Merge tag 'kconfig-v5.8' of git://git.kernel.org/pub/scm/linux/kernel/git/masahiroy...
[linux-2.6-microblaze.git] / mm / hugetlb.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Generic hugetlb support.
4  * (C) Nadia Yvette Chambers, April 2004
5  */
6 #include <linux/list.h>
7 #include <linux/init.h>
8 #include <linux/mm.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/compiler.h>
17 #include <linux/cpuset.h>
18 #include <linux/mutex.h>
19 #include <linux/memblock.h>
20 #include <linux/sysfs.h>
21 #include <linux/slab.h>
22 #include <linux/mmdebug.h>
23 #include <linux/sched/signal.h>
24 #include <linux/rmap.h>
25 #include <linux/string_helpers.h>
26 #include <linux/swap.h>
27 #include <linux/swapops.h>
28 #include <linux/jhash.h>
29 #include <linux/numa.h>
30 #include <linux/llist.h>
31 #include <linux/cma.h>
32
33 #include <asm/page.h>
34 #include <asm/pgtable.h>
35 #include <asm/tlb.h>
36
37 #include <linux/io.h>
38 #include <linux/hugetlb.h>
39 #include <linux/hugetlb_cgroup.h>
40 #include <linux/node.h>
41 #include <linux/userfaultfd_k.h>
42 #include <linux/page_owner.h>
43 #include "internal.h"
44
45 int hugetlb_max_hstate __read_mostly;
46 unsigned int default_hstate_idx;
47 struct hstate hstates[HUGE_MAX_HSTATE];
48
49 static struct cma *hugetlb_cma[MAX_NUMNODES];
50
51 /*
52  * Minimum page order among possible hugepage sizes, set to a proper value
53  * at boot time.
54  */
55 static unsigned int minimum_order __read_mostly = UINT_MAX;
56
57 __initdata LIST_HEAD(huge_boot_pages);
58
59 /* for command line parsing */
60 static struct hstate * __initdata parsed_hstate;
61 static unsigned long __initdata default_hstate_max_huge_pages;
62 static bool __initdata parsed_valid_hugepagesz = true;
63 static bool __initdata parsed_default_hugepagesz;
64
65 /*
66  * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
67  * free_huge_pages, and surplus_huge_pages.
68  */
69 DEFINE_SPINLOCK(hugetlb_lock);
70
71 /*
72  * Serializes faults on the same logical page.  This is used to
73  * prevent spurious OOMs when the hugepage pool is fully utilized.
74  */
75 static int num_fault_mutexes;
76 struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
77
78 /* Forward declaration */
79 static int hugetlb_acct_memory(struct hstate *h, long delta);
80
81 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
82 {
83         bool free = (spool->count == 0) && (spool->used_hpages == 0);
84
85         spin_unlock(&spool->lock);
86
87         /* If no pages are used, and no other handles to the subpool
88          * remain, give up any reservations based on minimum size and
89          * free the subpool */
90         if (free) {
91                 if (spool->min_hpages != -1)
92                         hugetlb_acct_memory(spool->hstate,
93                                                 -spool->min_hpages);
94                 kfree(spool);
95         }
96 }
97
98 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
99                                                 long min_hpages)
100 {
101         struct hugepage_subpool *spool;
102
103         spool = kzalloc(sizeof(*spool), GFP_KERNEL);
104         if (!spool)
105                 return NULL;
106
107         spin_lock_init(&spool->lock);
108         spool->count = 1;
109         spool->max_hpages = max_hpages;
110         spool->hstate = h;
111         spool->min_hpages = min_hpages;
112
113         if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
114                 kfree(spool);
115                 return NULL;
116         }
117         spool->rsv_hpages = min_hpages;
118
119         return spool;
120 }
121
122 void hugepage_put_subpool(struct hugepage_subpool *spool)
123 {
124         spin_lock(&spool->lock);
125         BUG_ON(!spool->count);
126         spool->count--;
127         unlock_or_release_subpool(spool);
128 }
129
130 /*
131  * Subpool accounting for allocating and reserving pages.
132  * Return -ENOMEM if there are not enough resources to satisfy the
133  * the request.  Otherwise, return the number of pages by which the
134  * global pools must be adjusted (upward).  The returned value may
135  * only be different than the passed value (delta) in the case where
136  * a subpool minimum size must be maintained.
137  */
138 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
139                                       long delta)
140 {
141         long ret = delta;
142
143         if (!spool)
144                 return ret;
145
146         spin_lock(&spool->lock);
147
148         if (spool->max_hpages != -1) {          /* maximum size accounting */
149                 if ((spool->used_hpages + delta) <= spool->max_hpages)
150                         spool->used_hpages += delta;
151                 else {
152                         ret = -ENOMEM;
153                         goto unlock_ret;
154                 }
155         }
156
157         /* minimum size accounting */
158         if (spool->min_hpages != -1 && spool->rsv_hpages) {
159                 if (delta > spool->rsv_hpages) {
160                         /*
161                          * Asking for more reserves than those already taken on
162                          * behalf of subpool.  Return difference.
163                          */
164                         ret = delta - spool->rsv_hpages;
165                         spool->rsv_hpages = 0;
166                 } else {
167                         ret = 0;        /* reserves already accounted for */
168                         spool->rsv_hpages -= delta;
169                 }
170         }
171
172 unlock_ret:
173         spin_unlock(&spool->lock);
174         return ret;
175 }
176
177 /*
178  * Subpool accounting for freeing and unreserving pages.
179  * Return the number of global page reservations that must be dropped.
180  * The return value may only be different than the passed value (delta)
181  * in the case where a subpool minimum size must be maintained.
182  */
183 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
184                                        long delta)
185 {
186         long ret = delta;
187
188         if (!spool)
189                 return delta;
190
191         spin_lock(&spool->lock);
192
193         if (spool->max_hpages != -1)            /* maximum size accounting */
194                 spool->used_hpages -= delta;
195
196          /* minimum size accounting */
197         if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
198                 if (spool->rsv_hpages + delta <= spool->min_hpages)
199                         ret = 0;
200                 else
201                         ret = spool->rsv_hpages + delta - spool->min_hpages;
202
203                 spool->rsv_hpages += delta;
204                 if (spool->rsv_hpages > spool->min_hpages)
205                         spool->rsv_hpages = spool->min_hpages;
206         }
207
208         /*
209          * If hugetlbfs_put_super couldn't free spool due to an outstanding
210          * quota reference, free it now.
211          */
212         unlock_or_release_subpool(spool);
213
214         return ret;
215 }
216
217 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
218 {
219         return HUGETLBFS_SB(inode->i_sb)->spool;
220 }
221
222 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
223 {
224         return subpool_inode(file_inode(vma->vm_file));
225 }
226
227 /* Helper that removes a struct file_region from the resv_map cache and returns
228  * it for use.
229  */
230 static struct file_region *
231 get_file_region_entry_from_cache(struct resv_map *resv, long from, long to)
232 {
233         struct file_region *nrg = NULL;
234
235         VM_BUG_ON(resv->region_cache_count <= 0);
236
237         resv->region_cache_count--;
238         nrg = list_first_entry(&resv->region_cache, struct file_region, link);
239         VM_BUG_ON(!nrg);
240         list_del(&nrg->link);
241
242         nrg->from = from;
243         nrg->to = to;
244
245         return nrg;
246 }
247
248 static void copy_hugetlb_cgroup_uncharge_info(struct file_region *nrg,
249                                               struct file_region *rg)
250 {
251 #ifdef CONFIG_CGROUP_HUGETLB
252         nrg->reservation_counter = rg->reservation_counter;
253         nrg->css = rg->css;
254         if (rg->css)
255                 css_get(rg->css);
256 #endif
257 }
258
259 /* Helper that records hugetlb_cgroup uncharge info. */
260 static void record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup *h_cg,
261                                                 struct hstate *h,
262                                                 struct resv_map *resv,
263                                                 struct file_region *nrg)
264 {
265 #ifdef CONFIG_CGROUP_HUGETLB
266         if (h_cg) {
267                 nrg->reservation_counter =
268                         &h_cg->rsvd_hugepage[hstate_index(h)];
269                 nrg->css = &h_cg->css;
270                 if (!resv->pages_per_hpage)
271                         resv->pages_per_hpage = pages_per_huge_page(h);
272                 /* pages_per_hpage should be the same for all entries in
273                  * a resv_map.
274                  */
275                 VM_BUG_ON(resv->pages_per_hpage != pages_per_huge_page(h));
276         } else {
277                 nrg->reservation_counter = NULL;
278                 nrg->css = NULL;
279         }
280 #endif
281 }
282
283 static bool has_same_uncharge_info(struct file_region *rg,
284                                    struct file_region *org)
285 {
286 #ifdef CONFIG_CGROUP_HUGETLB
287         return rg && org &&
288                rg->reservation_counter == org->reservation_counter &&
289                rg->css == org->css;
290
291 #else
292         return true;
293 #endif
294 }
295
296 static void coalesce_file_region(struct resv_map *resv, struct file_region *rg)
297 {
298         struct file_region *nrg = NULL, *prg = NULL;
299
300         prg = list_prev_entry(rg, link);
301         if (&prg->link != &resv->regions && prg->to == rg->from &&
302             has_same_uncharge_info(prg, rg)) {
303                 prg->to = rg->to;
304
305                 list_del(&rg->link);
306                 kfree(rg);
307
308                 coalesce_file_region(resv, prg);
309                 return;
310         }
311
312         nrg = list_next_entry(rg, link);
313         if (&nrg->link != &resv->regions && nrg->from == rg->to &&
314             has_same_uncharge_info(nrg, rg)) {
315                 nrg->from = rg->from;
316
317                 list_del(&rg->link);
318                 kfree(rg);
319
320                 coalesce_file_region(resv, nrg);
321                 return;
322         }
323 }
324
325 /* Must be called with resv->lock held. Calling this with count_only == true
326  * will count the number of pages to be added but will not modify the linked
327  * list. If regions_needed != NULL and count_only == true, then regions_needed
328  * will indicate the number of file_regions needed in the cache to carry out to
329  * add the regions for this range.
330  */
331 static long add_reservation_in_range(struct resv_map *resv, long f, long t,
332                                      struct hugetlb_cgroup *h_cg,
333                                      struct hstate *h, long *regions_needed,
334                                      bool count_only)
335 {
336         long add = 0;
337         struct list_head *head = &resv->regions;
338         long last_accounted_offset = f;
339         struct file_region *rg = NULL, *trg = NULL, *nrg = NULL;
340
341         if (regions_needed)
342                 *regions_needed = 0;
343
344         /* In this loop, we essentially handle an entry for the range
345          * [last_accounted_offset, rg->from), at every iteration, with some
346          * bounds checking.
347          */
348         list_for_each_entry_safe(rg, trg, head, link) {
349                 /* Skip irrelevant regions that start before our range. */
350                 if (rg->from < f) {
351                         /* If this region ends after the last accounted offset,
352                          * then we need to update last_accounted_offset.
353                          */
354                         if (rg->to > last_accounted_offset)
355                                 last_accounted_offset = rg->to;
356                         continue;
357                 }
358
359                 /* When we find a region that starts beyond our range, we've
360                  * finished.
361                  */
362                 if (rg->from > t)
363                         break;
364
365                 /* Add an entry for last_accounted_offset -> rg->from, and
366                  * update last_accounted_offset.
367                  */
368                 if (rg->from > last_accounted_offset) {
369                         add += rg->from - last_accounted_offset;
370                         if (!count_only) {
371                                 nrg = get_file_region_entry_from_cache(
372                                         resv, last_accounted_offset, rg->from);
373                                 record_hugetlb_cgroup_uncharge_info(h_cg, h,
374                                                                     resv, nrg);
375                                 list_add(&nrg->link, rg->link.prev);
376                                 coalesce_file_region(resv, nrg);
377                         } else if (regions_needed)
378                                 *regions_needed += 1;
379                 }
380
381                 last_accounted_offset = rg->to;
382         }
383
384         /* Handle the case where our range extends beyond
385          * last_accounted_offset.
386          */
387         if (last_accounted_offset < t) {
388                 add += t - last_accounted_offset;
389                 if (!count_only) {
390                         nrg = get_file_region_entry_from_cache(
391                                 resv, last_accounted_offset, t);
392                         record_hugetlb_cgroup_uncharge_info(h_cg, h, resv, nrg);
393                         list_add(&nrg->link, rg->link.prev);
394                         coalesce_file_region(resv, nrg);
395                 } else if (regions_needed)
396                         *regions_needed += 1;
397         }
398
399         VM_BUG_ON(add < 0);
400         return add;
401 }
402
403 /* Must be called with resv->lock acquired. Will drop lock to allocate entries.
404  */
405 static int allocate_file_region_entries(struct resv_map *resv,
406                                         int regions_needed)
407         __must_hold(&resv->lock)
408 {
409         struct list_head allocated_regions;
410         int to_allocate = 0, i = 0;
411         struct file_region *trg = NULL, *rg = NULL;
412
413         VM_BUG_ON(regions_needed < 0);
414
415         INIT_LIST_HEAD(&allocated_regions);
416
417         /*
418          * Check for sufficient descriptors in the cache to accommodate
419          * the number of in progress add operations plus regions_needed.
420          *
421          * This is a while loop because when we drop the lock, some other call
422          * to region_add or region_del may have consumed some region_entries,
423          * so we keep looping here until we finally have enough entries for
424          * (adds_in_progress + regions_needed).
425          */
426         while (resv->region_cache_count <
427                (resv->adds_in_progress + regions_needed)) {
428                 to_allocate = resv->adds_in_progress + regions_needed -
429                               resv->region_cache_count;
430
431                 /* At this point, we should have enough entries in the cache
432                  * for all the existings adds_in_progress. We should only be
433                  * needing to allocate for regions_needed.
434                  */
435                 VM_BUG_ON(resv->region_cache_count < resv->adds_in_progress);
436
437                 spin_unlock(&resv->lock);
438                 for (i = 0; i < to_allocate; i++) {
439                         trg = kmalloc(sizeof(*trg), GFP_KERNEL);
440                         if (!trg)
441                                 goto out_of_memory;
442                         list_add(&trg->link, &allocated_regions);
443                 }
444
445                 spin_lock(&resv->lock);
446
447                 list_for_each_entry_safe(rg, trg, &allocated_regions, link) {
448                         list_del(&rg->link);
449                         list_add(&rg->link, &resv->region_cache);
450                         resv->region_cache_count++;
451                 }
452         }
453
454         return 0;
455
456 out_of_memory:
457         list_for_each_entry_safe(rg, trg, &allocated_regions, link) {
458                 list_del(&rg->link);
459                 kfree(rg);
460         }
461         return -ENOMEM;
462 }
463
464 /*
465  * Add the huge page range represented by [f, t) to the reserve
466  * map.  Regions will be taken from the cache to fill in this range.
467  * Sufficient regions should exist in the cache due to the previous
468  * call to region_chg with the same range, but in some cases the cache will not
469  * have sufficient entries due to races with other code doing region_add or
470  * region_del.  The extra needed entries will be allocated.
471  *
472  * regions_needed is the out value provided by a previous call to region_chg.
473  *
474  * Return the number of new huge pages added to the map.  This number is greater
475  * than or equal to zero.  If file_region entries needed to be allocated for
476  * this operation and we were not able to allocate, it returns -ENOMEM.
477  * region_add of regions of length 1 never allocate file_regions and cannot
478  * fail; region_chg will always allocate at least 1 entry and a region_add for
479  * 1 page will only require at most 1 entry.
480  */
481 static long region_add(struct resv_map *resv, long f, long t,
482                        long in_regions_needed, struct hstate *h,
483                        struct hugetlb_cgroup *h_cg)
484 {
485         long add = 0, actual_regions_needed = 0;
486
487         spin_lock(&resv->lock);
488 retry:
489
490         /* Count how many regions are actually needed to execute this add. */
491         add_reservation_in_range(resv, f, t, NULL, NULL, &actual_regions_needed,
492                                  true);
493
494         /*
495          * Check for sufficient descriptors in the cache to accommodate
496          * this add operation. Note that actual_regions_needed may be greater
497          * than in_regions_needed, as the resv_map may have been modified since
498          * the region_chg call. In this case, we need to make sure that we
499          * allocate extra entries, such that we have enough for all the
500          * existing adds_in_progress, plus the excess needed for this
501          * operation.
502          */
503         if (actual_regions_needed > in_regions_needed &&
504             resv->region_cache_count <
505                     resv->adds_in_progress +
506                             (actual_regions_needed - in_regions_needed)) {
507                 /* region_add operation of range 1 should never need to
508                  * allocate file_region entries.
509                  */
510                 VM_BUG_ON(t - f <= 1);
511
512                 if (allocate_file_region_entries(
513                             resv, actual_regions_needed - in_regions_needed)) {
514                         return -ENOMEM;
515                 }
516
517                 goto retry;
518         }
519
520         add = add_reservation_in_range(resv, f, t, h_cg, h, NULL, false);
521
522         resv->adds_in_progress -= in_regions_needed;
523
524         spin_unlock(&resv->lock);
525         VM_BUG_ON(add < 0);
526         return add;
527 }
528
529 /*
530  * Examine the existing reserve map and determine how many
531  * huge pages in the specified range [f, t) are NOT currently
532  * represented.  This routine is called before a subsequent
533  * call to region_add that will actually modify the reserve
534  * map to add the specified range [f, t).  region_chg does
535  * not change the number of huge pages represented by the
536  * map.  A number of new file_region structures is added to the cache as a
537  * placeholder, for the subsequent region_add call to use. At least 1
538  * file_region structure is added.
539  *
540  * out_regions_needed is the number of regions added to the
541  * resv->adds_in_progress.  This value needs to be provided to a follow up call
542  * to region_add or region_abort for proper accounting.
543  *
544  * Returns the number of huge pages that need to be added to the existing
545  * reservation map for the range [f, t).  This number is greater or equal to
546  * zero.  -ENOMEM is returned if a new file_region structure or cache entry
547  * is needed and can not be allocated.
548  */
549 static long region_chg(struct resv_map *resv, long f, long t,
550                        long *out_regions_needed)
551 {
552         long chg = 0;
553
554         spin_lock(&resv->lock);
555
556         /* Count how many hugepages in this range are NOT respresented. */
557         chg = add_reservation_in_range(resv, f, t, NULL, NULL,
558                                        out_regions_needed, true);
559
560         if (*out_regions_needed == 0)
561                 *out_regions_needed = 1;
562
563         if (allocate_file_region_entries(resv, *out_regions_needed))
564                 return -ENOMEM;
565
566         resv->adds_in_progress += *out_regions_needed;
567
568         spin_unlock(&resv->lock);
569         return chg;
570 }
571
572 /*
573  * Abort the in progress add operation.  The adds_in_progress field
574  * of the resv_map keeps track of the operations in progress between
575  * calls to region_chg and region_add.  Operations are sometimes
576  * aborted after the call to region_chg.  In such cases, region_abort
577  * is called to decrement the adds_in_progress counter. regions_needed
578  * is the value returned by the region_chg call, it is used to decrement
579  * the adds_in_progress counter.
580  *
581  * NOTE: The range arguments [f, t) are not needed or used in this
582  * routine.  They are kept to make reading the calling code easier as
583  * arguments will match the associated region_chg call.
584  */
585 static void region_abort(struct resv_map *resv, long f, long t,
586                          long regions_needed)
587 {
588         spin_lock(&resv->lock);
589         VM_BUG_ON(!resv->region_cache_count);
590         resv->adds_in_progress -= regions_needed;
591         spin_unlock(&resv->lock);
592 }
593
594 /*
595  * Delete the specified range [f, t) from the reserve map.  If the
596  * t parameter is LONG_MAX, this indicates that ALL regions after f
597  * should be deleted.  Locate the regions which intersect [f, t)
598  * and either trim, delete or split the existing regions.
599  *
600  * Returns the number of huge pages deleted from the reserve map.
601  * In the normal case, the return value is zero or more.  In the
602  * case where a region must be split, a new region descriptor must
603  * be allocated.  If the allocation fails, -ENOMEM will be returned.
604  * NOTE: If the parameter t == LONG_MAX, then we will never split
605  * a region and possibly return -ENOMEM.  Callers specifying
606  * t == LONG_MAX do not need to check for -ENOMEM error.
607  */
608 static long region_del(struct resv_map *resv, long f, long t)
609 {
610         struct list_head *head = &resv->regions;
611         struct file_region *rg, *trg;
612         struct file_region *nrg = NULL;
613         long del = 0;
614
615 retry:
616         spin_lock(&resv->lock);
617         list_for_each_entry_safe(rg, trg, head, link) {
618                 /*
619                  * Skip regions before the range to be deleted.  file_region
620                  * ranges are normally of the form [from, to).  However, there
621                  * may be a "placeholder" entry in the map which is of the form
622                  * (from, to) with from == to.  Check for placeholder entries
623                  * at the beginning of the range to be deleted.
624                  */
625                 if (rg->to <= f && (rg->to != rg->from || rg->to != f))
626                         continue;
627
628                 if (rg->from >= t)
629                         break;
630
631                 if (f > rg->from && t < rg->to) { /* Must split region */
632                         /*
633                          * Check for an entry in the cache before dropping
634                          * lock and attempting allocation.
635                          */
636                         if (!nrg &&
637                             resv->region_cache_count > resv->adds_in_progress) {
638                                 nrg = list_first_entry(&resv->region_cache,
639                                                         struct file_region,
640                                                         link);
641                                 list_del(&nrg->link);
642                                 resv->region_cache_count--;
643                         }
644
645                         if (!nrg) {
646                                 spin_unlock(&resv->lock);
647                                 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
648                                 if (!nrg)
649                                         return -ENOMEM;
650                                 goto retry;
651                         }
652
653                         del += t - f;
654
655                         /* New entry for end of split region */
656                         nrg->from = t;
657                         nrg->to = rg->to;
658
659                         copy_hugetlb_cgroup_uncharge_info(nrg, rg);
660
661                         INIT_LIST_HEAD(&nrg->link);
662
663                         /* Original entry is trimmed */
664                         rg->to = f;
665
666                         hugetlb_cgroup_uncharge_file_region(
667                                 resv, rg, nrg->to - nrg->from);
668
669                         list_add(&nrg->link, &rg->link);
670                         nrg = NULL;
671                         break;
672                 }
673
674                 if (f <= rg->from && t >= rg->to) { /* Remove entire region */
675                         del += rg->to - rg->from;
676                         hugetlb_cgroup_uncharge_file_region(resv, rg,
677                                                             rg->to - rg->from);
678                         list_del(&rg->link);
679                         kfree(rg);
680                         continue;
681                 }
682
683                 if (f <= rg->from) {    /* Trim beginning of region */
684                         del += t - rg->from;
685                         rg->from = t;
686
687                         hugetlb_cgroup_uncharge_file_region(resv, rg,
688                                                             t - rg->from);
689                 } else {                /* Trim end of region */
690                         del += rg->to - f;
691                         rg->to = f;
692
693                         hugetlb_cgroup_uncharge_file_region(resv, rg,
694                                                             rg->to - f);
695                 }
696         }
697
698         spin_unlock(&resv->lock);
699         kfree(nrg);
700         return del;
701 }
702
703 /*
704  * A rare out of memory error was encountered which prevented removal of
705  * the reserve map region for a page.  The huge page itself was free'ed
706  * and removed from the page cache.  This routine will adjust the subpool
707  * usage count, and the global reserve count if needed.  By incrementing
708  * these counts, the reserve map entry which could not be deleted will
709  * appear as a "reserved" entry instead of simply dangling with incorrect
710  * counts.
711  */
712 void hugetlb_fix_reserve_counts(struct inode *inode)
713 {
714         struct hugepage_subpool *spool = subpool_inode(inode);
715         long rsv_adjust;
716
717         rsv_adjust = hugepage_subpool_get_pages(spool, 1);
718         if (rsv_adjust) {
719                 struct hstate *h = hstate_inode(inode);
720
721                 hugetlb_acct_memory(h, 1);
722         }
723 }
724
725 /*
726  * Count and return the number of huge pages in the reserve map
727  * that intersect with the range [f, t).
728  */
729 static long region_count(struct resv_map *resv, long f, long t)
730 {
731         struct list_head *head = &resv->regions;
732         struct file_region *rg;
733         long chg = 0;
734
735         spin_lock(&resv->lock);
736         /* Locate each segment we overlap with, and count that overlap. */
737         list_for_each_entry(rg, head, link) {
738                 long seg_from;
739                 long seg_to;
740
741                 if (rg->to <= f)
742                         continue;
743                 if (rg->from >= t)
744                         break;
745
746                 seg_from = max(rg->from, f);
747                 seg_to = min(rg->to, t);
748
749                 chg += seg_to - seg_from;
750         }
751         spin_unlock(&resv->lock);
752
753         return chg;
754 }
755
756 /*
757  * Convert the address within this vma to the page offset within
758  * the mapping, in pagecache page units; huge pages here.
759  */
760 static pgoff_t vma_hugecache_offset(struct hstate *h,
761                         struct vm_area_struct *vma, unsigned long address)
762 {
763         return ((address - vma->vm_start) >> huge_page_shift(h)) +
764                         (vma->vm_pgoff >> huge_page_order(h));
765 }
766
767 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
768                                      unsigned long address)
769 {
770         return vma_hugecache_offset(hstate_vma(vma), vma, address);
771 }
772 EXPORT_SYMBOL_GPL(linear_hugepage_index);
773
774 /*
775  * Return the size of the pages allocated when backing a VMA. In the majority
776  * cases this will be same size as used by the page table entries.
777  */
778 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
779 {
780         if (vma->vm_ops && vma->vm_ops->pagesize)
781                 return vma->vm_ops->pagesize(vma);
782         return PAGE_SIZE;
783 }
784 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
785
786 /*
787  * Return the page size being used by the MMU to back a VMA. In the majority
788  * of cases, the page size used by the kernel matches the MMU size. On
789  * architectures where it differs, an architecture-specific 'strong'
790  * version of this symbol is required.
791  */
792 __weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
793 {
794         return vma_kernel_pagesize(vma);
795 }
796
797 /*
798  * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
799  * bits of the reservation map pointer, which are always clear due to
800  * alignment.
801  */
802 #define HPAGE_RESV_OWNER    (1UL << 0)
803 #define HPAGE_RESV_UNMAPPED (1UL << 1)
804 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
805
806 /*
807  * These helpers are used to track how many pages are reserved for
808  * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
809  * is guaranteed to have their future faults succeed.
810  *
811  * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
812  * the reserve counters are updated with the hugetlb_lock held. It is safe
813  * to reset the VMA at fork() time as it is not in use yet and there is no
814  * chance of the global counters getting corrupted as a result of the values.
815  *
816  * The private mapping reservation is represented in a subtly different
817  * manner to a shared mapping.  A shared mapping has a region map associated
818  * with the underlying file, this region map represents the backing file
819  * pages which have ever had a reservation assigned which this persists even
820  * after the page is instantiated.  A private mapping has a region map
821  * associated with the original mmap which is attached to all VMAs which
822  * reference it, this region map represents those offsets which have consumed
823  * reservation ie. where pages have been instantiated.
824  */
825 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
826 {
827         return (unsigned long)vma->vm_private_data;
828 }
829
830 static void set_vma_private_data(struct vm_area_struct *vma,
831                                                         unsigned long value)
832 {
833         vma->vm_private_data = (void *)value;
834 }
835
836 static void
837 resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map *resv_map,
838                                           struct hugetlb_cgroup *h_cg,
839                                           struct hstate *h)
840 {
841 #ifdef CONFIG_CGROUP_HUGETLB
842         if (!h_cg || !h) {
843                 resv_map->reservation_counter = NULL;
844                 resv_map->pages_per_hpage = 0;
845                 resv_map->css = NULL;
846         } else {
847                 resv_map->reservation_counter =
848                         &h_cg->rsvd_hugepage[hstate_index(h)];
849                 resv_map->pages_per_hpage = pages_per_huge_page(h);
850                 resv_map->css = &h_cg->css;
851         }
852 #endif
853 }
854
855 struct resv_map *resv_map_alloc(void)
856 {
857         struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
858         struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
859
860         if (!resv_map || !rg) {
861                 kfree(resv_map);
862                 kfree(rg);
863                 return NULL;
864         }
865
866         kref_init(&resv_map->refs);
867         spin_lock_init(&resv_map->lock);
868         INIT_LIST_HEAD(&resv_map->regions);
869
870         resv_map->adds_in_progress = 0;
871         /*
872          * Initialize these to 0. On shared mappings, 0's here indicate these
873          * fields don't do cgroup accounting. On private mappings, these will be
874          * re-initialized to the proper values, to indicate that hugetlb cgroup
875          * reservations are to be un-charged from here.
876          */
877         resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, NULL, NULL);
878
879         INIT_LIST_HEAD(&resv_map->region_cache);
880         list_add(&rg->link, &resv_map->region_cache);
881         resv_map->region_cache_count = 1;
882
883         return resv_map;
884 }
885
886 void resv_map_release(struct kref *ref)
887 {
888         struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
889         struct list_head *head = &resv_map->region_cache;
890         struct file_region *rg, *trg;
891
892         /* Clear out any active regions before we release the map. */
893         region_del(resv_map, 0, LONG_MAX);
894
895         /* ... and any entries left in the cache */
896         list_for_each_entry_safe(rg, trg, head, link) {
897                 list_del(&rg->link);
898                 kfree(rg);
899         }
900
901         VM_BUG_ON(resv_map->adds_in_progress);
902
903         kfree(resv_map);
904 }
905
906 static inline struct resv_map *inode_resv_map(struct inode *inode)
907 {
908         /*
909          * At inode evict time, i_mapping may not point to the original
910          * address space within the inode.  This original address space
911          * contains the pointer to the resv_map.  So, always use the
912          * address space embedded within the inode.
913          * The VERY common case is inode->mapping == &inode->i_data but,
914          * this may not be true for device special inodes.
915          */
916         return (struct resv_map *)(&inode->i_data)->private_data;
917 }
918
919 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
920 {
921         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
922         if (vma->vm_flags & VM_MAYSHARE) {
923                 struct address_space *mapping = vma->vm_file->f_mapping;
924                 struct inode *inode = mapping->host;
925
926                 return inode_resv_map(inode);
927
928         } else {
929                 return (struct resv_map *)(get_vma_private_data(vma) &
930                                                         ~HPAGE_RESV_MASK);
931         }
932 }
933
934 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
935 {
936         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
937         VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
938
939         set_vma_private_data(vma, (get_vma_private_data(vma) &
940                                 HPAGE_RESV_MASK) | (unsigned long)map);
941 }
942
943 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
944 {
945         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
946         VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
947
948         set_vma_private_data(vma, get_vma_private_data(vma) | flags);
949 }
950
951 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
952 {
953         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
954
955         return (get_vma_private_data(vma) & flag) != 0;
956 }
957
958 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
959 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
960 {
961         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
962         if (!(vma->vm_flags & VM_MAYSHARE))
963                 vma->vm_private_data = (void *)0;
964 }
965
966 /* Returns true if the VMA has associated reserve pages */
967 static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
968 {
969         if (vma->vm_flags & VM_NORESERVE) {
970                 /*
971                  * This address is already reserved by other process(chg == 0),
972                  * so, we should decrement reserved count. Without decrementing,
973                  * reserve count remains after releasing inode, because this
974                  * allocated page will go into page cache and is regarded as
975                  * coming from reserved pool in releasing step.  Currently, we
976                  * don't have any other solution to deal with this situation
977                  * properly, so add work-around here.
978                  */
979                 if (vma->vm_flags & VM_MAYSHARE && chg == 0)
980                         return true;
981                 else
982                         return false;
983         }
984
985         /* Shared mappings always use reserves */
986         if (vma->vm_flags & VM_MAYSHARE) {
987                 /*
988                  * We know VM_NORESERVE is not set.  Therefore, there SHOULD
989                  * be a region map for all pages.  The only situation where
990                  * there is no region map is if a hole was punched via
991                  * fallocate.  In this case, there really are no reserves to
992                  * use.  This situation is indicated if chg != 0.
993                  */
994                 if (chg)
995                         return false;
996                 else
997                         return true;
998         }
999
1000         /*
1001          * Only the process that called mmap() has reserves for
1002          * private mappings.
1003          */
1004         if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1005                 /*
1006                  * Like the shared case above, a hole punch or truncate
1007                  * could have been performed on the private mapping.
1008                  * Examine the value of chg to determine if reserves
1009                  * actually exist or were previously consumed.
1010                  * Very Subtle - The value of chg comes from a previous
1011                  * call to vma_needs_reserves().  The reserve map for
1012                  * private mappings has different (opposite) semantics
1013                  * than that of shared mappings.  vma_needs_reserves()
1014                  * has already taken this difference in semantics into
1015                  * account.  Therefore, the meaning of chg is the same
1016                  * as in the shared case above.  Code could easily be
1017                  * combined, but keeping it separate draws attention to
1018                  * subtle differences.
1019                  */
1020                 if (chg)
1021                         return false;
1022                 else
1023                         return true;
1024         }
1025
1026         return false;
1027 }
1028
1029 static void enqueue_huge_page(struct hstate *h, struct page *page)
1030 {
1031         int nid = page_to_nid(page);
1032         list_move(&page->lru, &h->hugepage_freelists[nid]);
1033         h->free_huge_pages++;
1034         h->free_huge_pages_node[nid]++;
1035 }
1036
1037 static struct page *dequeue_huge_page_node_exact(struct hstate *h, int nid)
1038 {
1039         struct page *page;
1040
1041         list_for_each_entry(page, &h->hugepage_freelists[nid], lru)
1042                 if (!PageHWPoison(page))
1043                         break;
1044         /*
1045          * if 'non-isolated free hugepage' not found on the list,
1046          * the allocation fails.
1047          */
1048         if (&h->hugepage_freelists[nid] == &page->lru)
1049                 return NULL;
1050         list_move(&page->lru, &h->hugepage_activelist);
1051         set_page_refcounted(page);
1052         h->free_huge_pages--;
1053         h->free_huge_pages_node[nid]--;
1054         return page;
1055 }
1056
1057 static struct page *dequeue_huge_page_nodemask(struct hstate *h, gfp_t gfp_mask, int nid,
1058                 nodemask_t *nmask)
1059 {
1060         unsigned int cpuset_mems_cookie;
1061         struct zonelist *zonelist;
1062         struct zone *zone;
1063         struct zoneref *z;
1064         int node = NUMA_NO_NODE;
1065
1066         zonelist = node_zonelist(nid, gfp_mask);
1067
1068 retry_cpuset:
1069         cpuset_mems_cookie = read_mems_allowed_begin();
1070         for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
1071                 struct page *page;
1072
1073                 if (!cpuset_zone_allowed(zone, gfp_mask))
1074                         continue;
1075                 /*
1076                  * no need to ask again on the same node. Pool is node rather than
1077                  * zone aware
1078                  */
1079                 if (zone_to_nid(zone) == node)
1080                         continue;
1081                 node = zone_to_nid(zone);
1082
1083                 page = dequeue_huge_page_node_exact(h, node);
1084                 if (page)
1085                         return page;
1086         }
1087         if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
1088                 goto retry_cpuset;
1089
1090         return NULL;
1091 }
1092
1093 /* Movability of hugepages depends on migration support. */
1094 static inline gfp_t htlb_alloc_mask(struct hstate *h)
1095 {
1096         if (hugepage_movable_supported(h))
1097                 return GFP_HIGHUSER_MOVABLE;
1098         else
1099                 return GFP_HIGHUSER;
1100 }
1101
1102 static struct page *dequeue_huge_page_vma(struct hstate *h,
1103                                 struct vm_area_struct *vma,
1104                                 unsigned long address, int avoid_reserve,
1105                                 long chg)
1106 {
1107         struct page *page;
1108         struct mempolicy *mpol;
1109         gfp_t gfp_mask;
1110         nodemask_t *nodemask;
1111         int nid;
1112
1113         /*
1114          * A child process with MAP_PRIVATE mappings created by their parent
1115          * have no page reserves. This check ensures that reservations are
1116          * not "stolen". The child may still get SIGKILLed
1117          */
1118         if (!vma_has_reserves(vma, chg) &&
1119                         h->free_huge_pages - h->resv_huge_pages == 0)
1120                 goto err;
1121
1122         /* If reserves cannot be used, ensure enough pages are in the pool */
1123         if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
1124                 goto err;
1125
1126         gfp_mask = htlb_alloc_mask(h);
1127         nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
1128         page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
1129         if (page && !avoid_reserve && vma_has_reserves(vma, chg)) {
1130                 SetPagePrivate(page);
1131                 h->resv_huge_pages--;
1132         }
1133
1134         mpol_cond_put(mpol);
1135         return page;
1136
1137 err:
1138         return NULL;
1139 }
1140
1141 /*
1142  * common helper functions for hstate_next_node_to_{alloc|free}.
1143  * We may have allocated or freed a huge page based on a different
1144  * nodes_allowed previously, so h->next_node_to_{alloc|free} might
1145  * be outside of *nodes_allowed.  Ensure that we use an allowed
1146  * node for alloc or free.
1147  */
1148 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
1149 {
1150         nid = next_node_in(nid, *nodes_allowed);
1151         VM_BUG_ON(nid >= MAX_NUMNODES);
1152
1153         return nid;
1154 }
1155
1156 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
1157 {
1158         if (!node_isset(nid, *nodes_allowed))
1159                 nid = next_node_allowed(nid, nodes_allowed);
1160         return nid;
1161 }
1162
1163 /*
1164  * returns the previously saved node ["this node"] from which to
1165  * allocate a persistent huge page for the pool and advance the
1166  * next node from which to allocate, handling wrap at end of node
1167  * mask.
1168  */
1169 static int hstate_next_node_to_alloc(struct hstate *h,
1170                                         nodemask_t *nodes_allowed)
1171 {
1172         int nid;
1173
1174         VM_BUG_ON(!nodes_allowed);
1175
1176         nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
1177         h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
1178
1179         return nid;
1180 }
1181
1182 /*
1183  * helper for free_pool_huge_page() - return the previously saved
1184  * node ["this node"] from which to free a huge page.  Advance the
1185  * next node id whether or not we find a free huge page to free so
1186  * that the next attempt to free addresses the next node.
1187  */
1188 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1189 {
1190         int nid;
1191
1192         VM_BUG_ON(!nodes_allowed);
1193
1194         nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1195         h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1196
1197         return nid;
1198 }
1199
1200 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask)           \
1201         for (nr_nodes = nodes_weight(*mask);                            \
1202                 nr_nodes > 0 &&                                         \
1203                 ((node = hstate_next_node_to_alloc(hs, mask)) || 1);    \
1204                 nr_nodes--)
1205
1206 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask)            \
1207         for (nr_nodes = nodes_weight(*mask);                            \
1208                 nr_nodes > 0 &&                                         \
1209                 ((node = hstate_next_node_to_free(hs, mask)) || 1);     \
1210                 nr_nodes--)
1211
1212 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
1213 static void destroy_compound_gigantic_page(struct page *page,
1214                                         unsigned int order)
1215 {
1216         int i;
1217         int nr_pages = 1 << order;
1218         struct page *p = page + 1;
1219
1220         atomic_set(compound_mapcount_ptr(page), 0);
1221         if (hpage_pincount_available(page))
1222                 atomic_set(compound_pincount_ptr(page), 0);
1223
1224         for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1225                 clear_compound_head(p);
1226                 set_page_refcounted(p);
1227         }
1228
1229         set_compound_order(page, 0);
1230         __ClearPageHead(page);
1231 }
1232
1233 static void free_gigantic_page(struct page *page, unsigned int order)
1234 {
1235         /*
1236          * If the page isn't allocated using the cma allocator,
1237          * cma_release() returns false.
1238          */
1239         if (IS_ENABLED(CONFIG_CMA) &&
1240             cma_release(hugetlb_cma[page_to_nid(page)], page, 1 << order))
1241                 return;
1242
1243         free_contig_range(page_to_pfn(page), 1 << order);
1244 }
1245
1246 #ifdef CONFIG_CONTIG_ALLOC
1247 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1248                 int nid, nodemask_t *nodemask)
1249 {
1250         unsigned long nr_pages = 1UL << huge_page_order(h);
1251
1252         if (IS_ENABLED(CONFIG_CMA)) {
1253                 struct page *page;
1254                 int node;
1255
1256                 for_each_node_mask(node, *nodemask) {
1257                         if (!hugetlb_cma[node])
1258                                 continue;
1259
1260                         page = cma_alloc(hugetlb_cma[node], nr_pages,
1261                                          huge_page_order(h), true);
1262                         if (page)
1263                                 return page;
1264                 }
1265         }
1266
1267         return alloc_contig_pages(nr_pages, gfp_mask, nid, nodemask);
1268 }
1269
1270 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid);
1271 static void prep_compound_gigantic_page(struct page *page, unsigned int order);
1272 #else /* !CONFIG_CONTIG_ALLOC */
1273 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1274                                         int nid, nodemask_t *nodemask)
1275 {
1276         return NULL;
1277 }
1278 #endif /* CONFIG_CONTIG_ALLOC */
1279
1280 #else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
1281 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1282                                         int nid, nodemask_t *nodemask)
1283 {
1284         return NULL;
1285 }
1286 static inline void free_gigantic_page(struct page *page, unsigned int order) { }
1287 static inline void destroy_compound_gigantic_page(struct page *page,
1288                                                 unsigned int order) { }
1289 #endif
1290
1291 static void update_and_free_page(struct hstate *h, struct page *page)
1292 {
1293         int i;
1294
1295         if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1296                 return;
1297
1298         h->nr_huge_pages--;
1299         h->nr_huge_pages_node[page_to_nid(page)]--;
1300         for (i = 0; i < pages_per_huge_page(h); i++) {
1301                 page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
1302                                 1 << PG_referenced | 1 << PG_dirty |
1303                                 1 << PG_active | 1 << PG_private |
1304                                 1 << PG_writeback);
1305         }
1306         VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
1307         VM_BUG_ON_PAGE(hugetlb_cgroup_from_page_rsvd(page), page);
1308         set_compound_page_dtor(page, NULL_COMPOUND_DTOR);
1309         set_page_refcounted(page);
1310         if (hstate_is_gigantic(h)) {
1311                 /*
1312                  * Temporarily drop the hugetlb_lock, because
1313                  * we might block in free_gigantic_page().
1314                  */
1315                 spin_unlock(&hugetlb_lock);
1316                 destroy_compound_gigantic_page(page, huge_page_order(h));
1317                 free_gigantic_page(page, huge_page_order(h));
1318                 spin_lock(&hugetlb_lock);
1319         } else {
1320                 __free_pages(page, huge_page_order(h));
1321         }
1322 }
1323
1324 struct hstate *size_to_hstate(unsigned long size)
1325 {
1326         struct hstate *h;
1327
1328         for_each_hstate(h) {
1329                 if (huge_page_size(h) == size)
1330                         return h;
1331         }
1332         return NULL;
1333 }
1334
1335 /*
1336  * Test to determine whether the hugepage is "active/in-use" (i.e. being linked
1337  * to hstate->hugepage_activelist.)
1338  *
1339  * This function can be called for tail pages, but never returns true for them.
1340  */
1341 bool page_huge_active(struct page *page)
1342 {
1343         VM_BUG_ON_PAGE(!PageHuge(page), page);
1344         return PageHead(page) && PagePrivate(&page[1]);
1345 }
1346
1347 /* never called for tail page */
1348 static void set_page_huge_active(struct page *page)
1349 {
1350         VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1351         SetPagePrivate(&page[1]);
1352 }
1353
1354 static void clear_page_huge_active(struct page *page)
1355 {
1356         VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1357         ClearPagePrivate(&page[1]);
1358 }
1359
1360 /*
1361  * Internal hugetlb specific page flag. Do not use outside of the hugetlb
1362  * code
1363  */
1364 static inline bool PageHugeTemporary(struct page *page)
1365 {
1366         if (!PageHuge(page))
1367                 return false;
1368
1369         return (unsigned long)page[2].mapping == -1U;
1370 }
1371
1372 static inline void SetPageHugeTemporary(struct page *page)
1373 {
1374         page[2].mapping = (void *)-1U;
1375 }
1376
1377 static inline void ClearPageHugeTemporary(struct page *page)
1378 {
1379         page[2].mapping = NULL;
1380 }
1381
1382 static void __free_huge_page(struct page *page)
1383 {
1384         /*
1385          * Can't pass hstate in here because it is called from the
1386          * compound page destructor.
1387          */
1388         struct hstate *h = page_hstate(page);
1389         int nid = page_to_nid(page);
1390         struct hugepage_subpool *spool =
1391                 (struct hugepage_subpool *)page_private(page);
1392         bool restore_reserve;
1393
1394         VM_BUG_ON_PAGE(page_count(page), page);
1395         VM_BUG_ON_PAGE(page_mapcount(page), page);
1396
1397         set_page_private(page, 0);
1398         page->mapping = NULL;
1399         restore_reserve = PagePrivate(page);
1400         ClearPagePrivate(page);
1401
1402         /*
1403          * If PagePrivate() was set on page, page allocation consumed a
1404          * reservation.  If the page was associated with a subpool, there
1405          * would have been a page reserved in the subpool before allocation
1406          * via hugepage_subpool_get_pages().  Since we are 'restoring' the
1407          * reservtion, do not call hugepage_subpool_put_pages() as this will
1408          * remove the reserved page from the subpool.
1409          */
1410         if (!restore_reserve) {
1411                 /*
1412                  * A return code of zero implies that the subpool will be
1413                  * under its minimum size if the reservation is not restored
1414                  * after page is free.  Therefore, force restore_reserve
1415                  * operation.
1416                  */
1417                 if (hugepage_subpool_put_pages(spool, 1) == 0)
1418                         restore_reserve = true;
1419         }
1420
1421         spin_lock(&hugetlb_lock);
1422         clear_page_huge_active(page);
1423         hugetlb_cgroup_uncharge_page(hstate_index(h),
1424                                      pages_per_huge_page(h), page);
1425         hugetlb_cgroup_uncharge_page_rsvd(hstate_index(h),
1426                                           pages_per_huge_page(h), page);
1427         if (restore_reserve)
1428                 h->resv_huge_pages++;
1429
1430         if (PageHugeTemporary(page)) {
1431                 list_del(&page->lru);
1432                 ClearPageHugeTemporary(page);
1433                 update_and_free_page(h, page);
1434         } else if (h->surplus_huge_pages_node[nid]) {
1435                 /* remove the page from active list */
1436                 list_del(&page->lru);
1437                 update_and_free_page(h, page);
1438                 h->surplus_huge_pages--;
1439                 h->surplus_huge_pages_node[nid]--;
1440         } else {
1441                 arch_clear_hugepage_flags(page);
1442                 enqueue_huge_page(h, page);
1443         }
1444         spin_unlock(&hugetlb_lock);
1445 }
1446
1447 /*
1448  * As free_huge_page() can be called from a non-task context, we have
1449  * to defer the actual freeing in a workqueue to prevent potential
1450  * hugetlb_lock deadlock.
1451  *
1452  * free_hpage_workfn() locklessly retrieves the linked list of pages to
1453  * be freed and frees them one-by-one. As the page->mapping pointer is
1454  * going to be cleared in __free_huge_page() anyway, it is reused as the
1455  * llist_node structure of a lockless linked list of huge pages to be freed.
1456  */
1457 static LLIST_HEAD(hpage_freelist);
1458
1459 static void free_hpage_workfn(struct work_struct *work)
1460 {
1461         struct llist_node *node;
1462         struct page *page;
1463
1464         node = llist_del_all(&hpage_freelist);
1465
1466         while (node) {
1467                 page = container_of((struct address_space **)node,
1468                                      struct page, mapping);
1469                 node = node->next;
1470                 __free_huge_page(page);
1471         }
1472 }
1473 static DECLARE_WORK(free_hpage_work, free_hpage_workfn);
1474
1475 void free_huge_page(struct page *page)
1476 {
1477         /*
1478          * Defer freeing if in non-task context to avoid hugetlb_lock deadlock.
1479          */
1480         if (!in_task()) {
1481                 /*
1482                  * Only call schedule_work() if hpage_freelist is previously
1483                  * empty. Otherwise, schedule_work() had been called but the
1484                  * workfn hasn't retrieved the list yet.
1485                  */
1486                 if (llist_add((struct llist_node *)&page->mapping,
1487                               &hpage_freelist))
1488                         schedule_work(&free_hpage_work);
1489                 return;
1490         }
1491
1492         __free_huge_page(page);
1493 }
1494
1495 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
1496 {
1497         INIT_LIST_HEAD(&page->lru);
1498         set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1499         spin_lock(&hugetlb_lock);
1500         set_hugetlb_cgroup(page, NULL);
1501         set_hugetlb_cgroup_rsvd(page, NULL);
1502         h->nr_huge_pages++;
1503         h->nr_huge_pages_node[nid]++;
1504         spin_unlock(&hugetlb_lock);
1505 }
1506
1507 static void prep_compound_gigantic_page(struct page *page, unsigned int order)
1508 {
1509         int i;
1510         int nr_pages = 1 << order;
1511         struct page *p = page + 1;
1512
1513         /* we rely on prep_new_huge_page to set the destructor */
1514         set_compound_order(page, order);
1515         __ClearPageReserved(page);
1516         __SetPageHead(page);
1517         for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1518                 /*
1519                  * For gigantic hugepages allocated through bootmem at
1520                  * boot, it's safer to be consistent with the not-gigantic
1521                  * hugepages and clear the PG_reserved bit from all tail pages
1522                  * too.  Otherwise drivers using get_user_pages() to access tail
1523                  * pages may get the reference counting wrong if they see
1524                  * PG_reserved set on a tail page (despite the head page not
1525                  * having PG_reserved set).  Enforcing this consistency between
1526                  * head and tail pages allows drivers to optimize away a check
1527                  * on the head page when they need know if put_page() is needed
1528                  * after get_user_pages().
1529                  */
1530                 __ClearPageReserved(p);
1531                 set_page_count(p, 0);
1532                 set_compound_head(p, page);
1533         }
1534         atomic_set(compound_mapcount_ptr(page), -1);
1535
1536         if (hpage_pincount_available(page))
1537                 atomic_set(compound_pincount_ptr(page), 0);
1538 }
1539
1540 /*
1541  * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1542  * transparent huge pages.  See the PageTransHuge() documentation for more
1543  * details.
1544  */
1545 int PageHuge(struct page *page)
1546 {
1547         if (!PageCompound(page))
1548                 return 0;
1549
1550         page = compound_head(page);
1551         return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
1552 }
1553 EXPORT_SYMBOL_GPL(PageHuge);
1554
1555 /*
1556  * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1557  * normal or transparent huge pages.
1558  */
1559 int PageHeadHuge(struct page *page_head)
1560 {
1561         if (!PageHead(page_head))
1562                 return 0;
1563
1564         return page_head[1].compound_dtor == HUGETLB_PAGE_DTOR;
1565 }
1566
1567 /*
1568  * Find address_space associated with hugetlbfs page.
1569  * Upon entry page is locked and page 'was' mapped although mapped state
1570  * could change.  If necessary, use anon_vma to find vma and associated
1571  * address space.  The returned mapping may be stale, but it can not be
1572  * invalid as page lock (which is held) is required to destroy mapping.
1573  */
1574 static struct address_space *_get_hugetlb_page_mapping(struct page *hpage)
1575 {
1576         struct anon_vma *anon_vma;
1577         pgoff_t pgoff_start, pgoff_end;
1578         struct anon_vma_chain *avc;
1579         struct address_space *mapping = page_mapping(hpage);
1580
1581         /* Simple file based mapping */
1582         if (mapping)
1583                 return mapping;
1584
1585         /*
1586          * Even anonymous hugetlbfs mappings are associated with an
1587          * underlying hugetlbfs file (see hugetlb_file_setup in mmap
1588          * code).  Find a vma associated with the anonymous vma, and
1589          * use the file pointer to get address_space.
1590          */
1591         anon_vma = page_lock_anon_vma_read(hpage);
1592         if (!anon_vma)
1593                 return mapping;  /* NULL */
1594
1595         /* Use first found vma */
1596         pgoff_start = page_to_pgoff(hpage);
1597         pgoff_end = pgoff_start + hpage_nr_pages(hpage) - 1;
1598         anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root,
1599                                         pgoff_start, pgoff_end) {
1600                 struct vm_area_struct *vma = avc->vma;
1601
1602                 mapping = vma->vm_file->f_mapping;
1603                 break;
1604         }
1605
1606         anon_vma_unlock_read(anon_vma);
1607         return mapping;
1608 }
1609
1610 /*
1611  * Find and lock address space (mapping) in write mode.
1612  *
1613  * Upon entry, the page is locked which allows us to find the mapping
1614  * even in the case of an anon page.  However, locking order dictates
1615  * the i_mmap_rwsem be acquired BEFORE the page lock.  This is hugetlbfs
1616  * specific.  So, we first try to lock the sema while still holding the
1617  * page lock.  If this works, great!  If not, then we need to drop the
1618  * page lock and then acquire i_mmap_rwsem and reacquire page lock.  Of
1619  * course, need to revalidate state along the way.
1620  */
1621 struct address_space *hugetlb_page_mapping_lock_write(struct page *hpage)
1622 {
1623         struct address_space *mapping, *mapping2;
1624
1625         mapping = _get_hugetlb_page_mapping(hpage);
1626 retry:
1627         if (!mapping)
1628                 return mapping;
1629
1630         /*
1631          * If no contention, take lock and return
1632          */
1633         if (i_mmap_trylock_write(mapping))
1634                 return mapping;
1635
1636         /*
1637          * Must drop page lock and wait on mapping sema.
1638          * Note:  Once page lock is dropped, mapping could become invalid.
1639          * As a hack, increase map count until we lock page again.
1640          */
1641         atomic_inc(&hpage->_mapcount);
1642         unlock_page(hpage);
1643         i_mmap_lock_write(mapping);
1644         lock_page(hpage);
1645         atomic_add_negative(-1, &hpage->_mapcount);
1646
1647         /* verify page is still mapped */
1648         if (!page_mapped(hpage)) {
1649                 i_mmap_unlock_write(mapping);
1650                 return NULL;
1651         }
1652
1653         /*
1654          * Get address space again and verify it is the same one
1655          * we locked.  If not, drop lock and retry.
1656          */
1657         mapping2 = _get_hugetlb_page_mapping(hpage);
1658         if (mapping2 != mapping) {
1659                 i_mmap_unlock_write(mapping);
1660                 mapping = mapping2;
1661                 goto retry;
1662         }
1663
1664         return mapping;
1665 }
1666
1667 pgoff_t __basepage_index(struct page *page)
1668 {
1669         struct page *page_head = compound_head(page);
1670         pgoff_t index = page_index(page_head);
1671         unsigned long compound_idx;
1672
1673         if (!PageHuge(page_head))
1674                 return page_index(page);
1675
1676         if (compound_order(page_head) >= MAX_ORDER)
1677                 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
1678         else
1679                 compound_idx = page - page_head;
1680
1681         return (index << compound_order(page_head)) + compound_idx;
1682 }
1683
1684 static struct page *alloc_buddy_huge_page(struct hstate *h,
1685                 gfp_t gfp_mask, int nid, nodemask_t *nmask,
1686                 nodemask_t *node_alloc_noretry)
1687 {
1688         int order = huge_page_order(h);
1689         struct page *page;
1690         bool alloc_try_hard = true;
1691
1692         /*
1693          * By default we always try hard to allocate the page with
1694          * __GFP_RETRY_MAYFAIL flag.  However, if we are allocating pages in
1695          * a loop (to adjust global huge page counts) and previous allocation
1696          * failed, do not continue to try hard on the same node.  Use the
1697          * node_alloc_noretry bitmap to manage this state information.
1698          */
1699         if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry))
1700                 alloc_try_hard = false;
1701         gfp_mask |= __GFP_COMP|__GFP_NOWARN;
1702         if (alloc_try_hard)
1703                 gfp_mask |= __GFP_RETRY_MAYFAIL;
1704         if (nid == NUMA_NO_NODE)
1705                 nid = numa_mem_id();
1706         page = __alloc_pages_nodemask(gfp_mask, order, nid, nmask);
1707         if (page)
1708                 __count_vm_event(HTLB_BUDDY_PGALLOC);
1709         else
1710                 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1711
1712         /*
1713          * If we did not specify __GFP_RETRY_MAYFAIL, but still got a page this
1714          * indicates an overall state change.  Clear bit so that we resume
1715          * normal 'try hard' allocations.
1716          */
1717         if (node_alloc_noretry && page && !alloc_try_hard)
1718                 node_clear(nid, *node_alloc_noretry);
1719
1720         /*
1721          * If we tried hard to get a page but failed, set bit so that
1722          * subsequent attempts will not try as hard until there is an
1723          * overall state change.
1724          */
1725         if (node_alloc_noretry && !page && alloc_try_hard)
1726                 node_set(nid, *node_alloc_noretry);
1727
1728         return page;
1729 }
1730
1731 /*
1732  * Common helper to allocate a fresh hugetlb page. All specific allocators
1733  * should use this function to get new hugetlb pages
1734  */
1735 static struct page *alloc_fresh_huge_page(struct hstate *h,
1736                 gfp_t gfp_mask, int nid, nodemask_t *nmask,
1737                 nodemask_t *node_alloc_noretry)
1738 {
1739         struct page *page;
1740
1741         if (hstate_is_gigantic(h))
1742                 page = alloc_gigantic_page(h, gfp_mask, nid, nmask);
1743         else
1744                 page = alloc_buddy_huge_page(h, gfp_mask,
1745                                 nid, nmask, node_alloc_noretry);
1746         if (!page)
1747                 return NULL;
1748
1749         if (hstate_is_gigantic(h))
1750                 prep_compound_gigantic_page(page, huge_page_order(h));
1751         prep_new_huge_page(h, page, page_to_nid(page));
1752
1753         return page;
1754 }
1755
1756 /*
1757  * Allocates a fresh page to the hugetlb allocator pool in the node interleaved
1758  * manner.
1759  */
1760 static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1761                                 nodemask_t *node_alloc_noretry)
1762 {
1763         struct page *page;
1764         int nr_nodes, node;
1765         gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
1766
1767         for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1768                 page = alloc_fresh_huge_page(h, gfp_mask, node, nodes_allowed,
1769                                                 node_alloc_noretry);
1770                 if (page)
1771                         break;
1772         }
1773
1774         if (!page)
1775                 return 0;
1776
1777         put_page(page); /* free it into the hugepage allocator */
1778
1779         return 1;
1780 }
1781
1782 /*
1783  * Free huge page from pool from next node to free.
1784  * Attempt to keep persistent huge pages more or less
1785  * balanced over allowed nodes.
1786  * Called with hugetlb_lock locked.
1787  */
1788 static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1789                                                          bool acct_surplus)
1790 {
1791         int nr_nodes, node;
1792         int ret = 0;
1793
1794         for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1795                 /*
1796                  * If we're returning unused surplus pages, only examine
1797                  * nodes with surplus pages.
1798                  */
1799                 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
1800                     !list_empty(&h->hugepage_freelists[node])) {
1801                         struct page *page =
1802                                 list_entry(h->hugepage_freelists[node].next,
1803                                           struct page, lru);
1804                         list_del(&page->lru);
1805                         h->free_huge_pages--;
1806                         h->free_huge_pages_node[node]--;
1807                         if (acct_surplus) {
1808                                 h->surplus_huge_pages--;
1809                                 h->surplus_huge_pages_node[node]--;
1810                         }
1811                         update_and_free_page(h, page);
1812                         ret = 1;
1813                         break;
1814                 }
1815         }
1816
1817         return ret;
1818 }
1819
1820 /*
1821  * Dissolve a given free hugepage into free buddy pages. This function does
1822  * nothing for in-use hugepages and non-hugepages.
1823  * This function returns values like below:
1824  *
1825  *  -EBUSY: failed to dissolved free hugepages or the hugepage is in-use
1826  *          (allocated or reserved.)
1827  *       0: successfully dissolved free hugepages or the page is not a
1828  *          hugepage (considered as already dissolved)
1829  */
1830 int dissolve_free_huge_page(struct page *page)
1831 {
1832         int rc = -EBUSY;
1833
1834         /* Not to disrupt normal path by vainly holding hugetlb_lock */
1835         if (!PageHuge(page))
1836                 return 0;
1837
1838         spin_lock(&hugetlb_lock);
1839         if (!PageHuge(page)) {
1840                 rc = 0;
1841                 goto out;
1842         }
1843
1844         if (!page_count(page)) {
1845                 struct page *head = compound_head(page);
1846                 struct hstate *h = page_hstate(head);
1847                 int nid = page_to_nid(head);
1848                 if (h->free_huge_pages - h->resv_huge_pages == 0)
1849                         goto out;
1850                 /*
1851                  * Move PageHWPoison flag from head page to the raw error page,
1852                  * which makes any subpages rather than the error page reusable.
1853                  */
1854                 if (PageHWPoison(head) && page != head) {
1855                         SetPageHWPoison(page);
1856                         ClearPageHWPoison(head);
1857                 }
1858                 list_del(&head->lru);
1859                 h->free_huge_pages--;
1860                 h->free_huge_pages_node[nid]--;
1861                 h->max_huge_pages--;
1862                 update_and_free_page(h, head);
1863                 rc = 0;
1864         }
1865 out:
1866         spin_unlock(&hugetlb_lock);
1867         return rc;
1868 }
1869
1870 /*
1871  * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
1872  * make specified memory blocks removable from the system.
1873  * Note that this will dissolve a free gigantic hugepage completely, if any
1874  * part of it lies within the given range.
1875  * Also note that if dissolve_free_huge_page() returns with an error, all
1876  * free hugepages that were dissolved before that error are lost.
1877  */
1878 int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
1879 {
1880         unsigned long pfn;
1881         struct page *page;
1882         int rc = 0;
1883
1884         if (!hugepages_supported())
1885                 return rc;
1886
1887         for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order) {
1888                 page = pfn_to_page(pfn);
1889                 rc = dissolve_free_huge_page(page);
1890                 if (rc)
1891                         break;
1892         }
1893
1894         return rc;
1895 }
1896
1897 /*
1898  * Allocates a fresh surplus page from the page allocator.
1899  */
1900 static struct page *alloc_surplus_huge_page(struct hstate *h, gfp_t gfp_mask,
1901                 int nid, nodemask_t *nmask)
1902 {
1903         struct page *page = NULL;
1904
1905         if (hstate_is_gigantic(h))
1906                 return NULL;
1907
1908         spin_lock(&hugetlb_lock);
1909         if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages)
1910                 goto out_unlock;
1911         spin_unlock(&hugetlb_lock);
1912
1913         page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
1914         if (!page)
1915                 return NULL;
1916
1917         spin_lock(&hugetlb_lock);
1918         /*
1919          * We could have raced with the pool size change.
1920          * Double check that and simply deallocate the new page
1921          * if we would end up overcommiting the surpluses. Abuse
1922          * temporary page to workaround the nasty free_huge_page
1923          * codeflow
1924          */
1925         if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
1926                 SetPageHugeTemporary(page);
1927                 spin_unlock(&hugetlb_lock);
1928                 put_page(page);
1929                 return NULL;
1930         } else {
1931                 h->surplus_huge_pages++;
1932                 h->surplus_huge_pages_node[page_to_nid(page)]++;
1933         }
1934
1935 out_unlock:
1936         spin_unlock(&hugetlb_lock);
1937
1938         return page;
1939 }
1940
1941 struct page *alloc_migrate_huge_page(struct hstate *h, gfp_t gfp_mask,
1942                                      int nid, nodemask_t *nmask)
1943 {
1944         struct page *page;
1945
1946         if (hstate_is_gigantic(h))
1947                 return NULL;
1948
1949         page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
1950         if (!page)
1951                 return NULL;
1952
1953         /*
1954          * We do not account these pages as surplus because they are only
1955          * temporary and will be released properly on the last reference
1956          */
1957         SetPageHugeTemporary(page);
1958
1959         return page;
1960 }
1961
1962 /*
1963  * Use the VMA's mpolicy to allocate a huge page from the buddy.
1964  */
1965 static
1966 struct page *alloc_buddy_huge_page_with_mpol(struct hstate *h,
1967                 struct vm_area_struct *vma, unsigned long addr)
1968 {
1969         struct page *page;
1970         struct mempolicy *mpol;
1971         gfp_t gfp_mask = htlb_alloc_mask(h);
1972         int nid;
1973         nodemask_t *nodemask;
1974
1975         nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
1976         page = alloc_surplus_huge_page(h, gfp_mask, nid, nodemask);
1977         mpol_cond_put(mpol);
1978
1979         return page;
1980 }
1981
1982 /* page migration callback function */
1983 struct page *alloc_huge_page_node(struct hstate *h, int nid)
1984 {
1985         gfp_t gfp_mask = htlb_alloc_mask(h);
1986         struct page *page = NULL;
1987
1988         if (nid != NUMA_NO_NODE)
1989                 gfp_mask |= __GFP_THISNODE;
1990
1991         spin_lock(&hugetlb_lock);
1992         if (h->free_huge_pages - h->resv_huge_pages > 0)
1993                 page = dequeue_huge_page_nodemask(h, gfp_mask, nid, NULL);
1994         spin_unlock(&hugetlb_lock);
1995
1996         if (!page)
1997                 page = alloc_migrate_huge_page(h, gfp_mask, nid, NULL);
1998
1999         return page;
2000 }
2001
2002 /* page migration callback function */
2003 struct page *alloc_huge_page_nodemask(struct hstate *h, int preferred_nid,
2004                 nodemask_t *nmask)
2005 {
2006         gfp_t gfp_mask = htlb_alloc_mask(h);
2007
2008         spin_lock(&hugetlb_lock);
2009         if (h->free_huge_pages - h->resv_huge_pages > 0) {
2010                 struct page *page;
2011
2012                 page = dequeue_huge_page_nodemask(h, gfp_mask, preferred_nid, nmask);
2013                 if (page) {
2014                         spin_unlock(&hugetlb_lock);
2015                         return page;
2016                 }
2017         }
2018         spin_unlock(&hugetlb_lock);
2019
2020         return alloc_migrate_huge_page(h, gfp_mask, preferred_nid, nmask);
2021 }
2022
2023 /* mempolicy aware migration callback */
2024 struct page *alloc_huge_page_vma(struct hstate *h, struct vm_area_struct *vma,
2025                 unsigned long address)
2026 {
2027         struct mempolicy *mpol;
2028         nodemask_t *nodemask;
2029         struct page *page;
2030         gfp_t gfp_mask;
2031         int node;
2032
2033         gfp_mask = htlb_alloc_mask(h);
2034         node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
2035         page = alloc_huge_page_nodemask(h, node, nodemask);
2036         mpol_cond_put(mpol);
2037
2038         return page;
2039 }
2040
2041 /*
2042  * Increase the hugetlb pool such that it can accommodate a reservation
2043  * of size 'delta'.
2044  */
2045 static int gather_surplus_pages(struct hstate *h, int delta)
2046         __must_hold(&hugetlb_lock)
2047 {
2048         struct list_head surplus_list;
2049         struct page *page, *tmp;
2050         int ret, i;
2051         int needed, allocated;
2052         bool alloc_ok = true;
2053
2054         needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
2055         if (needed <= 0) {
2056                 h->resv_huge_pages += delta;
2057                 return 0;
2058         }
2059
2060         allocated = 0;
2061         INIT_LIST_HEAD(&surplus_list);
2062
2063         ret = -ENOMEM;
2064 retry:
2065         spin_unlock(&hugetlb_lock);
2066         for (i = 0; i < needed; i++) {
2067                 page = alloc_surplus_huge_page(h, htlb_alloc_mask(h),
2068                                 NUMA_NO_NODE, NULL);
2069                 if (!page) {
2070                         alloc_ok = false;
2071                         break;
2072                 }
2073                 list_add(&page->lru, &surplus_list);
2074                 cond_resched();
2075         }
2076         allocated += i;
2077
2078         /*
2079          * After retaking hugetlb_lock, we need to recalculate 'needed'
2080          * because either resv_huge_pages or free_huge_pages may have changed.
2081          */
2082         spin_lock(&hugetlb_lock);
2083         needed = (h->resv_huge_pages + delta) -
2084                         (h->free_huge_pages + allocated);
2085         if (needed > 0) {
2086                 if (alloc_ok)
2087                         goto retry;
2088                 /*
2089                  * We were not able to allocate enough pages to
2090                  * satisfy the entire reservation so we free what
2091                  * we've allocated so far.
2092                  */
2093                 goto free;
2094         }
2095         /*
2096          * The surplus_list now contains _at_least_ the number of extra pages
2097          * needed to accommodate the reservation.  Add the appropriate number
2098          * of pages to the hugetlb pool and free the extras back to the buddy
2099          * allocator.  Commit the entire reservation here to prevent another
2100          * process from stealing the pages as they are added to the pool but
2101          * before they are reserved.
2102          */
2103         needed += allocated;
2104         h->resv_huge_pages += delta;
2105         ret = 0;
2106
2107         /* Free the needed pages to the hugetlb pool */
2108         list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
2109                 if ((--needed) < 0)
2110                         break;
2111                 /*
2112                  * This page is now managed by the hugetlb allocator and has
2113                  * no users -- drop the buddy allocator's reference.
2114                  */
2115                 put_page_testzero(page);
2116                 VM_BUG_ON_PAGE(page_count(page), page);
2117                 enqueue_huge_page(h, page);
2118         }
2119 free:
2120         spin_unlock(&hugetlb_lock);
2121
2122         /* Free unnecessary surplus pages to the buddy allocator */
2123         list_for_each_entry_safe(page, tmp, &surplus_list, lru)
2124                 put_page(page);
2125         spin_lock(&hugetlb_lock);
2126
2127         return ret;
2128 }
2129
2130 /*
2131  * This routine has two main purposes:
2132  * 1) Decrement the reservation count (resv_huge_pages) by the value passed
2133  *    in unused_resv_pages.  This corresponds to the prior adjustments made
2134  *    to the associated reservation map.
2135  * 2) Free any unused surplus pages that may have been allocated to satisfy
2136  *    the reservation.  As many as unused_resv_pages may be freed.
2137  *
2138  * Called with hugetlb_lock held.  However, the lock could be dropped (and
2139  * reacquired) during calls to cond_resched_lock.  Whenever dropping the lock,
2140  * we must make sure nobody else can claim pages we are in the process of
2141  * freeing.  Do this by ensuring resv_huge_page always is greater than the
2142  * number of huge pages we plan to free when dropping the lock.
2143  */
2144 static void return_unused_surplus_pages(struct hstate *h,
2145                                         unsigned long unused_resv_pages)
2146 {
2147         unsigned long nr_pages;
2148
2149         /* Cannot return gigantic pages currently */
2150         if (hstate_is_gigantic(h))
2151                 goto out;
2152
2153         /*
2154          * Part (or even all) of the reservation could have been backed
2155          * by pre-allocated pages. Only free surplus pages.
2156          */
2157         nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
2158
2159         /*
2160          * We want to release as many surplus pages as possible, spread
2161          * evenly across all nodes with memory. Iterate across these nodes
2162          * until we can no longer free unreserved surplus pages. This occurs
2163          * when the nodes with surplus pages have no free pages.
2164          * free_pool_huge_page() will balance the the freed pages across the
2165          * on-line nodes with memory and will handle the hstate accounting.
2166          *
2167          * Note that we decrement resv_huge_pages as we free the pages.  If
2168          * we drop the lock, resv_huge_pages will still be sufficiently large
2169          * to cover subsequent pages we may free.
2170          */
2171         while (nr_pages--) {
2172                 h->resv_huge_pages--;
2173                 unused_resv_pages--;
2174                 if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
2175                         goto out;
2176                 cond_resched_lock(&hugetlb_lock);
2177         }
2178
2179 out:
2180         /* Fully uncommit the reservation */
2181         h->resv_huge_pages -= unused_resv_pages;
2182 }
2183
2184
2185 /*
2186  * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
2187  * are used by the huge page allocation routines to manage reservations.
2188  *
2189  * vma_needs_reservation is called to determine if the huge page at addr
2190  * within the vma has an associated reservation.  If a reservation is
2191  * needed, the value 1 is returned.  The caller is then responsible for
2192  * managing the global reservation and subpool usage counts.  After
2193  * the huge page has been allocated, vma_commit_reservation is called
2194  * to add the page to the reservation map.  If the page allocation fails,
2195  * the reservation must be ended instead of committed.  vma_end_reservation
2196  * is called in such cases.
2197  *
2198  * In the normal case, vma_commit_reservation returns the same value
2199  * as the preceding vma_needs_reservation call.  The only time this
2200  * is not the case is if a reserve map was changed between calls.  It
2201  * is the responsibility of the caller to notice the difference and
2202  * take appropriate action.
2203  *
2204  * vma_add_reservation is used in error paths where a reservation must
2205  * be restored when a newly allocated huge page must be freed.  It is
2206  * to be called after calling vma_needs_reservation to determine if a
2207  * reservation exists.
2208  */
2209 enum vma_resv_mode {
2210         VMA_NEEDS_RESV,
2211         VMA_COMMIT_RESV,
2212         VMA_END_RESV,
2213         VMA_ADD_RESV,
2214 };
2215 static long __vma_reservation_common(struct hstate *h,
2216                                 struct vm_area_struct *vma, unsigned long addr,
2217                                 enum vma_resv_mode mode)
2218 {
2219         struct resv_map *resv;
2220         pgoff_t idx;
2221         long ret;
2222         long dummy_out_regions_needed;
2223
2224         resv = vma_resv_map(vma);
2225         if (!resv)
2226                 return 1;
2227
2228         idx = vma_hugecache_offset(h, vma, addr);
2229         switch (mode) {
2230         case VMA_NEEDS_RESV:
2231                 ret = region_chg(resv, idx, idx + 1, &dummy_out_regions_needed);
2232                 /* We assume that vma_reservation_* routines always operate on
2233                  * 1 page, and that adding to resv map a 1 page entry can only
2234                  * ever require 1 region.
2235                  */
2236                 VM_BUG_ON(dummy_out_regions_needed != 1);
2237                 break;
2238         case VMA_COMMIT_RESV:
2239                 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2240                 /* region_add calls of range 1 should never fail. */
2241                 VM_BUG_ON(ret < 0);
2242                 break;
2243         case VMA_END_RESV:
2244                 region_abort(resv, idx, idx + 1, 1);
2245                 ret = 0;
2246                 break;
2247         case VMA_ADD_RESV:
2248                 if (vma->vm_flags & VM_MAYSHARE) {
2249                         ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2250                         /* region_add calls of range 1 should never fail. */
2251                         VM_BUG_ON(ret < 0);
2252                 } else {
2253                         region_abort(resv, idx, idx + 1, 1);
2254                         ret = region_del(resv, idx, idx + 1);
2255                 }
2256                 break;
2257         default:
2258                 BUG();
2259         }
2260
2261         if (vma->vm_flags & VM_MAYSHARE)
2262                 return ret;
2263         else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && ret >= 0) {
2264                 /*
2265                  * In most cases, reserves always exist for private mappings.
2266                  * However, a file associated with mapping could have been
2267                  * hole punched or truncated after reserves were consumed.
2268                  * As subsequent fault on such a range will not use reserves.
2269                  * Subtle - The reserve map for private mappings has the
2270                  * opposite meaning than that of shared mappings.  If NO
2271                  * entry is in the reserve map, it means a reservation exists.
2272                  * If an entry exists in the reserve map, it means the
2273                  * reservation has already been consumed.  As a result, the
2274                  * return value of this routine is the opposite of the
2275                  * value returned from reserve map manipulation routines above.
2276                  */
2277                 if (ret)
2278                         return 0;
2279                 else
2280                         return 1;
2281         }
2282         else
2283                 return ret < 0 ? ret : 0;
2284 }
2285
2286 static long vma_needs_reservation(struct hstate *h,
2287                         struct vm_area_struct *vma, unsigned long addr)
2288 {
2289         return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
2290 }
2291
2292 static long vma_commit_reservation(struct hstate *h,
2293                         struct vm_area_struct *vma, unsigned long addr)
2294 {
2295         return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
2296 }
2297
2298 static void vma_end_reservation(struct hstate *h,
2299                         struct vm_area_struct *vma, unsigned long addr)
2300 {
2301         (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
2302 }
2303
2304 static long vma_add_reservation(struct hstate *h,
2305                         struct vm_area_struct *vma, unsigned long addr)
2306 {
2307         return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
2308 }
2309
2310 /*
2311  * This routine is called to restore a reservation on error paths.  In the
2312  * specific error paths, a huge page was allocated (via alloc_huge_page)
2313  * and is about to be freed.  If a reservation for the page existed,
2314  * alloc_huge_page would have consumed the reservation and set PagePrivate
2315  * in the newly allocated page.  When the page is freed via free_huge_page,
2316  * the global reservation count will be incremented if PagePrivate is set.
2317  * However, free_huge_page can not adjust the reserve map.  Adjust the
2318  * reserve map here to be consistent with global reserve count adjustments
2319  * to be made by free_huge_page.
2320  */
2321 static void restore_reserve_on_error(struct hstate *h,
2322                         struct vm_area_struct *vma, unsigned long address,
2323                         struct page *page)
2324 {
2325         if (unlikely(PagePrivate(page))) {
2326                 long rc = vma_needs_reservation(h, vma, address);
2327
2328                 if (unlikely(rc < 0)) {
2329                         /*
2330                          * Rare out of memory condition in reserve map
2331                          * manipulation.  Clear PagePrivate so that
2332                          * global reserve count will not be incremented
2333                          * by free_huge_page.  This will make it appear
2334                          * as though the reservation for this page was
2335                          * consumed.  This may prevent the task from
2336                          * faulting in the page at a later time.  This
2337                          * is better than inconsistent global huge page
2338                          * accounting of reserve counts.
2339                          */
2340                         ClearPagePrivate(page);
2341                 } else if (rc) {
2342                         rc = vma_add_reservation(h, vma, address);
2343                         if (unlikely(rc < 0))
2344                                 /*
2345                                  * See above comment about rare out of
2346                                  * memory condition.
2347                                  */
2348                                 ClearPagePrivate(page);
2349                 } else
2350                         vma_end_reservation(h, vma, address);
2351         }
2352 }
2353
2354 struct page *alloc_huge_page(struct vm_area_struct *vma,
2355                                     unsigned long addr, int avoid_reserve)
2356 {
2357         struct hugepage_subpool *spool = subpool_vma(vma);
2358         struct hstate *h = hstate_vma(vma);
2359         struct page *page;
2360         long map_chg, map_commit;
2361         long gbl_chg;
2362         int ret, idx;
2363         struct hugetlb_cgroup *h_cg;
2364         bool deferred_reserve;
2365
2366         idx = hstate_index(h);
2367         /*
2368          * Examine the region/reserve map to determine if the process
2369          * has a reservation for the page to be allocated.  A return
2370          * code of zero indicates a reservation exists (no change).
2371          */
2372         map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
2373         if (map_chg < 0)
2374                 return ERR_PTR(-ENOMEM);
2375
2376         /*
2377          * Processes that did not create the mapping will have no
2378          * reserves as indicated by the region/reserve map. Check
2379          * that the allocation will not exceed the subpool limit.
2380          * Allocations for MAP_NORESERVE mappings also need to be
2381          * checked against any subpool limit.
2382          */
2383         if (map_chg || avoid_reserve) {
2384                 gbl_chg = hugepage_subpool_get_pages(spool, 1);
2385                 if (gbl_chg < 0) {
2386                         vma_end_reservation(h, vma, addr);
2387                         return ERR_PTR(-ENOSPC);
2388                 }
2389
2390                 /*
2391                  * Even though there was no reservation in the region/reserve
2392                  * map, there could be reservations associated with the
2393                  * subpool that can be used.  This would be indicated if the
2394                  * return value of hugepage_subpool_get_pages() is zero.
2395                  * However, if avoid_reserve is specified we still avoid even
2396                  * the subpool reservations.
2397                  */
2398                 if (avoid_reserve)
2399                         gbl_chg = 1;
2400         }
2401
2402         /* If this allocation is not consuming a reservation, charge it now.
2403          */
2404         deferred_reserve = map_chg || avoid_reserve || !vma_resv_map(vma);
2405         if (deferred_reserve) {
2406                 ret = hugetlb_cgroup_charge_cgroup_rsvd(
2407                         idx, pages_per_huge_page(h), &h_cg);
2408                 if (ret)
2409                         goto out_subpool_put;
2410         }
2411
2412         ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
2413         if (ret)
2414                 goto out_uncharge_cgroup_reservation;
2415
2416         spin_lock(&hugetlb_lock);
2417         /*
2418          * glb_chg is passed to indicate whether or not a page must be taken
2419          * from the global free pool (global change).  gbl_chg == 0 indicates
2420          * a reservation exists for the allocation.
2421          */
2422         page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
2423         if (!page) {
2424                 spin_unlock(&hugetlb_lock);
2425                 page = alloc_buddy_huge_page_with_mpol(h, vma, addr);
2426                 if (!page)
2427                         goto out_uncharge_cgroup;
2428                 if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
2429                         SetPagePrivate(page);
2430                         h->resv_huge_pages--;
2431                 }
2432                 spin_lock(&hugetlb_lock);
2433                 list_move(&page->lru, &h->hugepage_activelist);
2434                 /* Fall through */
2435         }
2436         hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
2437         /* If allocation is not consuming a reservation, also store the
2438          * hugetlb_cgroup pointer on the page.
2439          */
2440         if (deferred_reserve) {
2441                 hugetlb_cgroup_commit_charge_rsvd(idx, pages_per_huge_page(h),
2442                                                   h_cg, page);
2443         }
2444
2445         spin_unlock(&hugetlb_lock);
2446
2447         set_page_private(page, (unsigned long)spool);
2448
2449         map_commit = vma_commit_reservation(h, vma, addr);
2450         if (unlikely(map_chg > map_commit)) {
2451                 /*
2452                  * The page was added to the reservation map between
2453                  * vma_needs_reservation and vma_commit_reservation.
2454                  * This indicates a race with hugetlb_reserve_pages.
2455                  * Adjust for the subpool count incremented above AND
2456                  * in hugetlb_reserve_pages for the same page.  Also,
2457                  * the reservation count added in hugetlb_reserve_pages
2458                  * no longer applies.
2459                  */
2460                 long rsv_adjust;
2461
2462                 rsv_adjust = hugepage_subpool_put_pages(spool, 1);
2463                 hugetlb_acct_memory(h, -rsv_adjust);
2464         }
2465         return page;
2466
2467 out_uncharge_cgroup:
2468         hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
2469 out_uncharge_cgroup_reservation:
2470         if (deferred_reserve)
2471                 hugetlb_cgroup_uncharge_cgroup_rsvd(idx, pages_per_huge_page(h),
2472                                                     h_cg);
2473 out_subpool_put:
2474         if (map_chg || avoid_reserve)
2475                 hugepage_subpool_put_pages(spool, 1);
2476         vma_end_reservation(h, vma, addr);
2477         return ERR_PTR(-ENOSPC);
2478 }
2479
2480 int alloc_bootmem_huge_page(struct hstate *h)
2481         __attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
2482 int __alloc_bootmem_huge_page(struct hstate *h)
2483 {
2484         struct huge_bootmem_page *m;
2485         int nr_nodes, node;
2486
2487         for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
2488                 void *addr;
2489
2490                 addr = memblock_alloc_try_nid_raw(
2491                                 huge_page_size(h), huge_page_size(h),
2492                                 0, MEMBLOCK_ALLOC_ACCESSIBLE, node);
2493                 if (addr) {
2494                         /*
2495                          * Use the beginning of the huge page to store the
2496                          * huge_bootmem_page struct (until gather_bootmem
2497                          * puts them into the mem_map).
2498                          */
2499                         m = addr;
2500                         goto found;
2501                 }
2502         }
2503         return 0;
2504
2505 found:
2506         BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h)));
2507         /* Put them into a private list first because mem_map is not up yet */
2508         INIT_LIST_HEAD(&m->list);
2509         list_add(&m->list, &huge_boot_pages);
2510         m->hstate = h;
2511         return 1;
2512 }
2513
2514 static void __init prep_compound_huge_page(struct page *page,
2515                 unsigned int order)
2516 {
2517         if (unlikely(order > (MAX_ORDER - 1)))
2518                 prep_compound_gigantic_page(page, order);
2519         else
2520                 prep_compound_page(page, order);
2521 }
2522
2523 /* Put bootmem huge pages into the standard lists after mem_map is up */
2524 static void __init gather_bootmem_prealloc(void)
2525 {
2526         struct huge_bootmem_page *m;
2527
2528         list_for_each_entry(m, &huge_boot_pages, list) {
2529                 struct page *page = virt_to_page(m);
2530                 struct hstate *h = m->hstate;
2531
2532                 WARN_ON(page_count(page) != 1);
2533                 prep_compound_huge_page(page, h->order);
2534                 WARN_ON(PageReserved(page));
2535                 prep_new_huge_page(h, page, page_to_nid(page));
2536                 put_page(page); /* free it into the hugepage allocator */
2537
2538                 /*
2539                  * If we had gigantic hugepages allocated at boot time, we need
2540                  * to restore the 'stolen' pages to totalram_pages in order to
2541                  * fix confusing memory reports from free(1) and another
2542                  * side-effects, like CommitLimit going negative.
2543                  */
2544                 if (hstate_is_gigantic(h))
2545                         adjust_managed_page_count(page, 1 << h->order);
2546                 cond_resched();
2547         }
2548 }
2549
2550 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
2551 {
2552         unsigned long i;
2553         nodemask_t *node_alloc_noretry;
2554
2555         if (!hstate_is_gigantic(h)) {
2556                 /*
2557                  * Bit mask controlling how hard we retry per-node allocations.
2558                  * Ignore errors as lower level routines can deal with
2559                  * node_alloc_noretry == NULL.  If this kmalloc fails at boot
2560                  * time, we are likely in bigger trouble.
2561                  */
2562                 node_alloc_noretry = kmalloc(sizeof(*node_alloc_noretry),
2563                                                 GFP_KERNEL);
2564         } else {
2565                 /* allocations done at boot time */
2566                 node_alloc_noretry = NULL;
2567         }
2568
2569         /* bit mask controlling how hard we retry per-node allocations */
2570         if (node_alloc_noretry)
2571                 nodes_clear(*node_alloc_noretry);
2572
2573         for (i = 0; i < h->max_huge_pages; ++i) {
2574                 if (hstate_is_gigantic(h)) {
2575                         if (IS_ENABLED(CONFIG_CMA) && hugetlb_cma[0]) {
2576                                 pr_warn_once("HugeTLB: hugetlb_cma is enabled, skip boot time allocation\n");
2577                                 break;
2578                         }
2579                         if (!alloc_bootmem_huge_page(h))
2580                                 break;
2581                 } else if (!alloc_pool_huge_page(h,
2582                                          &node_states[N_MEMORY],
2583                                          node_alloc_noretry))
2584                         break;
2585                 cond_resched();
2586         }
2587         if (i < h->max_huge_pages) {
2588                 char buf[32];
2589
2590                 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
2591                 pr_warn("HugeTLB: allocating %lu of page size %s failed.  Only allocated %lu hugepages.\n",
2592                         h->max_huge_pages, buf, i);
2593                 h->max_huge_pages = i;
2594         }
2595
2596         kfree(node_alloc_noretry);
2597 }
2598
2599 static void __init hugetlb_init_hstates(void)
2600 {
2601         struct hstate *h;
2602
2603         for_each_hstate(h) {
2604                 if (minimum_order > huge_page_order(h))
2605                         minimum_order = huge_page_order(h);
2606
2607                 /* oversize hugepages were init'ed in early boot */
2608                 if (!hstate_is_gigantic(h))
2609                         hugetlb_hstate_alloc_pages(h);
2610         }
2611         VM_BUG_ON(minimum_order == UINT_MAX);
2612 }
2613
2614 static void __init report_hugepages(void)
2615 {
2616         struct hstate *h;
2617
2618         for_each_hstate(h) {
2619                 char buf[32];
2620
2621                 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
2622                 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
2623                         buf, h->free_huge_pages);
2624         }
2625 }
2626
2627 #ifdef CONFIG_HIGHMEM
2628 static void try_to_free_low(struct hstate *h, unsigned long count,
2629                                                 nodemask_t *nodes_allowed)
2630 {
2631         int i;
2632
2633         if (hstate_is_gigantic(h))
2634                 return;
2635
2636         for_each_node_mask(i, *nodes_allowed) {
2637                 struct page *page, *next;
2638                 struct list_head *freel = &h->hugepage_freelists[i];
2639                 list_for_each_entry_safe(page, next, freel, lru) {
2640                         if (count >= h->nr_huge_pages)
2641                                 return;
2642                         if (PageHighMem(page))
2643                                 continue;
2644                         list_del(&page->lru);
2645                         update_and_free_page(h, page);
2646                         h->free_huge_pages--;
2647                         h->free_huge_pages_node[page_to_nid(page)]--;
2648                 }
2649         }
2650 }
2651 #else
2652 static inline void try_to_free_low(struct hstate *h, unsigned long count,
2653                                                 nodemask_t *nodes_allowed)
2654 {
2655 }
2656 #endif
2657
2658 /*
2659  * Increment or decrement surplus_huge_pages.  Keep node-specific counters
2660  * balanced by operating on them in a round-robin fashion.
2661  * Returns 1 if an adjustment was made.
2662  */
2663 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
2664                                 int delta)
2665 {
2666         int nr_nodes, node;
2667
2668         VM_BUG_ON(delta != -1 && delta != 1);
2669
2670         if (delta < 0) {
2671                 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
2672                         if (h->surplus_huge_pages_node[node])
2673                                 goto found;
2674                 }
2675         } else {
2676                 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2677                         if (h->surplus_huge_pages_node[node] <
2678                                         h->nr_huge_pages_node[node])
2679                                 goto found;
2680                 }
2681         }
2682         return 0;
2683
2684 found:
2685         h->surplus_huge_pages += delta;
2686         h->surplus_huge_pages_node[node] += delta;
2687         return 1;
2688 }
2689
2690 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
2691 static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid,
2692                               nodemask_t *nodes_allowed)
2693 {
2694         unsigned long min_count, ret;
2695         NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL);
2696
2697         /*
2698          * Bit mask controlling how hard we retry per-node allocations.
2699          * If we can not allocate the bit mask, do not attempt to allocate
2700          * the requested huge pages.
2701          */
2702         if (node_alloc_noretry)
2703                 nodes_clear(*node_alloc_noretry);
2704         else
2705                 return -ENOMEM;
2706
2707         spin_lock(&hugetlb_lock);
2708
2709         /*
2710          * Check for a node specific request.
2711          * Changing node specific huge page count may require a corresponding
2712          * change to the global count.  In any case, the passed node mask
2713          * (nodes_allowed) will restrict alloc/free to the specified node.
2714          */
2715         if (nid != NUMA_NO_NODE) {
2716                 unsigned long old_count = count;
2717
2718                 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
2719                 /*
2720                  * User may have specified a large count value which caused the
2721                  * above calculation to overflow.  In this case, they wanted
2722                  * to allocate as many huge pages as possible.  Set count to
2723                  * largest possible value to align with their intention.
2724                  */
2725                 if (count < old_count)
2726                         count = ULONG_MAX;
2727         }
2728
2729         /*
2730          * Gigantic pages runtime allocation depend on the capability for large
2731          * page range allocation.
2732          * If the system does not provide this feature, return an error when
2733          * the user tries to allocate gigantic pages but let the user free the
2734          * boottime allocated gigantic pages.
2735          */
2736         if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) {
2737                 if (count > persistent_huge_pages(h)) {
2738                         spin_unlock(&hugetlb_lock);
2739                         NODEMASK_FREE(node_alloc_noretry);
2740                         return -EINVAL;
2741                 }
2742                 /* Fall through to decrease pool */
2743         }
2744
2745         /*
2746          * Increase the pool size
2747          * First take pages out of surplus state.  Then make up the
2748          * remaining difference by allocating fresh huge pages.
2749          *
2750          * We might race with alloc_surplus_huge_page() here and be unable
2751          * to convert a surplus huge page to a normal huge page. That is
2752          * not critical, though, it just means the overall size of the
2753          * pool might be one hugepage larger than it needs to be, but
2754          * within all the constraints specified by the sysctls.
2755          */
2756         while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
2757                 if (!adjust_pool_surplus(h, nodes_allowed, -1))
2758                         break;
2759         }
2760
2761         while (count > persistent_huge_pages(h)) {
2762                 /*
2763                  * If this allocation races such that we no longer need the
2764                  * page, free_huge_page will handle it by freeing the page
2765                  * and reducing the surplus.
2766                  */
2767                 spin_unlock(&hugetlb_lock);
2768
2769                 /* yield cpu to avoid soft lockup */
2770                 cond_resched();
2771
2772                 ret = alloc_pool_huge_page(h, nodes_allowed,
2773                                                 node_alloc_noretry);
2774                 spin_lock(&hugetlb_lock);
2775                 if (!ret)
2776                         goto out;
2777
2778                 /* Bail for signals. Probably ctrl-c from user */
2779                 if (signal_pending(current))
2780                         goto out;
2781         }
2782
2783         /*
2784          * Decrease the pool size
2785          * First return free pages to the buddy allocator (being careful
2786          * to keep enough around to satisfy reservations).  Then place
2787          * pages into surplus state as needed so the pool will shrink
2788          * to the desired size as pages become free.
2789          *
2790          * By placing pages into the surplus state independent of the
2791          * overcommit value, we are allowing the surplus pool size to
2792          * exceed overcommit. There are few sane options here. Since
2793          * alloc_surplus_huge_page() is checking the global counter,
2794          * though, we'll note that we're not allowed to exceed surplus
2795          * and won't grow the pool anywhere else. Not until one of the
2796          * sysctls are changed, or the surplus pages go out of use.
2797          */
2798         min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
2799         min_count = max(count, min_count);
2800         try_to_free_low(h, min_count, nodes_allowed);
2801         while (min_count < persistent_huge_pages(h)) {
2802                 if (!free_pool_huge_page(h, nodes_allowed, 0))
2803                         break;
2804                 cond_resched_lock(&hugetlb_lock);
2805         }
2806         while (count < persistent_huge_pages(h)) {
2807                 if (!adjust_pool_surplus(h, nodes_allowed, 1))
2808                         break;
2809         }
2810 out:
2811         h->max_huge_pages = persistent_huge_pages(h);
2812         spin_unlock(&hugetlb_lock);
2813
2814         NODEMASK_FREE(node_alloc_noretry);
2815
2816         return 0;
2817 }
2818
2819 #define HSTATE_ATTR_RO(_name) \
2820         static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2821
2822 #define HSTATE_ATTR(_name) \
2823         static struct kobj_attribute _name##_attr = \
2824                 __ATTR(_name, 0644, _name##_show, _name##_store)
2825
2826 static struct kobject *hugepages_kobj;
2827 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2828
2829 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
2830
2831 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
2832 {
2833         int i;
2834
2835         for (i = 0; i < HUGE_MAX_HSTATE; i++)
2836                 if (hstate_kobjs[i] == kobj) {
2837                         if (nidp)
2838                                 *nidp = NUMA_NO_NODE;
2839                         return &hstates[i];
2840                 }
2841
2842         return kobj_to_node_hstate(kobj, nidp);
2843 }
2844
2845 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
2846                                         struct kobj_attribute *attr, char *buf)
2847 {
2848         struct hstate *h;
2849         unsigned long nr_huge_pages;
2850         int nid;
2851
2852         h = kobj_to_hstate(kobj, &nid);
2853         if (nid == NUMA_NO_NODE)
2854                 nr_huge_pages = h->nr_huge_pages;
2855         else
2856                 nr_huge_pages = h->nr_huge_pages_node[nid];
2857
2858         return sprintf(buf, "%lu\n", nr_huge_pages);
2859 }
2860
2861 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
2862                                            struct hstate *h, int nid,
2863                                            unsigned long count, size_t len)
2864 {
2865         int err;
2866         nodemask_t nodes_allowed, *n_mask;
2867
2868         if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
2869                 return -EINVAL;
2870
2871         if (nid == NUMA_NO_NODE) {
2872                 /*
2873                  * global hstate attribute
2874                  */
2875                 if (!(obey_mempolicy &&
2876                                 init_nodemask_of_mempolicy(&nodes_allowed)))
2877                         n_mask = &node_states[N_MEMORY];
2878                 else
2879                         n_mask = &nodes_allowed;
2880         } else {
2881                 /*
2882                  * Node specific request.  count adjustment happens in
2883                  * set_max_huge_pages() after acquiring hugetlb_lock.
2884                  */
2885                 init_nodemask_of_node(&nodes_allowed, nid);
2886                 n_mask = &nodes_allowed;
2887         }
2888
2889         err = set_max_huge_pages(h, count, nid, n_mask);
2890
2891         return err ? err : len;
2892 }
2893
2894 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
2895                                          struct kobject *kobj, const char *buf,
2896                                          size_t len)
2897 {
2898         struct hstate *h;
2899         unsigned long count;
2900         int nid;
2901         int err;
2902
2903         err = kstrtoul(buf, 10, &count);
2904         if (err)
2905                 return err;
2906
2907         h = kobj_to_hstate(kobj, &nid);
2908         return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
2909 }
2910
2911 static ssize_t nr_hugepages_show(struct kobject *kobj,
2912                                        struct kobj_attribute *attr, char *buf)
2913 {
2914         return nr_hugepages_show_common(kobj, attr, buf);
2915 }
2916
2917 static ssize_t nr_hugepages_store(struct kobject *kobj,
2918                struct kobj_attribute *attr, const char *buf, size_t len)
2919 {
2920         return nr_hugepages_store_common(false, kobj, buf, len);
2921 }
2922 HSTATE_ATTR(nr_hugepages);
2923
2924 #ifdef CONFIG_NUMA
2925
2926 /*
2927  * hstate attribute for optionally mempolicy-based constraint on persistent
2928  * huge page alloc/free.
2929  */
2930 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
2931                                        struct kobj_attribute *attr, char *buf)
2932 {
2933         return nr_hugepages_show_common(kobj, attr, buf);
2934 }
2935
2936 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
2937                struct kobj_attribute *attr, const char *buf, size_t len)
2938 {
2939         return nr_hugepages_store_common(true, kobj, buf, len);
2940 }
2941 HSTATE_ATTR(nr_hugepages_mempolicy);
2942 #endif
2943
2944
2945 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
2946                                         struct kobj_attribute *attr, char *buf)
2947 {
2948         struct hstate *h = kobj_to_hstate(kobj, NULL);
2949         return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
2950 }
2951
2952 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
2953                 struct kobj_attribute *attr, const char *buf, size_t count)
2954 {
2955         int err;
2956         unsigned long input;
2957         struct hstate *h = kobj_to_hstate(kobj, NULL);
2958
2959         if (hstate_is_gigantic(h))
2960                 return -EINVAL;
2961
2962         err = kstrtoul(buf, 10, &input);
2963         if (err)
2964                 return err;
2965
2966         spin_lock(&hugetlb_lock);
2967         h->nr_overcommit_huge_pages = input;
2968         spin_unlock(&hugetlb_lock);
2969
2970         return count;
2971 }
2972 HSTATE_ATTR(nr_overcommit_hugepages);
2973
2974 static ssize_t free_hugepages_show(struct kobject *kobj,
2975                                         struct kobj_attribute *attr, char *buf)
2976 {
2977         struct hstate *h;
2978         unsigned long free_huge_pages;
2979         int nid;
2980
2981         h = kobj_to_hstate(kobj, &nid);
2982         if (nid == NUMA_NO_NODE)
2983                 free_huge_pages = h->free_huge_pages;
2984         else
2985                 free_huge_pages = h->free_huge_pages_node[nid];
2986
2987         return sprintf(buf, "%lu\n", free_huge_pages);
2988 }
2989 HSTATE_ATTR_RO(free_hugepages);
2990
2991 static ssize_t resv_hugepages_show(struct kobject *kobj,
2992                                         struct kobj_attribute *attr, char *buf)
2993 {
2994         struct hstate *h = kobj_to_hstate(kobj, NULL);
2995         return sprintf(buf, "%lu\n", h->resv_huge_pages);
2996 }
2997 HSTATE_ATTR_RO(resv_hugepages);
2998
2999 static ssize_t surplus_hugepages_show(struct kobject *kobj,
3000                                         struct kobj_attribute *attr, char *buf)
3001 {
3002         struct hstate *h;
3003         unsigned long surplus_huge_pages;
3004         int nid;
3005
3006         h = kobj_to_hstate(kobj, &nid);
3007         if (nid == NUMA_NO_NODE)
3008                 surplus_huge_pages = h->surplus_huge_pages;
3009         else
3010                 surplus_huge_pages = h->surplus_huge_pages_node[nid];
3011
3012         return sprintf(buf, "%lu\n", surplus_huge_pages);
3013 }
3014 HSTATE_ATTR_RO(surplus_hugepages);
3015
3016 static struct attribute *hstate_attrs[] = {
3017         &nr_hugepages_attr.attr,
3018         &nr_overcommit_hugepages_attr.attr,
3019         &free_hugepages_attr.attr,
3020         &resv_hugepages_attr.attr,
3021         &surplus_hugepages_attr.attr,
3022 #ifdef CONFIG_NUMA
3023         &nr_hugepages_mempolicy_attr.attr,
3024 #endif
3025         NULL,
3026 };
3027
3028 static const struct attribute_group hstate_attr_group = {
3029         .attrs = hstate_attrs,
3030 };
3031
3032 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
3033                                     struct kobject **hstate_kobjs,
3034                                     const struct attribute_group *hstate_attr_group)
3035 {
3036         int retval;
3037         int hi = hstate_index(h);
3038
3039         hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
3040         if (!hstate_kobjs[hi])
3041                 return -ENOMEM;
3042
3043         retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
3044         if (retval)
3045                 kobject_put(hstate_kobjs[hi]);
3046
3047         return retval;
3048 }
3049
3050 static void __init hugetlb_sysfs_init(void)
3051 {
3052         struct hstate *h;
3053         int err;
3054
3055         hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
3056         if (!hugepages_kobj)
3057                 return;
3058
3059         for_each_hstate(h) {
3060                 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
3061                                          hstate_kobjs, &hstate_attr_group);
3062                 if (err)
3063                         pr_err("HugeTLB: Unable to add hstate %s", h->name);
3064         }
3065 }
3066
3067 #ifdef CONFIG_NUMA
3068
3069 /*
3070  * node_hstate/s - associate per node hstate attributes, via their kobjects,
3071  * with node devices in node_devices[] using a parallel array.  The array
3072  * index of a node device or _hstate == node id.
3073  * This is here to avoid any static dependency of the node device driver, in
3074  * the base kernel, on the hugetlb module.
3075  */
3076 struct node_hstate {
3077         struct kobject          *hugepages_kobj;
3078         struct kobject          *hstate_kobjs[HUGE_MAX_HSTATE];
3079 };
3080 static struct node_hstate node_hstates[MAX_NUMNODES];
3081
3082 /*
3083  * A subset of global hstate attributes for node devices
3084  */
3085 static struct attribute *per_node_hstate_attrs[] = {
3086         &nr_hugepages_attr.attr,
3087         &free_hugepages_attr.attr,
3088         &surplus_hugepages_attr.attr,
3089         NULL,
3090 };
3091
3092 static const struct attribute_group per_node_hstate_attr_group = {
3093         .attrs = per_node_hstate_attrs,
3094 };
3095
3096 /*
3097  * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
3098  * Returns node id via non-NULL nidp.
3099  */
3100 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
3101 {
3102         int nid;
3103
3104         for (nid = 0; nid < nr_node_ids; nid++) {
3105                 struct node_hstate *nhs = &node_hstates[nid];
3106                 int i;
3107                 for (i = 0; i < HUGE_MAX_HSTATE; i++)
3108                         if (nhs->hstate_kobjs[i] == kobj) {
3109                                 if (nidp)
3110                                         *nidp = nid;
3111                                 return &hstates[i];
3112                         }
3113         }
3114
3115         BUG();
3116         return NULL;
3117 }
3118
3119 /*
3120  * Unregister hstate attributes from a single node device.
3121  * No-op if no hstate attributes attached.
3122  */
3123 static void hugetlb_unregister_node(struct node *node)
3124 {
3125         struct hstate *h;
3126         struct node_hstate *nhs = &node_hstates[node->dev.id];
3127
3128         if (!nhs->hugepages_kobj)
3129                 return;         /* no hstate attributes */
3130
3131         for_each_hstate(h) {
3132                 int idx = hstate_index(h);
3133                 if (nhs->hstate_kobjs[idx]) {
3134                         kobject_put(nhs->hstate_kobjs[idx]);
3135                         nhs->hstate_kobjs[idx] = NULL;
3136                 }
3137         }
3138
3139         kobject_put(nhs->hugepages_kobj);
3140         nhs->hugepages_kobj = NULL;
3141 }
3142
3143
3144 /*
3145  * Register hstate attributes for a single node device.
3146  * No-op if attributes already registered.
3147  */
3148 static void hugetlb_register_node(struct node *node)
3149 {
3150         struct hstate *h;
3151         struct node_hstate *nhs = &node_hstates[node->dev.id];
3152         int err;
3153
3154         if (nhs->hugepages_kobj)
3155                 return;         /* already allocated */
3156
3157         nhs->hugepages_kobj = kobject_create_and_add("hugepages",
3158                                                         &node->dev.kobj);
3159         if (!nhs->hugepages_kobj)
3160                 return;
3161
3162         for_each_hstate(h) {
3163                 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
3164                                                 nhs->hstate_kobjs,
3165                                                 &per_node_hstate_attr_group);
3166                 if (err) {
3167                         pr_err("HugeTLB: Unable to add hstate %s for node %d\n",
3168                                 h->name, node->dev.id);
3169                         hugetlb_unregister_node(node);
3170                         break;
3171                 }
3172         }
3173 }
3174
3175 /*
3176  * hugetlb init time:  register hstate attributes for all registered node
3177  * devices of nodes that have memory.  All on-line nodes should have
3178  * registered their associated device by this time.
3179  */
3180 static void __init hugetlb_register_all_nodes(void)
3181 {
3182         int nid;
3183
3184         for_each_node_state(nid, N_MEMORY) {
3185                 struct node *node = node_devices[nid];
3186                 if (node->dev.id == nid)
3187                         hugetlb_register_node(node);
3188         }
3189
3190         /*
3191          * Let the node device driver know we're here so it can
3192          * [un]register hstate attributes on node hotplug.
3193          */
3194         register_hugetlbfs_with_node(hugetlb_register_node,
3195                                      hugetlb_unregister_node);
3196 }
3197 #else   /* !CONFIG_NUMA */
3198
3199 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
3200 {
3201         BUG();
3202         if (nidp)
3203                 *nidp = -1;
3204         return NULL;
3205 }
3206
3207 static void hugetlb_register_all_nodes(void) { }
3208
3209 #endif
3210
3211 static int __init hugetlb_init(void)
3212 {
3213         int i;
3214
3215         if (!hugepages_supported()) {
3216                 if (hugetlb_max_hstate || default_hstate_max_huge_pages)
3217                         pr_warn("HugeTLB: huge pages not supported, ignoring associated command-line parameters\n");
3218                 return 0;
3219         }
3220
3221         /*
3222          * Make sure HPAGE_SIZE (HUGETLB_PAGE_ORDER) hstate exists.  Some
3223          * architectures depend on setup being done here.
3224          */
3225         hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
3226         if (!parsed_default_hugepagesz) {
3227                 /*
3228                  * If we did not parse a default huge page size, set
3229                  * default_hstate_idx to HPAGE_SIZE hstate. And, if the
3230                  * number of huge pages for this default size was implicitly
3231                  * specified, set that here as well.
3232                  * Note that the implicit setting will overwrite an explicit
3233                  * setting.  A warning will be printed in this case.
3234                  */
3235                 default_hstate_idx = hstate_index(size_to_hstate(HPAGE_SIZE));
3236                 if (default_hstate_max_huge_pages) {
3237                         if (default_hstate.max_huge_pages) {
3238                                 char buf[32];
3239
3240                                 string_get_size(huge_page_size(&default_hstate),
3241                                         1, STRING_UNITS_2, buf, 32);
3242                                 pr_warn("HugeTLB: Ignoring hugepages=%lu associated with %s page size\n",
3243                                         default_hstate.max_huge_pages, buf);
3244                                 pr_warn("HugeTLB: Using hugepages=%lu for number of default huge pages\n",
3245                                         default_hstate_max_huge_pages);
3246                         }
3247                         default_hstate.max_huge_pages =
3248                                 default_hstate_max_huge_pages;
3249                 }
3250         }
3251
3252         hugetlb_cma_check();
3253         hugetlb_init_hstates();
3254         gather_bootmem_prealloc();
3255         report_hugepages();
3256
3257         hugetlb_sysfs_init();
3258         hugetlb_register_all_nodes();
3259         hugetlb_cgroup_file_init();
3260
3261 #ifdef CONFIG_SMP
3262         num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
3263 #else
3264         num_fault_mutexes = 1;
3265 #endif
3266         hugetlb_fault_mutex_table =
3267                 kmalloc_array(num_fault_mutexes, sizeof(struct mutex),
3268                               GFP_KERNEL);
3269         BUG_ON(!hugetlb_fault_mutex_table);
3270
3271         for (i = 0; i < num_fault_mutexes; i++)
3272                 mutex_init(&hugetlb_fault_mutex_table[i]);
3273         return 0;
3274 }
3275 subsys_initcall(hugetlb_init);
3276
3277 /* Overwritten by architectures with more huge page sizes */
3278 bool __init __attribute((weak)) arch_hugetlb_valid_size(unsigned long size)
3279 {
3280         return size == HPAGE_SIZE;
3281 }
3282
3283 void __init hugetlb_add_hstate(unsigned int order)
3284 {
3285         struct hstate *h;
3286         unsigned long i;
3287
3288         if (size_to_hstate(PAGE_SIZE << order)) {
3289                 return;
3290         }
3291         BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
3292         BUG_ON(order == 0);
3293         h = &hstates[hugetlb_max_hstate++];
3294         h->order = order;
3295         h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
3296         h->nr_huge_pages = 0;
3297         h->free_huge_pages = 0;
3298         for (i = 0; i < MAX_NUMNODES; ++i)
3299                 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
3300         INIT_LIST_HEAD(&h->hugepage_activelist);
3301         h->next_nid_to_alloc = first_memory_node;
3302         h->next_nid_to_free = first_memory_node;
3303         snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
3304                                         huge_page_size(h)/1024);
3305
3306         parsed_hstate = h;
3307 }
3308
3309 /*
3310  * hugepages command line processing
3311  * hugepages normally follows a valid hugepagsz or default_hugepagsz
3312  * specification.  If not, ignore the hugepages value.  hugepages can also
3313  * be the first huge page command line  option in which case it implicitly
3314  * specifies the number of huge pages for the default size.
3315  */
3316 static int __init hugepages_setup(char *s)
3317 {
3318         unsigned long *mhp;
3319         static unsigned long *last_mhp;
3320
3321         if (!parsed_valid_hugepagesz) {
3322                 pr_warn("HugeTLB: hugepages=%s does not follow a valid hugepagesz, ignoring\n", s);
3323                 parsed_valid_hugepagesz = true;
3324                 return 0;
3325         }
3326
3327         /*
3328          * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter
3329          * yet, so this hugepages= parameter goes to the "default hstate".
3330          * Otherwise, it goes with the previously parsed hugepagesz or
3331          * default_hugepagesz.
3332          */
3333         else if (!hugetlb_max_hstate)
3334                 mhp = &default_hstate_max_huge_pages;
3335         else
3336                 mhp = &parsed_hstate->max_huge_pages;
3337
3338         if (mhp == last_mhp) {
3339                 pr_warn("HugeTLB: hugepages= specified twice without interleaving hugepagesz=, ignoring hugepages=%s\n", s);
3340                 return 0;
3341         }
3342
3343         if (sscanf(s, "%lu", mhp) <= 0)
3344                 *mhp = 0;
3345
3346         /*
3347          * Global state is always initialized later in hugetlb_init.
3348          * But we need to allocate >= MAX_ORDER hstates here early to still
3349          * use the bootmem allocator.
3350          */
3351         if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
3352                 hugetlb_hstate_alloc_pages(parsed_hstate);
3353
3354         last_mhp = mhp;
3355
3356         return 1;
3357 }
3358 __setup("hugepages=", hugepages_setup);
3359
3360 /*
3361  * hugepagesz command line processing
3362  * A specific huge page size can only be specified once with hugepagesz.
3363  * hugepagesz is followed by hugepages on the command line.  The global
3364  * variable 'parsed_valid_hugepagesz' is used to determine if prior
3365  * hugepagesz argument was valid.
3366  */
3367 static int __init hugepagesz_setup(char *s)
3368 {
3369         unsigned long size;
3370         struct hstate *h;
3371
3372         parsed_valid_hugepagesz = false;
3373         size = (unsigned long)memparse(s, NULL);
3374
3375         if (!arch_hugetlb_valid_size(size)) {
3376                 pr_err("HugeTLB: unsupported hugepagesz=%s\n", s);
3377                 return 0;
3378         }
3379
3380         h = size_to_hstate(size);
3381         if (h) {
3382                 /*
3383                  * hstate for this size already exists.  This is normally
3384                  * an error, but is allowed if the existing hstate is the
3385                  * default hstate.  More specifically, it is only allowed if
3386                  * the number of huge pages for the default hstate was not
3387                  * previously specified.
3388                  */
3389                 if (!parsed_default_hugepagesz ||  h != &default_hstate ||
3390                     default_hstate.max_huge_pages) {
3391                         pr_warn("HugeTLB: hugepagesz=%s specified twice, ignoring\n", s);
3392                         return 0;
3393                 }
3394
3395                 /*
3396                  * No need to call hugetlb_add_hstate() as hstate already
3397                  * exists.  But, do set parsed_hstate so that a following
3398                  * hugepages= parameter will be applied to this hstate.
3399                  */
3400                 parsed_hstate = h;
3401                 parsed_valid_hugepagesz = true;
3402                 return 1;
3403         }
3404
3405         hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
3406         parsed_valid_hugepagesz = true;
3407         return 1;
3408 }
3409 __setup("hugepagesz=", hugepagesz_setup);
3410
3411 /*
3412  * default_hugepagesz command line input
3413  * Only one instance of default_hugepagesz allowed on command line.
3414  */
3415 static int __init default_hugepagesz_setup(char *s)
3416 {
3417         unsigned long size;
3418
3419         parsed_valid_hugepagesz = false;
3420         if (parsed_default_hugepagesz) {
3421                 pr_err("HugeTLB: default_hugepagesz previously specified, ignoring %s\n", s);
3422                 return 0;
3423         }
3424
3425         size = (unsigned long)memparse(s, NULL);
3426
3427         if (!arch_hugetlb_valid_size(size)) {
3428                 pr_err("HugeTLB: unsupported default_hugepagesz=%s\n", s);
3429                 return 0;
3430         }
3431
3432         hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
3433         parsed_valid_hugepagesz = true;
3434         parsed_default_hugepagesz = true;
3435         default_hstate_idx = hstate_index(size_to_hstate(size));
3436
3437         /*
3438          * The number of default huge pages (for this size) could have been
3439          * specified as the first hugetlb parameter: hugepages=X.  If so,
3440          * then default_hstate_max_huge_pages is set.  If the default huge
3441          * page size is gigantic (>= MAX_ORDER), then the pages must be
3442          * allocated here from bootmem allocator.
3443          */
3444         if (default_hstate_max_huge_pages) {
3445                 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
3446                 if (hstate_is_gigantic(&default_hstate))
3447                         hugetlb_hstate_alloc_pages(&default_hstate);
3448                 default_hstate_max_huge_pages = 0;
3449         }
3450
3451         return 1;
3452 }
3453 __setup("default_hugepagesz=", default_hugepagesz_setup);
3454
3455 static unsigned int cpuset_mems_nr(unsigned int *array)
3456 {
3457         int node;
3458         unsigned int nr = 0;
3459
3460         for_each_node_mask(node, cpuset_current_mems_allowed)
3461                 nr += array[node];
3462
3463         return nr;
3464 }
3465
3466 #ifdef CONFIG_SYSCTL
3467 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
3468                          struct ctl_table *table, int write,
3469                          void *buffer, size_t *length, loff_t *ppos)
3470 {
3471         struct hstate *h = &default_hstate;
3472         unsigned long tmp = h->max_huge_pages;
3473         int ret;
3474
3475         if (!hugepages_supported())
3476                 return -EOPNOTSUPP;
3477
3478         table->data = &tmp;
3479         table->maxlen = sizeof(unsigned long);
3480         ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
3481         if (ret)
3482                 goto out;
3483
3484         if (write)
3485                 ret = __nr_hugepages_store_common(obey_mempolicy, h,
3486                                                   NUMA_NO_NODE, tmp, *length);
3487 out:
3488         return ret;
3489 }
3490
3491 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
3492                           void *buffer, size_t *length, loff_t *ppos)
3493 {
3494
3495         return hugetlb_sysctl_handler_common(false, table, write,
3496                                                         buffer, length, ppos);
3497 }
3498
3499 #ifdef CONFIG_NUMA
3500 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
3501                           void *buffer, size_t *length, loff_t *ppos)
3502 {
3503         return hugetlb_sysctl_handler_common(true, table, write,
3504                                                         buffer, length, ppos);
3505 }
3506 #endif /* CONFIG_NUMA */
3507
3508 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
3509                 void *buffer, size_t *length, loff_t *ppos)
3510 {
3511         struct hstate *h = &default_hstate;
3512         unsigned long tmp;
3513         int ret;
3514
3515         if (!hugepages_supported())
3516                 return -EOPNOTSUPP;
3517
3518         tmp = h->nr_overcommit_huge_pages;
3519
3520         if (write && hstate_is_gigantic(h))
3521                 return -EINVAL;
3522
3523         table->data = &tmp;
3524         table->maxlen = sizeof(unsigned long);
3525         ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
3526         if (ret)
3527                 goto out;
3528
3529         if (write) {
3530                 spin_lock(&hugetlb_lock);
3531                 h->nr_overcommit_huge_pages = tmp;
3532                 spin_unlock(&hugetlb_lock);
3533         }
3534 out:
3535         return ret;
3536 }
3537
3538 #endif /* CONFIG_SYSCTL */
3539
3540 void hugetlb_report_meminfo(struct seq_file *m)
3541 {
3542         struct hstate *h;
3543         unsigned long total = 0;
3544
3545         if (!hugepages_supported())
3546                 return;
3547
3548         for_each_hstate(h) {
3549                 unsigned long count = h->nr_huge_pages;
3550
3551                 total += (PAGE_SIZE << huge_page_order(h)) * count;
3552
3553                 if (h == &default_hstate)
3554                         seq_printf(m,
3555                                    "HugePages_Total:   %5lu\n"
3556                                    "HugePages_Free:    %5lu\n"
3557                                    "HugePages_Rsvd:    %5lu\n"
3558                                    "HugePages_Surp:    %5lu\n"
3559                                    "Hugepagesize:   %8lu kB\n",
3560                                    count,
3561                                    h->free_huge_pages,
3562                                    h->resv_huge_pages,
3563                                    h->surplus_huge_pages,
3564                                    (PAGE_SIZE << huge_page_order(h)) / 1024);
3565         }
3566
3567         seq_printf(m, "Hugetlb:        %8lu kB\n", total / 1024);
3568 }
3569
3570 int hugetlb_report_node_meminfo(int nid, char *buf)
3571 {
3572         struct hstate *h = &default_hstate;
3573         if (!hugepages_supported())
3574                 return 0;
3575         return sprintf(buf,
3576                 "Node %d HugePages_Total: %5u\n"
3577                 "Node %d HugePages_Free:  %5u\n"
3578                 "Node %d HugePages_Surp:  %5u\n",
3579                 nid, h->nr_huge_pages_node[nid],
3580                 nid, h->free_huge_pages_node[nid],
3581                 nid, h->surplus_huge_pages_node[nid]);
3582 }
3583
3584 void hugetlb_show_meminfo(void)
3585 {
3586         struct hstate *h;
3587         int nid;
3588
3589         if (!hugepages_supported())
3590                 return;
3591
3592         for_each_node_state(nid, N_MEMORY)
3593                 for_each_hstate(h)
3594                         pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
3595                                 nid,
3596                                 h->nr_huge_pages_node[nid],
3597                                 h->free_huge_pages_node[nid],
3598                                 h->surplus_huge_pages_node[nid],
3599                                 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
3600 }
3601
3602 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
3603 {
3604         seq_printf(m, "HugetlbPages:\t%8lu kB\n",
3605                    atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
3606 }
3607
3608 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
3609 unsigned long hugetlb_total_pages(void)
3610 {
3611         struct hstate *h;
3612         unsigned long nr_total_pages = 0;
3613
3614         for_each_hstate(h)
3615                 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
3616         return nr_total_pages;
3617 }
3618
3619 static int hugetlb_acct_memory(struct hstate *h, long delta)
3620 {
3621         int ret = -ENOMEM;
3622
3623         spin_lock(&hugetlb_lock);
3624         /*
3625          * When cpuset is configured, it breaks the strict hugetlb page
3626          * reservation as the accounting is done on a global variable. Such
3627          * reservation is completely rubbish in the presence of cpuset because
3628          * the reservation is not checked against page availability for the
3629          * current cpuset. Application can still potentially OOM'ed by kernel
3630          * with lack of free htlb page in cpuset that the task is in.
3631          * Attempt to enforce strict accounting with cpuset is almost
3632          * impossible (or too ugly) because cpuset is too fluid that
3633          * task or memory node can be dynamically moved between cpusets.
3634          *
3635          * The change of semantics for shared hugetlb mapping with cpuset is
3636          * undesirable. However, in order to preserve some of the semantics,
3637          * we fall back to check against current free page availability as
3638          * a best attempt and hopefully to minimize the impact of changing
3639          * semantics that cpuset has.
3640          */
3641         if (delta > 0) {
3642                 if (gather_surplus_pages(h, delta) < 0)
3643                         goto out;
3644
3645                 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
3646                         return_unused_surplus_pages(h, delta);
3647                         goto out;
3648                 }
3649         }
3650
3651         ret = 0;
3652         if (delta < 0)
3653                 return_unused_surplus_pages(h, (unsigned long) -delta);
3654
3655 out:
3656         spin_unlock(&hugetlb_lock);
3657         return ret;
3658 }
3659
3660 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
3661 {
3662         struct resv_map *resv = vma_resv_map(vma);
3663
3664         /*
3665          * This new VMA should share its siblings reservation map if present.
3666          * The VMA will only ever have a valid reservation map pointer where
3667          * it is being copied for another still existing VMA.  As that VMA
3668          * has a reference to the reservation map it cannot disappear until
3669          * after this open call completes.  It is therefore safe to take a
3670          * new reference here without additional locking.
3671          */
3672         if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3673                 kref_get(&resv->refs);
3674 }
3675
3676 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
3677 {
3678         struct hstate *h = hstate_vma(vma);
3679         struct resv_map *resv = vma_resv_map(vma);
3680         struct hugepage_subpool *spool = subpool_vma(vma);
3681         unsigned long reserve, start, end;
3682         long gbl_reserve;
3683
3684         if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3685                 return;
3686
3687         start = vma_hugecache_offset(h, vma, vma->vm_start);
3688         end = vma_hugecache_offset(h, vma, vma->vm_end);
3689
3690         reserve = (end - start) - region_count(resv, start, end);
3691         hugetlb_cgroup_uncharge_counter(resv, start, end);
3692         if (reserve) {
3693                 /*
3694                  * Decrement reserve counts.  The global reserve count may be
3695                  * adjusted if the subpool has a minimum size.
3696                  */
3697                 gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
3698                 hugetlb_acct_memory(h, -gbl_reserve);
3699         }
3700
3701         kref_put(&resv->refs, resv_map_release);
3702 }
3703
3704 static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
3705 {
3706         if (addr & ~(huge_page_mask(hstate_vma(vma))))
3707                 return -EINVAL;
3708         return 0;
3709 }
3710
3711 static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma)
3712 {
3713         struct hstate *hstate = hstate_vma(vma);
3714
3715         return 1UL << huge_page_shift(hstate);
3716 }
3717
3718 /*
3719  * We cannot handle pagefaults against hugetlb pages at all.  They cause
3720  * handle_mm_fault() to try to instantiate regular-sized pages in the
3721  * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
3722  * this far.
3723  */
3724 static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf)
3725 {
3726         BUG();
3727         return 0;
3728 }
3729
3730 /*
3731  * When a new function is introduced to vm_operations_struct and added
3732  * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops.
3733  * This is because under System V memory model, mappings created via
3734  * shmget/shmat with "huge page" specified are backed by hugetlbfs files,
3735  * their original vm_ops are overwritten with shm_vm_ops.
3736  */
3737 const struct vm_operations_struct hugetlb_vm_ops = {
3738         .fault = hugetlb_vm_op_fault,
3739         .open = hugetlb_vm_op_open,
3740         .close = hugetlb_vm_op_close,
3741         .split = hugetlb_vm_op_split,
3742         .pagesize = hugetlb_vm_op_pagesize,
3743 };
3744
3745 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
3746                                 int writable)
3747 {
3748         pte_t entry;
3749
3750         if (writable) {
3751                 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
3752                                          vma->vm_page_prot)));
3753         } else {
3754                 entry = huge_pte_wrprotect(mk_huge_pte(page,
3755                                            vma->vm_page_prot));
3756         }
3757         entry = pte_mkyoung(entry);
3758         entry = pte_mkhuge(entry);
3759         entry = arch_make_huge_pte(entry, vma, page, writable);
3760
3761         return entry;
3762 }
3763
3764 static void set_huge_ptep_writable(struct vm_area_struct *vma,
3765                                    unsigned long address, pte_t *ptep)
3766 {
3767         pte_t entry;
3768
3769         entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
3770         if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
3771                 update_mmu_cache(vma, address, ptep);
3772 }
3773
3774 bool is_hugetlb_entry_migration(pte_t pte)
3775 {
3776         swp_entry_t swp;
3777
3778         if (huge_pte_none(pte) || pte_present(pte))
3779                 return false;
3780         swp = pte_to_swp_entry(pte);
3781         if (non_swap_entry(swp) && is_migration_entry(swp))
3782                 return true;
3783         else
3784                 return false;
3785 }
3786
3787 static int is_hugetlb_entry_hwpoisoned(pte_t pte)
3788 {
3789         swp_entry_t swp;
3790
3791         if (huge_pte_none(pte) || pte_present(pte))
3792                 return 0;
3793         swp = pte_to_swp_entry(pte);
3794         if (non_swap_entry(swp) && is_hwpoison_entry(swp))
3795                 return 1;
3796         else
3797                 return 0;
3798 }
3799
3800 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
3801                             struct vm_area_struct *vma)
3802 {
3803         pte_t *src_pte, *dst_pte, entry, dst_entry;
3804         struct page *ptepage;
3805         unsigned long addr;
3806         int cow;
3807         struct hstate *h = hstate_vma(vma);
3808         unsigned long sz = huge_page_size(h);
3809         struct address_space *mapping = vma->vm_file->f_mapping;
3810         struct mmu_notifier_range range;
3811         int ret = 0;
3812
3813         cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
3814
3815         if (cow) {
3816                 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, src,
3817                                         vma->vm_start,
3818                                         vma->vm_end);
3819                 mmu_notifier_invalidate_range_start(&range);
3820         } else {
3821                 /*
3822                  * For shared mappings i_mmap_rwsem must be held to call
3823                  * huge_pte_alloc, otherwise the returned ptep could go
3824                  * away if part of a shared pmd and another thread calls
3825                  * huge_pmd_unshare.
3826                  */
3827                 i_mmap_lock_read(mapping);
3828         }
3829
3830         for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
3831                 spinlock_t *src_ptl, *dst_ptl;
3832                 src_pte = huge_pte_offset(src, addr, sz);
3833                 if (!src_pte)
3834                         continue;
3835                 dst_pte = huge_pte_alloc(dst, addr, sz);
3836                 if (!dst_pte) {
3837                         ret = -ENOMEM;
3838                         break;
3839                 }
3840
3841                 /*
3842                  * If the pagetables are shared don't copy or take references.
3843                  * dst_pte == src_pte is the common case of src/dest sharing.
3844                  *
3845                  * However, src could have 'unshared' and dst shares with
3846                  * another vma.  If dst_pte !none, this implies sharing.
3847                  * Check here before taking page table lock, and once again
3848                  * after taking the lock below.
3849                  */
3850                 dst_entry = huge_ptep_get(dst_pte);
3851                 if ((dst_pte == src_pte) || !huge_pte_none(dst_entry))
3852                         continue;
3853
3854                 dst_ptl = huge_pte_lock(h, dst, dst_pte);
3855                 src_ptl = huge_pte_lockptr(h, src, src_pte);
3856                 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
3857                 entry = huge_ptep_get(src_pte);
3858                 dst_entry = huge_ptep_get(dst_pte);
3859                 if (huge_pte_none(entry) || !huge_pte_none(dst_entry)) {
3860                         /*
3861                          * Skip if src entry none.  Also, skip in the
3862                          * unlikely case dst entry !none as this implies
3863                          * sharing with another vma.
3864                          */
3865                         ;
3866                 } else if (unlikely(is_hugetlb_entry_migration(entry) ||
3867                                     is_hugetlb_entry_hwpoisoned(entry))) {
3868                         swp_entry_t swp_entry = pte_to_swp_entry(entry);
3869
3870                         if (is_write_migration_entry(swp_entry) && cow) {
3871                                 /*
3872                                  * COW mappings require pages in both
3873                                  * parent and child to be set to read.
3874                                  */
3875                                 make_migration_entry_read(&swp_entry);
3876                                 entry = swp_entry_to_pte(swp_entry);
3877                                 set_huge_swap_pte_at(src, addr, src_pte,
3878                                                      entry, sz);
3879                         }
3880                         set_huge_swap_pte_at(dst, addr, dst_pte, entry, sz);
3881                 } else {
3882                         if (cow) {
3883                                 /*
3884                                  * No need to notify as we are downgrading page
3885                                  * table protection not changing it to point
3886                                  * to a new page.
3887                                  *
3888                                  * See Documentation/vm/mmu_notifier.rst
3889                                  */
3890                                 huge_ptep_set_wrprotect(src, addr, src_pte);
3891                         }
3892                         entry = huge_ptep_get(src_pte);
3893                         ptepage = pte_page(entry);
3894                         get_page(ptepage);
3895                         page_dup_rmap(ptepage, true);
3896                         set_huge_pte_at(dst, addr, dst_pte, entry);
3897                         hugetlb_count_add(pages_per_huge_page(h), dst);
3898                 }
3899                 spin_unlock(src_ptl);
3900                 spin_unlock(dst_ptl);
3901         }
3902
3903         if (cow)
3904                 mmu_notifier_invalidate_range_end(&range);
3905         else
3906                 i_mmap_unlock_read(mapping);
3907
3908         return ret;
3909 }
3910
3911 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
3912                             unsigned long start, unsigned long end,
3913                             struct page *ref_page)
3914 {
3915         struct mm_struct *mm = vma->vm_mm;
3916         unsigned long address;
3917         pte_t *ptep;
3918         pte_t pte;
3919         spinlock_t *ptl;
3920         struct page *page;
3921         struct hstate *h = hstate_vma(vma);
3922         unsigned long sz = huge_page_size(h);
3923         struct mmu_notifier_range range;
3924
3925         WARN_ON(!is_vm_hugetlb_page(vma));
3926         BUG_ON(start & ~huge_page_mask(h));
3927         BUG_ON(end & ~huge_page_mask(h));
3928
3929         /*
3930          * This is a hugetlb vma, all the pte entries should point
3931          * to huge page.
3932          */
3933         tlb_change_page_size(tlb, sz);
3934         tlb_start_vma(tlb, vma);
3935
3936         /*
3937          * If sharing possible, alert mmu notifiers of worst case.
3938          */
3939         mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, mm, start,
3940                                 end);
3941         adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
3942         mmu_notifier_invalidate_range_start(&range);
3943         address = start;
3944         for (; address < end; address += sz) {
3945                 ptep = huge_pte_offset(mm, address, sz);
3946                 if (!ptep)
3947                         continue;
3948
3949                 ptl = huge_pte_lock(h, mm, ptep);
3950                 if (huge_pmd_unshare(mm, &address, ptep)) {
3951                         spin_unlock(ptl);
3952                         /*
3953                          * We just unmapped a page of PMDs by clearing a PUD.
3954                          * The caller's TLB flush range should cover this area.
3955                          */
3956                         continue;
3957                 }
3958
3959                 pte = huge_ptep_get(ptep);
3960                 if (huge_pte_none(pte)) {
3961                         spin_unlock(ptl);
3962                         continue;
3963                 }
3964
3965                 /*
3966                  * Migrating hugepage or HWPoisoned hugepage is already
3967                  * unmapped and its refcount is dropped, so just clear pte here.
3968                  */
3969                 if (unlikely(!pte_present(pte))) {
3970                         huge_pte_clear(mm, address, ptep, sz);
3971                         spin_unlock(ptl);
3972                         continue;
3973                 }
3974
3975                 page = pte_page(pte);
3976                 /*
3977                  * If a reference page is supplied, it is because a specific
3978                  * page is being unmapped, not a range. Ensure the page we
3979                  * are about to unmap is the actual page of interest.
3980                  */
3981                 if (ref_page) {
3982                         if (page != ref_page) {
3983                                 spin_unlock(ptl);
3984                                 continue;
3985                         }
3986                         /*
3987                          * Mark the VMA as having unmapped its page so that
3988                          * future faults in this VMA will fail rather than
3989                          * looking like data was lost
3990                          */
3991                         set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
3992                 }
3993
3994                 pte = huge_ptep_get_and_clear(mm, address, ptep);
3995                 tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
3996                 if (huge_pte_dirty(pte))
3997                         set_page_dirty(page);
3998
3999                 hugetlb_count_sub(pages_per_huge_page(h), mm);
4000                 page_remove_rmap(page, true);
4001
4002                 spin_unlock(ptl);
4003                 tlb_remove_page_size(tlb, page, huge_page_size(h));
4004                 /*
4005                  * Bail out after unmapping reference page if supplied
4006                  */
4007                 if (ref_page)
4008                         break;
4009         }
4010         mmu_notifier_invalidate_range_end(&range);
4011         tlb_end_vma(tlb, vma);
4012 }
4013
4014 void __unmap_hugepage_range_final(struct mmu_gather *tlb,
4015                           struct vm_area_struct *vma, unsigned long start,
4016                           unsigned long end, struct page *ref_page)
4017 {
4018         __unmap_hugepage_range(tlb, vma, start, end, ref_page);
4019
4020         /*
4021          * Clear this flag so that x86's huge_pmd_share page_table_shareable
4022          * test will fail on a vma being torn down, and not grab a page table
4023          * on its way out.  We're lucky that the flag has such an appropriate
4024          * name, and can in fact be safely cleared here. We could clear it
4025          * before the __unmap_hugepage_range above, but all that's necessary
4026          * is to clear it before releasing the i_mmap_rwsem. This works
4027          * because in the context this is called, the VMA is about to be
4028          * destroyed and the i_mmap_rwsem is held.
4029          */
4030         vma->vm_flags &= ~VM_MAYSHARE;
4031 }
4032
4033 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
4034                           unsigned long end, struct page *ref_page)
4035 {
4036         struct mm_struct *mm;
4037         struct mmu_gather tlb;
4038         unsigned long tlb_start = start;
4039         unsigned long tlb_end = end;
4040
4041         /*
4042          * If shared PMDs were possibly used within this vma range, adjust
4043          * start/end for worst case tlb flushing.
4044          * Note that we can not be sure if PMDs are shared until we try to
4045          * unmap pages.  However, we want to make sure TLB flushing covers
4046          * the largest possible range.
4047          */
4048         adjust_range_if_pmd_sharing_possible(vma, &tlb_start, &tlb_end);
4049
4050         mm = vma->vm_mm;
4051
4052         tlb_gather_mmu(&tlb, mm, tlb_start, tlb_end);
4053         __unmap_hugepage_range(&tlb, vma, start, end, ref_page);
4054         tlb_finish_mmu(&tlb, tlb_start, tlb_end);
4055 }
4056
4057 /*
4058  * This is called when the original mapper is failing to COW a MAP_PRIVATE
4059  * mappping it owns the reserve page for. The intention is to unmap the page
4060  * from other VMAs and let the children be SIGKILLed if they are faulting the
4061  * same region.
4062  */
4063 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
4064                               struct page *page, unsigned long address)
4065 {
4066         struct hstate *h = hstate_vma(vma);
4067         struct vm_area_struct *iter_vma;
4068         struct address_space *mapping;
4069         pgoff_t pgoff;
4070
4071         /*
4072          * vm_pgoff is in PAGE_SIZE units, hence the different calculation
4073          * from page cache lookup which is in HPAGE_SIZE units.
4074          */
4075         address = address & huge_page_mask(h);
4076         pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
4077                         vma->vm_pgoff;
4078         mapping = vma->vm_file->f_mapping;
4079
4080         /*
4081          * Take the mapping lock for the duration of the table walk. As
4082          * this mapping should be shared between all the VMAs,
4083          * __unmap_hugepage_range() is called as the lock is already held
4084          */
4085         i_mmap_lock_write(mapping);
4086         vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
4087                 /* Do not unmap the current VMA */
4088                 if (iter_vma == vma)
4089                         continue;
4090
4091                 /*
4092                  * Shared VMAs have their own reserves and do not affect
4093                  * MAP_PRIVATE accounting but it is possible that a shared
4094                  * VMA is using the same page so check and skip such VMAs.
4095                  */
4096                 if (iter_vma->vm_flags & VM_MAYSHARE)
4097                         continue;
4098
4099                 /*
4100                  * Unmap the page from other VMAs without their own reserves.
4101                  * They get marked to be SIGKILLed if they fault in these
4102                  * areas. This is because a future no-page fault on this VMA
4103                  * could insert a zeroed page instead of the data existing
4104                  * from the time of fork. This would look like data corruption
4105                  */
4106                 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
4107                         unmap_hugepage_range(iter_vma, address,
4108                                              address + huge_page_size(h), page);
4109         }
4110         i_mmap_unlock_write(mapping);
4111 }
4112
4113 /*
4114  * Hugetlb_cow() should be called with page lock of the original hugepage held.
4115  * Called with hugetlb_instantiation_mutex held and pte_page locked so we
4116  * cannot race with other handlers or page migration.
4117  * Keep the pte_same checks anyway to make transition from the mutex easier.
4118  */
4119 static vm_fault_t hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
4120                        unsigned long address, pte_t *ptep,
4121                        struct page *pagecache_page, spinlock_t *ptl)
4122 {
4123         pte_t pte;
4124         struct hstate *h = hstate_vma(vma);
4125         struct page *old_page, *new_page;
4126         int outside_reserve = 0;
4127         vm_fault_t ret = 0;
4128         unsigned long haddr = address & huge_page_mask(h);
4129         struct mmu_notifier_range range;
4130
4131         pte = huge_ptep_get(ptep);
4132         old_page = pte_page(pte);
4133
4134 retry_avoidcopy:
4135         /* If no-one else is actually using this page, avoid the copy
4136          * and just make the page writable */
4137         if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
4138                 page_move_anon_rmap(old_page, vma);
4139                 set_huge_ptep_writable(vma, haddr, ptep);
4140                 return 0;
4141         }
4142
4143         /*
4144          * If the process that created a MAP_PRIVATE mapping is about to
4145          * perform a COW due to a shared page count, attempt to satisfy
4146          * the allocation without using the existing reserves. The pagecache
4147          * page is used to determine if the reserve at this address was
4148          * consumed or not. If reserves were used, a partial faulted mapping
4149          * at the time of fork() could consume its reserves on COW instead
4150          * of the full address range.
4151          */
4152         if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
4153                         old_page != pagecache_page)
4154                 outside_reserve = 1;
4155
4156         get_page(old_page);
4157
4158         /*
4159          * Drop page table lock as buddy allocator may be called. It will
4160          * be acquired again before returning to the caller, as expected.
4161          */
4162         spin_unlock(ptl);
4163         new_page = alloc_huge_page(vma, haddr, outside_reserve);
4164
4165         if (IS_ERR(new_page)) {
4166                 /*
4167                  * If a process owning a MAP_PRIVATE mapping fails to COW,
4168                  * it is due to references held by a child and an insufficient
4169                  * huge page pool. To guarantee the original mappers
4170                  * reliability, unmap the page from child processes. The child
4171                  * may get SIGKILLed if it later faults.
4172                  */
4173                 if (outside_reserve) {
4174                         put_page(old_page);
4175                         BUG_ON(huge_pte_none(pte));
4176                         unmap_ref_private(mm, vma, old_page, haddr);
4177                         BUG_ON(huge_pte_none(pte));
4178                         spin_lock(ptl);
4179                         ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
4180                         if (likely(ptep &&
4181                                    pte_same(huge_ptep_get(ptep), pte)))
4182                                 goto retry_avoidcopy;
4183                         /*
4184                          * race occurs while re-acquiring page table
4185                          * lock, and our job is done.
4186                          */
4187                         return 0;
4188                 }
4189
4190                 ret = vmf_error(PTR_ERR(new_page));
4191                 goto out_release_old;
4192         }
4193
4194         /*
4195          * When the original hugepage is shared one, it does not have
4196          * anon_vma prepared.
4197          */
4198         if (unlikely(anon_vma_prepare(vma))) {
4199                 ret = VM_FAULT_OOM;
4200                 goto out_release_all;
4201         }
4202
4203         copy_user_huge_page(new_page, old_page, address, vma,
4204                             pages_per_huge_page(h));
4205         __SetPageUptodate(new_page);
4206
4207         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, haddr,
4208                                 haddr + huge_page_size(h));
4209         mmu_notifier_invalidate_range_start(&range);
4210
4211         /*
4212          * Retake the page table lock to check for racing updates
4213          * before the page tables are altered
4214          */
4215         spin_lock(ptl);
4216         ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
4217         if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
4218                 ClearPagePrivate(new_page);
4219
4220                 /* Break COW */
4221                 huge_ptep_clear_flush(vma, haddr, ptep);
4222                 mmu_notifier_invalidate_range(mm, range.start, range.end);
4223                 set_huge_pte_at(mm, haddr, ptep,
4224                                 make_huge_pte(vma, new_page, 1));
4225                 page_remove_rmap(old_page, true);
4226                 hugepage_add_new_anon_rmap(new_page, vma, haddr);
4227                 set_page_huge_active(new_page);
4228                 /* Make the old page be freed below */
4229                 new_page = old_page;
4230         }
4231         spin_unlock(ptl);
4232         mmu_notifier_invalidate_range_end(&range);
4233 out_release_all:
4234         restore_reserve_on_error(h, vma, haddr, new_page);
4235         put_page(new_page);
4236 out_release_old:
4237         put_page(old_page);
4238
4239         spin_lock(ptl); /* Caller expects lock to be held */
4240         return ret;
4241 }
4242
4243 /* Return the pagecache page at a given address within a VMA */
4244 static struct page *hugetlbfs_pagecache_page(struct hstate *h,
4245                         struct vm_area_struct *vma, unsigned long address)
4246 {
4247         struct address_space *mapping;
4248         pgoff_t idx;
4249
4250         mapping = vma->vm_file->f_mapping;
4251         idx = vma_hugecache_offset(h, vma, address);
4252
4253         return find_lock_page(mapping, idx);
4254 }
4255
4256 /*
4257  * Return whether there is a pagecache page to back given address within VMA.
4258  * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
4259  */
4260 static bool hugetlbfs_pagecache_present(struct hstate *h,
4261                         struct vm_area_struct *vma, unsigned long address)
4262 {
4263         struct address_space *mapping;
4264         pgoff_t idx;
4265         struct page *page;
4266
4267         mapping = vma->vm_file->f_mapping;
4268         idx = vma_hugecache_offset(h, vma, address);
4269
4270         page = find_get_page(mapping, idx);
4271         if (page)
4272                 put_page(page);
4273         return page != NULL;
4274 }
4275
4276 int huge_add_to_page_cache(struct page *page, struct address_space *mapping,
4277                            pgoff_t idx)
4278 {
4279         struct inode *inode = mapping->host;
4280         struct hstate *h = hstate_inode(inode);
4281         int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
4282
4283         if (err)
4284                 return err;
4285         ClearPagePrivate(page);
4286
4287         /*
4288          * set page dirty so that it will not be removed from cache/file
4289          * by non-hugetlbfs specific code paths.
4290          */
4291         set_page_dirty(page);
4292
4293         spin_lock(&inode->i_lock);
4294         inode->i_blocks += blocks_per_huge_page(h);
4295         spin_unlock(&inode->i_lock);
4296         return 0;
4297 }
4298
4299 static vm_fault_t hugetlb_no_page(struct mm_struct *mm,
4300                         struct vm_area_struct *vma,
4301                         struct address_space *mapping, pgoff_t idx,
4302                         unsigned long address, pte_t *ptep, unsigned int flags)
4303 {
4304         struct hstate *h = hstate_vma(vma);
4305         vm_fault_t ret = VM_FAULT_SIGBUS;
4306         int anon_rmap = 0;
4307         unsigned long size;
4308         struct page *page;
4309         pte_t new_pte;
4310         spinlock_t *ptl;
4311         unsigned long haddr = address & huge_page_mask(h);
4312         bool new_page = false;
4313
4314         /*
4315          * Currently, we are forced to kill the process in the event the
4316          * original mapper has unmapped pages from the child due to a failed
4317          * COW. Warn that such a situation has occurred as it may not be obvious
4318          */
4319         if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
4320                 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
4321                            current->pid);
4322                 return ret;
4323         }
4324
4325         /*
4326          * We can not race with truncation due to holding i_mmap_rwsem.
4327          * i_size is modified when holding i_mmap_rwsem, so check here
4328          * once for faults beyond end of file.
4329          */
4330         size = i_size_read(mapping->host) >> huge_page_shift(h);
4331         if (idx >= size)
4332                 goto out;
4333
4334 retry:
4335         page = find_lock_page(mapping, idx);
4336         if (!page) {
4337                 /*
4338                  * Check for page in userfault range
4339                  */
4340                 if (userfaultfd_missing(vma)) {
4341                         u32 hash;
4342                         struct vm_fault vmf = {
4343                                 .vma = vma,
4344                                 .address = haddr,
4345                                 .flags = flags,
4346                                 /*
4347                                  * Hard to debug if it ends up being
4348                                  * used by a callee that assumes
4349                                  * something about the other
4350                                  * uninitialized fields... same as in
4351                                  * memory.c
4352                                  */
4353                         };
4354
4355                         /*
4356                          * hugetlb_fault_mutex and i_mmap_rwsem must be
4357                          * dropped before handling userfault.  Reacquire
4358                          * after handling fault to make calling code simpler.
4359                          */
4360                         hash = hugetlb_fault_mutex_hash(mapping, idx);
4361                         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
4362                         i_mmap_unlock_read(mapping);
4363                         ret = handle_userfault(&vmf, VM_UFFD_MISSING);
4364                         i_mmap_lock_read(mapping);
4365                         mutex_lock(&hugetlb_fault_mutex_table[hash]);
4366                         goto out;
4367                 }
4368
4369                 page = alloc_huge_page(vma, haddr, 0);
4370                 if (IS_ERR(page)) {
4371                         /*
4372                          * Returning error will result in faulting task being
4373                          * sent SIGBUS.  The hugetlb fault mutex prevents two
4374                          * tasks from racing to fault in the same page which
4375                          * could result in false unable to allocate errors.
4376                          * Page migration does not take the fault mutex, but
4377                          * does a clear then write of pte's under page table
4378                          * lock.  Page fault code could race with migration,
4379                          * notice the clear pte and try to allocate a page
4380                          * here.  Before returning error, get ptl and make
4381                          * sure there really is no pte entry.
4382                          */
4383                         ptl = huge_pte_lock(h, mm, ptep);
4384                         if (!huge_pte_none(huge_ptep_get(ptep))) {
4385                                 ret = 0;
4386                                 spin_unlock(ptl);
4387                                 goto out;
4388                         }
4389                         spin_unlock(ptl);
4390                         ret = vmf_error(PTR_ERR(page));
4391                         goto out;
4392                 }
4393                 clear_huge_page(page, address, pages_per_huge_page(h));
4394                 __SetPageUptodate(page);
4395                 new_page = true;
4396
4397                 if (vma->vm_flags & VM_MAYSHARE) {
4398                         int err = huge_add_to_page_cache(page, mapping, idx);
4399                         if (err) {
4400                                 put_page(page);
4401                                 if (err == -EEXIST)
4402                                         goto retry;
4403                                 goto out;
4404                         }
4405                 } else {
4406                         lock_page(page);
4407                         if (unlikely(anon_vma_prepare(vma))) {
4408                                 ret = VM_FAULT_OOM;
4409                                 goto backout_unlocked;
4410                         }
4411                         anon_rmap = 1;
4412                 }
4413         } else {
4414                 /*
4415                  * If memory error occurs between mmap() and fault, some process
4416                  * don't have hwpoisoned swap entry for errored virtual address.
4417                  * So we need to block hugepage fault by PG_hwpoison bit check.
4418                  */
4419                 if (unlikely(PageHWPoison(page))) {
4420                         ret = VM_FAULT_HWPOISON |
4421                                 VM_FAULT_SET_HINDEX(hstate_index(h));
4422                         goto backout_unlocked;
4423                 }
4424         }
4425
4426         /*
4427          * If we are going to COW a private mapping later, we examine the
4428          * pending reservations for this page now. This will ensure that
4429          * any allocations necessary to record that reservation occur outside
4430          * the spinlock.
4431          */
4432         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
4433                 if (vma_needs_reservation(h, vma, haddr) < 0) {
4434                         ret = VM_FAULT_OOM;
4435                         goto backout_unlocked;
4436                 }
4437                 /* Just decrements count, does not deallocate */
4438                 vma_end_reservation(h, vma, haddr);
4439         }
4440
4441         ptl = huge_pte_lock(h, mm, ptep);
4442         ret = 0;
4443         if (!huge_pte_none(huge_ptep_get(ptep)))
4444                 goto backout;
4445
4446         if (anon_rmap) {
4447                 ClearPagePrivate(page);
4448                 hugepage_add_new_anon_rmap(page, vma, haddr);
4449         } else
4450                 page_dup_rmap(page, true);
4451         new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
4452                                 && (vma->vm_flags & VM_SHARED)));
4453         set_huge_pte_at(mm, haddr, ptep, new_pte);
4454
4455         hugetlb_count_add(pages_per_huge_page(h), mm);
4456         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
4457                 /* Optimization, do the COW without a second fault */
4458                 ret = hugetlb_cow(mm, vma, address, ptep, page, ptl);
4459         }
4460
4461         spin_unlock(ptl);
4462
4463         /*
4464          * Only make newly allocated pages active.  Existing pages found
4465          * in the pagecache could be !page_huge_active() if they have been
4466          * isolated for migration.
4467          */
4468         if (new_page)
4469                 set_page_huge_active(page);
4470
4471         unlock_page(page);
4472 out:
4473         return ret;
4474
4475 backout:
4476         spin_unlock(ptl);
4477 backout_unlocked:
4478         unlock_page(page);
4479         restore_reserve_on_error(h, vma, haddr, page);
4480         put_page(page);
4481         goto out;
4482 }
4483
4484 #ifdef CONFIG_SMP
4485 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
4486 {
4487         unsigned long key[2];
4488         u32 hash;
4489
4490         key[0] = (unsigned long) mapping;
4491         key[1] = idx;
4492
4493         hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0);
4494
4495         return hash & (num_fault_mutexes - 1);
4496 }
4497 #else
4498 /*
4499  * For uniprocesor systems we always use a single mutex, so just
4500  * return 0 and avoid the hashing overhead.
4501  */
4502 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
4503 {
4504         return 0;
4505 }
4506 #endif
4507
4508 vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
4509                         unsigned long address, unsigned int flags)
4510 {
4511         pte_t *ptep, entry;
4512         spinlock_t *ptl;
4513         vm_fault_t ret;
4514         u32 hash;
4515         pgoff_t idx;
4516         struct page *page = NULL;
4517         struct page *pagecache_page = NULL;
4518         struct hstate *h = hstate_vma(vma);
4519         struct address_space *mapping;
4520         int need_wait_lock = 0;
4521         unsigned long haddr = address & huge_page_mask(h);
4522
4523         ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
4524         if (ptep) {
4525                 /*
4526                  * Since we hold no locks, ptep could be stale.  That is
4527                  * OK as we are only making decisions based on content and
4528                  * not actually modifying content here.
4529                  */
4530                 entry = huge_ptep_get(ptep);
4531                 if (unlikely(is_hugetlb_entry_migration(entry))) {
4532                         migration_entry_wait_huge(vma, mm, ptep);
4533                         return 0;
4534                 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
4535                         return VM_FAULT_HWPOISON_LARGE |
4536                                 VM_FAULT_SET_HINDEX(hstate_index(h));
4537         } else {
4538                 ptep = huge_pte_alloc(mm, haddr, huge_page_size(h));
4539                 if (!ptep)
4540                         return VM_FAULT_OOM;
4541         }
4542
4543         /*
4544          * Acquire i_mmap_rwsem before calling huge_pte_alloc and hold
4545          * until finished with ptep.  This serves two purposes:
4546          * 1) It prevents huge_pmd_unshare from being called elsewhere
4547          *    and making the ptep no longer valid.
4548          * 2) It synchronizes us with i_size modifications during truncation.
4549          *
4550          * ptep could have already be assigned via huge_pte_offset.  That
4551          * is OK, as huge_pte_alloc will return the same value unless
4552          * something has changed.
4553          */
4554         mapping = vma->vm_file->f_mapping;
4555         i_mmap_lock_read(mapping);
4556         ptep = huge_pte_alloc(mm, haddr, huge_page_size(h));
4557         if (!ptep) {
4558                 i_mmap_unlock_read(mapping);
4559                 return VM_FAULT_OOM;
4560         }
4561
4562         /*
4563          * Serialize hugepage allocation and instantiation, so that we don't
4564          * get spurious allocation failures if two CPUs race to instantiate
4565          * the same page in the page cache.
4566          */
4567         idx = vma_hugecache_offset(h, vma, haddr);
4568         hash = hugetlb_fault_mutex_hash(mapping, idx);
4569         mutex_lock(&hugetlb_fault_mutex_table[hash]);
4570
4571         entry = huge_ptep_get(ptep);
4572         if (huge_pte_none(entry)) {
4573                 ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
4574                 goto out_mutex;
4575         }
4576
4577         ret = 0;
4578
4579         /*
4580          * entry could be a migration/hwpoison entry at this point, so this
4581          * check prevents the kernel from going below assuming that we have
4582          * an active hugepage in pagecache. This goto expects the 2nd page
4583          * fault, and is_hugetlb_entry_(migration|hwpoisoned) check will
4584          * properly handle it.
4585          */
4586         if (!pte_present(entry))
4587                 goto out_mutex;
4588
4589         /*
4590          * If we are going to COW the mapping later, we examine the pending
4591          * reservations for this page now. This will ensure that any
4592          * allocations necessary to record that reservation occur outside the
4593          * spinlock. For private mappings, we also lookup the pagecache
4594          * page now as it is used to determine if a reservation has been
4595          * consumed.
4596          */
4597         if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
4598                 if (vma_needs_reservation(h, vma, haddr) < 0) {
4599                         ret = VM_FAULT_OOM;
4600                         goto out_mutex;
4601                 }
4602                 /* Just decrements count, does not deallocate */
4603                 vma_end_reservation(h, vma, haddr);
4604
4605                 if (!(vma->vm_flags & VM_MAYSHARE))
4606                         pagecache_page = hugetlbfs_pagecache_page(h,
4607                                                                 vma, haddr);
4608         }
4609
4610         ptl = huge_pte_lock(h, mm, ptep);
4611
4612         /* Check for a racing update before calling hugetlb_cow */
4613         if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
4614                 goto out_ptl;
4615
4616         /*
4617          * hugetlb_cow() requires page locks of pte_page(entry) and
4618          * pagecache_page, so here we need take the former one
4619          * when page != pagecache_page or !pagecache_page.
4620          */
4621         page = pte_page(entry);
4622         if (page != pagecache_page)
4623                 if (!trylock_page(page)) {
4624                         need_wait_lock = 1;
4625                         goto out_ptl;
4626                 }
4627
4628         get_page(page);
4629
4630         if (flags & FAULT_FLAG_WRITE) {
4631                 if (!huge_pte_write(entry)) {
4632                         ret = hugetlb_cow(mm, vma, address, ptep,
4633                                           pagecache_page, ptl);
4634                         goto out_put_page;
4635                 }
4636                 entry = huge_pte_mkdirty(entry);
4637         }
4638         entry = pte_mkyoung(entry);
4639         if (huge_ptep_set_access_flags(vma, haddr, ptep, entry,
4640                                                 flags & FAULT_FLAG_WRITE))
4641                 update_mmu_cache(vma, haddr, ptep);
4642 out_put_page:
4643         if (page != pagecache_page)
4644                 unlock_page(page);
4645         put_page(page);
4646 out_ptl:
4647         spin_unlock(ptl);
4648
4649         if (pagecache_page) {
4650                 unlock_page(pagecache_page);
4651                 put_page(pagecache_page);
4652         }
4653 out_mutex:
4654         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
4655         i_mmap_unlock_read(mapping);
4656         /*
4657          * Generally it's safe to hold refcount during waiting page lock. But
4658          * here we just wait to defer the next page fault to avoid busy loop and
4659          * the page is not used after unlocked before returning from the current
4660          * page fault. So we are safe from accessing freed page, even if we wait
4661          * here without taking refcount.
4662          */
4663         if (need_wait_lock)
4664                 wait_on_page_locked(page);
4665         return ret;
4666 }
4667
4668 /*
4669  * Used by userfaultfd UFFDIO_COPY.  Based on mcopy_atomic_pte with
4670  * modifications for huge pages.
4671  */
4672 int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm,
4673                             pte_t *dst_pte,
4674                             struct vm_area_struct *dst_vma,
4675                             unsigned long dst_addr,
4676                             unsigned long src_addr,
4677                             struct page **pagep)
4678 {
4679         struct address_space *mapping;
4680         pgoff_t idx;
4681         unsigned long size;
4682         int vm_shared = dst_vma->vm_flags & VM_SHARED;
4683         struct hstate *h = hstate_vma(dst_vma);
4684         pte_t _dst_pte;
4685         spinlock_t *ptl;
4686         int ret;
4687         struct page *page;
4688
4689         if (!*pagep) {
4690                 ret = -ENOMEM;
4691                 page = alloc_huge_page(dst_vma, dst_addr, 0);
4692                 if (IS_ERR(page))
4693                         goto out;
4694
4695                 ret = copy_huge_page_from_user(page,
4696                                                 (const void __user *) src_addr,
4697                                                 pages_per_huge_page(h), false);
4698
4699                 /* fallback to copy_from_user outside mmap_sem */
4700                 if (unlikely(ret)) {
4701                         ret = -ENOENT;
4702                         *pagep = page;
4703                         /* don't free the page */
4704                         goto out;
4705                 }
4706         } else {
4707                 page = *pagep;
4708                 *pagep = NULL;
4709         }
4710
4711         /*
4712          * The memory barrier inside __SetPageUptodate makes sure that
4713          * preceding stores to the page contents become visible before
4714          * the set_pte_at() write.
4715          */
4716         __SetPageUptodate(page);
4717
4718         mapping = dst_vma->vm_file->f_mapping;
4719         idx = vma_hugecache_offset(h, dst_vma, dst_addr);
4720
4721         /*
4722          * If shared, add to page cache
4723          */
4724         if (vm_shared) {
4725                 size = i_size_read(mapping->host) >> huge_page_shift(h);
4726                 ret = -EFAULT;
4727                 if (idx >= size)
4728                         goto out_release_nounlock;
4729
4730                 /*
4731                  * Serialization between remove_inode_hugepages() and
4732                  * huge_add_to_page_cache() below happens through the
4733                  * hugetlb_fault_mutex_table that here must be hold by
4734                  * the caller.
4735                  */
4736                 ret = huge_add_to_page_cache(page, mapping, idx);
4737                 if (ret)
4738                         goto out_release_nounlock;
4739         }
4740
4741         ptl = huge_pte_lockptr(h, dst_mm, dst_pte);
4742         spin_lock(ptl);
4743
4744         /*
4745          * Recheck the i_size after holding PT lock to make sure not
4746          * to leave any page mapped (as page_mapped()) beyond the end
4747          * of the i_size (remove_inode_hugepages() is strict about
4748          * enforcing that). If we bail out here, we'll also leave a
4749          * page in the radix tree in the vm_shared case beyond the end
4750          * of the i_size, but remove_inode_hugepages() will take care
4751          * of it as soon as we drop the hugetlb_fault_mutex_table.
4752          */
4753         size = i_size_read(mapping->host) >> huge_page_shift(h);
4754         ret = -EFAULT;
4755         if (idx >= size)
4756                 goto out_release_unlock;
4757
4758         ret = -EEXIST;
4759         if (!huge_pte_none(huge_ptep_get(dst_pte)))
4760                 goto out_release_unlock;
4761
4762         if (vm_shared) {
4763                 page_dup_rmap(page, true);
4764         } else {
4765                 ClearPagePrivate(page);
4766                 hugepage_add_new_anon_rmap(page, dst_vma, dst_addr);
4767         }
4768
4769         _dst_pte = make_huge_pte(dst_vma, page, dst_vma->vm_flags & VM_WRITE);
4770         if (dst_vma->vm_flags & VM_WRITE)
4771                 _dst_pte = huge_pte_mkdirty(_dst_pte);
4772         _dst_pte = pte_mkyoung(_dst_pte);
4773
4774         set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
4775
4776         (void)huge_ptep_set_access_flags(dst_vma, dst_addr, dst_pte, _dst_pte,
4777                                         dst_vma->vm_flags & VM_WRITE);
4778         hugetlb_count_add(pages_per_huge_page(h), dst_mm);
4779
4780         /* No need to invalidate - it was non-present before */
4781         update_mmu_cache(dst_vma, dst_addr, dst_pte);
4782
4783         spin_unlock(ptl);
4784         set_page_huge_active(page);
4785         if (vm_shared)
4786                 unlock_page(page);
4787         ret = 0;
4788 out:
4789         return ret;
4790 out_release_unlock:
4791         spin_unlock(ptl);
4792         if (vm_shared)
4793                 unlock_page(page);
4794 out_release_nounlock:
4795         put_page(page);
4796         goto out;
4797 }
4798
4799 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
4800                          struct page **pages, struct vm_area_struct **vmas,
4801                          unsigned long *position, unsigned long *nr_pages,
4802                          long i, unsigned int flags, int *locked)
4803 {
4804         unsigned long pfn_offset;
4805         unsigned long vaddr = *position;
4806         unsigned long remainder = *nr_pages;
4807         struct hstate *h = hstate_vma(vma);
4808         int err = -EFAULT;
4809
4810         while (vaddr < vma->vm_end && remainder) {
4811                 pte_t *pte;
4812                 spinlock_t *ptl = NULL;
4813                 int absent;
4814                 struct page *page;
4815
4816                 /*
4817                  * If we have a pending SIGKILL, don't keep faulting pages and
4818                  * potentially allocating memory.
4819                  */
4820                 if (fatal_signal_pending(current)) {
4821                         remainder = 0;
4822                         break;
4823                 }
4824
4825                 /*
4826                  * Some archs (sparc64, sh*) have multiple pte_ts to
4827                  * each hugepage.  We have to make sure we get the
4828                  * first, for the page indexing below to work.
4829                  *
4830                  * Note that page table lock is not held when pte is null.
4831                  */
4832                 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h),
4833                                       huge_page_size(h));
4834                 if (pte)
4835                         ptl = huge_pte_lock(h, mm, pte);
4836                 absent = !pte || huge_pte_none(huge_ptep_get(pte));
4837
4838                 /*
4839                  * When coredumping, it suits get_dump_page if we just return
4840                  * an error where there's an empty slot with no huge pagecache
4841                  * to back it.  This way, we avoid allocating a hugepage, and
4842                  * the sparse dumpfile avoids allocating disk blocks, but its
4843                  * huge holes still show up with zeroes where they need to be.
4844                  */
4845                 if (absent && (flags & FOLL_DUMP) &&
4846                     !hugetlbfs_pagecache_present(h, vma, vaddr)) {
4847                         if (pte)
4848                                 spin_unlock(ptl);
4849                         remainder = 0;
4850                         break;
4851                 }
4852
4853                 /*
4854                  * We need call hugetlb_fault for both hugepages under migration
4855                  * (in which case hugetlb_fault waits for the migration,) and
4856                  * hwpoisoned hugepages (in which case we need to prevent the
4857                  * caller from accessing to them.) In order to do this, we use
4858                  * here is_swap_pte instead of is_hugetlb_entry_migration and
4859                  * is_hugetlb_entry_hwpoisoned. This is because it simply covers
4860                  * both cases, and because we can't follow correct pages
4861                  * directly from any kind of swap entries.
4862                  */
4863                 if (absent || is_swap_pte(huge_ptep_get(pte)) ||
4864                     ((flags & FOLL_WRITE) &&
4865                       !huge_pte_write(huge_ptep_get(pte)))) {
4866                         vm_fault_t ret;
4867                         unsigned int fault_flags = 0;
4868
4869                         if (pte)
4870                                 spin_unlock(ptl);
4871                         if (flags & FOLL_WRITE)
4872                                 fault_flags |= FAULT_FLAG_WRITE;
4873                         if (locked)
4874                                 fault_flags |= FAULT_FLAG_ALLOW_RETRY |
4875                                         FAULT_FLAG_KILLABLE;
4876                         if (flags & FOLL_NOWAIT)
4877                                 fault_flags |= FAULT_FLAG_ALLOW_RETRY |
4878                                         FAULT_FLAG_RETRY_NOWAIT;
4879                         if (flags & FOLL_TRIED) {
4880                                 /*
4881                                  * Note: FAULT_FLAG_ALLOW_RETRY and
4882                                  * FAULT_FLAG_TRIED can co-exist
4883                                  */
4884                                 fault_flags |= FAULT_FLAG_TRIED;
4885                         }
4886                         ret = hugetlb_fault(mm, vma, vaddr, fault_flags);
4887                         if (ret & VM_FAULT_ERROR) {
4888                                 err = vm_fault_to_errno(ret, flags);
4889                                 remainder = 0;
4890                                 break;
4891                         }
4892                         if (ret & VM_FAULT_RETRY) {
4893                                 if (locked &&
4894                                     !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
4895                                         *locked = 0;
4896                                 *nr_pages = 0;
4897                                 /*
4898                                  * VM_FAULT_RETRY must not return an
4899                                  * error, it will return zero
4900                                  * instead.
4901                                  *
4902                                  * No need to update "position" as the
4903                                  * caller will not check it after
4904                                  * *nr_pages is set to 0.
4905                                  */
4906                                 return i;
4907                         }
4908                         continue;
4909                 }
4910
4911                 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
4912                 page = pte_page(huge_ptep_get(pte));
4913
4914                 /*
4915                  * If subpage information not requested, update counters
4916                  * and skip the same_page loop below.
4917                  */
4918                 if (!pages && !vmas && !pfn_offset &&
4919                     (vaddr + huge_page_size(h) < vma->vm_end) &&
4920                     (remainder >= pages_per_huge_page(h))) {
4921                         vaddr += huge_page_size(h);
4922                         remainder -= pages_per_huge_page(h);
4923                         i += pages_per_huge_page(h);
4924                         spin_unlock(ptl);
4925                         continue;
4926                 }
4927
4928 same_page:
4929                 if (pages) {
4930                         pages[i] = mem_map_offset(page, pfn_offset);
4931                         /*
4932                          * try_grab_page() should always succeed here, because:
4933                          * a) we hold the ptl lock, and b) we've just checked
4934                          * that the huge page is present in the page tables. If
4935                          * the huge page is present, then the tail pages must
4936                          * also be present. The ptl prevents the head page and
4937                          * tail pages from being rearranged in any way. So this
4938                          * page must be available at this point, unless the page
4939                          * refcount overflowed:
4940                          */
4941                         if (WARN_ON_ONCE(!try_grab_page(pages[i], flags))) {
4942                                 spin_unlock(ptl);
4943                                 remainder = 0;
4944                                 err = -ENOMEM;
4945                                 break;
4946                         }
4947                 }
4948
4949                 if (vmas)
4950                         vmas[i] = vma;
4951
4952                 vaddr += PAGE_SIZE;
4953                 ++pfn_offset;
4954                 --remainder;
4955                 ++i;
4956                 if (vaddr < vma->vm_end && remainder &&
4957                                 pfn_offset < pages_per_huge_page(h)) {
4958                         /*
4959                          * We use pfn_offset to avoid touching the pageframes
4960                          * of this compound page.
4961                          */
4962                         goto same_page;
4963                 }
4964                 spin_unlock(ptl);
4965         }
4966         *nr_pages = remainder;
4967         /*
4968          * setting position is actually required only if remainder is
4969          * not zero but it's faster not to add a "if (remainder)"
4970          * branch.
4971          */
4972         *position = vaddr;
4973
4974         return i ? i : err;
4975 }
4976
4977 #ifndef __HAVE_ARCH_FLUSH_HUGETLB_TLB_RANGE
4978 /*
4979  * ARCHes with special requirements for evicting HUGETLB backing TLB entries can
4980  * implement this.
4981  */
4982 #define flush_hugetlb_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end)
4983 #endif
4984
4985 unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
4986                 unsigned long address, unsigned long end, pgprot_t newprot)
4987 {
4988         struct mm_struct *mm = vma->vm_mm;
4989         unsigned long start = address;
4990         pte_t *ptep;
4991         pte_t pte;
4992         struct hstate *h = hstate_vma(vma);
4993         unsigned long pages = 0;
4994         bool shared_pmd = false;
4995         struct mmu_notifier_range range;
4996
4997         /*
4998          * In the case of shared PMDs, the area to flush could be beyond
4999          * start/end.  Set range.start/range.end to cover the maximum possible
5000          * range if PMD sharing is possible.
5001          */
5002         mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA,
5003                                 0, vma, mm, start, end);
5004         adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
5005
5006         BUG_ON(address >= end);
5007         flush_cache_range(vma, range.start, range.end);
5008
5009         mmu_notifier_invalidate_range_start(&range);
5010         i_mmap_lock_write(vma->vm_file->f_mapping);
5011         for (; address < end; address += huge_page_size(h)) {
5012                 spinlock_t *ptl;
5013                 ptep = huge_pte_offset(mm, address, huge_page_size(h));
5014                 if (!ptep)
5015                         continue;
5016                 ptl = huge_pte_lock(h, mm, ptep);
5017                 if (huge_pmd_unshare(mm, &address, ptep)) {
5018                         pages++;
5019                         spin_unlock(ptl);
5020                         shared_pmd = true;
5021                         continue;
5022                 }
5023                 pte = huge_ptep_get(ptep);
5024                 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
5025                         spin_unlock(ptl);
5026                         continue;
5027                 }
5028                 if (unlikely(is_hugetlb_entry_migration(pte))) {
5029                         swp_entry_t entry = pte_to_swp_entry(pte);
5030
5031                         if (is_write_migration_entry(entry)) {
5032                                 pte_t newpte;
5033
5034                                 make_migration_entry_read(&entry);
5035                                 newpte = swp_entry_to_pte(entry);
5036                                 set_huge_swap_pte_at(mm, address, ptep,
5037                                                      newpte, huge_page_size(h));
5038                                 pages++;
5039                         }
5040                         spin_unlock(ptl);
5041                         continue;
5042                 }
5043                 if (!huge_pte_none(pte)) {
5044                         pte_t old_pte;
5045
5046                         old_pte = huge_ptep_modify_prot_start(vma, address, ptep);
5047                         pte = pte_mkhuge(huge_pte_modify(old_pte, newprot));
5048                         pte = arch_make_huge_pte(pte, vma, NULL, 0);
5049                         huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte);
5050                         pages++;
5051                 }
5052                 spin_unlock(ptl);
5053         }
5054         /*
5055          * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
5056          * may have cleared our pud entry and done put_page on the page table:
5057          * once we release i_mmap_rwsem, another task can do the final put_page
5058          * and that page table be reused and filled with junk.  If we actually
5059          * did unshare a page of pmds, flush the range corresponding to the pud.
5060          */
5061         if (shared_pmd)
5062                 flush_hugetlb_tlb_range(vma, range.start, range.end);
5063         else
5064                 flush_hugetlb_tlb_range(vma, start, end);
5065         /*
5066          * No need to call mmu_notifier_invalidate_range() we are downgrading
5067          * page table protection not changing it to point to a new page.
5068          *
5069          * See Documentation/vm/mmu_notifier.rst
5070          */
5071         i_mmap_unlock_write(vma->vm_file->f_mapping);
5072         mmu_notifier_invalidate_range_end(&range);
5073
5074         return pages << h->order;
5075 }
5076
5077 int hugetlb_reserve_pages(struct inode *inode,
5078                                         long from, long to,
5079                                         struct vm_area_struct *vma,
5080                                         vm_flags_t vm_flags)
5081 {
5082         long ret, chg, add = -1;
5083         struct hstate *h = hstate_inode(inode);
5084         struct hugepage_subpool *spool = subpool_inode(inode);
5085         struct resv_map *resv_map;
5086         struct hugetlb_cgroup *h_cg = NULL;
5087         long gbl_reserve, regions_needed = 0;
5088
5089         /* This should never happen */
5090         if (from > to) {
5091                 VM_WARN(1, "%s called with a negative range\n", __func__);
5092                 return -EINVAL;
5093         }
5094
5095         /*
5096          * Only apply hugepage reservation if asked. At fault time, an
5097          * attempt will be made for VM_NORESERVE to allocate a page
5098          * without using reserves
5099          */
5100         if (vm_flags & VM_NORESERVE)
5101                 return 0;
5102
5103         /*
5104          * Shared mappings base their reservation on the number of pages that
5105          * are already allocated on behalf of the file. Private mappings need
5106          * to reserve the full area even if read-only as mprotect() may be
5107          * called to make the mapping read-write. Assume !vma is a shm mapping
5108          */
5109         if (!vma || vma->vm_flags & VM_MAYSHARE) {
5110                 /*
5111                  * resv_map can not be NULL as hugetlb_reserve_pages is only
5112                  * called for inodes for which resv_maps were created (see
5113                  * hugetlbfs_get_inode).
5114                  */
5115                 resv_map = inode_resv_map(inode);
5116
5117                 chg = region_chg(resv_map, from, to, &regions_needed);
5118
5119         } else {
5120                 /* Private mapping. */
5121                 resv_map = resv_map_alloc();
5122                 if (!resv_map)
5123                         return -ENOMEM;
5124
5125                 chg = to - from;
5126
5127                 set_vma_resv_map(vma, resv_map);
5128                 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
5129         }
5130
5131         if (chg < 0) {
5132                 ret = chg;
5133                 goto out_err;
5134         }
5135
5136         ret = hugetlb_cgroup_charge_cgroup_rsvd(
5137                 hstate_index(h), chg * pages_per_huge_page(h), &h_cg);
5138
5139         if (ret < 0) {
5140                 ret = -ENOMEM;
5141                 goto out_err;
5142         }
5143
5144         if (vma && !(vma->vm_flags & VM_MAYSHARE) && h_cg) {
5145                 /* For private mappings, the hugetlb_cgroup uncharge info hangs
5146                  * of the resv_map.
5147                  */
5148                 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, h_cg, h);
5149         }
5150
5151         /*
5152          * There must be enough pages in the subpool for the mapping. If
5153          * the subpool has a minimum size, there may be some global
5154          * reservations already in place (gbl_reserve).
5155          */
5156         gbl_reserve = hugepage_subpool_get_pages(spool, chg);
5157         if (gbl_reserve < 0) {
5158                 ret = -ENOSPC;
5159                 goto out_uncharge_cgroup;
5160         }
5161
5162         /*
5163          * Check enough hugepages are available for the reservation.
5164          * Hand the pages back to the subpool if there are not
5165          */
5166         ret = hugetlb_acct_memory(h, gbl_reserve);
5167         if (ret < 0) {
5168                 goto out_put_pages;
5169         }
5170
5171         /*
5172          * Account for the reservations made. Shared mappings record regions
5173          * that have reservations as they are shared by multiple VMAs.
5174          * When the last VMA disappears, the region map says how much
5175          * the reservation was and the page cache tells how much of
5176          * the reservation was consumed. Private mappings are per-VMA and
5177          * only the consumed reservations are tracked. When the VMA
5178          * disappears, the original reservation is the VMA size and the
5179          * consumed reservations are stored in the map. Hence, nothing
5180          * else has to be done for private mappings here
5181          */
5182         if (!vma || vma->vm_flags & VM_MAYSHARE) {
5183                 add = region_add(resv_map, from, to, regions_needed, h, h_cg);
5184
5185                 if (unlikely(add < 0)) {
5186                         hugetlb_acct_memory(h, -gbl_reserve);
5187                         goto out_put_pages;
5188                 } else if (unlikely(chg > add)) {
5189                         /*
5190                          * pages in this range were added to the reserve
5191                          * map between region_chg and region_add.  This
5192                          * indicates a race with alloc_huge_page.  Adjust
5193                          * the subpool and reserve counts modified above
5194                          * based on the difference.
5195                          */
5196                         long rsv_adjust;
5197
5198                         hugetlb_cgroup_uncharge_cgroup_rsvd(
5199                                 hstate_index(h),
5200                                 (chg - add) * pages_per_huge_page(h), h_cg);
5201
5202                         rsv_adjust = hugepage_subpool_put_pages(spool,
5203                                                                 chg - add);
5204                         hugetlb_acct_memory(h, -rsv_adjust);
5205                 }
5206         }
5207         return 0;
5208 out_put_pages:
5209         /* put back original number of pages, chg */
5210         (void)hugepage_subpool_put_pages(spool, chg);
5211 out_uncharge_cgroup:
5212         hugetlb_cgroup_uncharge_cgroup_rsvd(hstate_index(h),
5213                                             chg * pages_per_huge_page(h), h_cg);
5214 out_err:
5215         if (!vma || vma->vm_flags & VM_MAYSHARE)
5216                 /* Only call region_abort if the region_chg succeeded but the
5217                  * region_add failed or didn't run.
5218                  */
5219                 if (chg >= 0 && add < 0)
5220                         region_abort(resv_map, from, to, regions_needed);
5221         if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
5222                 kref_put(&resv_map->refs, resv_map_release);
5223         return ret;
5224 }
5225
5226 long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
5227                                                                 long freed)
5228 {
5229         struct hstate *h = hstate_inode(inode);
5230         struct resv_map *resv_map = inode_resv_map(inode);
5231         long chg = 0;
5232         struct hugepage_subpool *spool = subpool_inode(inode);
5233         long gbl_reserve;
5234
5235         /*
5236          * Since this routine can be called in the evict inode path for all
5237          * hugetlbfs inodes, resv_map could be NULL.
5238          */
5239         if (resv_map) {
5240                 chg = region_del(resv_map, start, end);
5241                 /*
5242                  * region_del() can fail in the rare case where a region
5243                  * must be split and another region descriptor can not be
5244                  * allocated.  If end == LONG_MAX, it will not fail.
5245                  */
5246                 if (chg < 0)
5247                         return chg;
5248         }
5249
5250         spin_lock(&inode->i_lock);
5251         inode->i_blocks -= (blocks_per_huge_page(h) * freed);
5252         spin_unlock(&inode->i_lock);
5253
5254         /*
5255          * If the subpool has a minimum size, the number of global
5256          * reservations to be released may be adjusted.
5257          */
5258         gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
5259         hugetlb_acct_memory(h, -gbl_reserve);
5260
5261         return 0;
5262 }
5263
5264 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
5265 static unsigned long page_table_shareable(struct vm_area_struct *svma,
5266                                 struct vm_area_struct *vma,
5267                                 unsigned long addr, pgoff_t idx)
5268 {
5269         unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
5270                                 svma->vm_start;
5271         unsigned long sbase = saddr & PUD_MASK;
5272         unsigned long s_end = sbase + PUD_SIZE;
5273
5274         /* Allow segments to share if only one is marked locked */
5275         unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
5276         unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
5277
5278         /*
5279          * match the virtual addresses, permission and the alignment of the
5280          * page table page.
5281          */
5282         if (pmd_index(addr) != pmd_index(saddr) ||
5283             vm_flags != svm_flags ||
5284             sbase < svma->vm_start || svma->vm_end < s_end)
5285                 return 0;
5286
5287         return saddr;
5288 }
5289
5290 static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr)
5291 {
5292         unsigned long base = addr & PUD_MASK;
5293         unsigned long end = base + PUD_SIZE;
5294
5295         /*
5296          * check on proper vm_flags and page table alignment
5297          */
5298         if (vma->vm_flags & VM_MAYSHARE && range_in_vma(vma, base, end))
5299                 return true;
5300         return false;
5301 }
5302
5303 /*
5304  * Determine if start,end range within vma could be mapped by shared pmd.
5305  * If yes, adjust start and end to cover range associated with possible
5306  * shared pmd mappings.
5307  */
5308 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
5309                                 unsigned long *start, unsigned long *end)
5310 {
5311         unsigned long check_addr;
5312
5313         if (!(vma->vm_flags & VM_MAYSHARE))
5314                 return;
5315
5316         for (check_addr = *start; check_addr < *end; check_addr += PUD_SIZE) {
5317                 unsigned long a_start = check_addr & PUD_MASK;
5318                 unsigned long a_end = a_start + PUD_SIZE;
5319
5320                 /*
5321                  * If sharing is possible, adjust start/end if necessary.
5322                  */
5323                 if (range_in_vma(vma, a_start, a_end)) {
5324                         if (a_start < *start)
5325                                 *start = a_start;
5326                         if (a_end > *end)
5327                                 *end = a_end;
5328                 }
5329         }
5330 }
5331
5332 /*
5333  * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
5334  * and returns the corresponding pte. While this is not necessary for the
5335  * !shared pmd case because we can allocate the pmd later as well, it makes the
5336  * code much cleaner.
5337  *
5338  * This routine must be called with i_mmap_rwsem held in at least read mode.
5339  * For hugetlbfs, this prevents removal of any page table entries associated
5340  * with the address space.  This is important as we are setting up sharing
5341  * based on existing page table entries (mappings).
5342  */
5343 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
5344 {
5345         struct vm_area_struct *vma = find_vma(mm, addr);
5346         struct address_space *mapping = vma->vm_file->f_mapping;
5347         pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
5348                         vma->vm_pgoff;
5349         struct vm_area_struct *svma;
5350         unsigned long saddr;
5351         pte_t *spte = NULL;
5352         pte_t *pte;
5353         spinlock_t *ptl;
5354
5355         if (!vma_shareable(vma, addr))
5356                 return (pte_t *)pmd_alloc(mm, pud, addr);
5357
5358         vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
5359                 if (svma == vma)
5360                         continue;
5361
5362                 saddr = page_table_shareable(svma, vma, addr, idx);
5363                 if (saddr) {
5364                         spte = huge_pte_offset(svma->vm_mm, saddr,
5365                                                vma_mmu_pagesize(svma));
5366                         if (spte) {
5367                                 get_page(virt_to_page(spte));
5368                                 break;
5369                         }
5370                 }
5371         }
5372
5373         if (!spte)
5374                 goto out;
5375
5376         ptl = huge_pte_lock(hstate_vma(vma), mm, spte);
5377         if (pud_none(*pud)) {
5378                 pud_populate(mm, pud,
5379                                 (pmd_t *)((unsigned long)spte & PAGE_MASK));
5380                 mm_inc_nr_pmds(mm);
5381         } else {
5382                 put_page(virt_to_page(spte));
5383         }
5384         spin_unlock(ptl);
5385 out:
5386         pte = (pte_t *)pmd_alloc(mm, pud, addr);
5387         return pte;
5388 }
5389
5390 /*
5391  * unmap huge page backed by shared pte.
5392  *
5393  * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
5394  * indicated by page_count > 1, unmap is achieved by clearing pud and
5395  * decrementing the ref count. If count == 1, the pte page is not shared.
5396  *
5397  * Called with page table lock held and i_mmap_rwsem held in write mode.
5398  *
5399  * returns: 1 successfully unmapped a shared pte page
5400  *          0 the underlying pte page is not shared, or it is the last user
5401  */
5402 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
5403 {
5404         pgd_t *pgd = pgd_offset(mm, *addr);
5405         p4d_t *p4d = p4d_offset(pgd, *addr);
5406         pud_t *pud = pud_offset(p4d, *addr);
5407
5408         BUG_ON(page_count(virt_to_page(ptep)) == 0);
5409         if (page_count(virt_to_page(ptep)) == 1)
5410                 return 0;
5411
5412         pud_clear(pud);
5413         put_page(virt_to_page(ptep));
5414         mm_dec_nr_pmds(mm);
5415         *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
5416         return 1;
5417 }
5418 #define want_pmd_share()        (1)
5419 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
5420 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
5421 {
5422         return NULL;
5423 }
5424
5425 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
5426 {
5427         return 0;
5428 }
5429
5430 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
5431                                 unsigned long *start, unsigned long *end)
5432 {
5433 }
5434 #define want_pmd_share()        (0)
5435 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
5436
5437 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
5438 pte_t *huge_pte_alloc(struct mm_struct *mm,
5439                         unsigned long addr, unsigned long sz)
5440 {
5441         pgd_t *pgd;
5442         p4d_t *p4d;
5443         pud_t *pud;
5444         pte_t *pte = NULL;
5445
5446         pgd = pgd_offset(mm, addr);
5447         p4d = p4d_alloc(mm, pgd, addr);
5448         if (!p4d)
5449                 return NULL;
5450         pud = pud_alloc(mm, p4d, addr);
5451         if (pud) {
5452                 if (sz == PUD_SIZE) {
5453                         pte = (pte_t *)pud;
5454                 } else {
5455                         BUG_ON(sz != PMD_SIZE);
5456                         if (want_pmd_share() && pud_none(*pud))
5457                                 pte = huge_pmd_share(mm, addr, pud);
5458                         else
5459                                 pte = (pte_t *)pmd_alloc(mm, pud, addr);
5460                 }
5461         }
5462         BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte));
5463
5464         return pte;
5465 }
5466
5467 /*
5468  * huge_pte_offset() - Walk the page table to resolve the hugepage
5469  * entry at address @addr
5470  *
5471  * Return: Pointer to page table entry (PUD or PMD) for
5472  * address @addr, or NULL if a !p*d_present() entry is encountered and the
5473  * size @sz doesn't match the hugepage size at this level of the page
5474  * table.
5475  */
5476 pte_t *huge_pte_offset(struct mm_struct *mm,
5477                        unsigned long addr, unsigned long sz)
5478 {
5479         pgd_t *pgd;
5480         p4d_t *p4d;
5481         pud_t *pud;
5482         pmd_t *pmd;
5483
5484         pgd = pgd_offset(mm, addr);
5485         if (!pgd_present(*pgd))
5486                 return NULL;
5487         p4d = p4d_offset(pgd, addr);
5488         if (!p4d_present(*p4d))
5489                 return NULL;
5490
5491         pud = pud_offset(p4d, addr);
5492         if (sz == PUD_SIZE)
5493                 /* must be pud huge, non-present or none */
5494                 return (pte_t *)pud;
5495         if (!pud_present(*pud))
5496                 return NULL;
5497         /* must have a valid entry and size to go further */
5498
5499         pmd = pmd_offset(pud, addr);
5500         /* must be pmd huge, non-present or none */
5501         return (pte_t *)pmd;
5502 }
5503
5504 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
5505
5506 /*
5507  * These functions are overwritable if your architecture needs its own
5508  * behavior.
5509  */
5510 struct page * __weak
5511 follow_huge_addr(struct mm_struct *mm, unsigned long address,
5512                               int write)
5513 {
5514         return ERR_PTR(-EINVAL);
5515 }
5516
5517 struct page * __weak
5518 follow_huge_pd(struct vm_area_struct *vma,
5519                unsigned long address, hugepd_t hpd, int flags, int pdshift)
5520 {
5521         WARN(1, "hugepd follow called with no support for hugepage directory format\n");
5522         return NULL;
5523 }
5524
5525 struct page * __weak
5526 follow_huge_pmd(struct mm_struct *mm, unsigned long address,
5527                 pmd_t *pmd, int flags)
5528 {
5529         struct page *page = NULL;
5530         spinlock_t *ptl;
5531         pte_t pte;
5532
5533         /* FOLL_GET and FOLL_PIN are mutually exclusive. */
5534         if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
5535                          (FOLL_PIN | FOLL_GET)))
5536                 return NULL;
5537
5538 retry:
5539         ptl = pmd_lockptr(mm, pmd);
5540         spin_lock(ptl);
5541         /*
5542          * make sure that the address range covered by this pmd is not
5543          * unmapped from other threads.
5544          */
5545         if (!pmd_huge(*pmd))
5546                 goto out;
5547         pte = huge_ptep_get((pte_t *)pmd);
5548         if (pte_present(pte)) {
5549                 page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
5550                 /*
5551                  * try_grab_page() should always succeed here, because: a) we
5552                  * hold the pmd (ptl) lock, and b) we've just checked that the
5553                  * huge pmd (head) page is present in the page tables. The ptl
5554                  * prevents the head page and tail pages from being rearranged
5555                  * in any way. So this page must be available at this point,
5556                  * unless the page refcount overflowed:
5557                  */
5558                 if (WARN_ON_ONCE(!try_grab_page(page, flags))) {
5559                         page = NULL;
5560                         goto out;
5561                 }
5562         } else {
5563                 if (is_hugetlb_entry_migration(pte)) {
5564                         spin_unlock(ptl);
5565                         __migration_entry_wait(mm, (pte_t *)pmd, ptl);
5566                         goto retry;
5567                 }
5568                 /*
5569                  * hwpoisoned entry is treated as no_page_table in
5570                  * follow_page_mask().
5571                  */
5572         }
5573 out:
5574         spin_unlock(ptl);
5575         return page;
5576 }
5577
5578 struct page * __weak
5579 follow_huge_pud(struct mm_struct *mm, unsigned long address,
5580                 pud_t *pud, int flags)
5581 {
5582         if (flags & (FOLL_GET | FOLL_PIN))
5583                 return NULL;
5584
5585         return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
5586 }
5587
5588 struct page * __weak
5589 follow_huge_pgd(struct mm_struct *mm, unsigned long address, pgd_t *pgd, int flags)
5590 {
5591         if (flags & (FOLL_GET | FOLL_PIN))
5592                 return NULL;
5593
5594         return pte_page(*(pte_t *)pgd) + ((address & ~PGDIR_MASK) >> PAGE_SHIFT);
5595 }
5596
5597 bool isolate_huge_page(struct page *page, struct list_head *list)
5598 {
5599         bool ret = true;
5600
5601         VM_BUG_ON_PAGE(!PageHead(page), page);
5602         spin_lock(&hugetlb_lock);
5603         if (!page_huge_active(page) || !get_page_unless_zero(page)) {
5604                 ret = false;
5605                 goto unlock;
5606         }
5607         clear_page_huge_active(page);
5608         list_move_tail(&page->lru, list);
5609 unlock:
5610         spin_unlock(&hugetlb_lock);
5611         return ret;
5612 }
5613
5614 void putback_active_hugepage(struct page *page)
5615 {
5616         VM_BUG_ON_PAGE(!PageHead(page), page);
5617         spin_lock(&hugetlb_lock);
5618         set_page_huge_active(page);
5619         list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
5620         spin_unlock(&hugetlb_lock);
5621         put_page(page);
5622 }
5623
5624 void move_hugetlb_state(struct page *oldpage, struct page *newpage, int reason)
5625 {
5626         struct hstate *h = page_hstate(oldpage);
5627
5628         hugetlb_cgroup_migrate(oldpage, newpage);
5629         set_page_owner_migrate_reason(newpage, reason);
5630
5631         /*
5632          * transfer temporary state of the new huge page. This is
5633          * reverse to other transitions because the newpage is going to
5634          * be final while the old one will be freed so it takes over
5635          * the temporary status.
5636          *
5637          * Also note that we have to transfer the per-node surplus state
5638          * here as well otherwise the global surplus count will not match
5639          * the per-node's.
5640          */
5641         if (PageHugeTemporary(newpage)) {
5642                 int old_nid = page_to_nid(oldpage);
5643                 int new_nid = page_to_nid(newpage);
5644
5645                 SetPageHugeTemporary(oldpage);
5646                 ClearPageHugeTemporary(newpage);
5647
5648                 spin_lock(&hugetlb_lock);
5649                 if (h->surplus_huge_pages_node[old_nid]) {
5650                         h->surplus_huge_pages_node[old_nid]--;
5651                         h->surplus_huge_pages_node[new_nid]++;
5652                 }
5653                 spin_unlock(&hugetlb_lock);
5654         }
5655 }
5656
5657 #ifdef CONFIG_CMA
5658 static unsigned long hugetlb_cma_size __initdata;
5659 static bool cma_reserve_called __initdata;
5660
5661 static int __init cmdline_parse_hugetlb_cma(char *p)
5662 {
5663         hugetlb_cma_size = memparse(p, &p);
5664         return 0;
5665 }
5666
5667 early_param("hugetlb_cma", cmdline_parse_hugetlb_cma);
5668
5669 void __init hugetlb_cma_reserve(int order)
5670 {
5671         unsigned long size, reserved, per_node;
5672         int nid;
5673
5674         cma_reserve_called = true;
5675
5676         if (!hugetlb_cma_size)
5677                 return;
5678
5679         if (hugetlb_cma_size < (PAGE_SIZE << order)) {
5680                 pr_warn("hugetlb_cma: cma area should be at least %lu MiB\n",
5681                         (PAGE_SIZE << order) / SZ_1M);
5682                 return;
5683         }
5684
5685         /*
5686          * If 3 GB area is requested on a machine with 4 numa nodes,
5687          * let's allocate 1 GB on first three nodes and ignore the last one.
5688          */
5689         per_node = DIV_ROUND_UP(hugetlb_cma_size, nr_online_nodes);
5690         pr_info("hugetlb_cma: reserve %lu MiB, up to %lu MiB per node\n",
5691                 hugetlb_cma_size / SZ_1M, per_node / SZ_1M);
5692
5693         reserved = 0;
5694         for_each_node_state(nid, N_ONLINE) {
5695                 int res;
5696
5697                 size = min(per_node, hugetlb_cma_size - reserved);
5698                 size = round_up(size, PAGE_SIZE << order);
5699
5700                 res = cma_declare_contiguous_nid(0, size, 0, PAGE_SIZE << order,
5701                                                  0, false, "hugetlb",
5702                                                  &hugetlb_cma[nid], nid);
5703                 if (res) {
5704                         pr_warn("hugetlb_cma: reservation failed: err %d, node %d",
5705                                 res, nid);
5706                         continue;
5707                 }
5708
5709                 reserved += size;
5710                 pr_info("hugetlb_cma: reserved %lu MiB on node %d\n",
5711                         size / SZ_1M, nid);
5712
5713                 if (reserved >= hugetlb_cma_size)
5714                         break;
5715         }
5716 }
5717
5718 void __init hugetlb_cma_check(void)
5719 {
5720         if (!hugetlb_cma_size || cma_reserve_called)
5721                 return;
5722
5723         pr_warn("hugetlb_cma: the option isn't supported by current arch\n");
5724 }
5725
5726 #endif /* CONFIG_CMA */