mm/hugetlb: use helper huge_page_order and pages_per_huge_page
[linux-2.6-microblaze.git] / mm / hugetlb.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Generic hugetlb support.
4  * (C) Nadia Yvette Chambers, April 2004
5  */
6 #include <linux/list.h>
7 #include <linux/init.h>
8 #include <linux/mm.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/compiler.h>
17 #include <linux/cpuset.h>
18 #include <linux/mutex.h>
19 #include <linux/memblock.h>
20 #include <linux/sysfs.h>
21 #include <linux/slab.h>
22 #include <linux/sched/mm.h>
23 #include <linux/mmdebug.h>
24 #include <linux/sched/signal.h>
25 #include <linux/rmap.h>
26 #include <linux/string_helpers.h>
27 #include <linux/swap.h>
28 #include <linux/swapops.h>
29 #include <linux/jhash.h>
30 #include <linux/numa.h>
31 #include <linux/llist.h>
32 #include <linux/cma.h>
33
34 #include <asm/page.h>
35 #include <asm/pgalloc.h>
36 #include <asm/tlb.h>
37
38 #include <linux/io.h>
39 #include <linux/hugetlb.h>
40 #include <linux/hugetlb_cgroup.h>
41 #include <linux/node.h>
42 #include <linux/userfaultfd_k.h>
43 #include <linux/page_owner.h>
44 #include "internal.h"
45
46 int hugetlb_max_hstate __read_mostly;
47 unsigned int default_hstate_idx;
48 struct hstate hstates[HUGE_MAX_HSTATE];
49
50 #ifdef CONFIG_CMA
51 static struct cma *hugetlb_cma[MAX_NUMNODES];
52 #endif
53 static unsigned long hugetlb_cma_size __initdata;
54
55 /*
56  * Minimum page order among possible hugepage sizes, set to a proper value
57  * at boot time.
58  */
59 static unsigned int minimum_order __read_mostly = UINT_MAX;
60
61 __initdata LIST_HEAD(huge_boot_pages);
62
63 /* for command line parsing */
64 static struct hstate * __initdata parsed_hstate;
65 static unsigned long __initdata default_hstate_max_huge_pages;
66 static bool __initdata parsed_valid_hugepagesz = true;
67 static bool __initdata parsed_default_hugepagesz;
68
69 /*
70  * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
71  * free_huge_pages, and surplus_huge_pages.
72  */
73 DEFINE_SPINLOCK(hugetlb_lock);
74
75 /*
76  * Serializes faults on the same logical page.  This is used to
77  * prevent spurious OOMs when the hugepage pool is fully utilized.
78  */
79 static int num_fault_mutexes;
80 struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
81
82 static inline bool PageHugeFreed(struct page *head)
83 {
84         return page_private(head + 4) == -1UL;
85 }
86
87 static inline void SetPageHugeFreed(struct page *head)
88 {
89         set_page_private(head + 4, -1UL);
90 }
91
92 static inline void ClearPageHugeFreed(struct page *head)
93 {
94         set_page_private(head + 4, 0);
95 }
96
97 /* Forward declaration */
98 static int hugetlb_acct_memory(struct hstate *h, long delta);
99
100 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
101 {
102         bool free = (spool->count == 0) && (spool->used_hpages == 0);
103
104         spin_unlock(&spool->lock);
105
106         /* If no pages are used, and no other handles to the subpool
107          * remain, give up any reservations based on minimum size and
108          * free the subpool */
109         if (free) {
110                 if (spool->min_hpages != -1)
111                         hugetlb_acct_memory(spool->hstate,
112                                                 -spool->min_hpages);
113                 kfree(spool);
114         }
115 }
116
117 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
118                                                 long min_hpages)
119 {
120         struct hugepage_subpool *spool;
121
122         spool = kzalloc(sizeof(*spool), GFP_KERNEL);
123         if (!spool)
124                 return NULL;
125
126         spin_lock_init(&spool->lock);
127         spool->count = 1;
128         spool->max_hpages = max_hpages;
129         spool->hstate = h;
130         spool->min_hpages = min_hpages;
131
132         if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
133                 kfree(spool);
134                 return NULL;
135         }
136         spool->rsv_hpages = min_hpages;
137
138         return spool;
139 }
140
141 void hugepage_put_subpool(struct hugepage_subpool *spool)
142 {
143         spin_lock(&spool->lock);
144         BUG_ON(!spool->count);
145         spool->count--;
146         unlock_or_release_subpool(spool);
147 }
148
149 /*
150  * Subpool accounting for allocating and reserving pages.
151  * Return -ENOMEM if there are not enough resources to satisfy the
152  * request.  Otherwise, return the number of pages by which the
153  * global pools must be adjusted (upward).  The returned value may
154  * only be different than the passed value (delta) in the case where
155  * a subpool minimum size must be maintained.
156  */
157 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
158                                       long delta)
159 {
160         long ret = delta;
161
162         if (!spool)
163                 return ret;
164
165         spin_lock(&spool->lock);
166
167         if (spool->max_hpages != -1) {          /* maximum size accounting */
168                 if ((spool->used_hpages + delta) <= spool->max_hpages)
169                         spool->used_hpages += delta;
170                 else {
171                         ret = -ENOMEM;
172                         goto unlock_ret;
173                 }
174         }
175
176         /* minimum size accounting */
177         if (spool->min_hpages != -1 && spool->rsv_hpages) {
178                 if (delta > spool->rsv_hpages) {
179                         /*
180                          * Asking for more reserves than those already taken on
181                          * behalf of subpool.  Return difference.
182                          */
183                         ret = delta - spool->rsv_hpages;
184                         spool->rsv_hpages = 0;
185                 } else {
186                         ret = 0;        /* reserves already accounted for */
187                         spool->rsv_hpages -= delta;
188                 }
189         }
190
191 unlock_ret:
192         spin_unlock(&spool->lock);
193         return ret;
194 }
195
196 /*
197  * Subpool accounting for freeing and unreserving pages.
198  * Return the number of global page reservations that must be dropped.
199  * The return value may only be different than the passed value (delta)
200  * in the case where a subpool minimum size must be maintained.
201  */
202 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
203                                        long delta)
204 {
205         long ret = delta;
206
207         if (!spool)
208                 return delta;
209
210         spin_lock(&spool->lock);
211
212         if (spool->max_hpages != -1)            /* maximum size accounting */
213                 spool->used_hpages -= delta;
214
215          /* minimum size accounting */
216         if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
217                 if (spool->rsv_hpages + delta <= spool->min_hpages)
218                         ret = 0;
219                 else
220                         ret = spool->rsv_hpages + delta - spool->min_hpages;
221
222                 spool->rsv_hpages += delta;
223                 if (spool->rsv_hpages > spool->min_hpages)
224                         spool->rsv_hpages = spool->min_hpages;
225         }
226
227         /*
228          * If hugetlbfs_put_super couldn't free spool due to an outstanding
229          * quota reference, free it now.
230          */
231         unlock_or_release_subpool(spool);
232
233         return ret;
234 }
235
236 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
237 {
238         return HUGETLBFS_SB(inode->i_sb)->spool;
239 }
240
241 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
242 {
243         return subpool_inode(file_inode(vma->vm_file));
244 }
245
246 /* Helper that removes a struct file_region from the resv_map cache and returns
247  * it for use.
248  */
249 static struct file_region *
250 get_file_region_entry_from_cache(struct resv_map *resv, long from, long to)
251 {
252         struct file_region *nrg = NULL;
253
254         VM_BUG_ON(resv->region_cache_count <= 0);
255
256         resv->region_cache_count--;
257         nrg = list_first_entry(&resv->region_cache, struct file_region, link);
258         list_del(&nrg->link);
259
260         nrg->from = from;
261         nrg->to = to;
262
263         return nrg;
264 }
265
266 static void copy_hugetlb_cgroup_uncharge_info(struct file_region *nrg,
267                                               struct file_region *rg)
268 {
269 #ifdef CONFIG_CGROUP_HUGETLB
270         nrg->reservation_counter = rg->reservation_counter;
271         nrg->css = rg->css;
272         if (rg->css)
273                 css_get(rg->css);
274 #endif
275 }
276
277 /* Helper that records hugetlb_cgroup uncharge info. */
278 static void record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup *h_cg,
279                                                 struct hstate *h,
280                                                 struct resv_map *resv,
281                                                 struct file_region *nrg)
282 {
283 #ifdef CONFIG_CGROUP_HUGETLB
284         if (h_cg) {
285                 nrg->reservation_counter =
286                         &h_cg->rsvd_hugepage[hstate_index(h)];
287                 nrg->css = &h_cg->css;
288                 if (!resv->pages_per_hpage)
289                         resv->pages_per_hpage = pages_per_huge_page(h);
290                 /* pages_per_hpage should be the same for all entries in
291                  * a resv_map.
292                  */
293                 VM_BUG_ON(resv->pages_per_hpage != pages_per_huge_page(h));
294         } else {
295                 nrg->reservation_counter = NULL;
296                 nrg->css = NULL;
297         }
298 #endif
299 }
300
301 static bool has_same_uncharge_info(struct file_region *rg,
302                                    struct file_region *org)
303 {
304 #ifdef CONFIG_CGROUP_HUGETLB
305         return rg && org &&
306                rg->reservation_counter == org->reservation_counter &&
307                rg->css == org->css;
308
309 #else
310         return true;
311 #endif
312 }
313
314 static void coalesce_file_region(struct resv_map *resv, struct file_region *rg)
315 {
316         struct file_region *nrg = NULL, *prg = NULL;
317
318         prg = list_prev_entry(rg, link);
319         if (&prg->link != &resv->regions && prg->to == rg->from &&
320             has_same_uncharge_info(prg, rg)) {
321                 prg->to = rg->to;
322
323                 list_del(&rg->link);
324                 kfree(rg);
325
326                 rg = prg;
327         }
328
329         nrg = list_next_entry(rg, link);
330         if (&nrg->link != &resv->regions && nrg->from == rg->to &&
331             has_same_uncharge_info(nrg, rg)) {
332                 nrg->from = rg->from;
333
334                 list_del(&rg->link);
335                 kfree(rg);
336         }
337 }
338
339 /*
340  * Must be called with resv->lock held.
341  *
342  * Calling this with regions_needed != NULL will count the number of pages
343  * to be added but will not modify the linked list. And regions_needed will
344  * indicate the number of file_regions needed in the cache to carry out to add
345  * the regions for this range.
346  */
347 static long add_reservation_in_range(struct resv_map *resv, long f, long t,
348                                      struct hugetlb_cgroup *h_cg,
349                                      struct hstate *h, long *regions_needed)
350 {
351         long add = 0;
352         struct list_head *head = &resv->regions;
353         long last_accounted_offset = f;
354         struct file_region *rg = NULL, *trg = NULL, *nrg = NULL;
355
356         if (regions_needed)
357                 *regions_needed = 0;
358
359         /* In this loop, we essentially handle an entry for the range
360          * [last_accounted_offset, rg->from), at every iteration, with some
361          * bounds checking.
362          */
363         list_for_each_entry_safe(rg, trg, head, link) {
364                 /* Skip irrelevant regions that start before our range. */
365                 if (rg->from < f) {
366                         /* If this region ends after the last accounted offset,
367                          * then we need to update last_accounted_offset.
368                          */
369                         if (rg->to > last_accounted_offset)
370                                 last_accounted_offset = rg->to;
371                         continue;
372                 }
373
374                 /* When we find a region that starts beyond our range, we've
375                  * finished.
376                  */
377                 if (rg->from > t)
378                         break;
379
380                 /* Add an entry for last_accounted_offset -> rg->from, and
381                  * update last_accounted_offset.
382                  */
383                 if (rg->from > last_accounted_offset) {
384                         add += rg->from - last_accounted_offset;
385                         if (!regions_needed) {
386                                 nrg = get_file_region_entry_from_cache(
387                                         resv, last_accounted_offset, rg->from);
388                                 record_hugetlb_cgroup_uncharge_info(h_cg, h,
389                                                                     resv, nrg);
390                                 list_add(&nrg->link, rg->link.prev);
391                                 coalesce_file_region(resv, nrg);
392                         } else
393                                 *regions_needed += 1;
394                 }
395
396                 last_accounted_offset = rg->to;
397         }
398
399         /* Handle the case where our range extends beyond
400          * last_accounted_offset.
401          */
402         if (last_accounted_offset < t) {
403                 add += t - last_accounted_offset;
404                 if (!regions_needed) {
405                         nrg = get_file_region_entry_from_cache(
406                                 resv, last_accounted_offset, t);
407                         record_hugetlb_cgroup_uncharge_info(h_cg, h, resv, nrg);
408                         list_add(&nrg->link, rg->link.prev);
409                         coalesce_file_region(resv, nrg);
410                 } else
411                         *regions_needed += 1;
412         }
413
414         VM_BUG_ON(add < 0);
415         return add;
416 }
417
418 /* Must be called with resv->lock acquired. Will drop lock to allocate entries.
419  */
420 static int allocate_file_region_entries(struct resv_map *resv,
421                                         int regions_needed)
422         __must_hold(&resv->lock)
423 {
424         struct list_head allocated_regions;
425         int to_allocate = 0, i = 0;
426         struct file_region *trg = NULL, *rg = NULL;
427
428         VM_BUG_ON(regions_needed < 0);
429
430         INIT_LIST_HEAD(&allocated_regions);
431
432         /*
433          * Check for sufficient descriptors in the cache to accommodate
434          * the number of in progress add operations plus regions_needed.
435          *
436          * This is a while loop because when we drop the lock, some other call
437          * to region_add or region_del may have consumed some region_entries,
438          * so we keep looping here until we finally have enough entries for
439          * (adds_in_progress + regions_needed).
440          */
441         while (resv->region_cache_count <
442                (resv->adds_in_progress + regions_needed)) {
443                 to_allocate = resv->adds_in_progress + regions_needed -
444                               resv->region_cache_count;
445
446                 /* At this point, we should have enough entries in the cache
447                  * for all the existings adds_in_progress. We should only be
448                  * needing to allocate for regions_needed.
449                  */
450                 VM_BUG_ON(resv->region_cache_count < resv->adds_in_progress);
451
452                 spin_unlock(&resv->lock);
453                 for (i = 0; i < to_allocate; i++) {
454                         trg = kmalloc(sizeof(*trg), GFP_KERNEL);
455                         if (!trg)
456                                 goto out_of_memory;
457                         list_add(&trg->link, &allocated_regions);
458                 }
459
460                 spin_lock(&resv->lock);
461
462                 list_splice(&allocated_regions, &resv->region_cache);
463                 resv->region_cache_count += to_allocate;
464         }
465
466         return 0;
467
468 out_of_memory:
469         list_for_each_entry_safe(rg, trg, &allocated_regions, link) {
470                 list_del(&rg->link);
471                 kfree(rg);
472         }
473         return -ENOMEM;
474 }
475
476 /*
477  * Add the huge page range represented by [f, t) to the reserve
478  * map.  Regions will be taken from the cache to fill in this range.
479  * Sufficient regions should exist in the cache due to the previous
480  * call to region_chg with the same range, but in some cases the cache will not
481  * have sufficient entries due to races with other code doing region_add or
482  * region_del.  The extra needed entries will be allocated.
483  *
484  * regions_needed is the out value provided by a previous call to region_chg.
485  *
486  * Return the number of new huge pages added to the map.  This number is greater
487  * than or equal to zero.  If file_region entries needed to be allocated for
488  * this operation and we were not able to allocate, it returns -ENOMEM.
489  * region_add of regions of length 1 never allocate file_regions and cannot
490  * fail; region_chg will always allocate at least 1 entry and a region_add for
491  * 1 page will only require at most 1 entry.
492  */
493 static long region_add(struct resv_map *resv, long f, long t,
494                        long in_regions_needed, struct hstate *h,
495                        struct hugetlb_cgroup *h_cg)
496 {
497         long add = 0, actual_regions_needed = 0;
498
499         spin_lock(&resv->lock);
500 retry:
501
502         /* Count how many regions are actually needed to execute this add. */
503         add_reservation_in_range(resv, f, t, NULL, NULL,
504                                  &actual_regions_needed);
505
506         /*
507          * Check for sufficient descriptors in the cache to accommodate
508          * this add operation. Note that actual_regions_needed may be greater
509          * than in_regions_needed, as the resv_map may have been modified since
510          * the region_chg call. In this case, we need to make sure that we
511          * allocate extra entries, such that we have enough for all the
512          * existing adds_in_progress, plus the excess needed for this
513          * operation.
514          */
515         if (actual_regions_needed > in_regions_needed &&
516             resv->region_cache_count <
517                     resv->adds_in_progress +
518                             (actual_regions_needed - in_regions_needed)) {
519                 /* region_add operation of range 1 should never need to
520                  * allocate file_region entries.
521                  */
522                 VM_BUG_ON(t - f <= 1);
523
524                 if (allocate_file_region_entries(
525                             resv, actual_regions_needed - in_regions_needed)) {
526                         return -ENOMEM;
527                 }
528
529                 goto retry;
530         }
531
532         add = add_reservation_in_range(resv, f, t, h_cg, h, NULL);
533
534         resv->adds_in_progress -= in_regions_needed;
535
536         spin_unlock(&resv->lock);
537         VM_BUG_ON(add < 0);
538         return add;
539 }
540
541 /*
542  * Examine the existing reserve map and determine how many
543  * huge pages in the specified range [f, t) are NOT currently
544  * represented.  This routine is called before a subsequent
545  * call to region_add that will actually modify the reserve
546  * map to add the specified range [f, t).  region_chg does
547  * not change the number of huge pages represented by the
548  * map.  A number of new file_region structures is added to the cache as a
549  * placeholder, for the subsequent region_add call to use. At least 1
550  * file_region structure is added.
551  *
552  * out_regions_needed is the number of regions added to the
553  * resv->adds_in_progress.  This value needs to be provided to a follow up call
554  * to region_add or region_abort for proper accounting.
555  *
556  * Returns the number of huge pages that need to be added to the existing
557  * reservation map for the range [f, t).  This number is greater or equal to
558  * zero.  -ENOMEM is returned if a new file_region structure or cache entry
559  * is needed and can not be allocated.
560  */
561 static long region_chg(struct resv_map *resv, long f, long t,
562                        long *out_regions_needed)
563 {
564         long chg = 0;
565
566         spin_lock(&resv->lock);
567
568         /* Count how many hugepages in this range are NOT represented. */
569         chg = add_reservation_in_range(resv, f, t, NULL, NULL,
570                                        out_regions_needed);
571
572         if (*out_regions_needed == 0)
573                 *out_regions_needed = 1;
574
575         if (allocate_file_region_entries(resv, *out_regions_needed))
576                 return -ENOMEM;
577
578         resv->adds_in_progress += *out_regions_needed;
579
580         spin_unlock(&resv->lock);
581         return chg;
582 }
583
584 /*
585  * Abort the in progress add operation.  The adds_in_progress field
586  * of the resv_map keeps track of the operations in progress between
587  * calls to region_chg and region_add.  Operations are sometimes
588  * aborted after the call to region_chg.  In such cases, region_abort
589  * is called to decrement the adds_in_progress counter. regions_needed
590  * is the value returned by the region_chg call, it is used to decrement
591  * the adds_in_progress counter.
592  *
593  * NOTE: The range arguments [f, t) are not needed or used in this
594  * routine.  They are kept to make reading the calling code easier as
595  * arguments will match the associated region_chg call.
596  */
597 static void region_abort(struct resv_map *resv, long f, long t,
598                          long regions_needed)
599 {
600         spin_lock(&resv->lock);
601         VM_BUG_ON(!resv->region_cache_count);
602         resv->adds_in_progress -= regions_needed;
603         spin_unlock(&resv->lock);
604 }
605
606 /*
607  * Delete the specified range [f, t) from the reserve map.  If the
608  * t parameter is LONG_MAX, this indicates that ALL regions after f
609  * should be deleted.  Locate the regions which intersect [f, t)
610  * and either trim, delete or split the existing regions.
611  *
612  * Returns the number of huge pages deleted from the reserve map.
613  * In the normal case, the return value is zero or more.  In the
614  * case where a region must be split, a new region descriptor must
615  * be allocated.  If the allocation fails, -ENOMEM will be returned.
616  * NOTE: If the parameter t == LONG_MAX, then we will never split
617  * a region and possibly return -ENOMEM.  Callers specifying
618  * t == LONG_MAX do not need to check for -ENOMEM error.
619  */
620 static long region_del(struct resv_map *resv, long f, long t)
621 {
622         struct list_head *head = &resv->regions;
623         struct file_region *rg, *trg;
624         struct file_region *nrg = NULL;
625         long del = 0;
626
627 retry:
628         spin_lock(&resv->lock);
629         list_for_each_entry_safe(rg, trg, head, link) {
630                 /*
631                  * Skip regions before the range to be deleted.  file_region
632                  * ranges are normally of the form [from, to).  However, there
633                  * may be a "placeholder" entry in the map which is of the form
634                  * (from, to) with from == to.  Check for placeholder entries
635                  * at the beginning of the range to be deleted.
636                  */
637                 if (rg->to <= f && (rg->to != rg->from || rg->to != f))
638                         continue;
639
640                 if (rg->from >= t)
641                         break;
642
643                 if (f > rg->from && t < rg->to) { /* Must split region */
644                         /*
645                          * Check for an entry in the cache before dropping
646                          * lock and attempting allocation.
647                          */
648                         if (!nrg &&
649                             resv->region_cache_count > resv->adds_in_progress) {
650                                 nrg = list_first_entry(&resv->region_cache,
651                                                         struct file_region,
652                                                         link);
653                                 list_del(&nrg->link);
654                                 resv->region_cache_count--;
655                         }
656
657                         if (!nrg) {
658                                 spin_unlock(&resv->lock);
659                                 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
660                                 if (!nrg)
661                                         return -ENOMEM;
662                                 goto retry;
663                         }
664
665                         del += t - f;
666                         hugetlb_cgroup_uncharge_file_region(
667                                 resv, rg, t - f);
668
669                         /* New entry for end of split region */
670                         nrg->from = t;
671                         nrg->to = rg->to;
672
673                         copy_hugetlb_cgroup_uncharge_info(nrg, rg);
674
675                         INIT_LIST_HEAD(&nrg->link);
676
677                         /* Original entry is trimmed */
678                         rg->to = f;
679
680                         list_add(&nrg->link, &rg->link);
681                         nrg = NULL;
682                         break;
683                 }
684
685                 if (f <= rg->from && t >= rg->to) { /* Remove entire region */
686                         del += rg->to - rg->from;
687                         hugetlb_cgroup_uncharge_file_region(resv, rg,
688                                                             rg->to - rg->from);
689                         list_del(&rg->link);
690                         kfree(rg);
691                         continue;
692                 }
693
694                 if (f <= rg->from) {    /* Trim beginning of region */
695                         hugetlb_cgroup_uncharge_file_region(resv, rg,
696                                                             t - rg->from);
697
698                         del += t - rg->from;
699                         rg->from = t;
700                 } else {                /* Trim end of region */
701                         hugetlb_cgroup_uncharge_file_region(resv, rg,
702                                                             rg->to - f);
703
704                         del += rg->to - f;
705                         rg->to = f;
706                 }
707         }
708
709         spin_unlock(&resv->lock);
710         kfree(nrg);
711         return del;
712 }
713
714 /*
715  * A rare out of memory error was encountered which prevented removal of
716  * the reserve map region for a page.  The huge page itself was free'ed
717  * and removed from the page cache.  This routine will adjust the subpool
718  * usage count, and the global reserve count if needed.  By incrementing
719  * these counts, the reserve map entry which could not be deleted will
720  * appear as a "reserved" entry instead of simply dangling with incorrect
721  * counts.
722  */
723 void hugetlb_fix_reserve_counts(struct inode *inode)
724 {
725         struct hugepage_subpool *spool = subpool_inode(inode);
726         long rsv_adjust;
727
728         rsv_adjust = hugepage_subpool_get_pages(spool, 1);
729         if (rsv_adjust) {
730                 struct hstate *h = hstate_inode(inode);
731
732                 hugetlb_acct_memory(h, 1);
733         }
734 }
735
736 /*
737  * Count and return the number of huge pages in the reserve map
738  * that intersect with the range [f, t).
739  */
740 static long region_count(struct resv_map *resv, long f, long t)
741 {
742         struct list_head *head = &resv->regions;
743         struct file_region *rg;
744         long chg = 0;
745
746         spin_lock(&resv->lock);
747         /* Locate each segment we overlap with, and count that overlap. */
748         list_for_each_entry(rg, head, link) {
749                 long seg_from;
750                 long seg_to;
751
752                 if (rg->to <= f)
753                         continue;
754                 if (rg->from >= t)
755                         break;
756
757                 seg_from = max(rg->from, f);
758                 seg_to = min(rg->to, t);
759
760                 chg += seg_to - seg_from;
761         }
762         spin_unlock(&resv->lock);
763
764         return chg;
765 }
766
767 /*
768  * Convert the address within this vma to the page offset within
769  * the mapping, in pagecache page units; huge pages here.
770  */
771 static pgoff_t vma_hugecache_offset(struct hstate *h,
772                         struct vm_area_struct *vma, unsigned long address)
773 {
774         return ((address - vma->vm_start) >> huge_page_shift(h)) +
775                         (vma->vm_pgoff >> huge_page_order(h));
776 }
777
778 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
779                                      unsigned long address)
780 {
781         return vma_hugecache_offset(hstate_vma(vma), vma, address);
782 }
783 EXPORT_SYMBOL_GPL(linear_hugepage_index);
784
785 /*
786  * Return the size of the pages allocated when backing a VMA. In the majority
787  * cases this will be same size as used by the page table entries.
788  */
789 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
790 {
791         if (vma->vm_ops && vma->vm_ops->pagesize)
792                 return vma->vm_ops->pagesize(vma);
793         return PAGE_SIZE;
794 }
795 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
796
797 /*
798  * Return the page size being used by the MMU to back a VMA. In the majority
799  * of cases, the page size used by the kernel matches the MMU size. On
800  * architectures where it differs, an architecture-specific 'strong'
801  * version of this symbol is required.
802  */
803 __weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
804 {
805         return vma_kernel_pagesize(vma);
806 }
807
808 /*
809  * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
810  * bits of the reservation map pointer, which are always clear due to
811  * alignment.
812  */
813 #define HPAGE_RESV_OWNER    (1UL << 0)
814 #define HPAGE_RESV_UNMAPPED (1UL << 1)
815 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
816
817 /*
818  * These helpers are used to track how many pages are reserved for
819  * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
820  * is guaranteed to have their future faults succeed.
821  *
822  * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
823  * the reserve counters are updated with the hugetlb_lock held. It is safe
824  * to reset the VMA at fork() time as it is not in use yet and there is no
825  * chance of the global counters getting corrupted as a result of the values.
826  *
827  * The private mapping reservation is represented in a subtly different
828  * manner to a shared mapping.  A shared mapping has a region map associated
829  * with the underlying file, this region map represents the backing file
830  * pages which have ever had a reservation assigned which this persists even
831  * after the page is instantiated.  A private mapping has a region map
832  * associated with the original mmap which is attached to all VMAs which
833  * reference it, this region map represents those offsets which have consumed
834  * reservation ie. where pages have been instantiated.
835  */
836 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
837 {
838         return (unsigned long)vma->vm_private_data;
839 }
840
841 static void set_vma_private_data(struct vm_area_struct *vma,
842                                                         unsigned long value)
843 {
844         vma->vm_private_data = (void *)value;
845 }
846
847 static void
848 resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map *resv_map,
849                                           struct hugetlb_cgroup *h_cg,
850                                           struct hstate *h)
851 {
852 #ifdef CONFIG_CGROUP_HUGETLB
853         if (!h_cg || !h) {
854                 resv_map->reservation_counter = NULL;
855                 resv_map->pages_per_hpage = 0;
856                 resv_map->css = NULL;
857         } else {
858                 resv_map->reservation_counter =
859                         &h_cg->rsvd_hugepage[hstate_index(h)];
860                 resv_map->pages_per_hpage = pages_per_huge_page(h);
861                 resv_map->css = &h_cg->css;
862         }
863 #endif
864 }
865
866 struct resv_map *resv_map_alloc(void)
867 {
868         struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
869         struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
870
871         if (!resv_map || !rg) {
872                 kfree(resv_map);
873                 kfree(rg);
874                 return NULL;
875         }
876
877         kref_init(&resv_map->refs);
878         spin_lock_init(&resv_map->lock);
879         INIT_LIST_HEAD(&resv_map->regions);
880
881         resv_map->adds_in_progress = 0;
882         /*
883          * Initialize these to 0. On shared mappings, 0's here indicate these
884          * fields don't do cgroup accounting. On private mappings, these will be
885          * re-initialized to the proper values, to indicate that hugetlb cgroup
886          * reservations are to be un-charged from here.
887          */
888         resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, NULL, NULL);
889
890         INIT_LIST_HEAD(&resv_map->region_cache);
891         list_add(&rg->link, &resv_map->region_cache);
892         resv_map->region_cache_count = 1;
893
894         return resv_map;
895 }
896
897 void resv_map_release(struct kref *ref)
898 {
899         struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
900         struct list_head *head = &resv_map->region_cache;
901         struct file_region *rg, *trg;
902
903         /* Clear out any active regions before we release the map. */
904         region_del(resv_map, 0, LONG_MAX);
905
906         /* ... and any entries left in the cache */
907         list_for_each_entry_safe(rg, trg, head, link) {
908                 list_del(&rg->link);
909                 kfree(rg);
910         }
911
912         VM_BUG_ON(resv_map->adds_in_progress);
913
914         kfree(resv_map);
915 }
916
917 static inline struct resv_map *inode_resv_map(struct inode *inode)
918 {
919         /*
920          * At inode evict time, i_mapping may not point to the original
921          * address space within the inode.  This original address space
922          * contains the pointer to the resv_map.  So, always use the
923          * address space embedded within the inode.
924          * The VERY common case is inode->mapping == &inode->i_data but,
925          * this may not be true for device special inodes.
926          */
927         return (struct resv_map *)(&inode->i_data)->private_data;
928 }
929
930 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
931 {
932         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
933         if (vma->vm_flags & VM_MAYSHARE) {
934                 struct address_space *mapping = vma->vm_file->f_mapping;
935                 struct inode *inode = mapping->host;
936
937                 return inode_resv_map(inode);
938
939         } else {
940                 return (struct resv_map *)(get_vma_private_data(vma) &
941                                                         ~HPAGE_RESV_MASK);
942         }
943 }
944
945 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
946 {
947         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
948         VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
949
950         set_vma_private_data(vma, (get_vma_private_data(vma) &
951                                 HPAGE_RESV_MASK) | (unsigned long)map);
952 }
953
954 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
955 {
956         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
957         VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
958
959         set_vma_private_data(vma, get_vma_private_data(vma) | flags);
960 }
961
962 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
963 {
964         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
965
966         return (get_vma_private_data(vma) & flag) != 0;
967 }
968
969 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
970 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
971 {
972         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
973         if (!(vma->vm_flags & VM_MAYSHARE))
974                 vma->vm_private_data = (void *)0;
975 }
976
977 /* Returns true if the VMA has associated reserve pages */
978 static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
979 {
980         if (vma->vm_flags & VM_NORESERVE) {
981                 /*
982                  * This address is already reserved by other process(chg == 0),
983                  * so, we should decrement reserved count. Without decrementing,
984                  * reserve count remains after releasing inode, because this
985                  * allocated page will go into page cache and is regarded as
986                  * coming from reserved pool in releasing step.  Currently, we
987                  * don't have any other solution to deal with this situation
988                  * properly, so add work-around here.
989                  */
990                 if (vma->vm_flags & VM_MAYSHARE && chg == 0)
991                         return true;
992                 else
993                         return false;
994         }
995
996         /* Shared mappings always use reserves */
997         if (vma->vm_flags & VM_MAYSHARE) {
998                 /*
999                  * We know VM_NORESERVE is not set.  Therefore, there SHOULD
1000                  * be a region map for all pages.  The only situation where
1001                  * there is no region map is if a hole was punched via
1002                  * fallocate.  In this case, there really are no reserves to
1003                  * use.  This situation is indicated if chg != 0.
1004                  */
1005                 if (chg)
1006                         return false;
1007                 else
1008                         return true;
1009         }
1010
1011         /*
1012          * Only the process that called mmap() has reserves for
1013          * private mappings.
1014          */
1015         if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1016                 /*
1017                  * Like the shared case above, a hole punch or truncate
1018                  * could have been performed on the private mapping.
1019                  * Examine the value of chg to determine if reserves
1020                  * actually exist or were previously consumed.
1021                  * Very Subtle - The value of chg comes from a previous
1022                  * call to vma_needs_reserves().  The reserve map for
1023                  * private mappings has different (opposite) semantics
1024                  * than that of shared mappings.  vma_needs_reserves()
1025                  * has already taken this difference in semantics into
1026                  * account.  Therefore, the meaning of chg is the same
1027                  * as in the shared case above.  Code could easily be
1028                  * combined, but keeping it separate draws attention to
1029                  * subtle differences.
1030                  */
1031                 if (chg)
1032                         return false;
1033                 else
1034                         return true;
1035         }
1036
1037         return false;
1038 }
1039
1040 static void enqueue_huge_page(struct hstate *h, struct page *page)
1041 {
1042         int nid = page_to_nid(page);
1043         list_move(&page->lru, &h->hugepage_freelists[nid]);
1044         h->free_huge_pages++;
1045         h->free_huge_pages_node[nid]++;
1046         SetPageHugeFreed(page);
1047 }
1048
1049 static struct page *dequeue_huge_page_node_exact(struct hstate *h, int nid)
1050 {
1051         struct page *page;
1052         bool nocma = !!(current->flags & PF_MEMALLOC_NOCMA);
1053
1054         list_for_each_entry(page, &h->hugepage_freelists[nid], lru) {
1055                 if (nocma && is_migrate_cma_page(page))
1056                         continue;
1057
1058                 if (PageHWPoison(page))
1059                         continue;
1060
1061                 list_move(&page->lru, &h->hugepage_activelist);
1062                 set_page_refcounted(page);
1063                 ClearPageHugeFreed(page);
1064                 h->free_huge_pages--;
1065                 h->free_huge_pages_node[nid]--;
1066                 return page;
1067         }
1068
1069         return NULL;
1070 }
1071
1072 static struct page *dequeue_huge_page_nodemask(struct hstate *h, gfp_t gfp_mask, int nid,
1073                 nodemask_t *nmask)
1074 {
1075         unsigned int cpuset_mems_cookie;
1076         struct zonelist *zonelist;
1077         struct zone *zone;
1078         struct zoneref *z;
1079         int node = NUMA_NO_NODE;
1080
1081         zonelist = node_zonelist(nid, gfp_mask);
1082
1083 retry_cpuset:
1084         cpuset_mems_cookie = read_mems_allowed_begin();
1085         for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
1086                 struct page *page;
1087
1088                 if (!cpuset_zone_allowed(zone, gfp_mask))
1089                         continue;
1090                 /*
1091                  * no need to ask again on the same node. Pool is node rather than
1092                  * zone aware
1093                  */
1094                 if (zone_to_nid(zone) == node)
1095                         continue;
1096                 node = zone_to_nid(zone);
1097
1098                 page = dequeue_huge_page_node_exact(h, node);
1099                 if (page)
1100                         return page;
1101         }
1102         if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
1103                 goto retry_cpuset;
1104
1105         return NULL;
1106 }
1107
1108 static struct page *dequeue_huge_page_vma(struct hstate *h,
1109                                 struct vm_area_struct *vma,
1110                                 unsigned long address, int avoid_reserve,
1111                                 long chg)
1112 {
1113         struct page *page;
1114         struct mempolicy *mpol;
1115         gfp_t gfp_mask;
1116         nodemask_t *nodemask;
1117         int nid;
1118
1119         /*
1120          * A child process with MAP_PRIVATE mappings created by their parent
1121          * have no page reserves. This check ensures that reservations are
1122          * not "stolen". The child may still get SIGKILLed
1123          */
1124         if (!vma_has_reserves(vma, chg) &&
1125                         h->free_huge_pages - h->resv_huge_pages == 0)
1126                 goto err;
1127
1128         /* If reserves cannot be used, ensure enough pages are in the pool */
1129         if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
1130                 goto err;
1131
1132         gfp_mask = htlb_alloc_mask(h);
1133         nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
1134         page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
1135         if (page && !avoid_reserve && vma_has_reserves(vma, chg)) {
1136                 SetPagePrivate(page);
1137                 h->resv_huge_pages--;
1138         }
1139
1140         mpol_cond_put(mpol);
1141         return page;
1142
1143 err:
1144         return NULL;
1145 }
1146
1147 /*
1148  * common helper functions for hstate_next_node_to_{alloc|free}.
1149  * We may have allocated or freed a huge page based on a different
1150  * nodes_allowed previously, so h->next_node_to_{alloc|free} might
1151  * be outside of *nodes_allowed.  Ensure that we use an allowed
1152  * node for alloc or free.
1153  */
1154 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
1155 {
1156         nid = next_node_in(nid, *nodes_allowed);
1157         VM_BUG_ON(nid >= MAX_NUMNODES);
1158
1159         return nid;
1160 }
1161
1162 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
1163 {
1164         if (!node_isset(nid, *nodes_allowed))
1165                 nid = next_node_allowed(nid, nodes_allowed);
1166         return nid;
1167 }
1168
1169 /*
1170  * returns the previously saved node ["this node"] from which to
1171  * allocate a persistent huge page for the pool and advance the
1172  * next node from which to allocate, handling wrap at end of node
1173  * mask.
1174  */
1175 static int hstate_next_node_to_alloc(struct hstate *h,
1176                                         nodemask_t *nodes_allowed)
1177 {
1178         int nid;
1179
1180         VM_BUG_ON(!nodes_allowed);
1181
1182         nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
1183         h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
1184
1185         return nid;
1186 }
1187
1188 /*
1189  * helper for free_pool_huge_page() - return the previously saved
1190  * node ["this node"] from which to free a huge page.  Advance the
1191  * next node id whether or not we find a free huge page to free so
1192  * that the next attempt to free addresses the next node.
1193  */
1194 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1195 {
1196         int nid;
1197
1198         VM_BUG_ON(!nodes_allowed);
1199
1200         nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1201         h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1202
1203         return nid;
1204 }
1205
1206 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask)           \
1207         for (nr_nodes = nodes_weight(*mask);                            \
1208                 nr_nodes > 0 &&                                         \
1209                 ((node = hstate_next_node_to_alloc(hs, mask)) || 1);    \
1210                 nr_nodes--)
1211
1212 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask)            \
1213         for (nr_nodes = nodes_weight(*mask);                            \
1214                 nr_nodes > 0 &&                                         \
1215                 ((node = hstate_next_node_to_free(hs, mask)) || 1);     \
1216                 nr_nodes--)
1217
1218 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
1219 static void destroy_compound_gigantic_page(struct page *page,
1220                                         unsigned int order)
1221 {
1222         int i;
1223         int nr_pages = 1 << order;
1224         struct page *p = page + 1;
1225
1226         atomic_set(compound_mapcount_ptr(page), 0);
1227         if (hpage_pincount_available(page))
1228                 atomic_set(compound_pincount_ptr(page), 0);
1229
1230         for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1231                 clear_compound_head(p);
1232                 set_page_refcounted(p);
1233         }
1234
1235         set_compound_order(page, 0);
1236         page[1].compound_nr = 0;
1237         __ClearPageHead(page);
1238 }
1239
1240 static void free_gigantic_page(struct page *page, unsigned int order)
1241 {
1242         /*
1243          * If the page isn't allocated using the cma allocator,
1244          * cma_release() returns false.
1245          */
1246 #ifdef CONFIG_CMA
1247         if (cma_release(hugetlb_cma[page_to_nid(page)], page, 1 << order))
1248                 return;
1249 #endif
1250
1251         free_contig_range(page_to_pfn(page), 1 << order);
1252 }
1253
1254 #ifdef CONFIG_CONTIG_ALLOC
1255 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1256                 int nid, nodemask_t *nodemask)
1257 {
1258         unsigned long nr_pages = 1UL << huge_page_order(h);
1259         if (nid == NUMA_NO_NODE)
1260                 nid = numa_mem_id();
1261
1262 #ifdef CONFIG_CMA
1263         {
1264                 struct page *page;
1265                 int node;
1266
1267                 if (hugetlb_cma[nid]) {
1268                         page = cma_alloc(hugetlb_cma[nid], nr_pages,
1269                                         huge_page_order(h), true);
1270                         if (page)
1271                                 return page;
1272                 }
1273
1274                 if (!(gfp_mask & __GFP_THISNODE)) {
1275                         for_each_node_mask(node, *nodemask) {
1276                                 if (node == nid || !hugetlb_cma[node])
1277                                         continue;
1278
1279                                 page = cma_alloc(hugetlb_cma[node], nr_pages,
1280                                                 huge_page_order(h), true);
1281                                 if (page)
1282                                         return page;
1283                         }
1284                 }
1285         }
1286 #endif
1287
1288         return alloc_contig_pages(nr_pages, gfp_mask, nid, nodemask);
1289 }
1290
1291 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid);
1292 static void prep_compound_gigantic_page(struct page *page, unsigned int order);
1293 #else /* !CONFIG_CONTIG_ALLOC */
1294 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1295                                         int nid, nodemask_t *nodemask)
1296 {
1297         return NULL;
1298 }
1299 #endif /* CONFIG_CONTIG_ALLOC */
1300
1301 #else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
1302 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1303                                         int nid, nodemask_t *nodemask)
1304 {
1305         return NULL;
1306 }
1307 static inline void free_gigantic_page(struct page *page, unsigned int order) { }
1308 static inline void destroy_compound_gigantic_page(struct page *page,
1309                                                 unsigned int order) { }
1310 #endif
1311
1312 static void update_and_free_page(struct hstate *h, struct page *page)
1313 {
1314         int i;
1315
1316         if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1317                 return;
1318
1319         h->nr_huge_pages--;
1320         h->nr_huge_pages_node[page_to_nid(page)]--;
1321         for (i = 0; i < pages_per_huge_page(h); i++) {
1322                 page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
1323                                 1 << PG_referenced | 1 << PG_dirty |
1324                                 1 << PG_active | 1 << PG_private |
1325                                 1 << PG_writeback);
1326         }
1327         VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
1328         VM_BUG_ON_PAGE(hugetlb_cgroup_from_page_rsvd(page), page);
1329         set_compound_page_dtor(page, NULL_COMPOUND_DTOR);
1330         set_page_refcounted(page);
1331         if (hstate_is_gigantic(h)) {
1332                 /*
1333                  * Temporarily drop the hugetlb_lock, because
1334                  * we might block in free_gigantic_page().
1335                  */
1336                 spin_unlock(&hugetlb_lock);
1337                 destroy_compound_gigantic_page(page, huge_page_order(h));
1338                 free_gigantic_page(page, huge_page_order(h));
1339                 spin_lock(&hugetlb_lock);
1340         } else {
1341                 __free_pages(page, huge_page_order(h));
1342         }
1343 }
1344
1345 struct hstate *size_to_hstate(unsigned long size)
1346 {
1347         struct hstate *h;
1348
1349         for_each_hstate(h) {
1350                 if (huge_page_size(h) == size)
1351                         return h;
1352         }
1353         return NULL;
1354 }
1355
1356 /*
1357  * Test to determine whether the hugepage is "active/in-use" (i.e. being linked
1358  * to hstate->hugepage_activelist.)
1359  *
1360  * This function can be called for tail pages, but never returns true for them.
1361  */
1362 bool page_huge_active(struct page *page)
1363 {
1364         return PageHeadHuge(page) && PagePrivate(&page[1]);
1365 }
1366
1367 /* never called for tail page */
1368 void set_page_huge_active(struct page *page)
1369 {
1370         VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1371         SetPagePrivate(&page[1]);
1372 }
1373
1374 static void clear_page_huge_active(struct page *page)
1375 {
1376         VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1377         ClearPagePrivate(&page[1]);
1378 }
1379
1380 /*
1381  * Internal hugetlb specific page flag. Do not use outside of the hugetlb
1382  * code
1383  */
1384 static inline bool PageHugeTemporary(struct page *page)
1385 {
1386         if (!PageHuge(page))
1387                 return false;
1388
1389         return (unsigned long)page[2].mapping == -1U;
1390 }
1391
1392 static inline void SetPageHugeTemporary(struct page *page)
1393 {
1394         page[2].mapping = (void *)-1U;
1395 }
1396
1397 static inline void ClearPageHugeTemporary(struct page *page)
1398 {
1399         page[2].mapping = NULL;
1400 }
1401
1402 static void __free_huge_page(struct page *page)
1403 {
1404         /*
1405          * Can't pass hstate in here because it is called from the
1406          * compound page destructor.
1407          */
1408         struct hstate *h = page_hstate(page);
1409         int nid = page_to_nid(page);
1410         struct hugepage_subpool *spool =
1411                 (struct hugepage_subpool *)page_private(page);
1412         bool restore_reserve;
1413
1414         VM_BUG_ON_PAGE(page_count(page), page);
1415         VM_BUG_ON_PAGE(page_mapcount(page), page);
1416
1417         set_page_private(page, 0);
1418         page->mapping = NULL;
1419         restore_reserve = PagePrivate(page);
1420         ClearPagePrivate(page);
1421
1422         /*
1423          * If PagePrivate() was set on page, page allocation consumed a
1424          * reservation.  If the page was associated with a subpool, there
1425          * would have been a page reserved in the subpool before allocation
1426          * via hugepage_subpool_get_pages().  Since we are 'restoring' the
1427          * reservtion, do not call hugepage_subpool_put_pages() as this will
1428          * remove the reserved page from the subpool.
1429          */
1430         if (!restore_reserve) {
1431                 /*
1432                  * A return code of zero implies that the subpool will be
1433                  * under its minimum size if the reservation is not restored
1434                  * after page is free.  Therefore, force restore_reserve
1435                  * operation.
1436                  */
1437                 if (hugepage_subpool_put_pages(spool, 1) == 0)
1438                         restore_reserve = true;
1439         }
1440
1441         spin_lock(&hugetlb_lock);
1442         clear_page_huge_active(page);
1443         hugetlb_cgroup_uncharge_page(hstate_index(h),
1444                                      pages_per_huge_page(h), page);
1445         hugetlb_cgroup_uncharge_page_rsvd(hstate_index(h),
1446                                           pages_per_huge_page(h), page);
1447         if (restore_reserve)
1448                 h->resv_huge_pages++;
1449
1450         if (PageHugeTemporary(page)) {
1451                 list_del(&page->lru);
1452                 ClearPageHugeTemporary(page);
1453                 update_and_free_page(h, page);
1454         } else if (h->surplus_huge_pages_node[nid]) {
1455                 /* remove the page from active list */
1456                 list_del(&page->lru);
1457                 update_and_free_page(h, page);
1458                 h->surplus_huge_pages--;
1459                 h->surplus_huge_pages_node[nid]--;
1460         } else {
1461                 arch_clear_hugepage_flags(page);
1462                 enqueue_huge_page(h, page);
1463         }
1464         spin_unlock(&hugetlb_lock);
1465 }
1466
1467 /*
1468  * As free_huge_page() can be called from a non-task context, we have
1469  * to defer the actual freeing in a workqueue to prevent potential
1470  * hugetlb_lock deadlock.
1471  *
1472  * free_hpage_workfn() locklessly retrieves the linked list of pages to
1473  * be freed and frees them one-by-one. As the page->mapping pointer is
1474  * going to be cleared in __free_huge_page() anyway, it is reused as the
1475  * llist_node structure of a lockless linked list of huge pages to be freed.
1476  */
1477 static LLIST_HEAD(hpage_freelist);
1478
1479 static void free_hpage_workfn(struct work_struct *work)
1480 {
1481         struct llist_node *node;
1482         struct page *page;
1483
1484         node = llist_del_all(&hpage_freelist);
1485
1486         while (node) {
1487                 page = container_of((struct address_space **)node,
1488                                      struct page, mapping);
1489                 node = node->next;
1490                 __free_huge_page(page);
1491         }
1492 }
1493 static DECLARE_WORK(free_hpage_work, free_hpage_workfn);
1494
1495 void free_huge_page(struct page *page)
1496 {
1497         /*
1498          * Defer freeing if in non-task context to avoid hugetlb_lock deadlock.
1499          */
1500         if (!in_task()) {
1501                 /*
1502                  * Only call schedule_work() if hpage_freelist is previously
1503                  * empty. Otherwise, schedule_work() had been called but the
1504                  * workfn hasn't retrieved the list yet.
1505                  */
1506                 if (llist_add((struct llist_node *)&page->mapping,
1507                               &hpage_freelist))
1508                         schedule_work(&free_hpage_work);
1509                 return;
1510         }
1511
1512         __free_huge_page(page);
1513 }
1514
1515 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
1516 {
1517         INIT_LIST_HEAD(&page->lru);
1518         set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1519         set_hugetlb_cgroup(page, NULL);
1520         set_hugetlb_cgroup_rsvd(page, NULL);
1521         spin_lock(&hugetlb_lock);
1522         h->nr_huge_pages++;
1523         h->nr_huge_pages_node[nid]++;
1524         ClearPageHugeFreed(page);
1525         spin_unlock(&hugetlb_lock);
1526 }
1527
1528 static void prep_compound_gigantic_page(struct page *page, unsigned int order)
1529 {
1530         int i;
1531         int nr_pages = 1 << order;
1532         struct page *p = page + 1;
1533
1534         /* we rely on prep_new_huge_page to set the destructor */
1535         set_compound_order(page, order);
1536         __ClearPageReserved(page);
1537         __SetPageHead(page);
1538         for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1539                 /*
1540                  * For gigantic hugepages allocated through bootmem at
1541                  * boot, it's safer to be consistent with the not-gigantic
1542                  * hugepages and clear the PG_reserved bit from all tail pages
1543                  * too.  Otherwise drivers using get_user_pages() to access tail
1544                  * pages may get the reference counting wrong if they see
1545                  * PG_reserved set on a tail page (despite the head page not
1546                  * having PG_reserved set).  Enforcing this consistency between
1547                  * head and tail pages allows drivers to optimize away a check
1548                  * on the head page when they need know if put_page() is needed
1549                  * after get_user_pages().
1550                  */
1551                 __ClearPageReserved(p);
1552                 set_page_count(p, 0);
1553                 set_compound_head(p, page);
1554         }
1555         atomic_set(compound_mapcount_ptr(page), -1);
1556
1557         if (hpage_pincount_available(page))
1558                 atomic_set(compound_pincount_ptr(page), 0);
1559 }
1560
1561 /*
1562  * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1563  * transparent huge pages.  See the PageTransHuge() documentation for more
1564  * details.
1565  */
1566 int PageHuge(struct page *page)
1567 {
1568         if (!PageCompound(page))
1569                 return 0;
1570
1571         page = compound_head(page);
1572         return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
1573 }
1574 EXPORT_SYMBOL_GPL(PageHuge);
1575
1576 /*
1577  * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1578  * normal or transparent huge pages.
1579  */
1580 int PageHeadHuge(struct page *page_head)
1581 {
1582         if (!PageHead(page_head))
1583                 return 0;
1584
1585         return page_head[1].compound_dtor == HUGETLB_PAGE_DTOR;
1586 }
1587
1588 /*
1589  * Find and lock address space (mapping) in write mode.
1590  *
1591  * Upon entry, the page is locked which means that page_mapping() is
1592  * stable.  Due to locking order, we can only trylock_write.  If we can
1593  * not get the lock, simply return NULL to caller.
1594  */
1595 struct address_space *hugetlb_page_mapping_lock_write(struct page *hpage)
1596 {
1597         struct address_space *mapping = page_mapping(hpage);
1598
1599         if (!mapping)
1600                 return mapping;
1601
1602         if (i_mmap_trylock_write(mapping))
1603                 return mapping;
1604
1605         return NULL;
1606 }
1607
1608 pgoff_t __basepage_index(struct page *page)
1609 {
1610         struct page *page_head = compound_head(page);
1611         pgoff_t index = page_index(page_head);
1612         unsigned long compound_idx;
1613
1614         if (!PageHuge(page_head))
1615                 return page_index(page);
1616
1617         if (compound_order(page_head) >= MAX_ORDER)
1618                 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
1619         else
1620                 compound_idx = page - page_head;
1621
1622         return (index << compound_order(page_head)) + compound_idx;
1623 }
1624
1625 static struct page *alloc_buddy_huge_page(struct hstate *h,
1626                 gfp_t gfp_mask, int nid, nodemask_t *nmask,
1627                 nodemask_t *node_alloc_noretry)
1628 {
1629         int order = huge_page_order(h);
1630         struct page *page;
1631         bool alloc_try_hard = true;
1632
1633         /*
1634          * By default we always try hard to allocate the page with
1635          * __GFP_RETRY_MAYFAIL flag.  However, if we are allocating pages in
1636          * a loop (to adjust global huge page counts) and previous allocation
1637          * failed, do not continue to try hard on the same node.  Use the
1638          * node_alloc_noretry bitmap to manage this state information.
1639          */
1640         if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry))
1641                 alloc_try_hard = false;
1642         gfp_mask |= __GFP_COMP|__GFP_NOWARN;
1643         if (alloc_try_hard)
1644                 gfp_mask |= __GFP_RETRY_MAYFAIL;
1645         if (nid == NUMA_NO_NODE)
1646                 nid = numa_mem_id();
1647         page = __alloc_pages_nodemask(gfp_mask, order, nid, nmask);
1648         if (page)
1649                 __count_vm_event(HTLB_BUDDY_PGALLOC);
1650         else
1651                 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1652
1653         /*
1654          * If we did not specify __GFP_RETRY_MAYFAIL, but still got a page this
1655          * indicates an overall state change.  Clear bit so that we resume
1656          * normal 'try hard' allocations.
1657          */
1658         if (node_alloc_noretry && page && !alloc_try_hard)
1659                 node_clear(nid, *node_alloc_noretry);
1660
1661         /*
1662          * If we tried hard to get a page but failed, set bit so that
1663          * subsequent attempts will not try as hard until there is an
1664          * overall state change.
1665          */
1666         if (node_alloc_noretry && !page && alloc_try_hard)
1667                 node_set(nid, *node_alloc_noretry);
1668
1669         return page;
1670 }
1671
1672 /*
1673  * Common helper to allocate a fresh hugetlb page. All specific allocators
1674  * should use this function to get new hugetlb pages
1675  */
1676 static struct page *alloc_fresh_huge_page(struct hstate *h,
1677                 gfp_t gfp_mask, int nid, nodemask_t *nmask,
1678                 nodemask_t *node_alloc_noretry)
1679 {
1680         struct page *page;
1681
1682         if (hstate_is_gigantic(h))
1683                 page = alloc_gigantic_page(h, gfp_mask, nid, nmask);
1684         else
1685                 page = alloc_buddy_huge_page(h, gfp_mask,
1686                                 nid, nmask, node_alloc_noretry);
1687         if (!page)
1688                 return NULL;
1689
1690         if (hstate_is_gigantic(h))
1691                 prep_compound_gigantic_page(page, huge_page_order(h));
1692         prep_new_huge_page(h, page, page_to_nid(page));
1693
1694         return page;
1695 }
1696
1697 /*
1698  * Allocates a fresh page to the hugetlb allocator pool in the node interleaved
1699  * manner.
1700  */
1701 static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1702                                 nodemask_t *node_alloc_noretry)
1703 {
1704         struct page *page;
1705         int nr_nodes, node;
1706         gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
1707
1708         for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1709                 page = alloc_fresh_huge_page(h, gfp_mask, node, nodes_allowed,
1710                                                 node_alloc_noretry);
1711                 if (page)
1712                         break;
1713         }
1714
1715         if (!page)
1716                 return 0;
1717
1718         put_page(page); /* free it into the hugepage allocator */
1719
1720         return 1;
1721 }
1722
1723 /*
1724  * Free huge page from pool from next node to free.
1725  * Attempt to keep persistent huge pages more or less
1726  * balanced over allowed nodes.
1727  * Called with hugetlb_lock locked.
1728  */
1729 static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1730                                                          bool acct_surplus)
1731 {
1732         int nr_nodes, node;
1733         int ret = 0;
1734
1735         for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1736                 /*
1737                  * If we're returning unused surplus pages, only examine
1738                  * nodes with surplus pages.
1739                  */
1740                 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
1741                     !list_empty(&h->hugepage_freelists[node])) {
1742                         struct page *page =
1743                                 list_entry(h->hugepage_freelists[node].next,
1744                                           struct page, lru);
1745                         list_del(&page->lru);
1746                         h->free_huge_pages--;
1747                         h->free_huge_pages_node[node]--;
1748                         if (acct_surplus) {
1749                                 h->surplus_huge_pages--;
1750                                 h->surplus_huge_pages_node[node]--;
1751                         }
1752                         update_and_free_page(h, page);
1753                         ret = 1;
1754                         break;
1755                 }
1756         }
1757
1758         return ret;
1759 }
1760
1761 /*
1762  * Dissolve a given free hugepage into free buddy pages. This function does
1763  * nothing for in-use hugepages and non-hugepages.
1764  * This function returns values like below:
1765  *
1766  *  -EBUSY: failed to dissolved free hugepages or the hugepage is in-use
1767  *          (allocated or reserved.)
1768  *       0: successfully dissolved free hugepages or the page is not a
1769  *          hugepage (considered as already dissolved)
1770  */
1771 int dissolve_free_huge_page(struct page *page)
1772 {
1773         int rc = -EBUSY;
1774
1775 retry:
1776         /* Not to disrupt normal path by vainly holding hugetlb_lock */
1777         if (!PageHuge(page))
1778                 return 0;
1779
1780         spin_lock(&hugetlb_lock);
1781         if (!PageHuge(page)) {
1782                 rc = 0;
1783                 goto out;
1784         }
1785
1786         if (!page_count(page)) {
1787                 struct page *head = compound_head(page);
1788                 struct hstate *h = page_hstate(head);
1789                 int nid = page_to_nid(head);
1790                 if (h->free_huge_pages - h->resv_huge_pages == 0)
1791                         goto out;
1792
1793                 /*
1794                  * We should make sure that the page is already on the free list
1795                  * when it is dissolved.
1796                  */
1797                 if (unlikely(!PageHugeFreed(head))) {
1798                         spin_unlock(&hugetlb_lock);
1799                         cond_resched();
1800
1801                         /*
1802                          * Theoretically, we should return -EBUSY when we
1803                          * encounter this race. In fact, we have a chance
1804                          * to successfully dissolve the page if we do a
1805                          * retry. Because the race window is quite small.
1806                          * If we seize this opportunity, it is an optimization
1807                          * for increasing the success rate of dissolving page.
1808                          */
1809                         goto retry;
1810                 }
1811
1812                 /*
1813                  * Move PageHWPoison flag from head page to the raw error page,
1814                  * which makes any subpages rather than the error page reusable.
1815                  */
1816                 if (PageHWPoison(head) && page != head) {
1817                         SetPageHWPoison(page);
1818                         ClearPageHWPoison(head);
1819                 }
1820                 list_del(&head->lru);
1821                 h->free_huge_pages--;
1822                 h->free_huge_pages_node[nid]--;
1823                 h->max_huge_pages--;
1824                 update_and_free_page(h, head);
1825                 rc = 0;
1826         }
1827 out:
1828         spin_unlock(&hugetlb_lock);
1829         return rc;
1830 }
1831
1832 /*
1833  * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
1834  * make specified memory blocks removable from the system.
1835  * Note that this will dissolve a free gigantic hugepage completely, if any
1836  * part of it lies within the given range.
1837  * Also note that if dissolve_free_huge_page() returns with an error, all
1838  * free hugepages that were dissolved before that error are lost.
1839  */
1840 int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
1841 {
1842         unsigned long pfn;
1843         struct page *page;
1844         int rc = 0;
1845
1846         if (!hugepages_supported())
1847                 return rc;
1848
1849         for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order) {
1850                 page = pfn_to_page(pfn);
1851                 rc = dissolve_free_huge_page(page);
1852                 if (rc)
1853                         break;
1854         }
1855
1856         return rc;
1857 }
1858
1859 /*
1860  * Allocates a fresh surplus page from the page allocator.
1861  */
1862 static struct page *alloc_surplus_huge_page(struct hstate *h, gfp_t gfp_mask,
1863                 int nid, nodemask_t *nmask)
1864 {
1865         struct page *page = NULL;
1866
1867         if (hstate_is_gigantic(h))
1868                 return NULL;
1869
1870         spin_lock(&hugetlb_lock);
1871         if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages)
1872                 goto out_unlock;
1873         spin_unlock(&hugetlb_lock);
1874
1875         page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
1876         if (!page)
1877                 return NULL;
1878
1879         spin_lock(&hugetlb_lock);
1880         /*
1881          * We could have raced with the pool size change.
1882          * Double check that and simply deallocate the new page
1883          * if we would end up overcommiting the surpluses. Abuse
1884          * temporary page to workaround the nasty free_huge_page
1885          * codeflow
1886          */
1887         if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
1888                 SetPageHugeTemporary(page);
1889                 spin_unlock(&hugetlb_lock);
1890                 put_page(page);
1891                 return NULL;
1892         } else {
1893                 h->surplus_huge_pages++;
1894                 h->surplus_huge_pages_node[page_to_nid(page)]++;
1895         }
1896
1897 out_unlock:
1898         spin_unlock(&hugetlb_lock);
1899
1900         return page;
1901 }
1902
1903 static struct page *alloc_migrate_huge_page(struct hstate *h, gfp_t gfp_mask,
1904                                      int nid, nodemask_t *nmask)
1905 {
1906         struct page *page;
1907
1908         if (hstate_is_gigantic(h))
1909                 return NULL;
1910
1911         page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
1912         if (!page)
1913                 return NULL;
1914
1915         /*
1916          * We do not account these pages as surplus because they are only
1917          * temporary and will be released properly on the last reference
1918          */
1919         SetPageHugeTemporary(page);
1920
1921         return page;
1922 }
1923
1924 /*
1925  * Use the VMA's mpolicy to allocate a huge page from the buddy.
1926  */
1927 static
1928 struct page *alloc_buddy_huge_page_with_mpol(struct hstate *h,
1929                 struct vm_area_struct *vma, unsigned long addr)
1930 {
1931         struct page *page;
1932         struct mempolicy *mpol;
1933         gfp_t gfp_mask = htlb_alloc_mask(h);
1934         int nid;
1935         nodemask_t *nodemask;
1936
1937         nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
1938         page = alloc_surplus_huge_page(h, gfp_mask, nid, nodemask);
1939         mpol_cond_put(mpol);
1940
1941         return page;
1942 }
1943
1944 /* page migration callback function */
1945 struct page *alloc_huge_page_nodemask(struct hstate *h, int preferred_nid,
1946                 nodemask_t *nmask, gfp_t gfp_mask)
1947 {
1948         spin_lock(&hugetlb_lock);
1949         if (h->free_huge_pages - h->resv_huge_pages > 0) {
1950                 struct page *page;
1951
1952                 page = dequeue_huge_page_nodemask(h, gfp_mask, preferred_nid, nmask);
1953                 if (page) {
1954                         spin_unlock(&hugetlb_lock);
1955                         return page;
1956                 }
1957         }
1958         spin_unlock(&hugetlb_lock);
1959
1960         return alloc_migrate_huge_page(h, gfp_mask, preferred_nid, nmask);
1961 }
1962
1963 /* mempolicy aware migration callback */
1964 struct page *alloc_huge_page_vma(struct hstate *h, struct vm_area_struct *vma,
1965                 unsigned long address)
1966 {
1967         struct mempolicy *mpol;
1968         nodemask_t *nodemask;
1969         struct page *page;
1970         gfp_t gfp_mask;
1971         int node;
1972
1973         gfp_mask = htlb_alloc_mask(h);
1974         node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
1975         page = alloc_huge_page_nodemask(h, node, nodemask, gfp_mask);
1976         mpol_cond_put(mpol);
1977
1978         return page;
1979 }
1980
1981 /*
1982  * Increase the hugetlb pool such that it can accommodate a reservation
1983  * of size 'delta'.
1984  */
1985 static int gather_surplus_pages(struct hstate *h, long delta)
1986         __must_hold(&hugetlb_lock)
1987 {
1988         struct list_head surplus_list;
1989         struct page *page, *tmp;
1990         int ret;
1991         long i;
1992         long needed, allocated;
1993         bool alloc_ok = true;
1994
1995         needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
1996         if (needed <= 0) {
1997                 h->resv_huge_pages += delta;
1998                 return 0;
1999         }
2000
2001         allocated = 0;
2002         INIT_LIST_HEAD(&surplus_list);
2003
2004         ret = -ENOMEM;
2005 retry:
2006         spin_unlock(&hugetlb_lock);
2007         for (i = 0; i < needed; i++) {
2008                 page = alloc_surplus_huge_page(h, htlb_alloc_mask(h),
2009                                 NUMA_NO_NODE, NULL);
2010                 if (!page) {
2011                         alloc_ok = false;
2012                         break;
2013                 }
2014                 list_add(&page->lru, &surplus_list);
2015                 cond_resched();
2016         }
2017         allocated += i;
2018
2019         /*
2020          * After retaking hugetlb_lock, we need to recalculate 'needed'
2021          * because either resv_huge_pages or free_huge_pages may have changed.
2022          */
2023         spin_lock(&hugetlb_lock);
2024         needed = (h->resv_huge_pages + delta) -
2025                         (h->free_huge_pages + allocated);
2026         if (needed > 0) {
2027                 if (alloc_ok)
2028                         goto retry;
2029                 /*
2030                  * We were not able to allocate enough pages to
2031                  * satisfy the entire reservation so we free what
2032                  * we've allocated so far.
2033                  */
2034                 goto free;
2035         }
2036         /*
2037          * The surplus_list now contains _at_least_ the number of extra pages
2038          * needed to accommodate the reservation.  Add the appropriate number
2039          * of pages to the hugetlb pool and free the extras back to the buddy
2040          * allocator.  Commit the entire reservation here to prevent another
2041          * process from stealing the pages as they are added to the pool but
2042          * before they are reserved.
2043          */
2044         needed += allocated;
2045         h->resv_huge_pages += delta;
2046         ret = 0;
2047
2048         /* Free the needed pages to the hugetlb pool */
2049         list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
2050                 int zeroed;
2051
2052                 if ((--needed) < 0)
2053                         break;
2054                 /*
2055                  * This page is now managed by the hugetlb allocator and has
2056                  * no users -- drop the buddy allocator's reference.
2057                  */
2058                 zeroed = put_page_testzero(page);
2059                 VM_BUG_ON_PAGE(!zeroed, page);
2060                 enqueue_huge_page(h, page);
2061         }
2062 free:
2063         spin_unlock(&hugetlb_lock);
2064
2065         /* Free unnecessary surplus pages to the buddy allocator */
2066         list_for_each_entry_safe(page, tmp, &surplus_list, lru)
2067                 put_page(page);
2068         spin_lock(&hugetlb_lock);
2069
2070         return ret;
2071 }
2072
2073 /*
2074  * This routine has two main purposes:
2075  * 1) Decrement the reservation count (resv_huge_pages) by the value passed
2076  *    in unused_resv_pages.  This corresponds to the prior adjustments made
2077  *    to the associated reservation map.
2078  * 2) Free any unused surplus pages that may have been allocated to satisfy
2079  *    the reservation.  As many as unused_resv_pages may be freed.
2080  *
2081  * Called with hugetlb_lock held.  However, the lock could be dropped (and
2082  * reacquired) during calls to cond_resched_lock.  Whenever dropping the lock,
2083  * we must make sure nobody else can claim pages we are in the process of
2084  * freeing.  Do this by ensuring resv_huge_page always is greater than the
2085  * number of huge pages we plan to free when dropping the lock.
2086  */
2087 static void return_unused_surplus_pages(struct hstate *h,
2088                                         unsigned long unused_resv_pages)
2089 {
2090         unsigned long nr_pages;
2091
2092         /* Cannot return gigantic pages currently */
2093         if (hstate_is_gigantic(h))
2094                 goto out;
2095
2096         /*
2097          * Part (or even all) of the reservation could have been backed
2098          * by pre-allocated pages. Only free surplus pages.
2099          */
2100         nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
2101
2102         /*
2103          * We want to release as many surplus pages as possible, spread
2104          * evenly across all nodes with memory. Iterate across these nodes
2105          * until we can no longer free unreserved surplus pages. This occurs
2106          * when the nodes with surplus pages have no free pages.
2107          * free_pool_huge_page() will balance the freed pages across the
2108          * on-line nodes with memory and will handle the hstate accounting.
2109          *
2110          * Note that we decrement resv_huge_pages as we free the pages.  If
2111          * we drop the lock, resv_huge_pages will still be sufficiently large
2112          * to cover subsequent pages we may free.
2113          */
2114         while (nr_pages--) {
2115                 h->resv_huge_pages--;
2116                 unused_resv_pages--;
2117                 if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
2118                         goto out;
2119                 cond_resched_lock(&hugetlb_lock);
2120         }
2121
2122 out:
2123         /* Fully uncommit the reservation */
2124         h->resv_huge_pages -= unused_resv_pages;
2125 }
2126
2127
2128 /*
2129  * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
2130  * are used by the huge page allocation routines to manage reservations.
2131  *
2132  * vma_needs_reservation is called to determine if the huge page at addr
2133  * within the vma has an associated reservation.  If a reservation is
2134  * needed, the value 1 is returned.  The caller is then responsible for
2135  * managing the global reservation and subpool usage counts.  After
2136  * the huge page has been allocated, vma_commit_reservation is called
2137  * to add the page to the reservation map.  If the page allocation fails,
2138  * the reservation must be ended instead of committed.  vma_end_reservation
2139  * is called in such cases.
2140  *
2141  * In the normal case, vma_commit_reservation returns the same value
2142  * as the preceding vma_needs_reservation call.  The only time this
2143  * is not the case is if a reserve map was changed between calls.  It
2144  * is the responsibility of the caller to notice the difference and
2145  * take appropriate action.
2146  *
2147  * vma_add_reservation is used in error paths where a reservation must
2148  * be restored when a newly allocated huge page must be freed.  It is
2149  * to be called after calling vma_needs_reservation to determine if a
2150  * reservation exists.
2151  */
2152 enum vma_resv_mode {
2153         VMA_NEEDS_RESV,
2154         VMA_COMMIT_RESV,
2155         VMA_END_RESV,
2156         VMA_ADD_RESV,
2157 };
2158 static long __vma_reservation_common(struct hstate *h,
2159                                 struct vm_area_struct *vma, unsigned long addr,
2160                                 enum vma_resv_mode mode)
2161 {
2162         struct resv_map *resv;
2163         pgoff_t idx;
2164         long ret;
2165         long dummy_out_regions_needed;
2166
2167         resv = vma_resv_map(vma);
2168         if (!resv)
2169                 return 1;
2170
2171         idx = vma_hugecache_offset(h, vma, addr);
2172         switch (mode) {
2173         case VMA_NEEDS_RESV:
2174                 ret = region_chg(resv, idx, idx + 1, &dummy_out_regions_needed);
2175                 /* We assume that vma_reservation_* routines always operate on
2176                  * 1 page, and that adding to resv map a 1 page entry can only
2177                  * ever require 1 region.
2178                  */
2179                 VM_BUG_ON(dummy_out_regions_needed != 1);
2180                 break;
2181         case VMA_COMMIT_RESV:
2182                 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2183                 /* region_add calls of range 1 should never fail. */
2184                 VM_BUG_ON(ret < 0);
2185                 break;
2186         case VMA_END_RESV:
2187                 region_abort(resv, idx, idx + 1, 1);
2188                 ret = 0;
2189                 break;
2190         case VMA_ADD_RESV:
2191                 if (vma->vm_flags & VM_MAYSHARE) {
2192                         ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2193                         /* region_add calls of range 1 should never fail. */
2194                         VM_BUG_ON(ret < 0);
2195                 } else {
2196                         region_abort(resv, idx, idx + 1, 1);
2197                         ret = region_del(resv, idx, idx + 1);
2198                 }
2199                 break;
2200         default:
2201                 BUG();
2202         }
2203
2204         if (vma->vm_flags & VM_MAYSHARE)
2205                 return ret;
2206         else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && ret >= 0) {
2207                 /*
2208                  * In most cases, reserves always exist for private mappings.
2209                  * However, a file associated with mapping could have been
2210                  * hole punched or truncated after reserves were consumed.
2211                  * As subsequent fault on such a range will not use reserves.
2212                  * Subtle - The reserve map for private mappings has the
2213                  * opposite meaning than that of shared mappings.  If NO
2214                  * entry is in the reserve map, it means a reservation exists.
2215                  * If an entry exists in the reserve map, it means the
2216                  * reservation has already been consumed.  As a result, the
2217                  * return value of this routine is the opposite of the
2218                  * value returned from reserve map manipulation routines above.
2219                  */
2220                 if (ret)
2221                         return 0;
2222                 else
2223                         return 1;
2224         }
2225         else
2226                 return ret < 0 ? ret : 0;
2227 }
2228
2229 static long vma_needs_reservation(struct hstate *h,
2230                         struct vm_area_struct *vma, unsigned long addr)
2231 {
2232         return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
2233 }
2234
2235 static long vma_commit_reservation(struct hstate *h,
2236                         struct vm_area_struct *vma, unsigned long addr)
2237 {
2238         return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
2239 }
2240
2241 static void vma_end_reservation(struct hstate *h,
2242                         struct vm_area_struct *vma, unsigned long addr)
2243 {
2244         (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
2245 }
2246
2247 static long vma_add_reservation(struct hstate *h,
2248                         struct vm_area_struct *vma, unsigned long addr)
2249 {
2250         return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
2251 }
2252
2253 /*
2254  * This routine is called to restore a reservation on error paths.  In the
2255  * specific error paths, a huge page was allocated (via alloc_huge_page)
2256  * and is about to be freed.  If a reservation for the page existed,
2257  * alloc_huge_page would have consumed the reservation and set PagePrivate
2258  * in the newly allocated page.  When the page is freed via free_huge_page,
2259  * the global reservation count will be incremented if PagePrivate is set.
2260  * However, free_huge_page can not adjust the reserve map.  Adjust the
2261  * reserve map here to be consistent with global reserve count adjustments
2262  * to be made by free_huge_page.
2263  */
2264 static void restore_reserve_on_error(struct hstate *h,
2265                         struct vm_area_struct *vma, unsigned long address,
2266                         struct page *page)
2267 {
2268         if (unlikely(PagePrivate(page))) {
2269                 long rc = vma_needs_reservation(h, vma, address);
2270
2271                 if (unlikely(rc < 0)) {
2272                         /*
2273                          * Rare out of memory condition in reserve map
2274                          * manipulation.  Clear PagePrivate so that
2275                          * global reserve count will not be incremented
2276                          * by free_huge_page.  This will make it appear
2277                          * as though the reservation for this page was
2278                          * consumed.  This may prevent the task from
2279                          * faulting in the page at a later time.  This
2280                          * is better than inconsistent global huge page
2281                          * accounting of reserve counts.
2282                          */
2283                         ClearPagePrivate(page);
2284                 } else if (rc) {
2285                         rc = vma_add_reservation(h, vma, address);
2286                         if (unlikely(rc < 0))
2287                                 /*
2288                                  * See above comment about rare out of
2289                                  * memory condition.
2290                                  */
2291                                 ClearPagePrivate(page);
2292                 } else
2293                         vma_end_reservation(h, vma, address);
2294         }
2295 }
2296
2297 struct page *alloc_huge_page(struct vm_area_struct *vma,
2298                                     unsigned long addr, int avoid_reserve)
2299 {
2300         struct hugepage_subpool *spool = subpool_vma(vma);
2301         struct hstate *h = hstate_vma(vma);
2302         struct page *page;
2303         long map_chg, map_commit;
2304         long gbl_chg;
2305         int ret, idx;
2306         struct hugetlb_cgroup *h_cg;
2307         bool deferred_reserve;
2308
2309         idx = hstate_index(h);
2310         /*
2311          * Examine the region/reserve map to determine if the process
2312          * has a reservation for the page to be allocated.  A return
2313          * code of zero indicates a reservation exists (no change).
2314          */
2315         map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
2316         if (map_chg < 0)
2317                 return ERR_PTR(-ENOMEM);
2318
2319         /*
2320          * Processes that did not create the mapping will have no
2321          * reserves as indicated by the region/reserve map. Check
2322          * that the allocation will not exceed the subpool limit.
2323          * Allocations for MAP_NORESERVE mappings also need to be
2324          * checked against any subpool limit.
2325          */
2326         if (map_chg || avoid_reserve) {
2327                 gbl_chg = hugepage_subpool_get_pages(spool, 1);
2328                 if (gbl_chg < 0) {
2329                         vma_end_reservation(h, vma, addr);
2330                         return ERR_PTR(-ENOSPC);
2331                 }
2332
2333                 /*
2334                  * Even though there was no reservation in the region/reserve
2335                  * map, there could be reservations associated with the
2336                  * subpool that can be used.  This would be indicated if the
2337                  * return value of hugepage_subpool_get_pages() is zero.
2338                  * However, if avoid_reserve is specified we still avoid even
2339                  * the subpool reservations.
2340                  */
2341                 if (avoid_reserve)
2342                         gbl_chg = 1;
2343         }
2344
2345         /* If this allocation is not consuming a reservation, charge it now.
2346          */
2347         deferred_reserve = map_chg || avoid_reserve || !vma_resv_map(vma);
2348         if (deferred_reserve) {
2349                 ret = hugetlb_cgroup_charge_cgroup_rsvd(
2350                         idx, pages_per_huge_page(h), &h_cg);
2351                 if (ret)
2352                         goto out_subpool_put;
2353         }
2354
2355         ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
2356         if (ret)
2357                 goto out_uncharge_cgroup_reservation;
2358
2359         spin_lock(&hugetlb_lock);
2360         /*
2361          * glb_chg is passed to indicate whether or not a page must be taken
2362          * from the global free pool (global change).  gbl_chg == 0 indicates
2363          * a reservation exists for the allocation.
2364          */
2365         page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
2366         if (!page) {
2367                 spin_unlock(&hugetlb_lock);
2368                 page = alloc_buddy_huge_page_with_mpol(h, vma, addr);
2369                 if (!page)
2370                         goto out_uncharge_cgroup;
2371                 if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
2372                         SetPagePrivate(page);
2373                         h->resv_huge_pages--;
2374                 }
2375                 spin_lock(&hugetlb_lock);
2376                 list_add(&page->lru, &h->hugepage_activelist);
2377                 /* Fall through */
2378         }
2379         hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
2380         /* If allocation is not consuming a reservation, also store the
2381          * hugetlb_cgroup pointer on the page.
2382          */
2383         if (deferred_reserve) {
2384                 hugetlb_cgroup_commit_charge_rsvd(idx, pages_per_huge_page(h),
2385                                                   h_cg, page);
2386         }
2387
2388         spin_unlock(&hugetlb_lock);
2389
2390         set_page_private(page, (unsigned long)spool);
2391
2392         map_commit = vma_commit_reservation(h, vma, addr);
2393         if (unlikely(map_chg > map_commit)) {
2394                 /*
2395                  * The page was added to the reservation map between
2396                  * vma_needs_reservation and vma_commit_reservation.
2397                  * This indicates a race with hugetlb_reserve_pages.
2398                  * Adjust for the subpool count incremented above AND
2399                  * in hugetlb_reserve_pages for the same page.  Also,
2400                  * the reservation count added in hugetlb_reserve_pages
2401                  * no longer applies.
2402                  */
2403                 long rsv_adjust;
2404
2405                 rsv_adjust = hugepage_subpool_put_pages(spool, 1);
2406                 hugetlb_acct_memory(h, -rsv_adjust);
2407                 if (deferred_reserve)
2408                         hugetlb_cgroup_uncharge_page_rsvd(hstate_index(h),
2409                                         pages_per_huge_page(h), page);
2410         }
2411         return page;
2412
2413 out_uncharge_cgroup:
2414         hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
2415 out_uncharge_cgroup_reservation:
2416         if (deferred_reserve)
2417                 hugetlb_cgroup_uncharge_cgroup_rsvd(idx, pages_per_huge_page(h),
2418                                                     h_cg);
2419 out_subpool_put:
2420         if (map_chg || avoid_reserve)
2421                 hugepage_subpool_put_pages(spool, 1);
2422         vma_end_reservation(h, vma, addr);
2423         return ERR_PTR(-ENOSPC);
2424 }
2425
2426 int alloc_bootmem_huge_page(struct hstate *h)
2427         __attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
2428 int __alloc_bootmem_huge_page(struct hstate *h)
2429 {
2430         struct huge_bootmem_page *m;
2431         int nr_nodes, node;
2432
2433         for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
2434                 void *addr;
2435
2436                 addr = memblock_alloc_try_nid_raw(
2437                                 huge_page_size(h), huge_page_size(h),
2438                                 0, MEMBLOCK_ALLOC_ACCESSIBLE, node);
2439                 if (addr) {
2440                         /*
2441                          * Use the beginning of the huge page to store the
2442                          * huge_bootmem_page struct (until gather_bootmem
2443                          * puts them into the mem_map).
2444                          */
2445                         m = addr;
2446                         goto found;
2447                 }
2448         }
2449         return 0;
2450
2451 found:
2452         BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h)));
2453         /* Put them into a private list first because mem_map is not up yet */
2454         INIT_LIST_HEAD(&m->list);
2455         list_add(&m->list, &huge_boot_pages);
2456         m->hstate = h;
2457         return 1;
2458 }
2459
2460 static void __init prep_compound_huge_page(struct page *page,
2461                 unsigned int order)
2462 {
2463         if (unlikely(order > (MAX_ORDER - 1)))
2464                 prep_compound_gigantic_page(page, order);
2465         else
2466                 prep_compound_page(page, order);
2467 }
2468
2469 /* Put bootmem huge pages into the standard lists after mem_map is up */
2470 static void __init gather_bootmem_prealloc(void)
2471 {
2472         struct huge_bootmem_page *m;
2473
2474         list_for_each_entry(m, &huge_boot_pages, list) {
2475                 struct page *page = virt_to_page(m);
2476                 struct hstate *h = m->hstate;
2477
2478                 WARN_ON(page_count(page) != 1);
2479                 prep_compound_huge_page(page, huge_page_order(h));
2480                 WARN_ON(PageReserved(page));
2481                 prep_new_huge_page(h, page, page_to_nid(page));
2482                 put_page(page); /* free it into the hugepage allocator */
2483
2484                 /*
2485                  * If we had gigantic hugepages allocated at boot time, we need
2486                  * to restore the 'stolen' pages to totalram_pages in order to
2487                  * fix confusing memory reports from free(1) and another
2488                  * side-effects, like CommitLimit going negative.
2489                  */
2490                 if (hstate_is_gigantic(h))
2491                         adjust_managed_page_count(page, pages_per_huge_page(h));
2492                 cond_resched();
2493         }
2494 }
2495
2496 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
2497 {
2498         unsigned long i;
2499         nodemask_t *node_alloc_noretry;
2500
2501         if (!hstate_is_gigantic(h)) {
2502                 /*
2503                  * Bit mask controlling how hard we retry per-node allocations.
2504                  * Ignore errors as lower level routines can deal with
2505                  * node_alloc_noretry == NULL.  If this kmalloc fails at boot
2506                  * time, we are likely in bigger trouble.
2507                  */
2508                 node_alloc_noretry = kmalloc(sizeof(*node_alloc_noretry),
2509                                                 GFP_KERNEL);
2510         } else {
2511                 /* allocations done at boot time */
2512                 node_alloc_noretry = NULL;
2513         }
2514
2515         /* bit mask controlling how hard we retry per-node allocations */
2516         if (node_alloc_noretry)
2517                 nodes_clear(*node_alloc_noretry);
2518
2519         for (i = 0; i < h->max_huge_pages; ++i) {
2520                 if (hstate_is_gigantic(h)) {
2521                         if (hugetlb_cma_size) {
2522                                 pr_warn_once("HugeTLB: hugetlb_cma is enabled, skip boot time allocation\n");
2523                                 break;
2524                         }
2525                         if (!alloc_bootmem_huge_page(h))
2526                                 break;
2527                 } else if (!alloc_pool_huge_page(h,
2528                                          &node_states[N_MEMORY],
2529                                          node_alloc_noretry))
2530                         break;
2531                 cond_resched();
2532         }
2533         if (i < h->max_huge_pages) {
2534                 char buf[32];
2535
2536                 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
2537                 pr_warn("HugeTLB: allocating %lu of page size %s failed.  Only allocated %lu hugepages.\n",
2538                         h->max_huge_pages, buf, i);
2539                 h->max_huge_pages = i;
2540         }
2541
2542         kfree(node_alloc_noretry);
2543 }
2544
2545 static void __init hugetlb_init_hstates(void)
2546 {
2547         struct hstate *h;
2548
2549         for_each_hstate(h) {
2550                 if (minimum_order > huge_page_order(h))
2551                         minimum_order = huge_page_order(h);
2552
2553                 /* oversize hugepages were init'ed in early boot */
2554                 if (!hstate_is_gigantic(h))
2555                         hugetlb_hstate_alloc_pages(h);
2556         }
2557         VM_BUG_ON(minimum_order == UINT_MAX);
2558 }
2559
2560 static void __init report_hugepages(void)
2561 {
2562         struct hstate *h;
2563
2564         for_each_hstate(h) {
2565                 char buf[32];
2566
2567                 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
2568                 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
2569                         buf, h->free_huge_pages);
2570         }
2571 }
2572
2573 #ifdef CONFIG_HIGHMEM
2574 static void try_to_free_low(struct hstate *h, unsigned long count,
2575                                                 nodemask_t *nodes_allowed)
2576 {
2577         int i;
2578
2579         if (hstate_is_gigantic(h))
2580                 return;
2581
2582         for_each_node_mask(i, *nodes_allowed) {
2583                 struct page *page, *next;
2584                 struct list_head *freel = &h->hugepage_freelists[i];
2585                 list_for_each_entry_safe(page, next, freel, lru) {
2586                         if (count >= h->nr_huge_pages)
2587                                 return;
2588                         if (PageHighMem(page))
2589                                 continue;
2590                         list_del(&page->lru);
2591                         update_and_free_page(h, page);
2592                         h->free_huge_pages--;
2593                         h->free_huge_pages_node[page_to_nid(page)]--;
2594                 }
2595         }
2596 }
2597 #else
2598 static inline void try_to_free_low(struct hstate *h, unsigned long count,
2599                                                 nodemask_t *nodes_allowed)
2600 {
2601 }
2602 #endif
2603
2604 /*
2605  * Increment or decrement surplus_huge_pages.  Keep node-specific counters
2606  * balanced by operating on them in a round-robin fashion.
2607  * Returns 1 if an adjustment was made.
2608  */
2609 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
2610                                 int delta)
2611 {
2612         int nr_nodes, node;
2613
2614         VM_BUG_ON(delta != -1 && delta != 1);
2615
2616         if (delta < 0) {
2617                 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
2618                         if (h->surplus_huge_pages_node[node])
2619                                 goto found;
2620                 }
2621         } else {
2622                 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2623                         if (h->surplus_huge_pages_node[node] <
2624                                         h->nr_huge_pages_node[node])
2625                                 goto found;
2626                 }
2627         }
2628         return 0;
2629
2630 found:
2631         h->surplus_huge_pages += delta;
2632         h->surplus_huge_pages_node[node] += delta;
2633         return 1;
2634 }
2635
2636 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
2637 static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid,
2638                               nodemask_t *nodes_allowed)
2639 {
2640         unsigned long min_count, ret;
2641         NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL);
2642
2643         /*
2644          * Bit mask controlling how hard we retry per-node allocations.
2645          * If we can not allocate the bit mask, do not attempt to allocate
2646          * the requested huge pages.
2647          */
2648         if (node_alloc_noretry)
2649                 nodes_clear(*node_alloc_noretry);
2650         else
2651                 return -ENOMEM;
2652
2653         spin_lock(&hugetlb_lock);
2654
2655         /*
2656          * Check for a node specific request.
2657          * Changing node specific huge page count may require a corresponding
2658          * change to the global count.  In any case, the passed node mask
2659          * (nodes_allowed) will restrict alloc/free to the specified node.
2660          */
2661         if (nid != NUMA_NO_NODE) {
2662                 unsigned long old_count = count;
2663
2664                 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
2665                 /*
2666                  * User may have specified a large count value which caused the
2667                  * above calculation to overflow.  In this case, they wanted
2668                  * to allocate as many huge pages as possible.  Set count to
2669                  * largest possible value to align with their intention.
2670                  */
2671                 if (count < old_count)
2672                         count = ULONG_MAX;
2673         }
2674
2675         /*
2676          * Gigantic pages runtime allocation depend on the capability for large
2677          * page range allocation.
2678          * If the system does not provide this feature, return an error when
2679          * the user tries to allocate gigantic pages but let the user free the
2680          * boottime allocated gigantic pages.
2681          */
2682         if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) {
2683                 if (count > persistent_huge_pages(h)) {
2684                         spin_unlock(&hugetlb_lock);
2685                         NODEMASK_FREE(node_alloc_noretry);
2686                         return -EINVAL;
2687                 }
2688                 /* Fall through to decrease pool */
2689         }
2690
2691         /*
2692          * Increase the pool size
2693          * First take pages out of surplus state.  Then make up the
2694          * remaining difference by allocating fresh huge pages.
2695          *
2696          * We might race with alloc_surplus_huge_page() here and be unable
2697          * to convert a surplus huge page to a normal huge page. That is
2698          * not critical, though, it just means the overall size of the
2699          * pool might be one hugepage larger than it needs to be, but
2700          * within all the constraints specified by the sysctls.
2701          */
2702         while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
2703                 if (!adjust_pool_surplus(h, nodes_allowed, -1))
2704                         break;
2705         }
2706
2707         while (count > persistent_huge_pages(h)) {
2708                 /*
2709                  * If this allocation races such that we no longer need the
2710                  * page, free_huge_page will handle it by freeing the page
2711                  * and reducing the surplus.
2712                  */
2713                 spin_unlock(&hugetlb_lock);
2714
2715                 /* yield cpu to avoid soft lockup */
2716                 cond_resched();
2717
2718                 ret = alloc_pool_huge_page(h, nodes_allowed,
2719                                                 node_alloc_noretry);
2720                 spin_lock(&hugetlb_lock);
2721                 if (!ret)
2722                         goto out;
2723
2724                 /* Bail for signals. Probably ctrl-c from user */
2725                 if (signal_pending(current))
2726                         goto out;
2727         }
2728
2729         /*
2730          * Decrease the pool size
2731          * First return free pages to the buddy allocator (being careful
2732          * to keep enough around to satisfy reservations).  Then place
2733          * pages into surplus state as needed so the pool will shrink
2734          * to the desired size as pages become free.
2735          *
2736          * By placing pages into the surplus state independent of the
2737          * overcommit value, we are allowing the surplus pool size to
2738          * exceed overcommit. There are few sane options here. Since
2739          * alloc_surplus_huge_page() is checking the global counter,
2740          * though, we'll note that we're not allowed to exceed surplus
2741          * and won't grow the pool anywhere else. Not until one of the
2742          * sysctls are changed, or the surplus pages go out of use.
2743          */
2744         min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
2745         min_count = max(count, min_count);
2746         try_to_free_low(h, min_count, nodes_allowed);
2747         while (min_count < persistent_huge_pages(h)) {
2748                 if (!free_pool_huge_page(h, nodes_allowed, 0))
2749                         break;
2750                 cond_resched_lock(&hugetlb_lock);
2751         }
2752         while (count < persistent_huge_pages(h)) {
2753                 if (!adjust_pool_surplus(h, nodes_allowed, 1))
2754                         break;
2755         }
2756 out:
2757         h->max_huge_pages = persistent_huge_pages(h);
2758         spin_unlock(&hugetlb_lock);
2759
2760         NODEMASK_FREE(node_alloc_noretry);
2761
2762         return 0;
2763 }
2764
2765 #define HSTATE_ATTR_RO(_name) \
2766         static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2767
2768 #define HSTATE_ATTR(_name) \
2769         static struct kobj_attribute _name##_attr = \
2770                 __ATTR(_name, 0644, _name##_show, _name##_store)
2771
2772 static struct kobject *hugepages_kobj;
2773 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2774
2775 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
2776
2777 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
2778 {
2779         int i;
2780
2781         for (i = 0; i < HUGE_MAX_HSTATE; i++)
2782                 if (hstate_kobjs[i] == kobj) {
2783                         if (nidp)
2784                                 *nidp = NUMA_NO_NODE;
2785                         return &hstates[i];
2786                 }
2787
2788         return kobj_to_node_hstate(kobj, nidp);
2789 }
2790
2791 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
2792                                         struct kobj_attribute *attr, char *buf)
2793 {
2794         struct hstate *h;
2795         unsigned long nr_huge_pages;
2796         int nid;
2797
2798         h = kobj_to_hstate(kobj, &nid);
2799         if (nid == NUMA_NO_NODE)
2800                 nr_huge_pages = h->nr_huge_pages;
2801         else
2802                 nr_huge_pages = h->nr_huge_pages_node[nid];
2803
2804         return sysfs_emit(buf, "%lu\n", nr_huge_pages);
2805 }
2806
2807 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
2808                                            struct hstate *h, int nid,
2809                                            unsigned long count, size_t len)
2810 {
2811         int err;
2812         nodemask_t nodes_allowed, *n_mask;
2813
2814         if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
2815                 return -EINVAL;
2816
2817         if (nid == NUMA_NO_NODE) {
2818                 /*
2819                  * global hstate attribute
2820                  */
2821                 if (!(obey_mempolicy &&
2822                                 init_nodemask_of_mempolicy(&nodes_allowed)))
2823                         n_mask = &node_states[N_MEMORY];
2824                 else
2825                         n_mask = &nodes_allowed;
2826         } else {
2827                 /*
2828                  * Node specific request.  count adjustment happens in
2829                  * set_max_huge_pages() after acquiring hugetlb_lock.
2830                  */
2831                 init_nodemask_of_node(&nodes_allowed, nid);
2832                 n_mask = &nodes_allowed;
2833         }
2834
2835         err = set_max_huge_pages(h, count, nid, n_mask);
2836
2837         return err ? err : len;
2838 }
2839
2840 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
2841                                          struct kobject *kobj, const char *buf,
2842                                          size_t len)
2843 {
2844         struct hstate *h;
2845         unsigned long count;
2846         int nid;
2847         int err;
2848
2849         err = kstrtoul(buf, 10, &count);
2850         if (err)
2851                 return err;
2852
2853         h = kobj_to_hstate(kobj, &nid);
2854         return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
2855 }
2856
2857 static ssize_t nr_hugepages_show(struct kobject *kobj,
2858                                        struct kobj_attribute *attr, char *buf)
2859 {
2860         return nr_hugepages_show_common(kobj, attr, buf);
2861 }
2862
2863 static ssize_t nr_hugepages_store(struct kobject *kobj,
2864                struct kobj_attribute *attr, const char *buf, size_t len)
2865 {
2866         return nr_hugepages_store_common(false, kobj, buf, len);
2867 }
2868 HSTATE_ATTR(nr_hugepages);
2869
2870 #ifdef CONFIG_NUMA
2871
2872 /*
2873  * hstate attribute for optionally mempolicy-based constraint on persistent
2874  * huge page alloc/free.
2875  */
2876 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
2877                                            struct kobj_attribute *attr,
2878                                            char *buf)
2879 {
2880         return nr_hugepages_show_common(kobj, attr, buf);
2881 }
2882
2883 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
2884                struct kobj_attribute *attr, const char *buf, size_t len)
2885 {
2886         return nr_hugepages_store_common(true, kobj, buf, len);
2887 }
2888 HSTATE_ATTR(nr_hugepages_mempolicy);
2889 #endif
2890
2891
2892 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
2893                                         struct kobj_attribute *attr, char *buf)
2894 {
2895         struct hstate *h = kobj_to_hstate(kobj, NULL);
2896         return sysfs_emit(buf, "%lu\n", h->nr_overcommit_huge_pages);
2897 }
2898
2899 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
2900                 struct kobj_attribute *attr, const char *buf, size_t count)
2901 {
2902         int err;
2903         unsigned long input;
2904         struct hstate *h = kobj_to_hstate(kobj, NULL);
2905
2906         if (hstate_is_gigantic(h))
2907                 return -EINVAL;
2908
2909         err = kstrtoul(buf, 10, &input);
2910         if (err)
2911                 return err;
2912
2913         spin_lock(&hugetlb_lock);
2914         h->nr_overcommit_huge_pages = input;
2915         spin_unlock(&hugetlb_lock);
2916
2917         return count;
2918 }
2919 HSTATE_ATTR(nr_overcommit_hugepages);
2920
2921 static ssize_t free_hugepages_show(struct kobject *kobj,
2922                                         struct kobj_attribute *attr, char *buf)
2923 {
2924         struct hstate *h;
2925         unsigned long free_huge_pages;
2926         int nid;
2927
2928         h = kobj_to_hstate(kobj, &nid);
2929         if (nid == NUMA_NO_NODE)
2930                 free_huge_pages = h->free_huge_pages;
2931         else
2932                 free_huge_pages = h->free_huge_pages_node[nid];
2933
2934         return sysfs_emit(buf, "%lu\n", free_huge_pages);
2935 }
2936 HSTATE_ATTR_RO(free_hugepages);
2937
2938 static ssize_t resv_hugepages_show(struct kobject *kobj,
2939                                         struct kobj_attribute *attr, char *buf)
2940 {
2941         struct hstate *h = kobj_to_hstate(kobj, NULL);
2942         return sysfs_emit(buf, "%lu\n", h->resv_huge_pages);
2943 }
2944 HSTATE_ATTR_RO(resv_hugepages);
2945
2946 static ssize_t surplus_hugepages_show(struct kobject *kobj,
2947                                         struct kobj_attribute *attr, char *buf)
2948 {
2949         struct hstate *h;
2950         unsigned long surplus_huge_pages;
2951         int nid;
2952
2953         h = kobj_to_hstate(kobj, &nid);
2954         if (nid == NUMA_NO_NODE)
2955                 surplus_huge_pages = h->surplus_huge_pages;
2956         else
2957                 surplus_huge_pages = h->surplus_huge_pages_node[nid];
2958
2959         return sysfs_emit(buf, "%lu\n", surplus_huge_pages);
2960 }
2961 HSTATE_ATTR_RO(surplus_hugepages);
2962
2963 static struct attribute *hstate_attrs[] = {
2964         &nr_hugepages_attr.attr,
2965         &nr_overcommit_hugepages_attr.attr,
2966         &free_hugepages_attr.attr,
2967         &resv_hugepages_attr.attr,
2968         &surplus_hugepages_attr.attr,
2969 #ifdef CONFIG_NUMA
2970         &nr_hugepages_mempolicy_attr.attr,
2971 #endif
2972         NULL,
2973 };
2974
2975 static const struct attribute_group hstate_attr_group = {
2976         .attrs = hstate_attrs,
2977 };
2978
2979 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
2980                                     struct kobject **hstate_kobjs,
2981                                     const struct attribute_group *hstate_attr_group)
2982 {
2983         int retval;
2984         int hi = hstate_index(h);
2985
2986         hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
2987         if (!hstate_kobjs[hi])
2988                 return -ENOMEM;
2989
2990         retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
2991         if (retval) {
2992                 kobject_put(hstate_kobjs[hi]);
2993                 hstate_kobjs[hi] = NULL;
2994         }
2995
2996         return retval;
2997 }
2998
2999 static void __init hugetlb_sysfs_init(void)
3000 {
3001         struct hstate *h;
3002         int err;
3003
3004         hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
3005         if (!hugepages_kobj)
3006                 return;
3007
3008         for_each_hstate(h) {
3009                 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
3010                                          hstate_kobjs, &hstate_attr_group);
3011                 if (err)
3012                         pr_err("HugeTLB: Unable to add hstate %s", h->name);
3013         }
3014 }
3015
3016 #ifdef CONFIG_NUMA
3017
3018 /*
3019  * node_hstate/s - associate per node hstate attributes, via their kobjects,
3020  * with node devices in node_devices[] using a parallel array.  The array
3021  * index of a node device or _hstate == node id.
3022  * This is here to avoid any static dependency of the node device driver, in
3023  * the base kernel, on the hugetlb module.
3024  */
3025 struct node_hstate {
3026         struct kobject          *hugepages_kobj;
3027         struct kobject          *hstate_kobjs[HUGE_MAX_HSTATE];
3028 };
3029 static struct node_hstate node_hstates[MAX_NUMNODES];
3030
3031 /*
3032  * A subset of global hstate attributes for node devices
3033  */
3034 static struct attribute *per_node_hstate_attrs[] = {
3035         &nr_hugepages_attr.attr,
3036         &free_hugepages_attr.attr,
3037         &surplus_hugepages_attr.attr,
3038         NULL,
3039 };
3040
3041 static const struct attribute_group per_node_hstate_attr_group = {
3042         .attrs = per_node_hstate_attrs,
3043 };
3044
3045 /*
3046  * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
3047  * Returns node id via non-NULL nidp.
3048  */
3049 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
3050 {
3051         int nid;
3052
3053         for (nid = 0; nid < nr_node_ids; nid++) {
3054                 struct node_hstate *nhs = &node_hstates[nid];
3055                 int i;
3056                 for (i = 0; i < HUGE_MAX_HSTATE; i++)
3057                         if (nhs->hstate_kobjs[i] == kobj) {
3058                                 if (nidp)
3059                                         *nidp = nid;
3060                                 return &hstates[i];
3061                         }
3062         }
3063
3064         BUG();
3065         return NULL;
3066 }
3067
3068 /*
3069  * Unregister hstate attributes from a single node device.
3070  * No-op if no hstate attributes attached.
3071  */
3072 static void hugetlb_unregister_node(struct node *node)
3073 {
3074         struct hstate *h;
3075         struct node_hstate *nhs = &node_hstates[node->dev.id];
3076
3077         if (!nhs->hugepages_kobj)
3078                 return;         /* no hstate attributes */
3079
3080         for_each_hstate(h) {
3081                 int idx = hstate_index(h);
3082                 if (nhs->hstate_kobjs[idx]) {
3083                         kobject_put(nhs->hstate_kobjs[idx]);
3084                         nhs->hstate_kobjs[idx] = NULL;
3085                 }
3086         }
3087
3088         kobject_put(nhs->hugepages_kobj);
3089         nhs->hugepages_kobj = NULL;
3090 }
3091
3092
3093 /*
3094  * Register hstate attributes for a single node device.
3095  * No-op if attributes already registered.
3096  */
3097 static void hugetlb_register_node(struct node *node)
3098 {
3099         struct hstate *h;
3100         struct node_hstate *nhs = &node_hstates[node->dev.id];
3101         int err;
3102
3103         if (nhs->hugepages_kobj)
3104                 return;         /* already allocated */
3105
3106         nhs->hugepages_kobj = kobject_create_and_add("hugepages",
3107                                                         &node->dev.kobj);
3108         if (!nhs->hugepages_kobj)
3109                 return;
3110
3111         for_each_hstate(h) {
3112                 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
3113                                                 nhs->hstate_kobjs,
3114                                                 &per_node_hstate_attr_group);
3115                 if (err) {
3116                         pr_err("HugeTLB: Unable to add hstate %s for node %d\n",
3117                                 h->name, node->dev.id);
3118                         hugetlb_unregister_node(node);
3119                         break;
3120                 }
3121         }
3122 }
3123
3124 /*
3125  * hugetlb init time:  register hstate attributes for all registered node
3126  * devices of nodes that have memory.  All on-line nodes should have
3127  * registered their associated device by this time.
3128  */
3129 static void __init hugetlb_register_all_nodes(void)
3130 {
3131         int nid;
3132
3133         for_each_node_state(nid, N_MEMORY) {
3134                 struct node *node = node_devices[nid];
3135                 if (node->dev.id == nid)
3136                         hugetlb_register_node(node);
3137         }
3138
3139         /*
3140          * Let the node device driver know we're here so it can
3141          * [un]register hstate attributes on node hotplug.
3142          */
3143         register_hugetlbfs_with_node(hugetlb_register_node,
3144                                      hugetlb_unregister_node);
3145 }
3146 #else   /* !CONFIG_NUMA */
3147
3148 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
3149 {
3150         BUG();
3151         if (nidp)
3152                 *nidp = -1;
3153         return NULL;
3154 }
3155
3156 static void hugetlb_register_all_nodes(void) { }
3157
3158 #endif
3159
3160 static int __init hugetlb_init(void)
3161 {
3162         int i;
3163
3164         if (!hugepages_supported()) {
3165                 if (hugetlb_max_hstate || default_hstate_max_huge_pages)
3166                         pr_warn("HugeTLB: huge pages not supported, ignoring associated command-line parameters\n");
3167                 return 0;
3168         }
3169
3170         /*
3171          * Make sure HPAGE_SIZE (HUGETLB_PAGE_ORDER) hstate exists.  Some
3172          * architectures depend on setup being done here.
3173          */
3174         hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
3175         if (!parsed_default_hugepagesz) {
3176                 /*
3177                  * If we did not parse a default huge page size, set
3178                  * default_hstate_idx to HPAGE_SIZE hstate. And, if the
3179                  * number of huge pages for this default size was implicitly
3180                  * specified, set that here as well.
3181                  * Note that the implicit setting will overwrite an explicit
3182                  * setting.  A warning will be printed in this case.
3183                  */
3184                 default_hstate_idx = hstate_index(size_to_hstate(HPAGE_SIZE));
3185                 if (default_hstate_max_huge_pages) {
3186                         if (default_hstate.max_huge_pages) {
3187                                 char buf[32];
3188
3189                                 string_get_size(huge_page_size(&default_hstate),
3190                                         1, STRING_UNITS_2, buf, 32);
3191                                 pr_warn("HugeTLB: Ignoring hugepages=%lu associated with %s page size\n",
3192                                         default_hstate.max_huge_pages, buf);
3193                                 pr_warn("HugeTLB: Using hugepages=%lu for number of default huge pages\n",
3194                                         default_hstate_max_huge_pages);
3195                         }
3196                         default_hstate.max_huge_pages =
3197                                 default_hstate_max_huge_pages;
3198                 }
3199         }
3200
3201         hugetlb_cma_check();
3202         hugetlb_init_hstates();
3203         gather_bootmem_prealloc();
3204         report_hugepages();
3205
3206         hugetlb_sysfs_init();
3207         hugetlb_register_all_nodes();
3208         hugetlb_cgroup_file_init();
3209
3210 #ifdef CONFIG_SMP
3211         num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
3212 #else
3213         num_fault_mutexes = 1;
3214 #endif
3215         hugetlb_fault_mutex_table =
3216                 kmalloc_array(num_fault_mutexes, sizeof(struct mutex),
3217                               GFP_KERNEL);
3218         BUG_ON(!hugetlb_fault_mutex_table);
3219
3220         for (i = 0; i < num_fault_mutexes; i++)
3221                 mutex_init(&hugetlb_fault_mutex_table[i]);
3222         return 0;
3223 }
3224 subsys_initcall(hugetlb_init);
3225
3226 /* Overwritten by architectures with more huge page sizes */
3227 bool __init __attribute((weak)) arch_hugetlb_valid_size(unsigned long size)
3228 {
3229         return size == HPAGE_SIZE;
3230 }
3231
3232 void __init hugetlb_add_hstate(unsigned int order)
3233 {
3234         struct hstate *h;
3235         unsigned long i;
3236
3237         if (size_to_hstate(PAGE_SIZE << order)) {
3238                 return;
3239         }
3240         BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
3241         BUG_ON(order == 0);
3242         h = &hstates[hugetlb_max_hstate++];
3243         h->order = order;
3244         h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
3245         for (i = 0; i < MAX_NUMNODES; ++i)
3246                 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
3247         INIT_LIST_HEAD(&h->hugepage_activelist);
3248         h->next_nid_to_alloc = first_memory_node;
3249         h->next_nid_to_free = first_memory_node;
3250         snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
3251                                         huge_page_size(h)/1024);
3252
3253         parsed_hstate = h;
3254 }
3255
3256 /*
3257  * hugepages command line processing
3258  * hugepages normally follows a valid hugepagsz or default_hugepagsz
3259  * specification.  If not, ignore the hugepages value.  hugepages can also
3260  * be the first huge page command line  option in which case it implicitly
3261  * specifies the number of huge pages for the default size.
3262  */
3263 static int __init hugepages_setup(char *s)
3264 {
3265         unsigned long *mhp;
3266         static unsigned long *last_mhp;
3267
3268         if (!parsed_valid_hugepagesz) {
3269                 pr_warn("HugeTLB: hugepages=%s does not follow a valid hugepagesz, ignoring\n", s);
3270                 parsed_valid_hugepagesz = true;
3271                 return 0;
3272         }
3273
3274         /*
3275          * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter
3276          * yet, so this hugepages= parameter goes to the "default hstate".
3277          * Otherwise, it goes with the previously parsed hugepagesz or
3278          * default_hugepagesz.
3279          */
3280         else if (!hugetlb_max_hstate)
3281                 mhp = &default_hstate_max_huge_pages;
3282         else
3283                 mhp = &parsed_hstate->max_huge_pages;
3284
3285         if (mhp == last_mhp) {
3286                 pr_warn("HugeTLB: hugepages= specified twice without interleaving hugepagesz=, ignoring hugepages=%s\n", s);
3287                 return 0;
3288         }
3289
3290         if (sscanf(s, "%lu", mhp) <= 0)
3291                 *mhp = 0;
3292
3293         /*
3294          * Global state is always initialized later in hugetlb_init.
3295          * But we need to allocate >= MAX_ORDER hstates here early to still
3296          * use the bootmem allocator.
3297          */
3298         if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
3299                 hugetlb_hstate_alloc_pages(parsed_hstate);
3300
3301         last_mhp = mhp;
3302
3303         return 1;
3304 }
3305 __setup("hugepages=", hugepages_setup);
3306
3307 /*
3308  * hugepagesz command line processing
3309  * A specific huge page size can only be specified once with hugepagesz.
3310  * hugepagesz is followed by hugepages on the command line.  The global
3311  * variable 'parsed_valid_hugepagesz' is used to determine if prior
3312  * hugepagesz argument was valid.
3313  */
3314 static int __init hugepagesz_setup(char *s)
3315 {
3316         unsigned long size;
3317         struct hstate *h;
3318
3319         parsed_valid_hugepagesz = false;
3320         size = (unsigned long)memparse(s, NULL);
3321
3322         if (!arch_hugetlb_valid_size(size)) {
3323                 pr_err("HugeTLB: unsupported hugepagesz=%s\n", s);
3324                 return 0;
3325         }
3326
3327         h = size_to_hstate(size);
3328         if (h) {
3329                 /*
3330                  * hstate for this size already exists.  This is normally
3331                  * an error, but is allowed if the existing hstate is the
3332                  * default hstate.  More specifically, it is only allowed if
3333                  * the number of huge pages for the default hstate was not
3334                  * previously specified.
3335                  */
3336                 if (!parsed_default_hugepagesz ||  h != &default_hstate ||
3337                     default_hstate.max_huge_pages) {
3338                         pr_warn("HugeTLB: hugepagesz=%s specified twice, ignoring\n", s);
3339                         return 0;
3340                 }
3341
3342                 /*
3343                  * No need to call hugetlb_add_hstate() as hstate already
3344                  * exists.  But, do set parsed_hstate so that a following
3345                  * hugepages= parameter will be applied to this hstate.
3346                  */
3347                 parsed_hstate = h;
3348                 parsed_valid_hugepagesz = true;
3349                 return 1;
3350         }
3351
3352         hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
3353         parsed_valid_hugepagesz = true;
3354         return 1;
3355 }
3356 __setup("hugepagesz=", hugepagesz_setup);
3357
3358 /*
3359  * default_hugepagesz command line input
3360  * Only one instance of default_hugepagesz allowed on command line.
3361  */
3362 static int __init default_hugepagesz_setup(char *s)
3363 {
3364         unsigned long size;
3365
3366         parsed_valid_hugepagesz = false;
3367         if (parsed_default_hugepagesz) {
3368                 pr_err("HugeTLB: default_hugepagesz previously specified, ignoring %s\n", s);
3369                 return 0;
3370         }
3371
3372         size = (unsigned long)memparse(s, NULL);
3373
3374         if (!arch_hugetlb_valid_size(size)) {
3375                 pr_err("HugeTLB: unsupported default_hugepagesz=%s\n", s);
3376                 return 0;
3377         }
3378
3379         hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
3380         parsed_valid_hugepagesz = true;
3381         parsed_default_hugepagesz = true;
3382         default_hstate_idx = hstate_index(size_to_hstate(size));
3383
3384         /*
3385          * The number of default huge pages (for this size) could have been
3386          * specified as the first hugetlb parameter: hugepages=X.  If so,
3387          * then default_hstate_max_huge_pages is set.  If the default huge
3388          * page size is gigantic (>= MAX_ORDER), then the pages must be
3389          * allocated here from bootmem allocator.
3390          */
3391         if (default_hstate_max_huge_pages) {
3392                 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
3393                 if (hstate_is_gigantic(&default_hstate))
3394                         hugetlb_hstate_alloc_pages(&default_hstate);
3395                 default_hstate_max_huge_pages = 0;
3396         }
3397
3398         return 1;
3399 }
3400 __setup("default_hugepagesz=", default_hugepagesz_setup);
3401
3402 static unsigned int allowed_mems_nr(struct hstate *h)
3403 {
3404         int node;
3405         unsigned int nr = 0;
3406         nodemask_t *mpol_allowed;
3407         unsigned int *array = h->free_huge_pages_node;
3408         gfp_t gfp_mask = htlb_alloc_mask(h);
3409
3410         mpol_allowed = policy_nodemask_current(gfp_mask);
3411
3412         for_each_node_mask(node, cpuset_current_mems_allowed) {
3413                 if (!mpol_allowed ||
3414                     (mpol_allowed && node_isset(node, *mpol_allowed)))
3415                         nr += array[node];
3416         }
3417
3418         return nr;
3419 }
3420
3421 #ifdef CONFIG_SYSCTL
3422 static int proc_hugetlb_doulongvec_minmax(struct ctl_table *table, int write,
3423                                           void *buffer, size_t *length,
3424                                           loff_t *ppos, unsigned long *out)
3425 {
3426         struct ctl_table dup_table;
3427
3428         /*
3429          * In order to avoid races with __do_proc_doulongvec_minmax(), we
3430          * can duplicate the @table and alter the duplicate of it.
3431          */
3432         dup_table = *table;
3433         dup_table.data = out;
3434
3435         return proc_doulongvec_minmax(&dup_table, write, buffer, length, ppos);
3436 }
3437
3438 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
3439                          struct ctl_table *table, int write,
3440                          void *buffer, size_t *length, loff_t *ppos)
3441 {
3442         struct hstate *h = &default_hstate;
3443         unsigned long tmp = h->max_huge_pages;
3444         int ret;
3445
3446         if (!hugepages_supported())
3447                 return -EOPNOTSUPP;
3448
3449         ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
3450                                              &tmp);
3451         if (ret)
3452                 goto out;
3453
3454         if (write)
3455                 ret = __nr_hugepages_store_common(obey_mempolicy, h,
3456                                                   NUMA_NO_NODE, tmp, *length);
3457 out:
3458         return ret;
3459 }
3460
3461 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
3462                           void *buffer, size_t *length, loff_t *ppos)
3463 {
3464
3465         return hugetlb_sysctl_handler_common(false, table, write,
3466                                                         buffer, length, ppos);
3467 }
3468
3469 #ifdef CONFIG_NUMA
3470 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
3471                           void *buffer, size_t *length, loff_t *ppos)
3472 {
3473         return hugetlb_sysctl_handler_common(true, table, write,
3474                                                         buffer, length, ppos);
3475 }
3476 #endif /* CONFIG_NUMA */
3477
3478 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
3479                 void *buffer, size_t *length, loff_t *ppos)
3480 {
3481         struct hstate *h = &default_hstate;
3482         unsigned long tmp;
3483         int ret;
3484
3485         if (!hugepages_supported())
3486                 return -EOPNOTSUPP;
3487
3488         tmp = h->nr_overcommit_huge_pages;
3489
3490         if (write && hstate_is_gigantic(h))
3491                 return -EINVAL;
3492
3493         ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
3494                                              &tmp);
3495         if (ret)
3496                 goto out;
3497
3498         if (write) {
3499                 spin_lock(&hugetlb_lock);
3500                 h->nr_overcommit_huge_pages = tmp;
3501                 spin_unlock(&hugetlb_lock);
3502         }
3503 out:
3504         return ret;
3505 }
3506
3507 #endif /* CONFIG_SYSCTL */
3508
3509 void hugetlb_report_meminfo(struct seq_file *m)
3510 {
3511         struct hstate *h;
3512         unsigned long total = 0;
3513
3514         if (!hugepages_supported())
3515                 return;
3516
3517         for_each_hstate(h) {
3518                 unsigned long count = h->nr_huge_pages;
3519
3520                 total += (PAGE_SIZE << huge_page_order(h)) * count;
3521
3522                 if (h == &default_hstate)
3523                         seq_printf(m,
3524                                    "HugePages_Total:   %5lu\n"
3525                                    "HugePages_Free:    %5lu\n"
3526                                    "HugePages_Rsvd:    %5lu\n"
3527                                    "HugePages_Surp:    %5lu\n"
3528                                    "Hugepagesize:   %8lu kB\n",
3529                                    count,
3530                                    h->free_huge_pages,
3531                                    h->resv_huge_pages,
3532                                    h->surplus_huge_pages,
3533                                    (PAGE_SIZE << huge_page_order(h)) / 1024);
3534         }
3535
3536         seq_printf(m, "Hugetlb:        %8lu kB\n", total / 1024);
3537 }
3538
3539 int hugetlb_report_node_meminfo(char *buf, int len, int nid)
3540 {
3541         struct hstate *h = &default_hstate;
3542
3543         if (!hugepages_supported())
3544                 return 0;
3545
3546         return sysfs_emit_at(buf, len,
3547                              "Node %d HugePages_Total: %5u\n"
3548                              "Node %d HugePages_Free:  %5u\n"
3549                              "Node %d HugePages_Surp:  %5u\n",
3550                              nid, h->nr_huge_pages_node[nid],
3551                              nid, h->free_huge_pages_node[nid],
3552                              nid, h->surplus_huge_pages_node[nid]);
3553 }
3554
3555 void hugetlb_show_meminfo(void)
3556 {
3557         struct hstate *h;
3558         int nid;
3559
3560         if (!hugepages_supported())
3561                 return;
3562
3563         for_each_node_state(nid, N_MEMORY)
3564                 for_each_hstate(h)
3565                         pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
3566                                 nid,
3567                                 h->nr_huge_pages_node[nid],
3568                                 h->free_huge_pages_node[nid],
3569                                 h->surplus_huge_pages_node[nid],
3570                                 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
3571 }
3572
3573 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
3574 {
3575         seq_printf(m, "HugetlbPages:\t%8lu kB\n",
3576                    atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
3577 }
3578
3579 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
3580 unsigned long hugetlb_total_pages(void)
3581 {
3582         struct hstate *h;
3583         unsigned long nr_total_pages = 0;
3584
3585         for_each_hstate(h)
3586                 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
3587         return nr_total_pages;
3588 }
3589
3590 static int hugetlb_acct_memory(struct hstate *h, long delta)
3591 {
3592         int ret = -ENOMEM;
3593
3594         if (!delta)
3595                 return 0;
3596
3597         spin_lock(&hugetlb_lock);
3598         /*
3599          * When cpuset is configured, it breaks the strict hugetlb page
3600          * reservation as the accounting is done on a global variable. Such
3601          * reservation is completely rubbish in the presence of cpuset because
3602          * the reservation is not checked against page availability for the
3603          * current cpuset. Application can still potentially OOM'ed by kernel
3604          * with lack of free htlb page in cpuset that the task is in.
3605          * Attempt to enforce strict accounting with cpuset is almost
3606          * impossible (or too ugly) because cpuset is too fluid that
3607          * task or memory node can be dynamically moved between cpusets.
3608          *
3609          * The change of semantics for shared hugetlb mapping with cpuset is
3610          * undesirable. However, in order to preserve some of the semantics,
3611          * we fall back to check against current free page availability as
3612          * a best attempt and hopefully to minimize the impact of changing
3613          * semantics that cpuset has.
3614          *
3615          * Apart from cpuset, we also have memory policy mechanism that
3616          * also determines from which node the kernel will allocate memory
3617          * in a NUMA system. So similar to cpuset, we also should consider
3618          * the memory policy of the current task. Similar to the description
3619          * above.
3620          */
3621         if (delta > 0) {
3622                 if (gather_surplus_pages(h, delta) < 0)
3623                         goto out;
3624
3625                 if (delta > allowed_mems_nr(h)) {
3626                         return_unused_surplus_pages(h, delta);
3627                         goto out;
3628                 }
3629         }
3630
3631         ret = 0;
3632         if (delta < 0)
3633                 return_unused_surplus_pages(h, (unsigned long) -delta);
3634
3635 out:
3636         spin_unlock(&hugetlb_lock);
3637         return ret;
3638 }
3639
3640 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
3641 {
3642         struct resv_map *resv = vma_resv_map(vma);
3643
3644         /*
3645          * This new VMA should share its siblings reservation map if present.
3646          * The VMA will only ever have a valid reservation map pointer where
3647          * it is being copied for another still existing VMA.  As that VMA
3648          * has a reference to the reservation map it cannot disappear until
3649          * after this open call completes.  It is therefore safe to take a
3650          * new reference here without additional locking.
3651          */
3652         if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3653                 kref_get(&resv->refs);
3654 }
3655
3656 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
3657 {
3658         struct hstate *h = hstate_vma(vma);
3659         struct resv_map *resv = vma_resv_map(vma);
3660         struct hugepage_subpool *spool = subpool_vma(vma);
3661         unsigned long reserve, start, end;
3662         long gbl_reserve;
3663
3664         if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3665                 return;
3666
3667         start = vma_hugecache_offset(h, vma, vma->vm_start);
3668         end = vma_hugecache_offset(h, vma, vma->vm_end);
3669
3670         reserve = (end - start) - region_count(resv, start, end);
3671         hugetlb_cgroup_uncharge_counter(resv, start, end);
3672         if (reserve) {
3673                 /*
3674                  * Decrement reserve counts.  The global reserve count may be
3675                  * adjusted if the subpool has a minimum size.
3676                  */
3677                 gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
3678                 hugetlb_acct_memory(h, -gbl_reserve);
3679         }
3680
3681         kref_put(&resv->refs, resv_map_release);
3682 }
3683
3684 static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
3685 {
3686         if (addr & ~(huge_page_mask(hstate_vma(vma))))
3687                 return -EINVAL;
3688         return 0;
3689 }
3690
3691 static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma)
3692 {
3693         struct hstate *hstate = hstate_vma(vma);
3694
3695         return 1UL << huge_page_shift(hstate);
3696 }
3697
3698 /*
3699  * We cannot handle pagefaults against hugetlb pages at all.  They cause
3700  * handle_mm_fault() to try to instantiate regular-sized pages in the
3701  * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
3702  * this far.
3703  */
3704 static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf)
3705 {
3706         BUG();
3707         return 0;
3708 }
3709
3710 /*
3711  * When a new function is introduced to vm_operations_struct and added
3712  * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops.
3713  * This is because under System V memory model, mappings created via
3714  * shmget/shmat with "huge page" specified are backed by hugetlbfs files,
3715  * their original vm_ops are overwritten with shm_vm_ops.
3716  */
3717 const struct vm_operations_struct hugetlb_vm_ops = {
3718         .fault = hugetlb_vm_op_fault,
3719         .open = hugetlb_vm_op_open,
3720         .close = hugetlb_vm_op_close,
3721         .may_split = hugetlb_vm_op_split,
3722         .pagesize = hugetlb_vm_op_pagesize,
3723 };
3724
3725 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
3726                                 int writable)
3727 {
3728         pte_t entry;
3729
3730         if (writable) {
3731                 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
3732                                          vma->vm_page_prot)));
3733         } else {
3734                 entry = huge_pte_wrprotect(mk_huge_pte(page,
3735                                            vma->vm_page_prot));
3736         }
3737         entry = pte_mkyoung(entry);
3738         entry = pte_mkhuge(entry);
3739         entry = arch_make_huge_pte(entry, vma, page, writable);
3740
3741         return entry;
3742 }
3743
3744 static void set_huge_ptep_writable(struct vm_area_struct *vma,
3745                                    unsigned long address, pte_t *ptep)
3746 {
3747         pte_t entry;
3748
3749         entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
3750         if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
3751                 update_mmu_cache(vma, address, ptep);
3752 }
3753
3754 bool is_hugetlb_entry_migration(pte_t pte)
3755 {
3756         swp_entry_t swp;
3757
3758         if (huge_pte_none(pte) || pte_present(pte))
3759                 return false;
3760         swp = pte_to_swp_entry(pte);
3761         if (is_migration_entry(swp))
3762                 return true;
3763         else
3764                 return false;
3765 }
3766
3767 static bool is_hugetlb_entry_hwpoisoned(pte_t pte)
3768 {
3769         swp_entry_t swp;
3770
3771         if (huge_pte_none(pte) || pte_present(pte))
3772                 return false;
3773         swp = pte_to_swp_entry(pte);
3774         if (is_hwpoison_entry(swp))
3775                 return true;
3776         else
3777                 return false;
3778 }
3779
3780 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
3781                             struct vm_area_struct *vma)
3782 {
3783         pte_t *src_pte, *dst_pte, entry, dst_entry;
3784         struct page *ptepage;
3785         unsigned long addr;
3786         int cow;
3787         struct hstate *h = hstate_vma(vma);
3788         unsigned long sz = huge_page_size(h);
3789         struct address_space *mapping = vma->vm_file->f_mapping;
3790         struct mmu_notifier_range range;
3791         int ret = 0;
3792
3793         cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
3794
3795         if (cow) {
3796                 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, src,
3797                                         vma->vm_start,
3798                                         vma->vm_end);
3799                 mmu_notifier_invalidate_range_start(&range);
3800         } else {
3801                 /*
3802                  * For shared mappings i_mmap_rwsem must be held to call
3803                  * huge_pte_alloc, otherwise the returned ptep could go
3804                  * away if part of a shared pmd and another thread calls
3805                  * huge_pmd_unshare.
3806                  */
3807                 i_mmap_lock_read(mapping);
3808         }
3809
3810         for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
3811                 spinlock_t *src_ptl, *dst_ptl;
3812                 src_pte = huge_pte_offset(src, addr, sz);
3813                 if (!src_pte)
3814                         continue;
3815                 dst_pte = huge_pte_alloc(dst, addr, sz);
3816                 if (!dst_pte) {
3817                         ret = -ENOMEM;
3818                         break;
3819                 }
3820
3821                 /*
3822                  * If the pagetables are shared don't copy or take references.
3823                  * dst_pte == src_pte is the common case of src/dest sharing.
3824                  *
3825                  * However, src could have 'unshared' and dst shares with
3826                  * another vma.  If dst_pte !none, this implies sharing.
3827                  * Check here before taking page table lock, and once again
3828                  * after taking the lock below.
3829                  */
3830                 dst_entry = huge_ptep_get(dst_pte);
3831                 if ((dst_pte == src_pte) || !huge_pte_none(dst_entry))
3832                         continue;
3833
3834                 dst_ptl = huge_pte_lock(h, dst, dst_pte);
3835                 src_ptl = huge_pte_lockptr(h, src, src_pte);
3836                 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
3837                 entry = huge_ptep_get(src_pte);
3838                 dst_entry = huge_ptep_get(dst_pte);
3839                 if (huge_pte_none(entry) || !huge_pte_none(dst_entry)) {
3840                         /*
3841                          * Skip if src entry none.  Also, skip in the
3842                          * unlikely case dst entry !none as this implies
3843                          * sharing with another vma.
3844                          */
3845                         ;
3846                 } else if (unlikely(is_hugetlb_entry_migration(entry) ||
3847                                     is_hugetlb_entry_hwpoisoned(entry))) {
3848                         swp_entry_t swp_entry = pte_to_swp_entry(entry);
3849
3850                         if (is_write_migration_entry(swp_entry) && cow) {
3851                                 /*
3852                                  * COW mappings require pages in both
3853                                  * parent and child to be set to read.
3854                                  */
3855                                 make_migration_entry_read(&swp_entry);
3856                                 entry = swp_entry_to_pte(swp_entry);
3857                                 set_huge_swap_pte_at(src, addr, src_pte,
3858                                                      entry, sz);
3859                         }
3860                         set_huge_swap_pte_at(dst, addr, dst_pte, entry, sz);
3861                 } else {
3862                         if (cow) {
3863                                 /*
3864                                  * No need to notify as we are downgrading page
3865                                  * table protection not changing it to point
3866                                  * to a new page.
3867                                  *
3868                                  * See Documentation/vm/mmu_notifier.rst
3869                                  */
3870                                 huge_ptep_set_wrprotect(src, addr, src_pte);
3871                         }
3872                         entry = huge_ptep_get(src_pte);
3873                         ptepage = pte_page(entry);
3874                         get_page(ptepage);
3875                         page_dup_rmap(ptepage, true);
3876                         set_huge_pte_at(dst, addr, dst_pte, entry);
3877                         hugetlb_count_add(pages_per_huge_page(h), dst);
3878                 }
3879                 spin_unlock(src_ptl);
3880                 spin_unlock(dst_ptl);
3881         }
3882
3883         if (cow)
3884                 mmu_notifier_invalidate_range_end(&range);
3885         else
3886                 i_mmap_unlock_read(mapping);
3887
3888         return ret;
3889 }
3890
3891 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
3892                             unsigned long start, unsigned long end,
3893                             struct page *ref_page)
3894 {
3895         struct mm_struct *mm = vma->vm_mm;
3896         unsigned long address;
3897         pte_t *ptep;
3898         pte_t pte;
3899         spinlock_t *ptl;
3900         struct page *page;
3901         struct hstate *h = hstate_vma(vma);
3902         unsigned long sz = huge_page_size(h);
3903         struct mmu_notifier_range range;
3904
3905         WARN_ON(!is_vm_hugetlb_page(vma));
3906         BUG_ON(start & ~huge_page_mask(h));
3907         BUG_ON(end & ~huge_page_mask(h));
3908
3909         /*
3910          * This is a hugetlb vma, all the pte entries should point
3911          * to huge page.
3912          */
3913         tlb_change_page_size(tlb, sz);
3914         tlb_start_vma(tlb, vma);
3915
3916         /*
3917          * If sharing possible, alert mmu notifiers of worst case.
3918          */
3919         mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, mm, start,
3920                                 end);
3921         adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
3922         mmu_notifier_invalidate_range_start(&range);
3923         address = start;
3924         for (; address < end; address += sz) {
3925                 ptep = huge_pte_offset(mm, address, sz);
3926                 if (!ptep)
3927                         continue;
3928
3929                 ptl = huge_pte_lock(h, mm, ptep);
3930                 if (huge_pmd_unshare(mm, vma, &address, ptep)) {
3931                         spin_unlock(ptl);
3932                         /*
3933                          * We just unmapped a page of PMDs by clearing a PUD.
3934                          * The caller's TLB flush range should cover this area.
3935                          */
3936                         continue;
3937                 }
3938
3939                 pte = huge_ptep_get(ptep);
3940                 if (huge_pte_none(pte)) {
3941                         spin_unlock(ptl);
3942                         continue;
3943                 }
3944
3945                 /*
3946                  * Migrating hugepage or HWPoisoned hugepage is already
3947                  * unmapped and its refcount is dropped, so just clear pte here.
3948                  */
3949                 if (unlikely(!pte_present(pte))) {
3950                         huge_pte_clear(mm, address, ptep, sz);
3951                         spin_unlock(ptl);
3952                         continue;
3953                 }
3954
3955                 page = pte_page(pte);
3956                 /*
3957                  * If a reference page is supplied, it is because a specific
3958                  * page is being unmapped, not a range. Ensure the page we
3959                  * are about to unmap is the actual page of interest.
3960                  */
3961                 if (ref_page) {
3962                         if (page != ref_page) {
3963                                 spin_unlock(ptl);
3964                                 continue;
3965                         }
3966                         /*
3967                          * Mark the VMA as having unmapped its page so that
3968                          * future faults in this VMA will fail rather than
3969                          * looking like data was lost
3970                          */
3971                         set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
3972                 }
3973
3974                 pte = huge_ptep_get_and_clear(mm, address, ptep);
3975                 tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
3976                 if (huge_pte_dirty(pte))
3977                         set_page_dirty(page);
3978
3979                 hugetlb_count_sub(pages_per_huge_page(h), mm);
3980                 page_remove_rmap(page, true);
3981
3982                 spin_unlock(ptl);
3983                 tlb_remove_page_size(tlb, page, huge_page_size(h));
3984                 /*
3985                  * Bail out after unmapping reference page if supplied
3986                  */
3987                 if (ref_page)
3988                         break;
3989         }
3990         mmu_notifier_invalidate_range_end(&range);
3991         tlb_end_vma(tlb, vma);
3992 }
3993
3994 void __unmap_hugepage_range_final(struct mmu_gather *tlb,
3995                           struct vm_area_struct *vma, unsigned long start,
3996                           unsigned long end, struct page *ref_page)
3997 {
3998         __unmap_hugepage_range(tlb, vma, start, end, ref_page);
3999
4000         /*
4001          * Clear this flag so that x86's huge_pmd_share page_table_shareable
4002          * test will fail on a vma being torn down, and not grab a page table
4003          * on its way out.  We're lucky that the flag has such an appropriate
4004          * name, and can in fact be safely cleared here. We could clear it
4005          * before the __unmap_hugepage_range above, but all that's necessary
4006          * is to clear it before releasing the i_mmap_rwsem. This works
4007          * because in the context this is called, the VMA is about to be
4008          * destroyed and the i_mmap_rwsem is held.
4009          */
4010         vma->vm_flags &= ~VM_MAYSHARE;
4011 }
4012
4013 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
4014                           unsigned long end, struct page *ref_page)
4015 {
4016         struct mmu_gather tlb;
4017
4018         tlb_gather_mmu(&tlb, vma->vm_mm);
4019         __unmap_hugepage_range(&tlb, vma, start, end, ref_page);
4020         tlb_finish_mmu(&tlb);
4021 }
4022
4023 /*
4024  * This is called when the original mapper is failing to COW a MAP_PRIVATE
4025  * mappping it owns the reserve page for. The intention is to unmap the page
4026  * from other VMAs and let the children be SIGKILLed if they are faulting the
4027  * same region.
4028  */
4029 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
4030                               struct page *page, unsigned long address)
4031 {
4032         struct hstate *h = hstate_vma(vma);
4033         struct vm_area_struct *iter_vma;
4034         struct address_space *mapping;
4035         pgoff_t pgoff;
4036
4037         /*
4038          * vm_pgoff is in PAGE_SIZE units, hence the different calculation
4039          * from page cache lookup which is in HPAGE_SIZE units.
4040          */
4041         address = address & huge_page_mask(h);
4042         pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
4043                         vma->vm_pgoff;
4044         mapping = vma->vm_file->f_mapping;
4045
4046         /*
4047          * Take the mapping lock for the duration of the table walk. As
4048          * this mapping should be shared between all the VMAs,
4049          * __unmap_hugepage_range() is called as the lock is already held
4050          */
4051         i_mmap_lock_write(mapping);
4052         vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
4053                 /* Do not unmap the current VMA */
4054                 if (iter_vma == vma)
4055                         continue;
4056
4057                 /*
4058                  * Shared VMAs have their own reserves and do not affect
4059                  * MAP_PRIVATE accounting but it is possible that a shared
4060                  * VMA is using the same page so check and skip such VMAs.
4061                  */
4062                 if (iter_vma->vm_flags & VM_MAYSHARE)
4063                         continue;
4064
4065                 /*
4066                  * Unmap the page from other VMAs without their own reserves.
4067                  * They get marked to be SIGKILLed if they fault in these
4068                  * areas. This is because a future no-page fault on this VMA
4069                  * could insert a zeroed page instead of the data existing
4070                  * from the time of fork. This would look like data corruption
4071                  */
4072                 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
4073                         unmap_hugepage_range(iter_vma, address,
4074                                              address + huge_page_size(h), page);
4075         }
4076         i_mmap_unlock_write(mapping);
4077 }
4078
4079 /*
4080  * Hugetlb_cow() should be called with page lock of the original hugepage held.
4081  * Called with hugetlb_instantiation_mutex held and pte_page locked so we
4082  * cannot race with other handlers or page migration.
4083  * Keep the pte_same checks anyway to make transition from the mutex easier.
4084  */
4085 static vm_fault_t hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
4086                        unsigned long address, pte_t *ptep,
4087                        struct page *pagecache_page, spinlock_t *ptl)
4088 {
4089         pte_t pte;
4090         struct hstate *h = hstate_vma(vma);
4091         struct page *old_page, *new_page;
4092         int outside_reserve = 0;
4093         vm_fault_t ret = 0;
4094         unsigned long haddr = address & huge_page_mask(h);
4095         struct mmu_notifier_range range;
4096
4097         pte = huge_ptep_get(ptep);
4098         old_page = pte_page(pte);
4099
4100 retry_avoidcopy:
4101         /* If no-one else is actually using this page, avoid the copy
4102          * and just make the page writable */
4103         if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
4104                 page_move_anon_rmap(old_page, vma);
4105                 set_huge_ptep_writable(vma, haddr, ptep);
4106                 return 0;
4107         }
4108
4109         /*
4110          * If the process that created a MAP_PRIVATE mapping is about to
4111          * perform a COW due to a shared page count, attempt to satisfy
4112          * the allocation without using the existing reserves. The pagecache
4113          * page is used to determine if the reserve at this address was
4114          * consumed or not. If reserves were used, a partial faulted mapping
4115          * at the time of fork() could consume its reserves on COW instead
4116          * of the full address range.
4117          */
4118         if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
4119                         old_page != pagecache_page)
4120                 outside_reserve = 1;
4121
4122         get_page(old_page);
4123
4124         /*
4125          * Drop page table lock as buddy allocator may be called. It will
4126          * be acquired again before returning to the caller, as expected.
4127          */
4128         spin_unlock(ptl);
4129         new_page = alloc_huge_page(vma, haddr, outside_reserve);
4130
4131         if (IS_ERR(new_page)) {
4132                 /*
4133                  * If a process owning a MAP_PRIVATE mapping fails to COW,
4134                  * it is due to references held by a child and an insufficient
4135                  * huge page pool. To guarantee the original mappers
4136                  * reliability, unmap the page from child processes. The child
4137                  * may get SIGKILLed if it later faults.
4138                  */
4139                 if (outside_reserve) {
4140                         struct address_space *mapping = vma->vm_file->f_mapping;
4141                         pgoff_t idx;
4142                         u32 hash;
4143
4144                         put_page(old_page);
4145                         BUG_ON(huge_pte_none(pte));
4146                         /*
4147                          * Drop hugetlb_fault_mutex and i_mmap_rwsem before
4148                          * unmapping.  unmapping needs to hold i_mmap_rwsem
4149                          * in write mode.  Dropping i_mmap_rwsem in read mode
4150                          * here is OK as COW mappings do not interact with
4151                          * PMD sharing.
4152                          *
4153                          * Reacquire both after unmap operation.
4154                          */
4155                         idx = vma_hugecache_offset(h, vma, haddr);
4156                         hash = hugetlb_fault_mutex_hash(mapping, idx);
4157                         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
4158                         i_mmap_unlock_read(mapping);
4159
4160                         unmap_ref_private(mm, vma, old_page, haddr);
4161
4162                         i_mmap_lock_read(mapping);
4163                         mutex_lock(&hugetlb_fault_mutex_table[hash]);
4164                         spin_lock(ptl);
4165                         ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
4166                         if (likely(ptep &&
4167                                    pte_same(huge_ptep_get(ptep), pte)))
4168                                 goto retry_avoidcopy;
4169                         /*
4170                          * race occurs while re-acquiring page table
4171                          * lock, and our job is done.
4172                          */
4173                         return 0;
4174                 }
4175
4176                 ret = vmf_error(PTR_ERR(new_page));
4177                 goto out_release_old;
4178         }
4179
4180         /*
4181          * When the original hugepage is shared one, it does not have
4182          * anon_vma prepared.
4183          */
4184         if (unlikely(anon_vma_prepare(vma))) {
4185                 ret = VM_FAULT_OOM;
4186                 goto out_release_all;
4187         }
4188
4189         copy_user_huge_page(new_page, old_page, address, vma,
4190                             pages_per_huge_page(h));
4191         __SetPageUptodate(new_page);
4192
4193         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, haddr,
4194                                 haddr + huge_page_size(h));
4195         mmu_notifier_invalidate_range_start(&range);
4196
4197         /*
4198          * Retake the page table lock to check for racing updates
4199          * before the page tables are altered
4200          */
4201         spin_lock(ptl);
4202         ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
4203         if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
4204                 ClearPagePrivate(new_page);
4205
4206                 /* Break COW */
4207                 huge_ptep_clear_flush(vma, haddr, ptep);
4208                 mmu_notifier_invalidate_range(mm, range.start, range.end);
4209                 set_huge_pte_at(mm, haddr, ptep,
4210                                 make_huge_pte(vma, new_page, 1));
4211                 page_remove_rmap(old_page, true);
4212                 hugepage_add_new_anon_rmap(new_page, vma, haddr);
4213                 set_page_huge_active(new_page);
4214                 /* Make the old page be freed below */
4215                 new_page = old_page;
4216         }
4217         spin_unlock(ptl);
4218         mmu_notifier_invalidate_range_end(&range);
4219 out_release_all:
4220         restore_reserve_on_error(h, vma, haddr, new_page);
4221         put_page(new_page);
4222 out_release_old:
4223         put_page(old_page);
4224
4225         spin_lock(ptl); /* Caller expects lock to be held */
4226         return ret;
4227 }
4228
4229 /* Return the pagecache page at a given address within a VMA */
4230 static struct page *hugetlbfs_pagecache_page(struct hstate *h,
4231                         struct vm_area_struct *vma, unsigned long address)
4232 {
4233         struct address_space *mapping;
4234         pgoff_t idx;
4235
4236         mapping = vma->vm_file->f_mapping;
4237         idx = vma_hugecache_offset(h, vma, address);
4238
4239         return find_lock_page(mapping, idx);
4240 }
4241
4242 /*
4243  * Return whether there is a pagecache page to back given address within VMA.
4244  * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
4245  */
4246 static bool hugetlbfs_pagecache_present(struct hstate *h,
4247                         struct vm_area_struct *vma, unsigned long address)
4248 {
4249         struct address_space *mapping;
4250         pgoff_t idx;
4251         struct page *page;
4252
4253         mapping = vma->vm_file->f_mapping;
4254         idx = vma_hugecache_offset(h, vma, address);
4255
4256         page = find_get_page(mapping, idx);
4257         if (page)
4258                 put_page(page);
4259         return page != NULL;
4260 }
4261
4262 int huge_add_to_page_cache(struct page *page, struct address_space *mapping,
4263                            pgoff_t idx)
4264 {
4265         struct inode *inode = mapping->host;
4266         struct hstate *h = hstate_inode(inode);
4267         int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
4268
4269         if (err)
4270                 return err;
4271         ClearPagePrivate(page);
4272
4273         /*
4274          * set page dirty so that it will not be removed from cache/file
4275          * by non-hugetlbfs specific code paths.
4276          */
4277         set_page_dirty(page);
4278
4279         spin_lock(&inode->i_lock);
4280         inode->i_blocks += blocks_per_huge_page(h);
4281         spin_unlock(&inode->i_lock);
4282         return 0;
4283 }
4284
4285 static vm_fault_t hugetlb_no_page(struct mm_struct *mm,
4286                         struct vm_area_struct *vma,
4287                         struct address_space *mapping, pgoff_t idx,
4288                         unsigned long address, pte_t *ptep, unsigned int flags)
4289 {
4290         struct hstate *h = hstate_vma(vma);
4291         vm_fault_t ret = VM_FAULT_SIGBUS;
4292         int anon_rmap = 0;
4293         unsigned long size;
4294         struct page *page;
4295         pte_t new_pte;
4296         spinlock_t *ptl;
4297         unsigned long haddr = address & huge_page_mask(h);
4298         bool new_page = false;
4299
4300         /*
4301          * Currently, we are forced to kill the process in the event the
4302          * original mapper has unmapped pages from the child due to a failed
4303          * COW. Warn that such a situation has occurred as it may not be obvious
4304          */
4305         if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
4306                 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
4307                            current->pid);
4308                 return ret;
4309         }
4310
4311         /*
4312          * We can not race with truncation due to holding i_mmap_rwsem.
4313          * i_size is modified when holding i_mmap_rwsem, so check here
4314          * once for faults beyond end of file.
4315          */
4316         size = i_size_read(mapping->host) >> huge_page_shift(h);
4317         if (idx >= size)
4318                 goto out;
4319
4320 retry:
4321         page = find_lock_page(mapping, idx);
4322         if (!page) {
4323                 /*
4324                  * Check for page in userfault range
4325                  */
4326                 if (userfaultfd_missing(vma)) {
4327                         u32 hash;
4328                         struct vm_fault vmf = {
4329                                 .vma = vma,
4330                                 .address = haddr,
4331                                 .flags = flags,
4332                                 /*
4333                                  * Hard to debug if it ends up being
4334                                  * used by a callee that assumes
4335                                  * something about the other
4336                                  * uninitialized fields... same as in
4337                                  * memory.c
4338                                  */
4339                         };
4340
4341                         /*
4342                          * hugetlb_fault_mutex and i_mmap_rwsem must be
4343                          * dropped before handling userfault.  Reacquire
4344                          * after handling fault to make calling code simpler.
4345                          */
4346                         hash = hugetlb_fault_mutex_hash(mapping, idx);
4347                         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
4348                         i_mmap_unlock_read(mapping);
4349                         ret = handle_userfault(&vmf, VM_UFFD_MISSING);
4350                         i_mmap_lock_read(mapping);
4351                         mutex_lock(&hugetlb_fault_mutex_table[hash]);
4352                         goto out;
4353                 }
4354
4355                 page = alloc_huge_page(vma, haddr, 0);
4356                 if (IS_ERR(page)) {
4357                         /*
4358                          * Returning error will result in faulting task being
4359                          * sent SIGBUS.  The hugetlb fault mutex prevents two
4360                          * tasks from racing to fault in the same page which
4361                          * could result in false unable to allocate errors.
4362                          * Page migration does not take the fault mutex, but
4363                          * does a clear then write of pte's under page table
4364                          * lock.  Page fault code could race with migration,
4365                          * notice the clear pte and try to allocate a page
4366                          * here.  Before returning error, get ptl and make
4367                          * sure there really is no pte entry.
4368                          */
4369                         ptl = huge_pte_lock(h, mm, ptep);
4370                         if (!huge_pte_none(huge_ptep_get(ptep))) {
4371                                 ret = 0;
4372                                 spin_unlock(ptl);
4373                                 goto out;
4374                         }
4375                         spin_unlock(ptl);
4376                         ret = vmf_error(PTR_ERR(page));
4377                         goto out;
4378                 }
4379                 clear_huge_page(page, address, pages_per_huge_page(h));
4380                 __SetPageUptodate(page);
4381                 new_page = true;
4382
4383                 if (vma->vm_flags & VM_MAYSHARE) {
4384                         int err = huge_add_to_page_cache(page, mapping, idx);
4385                         if (err) {
4386                                 put_page(page);
4387                                 if (err == -EEXIST)
4388                                         goto retry;
4389                                 goto out;
4390                         }
4391                 } else {
4392                         lock_page(page);
4393                         if (unlikely(anon_vma_prepare(vma))) {
4394                                 ret = VM_FAULT_OOM;
4395                                 goto backout_unlocked;
4396                         }
4397                         anon_rmap = 1;
4398                 }
4399         } else {
4400                 /*
4401                  * If memory error occurs between mmap() and fault, some process
4402                  * don't have hwpoisoned swap entry for errored virtual address.
4403                  * So we need to block hugepage fault by PG_hwpoison bit check.
4404                  */
4405                 if (unlikely(PageHWPoison(page))) {
4406                         ret = VM_FAULT_HWPOISON_LARGE |
4407                                 VM_FAULT_SET_HINDEX(hstate_index(h));
4408                         goto backout_unlocked;
4409                 }
4410         }
4411
4412         /*
4413          * If we are going to COW a private mapping later, we examine the
4414          * pending reservations for this page now. This will ensure that
4415          * any allocations necessary to record that reservation occur outside
4416          * the spinlock.
4417          */
4418         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
4419                 if (vma_needs_reservation(h, vma, haddr) < 0) {
4420                         ret = VM_FAULT_OOM;
4421                         goto backout_unlocked;
4422                 }
4423                 /* Just decrements count, does not deallocate */
4424                 vma_end_reservation(h, vma, haddr);
4425         }
4426
4427         ptl = huge_pte_lock(h, mm, ptep);
4428         ret = 0;
4429         if (!huge_pte_none(huge_ptep_get(ptep)))
4430                 goto backout;
4431
4432         if (anon_rmap) {
4433                 ClearPagePrivate(page);
4434                 hugepage_add_new_anon_rmap(page, vma, haddr);
4435         } else
4436                 page_dup_rmap(page, true);
4437         new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
4438                                 && (vma->vm_flags & VM_SHARED)));
4439         set_huge_pte_at(mm, haddr, ptep, new_pte);
4440
4441         hugetlb_count_add(pages_per_huge_page(h), mm);
4442         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
4443                 /* Optimization, do the COW without a second fault */
4444                 ret = hugetlb_cow(mm, vma, address, ptep, page, ptl);
4445         }
4446
4447         spin_unlock(ptl);
4448
4449         /*
4450          * Only make newly allocated pages active.  Existing pages found
4451          * in the pagecache could be !page_huge_active() if they have been
4452          * isolated for migration.
4453          */
4454         if (new_page)
4455                 set_page_huge_active(page);
4456
4457         unlock_page(page);
4458 out:
4459         return ret;
4460
4461 backout:
4462         spin_unlock(ptl);
4463 backout_unlocked:
4464         unlock_page(page);
4465         restore_reserve_on_error(h, vma, haddr, page);
4466         put_page(page);
4467         goto out;
4468 }
4469
4470 #ifdef CONFIG_SMP
4471 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
4472 {
4473         unsigned long key[2];
4474         u32 hash;
4475
4476         key[0] = (unsigned long) mapping;
4477         key[1] = idx;
4478
4479         hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0);
4480
4481         return hash & (num_fault_mutexes - 1);
4482 }
4483 #else
4484 /*
4485  * For uniprocesor systems we always use a single mutex, so just
4486  * return 0 and avoid the hashing overhead.
4487  */
4488 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
4489 {
4490         return 0;
4491 }
4492 #endif
4493
4494 vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
4495                         unsigned long address, unsigned int flags)
4496 {
4497         pte_t *ptep, entry;
4498         spinlock_t *ptl;
4499         vm_fault_t ret;
4500         u32 hash;
4501         pgoff_t idx;
4502         struct page *page = NULL;
4503         struct page *pagecache_page = NULL;
4504         struct hstate *h = hstate_vma(vma);
4505         struct address_space *mapping;
4506         int need_wait_lock = 0;
4507         unsigned long haddr = address & huge_page_mask(h);
4508
4509         ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
4510         if (ptep) {
4511                 /*
4512                  * Since we hold no locks, ptep could be stale.  That is
4513                  * OK as we are only making decisions based on content and
4514                  * not actually modifying content here.
4515                  */
4516                 entry = huge_ptep_get(ptep);
4517                 if (unlikely(is_hugetlb_entry_migration(entry))) {
4518                         migration_entry_wait_huge(vma, mm, ptep);
4519                         return 0;
4520                 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
4521                         return VM_FAULT_HWPOISON_LARGE |
4522                                 VM_FAULT_SET_HINDEX(hstate_index(h));
4523         }
4524
4525         /*
4526          * Acquire i_mmap_rwsem before calling huge_pte_alloc and hold
4527          * until finished with ptep.  This serves two purposes:
4528          * 1) It prevents huge_pmd_unshare from being called elsewhere
4529          *    and making the ptep no longer valid.
4530          * 2) It synchronizes us with i_size modifications during truncation.
4531          *
4532          * ptep could have already be assigned via huge_pte_offset.  That
4533          * is OK, as huge_pte_alloc will return the same value unless
4534          * something has changed.
4535          */
4536         mapping = vma->vm_file->f_mapping;
4537         i_mmap_lock_read(mapping);
4538         ptep = huge_pte_alloc(mm, haddr, huge_page_size(h));
4539         if (!ptep) {
4540                 i_mmap_unlock_read(mapping);
4541                 return VM_FAULT_OOM;
4542         }
4543
4544         /*
4545          * Serialize hugepage allocation and instantiation, so that we don't
4546          * get spurious allocation failures if two CPUs race to instantiate
4547          * the same page in the page cache.
4548          */
4549         idx = vma_hugecache_offset(h, vma, haddr);
4550         hash = hugetlb_fault_mutex_hash(mapping, idx);
4551         mutex_lock(&hugetlb_fault_mutex_table[hash]);
4552
4553         entry = huge_ptep_get(ptep);
4554         if (huge_pte_none(entry)) {
4555                 ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
4556                 goto out_mutex;
4557         }
4558
4559         ret = 0;
4560
4561         /*
4562          * entry could be a migration/hwpoison entry at this point, so this
4563          * check prevents the kernel from going below assuming that we have
4564          * an active hugepage in pagecache. This goto expects the 2nd page
4565          * fault, and is_hugetlb_entry_(migration|hwpoisoned) check will
4566          * properly handle it.
4567          */
4568         if (!pte_present(entry))
4569                 goto out_mutex;
4570
4571         /*
4572          * If we are going to COW the mapping later, we examine the pending
4573          * reservations for this page now. This will ensure that any
4574          * allocations necessary to record that reservation occur outside the
4575          * spinlock. For private mappings, we also lookup the pagecache
4576          * page now as it is used to determine if a reservation has been
4577          * consumed.
4578          */
4579         if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
4580                 if (vma_needs_reservation(h, vma, haddr) < 0) {
4581                         ret = VM_FAULT_OOM;
4582                         goto out_mutex;
4583                 }
4584                 /* Just decrements count, does not deallocate */
4585                 vma_end_reservation(h, vma, haddr);
4586
4587                 if (!(vma->vm_flags & VM_MAYSHARE))
4588                         pagecache_page = hugetlbfs_pagecache_page(h,
4589                                                                 vma, haddr);
4590         }
4591
4592         ptl = huge_pte_lock(h, mm, ptep);
4593
4594         /* Check for a racing update before calling hugetlb_cow */
4595         if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
4596                 goto out_ptl;
4597
4598         /*
4599          * hugetlb_cow() requires page locks of pte_page(entry) and
4600          * pagecache_page, so here we need take the former one
4601          * when page != pagecache_page or !pagecache_page.
4602          */
4603         page = pte_page(entry);
4604         if (page != pagecache_page)
4605                 if (!trylock_page(page)) {
4606                         need_wait_lock = 1;
4607                         goto out_ptl;
4608                 }
4609
4610         get_page(page);
4611
4612         if (flags & FAULT_FLAG_WRITE) {
4613                 if (!huge_pte_write(entry)) {
4614                         ret = hugetlb_cow(mm, vma, address, ptep,
4615                                           pagecache_page, ptl);
4616                         goto out_put_page;
4617                 }
4618                 entry = huge_pte_mkdirty(entry);
4619         }
4620         entry = pte_mkyoung(entry);
4621         if (huge_ptep_set_access_flags(vma, haddr, ptep, entry,
4622                                                 flags & FAULT_FLAG_WRITE))
4623                 update_mmu_cache(vma, haddr, ptep);
4624 out_put_page:
4625         if (page != pagecache_page)
4626                 unlock_page(page);
4627         put_page(page);
4628 out_ptl:
4629         spin_unlock(ptl);
4630
4631         if (pagecache_page) {
4632                 unlock_page(pagecache_page);
4633                 put_page(pagecache_page);
4634         }
4635 out_mutex:
4636         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
4637         i_mmap_unlock_read(mapping);
4638         /*
4639          * Generally it's safe to hold refcount during waiting page lock. But
4640          * here we just wait to defer the next page fault to avoid busy loop and
4641          * the page is not used after unlocked before returning from the current
4642          * page fault. So we are safe from accessing freed page, even if we wait
4643          * here without taking refcount.
4644          */
4645         if (need_wait_lock)
4646                 wait_on_page_locked(page);
4647         return ret;
4648 }
4649
4650 /*
4651  * Used by userfaultfd UFFDIO_COPY.  Based on mcopy_atomic_pte with
4652  * modifications for huge pages.
4653  */
4654 int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm,
4655                             pte_t *dst_pte,
4656                             struct vm_area_struct *dst_vma,
4657                             unsigned long dst_addr,
4658                             unsigned long src_addr,
4659                             struct page **pagep)
4660 {
4661         struct address_space *mapping;
4662         pgoff_t idx;
4663         unsigned long size;
4664         int vm_shared = dst_vma->vm_flags & VM_SHARED;
4665         struct hstate *h = hstate_vma(dst_vma);
4666         pte_t _dst_pte;
4667         spinlock_t *ptl;
4668         int ret;
4669         struct page *page;
4670
4671         if (!*pagep) {
4672                 ret = -ENOMEM;
4673                 page = alloc_huge_page(dst_vma, dst_addr, 0);
4674                 if (IS_ERR(page))
4675                         goto out;
4676
4677                 ret = copy_huge_page_from_user(page,
4678                                                 (const void __user *) src_addr,
4679                                                 pages_per_huge_page(h), false);
4680
4681                 /* fallback to copy_from_user outside mmap_lock */
4682                 if (unlikely(ret)) {
4683                         ret = -ENOENT;
4684                         *pagep = page;
4685                         /* don't free the page */
4686                         goto out;
4687                 }
4688         } else {
4689                 page = *pagep;
4690                 *pagep = NULL;
4691         }
4692
4693         /*
4694          * The memory barrier inside __SetPageUptodate makes sure that
4695          * preceding stores to the page contents become visible before
4696          * the set_pte_at() write.
4697          */
4698         __SetPageUptodate(page);
4699
4700         mapping = dst_vma->vm_file->f_mapping;
4701         idx = vma_hugecache_offset(h, dst_vma, dst_addr);
4702
4703         /*
4704          * If shared, add to page cache
4705          */
4706         if (vm_shared) {
4707                 size = i_size_read(mapping->host) >> huge_page_shift(h);
4708                 ret = -EFAULT;
4709                 if (idx >= size)
4710                         goto out_release_nounlock;
4711
4712                 /*
4713                  * Serialization between remove_inode_hugepages() and
4714                  * huge_add_to_page_cache() below happens through the
4715                  * hugetlb_fault_mutex_table that here must be hold by
4716                  * the caller.
4717                  */
4718                 ret = huge_add_to_page_cache(page, mapping, idx);
4719                 if (ret)
4720                         goto out_release_nounlock;
4721         }
4722
4723         ptl = huge_pte_lockptr(h, dst_mm, dst_pte);
4724         spin_lock(ptl);
4725
4726         /*
4727          * Recheck the i_size after holding PT lock to make sure not
4728          * to leave any page mapped (as page_mapped()) beyond the end
4729          * of the i_size (remove_inode_hugepages() is strict about
4730          * enforcing that). If we bail out here, we'll also leave a
4731          * page in the radix tree in the vm_shared case beyond the end
4732          * of the i_size, but remove_inode_hugepages() will take care
4733          * of it as soon as we drop the hugetlb_fault_mutex_table.
4734          */
4735         size = i_size_read(mapping->host) >> huge_page_shift(h);
4736         ret = -EFAULT;
4737         if (idx >= size)
4738                 goto out_release_unlock;
4739
4740         ret = -EEXIST;
4741         if (!huge_pte_none(huge_ptep_get(dst_pte)))
4742                 goto out_release_unlock;
4743
4744         if (vm_shared) {
4745                 page_dup_rmap(page, true);
4746         } else {
4747                 ClearPagePrivate(page);
4748                 hugepage_add_new_anon_rmap(page, dst_vma, dst_addr);
4749         }
4750
4751         _dst_pte = make_huge_pte(dst_vma, page, dst_vma->vm_flags & VM_WRITE);
4752         if (dst_vma->vm_flags & VM_WRITE)
4753                 _dst_pte = huge_pte_mkdirty(_dst_pte);
4754         _dst_pte = pte_mkyoung(_dst_pte);
4755
4756         set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
4757
4758         (void)huge_ptep_set_access_flags(dst_vma, dst_addr, dst_pte, _dst_pte,
4759                                         dst_vma->vm_flags & VM_WRITE);
4760         hugetlb_count_add(pages_per_huge_page(h), dst_mm);
4761
4762         /* No need to invalidate - it was non-present before */
4763         update_mmu_cache(dst_vma, dst_addr, dst_pte);
4764
4765         spin_unlock(ptl);
4766         set_page_huge_active(page);
4767         if (vm_shared)
4768                 unlock_page(page);
4769         ret = 0;
4770 out:
4771         return ret;
4772 out_release_unlock:
4773         spin_unlock(ptl);
4774         if (vm_shared)
4775                 unlock_page(page);
4776 out_release_nounlock:
4777         put_page(page);
4778         goto out;
4779 }
4780
4781 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
4782                          struct page **pages, struct vm_area_struct **vmas,
4783                          unsigned long *position, unsigned long *nr_pages,
4784                          long i, unsigned int flags, int *locked)
4785 {
4786         unsigned long pfn_offset;
4787         unsigned long vaddr = *position;
4788         unsigned long remainder = *nr_pages;
4789         struct hstate *h = hstate_vma(vma);
4790         int err = -EFAULT;
4791
4792         while (vaddr < vma->vm_end && remainder) {
4793                 pte_t *pte;
4794                 spinlock_t *ptl = NULL;
4795                 int absent;
4796                 struct page *page;
4797
4798                 /*
4799                  * If we have a pending SIGKILL, don't keep faulting pages and
4800                  * potentially allocating memory.
4801                  */
4802                 if (fatal_signal_pending(current)) {
4803                         remainder = 0;
4804                         break;
4805                 }
4806
4807                 /*
4808                  * Some archs (sparc64, sh*) have multiple pte_ts to
4809                  * each hugepage.  We have to make sure we get the
4810                  * first, for the page indexing below to work.
4811                  *
4812                  * Note that page table lock is not held when pte is null.
4813                  */
4814                 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h),
4815                                       huge_page_size(h));
4816                 if (pte)
4817                         ptl = huge_pte_lock(h, mm, pte);
4818                 absent = !pte || huge_pte_none(huge_ptep_get(pte));
4819
4820                 /*
4821                  * When coredumping, it suits get_dump_page if we just return
4822                  * an error where there's an empty slot with no huge pagecache
4823                  * to back it.  This way, we avoid allocating a hugepage, and
4824                  * the sparse dumpfile avoids allocating disk blocks, but its
4825                  * huge holes still show up with zeroes where they need to be.
4826                  */
4827                 if (absent && (flags & FOLL_DUMP) &&
4828                     !hugetlbfs_pagecache_present(h, vma, vaddr)) {
4829                         if (pte)
4830                                 spin_unlock(ptl);
4831                         remainder = 0;
4832                         break;
4833                 }
4834
4835                 /*
4836                  * We need call hugetlb_fault for both hugepages under migration
4837                  * (in which case hugetlb_fault waits for the migration,) and
4838                  * hwpoisoned hugepages (in which case we need to prevent the
4839                  * caller from accessing to them.) In order to do this, we use
4840                  * here is_swap_pte instead of is_hugetlb_entry_migration and
4841                  * is_hugetlb_entry_hwpoisoned. This is because it simply covers
4842                  * both cases, and because we can't follow correct pages
4843                  * directly from any kind of swap entries.
4844                  */
4845                 if (absent || is_swap_pte(huge_ptep_get(pte)) ||
4846                     ((flags & FOLL_WRITE) &&
4847                       !huge_pte_write(huge_ptep_get(pte)))) {
4848                         vm_fault_t ret;
4849                         unsigned int fault_flags = 0;
4850
4851                         if (pte)
4852                                 spin_unlock(ptl);
4853                         if (flags & FOLL_WRITE)
4854                                 fault_flags |= FAULT_FLAG_WRITE;
4855                         if (locked)
4856                                 fault_flags |= FAULT_FLAG_ALLOW_RETRY |
4857                                         FAULT_FLAG_KILLABLE;
4858                         if (flags & FOLL_NOWAIT)
4859                                 fault_flags |= FAULT_FLAG_ALLOW_RETRY |
4860                                         FAULT_FLAG_RETRY_NOWAIT;
4861                         if (flags & FOLL_TRIED) {
4862                                 /*
4863                                  * Note: FAULT_FLAG_ALLOW_RETRY and
4864                                  * FAULT_FLAG_TRIED can co-exist
4865                                  */
4866                                 fault_flags |= FAULT_FLAG_TRIED;
4867                         }
4868                         ret = hugetlb_fault(mm, vma, vaddr, fault_flags);
4869                         if (ret & VM_FAULT_ERROR) {
4870                                 err = vm_fault_to_errno(ret, flags);
4871                                 remainder = 0;
4872                                 break;
4873                         }
4874                         if (ret & VM_FAULT_RETRY) {
4875                                 if (locked &&
4876                                     !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
4877                                         *locked = 0;
4878                                 *nr_pages = 0;
4879                                 /*
4880                                  * VM_FAULT_RETRY must not return an
4881                                  * error, it will return zero
4882                                  * instead.
4883                                  *
4884                                  * No need to update "position" as the
4885                                  * caller will not check it after
4886                                  * *nr_pages is set to 0.
4887                                  */
4888                                 return i;
4889                         }
4890                         continue;
4891                 }
4892
4893                 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
4894                 page = pte_page(huge_ptep_get(pte));
4895
4896                 /*
4897                  * If subpage information not requested, update counters
4898                  * and skip the same_page loop below.
4899                  */
4900                 if (!pages && !vmas && !pfn_offset &&
4901                     (vaddr + huge_page_size(h) < vma->vm_end) &&
4902                     (remainder >= pages_per_huge_page(h))) {
4903                         vaddr += huge_page_size(h);
4904                         remainder -= pages_per_huge_page(h);
4905                         i += pages_per_huge_page(h);
4906                         spin_unlock(ptl);
4907                         continue;
4908                 }
4909
4910 same_page:
4911                 if (pages) {
4912                         pages[i] = mem_map_offset(page, pfn_offset);
4913                         /*
4914                          * try_grab_page() should always succeed here, because:
4915                          * a) we hold the ptl lock, and b) we've just checked
4916                          * that the huge page is present in the page tables. If
4917                          * the huge page is present, then the tail pages must
4918                          * also be present. The ptl prevents the head page and
4919                          * tail pages from being rearranged in any way. So this
4920                          * page must be available at this point, unless the page
4921                          * refcount overflowed:
4922                          */
4923                         if (WARN_ON_ONCE(!try_grab_page(pages[i], flags))) {
4924                                 spin_unlock(ptl);
4925                                 remainder = 0;
4926                                 err = -ENOMEM;
4927                                 break;
4928                         }
4929                 }
4930
4931                 if (vmas)
4932                         vmas[i] = vma;
4933
4934                 vaddr += PAGE_SIZE;
4935                 ++pfn_offset;
4936                 --remainder;
4937                 ++i;
4938                 if (vaddr < vma->vm_end && remainder &&
4939                                 pfn_offset < pages_per_huge_page(h)) {
4940                         /*
4941                          * We use pfn_offset to avoid touching the pageframes
4942                          * of this compound page.
4943                          */
4944                         goto same_page;
4945                 }
4946                 spin_unlock(ptl);
4947         }
4948         *nr_pages = remainder;
4949         /*
4950          * setting position is actually required only if remainder is
4951          * not zero but it's faster not to add a "if (remainder)"
4952          * branch.
4953          */
4954         *position = vaddr;
4955
4956         return i ? i : err;
4957 }
4958
4959 #ifndef __HAVE_ARCH_FLUSH_HUGETLB_TLB_RANGE
4960 /*
4961  * ARCHes with special requirements for evicting HUGETLB backing TLB entries can
4962  * implement this.
4963  */
4964 #define flush_hugetlb_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end)
4965 #endif
4966
4967 unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
4968                 unsigned long address, unsigned long end, pgprot_t newprot)
4969 {
4970         struct mm_struct *mm = vma->vm_mm;
4971         unsigned long start = address;
4972         pte_t *ptep;
4973         pte_t pte;
4974         struct hstate *h = hstate_vma(vma);
4975         unsigned long pages = 0;
4976         bool shared_pmd = false;
4977         struct mmu_notifier_range range;
4978
4979         /*
4980          * In the case of shared PMDs, the area to flush could be beyond
4981          * start/end.  Set range.start/range.end to cover the maximum possible
4982          * range if PMD sharing is possible.
4983          */
4984         mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA,
4985                                 0, vma, mm, start, end);
4986         adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
4987
4988         BUG_ON(address >= end);
4989         flush_cache_range(vma, range.start, range.end);
4990
4991         mmu_notifier_invalidate_range_start(&range);
4992         i_mmap_lock_write(vma->vm_file->f_mapping);
4993         for (; address < end; address += huge_page_size(h)) {
4994                 spinlock_t *ptl;
4995                 ptep = huge_pte_offset(mm, address, huge_page_size(h));
4996                 if (!ptep)
4997                         continue;
4998                 ptl = huge_pte_lock(h, mm, ptep);
4999                 if (huge_pmd_unshare(mm, vma, &address, ptep)) {
5000                         pages++;
5001                         spin_unlock(ptl);
5002                         shared_pmd = true;
5003                         continue;
5004                 }
5005                 pte = huge_ptep_get(ptep);
5006                 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
5007                         spin_unlock(ptl);
5008                         continue;
5009                 }
5010                 if (unlikely(is_hugetlb_entry_migration(pte))) {
5011                         swp_entry_t entry = pte_to_swp_entry(pte);
5012
5013                         if (is_write_migration_entry(entry)) {
5014                                 pte_t newpte;
5015
5016                                 make_migration_entry_read(&entry);
5017                                 newpte = swp_entry_to_pte(entry);
5018                                 set_huge_swap_pte_at(mm, address, ptep,
5019                                                      newpte, huge_page_size(h));
5020                                 pages++;
5021                         }
5022                         spin_unlock(ptl);
5023                         continue;
5024                 }
5025                 if (!huge_pte_none(pte)) {
5026                         pte_t old_pte;
5027
5028                         old_pte = huge_ptep_modify_prot_start(vma, address, ptep);
5029                         pte = pte_mkhuge(huge_pte_modify(old_pte, newprot));
5030                         pte = arch_make_huge_pte(pte, vma, NULL, 0);
5031                         huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte);
5032                         pages++;
5033                 }
5034                 spin_unlock(ptl);
5035         }
5036         /*
5037          * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
5038          * may have cleared our pud entry and done put_page on the page table:
5039          * once we release i_mmap_rwsem, another task can do the final put_page
5040          * and that page table be reused and filled with junk.  If we actually
5041          * did unshare a page of pmds, flush the range corresponding to the pud.
5042          */
5043         if (shared_pmd)
5044                 flush_hugetlb_tlb_range(vma, range.start, range.end);
5045         else
5046                 flush_hugetlb_tlb_range(vma, start, end);
5047         /*
5048          * No need to call mmu_notifier_invalidate_range() we are downgrading
5049          * page table protection not changing it to point to a new page.
5050          *
5051          * See Documentation/vm/mmu_notifier.rst
5052          */
5053         i_mmap_unlock_write(vma->vm_file->f_mapping);
5054         mmu_notifier_invalidate_range_end(&range);
5055
5056         return pages << h->order;
5057 }
5058
5059 int hugetlb_reserve_pages(struct inode *inode,
5060                                         long from, long to,
5061                                         struct vm_area_struct *vma,
5062                                         vm_flags_t vm_flags)
5063 {
5064         long ret, chg, add = -1;
5065         struct hstate *h = hstate_inode(inode);
5066         struct hugepage_subpool *spool = subpool_inode(inode);
5067         struct resv_map *resv_map;
5068         struct hugetlb_cgroup *h_cg = NULL;
5069         long gbl_reserve, regions_needed = 0;
5070
5071         /* This should never happen */
5072         if (from > to) {
5073                 VM_WARN(1, "%s called with a negative range\n", __func__);
5074                 return -EINVAL;
5075         }
5076
5077         /*
5078          * Only apply hugepage reservation if asked. At fault time, an
5079          * attempt will be made for VM_NORESERVE to allocate a page
5080          * without using reserves
5081          */
5082         if (vm_flags & VM_NORESERVE)
5083                 return 0;
5084
5085         /*
5086          * Shared mappings base their reservation on the number of pages that
5087          * are already allocated on behalf of the file. Private mappings need
5088          * to reserve the full area even if read-only as mprotect() may be
5089          * called to make the mapping read-write. Assume !vma is a shm mapping
5090          */
5091         if (!vma || vma->vm_flags & VM_MAYSHARE) {
5092                 /*
5093                  * resv_map can not be NULL as hugetlb_reserve_pages is only
5094                  * called for inodes for which resv_maps were created (see
5095                  * hugetlbfs_get_inode).
5096                  */
5097                 resv_map = inode_resv_map(inode);
5098
5099                 chg = region_chg(resv_map, from, to, &regions_needed);
5100
5101         } else {
5102                 /* Private mapping. */
5103                 resv_map = resv_map_alloc();
5104                 if (!resv_map)
5105                         return -ENOMEM;
5106
5107                 chg = to - from;
5108
5109                 set_vma_resv_map(vma, resv_map);
5110                 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
5111         }
5112
5113         if (chg < 0) {
5114                 ret = chg;
5115                 goto out_err;
5116         }
5117
5118         ret = hugetlb_cgroup_charge_cgroup_rsvd(
5119                 hstate_index(h), chg * pages_per_huge_page(h), &h_cg);
5120
5121         if (ret < 0) {
5122                 ret = -ENOMEM;
5123                 goto out_err;
5124         }
5125
5126         if (vma && !(vma->vm_flags & VM_MAYSHARE) && h_cg) {
5127                 /* For private mappings, the hugetlb_cgroup uncharge info hangs
5128                  * of the resv_map.
5129                  */
5130                 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, h_cg, h);
5131         }
5132
5133         /*
5134          * There must be enough pages in the subpool for the mapping. If
5135          * the subpool has a minimum size, there may be some global
5136          * reservations already in place (gbl_reserve).
5137          */
5138         gbl_reserve = hugepage_subpool_get_pages(spool, chg);
5139         if (gbl_reserve < 0) {
5140                 ret = -ENOSPC;
5141                 goto out_uncharge_cgroup;
5142         }
5143
5144         /*
5145          * Check enough hugepages are available for the reservation.
5146          * Hand the pages back to the subpool if there are not
5147          */
5148         ret = hugetlb_acct_memory(h, gbl_reserve);
5149         if (ret < 0) {
5150                 goto out_put_pages;
5151         }
5152
5153         /*
5154          * Account for the reservations made. Shared mappings record regions
5155          * that have reservations as they are shared by multiple VMAs.
5156          * When the last VMA disappears, the region map says how much
5157          * the reservation was and the page cache tells how much of
5158          * the reservation was consumed. Private mappings are per-VMA and
5159          * only the consumed reservations are tracked. When the VMA
5160          * disappears, the original reservation is the VMA size and the
5161          * consumed reservations are stored in the map. Hence, nothing
5162          * else has to be done for private mappings here
5163          */
5164         if (!vma || vma->vm_flags & VM_MAYSHARE) {
5165                 add = region_add(resv_map, from, to, regions_needed, h, h_cg);
5166
5167                 if (unlikely(add < 0)) {
5168                         hugetlb_acct_memory(h, -gbl_reserve);
5169                         ret = add;
5170                         goto out_put_pages;
5171                 } else if (unlikely(chg > add)) {
5172                         /*
5173                          * pages in this range were added to the reserve
5174                          * map between region_chg and region_add.  This
5175                          * indicates a race with alloc_huge_page.  Adjust
5176                          * the subpool and reserve counts modified above
5177                          * based on the difference.
5178                          */
5179                         long rsv_adjust;
5180
5181                         hugetlb_cgroup_uncharge_cgroup_rsvd(
5182                                 hstate_index(h),
5183                                 (chg - add) * pages_per_huge_page(h), h_cg);
5184
5185                         rsv_adjust = hugepage_subpool_put_pages(spool,
5186                                                                 chg - add);
5187                         hugetlb_acct_memory(h, -rsv_adjust);
5188                 }
5189         }
5190         return 0;
5191 out_put_pages:
5192         /* put back original number of pages, chg */
5193         (void)hugepage_subpool_put_pages(spool, chg);
5194 out_uncharge_cgroup:
5195         hugetlb_cgroup_uncharge_cgroup_rsvd(hstate_index(h),
5196                                             chg * pages_per_huge_page(h), h_cg);
5197 out_err:
5198         if (!vma || vma->vm_flags & VM_MAYSHARE)
5199                 /* Only call region_abort if the region_chg succeeded but the
5200                  * region_add failed or didn't run.
5201                  */
5202                 if (chg >= 0 && add < 0)
5203                         region_abort(resv_map, from, to, regions_needed);
5204         if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
5205                 kref_put(&resv_map->refs, resv_map_release);
5206         return ret;
5207 }
5208
5209 long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
5210                                                                 long freed)
5211 {
5212         struct hstate *h = hstate_inode(inode);
5213         struct resv_map *resv_map = inode_resv_map(inode);
5214         long chg = 0;
5215         struct hugepage_subpool *spool = subpool_inode(inode);
5216         long gbl_reserve;
5217
5218         /*
5219          * Since this routine can be called in the evict inode path for all
5220          * hugetlbfs inodes, resv_map could be NULL.
5221          */
5222         if (resv_map) {
5223                 chg = region_del(resv_map, start, end);
5224                 /*
5225                  * region_del() can fail in the rare case where a region
5226                  * must be split and another region descriptor can not be
5227                  * allocated.  If end == LONG_MAX, it will not fail.
5228                  */
5229                 if (chg < 0)
5230                         return chg;
5231         }
5232
5233         spin_lock(&inode->i_lock);
5234         inode->i_blocks -= (blocks_per_huge_page(h) * freed);
5235         spin_unlock(&inode->i_lock);
5236
5237         /*
5238          * If the subpool has a minimum size, the number of global
5239          * reservations to be released may be adjusted.
5240          */
5241         gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
5242         hugetlb_acct_memory(h, -gbl_reserve);
5243
5244         return 0;
5245 }
5246
5247 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
5248 static unsigned long page_table_shareable(struct vm_area_struct *svma,
5249                                 struct vm_area_struct *vma,
5250                                 unsigned long addr, pgoff_t idx)
5251 {
5252         unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
5253                                 svma->vm_start;
5254         unsigned long sbase = saddr & PUD_MASK;
5255         unsigned long s_end = sbase + PUD_SIZE;
5256
5257         /* Allow segments to share if only one is marked locked */
5258         unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
5259         unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
5260
5261         /*
5262          * match the virtual addresses, permission and the alignment of the
5263          * page table page.
5264          */
5265         if (pmd_index(addr) != pmd_index(saddr) ||
5266             vm_flags != svm_flags ||
5267             sbase < svma->vm_start || svma->vm_end < s_end)
5268                 return 0;
5269
5270         return saddr;
5271 }
5272
5273 static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr)
5274 {
5275         unsigned long base = addr & PUD_MASK;
5276         unsigned long end = base + PUD_SIZE;
5277
5278         /*
5279          * check on proper vm_flags and page table alignment
5280          */
5281         if (vma->vm_flags & VM_MAYSHARE && range_in_vma(vma, base, end))
5282                 return true;
5283         return false;
5284 }
5285
5286 /*
5287  * Determine if start,end range within vma could be mapped by shared pmd.
5288  * If yes, adjust start and end to cover range associated with possible
5289  * shared pmd mappings.
5290  */
5291 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
5292                                 unsigned long *start, unsigned long *end)
5293 {
5294         unsigned long v_start = ALIGN(vma->vm_start, PUD_SIZE),
5295                 v_end = ALIGN_DOWN(vma->vm_end, PUD_SIZE);
5296
5297         /*
5298          * vma need span at least one aligned PUD size and the start,end range
5299          * must at least partialy within it.
5300          */
5301         if (!(vma->vm_flags & VM_MAYSHARE) || !(v_end > v_start) ||
5302                 (*end <= v_start) || (*start >= v_end))
5303                 return;
5304
5305         /* Extend the range to be PUD aligned for a worst case scenario */
5306         if (*start > v_start)
5307                 *start = ALIGN_DOWN(*start, PUD_SIZE);
5308
5309         if (*end < v_end)
5310                 *end = ALIGN(*end, PUD_SIZE);
5311 }
5312
5313 /*
5314  * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
5315  * and returns the corresponding pte. While this is not necessary for the
5316  * !shared pmd case because we can allocate the pmd later as well, it makes the
5317  * code much cleaner.
5318  *
5319  * This routine must be called with i_mmap_rwsem held in at least read mode if
5320  * sharing is possible.  For hugetlbfs, this prevents removal of any page
5321  * table entries associated with the address space.  This is important as we
5322  * are setting up sharing based on existing page table entries (mappings).
5323  *
5324  * NOTE: This routine is only called from huge_pte_alloc.  Some callers of
5325  * huge_pte_alloc know that sharing is not possible and do not take
5326  * i_mmap_rwsem as a performance optimization.  This is handled by the
5327  * if !vma_shareable check at the beginning of the routine. i_mmap_rwsem is
5328  * only required for subsequent processing.
5329  */
5330 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
5331 {
5332         struct vm_area_struct *vma = find_vma(mm, addr);
5333         struct address_space *mapping = vma->vm_file->f_mapping;
5334         pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
5335                         vma->vm_pgoff;
5336         struct vm_area_struct *svma;
5337         unsigned long saddr;
5338         pte_t *spte = NULL;
5339         pte_t *pte;
5340         spinlock_t *ptl;
5341
5342         if (!vma_shareable(vma, addr))
5343                 return (pte_t *)pmd_alloc(mm, pud, addr);
5344
5345         i_mmap_assert_locked(mapping);
5346         vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
5347                 if (svma == vma)
5348                         continue;
5349
5350                 saddr = page_table_shareable(svma, vma, addr, idx);
5351                 if (saddr) {
5352                         spte = huge_pte_offset(svma->vm_mm, saddr,
5353                                                vma_mmu_pagesize(svma));
5354                         if (spte) {
5355                                 get_page(virt_to_page(spte));
5356                                 break;
5357                         }
5358                 }
5359         }
5360
5361         if (!spte)
5362                 goto out;
5363
5364         ptl = huge_pte_lock(hstate_vma(vma), mm, spte);
5365         if (pud_none(*pud)) {
5366                 pud_populate(mm, pud,
5367                                 (pmd_t *)((unsigned long)spte & PAGE_MASK));
5368                 mm_inc_nr_pmds(mm);
5369         } else {
5370                 put_page(virt_to_page(spte));
5371         }
5372         spin_unlock(ptl);
5373 out:
5374         pte = (pte_t *)pmd_alloc(mm, pud, addr);
5375         return pte;
5376 }
5377
5378 /*
5379  * unmap huge page backed by shared pte.
5380  *
5381  * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
5382  * indicated by page_count > 1, unmap is achieved by clearing pud and
5383  * decrementing the ref count. If count == 1, the pte page is not shared.
5384  *
5385  * Called with page table lock held and i_mmap_rwsem held in write mode.
5386  *
5387  * returns: 1 successfully unmapped a shared pte page
5388  *          0 the underlying pte page is not shared, or it is the last user
5389  */
5390 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
5391                                         unsigned long *addr, pte_t *ptep)
5392 {
5393         pgd_t *pgd = pgd_offset(mm, *addr);
5394         p4d_t *p4d = p4d_offset(pgd, *addr);
5395         pud_t *pud = pud_offset(p4d, *addr);
5396
5397         i_mmap_assert_write_locked(vma->vm_file->f_mapping);
5398         BUG_ON(page_count(virt_to_page(ptep)) == 0);
5399         if (page_count(virt_to_page(ptep)) == 1)
5400                 return 0;
5401
5402         pud_clear(pud);
5403         put_page(virt_to_page(ptep));
5404         mm_dec_nr_pmds(mm);
5405         *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
5406         return 1;
5407 }
5408 #define want_pmd_share()        (1)
5409 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
5410 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
5411 {
5412         return NULL;
5413 }
5414
5415 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
5416                                 unsigned long *addr, pte_t *ptep)
5417 {
5418         return 0;
5419 }
5420
5421 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
5422                                 unsigned long *start, unsigned long *end)
5423 {
5424 }
5425 #define want_pmd_share()        (0)
5426 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
5427
5428 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
5429 pte_t *huge_pte_alloc(struct mm_struct *mm,
5430                         unsigned long addr, unsigned long sz)
5431 {
5432         pgd_t *pgd;
5433         p4d_t *p4d;
5434         pud_t *pud;
5435         pte_t *pte = NULL;
5436
5437         pgd = pgd_offset(mm, addr);
5438         p4d = p4d_alloc(mm, pgd, addr);
5439         if (!p4d)
5440                 return NULL;
5441         pud = pud_alloc(mm, p4d, addr);
5442         if (pud) {
5443                 if (sz == PUD_SIZE) {
5444                         pte = (pte_t *)pud;
5445                 } else {
5446                         BUG_ON(sz != PMD_SIZE);
5447                         if (want_pmd_share() && pud_none(*pud))
5448                                 pte = huge_pmd_share(mm, addr, pud);
5449                         else
5450                                 pte = (pte_t *)pmd_alloc(mm, pud, addr);
5451                 }
5452         }
5453         BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte));
5454
5455         return pte;
5456 }
5457
5458 /*
5459  * huge_pte_offset() - Walk the page table to resolve the hugepage
5460  * entry at address @addr
5461  *
5462  * Return: Pointer to page table entry (PUD or PMD) for
5463  * address @addr, or NULL if a !p*d_present() entry is encountered and the
5464  * size @sz doesn't match the hugepage size at this level of the page
5465  * table.
5466  */
5467 pte_t *huge_pte_offset(struct mm_struct *mm,
5468                        unsigned long addr, unsigned long sz)
5469 {
5470         pgd_t *pgd;
5471         p4d_t *p4d;
5472         pud_t *pud;
5473         pmd_t *pmd;
5474
5475         pgd = pgd_offset(mm, addr);
5476         if (!pgd_present(*pgd))
5477                 return NULL;
5478         p4d = p4d_offset(pgd, addr);
5479         if (!p4d_present(*p4d))
5480                 return NULL;
5481
5482         pud = pud_offset(p4d, addr);
5483         if (sz == PUD_SIZE)
5484                 /* must be pud huge, non-present or none */
5485                 return (pte_t *)pud;
5486         if (!pud_present(*pud))
5487                 return NULL;
5488         /* must have a valid entry and size to go further */
5489
5490         pmd = pmd_offset(pud, addr);
5491         /* must be pmd huge, non-present or none */
5492         return (pte_t *)pmd;
5493 }
5494
5495 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
5496
5497 /*
5498  * These functions are overwritable if your architecture needs its own
5499  * behavior.
5500  */
5501 struct page * __weak
5502 follow_huge_addr(struct mm_struct *mm, unsigned long address,
5503                               int write)
5504 {
5505         return ERR_PTR(-EINVAL);
5506 }
5507
5508 struct page * __weak
5509 follow_huge_pd(struct vm_area_struct *vma,
5510                unsigned long address, hugepd_t hpd, int flags, int pdshift)
5511 {
5512         WARN(1, "hugepd follow called with no support for hugepage directory format\n");
5513         return NULL;
5514 }
5515
5516 struct page * __weak
5517 follow_huge_pmd(struct mm_struct *mm, unsigned long address,
5518                 pmd_t *pmd, int flags)
5519 {
5520         struct page *page = NULL;
5521         spinlock_t *ptl;
5522         pte_t pte;
5523
5524         /* FOLL_GET and FOLL_PIN are mutually exclusive. */
5525         if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
5526                          (FOLL_PIN | FOLL_GET)))
5527                 return NULL;
5528
5529 retry:
5530         ptl = pmd_lockptr(mm, pmd);
5531         spin_lock(ptl);
5532         /*
5533          * make sure that the address range covered by this pmd is not
5534          * unmapped from other threads.
5535          */
5536         if (!pmd_huge(*pmd))
5537                 goto out;
5538         pte = huge_ptep_get((pte_t *)pmd);
5539         if (pte_present(pte)) {
5540                 page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
5541                 /*
5542                  * try_grab_page() should always succeed here, because: a) we
5543                  * hold the pmd (ptl) lock, and b) we've just checked that the
5544                  * huge pmd (head) page is present in the page tables. The ptl
5545                  * prevents the head page and tail pages from being rearranged
5546                  * in any way. So this page must be available at this point,
5547                  * unless the page refcount overflowed:
5548                  */
5549                 if (WARN_ON_ONCE(!try_grab_page(page, flags))) {
5550                         page = NULL;
5551                         goto out;
5552                 }
5553         } else {
5554                 if (is_hugetlb_entry_migration(pte)) {
5555                         spin_unlock(ptl);
5556                         __migration_entry_wait(mm, (pte_t *)pmd, ptl);
5557                         goto retry;
5558                 }
5559                 /*
5560                  * hwpoisoned entry is treated as no_page_table in
5561                  * follow_page_mask().
5562                  */
5563         }
5564 out:
5565         spin_unlock(ptl);
5566         return page;
5567 }
5568
5569 struct page * __weak
5570 follow_huge_pud(struct mm_struct *mm, unsigned long address,
5571                 pud_t *pud, int flags)
5572 {
5573         if (flags & (FOLL_GET | FOLL_PIN))
5574                 return NULL;
5575
5576         return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
5577 }
5578
5579 struct page * __weak
5580 follow_huge_pgd(struct mm_struct *mm, unsigned long address, pgd_t *pgd, int flags)
5581 {
5582         if (flags & (FOLL_GET | FOLL_PIN))
5583                 return NULL;
5584
5585         return pte_page(*(pte_t *)pgd) + ((address & ~PGDIR_MASK) >> PAGE_SHIFT);
5586 }
5587
5588 bool isolate_huge_page(struct page *page, struct list_head *list)
5589 {
5590         bool ret = true;
5591
5592         spin_lock(&hugetlb_lock);
5593         if (!PageHeadHuge(page) || !page_huge_active(page) ||
5594             !get_page_unless_zero(page)) {
5595                 ret = false;
5596                 goto unlock;
5597         }
5598         clear_page_huge_active(page);
5599         list_move_tail(&page->lru, list);
5600 unlock:
5601         spin_unlock(&hugetlb_lock);
5602         return ret;
5603 }
5604
5605 void putback_active_hugepage(struct page *page)
5606 {
5607         VM_BUG_ON_PAGE(!PageHead(page), page);
5608         spin_lock(&hugetlb_lock);
5609         set_page_huge_active(page);
5610         list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
5611         spin_unlock(&hugetlb_lock);
5612         put_page(page);
5613 }
5614
5615 void move_hugetlb_state(struct page *oldpage, struct page *newpage, int reason)
5616 {
5617         struct hstate *h = page_hstate(oldpage);
5618
5619         hugetlb_cgroup_migrate(oldpage, newpage);
5620         set_page_owner_migrate_reason(newpage, reason);
5621
5622         /*
5623          * transfer temporary state of the new huge page. This is
5624          * reverse to other transitions because the newpage is going to
5625          * be final while the old one will be freed so it takes over
5626          * the temporary status.
5627          *
5628          * Also note that we have to transfer the per-node surplus state
5629          * here as well otherwise the global surplus count will not match
5630          * the per-node's.
5631          */
5632         if (PageHugeTemporary(newpage)) {
5633                 int old_nid = page_to_nid(oldpage);
5634                 int new_nid = page_to_nid(newpage);
5635
5636                 SetPageHugeTemporary(oldpage);
5637                 ClearPageHugeTemporary(newpage);
5638
5639                 spin_lock(&hugetlb_lock);
5640                 if (h->surplus_huge_pages_node[old_nid]) {
5641                         h->surplus_huge_pages_node[old_nid]--;
5642                         h->surplus_huge_pages_node[new_nid]++;
5643                 }
5644                 spin_unlock(&hugetlb_lock);
5645         }
5646 }
5647
5648 #ifdef CONFIG_CMA
5649 static bool cma_reserve_called __initdata;
5650
5651 static int __init cmdline_parse_hugetlb_cma(char *p)
5652 {
5653         hugetlb_cma_size = memparse(p, &p);
5654         return 0;
5655 }
5656
5657 early_param("hugetlb_cma", cmdline_parse_hugetlb_cma);
5658
5659 void __init hugetlb_cma_reserve(int order)
5660 {
5661         unsigned long size, reserved, per_node;
5662         int nid;
5663
5664         cma_reserve_called = true;
5665
5666         if (!hugetlb_cma_size)
5667                 return;
5668
5669         if (hugetlb_cma_size < (PAGE_SIZE << order)) {
5670                 pr_warn("hugetlb_cma: cma area should be at least %lu MiB\n",
5671                         (PAGE_SIZE << order) / SZ_1M);
5672                 return;
5673         }
5674
5675         /*
5676          * If 3 GB area is requested on a machine with 4 numa nodes,
5677          * let's allocate 1 GB on first three nodes and ignore the last one.
5678          */
5679         per_node = DIV_ROUND_UP(hugetlb_cma_size, nr_online_nodes);
5680         pr_info("hugetlb_cma: reserve %lu MiB, up to %lu MiB per node\n",
5681                 hugetlb_cma_size / SZ_1M, per_node / SZ_1M);
5682
5683         reserved = 0;
5684         for_each_node_state(nid, N_ONLINE) {
5685                 int res;
5686                 char name[CMA_MAX_NAME];
5687
5688                 size = min(per_node, hugetlb_cma_size - reserved);
5689                 size = round_up(size, PAGE_SIZE << order);
5690
5691                 snprintf(name, sizeof(name), "hugetlb%d", nid);
5692                 res = cma_declare_contiguous_nid(0, size, 0, PAGE_SIZE << order,
5693                                                  0, false, name,
5694                                                  &hugetlb_cma[nid], nid);
5695                 if (res) {
5696                         pr_warn("hugetlb_cma: reservation failed: err %d, node %d",
5697                                 res, nid);
5698                         continue;
5699                 }
5700
5701                 reserved += size;
5702                 pr_info("hugetlb_cma: reserved %lu MiB on node %d\n",
5703                         size / SZ_1M, nid);
5704
5705                 if (reserved >= hugetlb_cma_size)
5706                         break;
5707         }
5708 }
5709
5710 void __init hugetlb_cma_check(void)
5711 {
5712         if (!hugetlb_cma_size || cma_reserve_called)
5713                 return;
5714
5715         pr_warn("hugetlb_cma: the option isn't supported by current arch\n");
5716 }
5717
5718 #endif /* CONFIG_CMA */