0;
3796
3797         spin_lock_irq(&hugetlb_lock);
3798         /*
3799          * When cpuset is configured, it breaks the strict hugetlb page
3800          * reservation as the accounting is done on a global variable. Such
3801          * reservation is completely rubbish in the presence of cpuset because
3802          * the reservation is not checked against page availability for the
3803          * current cpuset. Application can still potentially OOM'ed by kernel
3804          * with lack of free htlb page in cpuset that the task is in.
3805          * Attempt to enforce strict accounting with cpuset is almost
3806          * impossible (or too ugly) because cpuset is too fluid that
3807          * task or memory node can be dynamically moved between cpusets.
3808          *
3809          * The change of semantics for shared hugetlb mapping with cpuset is
3810          * undesirable. However, in order to preserve some of the semantics,
3811          * we fall back to check against current free page availability as
3812          * a best attempt and hopefully to minimize the impact of changing
3813          * semantics that cpuset has.
3814          *
3815          * Apart from cpuset, we also have memory policy mechanism that
3816          * also determines from which node the kernel will allocate memory
3817          * in a NUMA system. So similar to cpuset, we also should consider
3818          * the memory policy of the current task. Similar to the description
3819          * above.
3820          */
3821         if (delta > 0) {
3822                 if (gather_surplus_pages(h, delta) < 0)
3823                         goto out;
3824
3825                 if (delta > allowed_mems_nr(h)) {
3826                         return_unused_surplus_pages(h, delta);
3827                         goto out;
3828                 }
3829         }
3830
3831         ret = 0;
3832         if (delta < 0)
3833                 return_unused_surplus_pages(h, (unsigned long) -delta);
3834
3835 out:
3836         spin_unlock_irq(&hugetlb_lock);
3837         return ret;
3838 }
3839
3840 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
3841 {
3842         struct resv_map *resv = vma_resv_map(vma);
3843
3844         /*
3845          * This new VMA should share its siblings reservation map if present.
3846          * The VMA will only ever have a valid reservation map pointer where
3847          * it is being copied for another still existing VMA.  As that VMA
3848          * has a reference to the reservation map it cannot disappear until
3849          * after this open call completes.  It is therefore safe to take a
3850          * new reference here without additional locking.
3851          */
3852         if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3853                 kref_get(&resv->refs);
3854 }
3855
3856 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
3857 {
3858         struct hstate *h = hstate_vma(vma);
3859         struct resv_map *resv = vma_resv_map(vma);
3860         struct hugepage_subpool *spool = subpool_vma(vma);
3861         unsigned long reserve, start, end;
3862         long gbl_reserve;
3863
3864         if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3865                 return;
3866
3867         start = vma_hugecache_offset(h, vma, vma->vm_start);
3868         end = vma_hugecache_offset(h, vma, vma->vm_end);
3869
3870         reserve = (end - start) - region_count(resv, start, end);
3871         hugetlb_cgroup_uncharge_counter(resv, start, end);
3872         if (reserve) {
3873                 /*
3874                  * Decrement reserve counts.  The global reserve count may be
3875                  * adjusted if the subpool has a minimum size.
3876                  */
3877                 gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
3878                 hugetlb_acct_memory(h, -gbl_reserve);
3879         }
3880
3881         kref_put(&resv->refs, resv_map_release);
3882 }
3883
3884 static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
3885 {
3886         if (addr & ~(huge_page_mask(hstate_vma(vma))))
3887                 return -EINVAL;
3888         return 0;
3889 }
3890
3891 static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma)
3892 {
3893         return huge_page_size(hstate_vma(vma));
3894 }
3895
3896 /*
3897  * We cannot handle pagefaults against hugetlb pages at all.  They cause
3898  * handle_mm_fault() to try to instantiate regular-sized pages in the
3899  * hugepage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
3900  * this far.
3901  */
3902 static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf)
3903 {
3904         BUG();
3905         return 0;
3906 }
3907
3908 /*
3909  * When a new function is introduced to vm_operations_struct and added
3910  * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops.
3911  * This is because under System V memory model, mappings created via
3912  * shmget/shmat with "huge page" specified are backed by hugetlbfs files,
3913  * their original vm_ops are overwritten with shm_vm_ops.
3914  */
3915 const struct vm_operations_struct hugetlb_vm_ops = {
3916         .fault = hugetlb_vm_op_fault,
3917         .open = hugetlb_vm_op_open,
3918         .close = hugetlb_vm_op_close,
3919         .may_split = hugetlb_vm_op_split,
3920         .pagesize = hugetlb_vm_op_pagesize,
3921 };
3922
3923 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
3924                                 int writable)
3925 {
3926         pte_t entry;
3927
3928         if (writable) {
3929                 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
3930                                          vma->vm_page_prot)));
3931         } else {
3932                 entry = huge_pte_wrprotect(mk_huge_pte(page,
3933                                            vma->vm_page_prot));
3934         }
3935         entry = pte_mkyoung(entry);
3936         entry = pte_mkhuge(entry);
3937         entry = arch_make_huge_pte(entry, vma, page, writable);
3938
3939         return entry;
3940 }
3941
3942 static void set_huge_ptep_writable(struct vm_area_struct *vma,
3943                                    unsigned long address, pte_t *ptep)
3944 {
3945         pte_t entry;
3946
3947         entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
3948         if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
3949                 update_mmu_cache(vma, address, ptep);
3950 }
3951
3952 bool is_hugetlb_entry_migration(pte_t pte)
3953 {
3954         swp_entry_t swp;
3955
3956         if (huge_pte_none(pte) || pte_present(pte))
3957                 return false;
3958         swp = pte_to_swp_entry(pte);
3959         if (is_migration_entry(swp))
3960                 return true;
3961         else
3962                 return false;
3963 }
3964
3965 static bool is_hugetlb_entry_hwpoisoned(pte_t pte)
3966 {
3967         swp_entry_t swp;
3968
3969         if (huge_pte_none(pte) || pte_present(pte))
3970                 return false;
3971         swp = pte_to_swp_entry(pte);
3972         if (is_hwpoison_entry(swp))
3973                 return true;
3974         else
3975                 return false;
3976 }
3977
3978 static void
3979 hugetlb_install_page(struct vm_area_struct *vma, pte_t *ptep, unsigned long addr,
3980                      struct page *new_page)
3981 {
3982         __SetPageUptodate(new_page);
3983         set_huge_pte_at(vma->vm_mm, addr, ptep, make_huge_pte(vma, new_page, 1));
3984         hugepage_add_new_anon_rmap(new_page, vma, addr);
3985         hugetlb_count_add(pages_per_huge_page(hstate_vma(vma)), vma->vm_mm);
3986         ClearHPageRestoreReserve(new_page);
3987         SetHPageMigratable(new_page);
3988 }
3989
3990 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
3991                             struct vm_area_struct *vma)
3992 {
3993         pte_t *src_pte, *dst_pte, entry, dst_entry;
3994         struct page *ptepage;
3995         unsigned long addr;
3996         bool cow = is_cow_mapping(vma->vm_flags);
3997         struct hstate *h = hstate_vma(vma);
3998         unsigned long sz = huge_page_size(h);
3999         unsigned long npages = pages_per_huge_page(h);
4000         struct address_space *mapping = vma->vm_file->f_mapping;
4001         struct mmu_notifier_range range;
4002         int ret = 0;
4003
4004         if (cow) {
4005                 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, src,
4006                                         vma->vm_start,
4007                                         vma->vm_end);
4008                 mmu_notifier_invalidate_range_start(&range);
4009         } else {
4010                 /*
4011                  * For shared mappings i_mmap_rwsem must be held to call
4012                  * huge_pte_alloc, otherwise the returned ptep could go
4013                  * away if part of a shared pmd and another thread calls
4014                  * huge_pmd_unshare.
4015                  */
4016                 i_mmap_lock_read(mapping);
4017         }
4018
4019         for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
4020                 spinlock_t *src_ptl, *dst_ptl;
4021                 src_pte = huge_pte_offset(src, addr, sz);
4022                 if (!src_pte)
4023                         continue;
4024                 dst_pte = huge_pte_alloc(dst, vma, addr, sz);
4025                 if (!dst_pte) {
4026                         ret = -ENOMEM;
4027                         break;
4028                 }
4029
4030                 /*
4031                  * If the pagetables are shared don't copy or take references.
4032                  * dst_pte == src_pte is the common case of src/dest sharing.
4033                  *
4034                  * However, src could have 'unshared' and dst shares with
4035                  * another vma.  If dst_pte !none, this implies sharing.
4036                  * Check here before taking page table lock, and once again
4037                  * after taking the lock below.
4038                  */
4039                 dst_entry = huge_ptep_get(dst_pte);
4040                 if ((dst_pte == src_pte) || !huge_pte_none(dst_entry))
4041                         continue;
4042
4043                 dst_ptl = huge_pte_lock(h, dst, dst_pte);
4044                 src_ptl = huge_pte_lockptr(h, src, src_pte);
4045                 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
4046                 entry = huge_ptep_get(src_pte);
4047                 dst_entry = huge_ptep_get(dst_pte);
4048 again:
4049                 if (huge_pte_none(entry) || !huge_pte_none(dst_entry)) {
4050                         /*
4051                          * Skip if src entry none.  Also, skip in the
4052                          * unlikely case dst entry !none as this implies
4053                          * sharing with another vma.
4054                          */
4055                         ;
4056                 } else if (unlikely(is_hugetlb_entry_migration(entry) ||
4057                                     is_hugetlb_entry_hwpoisoned(entry))) {
4058                         swp_entry_t swp_entry = pte_to_swp_entry(entry);
4059
4060                         if (is_write_migration_entry(swp_entry) && cow) {
4061                                 /*
4062                                  * COW mappings require pages in both
4063                                  * parent and child to be set to read.
4064                                  */
4065                                 make_migration_entry_read(&swp_entry);
4066                                 entry = swp_entry_to_pte(swp_entry);
4067                                 set_huge_swap_pte_at(src, addr, src_pte,
4068                                                      entry, sz);
4069                         }
4070                         set_huge_swap_pte_at(dst, addr, dst_pte, entry, sz);
4071                 } else {
4072                         entry = huge_ptep_get(src_pte);
4073                         ptepage = pte_page(entry);
4074                         get_page(ptepage);
4075
4076                         /*
4077                          * This is a rare case where we see pinned hugetlb
4078                          * pages while they're prone to COW.  We need to do the
4079                          * COW earlier during fork.
4080                          *
4081                          * When pre-allocating the page or copying data, we
4082                          * need to be without the pgtable locks since we could
4083                          * sleep during the process.
4084                          */
4085                         if (unlikely(page_needs_cow_for_dma(vma, ptepage))) {
4086                                 pte_t src_pte_old = entry;
4087                                 struct page *new;
4088
4089                                 spin_unlock(src_ptl);
4090                                 spin_unlock(dst_ptl);
4091                                 /* Do not use reserve as it's private owned */
4092                                 new = alloc_huge_page(vma, addr, 1);
4093                                 if (IS_ERR(new)) {
4094                                         put_page(ptepage);
4095                                         ret = PTR_ERR(new);
4096                                         break;
4097                                 }
4098                                 copy_user_huge_page(new, ptepage, addr, vma,
4099                                                     npages);
4100                                 put_page(ptepage);
4101
4102                                 /* Install the new huge page if src pte stable */
4103                                 dst_ptl = huge_pte_lock(h, dst, dst_pte);
4104                                 src_ptl = huge_pte_lockptr(h, src, src_pte);
4105                                 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
4106                                 entry = huge_ptep_get(src_pte);
4107                                 if (!pte_same(src_pte_old, entry)) {
4108                                         restore_reserve_on_error(h, vma, addr,
4109                                                                 new);
4110                                         put_page(new);
4111                                         /* dst_entry won't change as in child */
4112                                         goto again;
4113                                 }
4114                                 hugetlb_install_page(vma, dst_pte, addr, new);
4115                                 spin_unlock(src_ptl);
4116                                 spin_unlock(dst_ptl);
4117                                 continue;
4118                         }
4119
4120                         if (cow) {
4121                                 /*
4122                                  * No need to notify as we are downgrading page
4123                                  * table protection not changing it to point
4124                                  * to a new page.
4125                                  *
4126                                  * See Documentation/vm/mmu_notifier.rst
4127                                  */
4128                                 huge_ptep_set_wrprotect(src, addr, src_pte);
4129                                 entry = huge_pte_wrprotect(entry);
4130                         }
4131
4132                         page_dup_rmap(ptepage, true);
4133                         set_huge_pte_at(dst, addr, dst_pte, entry);
4134                         hugetlb_count_add(npages, dst);
4135                 }
4136                 spin_unlock(src_ptl);
4137                 spin_unlock(dst_ptl);
4138         }
4139
4140         if (cow)
4141                 mmu_notifier_invalidate_range_end(&range);
4142         else
4143                 i_mmap_unlock_read(mapping);
4144
4145         return ret;
4146 }
4147
4148 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
4149                             unsigned long start, unsigned long end,
4150                             struct page *ref_page)
4151 {
4152         struct mm_struct *mm = vma->vm_mm;
4153         unsigned long address;
4154         pte_t *ptep;
4155         pte_t pte;
4156         spinlock_t *ptl;
4157         struct page *page;
4158         struct hstate *h = hstate_vma(vma);
4159         unsigned long sz = huge_page_size(h);
4160         struct mmu_notifier_range range;
4161
4162         WARN_ON(!is_vm_hugetlb_page(vma));
4163         BUG_ON(start & ~huge_page_mask(h));
4164         BUG_ON(end & ~huge_page_mask(h));
4165
4166         /*
4167          * This is a hugetlb vma, all the pte entries should point
4168          * to huge page.
4169          */
4170         tlb_change_page_size(tlb, sz);
4171         tlb_start_vma(tlb, vma);
4172
4173         /*
4174          * If sharing possible, alert mmu notifiers of worst case.
4175          */
4176         mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, mm, start,
4177                                 end);
4178         adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
4179         mmu_notifier_invalidate_range_start(&range);
4180         address = start;
4181         for (; address < end; address += sz) {
4182                 ptep = huge_pte_offset(mm, address, sz);
4183                 if (!ptep)
4184                         continue;
4185
4186                 ptl = huge_pte_lock(h, mm, ptep);
4187                 if (huge_pmd_unshare(mm, vma, &address, ptep)) {
4188                         spin_unlock(ptl);
4189                         /*
4190                          * We just unmapped a page of PMDs by clearing a PUD.
4191                          * The caller's TLB flush range should cover this area.
4192                          */
4193                         continue;
4194                 }
4195
4196                 pte = huge_ptep_get(ptep);
4197                 if (huge_pte_none(pte)) {
4198                         spin_unlock(ptl);
4199                         continue;
4200                 }
4201
4202                 /*
4203                  * Migrating hugepage or HWPoisoned hugepage is already
4204                  * unmapped and its refcount is dropped, so just clear pte here.
4205                  */
4206                 if (unlikely(!pte_present(pte))) {
4207                         huge_pte_clear(mm, address, ptep, sz);
4208                         spin_unlock(ptl);
4209                         continue;
4210                 }
4211
4212                 page = pte_page(pte);
4213                 /*
4214                  * If a reference page is supplied, it is because a specific
4215                  * page is being unmapped, not a range. Ensure the page we
4216                  * are about to unmap is the actual page of interest.
4217                  */
4218                 if (ref_page) {
4219                         if (page != ref_page) {
4220                                 spin_unlock(ptl);
4221                                 continue;
4222                         }
4223                         /*
4224                          * Mark the VMA as having unmapped its page so that
4225                          * future faults in this VMA will fail rather than
4226                          * looking like data was lost
4227                          */
4228                         set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
4229                 }
4230
4231                 pte = huge_ptep_get_and_clear(mm, address, ptep);
4232                 tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
4233                 if (huge_pte_dirty(pte))
4234                         set_page_dirty(page);
4235
4236                 hugetlb_count_sub(pages_per_huge_page(h), mm);
4237                 page_remove_rmap(page, true);
4238
4239                 spin_unlock(ptl);
4240                 tlb_remove_page_size(tlb, page, huge_page_size(h));
4241                 /*
4242                  * Bail out after unmapping reference page if supplied
4243                  */
4244                 if (ref_page)
4245                         break;
4246         }
4247         mmu_notifier_invalidate_range_end(&range);
4248         tlb_end_vma(tlb, vma);
4249 }
4250
4251 void __unmap_hugepage_range_final(struct mmu_gather *tlb,
4252                           struct vm_area_struct *vma, unsigned long start,
4253                           unsigned long end, struct page *ref_page)
4254 {
4255         __unmap_hugepage_range(tlb, vma, start, end, ref_page);
4256
4257         /*
4258          * Clear this flag so that x86's huge_pmd_share page_table_shareable
4259          * test will fail on a vma being torn down, and not grab a page table
4260          * on its way out.  We're lucky that the flag has such an appropriate
4261          * name, and can in fact be safely cleared here. We could clear it
4262          * before the __unmap_hugepage_range above, but all that's necessary
4263          * is to clear it before releasing the i_mmap_rwsem. This works
4264          * because in the context this is called, the VMA is about to be
4265          * destroyed and the i_mmap_rwsem is held.
4266          */
4267         vma->vm_flags &= ~VM_MAYSHARE;
4268 }
4269
4270 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
4271                           unsigned long end, struct page *ref_page)
4272 {
4273         struct mmu_gather tlb;
4274
4275         tlb_gather_mmu(&tlb, vma->vm_mm);
4276         __unmap_hugepage_range(&tlb, vma, start, end, ref_page);
4277         tlb_finish_mmu(&tlb);
4278 }
4279
4280 /*
4281  * This is called when the original mapper is failing to COW a MAP_PRIVATE
4282  * mapping it owns the reserve page for. The intention is to unmap the page
4283  * from other VMAs and let the children be SIGKILLed if they are faulting the
4284  * same region.
4285  */
4286 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
4287                               struct page *page, unsigned long address)
4288 {
4289         struct hstate *h = hstate_vma(vma);
4290         struct vm_area_struct *iter_vma;
4291         struct address_space *mapping;
4292         pgoff_t pgoff;
4293
4294         /*
4295          * vm_pgoff is in PAGE_SIZE units, hence the different calculation
4296          * from page cache lookup which is in HPAGE_SIZE units.
4297          */
4298         address = address & huge_page_mask(h);
4299         pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
4300                         vma->vm_pgoff;
4301         mapping = vma->vm_file->f_mapping;
4302
4303         /*
4304          * Take the mapping lock for the duration of the table walk. As
4305          * this mapping should be shared between all the VMAs,
4306          * __unmap_hugepage_range() is called as the lock is already held
4307          */
4308         i_mmap_lock_write(mapping);
4309         vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
4310                 /* Do not unmap the current VMA */
4311                 if (iter_vma == vma)
4312                         continue;
4313
4314                 /*
4315                  * Shared VMAs have their own reserves and do not affect
4316                  * MAP_PRIVATE accounting but it is possible that a shared
4317                  * VMA is using the same page so check and skip such VMAs.
4318                  */
4319                 if (iter_vma->vm_flags & VM_MAYSHARE)
4320                         continue;
4321
4322                 /*
4323                  * Unmap the page from other VMAs without their own reserves.
4324                  * They get marked to be SIGKILLed if they fault in these
4325                  * areas. This is because a future no-page fault on this VMA
4326                  * could insert a zeroed page instead of the data existing
4327                  * from the time of fork. This would look like data corruption
4328                  */
4329                 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
4330                         unmap_hugepage_range(iter_vma, address,
4331                                              address + huge_page_size(h), page);
4332         }
4333         i_mmap_unlock_write(mapping);
4334 }
4335
4336 /*
4337  * Hugetlb_cow() should be called with page lock of the original hugepage held.
4338  * Called with hugetlb_instantiation_mutex held and pte_page locked so we
4339  * cannot race with other handlers or page migration.
4340  * Keep the pte_same checks anyway to make transition from the mutex easier.
4341  */
4342 static vm_fault_t hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
4343                        unsigned long address, pte_t *ptep,
4344                        struct page *pagecache_page, spinlock_t *ptl)
4345 {
4346         pte_t pte;
4347         struct hstate *h = hstate_vma(vma);
4348         struct page *old_page, *new_page;
4349         int outside_reserve = 0;
4350         vm_fault_t ret = 0;
4351         unsigned long haddr = address & huge_page_mask(h);
4352         struct mmu_notifier_range range;
4353
4354         pte = huge_ptep_get(ptep);
4355         old_page = pte_page(pte);
4356
4357 retry_avoidcopy:
4358         /* If no-one else is actually using this page, avoid the copy
4359          * and just make the page writable */
4360         if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
4361                 page_move_anon_rmap(old_page, vma);
4362                 set_huge_ptep_writable(vma, haddr, ptep);
4363                 return 0;
4364         }
4365
4366         /*
4367          * If the process that created a MAP_PRIVATE mapping is about to
4368          * perform a COW due to a shared page count, attempt to satisfy
4369          * the allocation without using the existing reserves. The pagecache
4370          * page is used to determine if the reserve at this address was
4371          * consumed or not. If reserves were used, a partial faulted mapping
4372          * at the time of fork() could consume its reserves on COW instead
4373          * of the full address range.
4374          */
4375         if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
4376                         old_page != pagecache_page)
4377                 outside_reserve = 1;
4378
4379         get_page(old_page);
4380
4381         /*
4382          * Drop page table lock as buddy allocator may be called. It will
4383          * be acquired again before returning to the caller, as expected.
4384          */
4385         spin_unlock(ptl);
4386         new_page = alloc_huge_page(vma, haddr, outside_reserve);
4387
4388         if (IS_ERR(new_page)) {
4389                 /*
4390                  * If a process owning a MAP_PRIVATE mapping fails to COW,
4391                  * it is due to references held by a child and an insufficient
4392                  * huge page pool. To guarantee the original mappers
4393                  * reliability, unmap the page from child processes. The child
4394                  * may get SIGKILLed if it later faults.
4395                  */
4396                 if (outside_reserve) {
4397                         struct address_space *mapping = vma->vm_file->f_mapping;
4398                         pgoff_t idx;
4399                         u32 hash;
4400
4401                         put_page(old_page);
4402                         BUG_ON(huge_pte_none(pte));
4403                         /*
4404                          * Drop hugetlb_fault_mutex and i_mmap_rwsem before
4405                          * unmapping.  unmapping needs to hold i_mmap_rwsem
4406                          * in write mode.  Dropping i_mmap_rwsem in read mode
4407                          * here is OK as COW mappings do not interact with
4408                          * PMD sharing.
4409                          *
4410                          * Reacquire both after unmap operation.
4411                          */
4412                         idx = vma_hugecache_offset(h, vma, haddr);
4413                         hash = hugetlb_fault_mutex_hash(mapping, idx);
4414                         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
4415                         i_mmap_unlock_read(mapping);
4416
4417                         unmap_ref_private(mm, vma, old_page, haddr);
4418
4419                         i_mmap_lock_read(mapping);
4420                         mutex_lock(&hugetlb_fault_mutex_table[hash]);
4421                         spin_lock(ptl);
4422                         ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
4423                         if (likely(ptep &&
4424                                    pte_same(huge_ptep_get(ptep), pte)))
4425                                 goto retry_avoidcopy;
4426                         /*
4427                          * race occurs while re-acquiring page table
4428                          * lock, and our job is done.
4429                          */
4430                         return 0;
4431                 }
4432
4433                 ret = vmf_error(PTR_ERR(new_page));
4434                 goto out_release_old;
4435         }
4436
4437         /*
4438          * When the original hugepage is shared one, it does not have
4439          * anon_vma prepared.
4440          */
4441         if (unlikely(anon_vma_prepare(vma))) {
4442                 ret = VM_FAULT_OOM;
4443                 goto out_release_all;
4444         }
4445
4446         copy_user_huge_page(new_page, old_page, address, vma,
4447                             pages_per_huge_page(h));
4448         __SetPageUptodate(new_page);
4449
4450         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, haddr,
4451                                 haddr + huge_page_size(h));
4452         mmu_notifier_invalidate_range_start(&range);
4453
4454         /*
4455          * Retake the page table lock to check for racing updates
4456          * before the page tables are altered
4457          */
4458         spin_lock(ptl);
4459         ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
4460         if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
4461                 ClearHPageRestoreReserve(new_page);
4462
4463                 /* Break COW */
4464                 huge_ptep_clear_flush(vma, haddr, ptep);
4465                 mmu_notifier_invalidate_range(mm, range.start, range.end);
4466                 set_huge_pte_at(mm, haddr, ptep,
4467                                 make_huge_pte(vma, new_page, 1));
4468                 page_remove_rmap(old_page, true);
4469                 hugepage_add_new_anon_rmap(new_page, vma, haddr);
4470                 SetHPageMigratable(new_page);
4471                 /* Make the old page be freed below */
4472                 new_page = old_page;
4473         }
4474         spin_unlock(ptl);
4475         mmu_notifier_invalidate_range_end(&range);
4476 out_release_all:
4477         restore_reserve_on_error(h, vma, haddr, new_page);
4478         put_page(new_page);
4479 out_release_old:
4480         put_page(old_page);
4481
4482         spin_lock(ptl); /* Caller expects lock to be held */
4483         return ret;
4484 }
4485
4486 /* Return the pagecache page at a given address within a VMA */
4487 static struct page *hugetlbfs_pagecache_page(struct hstate *h,
4488                         struct vm_area_struct *vma, unsigned long address)
4489 {
4490         struct address_space *mapping;
4491         pgoff_t idx;
4492
4493         mapping = vma->vm_file->f_mapping;
4494         idx = vma_hugecache_offset(h, vma, address);
4495
4496         return find_lock_page(mapping, idx);
4497 }
4498
4499 /*
4500  * Return whether there is a pagecache page to back given address within VMA.
4501  * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
4502  */
4503 static bool hugetlbfs_pagecache_present(struct hstate *h,
4504                         struct vm_area_struct *vma, unsigned long address)
4505 {
4506         struct address_space *mapping;
4507         pgoff_t idx;
4508         struct page *page;
4509
4510         mapping = vma->vm_file->f_mapping;
4511         idx = vma_hugecache_offset(h, vma, address);
4512
4513         page = find_get_page(mapping, idx);
4514         if (page)
4515                 put_page(page);
4516         return page != NULL;
4517 }
4518
4519 int huge_add_to_page_cache(struct page *page, struct address_space *mapping,
4520                            pgoff_t idx)
4521 {
4522         struct inode *inode = mapping->host;
4523         struct hstate *h = hstate_inode(inode);
4524         int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
4525
4526         if (err)
4527                 return err;
4528         ClearHPageRestoreReserve(page);
4529
4530         /*
4531          * set page dirty so that it will not be removed from cache/file
4532          * by non-hugetlbfs specific code paths.
4533          */
4534         set_page_dirty(page);
4535
4536         spin_lock(&inode->i_lock);
4537         inode->i_blocks += blocks_per_huge_page(h);
4538         spin_unlock(&inode->i_lock);
4539         return 0;
4540 }
4541
4542 static inline vm_fault_t hugetlb_handle_userfault(struct vm_area_struct *vma,
4543                                                   struct address_space *mapping,
4544                                                   pgoff_t idx,
4545                                                   unsigned int flags,
4546                                                   unsigned long haddr,
4547                                                   unsigned long reason)
4548 {
4549         vm_fault_t ret;
4550         u32 hash;
4551         struct vm_fault vmf = {
4552                 .vma = vma,
4553                 .address = haddr,
4554                 .flags = flags,
4555
4556                 /*
4557                  * Hard to debug if it ends up being
4558                  * used by a callee that assumes
4559                  * something about the other
4560                  * uninitialized fields... same as in
4561                  * memory.c
4562                  */
4563         };
4564
4565         /*
4566          * hugetlb_fault_mutex and i_mmap_rwsem must be
4567          * dropped before handling userfault.  Reacquire
4568          * after handling fault to make calling code simpler.
4569          */
4570         hash = hugetlb_fault_mutex_hash(mapping, idx);
4571         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
4572         i_mmap_unlock_read(mapping);
4573         ret = handle_userfault(&vmf, reason);
4574         i_mmap_lock_read(mapping);
4575         mutex_lock(&hugetlb_fault_mutex_table[hash]);
4576
4577         return ret;
4578 }
4579
4580 static vm_fault_t hugetlb_no_page(struct mm_struct *mm,
4581                         struct vm_area_struct *vma,
4582                         struct address_space *mapping, pgoff_t idx,
4583                         unsigned long address, pte_t *ptep, unsigned int flags)
4584 {
4585         struct hstate *h = hstate_vma(vma);
4586         vm_fault_t ret = VM_FAULT_SIGBUS;
4587         int anon_rmap = 0;
4588         unsigned long size;
4589         struct page *page;
4590         pte_t new_pte;
4591         spinlock_t *ptl;
4592         unsigned long haddr = address & huge_page_mask(h);
4593         bool new_page = false;
4594
4595         /*
4596          * Currently, we are forced to kill the process in the event the
4597          * original mapper has unmapped pages from the child due to a failed
4598          * COW. Warn that such a situation has occurred as it may not be obvious
4599          */
4600         if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
4601                 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
4602                            current->pid);
4603                 return ret;
4604         }
4605
4606         /*
4607          * We can not race with truncation due to holding i_mmap_rwsem.
4608          * i_size is modified when holding i_mmap_rwsem, so check here
4609          * once for faults beyond end of file.
4610          */
4611         size = i_size_read(mapping->host) >> huge_page_shift(h);
4612         if (idx >= size)
4613                 goto out;
4614
4615 retry:
4616         page = find_lock_page(mapping, idx);
4617         if (!page) {
4618                 /* Check for page in userfault range */
4619                 if (userfaultfd_missing(vma)) {
4620                         ret = hugetlb_handle_userfault(vma, mapping, idx,
4621                                                        flags, haddr,
4622                                                        VM_UFFD_MISSING);
4623                         goto out;
4624                 }
4625
4626                 page = alloc_huge_page(vma, haddr, 0);
4627                 if (IS_ERR(page)) {
4628                         /*
4629                          * Returning error will result in faulting task being
4630                          * sent SIGBUS.  The hugetlb fault mutex prevents two
4631                          * tasks from racing to fault in the same page which
4632                          * could result in false unable to allocate errors.
4633                          * Page migration does not take the fault mutex, but
4634                          * does a clear then write of pte's under page table
4635                          * lock.  Page fault code could race with migration,
4636                          * notice the clear pte and try to allocate a page
4637                          * here.  Before returning error, get ptl and make
4638                          * sure there really is no pte entry.
4639                          */
4640                         ptl = huge_pte_lock(h, mm, ptep);
4641                         ret = 0;
4642                         if (huge_pte_none(huge_ptep_get(ptep)))
4643                                 ret = vmf_error(PTR_ERR(page));
4644                         spin_unlock(ptl);
4645                         goto out;
4646                 }
4647                 clear_huge_page(page, address, pages_per_huge_page(h));
4648                 __SetPageUptodate(page);
4649                 new_page = true;
4650
4651                 if (vma->vm_flags & VM_MAYSHARE) {
4652                         int err = huge_add_to_page_cache(page, mapping, idx);
4653                         if (err) {
4654                                 put_page(page);
4655                                 if (err == -EEXIST)
4656                                         goto retry;
4657                                 goto out;
4658                         }
4659                 } else {
4660                         lock_page(page);
4661                         if (unlikely(anon_vma_prepare(vma))) {
4662                                 ret = VM_FAULT_OOM;
4663                                 goto backout_unlocked;
4664                         }
4665                         anon_rmap = 1;
4666                 }
4667         } else {
4668                 /*
4669                  * If memory error occurs between mmap() and fault, some process
4670                  * don't have hwpoisoned swap entry for errored virtual address.
4671                  * So we need to block hugepage fault by PG_hwpoison bit check.
4672                  */
4673                 if (unlikely(PageHWPoison(page))) {
4674                         ret = VM_FAULT_HWPOISON_LARGE |
4675                                 VM_FAULT_SET_HINDEX(hstate_index(h));
4676                         goto backout_unlocked;
4677                 }
4678
4679                 /* Check for page in userfault range. */
4680                 if (userfaultfd_minor(vma)) {
4681                         unlock_page(page);
4682                         put_page(page);
4683                         ret = hugetlb_handle_userfault(vma, mapping, idx,
4684                                                        flags, haddr,
4685                                                        VM_UFFD_MINOR);
4686                         goto out;
4687                 }
4688         }
4689
4690         /*
4691          * If we are going to COW a private mapping later, we examine the
4692          * pending reservations for this page now. This will ensure that
4693          * any allocations necessary to record that reservation occur outside
4694          * the spinlock.
4695          */
4696         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
4697                 if (vma_needs_reservation(h, vma, haddr) < 0) {
4698                         ret = VM_FAULT_OOM;
4699                         goto backout_unlocked;
4700                 }
4701                 /* Just decrements count, does not deallocate */
4702                 vma_end_reservation(h, vma, haddr);
4703         }
4704
4705         ptl = huge_pte_lock(h, mm, ptep);
4706         ret = 0;
4707         if (!huge_pte_none(huge_ptep_get(ptep)))
4708                 goto backout;
4709
4710         if (anon_rmap) {
4711                 ClearHPageRestoreReserve(page);
4712                 hugepage_add_new_anon_rmap(page, vma, haddr);
4713         } else
4714                 page_dup_rmap(page, true);
4715         new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
4716                                 && (vma->vm_flags & VM_SHARED)));
4717         set_huge_pte_at(mm, haddr, ptep, new_pte);
4718
4719         hugetlb_count_add(pages_per_huge_page(h), mm);
4720         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
4721                 /* Optimization, do the COW without a second fault */
4722                 ret = hugetlb_cow(mm, vma, address, ptep, page, ptl);
4723         }
4724
4725         spin_unlock(ptl);
4726
4727         /*
4728          * Only set HPageMigratable in newly allocated pages.  Existing pages
4729          * found in the pagecache may not have HPageMigratableset if they have
4730          * been isolated for migration.
4731          */
4732         if (new_page)
4733                 SetHPageMigratable(page);
4734
4735         unlock_page(page);
4736 out:
4737         return ret;
4738
4739 backout:
4740         spin_unlock(ptl);
4741 backout_unlocked:
4742         unlock_page(page);
4743         restore_reserve_on_error(h, vma, haddr, page);
4744         put_page(page);
4745         goto out;
4746 }
4747
4748 #ifdef CONFIG_SMP
4749 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
4750 {
4751         unsigned long key[2];
4752         u32 hash;
4753
4754         key[0] = (unsigned long) mapping;
4755         key[1] = idx;
4756
4757         hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0);
4758
4759         return hash & (num_fault_mutexes - 1);
4760 }
4761 #else
4762 /*
4763  * For uniprocessor systems we always use a single mutex, so just
4764  * return 0 and avoid the hashing overhead.
4765  */
4766 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
4767 {
4768         return 0;
4769 }
4770 #endif
4771
4772 vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
4773                         unsigned long address, unsigned int flags)
4774 {
4775         pte_t *ptep, entry;
4776         spinlock_t *ptl;
4777         vm_fault_t ret;
4778         u32 hash;
4779         pgoff_t idx;
4780         struct page *page = NULL;
4781         struct page *pagecache_page = NULL;
4782         struct hstate *h = hstate_vma(vma);
4783         struct address_space *mapping;
4784         int need_wait_lock = 0;
4785         unsigned long haddr = address & huge_page_mask(h);
4786
4787         ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
4788         if (ptep) {
4789                 /*
4790                  * Since we hold no locks, ptep could be stale.  That is
4791                  * OK as we are only making decisions based on content and
4792                  * not actually modifying content here.
4793                  */
4794                 entry = huge_ptep_get(ptep);
4795                 if (unlikely(is_hugetlb_entry_migration(entry))) {
4796                         migration_entry_wait_huge(vma, mm, ptep);
4797                         return 0;
4798                 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
4799                         return VM_FAULT_HWPOISON_LARGE |
4800                                 VM_FAULT_SET_HINDEX(hstate_index(h));
4801         }
4802
4803         /*
4804          * Acquire i_mmap_rwsem before calling huge_pte_alloc and hold
4805          * until finished with ptep.  This serves two purposes:
4806          * 1) It prevents huge_pmd_unshare from being called elsewhere
4807          *    and making the ptep no longer valid.
4808          * 2) It synchronizes us with i_size modifications during truncation.
4809          *
4810          * ptep could have already be assigned via huge_pte_offset.  That
4811          * is OK, as huge_pte_alloc will return the same value unless
4812          * something has changed.
4813          */
4814         mapping = vma->vm_file->f_mapping;
4815         i_mmap_lock_read(mapping);
4816         ptep = huge_pte_alloc(mm, vma, haddr, huge_page_size(h));
4817         if (!ptep) {
4818                 i_mmap_unlock_read(mapping);
4819                 return VM_FAULT_OOM;
4820         }
4821
4822         /*
4823          * Serialize hugepage allocation and instantiation, so that we don't
4824          * get spurious allocation failures if two CPUs race to instantiate
4825          * the same page in the page cache.
4826          */
4827         idx = vma_hugecache_offset(h, vma, haddr);
4828         hash = hugetlb_fault_mutex_hash(mapping, idx);
4829         mutex_lock(&hugetlb_fault_mutex_table[hash]);
4830
4831         entry = huge_ptep_get(ptep);
4832         if (huge_pte_none(entry)) {
4833                 ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
4834                 goto out_mutex;
4835         }
4836
4837         ret = 0;
4838
4839         /*
4840          * entry could be a migration/hwpoison entry at this point, so this
4841          * check prevents the kernel from going below assuming that we have
4842          * an active hugepage in pagecache. This goto expects the 2nd page
4843          * fault, and is_hugetlb_entry_(migration|hwpoisoned) check will
4844          * properly handle it.
4845          */
4846         if (!pte_present(entry))
4847                 goto out_mutex;
4848
4849         /*
4850          * If we are going to COW the mapping later, we examine the pending
4851          * reservations for this page now. This will ensure that any
4852          * allocations necessary to record that reservation occur outside the
4853          * spinlock. For private mappings, we also lookup the pagecache
4854          * page now as it is used to determine if a reservation has been
4855          * consumed.
4856          */
4857         if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
4858                 if (vma_needs_reservation(h, vma, haddr) < 0) {
4859                         ret = VM_FAULT_OOM;
4860                         goto out_mutex;
4861                 }
4862                 /* Just decrements count, does not deallocate */
4863                 vma_end_reservation(h, vma, haddr);
4864
4865                 if (!(vma->vm_flags & VM_MAYSHARE))
4866                         pagecache_page = hugetlbfs_pagecache_page(h,
4867                                                                 vma, haddr);
4868         }
4869
4870         ptl = huge_pte_lock(h, mm, ptep);
4871
4872         /* Check for a racing update before calling hugetlb_cow */
4873         if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
4874                 goto out_ptl;
4875
4876         /*
4877          * hugetlb_cow() requires page locks of pte_page(entry) and
4878          * pagecache_page, so here we need take the former one
4879          * when page != pagecache_page or !pagecache_page.
4880          */
4881         page = pte_page(entry);
4882         if (page != pagecache_page)
4883                 if (!trylock_page(page)) {
4884                         need_wait_lock = 1;
4885                         goto out_ptl;
4886                 }
4887
4888         get_page(page);
4889
4890         if (flags & FAULT_FLAG_WRITE) {
4891                 if (!huge_pte_write(entry)) {
4892                         ret = hugetlb_cow(mm, vma, address, ptep,
4893                                           pagecache_page, ptl);
4894                         goto out_put_page;
4895                 }
4896                 entry = huge_pte_mkdirty(entry);
4897         }
4898         entry = pte_mkyoung(entry);
4899         if (huge_ptep_set_access_flags(vma, haddr, ptep, entry,
4900                                                 flags & FAULT_FLAG_WRITE))
4901                 update_mmu_cache(vma, haddr, ptep);
4902 out_put_page:
4903         if (page != pagecache_page)
4904                 unlock_page(page);
4905         put_page(page);
4906 out_ptl:
4907         spin_unlock(ptl);
4908
4909         if (pagecache_page) {
4910                 unlock_page(pagecache_page);
4911                 put_page(pagecache_page);
4912         }
4913 out_mutex:
4914         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
4915         i_mmap_unlock_read(mapping);
4916         /*
4917          * Generally it's safe to hold refcount during waiting page lock. But
4918          * here we just wait to defer the next page fault to avoid busy loop and
4919          * the page is not used after unlocked before returning from the current
4920          * page fault. So we are safe from accessing freed page, even if we wait
4921          * here without taking refcount.
4922          */
4923         if (need_wait_lock)
4924                 wait_on_page_locked(page);
4925         return ret;
4926 }
4927
4928 #ifdef CONFIG_USERFAULTFD
4929 /*
4930  * Used by userfaultfd UFFDIO_COPY.  Based on mcopy_atomic_pte with
4931  * modifications for huge pages.
4932  */
4933 int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm,
4934                             pte_t *dst_pte,
4935                             struct vm_area_struct *dst_vma,
4936                             unsigned long dst_addr,
4937                             unsigned long src_addr,
4938                             enum mcopy_atomic_mode mode,
4939                             struct page **pagep)
4940 {
4941         bool is_continue = (mode == MCOPY_ATOMIC_CONTINUE);
4942         struct address_space *mapping;
4943         pgoff_t idx;
4944         unsigned long size;
4945         int vm_shared = dst_vma->vm_flags & VM_SHARED;
4946         struct hstate *h = hstate_vma(dst_vma);
4947         pte_t _dst_pte;
4948         spinlock_t *ptl;
4949         int ret;
4950         struct page *page;
4951         int writable;
4952
4953         mapping = dst_vma->vm_file->f_mapping;
4954         idx = vma_hugecache_offset(h, dst_vma, dst_addr);
4955
4956         if (is_continue) {
4957                 ret = -EFAULT;
4958                 page = find_lock_page(mapping, idx);
4959                 if (!page)
4960                         goto out;
4961         } else if (!*pagep) {
4962                 /* If a page already exists, then it's UFFDIO_COPY for
4963                  * a non-missing case. Return -EEXIST.
4964                  */
4965                 if (vm_shared &&
4966                     hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
4967                         ret = -EEXIST;
4968                         goto out;
4969                 }
4970
4971                 page = alloc_huge_page(dst_vma, dst_addr, 0);
4972                 if (IS_ERR(page)) {
4973                         ret = -ENOMEM;
4974                         goto out;
4975                 }
4976
4977                 ret = copy_huge_page_from_user(page,
4978                                                 (const void __user *) src_addr,
4979                                                 pages_per_huge_page(h), false);
4980
4981                 /* fallback to copy_from_user outside mmap_lock */
4982                 if (unlikely(ret)) {
4983                         ret = -ENOENT;
4984                         *pagep = page;
4985                         /* don't free the page */
4986                         goto out;
4987                 }
4988         } else {
4989                 page = *pagep;
4990                 *pagep = NULL;
4991         }
4992
4993         /*
4994          * The memory barrier inside __SetPageUptodate makes sure that
4995          * preceding stores to the page contents become visible before
4996          * the set_pte_at() write.
4997          */
4998         __SetPageUptodate(page);
4999
5000         /* Add shared, newly allocated pages to the page cache. */
5001         if (vm_shared && !is_continue) {
5002                 size = i_size_read(mapping->host) >> huge_page_shift(h);
5003                 ret = -EFAULT;
5004                 if (idx >= size)
5005                         goto out_release_nounlock;
5006
5007                 /*
5008                  * Serialization between remove_inode_hugepages() and
5009                  * huge_add_to_page_cache() below happens through the
5010                  * hugetlb_fault_mutex_table that here must be hold by
5011                  * the caller.
5012                  */
5013                 ret = huge_add_to_page_cache(page, mapping, idx);
5014                 if (ret)
5015                         goto out_release_nounlock;
5016         }
5017
5018         ptl = huge_pte_lockptr(h, dst_mm, dst_pte);
5019         spin_lock(ptl);
5020
5021         /*
5022          * Recheck the i_size after holding PT lock to make sure not
5023          * to leave any page mapped (as page_mapped()) beyond the end
5024          * of the i_size (remove_inode_hugepages() is strict about
5025          * enforcing that). If we bail out here, we'll also leave a
5026          * page in the radix tree in the vm_shared case beyond the end
5027          * of the i_size, but remove_inode_hugepages() will take care
5028          * of it as soon as we drop the hugetlb_fault_mutex_table.
5029          */
5030         size = i_size_read(mapping->host) >> huge_page_shift(h);
5031         ret = -EFAULT;
5032         if (idx >= size)
5033                 goto out_release_unlock;
5034
5035         ret = -EEXIST;
5036         if (!huge_pte_none(huge_ptep_get(dst_pte)))
5037                 goto out_release_unlock;
5038
5039         if (vm_shared) {
5040                 page_dup_rmap(page, true);
5041         } else {
5042                 ClearHPageRestoreReserve(page);
5043                 hugepage_add_new_anon_rmap(page, dst_vma, dst_addr);
5044         }
5045
5046         /* For CONTINUE on a non-shared VMA, don't set VM_WRITE for CoW. */
5047         if (is_continue && !vm_shared)
5048                 writable = 0;
5049         else
5050                 writable = dst_vma->vm_flags & VM_WRITE;
5051
5052         _dst_pte = make_huge_pte(dst_vma, page, writable);
5053         if (writable)
5054                 _dst_pte = huge_pte_mkdirty(_dst_pte);
5055         _dst_pte = pte_mkyoung(_dst_pte);
5056
5057         set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
5058
5059         (void)huge_ptep_set_access_flags(dst_vma, dst_addr, dst_pte, _dst_pte,
5060                                         dst_vma->vm_flags & VM_WRITE);
5061         hugetlb_count_add(pages_per_huge_page(h), dst_mm);
5062
5063         /* No need to invalidate - it was non-present before */
5064         update_mmu_cache(dst_vma, dst_addr, dst_pte);
5065
5066         spin_unlock(ptl);
5067         if (!is_continue)
5068                 SetHPageMigratable(page);
5069         if (vm_shared || is_continue)
5070                 unlock_page(page);
5071         ret = 0;
5072 out:
5073         return ret;
5074 out_release_unlock:
5075         spin_unlock(ptl);
5076         if (vm_shared || is_continue)
5077                 unlock_page(page);
5078 out_release_nounlock:
5079         restore_reserve_on_error(h, dst_vma, dst_addr, page);
5080         put_page(page);
5081         goto out;
5082 }
5083 #endif /* CONFIG_USERFAULTFD */
5084
5085 static void record_subpages_vmas(struct page *page, struct vm_area_struct *vma,
5086                                  int refs, struct page **pages,
5087                                  struct vm_area_struct **vmas)
5088 {
5089         int nr;
5090
5091         for (nr = 0; nr < refs; nr++) {
5092                 if (likely(pages))
5093                         pages[nr] = mem_map_offset(page, nr);
5094                 if (vmas)
5095                         vmas[nr] = vma;
5096         }
5097 }
5098
5099 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
5100                          struct page **pages, struct vm_area_struct **vmas,
5101                          unsigned long *position, unsigned long *nr_pages,
5102                          long i, unsigned int flags, int *locked)
5103 {
5104         unsigned long pfn_offset;
5105         unsigned long vaddr = *position;
5106         unsigned long remainder = *nr_pages;
5107         struct hstate *h = hstate_vma(vma);
5108         int err = -EFAULT, refs;
5109
5110         while (vaddr < vma->vm_end && remainder) {
5111                 pte_t *pte;
5112                 spinlock_t *ptl = NULL;
5113                 int absent;
5114                 struct page *page;
5115
5116                 /*
5117                  * If we have a pending SIGKILL, don't keep faulting pages and
5118                  * potentially allocating memory.
5119                  */
5120                 if (fatal_signal_pending(current)) {
5121                         remainder = 0;
5122                         break;
5123                 }
5124
5125                 /*
5126                  * Some archs (sparc64, sh*) have multiple pte_ts to
5127                  * each hugepage.  We have to make sure we get the
5128                  * first, for the page indexing below to work.
5129                  *
5130                  * Note that page table lock is not held when pte is null.
5131                  */
5132                 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h),
5133                                       huge_page_size(h));
5134                 if (pte)
5135                         ptl = huge_pte_lock(h, mm, pte);
5136                 absent = !pte || huge_pte_none(huge_ptep_get(pte));
5137
5138                 /*
5139                  * When coredumping, it suits get_dump_page if we just return
5140                  * an error where there's an empty slot with no huge pagecache
5141                  * to back it.  This way, we avoid allocating a hugepage, and
5142                  * the sparse dumpfile avoids allocating disk blocks, but its
5143                  * huge holes still show up with zeroes where they need to be.
5144                  */
5145                 if (absent && (flags & FOLL_DUMP) &&
5146                     !hugetlbfs_pagecache_present(h, vma, vaddr)) {
5147                         if (pte)
5148                                 spin_unlock(ptl);
5149                         remainder = 0;
5150                         break;
5151                 }
5152
5153                 /*
5154                  * We need call hugetlb_fault for both hugepages under migration
5155                  * (in which case hugetlb_fault waits for the migration,) and
5156                  * hwpoisoned hugepages (in which case we need to prevent the
5157                  * caller from accessing to them.) In order to do this, we use
5158                  * here is_swap_pte instead of is_hugetlb_entry_migration and
5159                  * is_hugetlb_entry_hwpoisoned. This is because it simply covers
5160                  * both cases, and because we can't follow correct pages
5161                  * directly from any kind of swap entries.
5162                  */
5163                 if (absent || is_swap_pte(huge_ptep_get(pte)) ||
5164                     ((flags & FOLL_WRITE) &&
5165                       !huge_pte_write(huge_ptep_get(pte)))) {
5166                         vm_fault_t ret;
5167                         unsigned int fault_flags = 0;
5168
5169                         if (pte)
5170                                 spin_unlock(ptl);
5171                         if (flags & FOLL_WRITE)
5172                                 fault_flags |= FAULT_FLAG_WRITE;
5173                         if (locked)
5174                                 fault_flags |= FAULT_FLAG_ALLOW_RETRY |
5175                                         FAULT_FLAG_KILLABLE;
5176                         if (flags & FOLL_NOWAIT)
5177                                 fault_flags |= FAULT_FLAG_ALLOW_RETRY |
5178                                         FAULT_FLAG_RETRY_NOWAIT;
5179                         if (flags & FOLL_TRIED) {
5180                                 /*
5181                                  * Note: FAULT_FLAG_ALLOW_RETRY and
5182                                  * FAULT_FLAG_TRIED can co-exist
5183                                  */
5184                                 fault_flags |= FAULT_FLAG_TRIED;
5185                         }
5186                         ret = hugetlb_fault(mm, vma, vaddr, fault_flags);
5187                         if (ret & VM_FAULT_ERROR) {
5188                                 err = vm_fault_to_errno(ret, flags);
5189                                 remainder = 0;
5190                                 break;
5191                         }
5192                         if (ret & VM_FAULT_RETRY) {
5193                                 if (locked &&
5194                                     !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
5195                                         *locked = 0;
5196                                 *nr_pages = 0;
5197                                 /*
5198                                  * VM_FAULT_RETRY must not return an
5199                                  * error, it will return zero
5200                                  * instead.
5201                                  *
5202                                  * No need to update "position" as the
5203                                  * caller will not check it after
5204                                  * *nr_pages is set to 0.
5205                                  */
5206                                 return i;
5207                         }
5208                         continue;
5209                 }
5210
5211                 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
5212                 page = pte_page(huge_ptep_get(pte));
5213
5214                 /*
5215                  * If subpage information not requested, update counters
5216                  * and skip the same_page loop below.
5217                  */
5218                 if (!pages && !vmas && !pfn_offset &&
5219                     (vaddr + huge_page_size(h) < vma->vm_end) &&
5220                     (remainder >= pages_per_huge_page(h))) {
5221                         vaddr += huge_page_size(h);
5222                         remainder -= pages_per_huge_page(h);
5223                         i += pages_per_huge_page(h);
5224                         spin_unlock(ptl);
5225                         continue;
5226                 }
5227
5228                 refs = min3(pages_per_huge_page(h) - pfn_offset,
5229                             (vma->vm_end - vaddr) >> PAGE_SHIFT, remainder);
5230
5231                 if (pages || vmas)
5232                         record_subpages_vmas(mem_map_offset(page, pfn_offset),
5233                                              vma, refs,
5234                                              likely(pages) ? pages + i : NULL,
5235                                              vmas ? vmas + i : NULL);
5236
5237                 if (pages) {
5238                         /*
5239                          * try_grab_compound_head() should always succeed here,
5240                          * because: a) we hold the ptl lock, and b) we've just
5241                          * checked that the huge page is present in the page
5242                          * tables. If the huge page is present, then the tail
5243                          * pages must also be present. The ptl prevents the
5244                          * head page and tail pages from being rearranged in
5245                          * any way. So this page must be available at this
5246                          * point, unless the page refcount overflowed:
5247                          */
5248                         if (WARN_ON_ONCE(!try_grab_compound_head(pages[i],
5249                                                                  refs,
5250                                                                  flags))) {
5251                                 spin_unlock(ptl);
5252                                 remainder = 0;
5253                                 err = -ENOMEM;
5254                                 break;
5255                         }
5256                 }
5257
5258                 vaddr += (refs << PAGE_SHIFT);
5259                 remainder -= refs;
5260                 i += refs;
5261
5262                 spin_unlock(ptl);
5263         }
5264         *nr_pages = remainder;
5265         /*
5266          * setting position is actually required only if remainder is
5267          * not zero but it's faster not to add a "if (remainder)"
5268          * branch.
5269          */
5270         *position = vaddr;
5271
5272         return i ? i : err;
5273 }
5274
5275 unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
5276                 unsigned long address, unsigned long end, pgprot_t newprot)
5277 {
5278         struct mm_struct *mm = vma->vm_mm;
5279         unsigned long start = address;
5280         pte_t *ptep;
5281         pte_t pte;
5282         struct hstate *h = hstate_vma(vma);
5283         unsigned long pages = 0;
5284         bool shared_pmd = false;
5285         struct mmu_notifier_range range;
5286
5287         /*
5288          * In the case of shared PMDs, the area to flush could be beyond
5289          * start/end.  Set range.start/range.end to cover the maximum possible
5290          * range if PMD sharing is possible.
5291          */
5292         mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA,
5293                                 0, vma, mm, start, end);
5294         adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
5295
5296         BUG_ON(address >= end);
5297         flush_cache_range(vma, range.start, range.end);
5298
5299         mmu_notifier_invalidate_range_start(&range);
5300         i_mmap_lock_write(vma->vm_file->f_mapping);
5301         for (; address < end; address += huge_page_size(h)) {
5302                 spinlock_t *ptl;
5303                 ptep = huge_pte_offset(mm, address, huge_page_size(h));
5304                 if (!ptep)
5305                         continue;
5306                 ptl = huge_pte_lock(h, mm, ptep);
5307                 if (huge_pmd_unshare(mm, vma, &address, ptep)) {
5308                         pages++;
5309                         spin_unlock(ptl);
5310                         shared_pmd = true;
5311                         continue;
5312                 }
5313                 pte = huge_ptep_get(ptep);
5314                 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
5315                         spin_unlock(ptl);
5316                         continue;
5317                 }
5318                 if (unlikely(is_hugetlb_entry_migration(pte))) {
5319                         swp_entry_t entry = pte_to_swp_entry(pte);
5320
5321                         if (is_write_migration_entry(entry)) {
5322                                 pte_t newpte;
5323
5324                                 make_migration_entry_read(&entry);
5325                                 newpte = swp_entry_to_pte(entry);
5326                                 set_huge_swap_pte_at(mm, address, ptep,
5327                                                      newpte, huge_page_size(h));
5328                                 pages++;
5329                         }
5330                         spin_unlock(ptl);
5331                         continue;
5332                 }
5333                 if (!huge_pte_none(pte)) {
5334                         pte_t old_pte;
5335
5336                         old_pte = huge_ptep_modify_prot_start(vma, address, ptep);
5337                         pte = pte_mkhuge(huge_pte_modify(old_pte, newprot));
5338                         pte = arch_make_huge_pte(pte, vma, NULL, 0);
5339                         huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte);
5340                         pages++;
5341                 }
5342                 spin_unlock(ptl);
5343         }
5344         /*
5345          * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
5346          * may have cleared our pud entry and done put_page on the page table:
5347          * once we release i_mmap_rwsem, another task can do the final put_page
5348          * and that page table be reused and filled with junk.  If we actually
5349          * did unshare a page of pmds, flush the range corresponding to the pud.
5350          */
5351         if (shared_pmd)
5352                 flush_hugetlb_tlb_range(vma, range.start, range.end);
5353         else
5354                 flush_hugetlb_tlb_range(vma, start, end);
5355         /*
5356          * No need to call mmu_notifier_invalidate_range() we are downgrading
5357          * page table protection not changing it to point to a new page.
5358          *
5359          * See Documentation/vm/mmu_notifier.rst
5360          */
5361         i_mmap_unlock_write(vma->vm_file->f_mapping);
5362         mmu_notifier_invalidate_range_end(&range);
5363
5364         return pages << h->order;
5365 }
5366
5367 /* Return true if reservation was successful, false otherwise.  */
5368 bool hugetlb_reserve_pages(struct inode *inode,
5369                                         long from, long to,
5370                                         struct vm_area_struct *vma,
5371                                         vm_flags_t vm_flags)
5372 {
5373         long chg, add = -1;
5374         struct hstate *h = hstate_inode(inode);
5375         struct hugepage_subpool *spool = subpool_inode(inode);
5376         struct resv_map *resv_map;
5377         struct hugetlb_cgroup *h_cg = NULL;
5378         long gbl_reserve, regions_needed = 0;
5379
5380         /* This should never happen */
5381         if (from > to) {
5382                 VM_WARN(1, "%s called with a negative range\n", __func__);
5383                 return false;
5384         }
5385
5386         /*
5387          * Only apply hugepage reservation if asked. At fault time, an
5388          * attempt will be made for VM_NORESERVE to allocate a page
5389          * without using reserves
5390          */
5391         if (vm_flags & VM_NORESERVE)
5392                 return true;
5393
5394         /*
5395          * Shared mappings base their reservation on the number of pages that
5396          * are already allocated on behalf of the file. Private mappings need
5397          * to reserve the full area even if read-only as mprotect() may be
5398          * called to make the mapping read-write. Assume !vma is a shm mapping
5399          */
5400         if (!vma || vma->vm_flags & VM_MAYSHARE) {
5401                 /*
5402                  * resv_map can not be NULL as hugetlb_reserve_pages is only
5403                  * called for inodes for which resv_maps were created (see
5404                  * hugetlbfs_get_inode).
5405                  */
5406                 resv_map = inode_resv_map(inode);
5407
5408                 chg = region_chg(resv_map, from, to, &regions_needed);
5409
5410         } else {
5411                 /* Private mapping. */
5412                 resv_map = resv_map_alloc();
5413                 if (!resv_map)
5414                         return false;
5415
5416                 chg = to - from;
5417
5418                 set_vma_resv_map(vma, resv_map);
5419                 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
5420         }
5421
5422         if (chg < 0)
5423                 goto out_err;
5424
5425         if (hugetlb_cgroup_charge_cgroup_rsvd(hstate_index(h),
5426                                 chg * pages_per_huge_page(h), &h_cg) < 0)
5427                 goto out_err;
5428
5429         if (vma && !(vma->vm_flags & VM_MAYSHARE) && h_cg) {
5430                 /* For private mappings, the hugetlb_cgroup uncharge info hangs
5431                  * of the resv_map.
5432                  */
5433                 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, h_cg, h);
5434         }
5435
5436         /*
5437          * There must be enough pages in the subpool for the mapping. If
5438          * the subpool has a minimum size, there may be some global
5439          * reservations already in place (gbl_reserve).
5440          */
5441         gbl_reserve = hugepage_subpool_get_pages(spool, chg);
5442         if (gbl_reserve < 0)
5443                 goto out_uncharge_cgroup;
5444
5445         /*
5446          * Check enough hugepages are available for the reservation.
5447          * Hand the pages back to the subpool if there are not
5448          */
5449         if (hugetlb_acct_memory(h, gbl_reserve) < 0)
5450                 goto out_put_pages;
5451
5452         /*
5453          * Account for the reservations made. Shared mappings record regions
5454          * that have reservations as they are shared by multiple VMAs.
5455          * When the last VMA disappears, the region map says how much
5456          * the reservation was and the page cache tells how much of
5457          * the reservation was consumed. Private mappings are per-VMA and
5458          * only the consumed reservations are tracked. When the VMA
5459          * disappears, the original reservation is the VMA size and the
5460          * consumed reservations are stored in the map. Hence, nothing
5461          * else has to be done for private mappings here
5462          */
5463         if (!vma || vma->vm_flags & VM_MAYSHARE) {
5464                 add = region_add(resv_map, from, to, regions_needed, h, h_cg);
5465
5466                 if (unlikely(add < 0)) {
5467                         hugetlb_acct_memory(h, -gbl_reserve);
5468                         goto out_put_pages;
5469                 } else if (unlikely(chg > add)) {
5470                         /*
5471                          * pages in this range were added to the reserve
5472                          * map between region_chg and region_add.  This
5473                          * indicates a race with alloc_huge_page.  Adjust
5474                          * the subpool and reserve counts modified above
5475                          * based on the difference.
5476                          */
5477                         long rsv_adjust;
5478
5479                         /*
5480                          * hugetlb_cgroup_uncharge_cgroup_rsvd() will put the
5481                          * reference to h_cg->css. See comment below for detail.
5482                          */
5483                         hugetlb_cgroup_uncharge_cgroup_rsvd(
5484                                 hstate_index(h),
5485                                 (chg - add) * pages_per_huge_page(h), h_cg);
5486
5487                         rsv_adjust = hugepage_subpool_put_pages(spool,
5488                                                                 chg - add);
5489                         hugetlb_acct_memory(h, -rsv_adjust);
5490                 } else if (h_cg) {
5491                         /*
5492                          * The file_regions will hold their own reference to
5493                          * h_cg->css. So we should release the reference held
5494                          * via hugetlb_cgroup_charge_cgroup_rsvd() when we are
5495                          * done.
5496                          */
5497                         hugetlb_cgroup_put_rsvd_cgroup(h_cg);
5498                 }
5499         }
5500         return true;
5501
5502 out_put_pages:
5503         /* put back original number of pages, chg */
5504         (void)hugepage_subpool_put_pages(spool, chg);
5505 out_uncharge_cgroup:
5506         hugetlb_cgroup_uncharge_cgroup_rsvd(hstate_index(h),
5507                                             chg * pages_per_huge_page(h), h_cg);
5508 out_err:
5509         if (!vma || vma->vm_flags & VM_MAYSHARE)
5510                 /* Only call region_abort if the region_chg succeeded but the
5511                  * region_add failed or didn't run.
5512                  */
5513                 if (chg >= 0 && add < 0)
5514                         region_abort(resv_map, from, to, regions_needed);
5515         if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
5516                 kref_put(&resv_map->refs, resv_map_release);
5517         return false;
5518 }
5519
5520 long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
5521                                                                 long freed)
5522 {
5523         struct hstate *h = hstate_inode(inode);
5524         struct resv_map *resv_map = inode_resv_map(inode);
5525         long chg = 0;
5526         struct hugepage_subpool *spool = subpool_inode(inode);
5527         long gbl_reserve;
5528
5529         /*
5530          * Since this routine can be called in the evict inode path for all
5531          * hugetlbfs inodes, resv_map could be NULL.
5532          */
5533         if (resv_map) {
5534                 chg = region_del(resv_map, start, end);
5535                 /*
5536                  * region_del() can fail in the rare case where a region
5537                  * must be split and another region descriptor can not be
5538                  * allocated.  If end == LONG_MAX, it will not fail.
5539                  */
5540                 if (chg < 0)
5541                         return chg;
5542         }
5543
5544         spin_lock(&inode->i_lock);
5545         inode->i_blocks -= (blocks_per_huge_page(h) * freed);
5546         spin_unlock(&inode->i_lock);
5547
5548         /*
5549          * If the subpool has a minimum size, the number of global
5550          * reservations to be released may be adjusted.
5551          *
5552          * Note that !resv_map implies freed == 0. So (chg - freed)
5553          * won't go negative.
5554          */
5555         gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
5556         hugetlb_acct_memory(h, -gbl_reserve);
5557
5558         return 0;
5559 }
5560
5561 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
5562 static unsigned long page_table_shareable(struct vm_area_struct *svma,
5563                                 struct vm_area_struct *vma,
5564                                 unsigned long addr, pgoff_t idx)
5565 {
5566         unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
5567                                 svma->vm_start;
5568         unsigned long sbase = saddr & PUD_MASK;
5569         unsigned long s_end = sbase + PUD_SIZE;
5570
5571         /* Allow segments to share if only one is marked locked */
5572         unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
5573         unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
5574
5575         /*
5576          * match the virtual addresses, permission and the alignment of the
5577          * page table page.
5578          */
5579         if (pmd_index(addr) != pmd_index(saddr) ||
5580             vm_flags != svm_flags ||
5581             !range_in_vma(svma, sbase, s_end))
5582                 return 0;
5583
5584         return saddr;
5585 }
5586
5587 static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr)
5588 {
5589         unsigned long base = addr & PUD_MASK;
5590         unsigned long end = base + PUD_SIZE;
5591
5592         /*
5593          * check on proper vm_flags and page table alignment
5594          */
5595         if (vma->vm_flags & VM_MAYSHARE && range_in_vma(vma, base, end))
5596                 return true;
5597         return false;
5598 }
5599
5600 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
5601 {
5602 #ifdef CONFIG_USERFAULTFD
5603         if (uffd_disable_huge_pmd_share(vma))
5604                 return false;
5605 #endif
5606         return vma_shareable(vma, addr);
5607 }
5608
5609 /*
5610  * Determine if start,end range within vma could be mapped by shared pmd.
5611  * If yes, adjust start and end to cover range associated with possible
5612  * shared pmd mappings.
5613  */
5614 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
5615                                 unsigned long *start, unsigned long *end)
5616 {
5617         unsigned long v_start = ALIGN(vma->vm_start, PUD_SIZE),
5618                 v_end = ALIGN_DOWN(vma->vm_end, PUD_SIZE);
5619
5620         /*
5621          * vma needs to span at least one aligned PUD size, and the range
5622          * must be at least partially within in.
5623          */
5624         if (!(vma->vm_flags & VM_MAYSHARE) || !(v_end > v_start) ||
5625                 (*end <= v_start) || (*start >= v_end))
5626                 return;
5627
5628         /* Extend the range to be PUD aligned for a worst case scenario */
5629         if (*start > v_start)
5630                 *start = ALIGN_DOWN(*start, PUD_SIZE);
5631
5632         if (*end < v_end)
5633                 *end = ALIGN(*end, PUD_SIZE);
5634 }
5635
5636 /*
5637  * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
5638  * and returns the corresponding pte. While this is not necessary for the
5639  * !shared pmd case because we can allocate the pmd later as well, it makes the
5640  * code much cleaner.
5641  *
5642  * This routine must be called with i_mmap_rwsem held in at least read mode if
5643  * sharing is possible.  For hugetlbfs, this prevents removal of any page
5644  * table entries associated with the address space.  This is important as we
5645  * are setting up sharing based on existing page table entries (mappings).
5646  *
5647  * NOTE: This routine is only called from huge_pte_alloc.  Some callers of
5648  * huge_pte_alloc know that sharing is not possible and do not take
5649  * i_mmap_rwsem as a performance optimization.  This is handled by the
5650  * if !vma_shareable check at the beginning of the routine. i_mmap_rwsem is
5651  * only required for subsequent processing.
5652  */
5653 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
5654                       unsigned long addr, pud_t *pud)
5655 {
5656         struct address_space *mapping = vma->vm_file->f_mapping;
5657         pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
5658                         vma->vm_pgoff;
5659         struct vm_area_struct *svma;
5660         unsigned long saddr;
5661         pte_t *spte = NULL;
5662         pte_t *pte;
5663         spinlock_t *ptl;
5664
5665         i_mmap_assert_locked(mapping);
5666         vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
5667                 if (svma == vma)
5668                         continue;
5669
5670                 saddr = page_table_shareable(svma, vma, addr, idx);
5671                 if (saddr) {
5672                         spte = huge_pte_offset(svma->vm_mm, saddr,
5673                                                vma_mmu_pagesize(svma));
5674                         if (spte) {
5675                                 get_page(virt_to_page(spte));
5676                                 break;
5677                         }
5678                 }
5679         }
5680
5681         if (!spte)
5682                 goto out;
5683
5684         ptl = huge_pte_lock(hstate_vma(vma), mm, spte);
5685         if (pud_none(*pud)) {
5686                 pud_populate(mm, pud,
5687                                 (pmd_t *)((unsigned long)spte & PAGE_MASK));
5688                 mm_inc_nr_pmds(mm);
5689         } else {
5690                 put_page(virt_to_page(spte));
5691         }
5692         spin_unlock(ptl);
5693 out:
5694         pte = (pte_t *)pmd_alloc(mm, pud, addr);
5695         return pte;
5696 }
5697
5698 /*
5699  * unmap huge page backed by shared pte.
5700  *
5701  * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
5702  * indicated by page_count > 1, unmap is achieved by clearing pud and
5703  * decrementing the ref count. If count == 1, the pte page is not shared.
5704  *
5705  * Called with page table lock held and i_mmap_rwsem held in write mode.
5706  *
5707  * returns: 1 successfully unmapped a shared pte page
5708  *          0 the underlying pte page is not shared, or it is the last user
5709  */
5710 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
5711                                         unsigned long *addr, pte_t *ptep)
5712 {
5713         pgd_t *pgd = pgd_offset(mm, *addr);
5714         p4d_t *p4d = p4d_offset(pgd, *addr);
5715         pud_t *pud = pud_offset(p4d, *addr);
5716
5717         i_mmap_assert_write_locked(vma->vm_file->f_mapping);
5718         BUG_ON(page_count(virt_to_page(ptep)) == 0);
5719         if (page_count(virt_to_page(ptep)) == 1)
5720                 return 0;
5721
5722         pud_clear(pud);
5723         put_page(virt_to_page(ptep));
5724         mm_dec_nr_pmds(mm);
5725         *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
5726         return 1;
5727 }
5728
5729 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
5730 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
5731                       unsigned long addr, pud_t *pud)
5732 {
5733         return NULL;
5734 }
5735
5736 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
5737                                 unsigned long *addr, pte_t *ptep)
5738 {
5739         return 0;
5740 }
5741
5742 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
5743                                 unsigned long *start, unsigned long *end)
5744 {
5745 }
5746
5747 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
5748 {
5749         return false;
5750 }
5751 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
5752
5753 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
5754 pte_t *huge_pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
5755                         unsigned long addr, unsigned long sz)
5756 {
5757         pgd_t *pgd;
5758         p4d_t *p4d;
5759         pud_t *pud;
5760         pte_t *pte = NULL;
5761
5762         pgd = pgd_offset(mm, addr);
5763         p4d = p4d_alloc(mm, pgd, addr);
5764         if (!p4d)
5765                 return NULL;
5766         pud = pud_alloc(mm, p4d, addr);
5767         if (pud) {
5768                 if (sz == PUD_SIZE) {
5769                         pte = (pte_t *)pud;
5770                 } else {
5771                         BUG_ON(sz != PMD_SIZE);
5772                         if (want_pmd_share(vma, addr) && pud_none(*pud))
5773                                 pte = huge_pmd_share(mm, vma, addr, pud);
5774                         else
5775                                 pte = (pte_t *)pmd_alloc(mm, pud, addr);
5776                 }
5777         }
5778         BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte));
5779
5780         return pte;
5781 }
5782
5783 /*
5784  * huge_pte_offset() - Walk the page table to resolve the hugepage
5785  * entry at address @addr
5786  *
5787  * Return: Pointer to page table entry (PUD or PMD) for
5788  * address @addr, or NULL if a !p*d_present() entry is encountered and the
5789  * size @sz doesn't match the hugepage size at this level of the page
5790  * table.
5791  */
5792 pte_t *huge_pte_offset(struct mm_struct *mm,
5793                        unsigned long addr, unsigned long sz)
5794 {
5795         pgd_t *pgd;
5796         p4d_t *p4d;
5797         pud_t *pud;
5798         pmd_t *pmd;
5799
5800         pgd = pgd_offset(mm, addr);
5801         if (!pgd_present(*pgd))
5802                 return NULL;
5803         p4d = p4d_offset(pgd, addr);
5804         if (!p4d_present(*p4d))
5805                 return NULL;
5806
5807         pud = pud_offset(p4d, addr);
5808         if (sz == PUD_SIZE)
5809                 /* must be pud huge, non-present or none */
5810                 return (pte_t *)pud;
5811         if (!pud_present(*pud))
5812                 return NULL;
5813         /* must have a valid entry and size to go further */
5814
5815         pmd = pmd_offset(pud, addr);
5816         /* must be pmd huge, non-present or none */
5817         return (pte_t *)pmd;
5818 }
5819
5820 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
5821
5822 /*
5823  * These functions are overwritable if your architecture needs its own
5824  * behavior.
5825  */
5826 struct page * __weak
5827 follow_huge_addr(struct mm_struct *mm, unsigned long address,
5828                               int write)
5829 {
5830         return ERR_PTR(-EINVAL);
5831 }
5832
5833 struct page * __weak
5834 follow_huge_pd(struct vm_area_struct *vma,
5835                unsigned long address, hugepd_t hpd, int flags, int pdshift)
5836 {
5837         WARN(1, "hugepd follow called with no support for hugepage directory format\n");
5838         return NULL;
5839 }
5840
5841 struct page * __weak
5842 follow_huge_pmd(struct mm_struct *mm, unsigned long address,
5843                 pmd_t *pmd, int flags)
5844 {
5845         struct page *page = NULL;
5846         spinlock_t *ptl;
5847         pte_t pte;
5848
5849         /* FOLL_GET and FOLL_PIN are mutually exclusive. */
5850         if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
5851                          (FOLL_PIN | FOLL_GET)))
5852                 return NULL;
5853
5854 retry:
5855         ptl = pmd_lockptr(mm, pmd);
5856         spin_lock(ptl);
5857         /*
5858          * make sure that the address range covered by this pmd is not
5859          * unmapped from other threads.
5860          */
5861         if (!pmd_huge(*pmd))
5862                 goto out;
5863         pte = huge_ptep_get((pte_t *)pmd);
5864         if (pte_present(pte)) {
5865                 page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
5866                 /*
5867                  * try_grab_page() should always succeed here, because: a) we
5868                  * hold the pmd (ptl) lock, and b) we've just checked that the
5869                  * huge pmd (head) page is present in the page tables. The ptl
5870                  * prevents the head page and tail pages from being rearranged
5871                  * in any way. So this page must be available at this point,
5872                  * unless the page refcount overflowed:
5873                  */
5874                 if (WARN_ON_ONCE(!try_grab_page(page, flags))) {
5875                         page = NULL;
5876                         goto out;
5877                 }
5878         } else {
5879                 if (is_hugetlb_entry_migration(pte)) {
5880                         spin_unlock(ptl);
5881                         __migration_entry_wait(mm, (pte_t *)pmd, ptl);
5882                         goto retry;
5883                 }
5884                 /*
5885                  * hwpoisoned entry is treated as no_page_table in
5886                  * follow_page_mask().
5887                  */
5888         }
5889 out:
5890         spin_unlock(ptl);
5891         return page;
5892 }
5893
5894 struct page * __weak
5895 follow_huge_pud(struct mm_struct *mm, unsigned long address,
5896                 pud_t *pud, int flags)
5897 {
5898         if (flags & (FOLL_GET | FOLL_PIN))
5899                 return NULL;
5900
5901         return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
5902 }
5903
5904 struct page * __weak
5905 follow_huge_pgd(struct mm_struct *mm, unsigned long address, pgd_t *pgd, int flags)
5906 {
5907         if (flags & (FOLL_GET | FOLL_PIN))
5908                 return NULL;
5909
5910         return pte_page(*(pte_t *)pgd) + ((address & ~PGDIR_MASK) >> PAGE_SHIFT);
5911 }
5912
5913 bool isolate_huge_page(struct page *page, struct list_head *list)
5914 {
5915         bool ret = true;
5916
5917         spin_lock_irq(&hugetlb_lock);
5918         if (!PageHeadHuge(page) ||
5919             !HPageMigratable(page) ||
5920             !get_page_unless_zero(page)) {
5921                 ret = false;
5922                 goto unlock;
5923         }
5924         ClearHPageMigratable(page);
5925         list_move_tail(&page->lru, list);
5926 unlock:
5927         spin_unlock_irq(&hugetlb_lock);
5928         return ret;
5929 }
5930
5931 int get_hwpoison_huge_page(struct page *page, bool *hugetlb)
5932 {
5933         int ret = 0;
5934
5935         *hugetlb = false;
5936         spin_lock_irq(&hugetlb_lock);
5937         if (PageHeadHuge(page)) {
5938                 *hugetlb = true;
5939                 if (HPageFreed(page) || HPageMigratable(page))
5940                         ret = get_page_unless_zero(page);
5941                 else
5942                         ret = -EBUSY;
5943         }
5944         spin_unlock_irq(&hugetlb_lock);
5945         return ret;
5946 }
5947
5948 void putback_active_hugepage(struct page *page)
5949 {
5950         spin_lock_irq(&hugetlb_lock);
5951         SetHPageMigratable(page);
5952         list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
5953         spin_unlock_irq(&hugetlb_lock);
5954         put_page(page);
5955 }
5956
5957 void move_hugetlb_state(struct page *oldpage, struct page *newpage, int reason)
5958 {
5959         struct hstate *h = page_hstate(oldpage);
5960
5961         hugetlb_cgroup_migrate(oldpage, newpage);
5962         set_page_owner_migrate_reason(newpage, reason);
5963
5964         /*
5965          * transfer temporary state of the new huge page. This is
5966          * reverse to other transitions because the newpage is going to
5967          * be final while the old one will be freed so it takes over
5968          * the temporary status.
5969          *
5970          * Also note that we have to transfer the per-node surplus state
5971          * here as well otherwise the global surplus count will not match
5972          * the per-node's.
5973          */
5974         if (HPageTemporary(newpage)) {
5975                 int old_nid = page_to_nid(oldpage);
5976                 int new_nid = page_to_nid(newpage);
5977
5978                 SetHPageTemporary(oldpage);
5979                 ClearHPageTemporary(newpage);
5980
5981                 /*
5982                  * There is no need to transfer the per-node surplus state
5983                  * when we do not cross the node.
5984                  */
5985                 if (new_nid == old_nid)
5986                         return;
5987                 spin_lock_irq(&hugetlb_lock);
5988                 if (h->surplus_huge_pages_node[old_nid]) {
5989                         h->surplus_huge_pages_node[old_nid]--;
5990                         h->surplus_huge_pages_node[new_nid]++;
5991                 }
5992                 spin_unlock_irq(&hugetlb_lock);
5993         }
5994 }
5995
5996 /*
5997  * This function will unconditionally remove all the shared pmd pgtable entries
5998  * within the specific vma for a hugetlbfs memory range.
5999  */
6000 void hugetlb_unshare_all_pmds(struct vm_area_struct *vma)
6001 {
6002         struct hstate *h = hstate_vma(vma);
6003         unsigned long sz = huge_page_size(h);
6004         struct mm_struct *mm = vma->vm_mm;
6005         struct mmu_notifier_range range;
6006         unsigned long address, start, end;
6007         spinlock_t *ptl;
6008         pte_t *ptep;
6009
6010         if (!(vma->vm_flags & VM_MAYSHARE))
6011                 return;
6012
6013         start = ALIGN(vma->vm_start, PUD_SIZE);
6014         end = ALIGN_DOWN(vma->vm_end, PUD_SIZE);
6015
6016         if (start >= end)
6017                 return;
6018
6019         /*
6020          * No need to call adjust_range_if_pmd_sharing_possible(), because
6021          * we have already done the PUD_SIZE alignment.
6022          */
6023         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
6024                                 start, end);
6025         mmu_notifier_invalidate_range_start(&range);
6026         i_mmap_lock_write(vma->vm_file->f_mapping);
6027         for (address = start; address < end; address += PUD_SIZE) {
6028                 unsigned long tmp = address;
6029
6030                 ptep = huge_pte_offset(mm, address, sz);
6031                 if (!ptep)
6032                         continue;
6033                 ptl = huge_pte_lock(h, mm, ptep);
6034                 /* We don't want 'address' to be changed */
6035                 huge_pmd_unshare(mm, vma, &tmp, ptep);
6036                 spin_unlock(ptl);
6037         }
6038         flush_hugetlb_tlb_range(vma, start, end);
6039         i_mmap_unlock_write(vma->vm_file->f_mapping);
6040         /*
6041          * No need to call mmu_notifier_invalidate_range(), see
6042          * Documentation/vm/mmu_notifier.rst.
6043          */
6044         mmu_notifier_invalidate_range_end(&range);
6045 }
6046
6047 #ifdef CONFIG_CMA
6048 static bool cma_reserve_called __initdata;
6049
6050 static int __init cmdline_parse_hugetlb_cma(char *p)
6051 {
6052         hugetlb_cma_size = memparse(p, &p);
6053         return 0;
6054 }
6055
6056 early_param("hugetlb_cma", cmdline_parse_hugetlb_cma);
6057
6058 void __init hugetlb_cma_reserve(int order)
6059 {
6060         unsigned long size, reserved, per_node;
6061         int nid;
6062
6063         cma_reserve_called = true;
6064
6065         if (!hugetlb_cma_size)
6066                 return;
6067
6068         if (hugetlb_cma_size < (PAGE_SIZE << order)) {
6069                 pr_warn("hugetlb_cma: cma area should be at least %lu MiB\n",
6070                         (PAGE_SIZE << order) / SZ_1M);
6071                 return;
6072         }
6073
6074         /*
6075          * If 3 GB area is requested on a machine with 4 numa nodes,
6076          * let's allocate 1 GB on first three nodes and ignore the last one.
6077          */
6078         per_node = DIV_ROUND_UP(hugetlb_cma_size, nr_online_nodes);
6079         pr_info("hugetlb_cma: reserve %lu MiB, up to %lu MiB per node\n",
6080                 hugetlb_cma_size / SZ_1M, per_node / SZ_1M);
6081
6082         reserved = 0;
6083         for_each_node_state(nid, N_ONLINE) {
6084                 int res;
6085                 char name[CMA_MAX_NAME];
6086
6087                 size = min(per_node, hugetlb_cma_size - reserved);
6088                 size = round_up(size, PAGE_SIZE << order);
6089
6090                 snprintf(name, sizeof(name), "hugetlb%d", nid);
6091                 res = cma_declare_contiguous_nid(0, size, 0, PAGE_SIZE << order,
6092                                                  0, false, name,
6093                                                  &hugetlb_cma[nid], nid);
6094                 if (res) {
6095                         pr_warn("hugetlb_cma: reservation failed: err %d, node %d",
6096                                 res, nid);
6097                         continue;
6098                 }
6099
6100                 reserved += size;
6101                 pr_info("hugetlb_cma: reserved %lu MiB on node %d\n",
6102                         size / SZ_1M, nid);
6103
6104                 if (reserved >= hugetlb_cma_size)
6105                         break;
6106         }
6107 }
6108
6109 void __init hugetlb_cma_check(void)
6110 {
6111         if (!hugetlb_cma_size || cma_reserve_called)
6112                 return;
6113
6114         pr_warn("hugetlb_cma: the option isn't supported by current arch\n");
6115 }
6116
6117 #endif /* CONFIG_CMA */