mm,hugetlb: drop clearing of flag from prep_new_huge_page
[linux-2.6-microblaze.git] / mm / hugetlb.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Generic hugetlb support.
4  * (C) Nadia Yvette Chambers, April 2004
5  */
6 #include <linux/list.h>
7 #include <linux/init.h>
8 #include <linux/mm.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/compiler.h>
17 #include <linux/cpuset.h>
18 #include <linux/mutex.h>
19 #include <linux/memblock.h>
20 #include <linux/sysfs.h>
21 #include <linux/slab.h>
22 #include <linux/sched/mm.h>
23 #include <linux/mmdebug.h>
24 #include <linux/sched/signal.h>
25 #include <linux/rmap.h>
26 #include <linux/string_helpers.h>
27 #include <linux/swap.h>
28 #include <linux/swapops.h>
29 #include <linux/jhash.h>
30 #include <linux/numa.h>
31 #include <linux/llist.h>
32 #include <linux/cma.h>
33
34 #include <asm/page.h>
35 #include <asm/pgalloc.h>
36 #include <asm/tlb.h>
37
38 #include <linux/io.h>
39 #include <linux/hugetlb.h>
40 #include <linux/hugetlb_cgroup.h>
41 #include <linux/node.h>
42 #include <linux/userfaultfd_k.h>
43 #include <linux/page_owner.h>
44 #include "internal.h"
45
46 int hugetlb_max_hstate __read_mostly;
47 unsigned int default_hstate_idx;
48 struct hstate hstates[HUGE_MAX_HSTATE];
49
50 #ifdef CONFIG_CMA
51 static struct cma *hugetlb_cma[MAX_NUMNODES];
52 #endif
53 static unsigned long hugetlb_cma_size __initdata;
54
55 /*
56  * Minimum page order among possible hugepage sizes, set to a proper value
57  * at boot time.
58  */
59 static unsigned int minimum_order __read_mostly = UINT_MAX;
60
61 __initdata LIST_HEAD(huge_boot_pages);
62
63 /* for command line parsing */
64 static struct hstate * __initdata parsed_hstate;
65 static unsigned long __initdata default_hstate_max_huge_pages;
66 static bool __initdata parsed_valid_hugepagesz = true;
67 static bool __initdata parsed_default_hugepagesz;
68
69 /*
70  * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
71  * free_huge_pages, and surplus_huge_pages.
72  */
73 DEFINE_SPINLOCK(hugetlb_lock);
74
75 /*
76  * Serializes faults on the same logical page.  This is used to
77  * prevent spurious OOMs when the hugepage pool is fully utilized.
78  */
79 static int num_fault_mutexes;
80 struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
81
82 /* Forward declaration */
83 static int hugetlb_acct_memory(struct hstate *h, long delta);
84
85 static inline bool subpool_is_free(struct hugepage_subpool *spool)
86 {
87         if (spool->count)
88                 return false;
89         if (spool->max_hpages != -1)
90                 return spool->used_hpages == 0;
91         if (spool->min_hpages != -1)
92                 return spool->rsv_hpages == spool->min_hpages;
93
94         return true;
95 }
96
97 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool,
98                                                 unsigned long irq_flags)
99 {
100         spin_unlock_irqrestore(&spool->lock, irq_flags);
101
102         /* If no pages are used, and no other handles to the subpool
103          * remain, give up any reservations based on minimum size and
104          * free the subpool */
105         if (subpool_is_free(spool)) {
106                 if (spool->min_hpages != -1)
107                         hugetlb_acct_memory(spool->hstate,
108                                                 -spool->min_hpages);
109                 kfree(spool);
110         }
111 }
112
113 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
114                                                 long min_hpages)
115 {
116         struct hugepage_subpool *spool;
117
118         spool = kzalloc(sizeof(*spool), GFP_KERNEL);
119         if (!spool)
120                 return NULL;
121
122         spin_lock_init(&spool->lock);
123         spool->count = 1;
124         spool->max_hpages = max_hpages;
125         spool->hstate = h;
126         spool->min_hpages = min_hpages;
127
128         if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
129                 kfree(spool);
130                 return NULL;
131         }
132         spool->rsv_hpages = min_hpages;
133
134         return spool;
135 }
136
137 void hugepage_put_subpool(struct hugepage_subpool *spool)
138 {
139         unsigned long flags;
140
141         spin_lock_irqsave(&spool->lock, flags);
142         BUG_ON(!spool->count);
143         spool->count--;
144         unlock_or_release_subpool(spool, flags);
145 }
146
147 /*
148  * Subpool accounting for allocating and reserving pages.
149  * Return -ENOMEM if there are not enough resources to satisfy the
150  * request.  Otherwise, return the number of pages by which the
151  * global pools must be adjusted (upward).  The returned value may
152  * only be different than the passed value (delta) in the case where
153  * a subpool minimum size must be maintained.
154  */
155 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
156                                       long delta)
157 {
158         long ret = delta;
159
160         if (!spool)
161                 return ret;
162
163         spin_lock_irq(&spool->lock);
164
165         if (spool->max_hpages != -1) {          /* maximum size accounting */
166                 if ((spool->used_hpages + delta) <= spool->max_hpages)
167                         spool->used_hpages += delta;
168                 else {
169                         ret = -ENOMEM;
170                         goto unlock_ret;
171                 }
172         }
173
174         /* minimum size accounting */
175         if (spool->min_hpages != -1 && spool->rsv_hpages) {
176                 if (delta > spool->rsv_hpages) {
177                         /*
178                          * Asking for more reserves than those already taken on
179                          * behalf of subpool.  Return difference.
180                          */
181                         ret = delta - spool->rsv_hpages;
182                         spool->rsv_hpages = 0;
183                 } else {
184                         ret = 0;        /* reserves already accounted for */
185                         spool->rsv_hpages -= delta;
186                 }
187         }
188
189 unlock_ret:
190         spin_unlock_irq(&spool->lock);
191         return ret;
192 }
193
194 /*
195  * Subpool accounting for freeing and unreserving pages.
196  * Return the number of global page reservations that must be dropped.
197  * The return value may only be different than the passed value (delta)
198  * in the case where a subpool minimum size must be maintained.
199  */
200 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
201                                        long delta)
202 {
203         long ret = delta;
204         unsigned long flags;
205
206         if (!spool)
207                 return delta;
208
209         spin_lock_irqsave(&spool->lock, flags);
210
211         if (spool->max_hpages != -1)            /* maximum size accounting */
212                 spool->used_hpages -= delta;
213
214          /* minimum size accounting */
215         if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
216                 if (spool->rsv_hpages + delta <= spool->min_hpages)
217                         ret = 0;
218                 else
219                         ret = spool->rsv_hpages + delta - spool->min_hpages;
220
221                 spool->rsv_hpages += delta;
222                 if (spool->rsv_hpages > spool->min_hpages)
223                         spool->rsv_hpages = spool->min_hpages;
224         }
225
226         /*
227          * If hugetlbfs_put_super couldn't free spool due to an outstanding
228          * quota reference, free it now.
229          */
230         unlock_or_release_subpool(spool, flags);
231
232         return ret;
233 }
234
235 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
236 {
237         return HUGETLBFS_SB(inode->i_sb)->spool;
238 }
239
240 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
241 {
242         return subpool_inode(file_inode(vma->vm_file));
243 }
244
245 /* Helper that removes a struct file_region from the resv_map cache and returns
246  * it for use.
247  */
248 static struct file_region *
249 get_file_region_entry_from_cache(struct resv_map *resv, long from, long to)
250 {
251         struct file_region *nrg = NULL;
252
253         VM_BUG_ON(resv->region_cache_count <= 0);
254
255         resv->region_cache_count--;
256         nrg = list_first_entry(&resv->region_cache, struct file_region, link);
257         list_del(&nrg->link);
258
259         nrg->from = from;
260         nrg->to = to;
261
262         return nrg;
263 }
264
265 static void copy_hugetlb_cgroup_uncharge_info(struct file_region *nrg,
266                                               struct file_region *rg)
267 {
268 #ifdef CONFIG_CGROUP_HUGETLB
269         nrg->reservation_counter = rg->reservation_counter;
270         nrg->css = rg->css;
271         if (rg->css)
272                 css_get(rg->css);
273 #endif
274 }
275
276 /* Helper that records hugetlb_cgroup uncharge info. */
277 static void record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup *h_cg,
278                                                 struct hstate *h,
279                                                 struct resv_map *resv,
280                                                 struct file_region *nrg)
281 {
282 #ifdef CONFIG_CGROUP_HUGETLB
283         if (h_cg) {
284                 nrg->reservation_counter =
285                         &h_cg->rsvd_hugepage[hstate_index(h)];
286                 nrg->css = &h_cg->css;
287                 /*
288                  * The caller will hold exactly one h_cg->css reference for the
289                  * whole contiguous reservation region. But this area might be
290                  * scattered when there are already some file_regions reside in
291                  * it. As a result, many file_regions may share only one css
292                  * reference. In order to ensure that one file_region must hold
293                  * exactly one h_cg->css reference, we should do css_get for
294                  * each file_region and leave the reference held by caller
295                  * untouched.
296                  */
297                 css_get(&h_cg->css);
298                 if (!resv->pages_per_hpage)
299                         resv->pages_per_hpage = pages_per_huge_page(h);
300                 /* pages_per_hpage should be the same for all entries in
301                  * a resv_map.
302                  */
303                 VM_BUG_ON(resv->pages_per_hpage != pages_per_huge_page(h));
304         } else {
305                 nrg->reservation_counter = NULL;
306                 nrg->css = NULL;
307         }
308 #endif
309 }
310
311 static void put_uncharge_info(struct file_region *rg)
312 {
313 #ifdef CONFIG_CGROUP_HUGETLB
314         if (rg->css)
315                 css_put(rg->css);
316 #endif
317 }
318
319 static bool has_same_uncharge_info(struct file_region *rg,
320                                    struct file_region *org)
321 {
322 #ifdef CONFIG_CGROUP_HUGETLB
323         return rg && org &&
324                rg->reservation_counter == org->reservation_counter &&
325                rg->css == org->css;
326
327 #else
328         return true;
329 #endif
330 }
331
332 static void coalesce_file_region(struct resv_map *resv, struct file_region *rg)
333 {
334         struct file_region *nrg = NULL, *prg = NULL;
335
336         prg = list_prev_entry(rg, link);
337         if (&prg->link != &resv->regions && prg->to == rg->from &&
338             has_same_uncharge_info(prg, rg)) {
339                 prg->to = rg->to;
340
341                 list_del(&rg->link);
342                 put_uncharge_info(rg);
343                 kfree(rg);
344
345                 rg = prg;
346         }
347
348         nrg = list_next_entry(rg, link);
349         if (&nrg->link != &resv->regions && nrg->from == rg->to &&
350             has_same_uncharge_info(nrg, rg)) {
351                 nrg->from = rg->from;
352
353                 list_del(&rg->link);
354                 put_uncharge_info(rg);
355                 kfree(rg);
356         }
357 }
358
359 static inline long
360 hugetlb_resv_map_add(struct resv_map *map, struct file_region *rg, long from,
361                      long to, struct hstate *h, struct hugetlb_cgroup *cg,
362                      long *regions_needed)
363 {
364         struct file_region *nrg;
365
366         if (!regions_needed) {
367                 nrg = get_file_region_entry_from_cache(map, from, to);
368                 record_hugetlb_cgroup_uncharge_info(cg, h, map, nrg);
369                 list_add(&nrg->link, rg->link.prev);
370                 coalesce_file_region(map, nrg);
371         } else
372                 *regions_needed += 1;
373
374         return to - from;
375 }
376
377 /*
378  * Must be called with resv->lock held.
379  *
380  * Calling this with regions_needed != NULL will count the number of pages
381  * to be added but will not modify the linked list. And regions_needed will
382  * indicate the number of file_regions needed in the cache to carry out to add
383  * the regions for this range.
384  */
385 static long add_reservation_in_range(struct resv_map *resv, long f, long t,
386                                      struct hugetlb_cgroup *h_cg,
387                                      struct hstate *h, long *regions_needed)
388 {
389         long add = 0;
390         struct list_head *head = &resv->regions;
391         long last_accounted_offset = f;
392         struct file_region *rg = NULL, *trg = NULL;
393
394         if (regions_needed)
395                 *regions_needed = 0;
396
397         /* In this loop, we essentially handle an entry for the range
398          * [last_accounted_offset, rg->from), at every iteration, with some
399          * bounds checking.
400          */
401         list_for_each_entry_safe(rg, trg, head, link) {
402                 /* Skip irrelevant regions that start before our range. */
403                 if (rg->from < f) {
404                         /* If this region ends after the last accounted offset,
405                          * then we need to update last_accounted_offset.
406                          */
407                         if (rg->to > last_accounted_offset)
408                                 last_accounted_offset = rg->to;
409                         continue;
410                 }
411
412                 /* When we find a region that starts beyond our range, we've
413                  * finished.
414                  */
415                 if (rg->from >= t)
416                         break;
417
418                 /* Add an entry for last_accounted_offset -> rg->from, and
419                  * update last_accounted_offset.
420                  */
421                 if (rg->from > last_accounted_offset)
422                         add += hugetlb_resv_map_add(resv, rg,
423                                                     last_accounted_offset,
424                                                     rg->from, h, h_cg,
425                                                     regions_needed);
426
427                 last_accounted_offset = rg->to;
428         }
429
430         /* Handle the case where our range extends beyond
431          * last_accounted_offset.
432          */
433         if (last_accounted_offset < t)
434                 add += hugetlb_resv_map_add(resv, rg, last_accounted_offset,
435                                             t, h, h_cg, regions_needed);
436
437         VM_BUG_ON(add < 0);
438         return add;
439 }
440
441 /* Must be called with resv->lock acquired. Will drop lock to allocate entries.
442  */
443 static int allocate_file_region_entries(struct resv_map *resv,
444                                         int regions_needed)
445         __must_hold(&resv->lock)
446 {
447         struct list_head allocated_regions;
448         int to_allocate = 0, i = 0;
449         struct file_region *trg = NULL, *rg = NULL;
450
451         VM_BUG_ON(regions_needed < 0);
452
453         INIT_LIST_HEAD(&allocated_regions);
454
455         /*
456          * Check for sufficient descriptors in the cache to accommodate
457          * the number of in progress add operations plus regions_needed.
458          *
459          * This is a while loop because when we drop the lock, some other call
460          * to region_add or region_del may have consumed some region_entries,
461          * so we keep looping here until we finally have enough entries for
462          * (adds_in_progress + regions_needed).
463          */
464         while (resv->region_cache_count <
465                (resv->adds_in_progress + regions_needed)) {
466                 to_allocate = resv->adds_in_progress + regions_needed -
467                               resv->region_cache_count;
468
469                 /* At this point, we should have enough entries in the cache
470                  * for all the existings adds_in_progress. We should only be
471                  * needing to allocate for regions_needed.
472                  */
473                 VM_BUG_ON(resv->region_cache_count < resv->adds_in_progress);
474
475                 spin_unlock(&resv->lock);
476                 for (i = 0; i < to_allocate; i++) {
477                         trg = kmalloc(sizeof(*trg), GFP_KERNEL);
478                         if (!trg)
479                                 goto out_of_memory;
480                         list_add(&trg->link, &allocated_regions);
481                 }
482
483                 spin_lock(&resv->lock);
484
485                 list_splice(&allocated_regions, &resv->region_cache);
486                 resv->region_cache_count += to_allocate;
487         }
488
489         return 0;
490
491 out_of_memory:
492         list_for_each_entry_safe(rg, trg, &allocated_regions, link) {
493                 list_del(&rg->link);
494                 kfree(rg);
495         }
496         return -ENOMEM;
497 }
498
499 /*
500  * Add the huge page range represented by [f, t) to the reserve
501  * map.  Regions will be taken from the cache to fill in this range.
502  * Sufficient regions should exist in the cache due to the previous
503  * call to region_chg with the same range, but in some cases the cache will not
504  * have sufficient entries due to races with other code doing region_add or
505  * region_del.  The extra needed entries will be allocated.
506  *
507  * regions_needed is the out value provided by a previous call to region_chg.
508  *
509  * Return the number of new huge pages added to the map.  This number is greater
510  * than or equal to zero.  If file_region entries needed to be allocated for
511  * this operation and we were not able to allocate, it returns -ENOMEM.
512  * region_add of regions of length 1 never allocate file_regions and cannot
513  * fail; region_chg will always allocate at least 1 entry and a region_add for
514  * 1 page will only require at most 1 entry.
515  */
516 static long region_add(struct resv_map *resv, long f, long t,
517                        long in_regions_needed, struct hstate *h,
518                        struct hugetlb_cgroup *h_cg)
519 {
520         long add = 0, actual_regions_needed = 0;
521
522         spin_lock(&resv->lock);
523 retry:
524
525         /* Count how many regions are actually needed to execute this add. */
526         add_reservation_in_range(resv, f, t, NULL, NULL,
527                                  &actual_regions_needed);
528
529         /*
530          * Check for sufficient descriptors in the cache to accommodate
531          * this add operation. Note that actual_regions_needed may be greater
532          * than in_regions_needed, as the resv_map may have been modified since
533          * the region_chg call. In this case, we need to make sure that we
534          * allocate extra entries, such that we have enough for all the
535          * existing adds_in_progress, plus the excess needed for this
536          * operation.
537          */
538         if (actual_regions_needed > in_regions_needed &&
539             resv->region_cache_count <
540                     resv->adds_in_progress +
541                             (actual_regions_needed - in_regions_needed)) {
542                 /* region_add operation of range 1 should never need to
543                  * allocate file_region entries.
544                  */
545                 VM_BUG_ON(t - f <= 1);
546
547                 if (allocate_file_region_entries(
548                             resv, actual_regions_needed - in_regions_needed)) {
549                         return -ENOMEM;
550                 }
551
552                 goto retry;
553         }
554
555         add = add_reservation_in_range(resv, f, t, h_cg, h, NULL);
556
557         resv->adds_in_progress -= in_regions_needed;
558
559         spin_unlock(&resv->lock);
560         return add;
561 }
562
563 /*
564  * Examine the existing reserve map and determine how many
565  * huge pages in the specified range [f, t) are NOT currently
566  * represented.  This routine is called before a subsequent
567  * call to region_add that will actually modify the reserve
568  * map to add the specified range [f, t).  region_chg does
569  * not change the number of huge pages represented by the
570  * map.  A number of new file_region structures is added to the cache as a
571  * placeholder, for the subsequent region_add call to use. At least 1
572  * file_region structure is added.
573  *
574  * out_regions_needed is the number of regions added to the
575  * resv->adds_in_progress.  This value needs to be provided to a follow up call
576  * to region_add or region_abort for proper accounting.
577  *
578  * Returns the number of huge pages that need to be added to the existing
579  * reservation map for the range [f, t).  This number is greater or equal to
580  * zero.  -ENOMEM is returned if a new file_region structure or cache entry
581  * is needed and can not be allocated.
582  */
583 static long region_chg(struct resv_map *resv, long f, long t,
584                        long *out_regions_needed)
585 {
586         long chg = 0;
587
588         spin_lock(&resv->lock);
589
590         /* Count how many hugepages in this range are NOT represented. */
591         chg = add_reservation_in_range(resv, f, t, NULL, NULL,
592                                        out_regions_needed);
593
594         if (*out_regions_needed == 0)
595                 *out_regions_needed = 1;
596
597         if (allocate_file_region_entries(resv, *out_regions_needed))
598                 return -ENOMEM;
599
600         resv->adds_in_progress += *out_regions_needed;
601
602         spin_unlock(&resv->lock);
603         return chg;
604 }
605
606 /*
607  * Abort the in progress add operation.  The adds_in_progress field
608  * of the resv_map keeps track of the operations in progress between
609  * calls to region_chg and region_add.  Operations are sometimes
610  * aborted after the call to region_chg.  In such cases, region_abort
611  * is called to decrement the adds_in_progress counter. regions_needed
612  * is the value returned by the region_chg call, it is used to decrement
613  * the adds_in_progress counter.
614  *
615  * NOTE: The range arguments [f, t) are not needed or used in this
616  * routine.  They are kept to make reading the calling code easier as
617  * arguments will match the associated region_chg call.
618  */
619 static void region_abort(struct resv_map *resv, long f, long t,
620                          long regions_needed)
621 {
622         spin_lock(&resv->lock);
623         VM_BUG_ON(!resv->region_cache_count);
624         resv->adds_in_progress -= regions_needed;
625         spin_unlock(&resv->lock);
626 }
627
628 /*
629  * Delete the specified range [f, t) from the reserve map.  If the
630  * t parameter is LONG_MAX, this indicates that ALL regions after f
631  * should be deleted.  Locate the regions which intersect [f, t)
632  * and either trim, delete or split the existing regions.
633  *
634  * Returns the number of huge pages deleted from the reserve map.
635  * In the normal case, the return value is zero or more.  In the
636  * case where a region must be split, a new region descriptor must
637  * be allocated.  If the allocation fails, -ENOMEM will be returned.
638  * NOTE: If the parameter t == LONG_MAX, then we will never split
639  * a region and possibly return -ENOMEM.  Callers specifying
640  * t == LONG_MAX do not need to check for -ENOMEM error.
641  */
642 static long region_del(struct resv_map *resv, long f, long t)
643 {
644         struct list_head *head = &resv->regions;
645         struct file_region *rg, *trg;
646         struct file_region *nrg = NULL;
647         long del = 0;
648
649 retry:
650         spin_lock(&resv->lock);
651         list_for_each_entry_safe(rg, trg, head, link) {
652                 /*
653                  * Skip regions before the range to be deleted.  file_region
654                  * ranges are normally of the form [from, to).  However, there
655                  * may be a "placeholder" entry in the map which is of the form
656                  * (from, to) with from == to.  Check for placeholder entries
657                  * at the beginning of the range to be deleted.
658                  */
659                 if (rg->to <= f && (rg->to != rg->from || rg->to != f))
660                         continue;
661
662                 if (rg->from >= t)
663                         break;
664
665                 if (f > rg->from && t < rg->to) { /* Must split region */
666                         /*
667                          * Check for an entry in the cache before dropping
668                          * lock and attempting allocation.
669                          */
670                         if (!nrg &&
671                             resv->region_cache_count > resv->adds_in_progress) {
672                                 nrg = list_first_entry(&resv->region_cache,
673                                                         struct file_region,
674                                                         link);
675                                 list_del(&nrg->link);
676                                 resv->region_cache_count--;
677                         }
678
679                         if (!nrg) {
680                                 spin_unlock(&resv->lock);
681                                 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
682                                 if (!nrg)
683                                         return -ENOMEM;
684                                 goto retry;
685                         }
686
687                         del += t - f;
688                         hugetlb_cgroup_uncharge_file_region(
689                                 resv, rg, t - f, false);
690
691                         /* New entry for end of split region */
692                         nrg->from = t;
693                         nrg->to = rg->to;
694
695                         copy_hugetlb_cgroup_uncharge_info(nrg, rg);
696
697                         INIT_LIST_HEAD(&nrg->link);
698
699                         /* Original entry is trimmed */
700                         rg->to = f;
701
702                         list_add(&nrg->link, &rg->link);
703                         nrg = NULL;
704                         break;
705                 }
706
707                 if (f <= rg->from && t >= rg->to) { /* Remove entire region */
708                         del += rg->to - rg->from;
709                         hugetlb_cgroup_uncharge_file_region(resv, rg,
710                                                             rg->to - rg->from, true);
711                         list_del(&rg->link);
712                         kfree(rg);
713                         continue;
714                 }
715
716                 if (f <= rg->from) {    /* Trim beginning of region */
717                         hugetlb_cgroup_uncharge_file_region(resv, rg,
718                                                             t - rg->from, false);
719
720                         del += t - rg->from;
721                         rg->from = t;
722                 } else {                /* Trim end of region */
723                         hugetlb_cgroup_uncharge_file_region(resv, rg,
724                                                             rg->to - f, false);
725
726                         del += rg->to - f;
727                         rg->to = f;
728                 }
729         }
730
731         spin_unlock(&resv->lock);
732         kfree(nrg);
733         return del;
734 }
735
736 /*
737  * A rare out of memory error was encountered which prevented removal of
738  * the reserve map region for a page.  The huge page itself was free'ed
739  * and removed from the page cache.  This routine will adjust the subpool
740  * usage count, and the global reserve count if needed.  By incrementing
741  * these counts, the reserve map entry which could not be deleted will
742  * appear as a "reserved" entry instead of simply dangling with incorrect
743  * counts.
744  */
745 void hugetlb_fix_reserve_counts(struct inode *inode)
746 {
747         struct hugepage_subpool *spool = subpool_inode(inode);
748         long rsv_adjust;
749         bool reserved = false;
750
751         rsv_adjust = hugepage_subpool_get_pages(spool, 1);
752         if (rsv_adjust > 0) {
753                 struct hstate *h = hstate_inode(inode);
754
755                 if (!hugetlb_acct_memory(h, 1))
756                         reserved = true;
757         } else if (!rsv_adjust) {
758                 reserved = true;
759         }
760
761         if (!reserved)
762                 pr_warn("hugetlb: Huge Page Reserved count may go negative.\n");
763 }
764
765 /*
766  * Count and return the number of huge pages in the reserve map
767  * that intersect with the range [f, t).
768  */
769 static long region_count(struct resv_map *resv, long f, long t)
770 {
771         struct list_head *head = &resv->regions;
772         struct file_region *rg;
773         long chg = 0;
774
775         spin_lock(&resv->lock);
776         /* Locate each segment we overlap with, and count that overlap. */
777         list_for_each_entry(rg, head, link) {
778                 long seg_from;
779                 long seg_to;
780
781                 if (rg->to <= f)
782                         continue;
783                 if (rg->from >= t)
784                         break;
785
786                 seg_from = max(rg->from, f);
787                 seg_to = min(rg->to, t);
788
789                 chg += seg_to - seg_from;
790         }
791         spin_unlock(&resv->lock);
792
793         return chg;
794 }
795
796 /*
797  * Convert the address within this vma to the page offset within
798  * the mapping, in pagecache page units; huge pages here.
799  */
800 static pgoff_t vma_hugecache_offset(struct hstate *h,
801                         struct vm_area_struct *vma, unsigned long address)
802 {
803         return ((address - vma->vm_start) >> huge_page_shift(h)) +
804                         (vma->vm_pgoff >> huge_page_order(h));
805 }
806
807 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
808                                      unsigned long address)
809 {
810         return vma_hugecache_offset(hstate_vma(vma), vma, address);
811 }
812 EXPORT_SYMBOL_GPL(linear_hugepage_index);
813
814 /*
815  * Return the size of the pages allocated when backing a VMA. In the majority
816  * cases this will be same size as used by the page table entries.
817  */
818 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
819 {
820         if (vma->vm_ops && vma->vm_ops->pagesize)
821                 return vma->vm_ops->pagesize(vma);
822         return PAGE_SIZE;
823 }
824 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
825
826 /*
827  * Return the page size being used by the MMU to back a VMA. In the majority
828  * of cases, the page size used by the kernel matches the MMU size. On
829  * architectures where it differs, an architecture-specific 'strong'
830  * version of this symbol is required.
831  */
832 __weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
833 {
834         return vma_kernel_pagesize(vma);
835 }
836
837 /*
838  * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
839  * bits of the reservation map pointer, which are always clear due to
840  * alignment.
841  */
842 #define HPAGE_RESV_OWNER    (1UL << 0)
843 #define HPAGE_RESV_UNMAPPED (1UL << 1)
844 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
845
846 /*
847  * These helpers are used to track how many pages are reserved for
848  * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
849  * is guaranteed to have their future faults succeed.
850  *
851  * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
852  * the reserve counters are updated with the hugetlb_lock held. It is safe
853  * to reset the VMA at fork() time as it is not in use yet and there is no
854  * chance of the global counters getting corrupted as a result of the values.
855  *
856  * The private mapping reservation is represented in a subtly different
857  * manner to a shared mapping.  A shared mapping has a region map associated
858  * with the underlying file, this region map represents the backing file
859  * pages which have ever had a reservation assigned which this persists even
860  * after the page is instantiated.  A private mapping has a region map
861  * associated with the original mmap which is attached to all VMAs which
862  * reference it, this region map represents those offsets which have consumed
863  * reservation ie. where pages have been instantiated.
864  */
865 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
866 {
867         return (unsigned long)vma->vm_private_data;
868 }
869
870 static void set_vma_private_data(struct vm_area_struct *vma,
871                                                         unsigned long value)
872 {
873         vma->vm_private_data = (void *)value;
874 }
875
876 static void
877 resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map *resv_map,
878                                           struct hugetlb_cgroup *h_cg,
879                                           struct hstate *h)
880 {
881 #ifdef CONFIG_CGROUP_HUGETLB
882         if (!h_cg || !h) {
883                 resv_map->reservation_counter = NULL;
884                 resv_map->pages_per_hpage = 0;
885                 resv_map->css = NULL;
886         } else {
887                 resv_map->reservation_counter =
888                         &h_cg->rsvd_hugepage[hstate_index(h)];
889                 resv_map->pages_per_hpage = pages_per_huge_page(h);
890                 resv_map->css = &h_cg->css;
891         }
892 #endif
893 }
894
895 struct resv_map *resv_map_alloc(void)
896 {
897         struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
898         struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
899
900         if (!resv_map || !rg) {
901                 kfree(resv_map);
902                 kfree(rg);
903                 return NULL;
904         }
905
906         kref_init(&resv_map->refs);
907         spin_lock_init(&resv_map->lock);
908         INIT_LIST_HEAD(&resv_map->regions);
909
910         resv_map->adds_in_progress = 0;
911         /*
912          * Initialize these to 0. On shared mappings, 0's here indicate these
913          * fields don't do cgroup accounting. On private mappings, these will be
914          * re-initialized to the proper values, to indicate that hugetlb cgroup
915          * reservations are to be un-charged from here.
916          */
917         resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, NULL, NULL);
918
919         INIT_LIST_HEAD(&resv_map->region_cache);
920         list_add(&rg->link, &resv_map->region_cache);
921         resv_map->region_cache_count = 1;
922
923         return resv_map;
924 }
925
926 void resv_map_release(struct kref *ref)
927 {
928         struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
929         struct list_head *head = &resv_map->region_cache;
930         struct file_region *rg, *trg;
931
932         /* Clear out any active regions before we release the map. */
933         region_del(resv_map, 0, LONG_MAX);
934
935         /* ... and any entries left in the cache */
936         list_for_each_entry_safe(rg, trg, head, link) {
937                 list_del(&rg->link);
938                 kfree(rg);
939         }
940
941         VM_BUG_ON(resv_map->adds_in_progress);
942
943         kfree(resv_map);
944 }
945
946 static inline struct resv_map *inode_resv_map(struct inode *inode)
947 {
948         /*
949          * At inode evict time, i_mapping may not point to the original
950          * address space within the inode.  This original address space
951          * contains the pointer to the resv_map.  So, always use the
952          * address space embedded within the inode.
953          * The VERY common case is inode->mapping == &inode->i_data but,
954          * this may not be true for device special inodes.
955          */
956         return (struct resv_map *)(&inode->i_data)->private_data;
957 }
958
959 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
960 {
961         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
962         if (vma->vm_flags & VM_MAYSHARE) {
963                 struct address_space *mapping = vma->vm_file->f_mapping;
964                 struct inode *inode = mapping->host;
965
966                 return inode_resv_map(inode);
967
968         } else {
969                 return (struct resv_map *)(get_vma_private_data(vma) &
970                                                         ~HPAGE_RESV_MASK);
971         }
972 }
973
974 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
975 {
976         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
977         VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
978
979         set_vma_private_data(vma, (get_vma_private_data(vma) &
980                                 HPAGE_RESV_MASK) | (unsigned long)map);
981 }
982
983 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
984 {
985         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
986         VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
987
988         set_vma_private_data(vma, get_vma_private_data(vma) | flags);
989 }
990
991 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
992 {
993         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
994
995         return (get_vma_private_data(vma) & flag) != 0;
996 }
997
998 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
999 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
1000 {
1001         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1002         if (!(vma->vm_flags & VM_MAYSHARE))
1003                 vma->vm_private_data = (void *)0;
1004 }
1005
1006 /* Returns true if the VMA has associated reserve pages */
1007 static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
1008 {
1009         if (vma->vm_flags & VM_NORESERVE) {
1010                 /*
1011                  * This address is already reserved by other process(chg == 0),
1012                  * so, we should decrement reserved count. Without decrementing,
1013                  * reserve count remains after releasing inode, because this
1014                  * allocated page will go into page cache and is regarded as
1015                  * coming from reserved pool in releasing step.  Currently, we
1016                  * don't have any other solution to deal with this situation
1017                  * properly, so add work-around here.
1018                  */
1019                 if (vma->vm_flags & VM_MAYSHARE && chg == 0)
1020                         return true;
1021                 else
1022                         return false;
1023         }
1024
1025         /* Shared mappings always use reserves */
1026         if (vma->vm_flags & VM_MAYSHARE) {
1027                 /*
1028                  * We know VM_NORESERVE is not set.  Therefore, there SHOULD
1029                  * be a region map for all pages.  The only situation where
1030                  * there is no region map is if a hole was punched via
1031                  * fallocate.  In this case, there really are no reserves to
1032                  * use.  This situation is indicated if chg != 0.
1033                  */
1034                 if (chg)
1035                         return false;
1036                 else
1037                         return true;
1038         }
1039
1040         /*
1041          * Only the process that called mmap() has reserves for
1042          * private mappings.
1043          */
1044         if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1045                 /*
1046                  * Like the shared case above, a hole punch or truncate
1047                  * could have been performed on the private mapping.
1048                  * Examine the value of chg to determine if reserves
1049                  * actually exist or were previously consumed.
1050                  * Very Subtle - The value of chg comes from a previous
1051                  * call to vma_needs_reserves().  The reserve map for
1052                  * private mappings has different (opposite) semantics
1053                  * than that of shared mappings.  vma_needs_reserves()
1054                  * has already taken this difference in semantics into
1055                  * account.  Therefore, the meaning of chg is the same
1056                  * as in the shared case above.  Code could easily be
1057                  * combined, but keeping it separate draws attention to
1058                  * subtle differences.
1059                  */
1060                 if (chg)
1061                         return false;
1062                 else
1063                         return true;
1064         }
1065
1066         return false;
1067 }
1068
1069 static void enqueue_huge_page(struct hstate *h, struct page *page)
1070 {
1071         int nid = page_to_nid(page);
1072
1073         lockdep_assert_held(&hugetlb_lock);
1074         list_move(&page->lru, &h->hugepage_freelists[nid]);
1075         h->free_huge_pages++;
1076         h->free_huge_pages_node[nid]++;
1077         SetHPageFreed(page);
1078 }
1079
1080 static struct page *dequeue_huge_page_node_exact(struct hstate *h, int nid)
1081 {
1082         struct page *page;
1083         bool nocma = !!(current->flags & PF_MEMALLOC_NOCMA);
1084
1085         lockdep_assert_held(&hugetlb_lock);
1086         list_for_each_entry(page, &h->hugepage_freelists[nid], lru) {
1087                 if (nocma && is_migrate_cma_page(page))
1088                         continue;
1089
1090                 if (PageHWPoison(page))
1091                         continue;
1092
1093                 list_move(&page->lru, &h->hugepage_activelist);
1094                 set_page_refcounted(page);
1095                 ClearHPageFreed(page);
1096                 h->free_huge_pages--;
1097                 h->free_huge_pages_node[nid]--;
1098                 return page;
1099         }
1100
1101         return NULL;
1102 }
1103
1104 static struct page *dequeue_huge_page_nodemask(struct hstate *h, gfp_t gfp_mask, int nid,
1105                 nodemask_t *nmask)
1106 {
1107         unsigned int cpuset_mems_cookie;
1108         struct zonelist *zonelist;
1109         struct zone *zone;
1110         struct zoneref *z;
1111         int node = NUMA_NO_NODE;
1112
1113         zonelist = node_zonelist(nid, gfp_mask);
1114
1115 retry_cpuset:
1116         cpuset_mems_cookie = read_mems_allowed_begin();
1117         for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
1118                 struct page *page;
1119
1120                 if (!cpuset_zone_allowed(zone, gfp_mask))
1121                         continue;
1122                 /*
1123                  * no need to ask again on the same node. Pool is node rather than
1124                  * zone aware
1125                  */
1126                 if (zone_to_nid(zone) == node)
1127                         continue;
1128                 node = zone_to_nid(zone);
1129
1130                 page = dequeue_huge_page_node_exact(h, node);
1131                 if (page)
1132                         return page;
1133         }
1134         if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
1135                 goto retry_cpuset;
1136
1137         return NULL;
1138 }
1139
1140 static struct page *dequeue_huge_page_vma(struct hstate *h,
1141                                 struct vm_area_struct *vma,
1142                                 unsigned long address, int avoid_reserve,
1143                                 long chg)
1144 {
1145         struct page *page;
1146         struct mempolicy *mpol;
1147         gfp_t gfp_mask;
1148         nodemask_t *nodemask;
1149         int nid;
1150
1151         /*
1152          * A child process with MAP_PRIVATE mappings created by their parent
1153          * have no page reserves. This check ensures that reservations are
1154          * not "stolen". The child may still get SIGKILLed
1155          */
1156         if (!vma_has_reserves(vma, chg) &&
1157                         h->free_huge_pages - h->resv_huge_pages == 0)
1158                 goto err;
1159
1160         /* If reserves cannot be used, ensure enough pages are in the pool */
1161         if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
1162                 goto err;
1163
1164         gfp_mask = htlb_alloc_mask(h);
1165         nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
1166         page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
1167         if (page && !avoid_reserve && vma_has_reserves(vma, chg)) {
1168                 SetHPageRestoreReserve(page);
1169                 h->resv_huge_pages--;
1170         }
1171
1172         mpol_cond_put(mpol);
1173         return page;
1174
1175 err:
1176         return NULL;
1177 }
1178
1179 /*
1180  * common helper functions for hstate_next_node_to_{alloc|free}.
1181  * We may have allocated or freed a huge page based on a different
1182  * nodes_allowed previously, so h->next_node_to_{alloc|free} might
1183  * be outside of *nodes_allowed.  Ensure that we use an allowed
1184  * node for alloc or free.
1185  */
1186 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
1187 {
1188         nid = next_node_in(nid, *nodes_allowed);
1189         VM_BUG_ON(nid >= MAX_NUMNODES);
1190
1191         return nid;
1192 }
1193
1194 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
1195 {
1196         if (!node_isset(nid, *nodes_allowed))
1197                 nid = next_node_allowed(nid, nodes_allowed);
1198         return nid;
1199 }
1200
1201 /*
1202  * returns the previously saved node ["this node"] from which to
1203  * allocate a persistent huge page for the pool and advance the
1204  * next node from which to allocate, handling wrap at end of node
1205  * mask.
1206  */
1207 static int hstate_next_node_to_alloc(struct hstate *h,
1208                                         nodemask_t *nodes_allowed)
1209 {
1210         int nid;
1211
1212         VM_BUG_ON(!nodes_allowed);
1213
1214         nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
1215         h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
1216
1217         return nid;
1218 }
1219
1220 /*
1221  * helper for remove_pool_huge_page() - return the previously saved
1222  * node ["this node"] from which to free a huge page.  Advance the
1223  * next node id whether or not we find a free huge page to free so
1224  * that the next attempt to free addresses the next node.
1225  */
1226 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1227 {
1228         int nid;
1229
1230         VM_BUG_ON(!nodes_allowed);
1231
1232         nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1233         h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1234
1235         return nid;
1236 }
1237
1238 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask)           \
1239         for (nr_nodes = nodes_weight(*mask);                            \
1240                 nr_nodes > 0 &&                                         \
1241                 ((node = hstate_next_node_to_alloc(hs, mask)) || 1);    \
1242                 nr_nodes--)
1243
1244 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask)            \
1245         for (nr_nodes = nodes_weight(*mask);                            \
1246                 nr_nodes > 0 &&                                         \
1247                 ((node = hstate_next_node_to_free(hs, mask)) || 1);     \
1248                 nr_nodes--)
1249
1250 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
1251 static void destroy_compound_gigantic_page(struct page *page,
1252                                         unsigned int order)
1253 {
1254         int i;
1255         int nr_pages = 1 << order;
1256         struct page *p = page + 1;
1257
1258         atomic_set(compound_mapcount_ptr(page), 0);
1259         atomic_set(compound_pincount_ptr(page), 0);
1260
1261         for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1262                 clear_compound_head(p);
1263                 set_page_refcounted(p);
1264         }
1265
1266         set_compound_order(page, 0);
1267         page[1].compound_nr = 0;
1268         __ClearPageHead(page);
1269 }
1270
1271 static void free_gigantic_page(struct page *page, unsigned int order)
1272 {
1273         /*
1274          * If the page isn't allocated using the cma allocator,
1275          * cma_release() returns false.
1276          */
1277 #ifdef CONFIG_CMA
1278         if (cma_release(hugetlb_cma[page_to_nid(page)], page, 1 << order))
1279                 return;
1280 #endif
1281
1282         free_contig_range(page_to_pfn(page), 1 << order);
1283 }
1284
1285 #ifdef CONFIG_CONTIG_ALLOC
1286 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1287                 int nid, nodemask_t *nodemask)
1288 {
1289         unsigned long nr_pages = pages_per_huge_page(h);
1290         if (nid == NUMA_NO_NODE)
1291                 nid = numa_mem_id();
1292
1293 #ifdef CONFIG_CMA
1294         {
1295                 struct page *page;
1296                 int node;
1297
1298                 if (hugetlb_cma[nid]) {
1299                         page = cma_alloc(hugetlb_cma[nid], nr_pages,
1300                                         huge_page_order(h), true);
1301                         if (page)
1302                                 return page;
1303                 }
1304
1305                 if (!(gfp_mask & __GFP_THISNODE)) {
1306                         for_each_node_mask(node, *nodemask) {
1307                                 if (node == nid || !hugetlb_cma[node])
1308                                         continue;
1309
1310                                 page = cma_alloc(hugetlb_cma[node], nr_pages,
1311                                                 huge_page_order(h), true);
1312                                 if (page)
1313                                         return page;
1314                         }
1315                 }
1316         }
1317 #endif
1318
1319         return alloc_contig_pages(nr_pages, gfp_mask, nid, nodemask);
1320 }
1321
1322 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid);
1323 static void prep_compound_gigantic_page(struct page *page, unsigned int order);
1324 #else /* !CONFIG_CONTIG_ALLOC */
1325 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1326                                         int nid, nodemask_t *nodemask)
1327 {
1328         return NULL;
1329 }
1330 #endif /* CONFIG_CONTIG_ALLOC */
1331
1332 #else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
1333 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1334                                         int nid, nodemask_t *nodemask)
1335 {
1336         return NULL;
1337 }
1338 static inline void free_gigantic_page(struct page *page, unsigned int order) { }
1339 static inline void destroy_compound_gigantic_page(struct page *page,
1340                                                 unsigned int order) { }
1341 #endif
1342
1343 /*
1344  * Remove hugetlb page from lists, and update dtor so that page appears
1345  * as just a compound page.  A reference is held on the page.
1346  *
1347  * Must be called with hugetlb lock held.
1348  */
1349 static void remove_hugetlb_page(struct hstate *h, struct page *page,
1350                                                         bool adjust_surplus)
1351 {
1352         int nid = page_to_nid(page);
1353
1354         VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
1355         VM_BUG_ON_PAGE(hugetlb_cgroup_from_page_rsvd(page), page);
1356
1357         lockdep_assert_held(&hugetlb_lock);
1358         if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1359                 return;
1360
1361         list_del(&page->lru);
1362
1363         if (HPageFreed(page)) {
1364                 h->free_huge_pages--;
1365                 h->free_huge_pages_node[nid]--;
1366         }
1367         if (adjust_surplus) {
1368                 h->surplus_huge_pages--;
1369                 h->surplus_huge_pages_node[nid]--;
1370         }
1371
1372         set_page_refcounted(page);
1373         set_compound_page_dtor(page, NULL_COMPOUND_DTOR);
1374
1375         h->nr_huge_pages--;
1376         h->nr_huge_pages_node[nid]--;
1377 }
1378
1379 static void update_and_free_page(struct hstate *h, struct page *page)
1380 {
1381         int i;
1382         struct page *subpage = page;
1383
1384         if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1385                 return;
1386
1387         for (i = 0; i < pages_per_huge_page(h);
1388              i++, subpage = mem_map_next(subpage, page, i)) {
1389                 subpage->flags &= ~(1 << PG_locked | 1 << PG_error |
1390                                 1 << PG_referenced | 1 << PG_dirty |
1391                                 1 << PG_active | 1 << PG_private |
1392                                 1 << PG_writeback);
1393         }
1394         if (hstate_is_gigantic(h)) {
1395                 destroy_compound_gigantic_page(page, huge_page_order(h));
1396                 free_gigantic_page(page, huge_page_order(h));
1397         } else {
1398                 __free_pages(page, huge_page_order(h));
1399         }
1400 }
1401
1402 static void update_and_free_pages_bulk(struct hstate *h, struct list_head *list)
1403 {
1404         struct page *page, *t_page;
1405
1406         list_for_each_entry_safe(page, t_page, list, lru) {
1407                 update_and_free_page(h, page);
1408                 cond_resched();
1409         }
1410 }
1411
1412 struct hstate *size_to_hstate(unsigned long size)
1413 {
1414         struct hstate *h;
1415
1416         for_each_hstate(h) {
1417                 if (huge_page_size(h) == size)
1418                         return h;
1419         }
1420         return NULL;
1421 }
1422
1423 void free_huge_page(struct page *page)
1424 {
1425         /*
1426          * Can't pass hstate in here because it is called from the
1427          * compound page destructor.
1428          */
1429         struct hstate *h = page_hstate(page);
1430         int nid = page_to_nid(page);
1431         struct hugepage_subpool *spool = hugetlb_page_subpool(page);
1432         bool restore_reserve;
1433         unsigned long flags;
1434
1435         VM_BUG_ON_PAGE(page_count(page), page);
1436         VM_BUG_ON_PAGE(page_mapcount(page), page);
1437
1438         hugetlb_set_page_subpool(page, NULL);
1439         page->mapping = NULL;
1440         restore_reserve = HPageRestoreReserve(page);
1441         ClearHPageRestoreReserve(page);
1442
1443         /*
1444          * If HPageRestoreReserve was set on page, page allocation consumed a
1445          * reservation.  If the page was associated with a subpool, there
1446          * would have been a page reserved in the subpool before allocation
1447          * via hugepage_subpool_get_pages().  Since we are 'restoring' the
1448          * reservation, do not call hugepage_subpool_put_pages() as this will
1449          * remove the reserved page from the subpool.
1450          */
1451         if (!restore_reserve) {
1452                 /*
1453                  * A return code of zero implies that the subpool will be
1454                  * under its minimum size if the reservation is not restored
1455                  * after page is free.  Therefore, force restore_reserve
1456                  * operation.
1457                  */
1458                 if (hugepage_subpool_put_pages(spool, 1) == 0)
1459                         restore_reserve = true;
1460         }
1461
1462         spin_lock_irqsave(&hugetlb_lock, flags);
1463         ClearHPageMigratable(page);
1464         hugetlb_cgroup_uncharge_page(hstate_index(h),
1465                                      pages_per_huge_page(h), page);
1466         hugetlb_cgroup_uncharge_page_rsvd(hstate_index(h),
1467                                           pages_per_huge_page(h), page);
1468         if (restore_reserve)
1469                 h->resv_huge_pages++;
1470
1471         if (HPageTemporary(page)) {
1472                 remove_hugetlb_page(h, page, false);
1473                 spin_unlock_irqrestore(&hugetlb_lock, flags);
1474                 update_and_free_page(h, page);
1475         } else if (h->surplus_huge_pages_node[nid]) {
1476                 /* remove the page from active list */
1477                 remove_hugetlb_page(h, page, true);
1478                 spin_unlock_irqrestore(&hugetlb_lock, flags);
1479                 update_and_free_page(h, page);
1480         } else {
1481                 arch_clear_hugepage_flags(page);
1482                 enqueue_huge_page(h, page);
1483                 spin_unlock_irqrestore(&hugetlb_lock, flags);
1484         }
1485 }
1486
1487 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
1488 {
1489         INIT_LIST_HEAD(&page->lru);
1490         set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1491         hugetlb_set_page_subpool(page, NULL);
1492         set_hugetlb_cgroup(page, NULL);
1493         set_hugetlb_cgroup_rsvd(page, NULL);
1494         spin_lock_irq(&hugetlb_lock);
1495         h->nr_huge_pages++;
1496         h->nr_huge_pages_node[nid]++;
1497         spin_unlock_irq(&hugetlb_lock);
1498 }
1499
1500 static void prep_compound_gigantic_page(struct page *page, unsigned int order)
1501 {
1502         int i;
1503         int nr_pages = 1 << order;
1504         struct page *p = page + 1;
1505
1506         /* we rely on prep_new_huge_page to set the destructor */
1507         set_compound_order(page, order);
1508         __ClearPageReserved(page);
1509         __SetPageHead(page);
1510         for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1511                 /*
1512                  * For gigantic hugepages allocated through bootmem at
1513                  * boot, it's safer to be consistent with the not-gigantic
1514                  * hugepages and clear the PG_reserved bit from all tail pages
1515                  * too.  Otherwise drivers using get_user_pages() to access tail
1516                  * pages may get the reference counting wrong if they see
1517                  * PG_reserved set on a tail page (despite the head page not
1518                  * having PG_reserved set).  Enforcing this consistency between
1519                  * head and tail pages allows drivers to optimize away a check
1520                  * on the head page when they need know if put_page() is needed
1521                  * after get_user_pages().
1522                  */
1523                 __ClearPageReserved(p);
1524                 set_page_count(p, 0);
1525                 set_compound_head(p, page);
1526         }
1527         atomic_set(compound_mapcount_ptr(page), -1);
1528         atomic_set(compound_pincount_ptr(page), 0);
1529 }
1530
1531 /*
1532  * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1533  * transparent huge pages.  See the PageTransHuge() documentation for more
1534  * details.
1535  */
1536 int PageHuge(struct page *page)
1537 {
1538         if (!PageCompound(page))
1539                 return 0;
1540
1541         page = compound_head(page);
1542         return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
1543 }
1544 EXPORT_SYMBOL_GPL(PageHuge);
1545
1546 /*
1547  * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1548  * normal or transparent huge pages.
1549  */
1550 int PageHeadHuge(struct page *page_head)
1551 {
1552         if (!PageHead(page_head))
1553                 return 0;
1554
1555         return page_head[1].compound_dtor == HUGETLB_PAGE_DTOR;
1556 }
1557
1558 /*
1559  * Find and lock address space (mapping) in write mode.
1560  *
1561  * Upon entry, the page is locked which means that page_mapping() is
1562  * stable.  Due to locking order, we can only trylock_write.  If we can
1563  * not get the lock, simply return NULL to caller.
1564  */
1565 struct address_space *hugetlb_page_mapping_lock_write(struct page *hpage)
1566 {
1567         struct address_space *mapping = page_mapping(hpage);
1568
1569         if (!mapping)
1570                 return mapping;
1571
1572         if (i_mmap_trylock_write(mapping))
1573                 return mapping;
1574
1575         return NULL;
1576 }
1577
1578 pgoff_t __basepage_index(struct page *page)
1579 {
1580         struct page *page_head = compound_head(page);
1581         pgoff_t index = page_index(page_head);
1582         unsigned long compound_idx;
1583
1584         if (!PageHuge(page_head))
1585                 return page_index(page);
1586
1587         if (compound_order(page_head) >= MAX_ORDER)
1588                 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
1589         else
1590                 compound_idx = page - page_head;
1591
1592         return (index << compound_order(page_head)) + compound_idx;
1593 }
1594
1595 static struct page *alloc_buddy_huge_page(struct hstate *h,
1596                 gfp_t gfp_mask, int nid, nodemask_t *nmask,
1597                 nodemask_t *node_alloc_noretry)
1598 {
1599         int order = huge_page_order(h);
1600         struct page *page;
1601         bool alloc_try_hard = true;
1602
1603         /*
1604          * By default we always try hard to allocate the page with
1605          * __GFP_RETRY_MAYFAIL flag.  However, if we are allocating pages in
1606          * a loop (to adjust global huge page counts) and previous allocation
1607          * failed, do not continue to try hard on the same node.  Use the
1608          * node_alloc_noretry bitmap to manage this state information.
1609          */
1610         if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry))
1611                 alloc_try_hard = false;
1612         gfp_mask |= __GFP_COMP|__GFP_NOWARN;
1613         if (alloc_try_hard)
1614                 gfp_mask |= __GFP_RETRY_MAYFAIL;
1615         if (nid == NUMA_NO_NODE)
1616                 nid = numa_mem_id();
1617         page = __alloc_pages(gfp_mask, order, nid, nmask);
1618         if (page)
1619                 __count_vm_event(HTLB_BUDDY_PGALLOC);
1620         else
1621                 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1622
1623         /*
1624          * If we did not specify __GFP_RETRY_MAYFAIL, but still got a page this
1625          * indicates an overall state change.  Clear bit so that we resume
1626          * normal 'try hard' allocations.
1627          */
1628         if (node_alloc_noretry && page && !alloc_try_hard)
1629                 node_clear(nid, *node_alloc_noretry);
1630
1631         /*
1632          * If we tried hard to get a page but failed, set bit so that
1633          * subsequent attempts will not try as hard until there is an
1634          * overall state change.
1635          */
1636         if (node_alloc_noretry && !page && alloc_try_hard)
1637                 node_set(nid, *node_alloc_noretry);
1638
1639         return page;
1640 }
1641
1642 /*
1643  * Common helper to allocate a fresh hugetlb page. All specific allocators
1644  * should use this function to get new hugetlb pages
1645  */
1646 static struct page *alloc_fresh_huge_page(struct hstate *h,
1647                 gfp_t gfp_mask, int nid, nodemask_t *nmask,
1648                 nodemask_t *node_alloc_noretry)
1649 {
1650         struct page *page;
1651
1652         if (hstate_is_gigantic(h))
1653                 page = alloc_gigantic_page(h, gfp_mask, nid, nmask);
1654         else
1655                 page = alloc_buddy_huge_page(h, gfp_mask,
1656                                 nid, nmask, node_alloc_noretry);
1657         if (!page)
1658                 return NULL;
1659
1660         if (hstate_is_gigantic(h))
1661                 prep_compound_gigantic_page(page, huge_page_order(h));
1662         prep_new_huge_page(h, page, page_to_nid(page));
1663
1664         return page;
1665 }
1666
1667 /*
1668  * Allocates a fresh page to the hugetlb allocator pool in the node interleaved
1669  * manner.
1670  */
1671 static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1672                                 nodemask_t *node_alloc_noretry)
1673 {
1674         struct page *page;
1675         int nr_nodes, node;
1676         gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
1677
1678         for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1679                 page = alloc_fresh_huge_page(h, gfp_mask, node, nodes_allowed,
1680                                                 node_alloc_noretry);
1681                 if (page)
1682                         break;
1683         }
1684
1685         if (!page)
1686                 return 0;
1687
1688         put_page(page); /* free it into the hugepage allocator */
1689
1690         return 1;
1691 }
1692
1693 /*
1694  * Remove huge page from pool from next node to free.  Attempt to keep
1695  * persistent huge pages more or less balanced over allowed nodes.
1696  * This routine only 'removes' the hugetlb page.  The caller must make
1697  * an additional call to free the page to low level allocators.
1698  * Called with hugetlb_lock locked.
1699  */
1700 static struct page *remove_pool_huge_page(struct hstate *h,
1701                                                 nodemask_t *nodes_allowed,
1702                                                  bool acct_surplus)
1703 {
1704         int nr_nodes, node;
1705         struct page *page = NULL;
1706
1707         lockdep_assert_held(&hugetlb_lock);
1708         for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1709                 /*
1710                  * If we're returning unused surplus pages, only examine
1711                  * nodes with surplus pages.
1712                  */
1713                 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
1714                     !list_empty(&h->hugepage_freelists[node])) {
1715                         page = list_entry(h->hugepage_freelists[node].next,
1716                                           struct page, lru);
1717                         remove_hugetlb_page(h, page, acct_surplus);
1718                         break;
1719                 }
1720         }
1721
1722         return page;
1723 }
1724
1725 /*
1726  * Dissolve a given free hugepage into free buddy pages. This function does
1727  * nothing for in-use hugepages and non-hugepages.
1728  * This function returns values like below:
1729  *
1730  *  -EBUSY: failed to dissolved free hugepages or the hugepage is in-use
1731  *          (allocated or reserved.)
1732  *       0: successfully dissolved free hugepages or the page is not a
1733  *          hugepage (considered as already dissolved)
1734  */
1735 int dissolve_free_huge_page(struct page *page)
1736 {
1737         int rc = -EBUSY;
1738
1739 retry:
1740         /* Not to disrupt normal path by vainly holding hugetlb_lock */
1741         if (!PageHuge(page))
1742                 return 0;
1743
1744         spin_lock_irq(&hugetlb_lock);
1745         if (!PageHuge(page)) {
1746                 rc = 0;
1747                 goto out;
1748         }
1749
1750         if (!page_count(page)) {
1751                 struct page *head = compound_head(page);
1752                 struct hstate *h = page_hstate(head);
1753                 if (h->free_huge_pages - h->resv_huge_pages == 0)
1754                         goto out;
1755
1756                 /*
1757                  * We should make sure that the page is already on the free list
1758                  * when it is dissolved.
1759                  */
1760                 if (unlikely(!HPageFreed(head))) {
1761                         spin_unlock_irq(&hugetlb_lock);
1762                         cond_resched();
1763
1764                         /*
1765                          * Theoretically, we should return -EBUSY when we
1766                          * encounter this race. In fact, we have a chance
1767                          * to successfully dissolve the page if we do a
1768                          * retry. Because the race window is quite small.
1769                          * If we seize this opportunity, it is an optimization
1770                          * for increasing the success rate of dissolving page.
1771                          */
1772                         goto retry;
1773                 }
1774
1775                 /*
1776                  * Move PageHWPoison flag from head page to the raw error page,
1777                  * which makes any subpages rather than the error page reusable.
1778                  */
1779                 if (PageHWPoison(head) && page != head) {
1780                         SetPageHWPoison(page);
1781                         ClearPageHWPoison(head);
1782                 }
1783                 remove_hugetlb_page(h, page, false);
1784                 h->max_huge_pages--;
1785                 spin_unlock_irq(&hugetlb_lock);
1786                 update_and_free_page(h, head);
1787                 return 0;
1788         }
1789 out:
1790         spin_unlock_irq(&hugetlb_lock);
1791         return rc;
1792 }
1793
1794 /*
1795  * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
1796  * make specified memory blocks removable from the system.
1797  * Note that this will dissolve a free gigantic hugepage completely, if any
1798  * part of it lies within the given range.
1799  * Also note that if dissolve_free_huge_page() returns with an error, all
1800  * free hugepages that were dissolved before that error are lost.
1801  */
1802 int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
1803 {
1804         unsigned long pfn;
1805         struct page *page;
1806         int rc = 0;
1807
1808         if (!hugepages_supported())
1809                 return rc;
1810
1811         for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order) {
1812                 page = pfn_to_page(pfn);
1813                 rc = dissolve_free_huge_page(page);
1814                 if (rc)
1815                         break;
1816         }
1817
1818         return rc;
1819 }
1820
1821 /*
1822  * Allocates a fresh surplus page from the page allocator.
1823  */
1824 static struct page *alloc_surplus_huge_page(struct hstate *h, gfp_t gfp_mask,
1825                 int nid, nodemask_t *nmask)
1826 {
1827         struct page *page = NULL;
1828
1829         if (hstate_is_gigantic(h))
1830                 return NULL;
1831
1832         spin_lock_irq(&hugetlb_lock);
1833         if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages)
1834                 goto out_unlock;
1835         spin_unlock_irq(&hugetlb_lock);
1836
1837         page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
1838         if (!page)
1839                 return NULL;
1840
1841         spin_lock_irq(&hugetlb_lock);
1842         /*
1843          * We could have raced with the pool size change.
1844          * Double check that and simply deallocate the new page
1845          * if we would end up overcommiting the surpluses. Abuse
1846          * temporary page to workaround the nasty free_huge_page
1847          * codeflow
1848          */
1849         if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
1850                 SetHPageTemporary(page);
1851                 spin_unlock_irq(&hugetlb_lock);
1852                 put_page(page);
1853                 return NULL;
1854         } else {
1855                 h->surplus_huge_pages++;
1856                 h->surplus_huge_pages_node[page_to_nid(page)]++;
1857         }
1858
1859 out_unlock:
1860         spin_unlock_irq(&hugetlb_lock);
1861
1862         return page;
1863 }
1864
1865 static struct page *alloc_migrate_huge_page(struct hstate *h, gfp_t gfp_mask,
1866                                      int nid, nodemask_t *nmask)
1867 {
1868         struct page *page;
1869
1870         if (hstate_is_gigantic(h))
1871                 return NULL;
1872
1873         page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
1874         if (!page)
1875                 return NULL;
1876
1877         /*
1878          * We do not account these pages as surplus because they are only
1879          * temporary and will be released properly on the last reference
1880          */
1881         SetHPageTemporary(page);
1882
1883         return page;
1884 }
1885
1886 /*
1887  * Use the VMA's mpolicy to allocate a huge page from the buddy.
1888  */
1889 static
1890 struct page *alloc_buddy_huge_page_with_mpol(struct hstate *h,
1891                 struct vm_area_struct *vma, unsigned long addr)
1892 {
1893         struct page *page;
1894         struct mempolicy *mpol;
1895         gfp_t gfp_mask = htlb_alloc_mask(h);
1896         int nid;
1897         nodemask_t *nodemask;
1898
1899         nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
1900         page = alloc_surplus_huge_page(h, gfp_mask, nid, nodemask);
1901         mpol_cond_put(mpol);
1902
1903         return page;
1904 }
1905
1906 /* page migration callback function */
1907 struct page *alloc_huge_page_nodemask(struct hstate *h, int preferred_nid,
1908                 nodemask_t *nmask, gfp_t gfp_mask)
1909 {
1910         spin_lock_irq(&hugetlb_lock);
1911         if (h->free_huge_pages - h->resv_huge_pages > 0) {
1912                 struct page *page;
1913
1914                 page = dequeue_huge_page_nodemask(h, gfp_mask, preferred_nid, nmask);
1915                 if (page) {
1916                         spin_unlock_irq(&hugetlb_lock);
1917                         return page;
1918                 }
1919         }
1920         spin_unlock_irq(&hugetlb_lock);
1921
1922         return alloc_migrate_huge_page(h, gfp_mask, preferred_nid, nmask);
1923 }
1924
1925 /* mempolicy aware migration callback */
1926 struct page *alloc_huge_page_vma(struct hstate *h, struct vm_area_struct *vma,
1927                 unsigned long address)
1928 {
1929         struct mempolicy *mpol;
1930         nodemask_t *nodemask;
1931         struct page *page;
1932         gfp_t gfp_mask;
1933         int node;
1934
1935         gfp_mask = htlb_alloc_mask(h);
1936         node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
1937         page = alloc_huge_page_nodemask(h, node, nodemask, gfp_mask);
1938         mpol_cond_put(mpol);
1939
1940         return page;
1941 }
1942
1943 /*
1944  * Increase the hugetlb pool such that it can accommodate a reservation
1945  * of size 'delta'.
1946  */
1947 static int gather_surplus_pages(struct hstate *h, long delta)
1948         __must_hold(&hugetlb_lock)
1949 {
1950         struct list_head surplus_list;
1951         struct page *page, *tmp;
1952         int ret;
1953         long i;
1954         long needed, allocated;
1955         bool alloc_ok = true;
1956
1957         lockdep_assert_held(&hugetlb_lock);
1958         needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
1959         if (needed <= 0) {
1960                 h->resv_huge_pages += delta;
1961                 return 0;
1962         }
1963
1964         allocated = 0;
1965         INIT_LIST_HEAD(&surplus_list);
1966
1967         ret = -ENOMEM;
1968 retry:
1969         spin_unlock_irq(&hugetlb_lock);
1970         for (i = 0; i < needed; i++) {
1971                 page = alloc_surplus_huge_page(h, htlb_alloc_mask(h),
1972                                 NUMA_NO_NODE, NULL);
1973                 if (!page) {
1974                         alloc_ok = false;
1975                         break;
1976                 }
1977                 list_add(&page->lru, &surplus_list);
1978                 cond_resched();
1979         }
1980         allocated += i;
1981
1982         /*
1983          * After retaking hugetlb_lock, we need to recalculate 'needed'
1984          * because either resv_huge_pages or free_huge_pages may have changed.
1985          */
1986         spin_lock_irq(&hugetlb_lock);
1987         needed = (h->resv_huge_pages + delta) -
1988                         (h->free_huge_pages + allocated);
1989         if (needed > 0) {
1990                 if (alloc_ok)
1991                         goto retry;
1992                 /*
1993                  * We were not able to allocate enough pages to
1994                  * satisfy the entire reservation so we free what
1995                  * we've allocated so far.
1996                  */
1997                 goto free;
1998         }
1999         /*
2000          * The surplus_list now contains _at_least_ the number of extra pages
2001          * needed to accommodate the reservation.  Add the appropriate number
2002          * of pages to the hugetlb pool and free the extras back to the buddy
2003          * allocator.  Commit the entire reservation here to prevent another
2004          * process from stealing the pages as they are added to the pool but
2005          * before they are reserved.
2006          */
2007         needed += allocated;
2008         h->resv_huge_pages += delta;
2009         ret = 0;
2010
2011         /* Free the needed pages to the hugetlb pool */
2012         list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
2013                 int zeroed;
2014
2015                 if ((--needed) < 0)
2016                         break;
2017                 /*
2018                  * This page is now managed by the hugetlb allocator and has
2019                  * no users -- drop the buddy allocator's reference.
2020                  */
2021                 zeroed = put_page_testzero(page);
2022                 VM_BUG_ON_PAGE(!zeroed, page);
2023                 enqueue_huge_page(h, page);
2024         }
2025 free:
2026         spin_unlock_irq(&hugetlb_lock);
2027
2028         /* Free unnecessary surplus pages to the buddy allocator */
2029         list_for_each_entry_safe(page, tmp, &surplus_list, lru)
2030                 put_page(page);
2031         spin_lock_irq(&hugetlb_lock);
2032
2033         return ret;
2034 }
2035
2036 /*
2037  * This routine has two main purposes:
2038  * 1) Decrement the reservation count (resv_huge_pages) by the value passed
2039  *    in unused_resv_pages.  This corresponds to the prior adjustments made
2040  *    to the associated reservation map.
2041  * 2) Free any unused surplus pages that may have been allocated to satisfy
2042  *    the reservation.  As many as unused_resv_pages may be freed.
2043  */
2044 static void return_unused_surplus_pages(struct hstate *h,
2045                                         unsigned long unused_resv_pages)
2046 {
2047         unsigned long nr_pages;
2048         struct page *page;
2049         LIST_HEAD(page_list);
2050
2051         lockdep_assert_held(&hugetlb_lock);
2052         /* Uncommit the reservation */
2053         h->resv_huge_pages -= unused_resv_pages;
2054
2055         /* Cannot return gigantic pages currently */
2056         if (hstate_is_gigantic(h))
2057                 goto out;
2058
2059         /*
2060          * Part (or even all) of the reservation could have been backed
2061          * by pre-allocated pages. Only free surplus pages.
2062          */
2063         nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
2064
2065         /*
2066          * We want to release as many surplus pages as possible, spread
2067          * evenly across all nodes with memory. Iterate across these nodes
2068          * until we can no longer free unreserved surplus pages. This occurs
2069          * when the nodes with surplus pages have no free pages.
2070          * remove_pool_huge_page() will balance the freed pages across the
2071          * on-line nodes with memory and will handle the hstate accounting.
2072          */
2073         while (nr_pages--) {
2074                 page = remove_pool_huge_page(h, &node_states[N_MEMORY], 1);
2075                 if (!page)
2076                         goto out;
2077
2078                 list_add(&page->lru, &page_list);
2079         }
2080
2081 out:
2082         spin_unlock_irq(&hugetlb_lock);
2083         update_and_free_pages_bulk(h, &page_list);
2084         spin_lock_irq(&hugetlb_lock);
2085 }
2086
2087
2088 /*
2089  * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
2090  * are used by the huge page allocation routines to manage reservations.
2091  *
2092  * vma_needs_reservation is called to determine if the huge page at addr
2093  * within the vma has an associated reservation.  If a reservation is
2094  * needed, the value 1 is returned.  The caller is then responsible for
2095  * managing the global reservation and subpool usage counts.  After
2096  * the huge page has been allocated, vma_commit_reservation is called
2097  * to add the page to the reservation map.  If the page allocation fails,
2098  * the reservation must be ended instead of committed.  vma_end_reservation
2099  * is called in such cases.
2100  *
2101  * In the normal case, vma_commit_reservation returns the same value
2102  * as the preceding vma_needs_reservation call.  The only time this
2103  * is not the case is if a reserve map was changed between calls.  It
2104  * is the responsibility of the caller to notice the difference and
2105  * take appropriate action.
2106  *
2107  * vma_add_reservation is used in error paths where a reservation must
2108  * be restored when a newly allocated huge page must be freed.  It is
2109  * to be called after calling vma_needs_reservation to determine if a
2110  * reservation exists.
2111  */
2112 enum vma_resv_mode {
2113         VMA_NEEDS_RESV,
2114         VMA_COMMIT_RESV,
2115         VMA_END_RESV,
2116         VMA_ADD_RESV,
2117 };
2118 static long __vma_reservation_common(struct hstate *h,
2119                                 struct vm_area_struct *vma, unsigned long addr,
2120                                 enum vma_resv_mode mode)
2121 {
2122         struct resv_map *resv;
2123         pgoff_t idx;
2124         long ret;
2125         long dummy_out_regions_needed;
2126
2127         resv = vma_resv_map(vma);
2128         if (!resv)
2129                 return 1;
2130
2131         idx = vma_hugecache_offset(h, vma, addr);
2132         switch (mode) {
2133         case VMA_NEEDS_RESV:
2134                 ret = region_chg(resv, idx, idx + 1, &dummy_out_regions_needed);
2135                 /* We assume that vma_reservation_* routines always operate on
2136                  * 1 page, and that adding to resv map a 1 page entry can only
2137                  * ever require 1 region.
2138                  */
2139                 VM_BUG_ON(dummy_out_regions_needed != 1);
2140                 break;
2141         case VMA_COMMIT_RESV:
2142                 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2143                 /* region_add calls of range 1 should never fail. */
2144                 VM_BUG_ON(ret < 0);
2145                 break;
2146         case VMA_END_RESV:
2147                 region_abort(resv, idx, idx + 1, 1);
2148                 ret = 0;
2149                 break;
2150         case VMA_ADD_RESV:
2151                 if (vma->vm_flags & VM_MAYSHARE) {
2152                         ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2153                         /* region_add calls of range 1 should never fail. */
2154                         VM_BUG_ON(ret < 0);
2155                 } else {
2156                         region_abort(resv, idx, idx + 1, 1);
2157                         ret = region_del(resv, idx, idx + 1);
2158                 }
2159                 break;
2160         default:
2161                 BUG();
2162         }
2163
2164         if (vma->vm_flags & VM_MAYSHARE)
2165                 return ret;
2166         /*
2167          * We know private mapping must have HPAGE_RESV_OWNER set.
2168          *
2169          * In most cases, reserves always exist for private mappings.
2170          * However, a file associated with mapping could have been
2171          * hole punched or truncated after reserves were consumed.
2172          * As subsequent fault on such a range will not use reserves.
2173          * Subtle - The reserve map for private mappings has the
2174          * opposite meaning than that of shared mappings.  If NO
2175          * entry is in the reserve map, it means a reservation exists.
2176          * If an entry exists in the reserve map, it means the
2177          * reservation has already been consumed.  As a result, the
2178          * return value of this routine is the opposite of the
2179          * value returned from reserve map manipulation routines above.
2180          */
2181         if (ret > 0)
2182                 return 0;
2183         if (ret == 0)
2184                 return 1;
2185         return ret;
2186 }
2187
2188 static long vma_needs_reservation(struct hstate *h,
2189                         struct vm_area_struct *vma, unsigned long addr)
2190 {
2191         return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
2192 }
2193
2194 static long vma_commit_reservation(struct hstate *h,
2195                         struct vm_area_struct *vma, unsigned long addr)
2196 {
2197         return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
2198 }
2199
2200 static void vma_end_reservation(struct hstate *h,
2201                         struct vm_area_struct *vma, unsigned long addr)
2202 {
2203         (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
2204 }
2205
2206 static long vma_add_reservation(struct hstate *h,
2207                         struct vm_area_struct *vma, unsigned long addr)
2208 {
2209         return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
2210 }
2211
2212 /*
2213  * This routine is called to restore a reservation on error paths.  In the
2214  * specific error paths, a huge page was allocated (via alloc_huge_page)
2215  * and is about to be freed.  If a reservation for the page existed,
2216  * alloc_huge_page would have consumed the reservation and set
2217  * HPageRestoreReserve in the newly allocated page.  When the page is freed
2218  * via free_huge_page, the global reservation count will be incremented if
2219  * HPageRestoreReserve is set.  However, free_huge_page can not adjust the
2220  * reserve map.  Adjust the reserve map here to be consistent with global
2221  * reserve count adjustments to be made by free_huge_page.
2222  */
2223 static void restore_reserve_on_error(struct hstate *h,
2224                         struct vm_area_struct *vma, unsigned long address,
2225                         struct page *page)
2226 {
2227         if (unlikely(HPageRestoreReserve(page))) {
2228                 long rc = vma_needs_reservation(h, vma, address);
2229
2230                 if (unlikely(rc < 0)) {
2231                         /*
2232                          * Rare out of memory condition in reserve map
2233                          * manipulation.  Clear HPageRestoreReserve so that
2234                          * global reserve count will not be incremented
2235                          * by free_huge_page.  This will make it appear
2236                          * as though the reservation for this page was
2237                          * consumed.  This may prevent the task from
2238                          * faulting in the page at a later time.  This
2239                          * is better than inconsistent global huge page
2240                          * accounting of reserve counts.
2241                          */
2242                         ClearHPageRestoreReserve(page);
2243                 } else if (rc) {
2244                         rc = vma_add_reservation(h, vma, address);
2245                         if (unlikely(rc < 0))
2246                                 /*
2247                                  * See above comment about rare out of
2248                                  * memory condition.
2249                                  */
2250                                 ClearHPageRestoreReserve(page);
2251                 } else
2252                         vma_end_reservation(h, vma, address);
2253         }
2254 }
2255
2256 struct page *alloc_huge_page(struct vm_area_struct *vma,
2257                                     unsigned long addr, int avoid_reserve)
2258 {
2259         struct hugepage_subpool *spool = subpool_vma(vma);
2260         struct hstate *h = hstate_vma(vma);
2261         struct page *page;
2262         long map_chg, map_commit;
2263         long gbl_chg;
2264         int ret, idx;
2265         struct hugetlb_cgroup *h_cg;
2266         bool deferred_reserve;
2267
2268         idx = hstate_index(h);
2269         /*
2270          * Examine the region/reserve map to determine if the process
2271          * has a reservation for the page to be allocated.  A return
2272          * code of zero indicates a reservation exists (no change).
2273          */
2274         map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
2275         if (map_chg < 0)
2276                 return ERR_PTR(-ENOMEM);
2277
2278         /*
2279          * Processes that did not create the mapping will have no
2280          * reserves as indicated by the region/reserve map. Check
2281          * that the allocation will not exceed the subpool limit.
2282          * Allocations for MAP_NORESERVE mappings also need to be
2283          * checked against any subpool limit.
2284          */
2285         if (map_chg || avoid_reserve) {
2286                 gbl_chg = hugepage_subpool_get_pages(spool, 1);
2287                 if (gbl_chg < 0) {
2288                         vma_end_reservation(h, vma, addr);
2289                         return ERR_PTR(-ENOSPC);
2290                 }
2291
2292                 /*
2293                  * Even though there was no reservation in the region/reserve
2294                  * map, there could be reservations associated with the
2295                  * subpool that can be used.  This would be indicated if the
2296                  * return value of hugepage_subpool_get_pages() is zero.
2297                  * However, if avoid_reserve is specified we still avoid even
2298                  * the subpool reservations.
2299                  */
2300                 if (avoid_reserve)
2301                         gbl_chg = 1;
2302         }
2303
2304         /* If this allocation is not consuming a reservation, charge it now.
2305          */
2306         deferred_reserve = map_chg || avoid_reserve;
2307         if (deferred_reserve) {
2308                 ret = hugetlb_cgroup_charge_cgroup_rsvd(
2309                         idx, pages_per_huge_page(h), &h_cg);
2310                 if (ret)
2311                         goto out_subpool_put;
2312         }
2313
2314         ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
2315         if (ret)
2316                 goto out_uncharge_cgroup_reservation;
2317
2318         spin_lock_irq(&hugetlb_lock);
2319         /*
2320          * glb_chg is passed to indicate whether or not a page must be taken
2321          * from the global free pool (global change).  gbl_chg == 0 indicates
2322          * a reservation exists for the allocation.
2323          */
2324         page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
2325         if (!page) {
2326                 spin_unlock_irq(&hugetlb_lock);
2327                 page = alloc_buddy_huge_page_with_mpol(h, vma, addr);
2328                 if (!page)
2329                         goto out_uncharge_cgroup;
2330                 if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
2331                         SetHPageRestoreReserve(page);
2332                         h->resv_huge_pages--;
2333                 }
2334                 spin_lock_irq(&hugetlb_lock);
2335                 list_add(&page->lru, &h->hugepage_activelist);
2336                 /* Fall through */
2337         }
2338         hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
2339         /* If allocation is not consuming a reservation, also store the
2340          * hugetlb_cgroup pointer on the page.
2341          */
2342         if (deferred_reserve) {
2343                 hugetlb_cgroup_commit_charge_rsvd(idx, pages_per_huge_page(h),
2344                                                   h_cg, page);
2345         }
2346
2347         spin_unlock_irq(&hugetlb_lock);
2348
2349         hugetlb_set_page_subpool(page, spool);
2350
2351         map_commit = vma_commit_reservation(h, vma, addr);
2352         if (unlikely(map_chg > map_commit)) {
2353                 /*
2354                  * The page was added to the reservation map between
2355                  * vma_needs_reservation and vma_commit_reservation.
2356                  * This indicates a race with hugetlb_reserve_pages.
2357                  * Adjust for the subpool count incremented above AND
2358                  * in hugetlb_reserve_pages for the same page.  Also,
2359                  * the reservation count added in hugetlb_reserve_pages
2360                  * no longer applies.
2361                  */
2362                 long rsv_adjust;
2363
2364                 rsv_adjust = hugepage_subpool_put_pages(spool, 1);
2365                 hugetlb_acct_memory(h, -rsv_adjust);
2366                 if (deferred_reserve)
2367                         hugetlb_cgroup_uncharge_page_rsvd(hstate_index(h),
2368                                         pages_per_huge_page(h), page);
2369         }
2370         return page;
2371
2372 out_uncharge_cgroup:
2373         hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
2374 out_uncharge_cgroup_reservation:
2375         if (deferred_reserve)
2376                 hugetlb_cgroup_uncharge_cgroup_rsvd(idx, pages_per_huge_page(h),
2377                                                     h_cg);
2378 out_subpool_put:
2379         if (map_chg || avoid_reserve)
2380                 hugepage_subpool_put_pages(spool, 1);
2381         vma_end_reservation(h, vma, addr);
2382         return ERR_PTR(-ENOSPC);
2383 }
2384
2385 int alloc_bootmem_huge_page(struct hstate *h)
2386         __attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
2387 int __alloc_bootmem_huge_page(struct hstate *h)
2388 {
2389         struct huge_bootmem_page *m;
2390         int nr_nodes, node;
2391
2392         for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
2393                 void *addr;
2394
2395                 addr = memblock_alloc_try_nid_raw(
2396                                 huge_page_size(h), huge_page_size(h),
2397                                 0, MEMBLOCK_ALLOC_ACCESSIBLE, node);
2398                 if (addr) {
2399                         /*
2400                          * Use the beginning of the huge page to store the
2401                          * huge_bootmem_page struct (until gather_bootmem
2402                          * puts them into the mem_map).
2403                          */
2404                         m = addr;
2405                         goto found;
2406                 }
2407         }
2408         return 0;
2409
2410 found:
2411         BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h)));
2412         /* Put them into a private list first because mem_map is not up yet */
2413         INIT_LIST_HEAD(&m->list);
2414         list_add(&m->list, &huge_boot_pages);
2415         m->hstate = h;
2416         return 1;
2417 }
2418
2419 static void __init prep_compound_huge_page(struct page *page,
2420                 unsigned int order)
2421 {
2422         if (unlikely(order > (MAX_ORDER - 1)))
2423                 prep_compound_gigantic_page(page, order);
2424         else
2425                 prep_compound_page(page, order);
2426 }
2427
2428 /* Put bootmem huge pages into the standard lists after mem_map is up */
2429 static void __init gather_bootmem_prealloc(void)
2430 {
2431         struct huge_bootmem_page *m;
2432
2433         list_for_each_entry(m, &huge_boot_pages, list) {
2434                 struct page *page = virt_to_page(m);
2435                 struct hstate *h = m->hstate;
2436
2437                 WARN_ON(page_count(page) != 1);
2438                 prep_compound_huge_page(page, huge_page_order(h));
2439                 WARN_ON(PageReserved(page));
2440                 prep_new_huge_page(h, page, page_to_nid(page));
2441                 put_page(page); /* free it into the hugepage allocator */
2442
2443                 /*
2444                  * If we had gigantic hugepages allocated at boot time, we need
2445                  * to restore the 'stolen' pages to totalram_pages in order to
2446                  * fix confusing memory reports from free(1) and another
2447                  * side-effects, like CommitLimit going negative.
2448                  */
2449                 if (hstate_is_gigantic(h))
2450                         adjust_managed_page_count(page, pages_per_huge_page(h));
2451                 cond_resched();
2452         }
2453 }
2454
2455 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
2456 {
2457         unsigned long i;
2458         nodemask_t *node_alloc_noretry;
2459
2460         if (!hstate_is_gigantic(h)) {
2461                 /*
2462                  * Bit mask controlling how hard we retry per-node allocations.
2463                  * Ignore errors as lower level routines can deal with
2464                  * node_alloc_noretry == NULL.  If this kmalloc fails at boot
2465                  * time, we are likely in bigger trouble.
2466                  */
2467                 node_alloc_noretry = kmalloc(sizeof(*node_alloc_noretry),
2468                                                 GFP_KERNEL);
2469         } else {
2470                 /* allocations done at boot time */
2471                 node_alloc_noretry = NULL;
2472         }
2473
2474         /* bit mask controlling how hard we retry per-node allocations */
2475         if (node_alloc_noretry)
2476                 nodes_clear(*node_alloc_noretry);
2477
2478         for (i = 0; i < h->max_huge_pages; ++i) {
2479                 if (hstate_is_gigantic(h)) {
2480                         if (hugetlb_cma_size) {
2481                                 pr_warn_once("HugeTLB: hugetlb_cma is enabled, skip boot time allocation\n");
2482                                 goto free;
2483                         }
2484                         if (!alloc_bootmem_huge_page(h))
2485                                 break;
2486                 } else if (!alloc_pool_huge_page(h,
2487                                          &node_states[N_MEMORY],
2488                                          node_alloc_noretry))
2489                         break;
2490                 cond_resched();
2491         }
2492         if (i < h->max_huge_pages) {
2493                 char buf[32];
2494
2495                 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
2496                 pr_warn("HugeTLB: allocating %lu of page size %s failed.  Only allocated %lu hugepages.\n",
2497                         h->max_huge_pages, buf, i);
2498                 h->max_huge_pages = i;
2499         }
2500 free:
2501         kfree(node_alloc_noretry);
2502 }
2503
2504 static void __init hugetlb_init_hstates(void)
2505 {
2506         struct hstate *h;
2507
2508         for_each_hstate(h) {
2509                 if (minimum_order > huge_page_order(h))
2510                         minimum_order = huge_page_order(h);
2511
2512                 /* oversize hugepages were init'ed in early boot */
2513                 if (!hstate_is_gigantic(h))
2514                         hugetlb_hstate_alloc_pages(h);
2515         }
2516         VM_BUG_ON(minimum_order == UINT_MAX);
2517 }
2518
2519 static void __init report_hugepages(void)
2520 {
2521         struct hstate *h;
2522
2523         for_each_hstate(h) {
2524                 char buf[32];
2525
2526                 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
2527                 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
2528                         buf, h->free_huge_pages);
2529         }
2530 }
2531
2532 #ifdef CONFIG_HIGHMEM
2533 static void try_to_free_low(struct hstate *h, unsigned long count,
2534                                                 nodemask_t *nodes_allowed)
2535 {
2536         int i;
2537         LIST_HEAD(page_list);
2538
2539         lockdep_assert_held(&hugetlb_lock);
2540         if (hstate_is_gigantic(h))
2541                 return;
2542
2543         /*
2544          * Collect pages to be freed on a list, and free after dropping lock
2545          */
2546         for_each_node_mask(i, *nodes_allowed) {
2547                 struct page *page, *next;
2548                 struct list_head *freel = &h->hugepage_freelists[i];
2549                 list_for_each_entry_safe(page, next, freel, lru) {
2550                         if (count >= h->nr_huge_pages)
2551                                 goto out;
2552                         if (PageHighMem(page))
2553                                 continue;
2554                         remove_hugetlb_page(h, page, false);
2555                         list_add(&page->lru, &page_list);
2556                 }
2557         }
2558
2559 out:
2560         spin_unlock_irq(&hugetlb_lock);
2561         update_and_free_pages_bulk(h, &page_list);
2562         spin_lock_irq(&hugetlb_lock);
2563 }
2564 #else
2565 static inline void try_to_free_low(struct hstate *h, unsigned long count,
2566                                                 nodemask_t *nodes_allowed)
2567 {
2568 }
2569 #endif
2570
2571 /*
2572  * Increment or decrement surplus_huge_pages.  Keep node-specific counters
2573  * balanced by operating on them in a round-robin fashion.
2574  * Returns 1 if an adjustment was made.
2575  */
2576 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
2577                                 int delta)
2578 {
2579         int nr_nodes, node;
2580
2581         lockdep_assert_held(&hugetlb_lock);
2582         VM_BUG_ON(delta != -1 && delta != 1);
2583
2584         if (delta < 0) {
2585                 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
2586                         if (h->surplus_huge_pages_node[node])
2587                                 goto found;
2588                 }
2589         } else {
2590                 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2591                         if (h->surplus_huge_pages_node[node] <
2592                                         h->nr_huge_pages_node[node])
2593                                 goto found;
2594                 }
2595         }
2596         return 0;
2597
2598 found:
2599         h->surplus_huge_pages += delta;
2600         h->surplus_huge_pages_node[node] += delta;
2601         return 1;
2602 }
2603
2604 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
2605 static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid,
2606                               nodemask_t *nodes_allowed)
2607 {
2608         unsigned long min_count, ret;
2609         struct page *page;
2610         LIST_HEAD(page_list);
2611         NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL);
2612
2613         /*
2614          * Bit mask controlling how hard we retry per-node allocations.
2615          * If we can not allocate the bit mask, do not attempt to allocate
2616          * the requested huge pages.
2617          */
2618         if (node_alloc_noretry)
2619                 nodes_clear(*node_alloc_noretry);
2620         else
2621                 return -ENOMEM;
2622
2623         /*
2624          * resize_lock mutex prevents concurrent adjustments to number of
2625          * pages in hstate via the proc/sysfs interfaces.
2626          */
2627         mutex_lock(&h->resize_lock);
2628         spin_lock_irq(&hugetlb_lock);
2629
2630         /*
2631          * Check for a node specific request.
2632          * Changing node specific huge page count may require a corresponding
2633          * change to the global count.  In any case, the passed node mask
2634          * (nodes_allowed) will restrict alloc/free to the specified node.
2635          */
2636         if (nid != NUMA_NO_NODE) {
2637                 unsigned long old_count = count;
2638
2639                 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
2640                 /*
2641                  * User may have specified a large count value which caused the
2642                  * above calculation to overflow.  In this case, they wanted
2643                  * to allocate as many huge pages as possible.  Set count to
2644                  * largest possible value to align with their intention.
2645                  */
2646                 if (count < old_count)
2647                         count = ULONG_MAX;
2648         }
2649
2650         /*
2651          * Gigantic pages runtime allocation depend on the capability for large
2652          * page range allocation.
2653          * If the system does not provide this feature, return an error when
2654          * the user tries to allocate gigantic pages but let the user free the
2655          * boottime allocated gigantic pages.
2656          */
2657         if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) {
2658                 if (count > persistent_huge_pages(h)) {
2659                         spin_unlock_irq(&hugetlb_lock);
2660                         mutex_unlock(&h->resize_lock);
2661                         NODEMASK_FREE(node_alloc_noretry);
2662                         return -EINVAL;
2663                 }
2664                 /* Fall through to decrease pool */
2665         }
2666
2667         /*
2668          * Increase the pool size
2669          * First take pages out of surplus state.  Then make up the
2670          * remaining difference by allocating fresh huge pages.
2671          *
2672          * We might race with alloc_surplus_huge_page() here and be unable
2673          * to convert a surplus huge page to a normal huge page. That is
2674          * not critical, though, it just means the overall size of the
2675          * pool might be one hugepage larger than it needs to be, but
2676          * within all the constraints specified by the sysctls.
2677          */
2678         while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
2679                 if (!adjust_pool_surplus(h, nodes_allowed, -1))
2680                         break;
2681         }
2682
2683         while (count > persistent_huge_pages(h)) {
2684                 /*
2685                  * If this allocation races such that we no longer need the
2686                  * page, free_huge_page will handle it by freeing the page
2687                  * and reducing the surplus.
2688                  */
2689                 spin_unlock_irq(&hugetlb_lock);
2690
2691                 /* yield cpu to avoid soft lockup */
2692                 cond_resched();
2693
2694                 ret = alloc_pool_huge_page(h, nodes_allowed,
2695                                                 node_alloc_noretry);
2696                 spin_lock_irq(&hugetlb_lock);
2697                 if (!ret)
2698                         goto out;
2699
2700                 /* Bail for signals. Probably ctrl-c from user */
2701                 if (signal_pending(current))
2702                         goto out;
2703         }
2704
2705         /*
2706          * Decrease the pool size
2707          * First return free pages to the buddy allocator (being careful
2708          * to keep enough around to satisfy reservations).  Then place
2709          * pages into surplus state as needed so the pool will shrink
2710          * to the desired size as pages become free.
2711          *
2712          * By placing pages into the surplus state independent of the
2713          * overcommit value, we are allowing the surplus pool size to
2714          * exceed overcommit. There are few sane options here. Since
2715          * alloc_surplus_huge_page() is checking the global counter,
2716          * though, we'll note that we're not allowed to exceed surplus
2717          * and won't grow the pool anywhere else. Not until one of the
2718          * sysctls are changed, or the surplus pages go out of use.
2719          */
2720         min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
2721         min_count = max(count, min_count);
2722         try_to_free_low(h, min_count, nodes_allowed);
2723
2724         /*
2725          * Collect pages to be removed on list without dropping lock
2726          */
2727         while (min_count < persistent_huge_pages(h)) {
2728                 page = remove_pool_huge_page(h, nodes_allowed, 0);
2729                 if (!page)
2730                         break;
2731
2732                 list_add(&page->lru, &page_list);
2733         }
2734         /* free the pages after dropping lock */
2735         spin_unlock_irq(&hugetlb_lock);
2736         update_and_free_pages_bulk(h, &page_list);
2737         spin_lock_irq(&hugetlb_lock);
2738
2739         while (count < persistent_huge_pages(h)) {
2740                 if (!adjust_pool_surplus(h, nodes_allowed, 1))
2741                         break;
2742         }
2743 out:
2744         h->max_huge_pages = persistent_huge_pages(h);
2745         spin_unlock_irq(&hugetlb_lock);
2746         mutex_unlock(&h->resize_lock);
2747
2748         NODEMASK_FREE(node_alloc_noretry);
2749
2750         return 0;
2751 }
2752
2753 #define HSTATE_ATTR_RO(_name) \
2754         static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2755
2756 #define HSTATE_ATTR(_name) \
2757         static struct kobj_attribute _name##_attr = \
2758                 __ATTR(_name, 0644, _name##_show, _name##_store)
2759
2760 static struct kobject *hugepages_kobj;
2761 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2762
2763 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
2764
2765 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
2766 {
2767         int i;
2768
2769         for (i = 0; i < HUGE_MAX_HSTATE; i++)
2770                 if (hstate_kobjs[i] == kobj) {
2771                         if (nidp)
2772                                 *nidp = NUMA_NO_NODE;
2773                         return &hstates[i];
2774                 }
2775
2776         return kobj_to_node_hstate(kobj, nidp);
2777 }
2778
2779 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
2780                                         struct kobj_attribute *attr, char *buf)
2781 {
2782         struct hstate *h;
2783         unsigned long nr_huge_pages;
2784         int nid;
2785
2786         h = kobj_to_hstate(kobj, &nid);
2787         if (nid == NUMA_NO_NODE)
2788                 nr_huge_pages = h->nr_huge_pages;
2789         else
2790                 nr_huge_pages = h->nr_huge_pages_node[nid];
2791
2792         return sysfs_emit(buf, "%lu\n", nr_huge_pages);
2793 }
2794
2795 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
2796                                            struct hstate *h, int nid,
2797                                            unsigned long count, size_t len)
2798 {
2799         int err;
2800         nodemask_t nodes_allowed, *n_mask;
2801
2802         if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
2803                 return -EINVAL;
2804
2805         if (nid == NUMA_NO_NODE) {
2806                 /*
2807                  * global hstate attribute
2808                  */
2809                 if (!(obey_mempolicy &&
2810                                 init_nodemask_of_mempolicy(&nodes_allowed)))
2811                         n_mask = &node_states[N_MEMORY];
2812                 else
2813                         n_mask = &nodes_allowed;
2814         } else {
2815                 /*
2816                  * Node specific request.  count adjustment happens in
2817                  * set_max_huge_pages() after acquiring hugetlb_lock.
2818                  */
2819                 init_nodemask_of_node(&nodes_allowed, nid);
2820                 n_mask = &nodes_allowed;
2821         }
2822
2823         err = set_max_huge_pages(h, count, nid, n_mask);
2824
2825         return err ? err : len;
2826 }
2827
2828 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
2829                                          struct kobject *kobj, const char *buf,
2830                                          size_t len)
2831 {
2832         struct hstate *h;
2833         unsigned long count;
2834         int nid;
2835         int err;
2836
2837         err = kstrtoul(buf, 10, &count);
2838         if (err)
2839                 return err;
2840
2841         h = kobj_to_hstate(kobj, &nid);
2842         return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
2843 }
2844
2845 static ssize_t nr_hugepages_show(struct kobject *kobj,
2846                                        struct kobj_attribute *attr, char *buf)
2847 {
2848         return nr_hugepages_show_common(kobj, attr, buf);
2849 }
2850
2851 static ssize_t nr_hugepages_store(struct kobject *kobj,
2852                struct kobj_attribute *attr, const char *buf, size_t len)
2853 {
2854         return nr_hugepages_store_common(false, kobj, buf, len);
2855 }
2856 HSTATE_ATTR(nr_hugepages);
2857
2858 #ifdef CONFIG_NUMA
2859
2860 /*
2861  * hstate attribute for optionally mempolicy-based constraint on persistent
2862  * huge page alloc/free.
2863  */
2864 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
2865                                            struct kobj_attribute *attr,
2866                                            char *buf)
2867 {
2868         return nr_hugepages_show_common(kobj, attr, buf);
2869 }
2870
2871 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
2872                struct kobj_attribute *attr, const char *buf, size_t len)
2873 {
2874         return nr_hugepages_store_common(true, kobj, buf, len);
2875 }
2876 HSTATE_ATTR(nr_hugepages_mempolicy);
2877 #endif
2878
2879
2880 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
2881                                         struct kobj_attribute *attr, char *buf)
2882 {
2883         struct hstate *h = kobj_to_hstate(kobj, NULL);
2884         return sysfs_emit(buf, "%lu\n", h->nr_overcommit_huge_pages);
2885 }
2886
2887 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
2888                 struct kobj_attribute *attr, const char *buf, size_t count)
2889 {
2890         int err;
2891         unsigned long input;
2892         struct hstate *h = kobj_to_hstate(kobj, NULL);
2893
2894         if (hstate_is_gigantic(h))
2895                 return -EINVAL;
2896
2897         err = kstrtoul(buf, 10, &input);
2898         if (err)
2899                 return err;
2900
2901         spin_lock_irq(&hugetlb_lock);
2902         h->nr_overcommit_huge_pages = input;
2903         spin_unlock_irq(&hugetlb_lock);
2904
2905         return count;
2906 }
2907 HSTATE_ATTR(nr_overcommit_hugepages);
2908
2909 static ssize_t free_hugepages_show(struct kobject *kobj,
2910                                         struct kobj_attribute *attr, char *buf)
2911 {
2912         struct hstate *h;
2913         unsigned long free_huge_pages;
2914         int nid;
2915
2916         h = kobj_to_hstate(kobj, &nid);
2917         if (nid == NUMA_NO_NODE)
2918                 free_huge_pages = h->free_huge_pages;
2919         else
2920                 free_huge_pages = h->free_huge_pages_node[nid];
2921
2922         return sysfs_emit(buf, "%lu\n", free_huge_pages);
2923 }
2924 HSTATE_ATTR_RO(free_hugepages);
2925
2926 static ssize_t resv_hugepages_show(struct kobject *kobj,
2927                                         struct kobj_attribute *attr, char *buf)
2928 {
2929         struct hstate *h = kobj_to_hstate(kobj, NULL);
2930         return sysfs_emit(buf, "%lu\n", h->resv_huge_pages);
2931 }
2932 HSTATE_ATTR_RO(resv_hugepages);
2933
2934 static ssize_t surplus_hugepages_show(struct kobject *kobj,
2935                                         struct kobj_attribute *attr, char *buf)
2936 {
2937         struct hstate *h;
2938         unsigned long surplus_huge_pages;
2939         int nid;
2940
2941         h = kobj_to_hstate(kobj, &nid);
2942         if (nid == NUMA_NO_NODE)
2943                 surplus_huge_pages = h->surplus_huge_pages;
2944         else
2945                 surplus_huge_pages = h->surplus_huge_pages_node[nid];
2946
2947         return sysfs_emit(buf, "%lu\n", surplus_huge_pages);
2948 }
2949 HSTATE_ATTR_RO(surplus_hugepages);
2950
2951 static struct attribute *hstate_attrs[] = {
2952         &nr_hugepages_attr.attr,
2953         &nr_overcommit_hugepages_attr.attr,
2954         &free_hugepages_attr.attr,
2955         &resv_hugepages_attr.attr,
2956         &surplus_hugepages_attr.attr,
2957 #ifdef CONFIG_NUMA
2958         &nr_hugepages_mempolicy_attr.attr,
2959 #endif
2960         NULL,
2961 };
2962
2963 static const struct attribute_group hstate_attr_group = {
2964         .attrs = hstate_attrs,
2965 };
2966
2967 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
2968                                     struct kobject **hstate_kobjs,
2969                                     const struct attribute_group *hstate_attr_group)
2970 {
2971         int retval;
2972         int hi = hstate_index(h);
2973
2974         hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
2975         if (!hstate_kobjs[hi])
2976                 return -ENOMEM;
2977
2978         retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
2979         if (retval) {
2980                 kobject_put(hstate_kobjs[hi]);
2981                 hstate_kobjs[hi] = NULL;
2982         }
2983
2984         return retval;
2985 }
2986
2987 static void __init hugetlb_sysfs_init(void)
2988 {
2989         struct hstate *h;
2990         int err;
2991
2992         hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
2993         if (!hugepages_kobj)
2994                 return;
2995
2996         for_each_hstate(h) {
2997                 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
2998                                          hstate_kobjs, &hstate_attr_group);
2999                 if (err)
3000                         pr_err("HugeTLB: Unable to add hstate %s", h->name);
3001         }
3002 }
3003
3004 #ifdef CONFIG_NUMA
3005
3006 /*
3007  * node_hstate/s - associate per node hstate attributes, via their kobjects,
3008  * with node devices in node_devices[] using a parallel array.  The array
3009  * index of a node device or _hstate == node id.
3010  * This is here to avoid any static dependency of the node device driver, in
3011  * the base kernel, on the hugetlb module.
3012  */
3013 struct node_hstate {
3014         struct kobject          *hugepages_kobj;
3015         struct kobject          *hstate_kobjs[HUGE_MAX_HSTATE];
3016 };
3017 static struct node_hstate node_hstates[MAX_NUMNODES];
3018
3019 /*
3020  * A subset of global hstate attributes for node devices
3021  */
3022 static struct attribute *per_node_hstate_attrs[] = {
3023         &nr_hugepages_attr.attr,
3024         &free_hugepages_attr.attr,
3025         &surplus_hugepages_attr.attr,
3026         NULL,
3027 };
3028
3029 static const struct attribute_group per_node_hstate_attr_group = {
3030         .attrs = per_node_hstate_attrs,
3031 };
3032
3033 /*
3034  * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
3035  * Returns node id via non-NULL nidp.
3036  */
3037 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
3038 {
3039         int nid;
3040
3041         for (nid = 0; nid < nr_node_ids; nid++) {
3042                 struct node_hstate *nhs = &node_hstates[nid];
3043                 int i;
3044                 for (i = 0; i < HUGE_MAX_HSTATE; i++)
3045                         if (nhs->hstate_kobjs[i] == kobj) {
3046                                 if (nidp)
3047                                         *nidp = nid;
3048                                 return &hstates[i];
3049                         }
3050         }
3051
3052         BUG();
3053         return NULL;
3054 }
3055
3056 /*
3057  * Unregister hstate attributes from a single node device.
3058  * No-op if no hstate attributes attached.
3059  */
3060 static void hugetlb_unregister_node(struct node *node)
3061 {
3062         struct hstate *h;
3063         struct node_hstate *nhs = &node_hstates[node->dev.id];
3064
3065         if (!nhs->hugepages_kobj)
3066                 return;         /* no hstate attributes */
3067
3068         for_each_hstate(h) {
3069                 int idx = hstate_index(h);
3070                 if (nhs->hstate_kobjs[idx]) {
3071                         kobject_put(nhs->hstate_kobjs[idx]);
3072                         nhs->hstate_kobjs[idx] = NULL;
3073                 }
3074         }
3075
3076         kobject_put(nhs->hugepages_kobj);
3077         nhs->hugepages_kobj = NULL;
3078 }
3079
3080
3081 /*
3082  * Register hstate attributes for a single node device.
3083  * No-op if attributes already registered.
3084  */
3085 static void hugetlb_register_node(struct node *node)
3086 {
3087         struct hstate *h;
3088         struct node_hstate *nhs = &node_hstates[node->dev.id];
3089         int err;
3090
3091         if (nhs->hugepages_kobj)
3092                 return;         /* already allocated */
3093
3094         nhs->hugepages_kobj = kobject_create_and_add("hugepages",
3095                                                         &node->dev.kobj);
3096         if (!nhs->hugepages_kobj)
3097                 return;
3098
3099         for_each_hstate(h) {
3100                 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
3101                                                 nhs->hstate_kobjs,
3102                                                 &per_node_hstate_attr_group);
3103                 if (err) {
3104                         pr_err("HugeTLB: Unable to add hstate %s for node %d\n",
3105                                 h->name, node->dev.id);
3106                         hugetlb_unregister_node(node);
3107                         break;
3108                 }
3109         }
3110 }
3111
3112 /*
3113  * hugetlb init time:  register hstate attributes for all registered node
3114  * devices of nodes that have memory.  All on-line nodes should have
3115  * registered their associated device by this time.
3116  */
3117 static void __init hugetlb_register_all_nodes(void)
3118 {
3119         int nid;
3120
3121         for_each_node_state(nid, N_MEMORY) {
3122                 struct node *node = node_devices[nid];
3123                 if (node->dev.id == nid)
3124                         hugetlb_register_node(node);
3125         }
3126
3127         /*
3128          * Let the node device driver know we're here so it can
3129          * [un]register hstate attributes on node hotplug.
3130          */
3131         register_hugetlbfs_with_node(hugetlb_register_node,
3132                                      hugetlb_unregister_node);
3133 }
3134 #else   /* !CONFIG_NUMA */
3135
3136 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
3137 {
3138         BUG();
3139         if (nidp)
3140                 *nidp = -1;
3141         return NULL;
3142 }
3143
3144 static void hugetlb_register_all_nodes(void) { }
3145
3146 #endif
3147
3148 static int __init hugetlb_init(void)
3149 {
3150         int i;
3151
3152         BUILD_BUG_ON(sizeof_field(struct page, private) * BITS_PER_BYTE <
3153                         __NR_HPAGEFLAGS);
3154
3155         if (!hugepages_supported()) {
3156                 if (hugetlb_max_hstate || default_hstate_max_huge_pages)
3157                         pr_warn("HugeTLB: huge pages not supported, ignoring associated command-line parameters\n");
3158                 return 0;
3159         }
3160
3161         /*
3162          * Make sure HPAGE_SIZE (HUGETLB_PAGE_ORDER) hstate exists.  Some
3163          * architectures depend on setup being done here.
3164          */
3165         hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
3166         if (!parsed_default_hugepagesz) {
3167                 /*
3168                  * If we did not parse a default huge page size, set
3169                  * default_hstate_idx to HPAGE_SIZE hstate. And, if the
3170                  * number of huge pages for this default size was implicitly
3171                  * specified, set that here as well.
3172                  * Note that the implicit setting will overwrite an explicit
3173                  * setting.  A warning will be printed in this case.
3174                  */
3175                 default_hstate_idx = hstate_index(size_to_hstate(HPAGE_SIZE));
3176                 if (default_hstate_max_huge_pages) {
3177                         if (default_hstate.max_huge_pages) {
3178                                 char buf[32];
3179
3180                                 string_get_size(huge_page_size(&default_hstate),
3181                                         1, STRING_UNITS_2, buf, 32);
3182                                 pr_warn("HugeTLB: Ignoring hugepages=%lu associated with %s page size\n",
3183                                         default_hstate.max_huge_pages, buf);
3184                                 pr_warn("HugeTLB: Using hugepages=%lu for number of default huge pages\n",
3185                                         default_hstate_max_huge_pages);
3186                         }
3187                         default_hstate.max_huge_pages =
3188                                 default_hstate_max_huge_pages;
3189                 }
3190         }
3191
3192         hugetlb_cma_check();
3193         hugetlb_init_hstates();
3194         gather_bootmem_prealloc();
3195         report_hugepages();
3196
3197         hugetlb_sysfs_init();
3198         hugetlb_register_all_nodes();
3199         hugetlb_cgroup_file_init();
3200
3201 #ifdef CONFIG_SMP
3202         num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
3203 #else
3204         num_fault_mutexes = 1;
3205 #endif
3206         hugetlb_fault_mutex_table =
3207                 kmalloc_array(num_fault_mutexes, sizeof(struct mutex),
3208                               GFP_KERNEL);
3209         BUG_ON(!hugetlb_fault_mutex_table);
3210
3211         for (i = 0; i < num_fault_mutexes; i++)
3212                 mutex_init(&hugetlb_fault_mutex_table[i]);
3213         return 0;
3214 }
3215 subsys_initcall(hugetlb_init);
3216
3217 /* Overwritten by architectures with more huge page sizes */
3218 bool __init __attribute((weak)) arch_hugetlb_valid_size(unsigned long size)
3219 {
3220         return size == HPAGE_SIZE;
3221 }
3222
3223 void __init hugetlb_add_hstate(unsigned int order)
3224 {
3225         struct hstate *h;
3226         unsigned long i;
3227
3228         if (size_to_hstate(PAGE_SIZE << order)) {
3229                 return;
3230         }
3231         BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
3232         BUG_ON(order == 0);
3233         h = &hstates[hugetlb_max_hstate++];
3234         mutex_init(&h->resize_lock);
3235         h->order = order;
3236         h->mask = ~(huge_page_size(h) - 1);
3237         for (i = 0; i < MAX_NUMNODES; ++i)
3238                 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
3239         INIT_LIST_HEAD(&h->hugepage_activelist);
3240         h->next_nid_to_alloc = first_memory_node;
3241         h->next_nid_to_free = first_memory_node;
3242         snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
3243                                         huge_page_size(h)/1024);
3244
3245         parsed_hstate = h;
3246 }
3247
3248 /*
3249  * hugepages command line processing
3250  * hugepages normally follows a valid hugepagsz or default_hugepagsz
3251  * specification.  If not, ignore the hugepages value.  hugepages can also
3252  * be the first huge page command line  option in which case it implicitly
3253  * specifies the number of huge pages for the default size.
3254  */
3255 static int __init hugepages_setup(char *s)
3256 {
3257         unsigned long *mhp;
3258         static unsigned long *last_mhp;
3259
3260         if (!parsed_valid_hugepagesz) {
3261                 pr_warn("HugeTLB: hugepages=%s does not follow a valid hugepagesz, ignoring\n", s);
3262                 parsed_valid_hugepagesz = true;
3263                 return 0;
3264         }
3265
3266         /*
3267          * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter
3268          * yet, so this hugepages= parameter goes to the "default hstate".
3269          * Otherwise, it goes with the previously parsed hugepagesz or
3270          * default_hugepagesz.
3271          */
3272         else if (!hugetlb_max_hstate)
3273                 mhp = &default_hstate_max_huge_pages;
3274         else
3275                 mhp = &parsed_hstate->max_huge_pages;
3276
3277         if (mhp == last_mhp) {
3278                 pr_warn("HugeTLB: hugepages= specified twice without interleaving hugepagesz=, ignoring hugepages=%s\n", s);
3279                 return 0;
3280         }
3281
3282         if (sscanf(s, "%lu", mhp) <= 0)
3283                 *mhp = 0;
3284
3285         /*
3286          * Global state is always initialized later in hugetlb_init.
3287          * But we need to allocate gigantic hstates here early to still
3288          * use the bootmem allocator.
3289          */
3290         if (hugetlb_max_hstate && hstate_is_gigantic(parsed_hstate))
3291                 hugetlb_hstate_alloc_pages(parsed_hstate);
3292
3293         last_mhp = mhp;
3294
3295         return 1;
3296 }
3297 __setup("hugepages=", hugepages_setup);
3298
3299 /*
3300  * hugepagesz command line processing
3301  * A specific huge page size can only be specified once with hugepagesz.
3302  * hugepagesz is followed by hugepages on the command line.  The global
3303  * variable 'parsed_valid_hugepagesz' is used to determine if prior
3304  * hugepagesz argument was valid.
3305  */
3306 static int __init hugepagesz_setup(char *s)
3307 {
3308         unsigned long size;
3309         struct hstate *h;
3310
3311         parsed_valid_hugepagesz = false;
3312         size = (unsigned long)memparse(s, NULL);
3313
3314         if (!arch_hugetlb_valid_size(size)) {
3315                 pr_err("HugeTLB: unsupported hugepagesz=%s\n", s);
3316                 return 0;
3317         }
3318
3319         h = size_to_hstate(size);
3320         if (h) {
3321                 /*
3322                  * hstate for this size already exists.  This is normally
3323                  * an error, but is allowed if the existing hstate is the
3324                  * default hstate.  More specifically, it is only allowed if
3325                  * the number of huge pages for the default hstate was not
3326                  * previously specified.
3327                  */
3328                 if (!parsed_default_hugepagesz ||  h != &default_hstate ||
3329                     default_hstate.max_huge_pages) {
3330                         pr_warn("HugeTLB: hugepagesz=%s specified twice, ignoring\n", s);
3331                         return 0;
3332                 }
3333
3334                 /*
3335                  * No need to call hugetlb_add_hstate() as hstate already
3336                  * exists.  But, do set parsed_hstate so that a following
3337                  * hugepages= parameter will be applied to this hstate.
3338                  */
3339                 parsed_hstate = h;
3340                 parsed_valid_hugepagesz = true;
3341                 return 1;
3342         }
3343
3344         hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
3345         parsed_valid_hugepagesz = true;
3346         return 1;
3347 }
3348 __setup("hugepagesz=", hugepagesz_setup);
3349
3350 /*
3351  * default_hugepagesz command line input
3352  * Only one instance of default_hugepagesz allowed on command line.
3353  */
3354 static int __init default_hugepagesz_setup(char *s)
3355 {
3356         unsigned long size;
3357
3358         parsed_valid_hugepagesz = false;
3359         if (parsed_default_hugepagesz) {
3360                 pr_err("HugeTLB: default_hugepagesz previously specified, ignoring %s\n", s);
3361                 return 0;
3362         }
3363
3364         size = (unsigned long)memparse(s, NULL);
3365
3366         if (!arch_hugetlb_valid_size(size)) {
3367                 pr_err("HugeTLB: unsupported default_hugepagesz=%s\n", s);
3368                 return 0;
3369         }
3370
3371         hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
3372         parsed_valid_hugepagesz = true;
3373         parsed_default_hugepagesz = true;
3374         default_hstate_idx = hstate_index(size_to_hstate(size));
3375
3376         /*
3377          * The number of default huge pages (for this size) could have been
3378          * specified as the first hugetlb parameter: hugepages=X.  If so,
3379          * then default_hstate_max_huge_pages is set.  If the default huge
3380          * page size is gigantic (>= MAX_ORDER), then the pages must be
3381          * allocated here from bootmem allocator.
3382          */
3383         if (default_hstate_max_huge_pages) {
3384                 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
3385                 if (hstate_is_gigantic(&default_hstate))
3386                         hugetlb_hstate_alloc_pages(&default_hstate);
3387                 default_hstate_max_huge_pages = 0;
3388         }
3389
3390         return 1;
3391 }
3392 __setup("default_hugepagesz=", default_hugepagesz_setup);
3393
3394 static unsigned int allowed_mems_nr(struct hstate *h)
3395 {
3396         int node;
3397         unsigned int nr = 0;
3398         nodemask_t *mpol_allowed;
3399         unsigned int *array = h->free_huge_pages_node;
3400         gfp_t gfp_mask = htlb_alloc_mask(h);
3401
3402         mpol_allowed = policy_nodemask_current(gfp_mask);
3403
3404         for_each_node_mask(node, cpuset_current_mems_allowed) {
3405                 if (!mpol_allowed || node_isset(node, *mpol_allowed))
3406                         nr += array[node];
3407         }
3408
3409         return nr;
3410 }
3411
3412 #ifdef CONFIG_SYSCTL
3413 static int proc_hugetlb_doulongvec_minmax(struct ctl_table *table, int write,
3414                                           void *buffer, size_t *length,
3415                                           loff_t *ppos, unsigned long *out)
3416 {
3417         struct ctl_table dup_table;
3418
3419         /*
3420          * In order to avoid races with __do_proc_doulongvec_minmax(), we
3421          * can duplicate the @table and alter the duplicate of it.
3422          */
3423         dup_table = *table;
3424         dup_table.data = out;
3425
3426         return proc_doulongvec_minmax(&dup_table, write, buffer, length, ppos);
3427 }
3428
3429 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
3430                          struct ctl_table *table, int write,
3431                          void *buffer, size_t *length, loff_t *ppos)
3432 {
3433         struct hstate *h = &default_hstate;
3434         unsigned long tmp = h->max_huge_pages;
3435         int ret;
3436
3437         if (!hugepages_supported())
3438                 return -EOPNOTSUPP;
3439
3440         ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
3441                                              &tmp);
3442         if (ret)
3443                 goto out;
3444
3445         if (write)
3446                 ret = __nr_hugepages_store_common(obey_mempolicy, h,
3447                                                   NUMA_NO_NODE, tmp, *length);
3448 out:
3449         return ret;
3450 }
3451
3452 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
3453                           void *buffer, size_t *length, loff_t *ppos)
3454 {
3455
3456         return hugetlb_sysctl_handler_common(false, table, write,
3457                                                         buffer, length, ppos);
3458 }
3459
3460 #ifdef CONFIG_NUMA
3461 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
3462                           void *buffer, size_t *length, loff_t *ppos)
3463 {
3464         return hugetlb_sysctl_handler_common(true, table, write,
3465                                                         buffer, length, ppos);
3466 }
3467 #endif /* CONFIG_NUMA */
3468
3469 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
3470                 void *buffer, size_t *length, loff_t *ppos)
3471 {
3472         struct hstate *h = &default_hstate;
3473         unsigned long tmp;
3474         int ret;
3475
3476         if (!hugepages_supported())
3477                 return -EOPNOTSUPP;
3478
3479         tmp = h->nr_overcommit_huge_pages;
3480
3481         if (write && hstate_is_gigantic(h))
3482                 return -EINVAL;
3483
3484         ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
3485                                              &tmp);
3486         if (ret)
3487                 goto out;
3488
3489         if (write) {
3490                 spin_lock_irq(&hugetlb_lock);
3491                 h->nr_overcommit_huge_pages = tmp;
3492                 spin_unlock_irq(&hugetlb_lock);
3493         }
3494 out:
3495         return ret;
3496 }
3497
3498 #endif /* CONFIG_SYSCTL */
3499
3500 void hugetlb_report_meminfo(struct seq_file *m)
3501 {
3502         struct hstate *h;
3503         unsigned long total = 0;
3504
3505         if (!hugepages_supported())
3506                 return;
3507
3508         for_each_hstate(h) {
3509                 unsigned long count = h->nr_huge_pages;
3510
3511                 total += huge_page_size(h) * count;
3512
3513                 if (h == &default_hstate)
3514                         seq_printf(m,
3515                                    "HugePages_Total:   %5lu\n"
3516                                    "HugePages_Free:    %5lu\n"
3517                                    "HugePages_Rsvd:    %5lu\n"
3518                                    "HugePages_Surp:    %5lu\n"
3519                                    "Hugepagesize:   %8lu kB\n",
3520                                    count,
3521                                    h->free_huge_pages,
3522                                    h->resv_huge_pages,
3523                                    h->surplus_huge_pages,
3524                                    huge_page_size(h) / SZ_1K);
3525         }
3526
3527         seq_printf(m, "Hugetlb:        %8lu kB\n", total / SZ_1K);
3528 }
3529
3530 int hugetlb_report_node_meminfo(char *buf, int len, int nid)
3531 {
3532         struct hstate *h = &default_hstate;
3533
3534         if (!hugepages_supported())
3535                 return 0;
3536
3537         return sysfs_emit_at(buf, len,
3538                              "Node %d HugePages_Total: %5u\n"
3539                              "Node %d HugePages_Free:  %5u\n"
3540                              "Node %d HugePages_Surp:  %5u\n",
3541                              nid, h->nr_huge_pages_node[nid],
3542                              nid, h->free_huge_pages_node[nid],
3543                              nid, h->surplus_huge_pages_node[nid]);
3544 }
3545
3546 void hugetlb_show_meminfo(void)
3547 {
3548         struct hstate *h;
3549         int nid;
3550
3551         if (!hugepages_supported())
3552                 return;
3553
3554         for_each_node_state(nid, N_MEMORY)
3555                 for_each_hstate(h)
3556                         pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
3557                                 nid,
3558                                 h->nr_huge_pages_node[nid],
3559                                 h->free_huge_pages_node[nid],
3560                                 h->surplus_huge_pages_node[nid],
3561                                 huge_page_size(h) / SZ_1K);
3562 }
3563
3564 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
3565 {
3566         seq_printf(m, "HugetlbPages:\t%8lu kB\n",
3567                    atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
3568 }
3569
3570 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
3571 unsigned long hugetlb_total_pages(void)
3572 {
3573         struct hstate *h;
3574         unsigned long nr_total_pages = 0;
3575
3576         for_each_hstate(h)
3577                 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
3578         return nr_total_pages;
3579 }
3580
3581 static int hugetlb_acct_memory(struct hstate *h, long delta)
3582 {
3583         int ret = -ENOMEM;
3584
3585         if (!delta)
3586                 return 0;
3587
3588         spin_lock_irq(&hugetlb_lock);
3589         /*
3590          * When cpuset is configured, it breaks the strict hugetlb page
3591          * reservation as the accounting is done on a global variable. Such
3592          * reservation is completely rubbish in the presence of cpuset because
3593          * the reservation is not checked against page availability for the
3594          * current cpuset. Application can still potentially OOM'ed by kernel
3595          * with lack of free htlb page in cpuset that the task is in.
3596          * Attempt to enforce strict accounting with cpuset is almost
3597          * impossible (or too ugly) because cpuset is too fluid that
3598          * task or memory node can be dynamically moved between cpusets.
3599          *
3600          * The change of semantics for shared hugetlb mapping with cpuset is
3601          * undesirable. However, in order to preserve some of the semantics,
3602          * we fall back to check against current free page availability as
3603          * a best attempt and hopefully to minimize the impact of changing
3604          * semantics that cpuset has.
3605          *
3606          * Apart from cpuset, we also have memory policy mechanism that
3607          * also determines from which node the kernel will allocate memory
3608          * in a NUMA system. So similar to cpuset, we also should consider
3609          * the memory policy of the current task. Similar to the description
3610          * above.
3611          */
3612         if (delta > 0) {
3613                 if (gather_surplus_pages(h, delta) < 0)
3614                         goto out;
3615
3616                 if (delta > allowed_mems_nr(h)) {
3617                         return_unused_surplus_pages(h, delta);
3618                         goto out;
3619                 }
3620         }
3621
3622         ret = 0;
3623         if (delta < 0)
3624                 return_unused_surplus_pages(h, (unsigned long) -delta);
3625
3626 out:
3627         spin_unlock_irq(&hugetlb_lock);
3628         return ret;
3629 }
3630
3631 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
3632 {
3633         struct resv_map *resv = vma_resv_map(vma);
3634
3635         /*
3636          * This new VMA should share its siblings reservation map if present.
3637          * The VMA will only ever have a valid reservation map pointer where
3638          * it is being copied for another still existing VMA.  As that VMA
3639          * has a reference to the reservation map it cannot disappear until
3640          * after this open call completes.  It is therefore safe to take a
3641          * new reference here without additional locking.
3642          */
3643         if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3644                 kref_get(&resv->refs);
3645 }
3646
3647 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
3648 {
3649         struct hstate *h = hstate_vma(vma);
3650         struct resv_map *resv = vma_resv_map(vma);
3651         struct hugepage_subpool *spool = subpool_vma(vma);
3652         unsigned long reserve, start, end;
3653         long gbl_reserve;
3654
3655         if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3656                 return;
3657
3658         start = vma_hugecache_offset(h, vma, vma->vm_start);
3659         end = vma_hugecache_offset(h, vma, vma->vm_end);
3660
3661         reserve = (end - start) - region_count(resv, start, end);
3662         hugetlb_cgroup_uncharge_counter(resv, start, end);
3663         if (reserve) {
3664                 /*
3665                  * Decrement reserve counts.  The global reserve count may be
3666                  * adjusted if the subpool has a minimum size.
3667                  */
3668                 gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
3669                 hugetlb_acct_memory(h, -gbl_reserve);
3670         }
3671
3672         kref_put(&resv->refs, resv_map_release);
3673 }
3674
3675 static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
3676 {
3677         if (addr & ~(huge_page_mask(hstate_vma(vma))))
3678                 return -EINVAL;
3679         return 0;
3680 }
3681
3682 static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma)
3683 {
3684         return huge_page_size(hstate_vma(vma));
3685 }
3686
3687 /*
3688  * We cannot handle pagefaults against hugetlb pages at all.  They cause
3689  * handle_mm_fault() to try to instantiate regular-sized pages in the
3690  * hugepage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
3691  * this far.
3692  */
3693 static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf)
3694 {
3695         BUG();
3696         return 0;
3697 }
3698
3699 /*
3700  * When a new function is introduced to vm_operations_struct and added
3701  * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops.
3702  * This is because under System V memory model, mappings created via
3703  * shmget/shmat with "huge page" specified are backed by hugetlbfs files,
3704  * their original vm_ops are overwritten with shm_vm_ops.
3705  */
3706 const struct vm_operations_struct hugetlb_vm_ops = {
3707         .fault = hugetlb_vm_op_fault,
3708         .open = hugetlb_vm_op_open,
3709         .close = hugetlb_vm_op_close,
3710         .may_split = hugetlb_vm_op_split,
3711         .pagesize = hugetlb_vm_op_pagesize,
3712 };
3713
3714 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
3715                                 int writable)
3716 {
3717         pte_t entry;
3718
3719         if (writable) {
3720                 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
3721                                          vma->vm_page_prot)));
3722         } else {
3723                 entry = huge_pte_wrprotect(mk_huge_pte(page,
3724                                            vma->vm_page_prot));
3725         }
3726         entry = pte_mkyoung(entry);
3727         entry = pte_mkhuge(entry);
3728         entry = arch_make_huge_pte(entry, vma, page, writable);
3729
3730         return entry;
3731 }
3732
3733 static void set_huge_ptep_writable(struct vm_area_struct *vma,
3734                                    unsigned long address, pte_t *ptep)
3735 {
3736         pte_t entry;
3737
3738         entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
3739         if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
3740                 update_mmu_cache(vma, address, ptep);
3741 }
3742
3743 bool is_hugetlb_entry_migration(pte_t pte)
3744 {
3745         swp_entry_t swp;
3746
3747         if (huge_pte_none(pte) || pte_present(pte))
3748                 return false;
3749         swp = pte_to_swp_entry(pte);
3750         if (is_migration_entry(swp))
3751                 return true;
3752         else
3753                 return false;
3754 }
3755
3756 static bool is_hugetlb_entry_hwpoisoned(pte_t pte)
3757 {
3758         swp_entry_t swp;
3759
3760         if (huge_pte_none(pte) || pte_present(pte))
3761                 return false;
3762         swp = pte_to_swp_entry(pte);
3763         if (is_hwpoison_entry(swp))
3764                 return true;
3765         else
3766                 return false;
3767 }
3768
3769 static void
3770 hugetlb_install_page(struct vm_area_struct *vma, pte_t *ptep, unsigned long addr,
3771                      struct page *new_page)
3772 {
3773         __SetPageUptodate(new_page);
3774         set_huge_pte_at(vma->vm_mm, addr, ptep, make_huge_pte(vma, new_page, 1));
3775         hugepage_add_new_anon_rmap(new_page, vma, addr);
3776         hugetlb_count_add(pages_per_huge_page(hstate_vma(vma)), vma->vm_mm);
3777         ClearHPageRestoreReserve(new_page);
3778         SetHPageMigratable(new_page);
3779 }
3780
3781 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
3782                             struct vm_area_struct *vma)
3783 {
3784         pte_t *src_pte, *dst_pte, entry, dst_entry;
3785         struct page *ptepage;
3786         unsigned long addr;
3787         bool cow = is_cow_mapping(vma->vm_flags);
3788         struct hstate *h = hstate_vma(vma);
3789         unsigned long sz = huge_page_size(h);
3790         unsigned long npages = pages_per_huge_page(h);
3791         struct address_space *mapping = vma->vm_file->f_mapping;
3792         struct mmu_notifier_range range;
3793         int ret = 0;
3794
3795         if (cow) {
3796                 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, src,
3797                                         vma->vm_start,
3798                                         vma->vm_end);
3799                 mmu_notifier_invalidate_range_start(&range);
3800         } else {
3801                 /*
3802                  * For shared mappings i_mmap_rwsem must be held to call
3803                  * huge_pte_alloc, otherwise the returned ptep could go
3804                  * away if part of a shared pmd and another thread calls
3805                  * huge_pmd_unshare.
3806                  */
3807                 i_mmap_lock_read(mapping);
3808         }
3809
3810         for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
3811                 spinlock_t *src_ptl, *dst_ptl;
3812                 src_pte = huge_pte_offset(src, addr, sz);
3813                 if (!src_pte)
3814                         continue;
3815                 dst_pte = huge_pte_alloc(dst, vma, addr, sz);
3816                 if (!dst_pte) {
3817                         ret = -ENOMEM;
3818                         break;
3819                 }
3820
3821                 /*
3822                  * If the pagetables are shared don't copy or take references.
3823                  * dst_pte == src_pte is the common case of src/dest sharing.
3824                  *
3825                  * However, src could have 'unshared' and dst shares with
3826                  * another vma.  If dst_pte !none, this implies sharing.
3827                  * Check here before taking page table lock, and once again
3828                  * after taking the lock below.
3829                  */
3830                 dst_entry = huge_ptep_get(dst_pte);
3831                 if ((dst_pte == src_pte) || !huge_pte_none(dst_entry))
3832                         continue;
3833
3834                 dst_ptl = huge_pte_lock(h, dst, dst_pte);
3835                 src_ptl = huge_pte_lockptr(h, src, src_pte);
3836                 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
3837                 entry = huge_ptep_get(src_pte);
3838                 dst_entry = huge_ptep_get(dst_pte);
3839 again:
3840                 if (huge_pte_none(entry) || !huge_pte_none(dst_entry)) {
3841                         /*
3842                          * Skip if src entry none.  Also, skip in the
3843                          * unlikely case dst entry !none as this implies
3844                          * sharing with another vma.
3845                          */
3846                         ;
3847                 } else if (unlikely(is_hugetlb_entry_migration(entry) ||
3848                                     is_hugetlb_entry_hwpoisoned(entry))) {
3849                         swp_entry_t swp_entry = pte_to_swp_entry(entry);
3850
3851                         if (is_write_migration_entry(swp_entry) && cow) {
3852                                 /*
3853                                  * COW mappings require pages in both
3854                                  * parent and child to be set to read.
3855                                  */
3856                                 make_migration_entry_read(&swp_entry);
3857                                 entry = swp_entry_to_pte(swp_entry);
3858                                 set_huge_swap_pte_at(src, addr, src_pte,
3859                                                      entry, sz);
3860                         }
3861                         set_huge_swap_pte_at(dst, addr, dst_pte, entry, sz);
3862                 } else {
3863                         entry = huge_ptep_get(src_pte);
3864                         ptepage = pte_page(entry);
3865                         get_page(ptepage);
3866
3867                         /*
3868                          * This is a rare case where we see pinned hugetlb
3869                          * pages while they're prone to COW.  We need to do the
3870                          * COW earlier during fork.
3871                          *
3872                          * When pre-allocating the page or copying data, we
3873                          * need to be without the pgtable locks since we could
3874                          * sleep during the process.
3875                          */
3876                         if (unlikely(page_needs_cow_for_dma(vma, ptepage))) {
3877                                 pte_t src_pte_old = entry;
3878                                 struct page *new;
3879
3880                                 spin_unlock(src_ptl);
3881                                 spin_unlock(dst_ptl);
3882                                 /* Do not use reserve as it's private owned */
3883                                 new = alloc_huge_page(vma, addr, 1);
3884                                 if (IS_ERR(new)) {
3885                                         put_page(ptepage);
3886                                         ret = PTR_ERR(new);
3887                                         break;
3888                                 }
3889                                 copy_user_huge_page(new, ptepage, addr, vma,
3890                                                     npages);
3891                                 put_page(ptepage);
3892
3893                                 /* Install the new huge page if src pte stable */
3894                                 dst_ptl = huge_pte_lock(h, dst, dst_pte);
3895                                 src_ptl = huge_pte_lockptr(h, src, src_pte);
3896                                 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
3897                                 entry = huge_ptep_get(src_pte);
3898                                 if (!pte_same(src_pte_old, entry)) {
3899                                         put_page(new);
3900                                         /* dst_entry won't change as in child */
3901                                         goto again;
3902                                 }
3903                                 hugetlb_install_page(vma, dst_pte, addr, new);
3904                                 spin_unlock(src_ptl);
3905                                 spin_unlock(dst_ptl);
3906                                 continue;
3907                         }
3908
3909                         if (cow) {
3910                                 /*
3911                                  * No need to notify as we are downgrading page
3912                                  * table protection not changing it to point
3913                                  * to a new page.
3914                                  *
3915                                  * See Documentation/vm/mmu_notifier.rst
3916                                  */
3917                                 huge_ptep_set_wrprotect(src, addr, src_pte);
3918                         }
3919
3920                         page_dup_rmap(ptepage, true);
3921                         set_huge_pte_at(dst, addr, dst_pte, entry);
3922                         hugetlb_count_add(npages, dst);
3923                 }
3924                 spin_unlock(src_ptl);
3925                 spin_unlock(dst_ptl);
3926         }
3927
3928         if (cow)
3929                 mmu_notifier_invalidate_range_end(&range);
3930         else
3931                 i_mmap_unlock_read(mapping);
3932
3933         return ret;
3934 }
3935
3936 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
3937                             unsigned long start, unsigned long end,
3938                             struct page *ref_page)
3939 {
3940         struct mm_struct *mm = vma->vm_mm;
3941         unsigned long address;
3942         pte_t *ptep;
3943         pte_t pte;
3944         spinlock_t *ptl;
3945         struct page *page;
3946         struct hstate *h = hstate_vma(vma);
3947         unsigned long sz = huge_page_size(h);
3948         struct mmu_notifier_range range;
3949
3950         WARN_ON(!is_vm_hugetlb_page(vma));
3951         BUG_ON(start & ~huge_page_mask(h));
3952         BUG_ON(end & ~huge_page_mask(h));
3953
3954         /*
3955          * This is a hugetlb vma, all the pte entries should point
3956          * to huge page.
3957          */
3958         tlb_change_page_size(tlb, sz);
3959         tlb_start_vma(tlb, vma);
3960
3961         /*
3962          * If sharing possible, alert mmu notifiers of worst case.
3963          */
3964         mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, mm, start,
3965                                 end);
3966         adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
3967         mmu_notifier_invalidate_range_start(&range);
3968         address = start;
3969         for (; address < end; address += sz) {
3970                 ptep = huge_pte_offset(mm, address, sz);
3971                 if (!ptep)
3972                         continue;
3973
3974                 ptl = huge_pte_lock(h, mm, ptep);
3975                 if (huge_pmd_unshare(mm, vma, &address, ptep)) {
3976                         spin_unlock(ptl);
3977                         /*
3978                          * We just unmapped a page of PMDs by clearing a PUD.
3979                          * The caller's TLB flush range should cover this area.
3980                          */
3981                         continue;
3982                 }
3983
3984                 pte = huge_ptep_get(ptep);
3985                 if (huge_pte_none(pte)) {
3986                         spin_unlock(ptl);
3987                         continue;
3988                 }
3989
3990                 /*
3991                  * Migrating hugepage or HWPoisoned hugepage is already
3992                  * unmapped and its refcount is dropped, so just clear pte here.
3993                  */
3994                 if (unlikely(!pte_present(pte))) {
3995                         huge_pte_clear(mm, address, ptep, sz);
3996                         spin_unlock(ptl);
3997                         continue;
3998                 }
3999
4000                 page = pte_page(pte);
4001                 /*
4002                  * If a reference page is supplied, it is because a specific
4003                  * page is being unmapped, not a range. Ensure the page we
4004                  * are about to unmap is the actual page of interest.
4005                  */
4006                 if (ref_page) {
4007                         if (page != ref_page) {
4008                                 spin_unlock(ptl);
4009                                 continue;
4010                         }
4011                         /*
4012                          * Mark the VMA as having unmapped its page so that
4013                          * future faults in this VMA will fail rather than
4014                          * looking like data was lost
4015                          */
4016                         set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
4017                 }
4018
4019                 pte = huge_ptep_get_and_clear(mm, address, ptep);
4020                 tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
4021                 if (huge_pte_dirty(pte))
4022                         set_page_dirty(page);
4023
4024                 hugetlb_count_sub(pages_per_huge_page(h), mm);
4025                 page_remove_rmap(page, true);
4026
4027                 spin_unlock(ptl);
4028                 tlb_remove_page_size(tlb, page, huge_page_size(h));
4029                 /*
4030                  * Bail out after unmapping reference page if supplied
4031                  */
4032                 if (ref_page)
4033                         break;
4034         }
4035         mmu_notifier_invalidate_range_end(&range);
4036         tlb_end_vma(tlb, vma);
4037 }
4038
4039 void __unmap_hugepage_range_final(struct mmu_gather *tlb,
4040                           struct vm_area_struct *vma, unsigned long start,
4041                           unsigned long end, struct page *ref_page)
4042 {
4043         __unmap_hugepage_range(tlb, vma, start, end, ref_page);
4044
4045         /*
4046          * Clear this flag so that x86's huge_pmd_share page_table_shareable
4047          * test will fail on a vma being torn down, and not grab a page table
4048          * on its way out.  We're lucky that the flag has such an appropriate
4049          * name, and can in fact be safely cleared here. We could clear it
4050          * before the __unmap_hugepage_range above, but all that's necessary
4051          * is to clear it before releasing the i_mmap_rwsem. This works
4052          * because in the context this is called, the VMA is about to be
4053          * destroyed and the i_mmap_rwsem is held.
4054          */
4055         vma->vm_flags &= ~VM_MAYSHARE;
4056 }
4057
4058 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
4059                           unsigned long end, struct page *ref_page)
4060 {
4061         struct mmu_gather tlb;
4062
4063         tlb_gather_mmu(&tlb, vma->vm_mm);
4064         __unmap_hugepage_range(&tlb, vma, start, end, ref_page);
4065         tlb_finish_mmu(&tlb);
4066 }
4067
4068 /*
4069  * This is called when the original mapper is failing to COW a MAP_PRIVATE
4070  * mapping it owns the reserve page for. The intention is to unmap the page
4071  * from other VMAs and let the children be SIGKILLed if they are faulting the
4072  * same region.
4073  */
4074 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
4075                               struct page *page, unsigned long address)
4076 {
4077         struct hstate *h = hstate_vma(vma);
4078         struct vm_area_struct *iter_vma;
4079         struct address_space *mapping;
4080         pgoff_t pgoff;
4081
4082         /*
4083          * vm_pgoff is in PAGE_SIZE units, hence the different calculation
4084          * from page cache lookup which is in HPAGE_SIZE units.
4085          */
4086         address = address & huge_page_mask(h);
4087         pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
4088                         vma->vm_pgoff;
4089         mapping = vma->vm_file->f_mapping;
4090
4091         /*
4092          * Take the mapping lock for the duration of the table walk. As
4093          * this mapping should be shared between all the VMAs,
4094          * __unmap_hugepage_range() is called as the lock is already held
4095          */
4096         i_mmap_lock_write(mapping);
4097         vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
4098                 /* Do not unmap the current VMA */
4099                 if (iter_vma == vma)
4100                         continue;
4101
4102                 /*
4103                  * Shared VMAs have their own reserves and do not affect
4104                  * MAP_PRIVATE accounting but it is possible that a shared
4105                  * VMA is using the same page so check and skip such VMAs.
4106                  */
4107                 if (iter_vma->vm_flags & VM_MAYSHARE)
4108                         continue;
4109
4110                 /*
4111                  * Unmap the page from other VMAs without their own reserves.
4112                  * They get marked to be SIGKILLed if they fault in these
4113                  * areas. This is because a future no-page fault on this VMA
4114                  * could insert a zeroed page instead of the data existing
4115                  * from the time of fork. This would look like data corruption
4116                  */
4117                 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
4118                         unmap_hugepage_range(iter_vma, address,
4119                                              address + huge_page_size(h), page);
4120         }
4121         i_mmap_unlock_write(mapping);
4122 }
4123
4124 /*
4125  * Hugetlb_cow() should be called with page lock of the original hugepage held.
4126  * Called with hugetlb_instantiation_mutex held and pte_page locked so we
4127  * cannot race with other handlers or page migration.
4128  * Keep the pte_same checks anyway to make transition from the mutex easier.
4129  */
4130 static vm_fault_t hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
4131                        unsigned long address, pte_t *ptep,
4132                        struct page *pagecache_page, spinlock_t *ptl)
4133 {
4134         pte_t pte;
4135         struct hstate *h = hstate_vma(vma);
4136         struct page *old_page, *new_page;
4137         int outside_reserve = 0;
4138         vm_fault_t ret = 0;
4139         unsigned long haddr = address & huge_page_mask(h);
4140         struct mmu_notifier_range range;
4141
4142         pte = huge_ptep_get(ptep);
4143         old_page = pte_page(pte);
4144
4145 retry_avoidcopy:
4146         /* If no-one else is actually using this page, avoid the copy
4147          * and just make the page writable */
4148         if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
4149                 page_move_anon_rmap(old_page, vma);
4150                 set_huge_ptep_writable(vma, haddr, ptep);
4151                 return 0;
4152         }
4153
4154         /*
4155          * If the process that created a MAP_PRIVATE mapping is about to
4156          * perform a COW due to a shared page count, attempt to satisfy
4157          * the allocation without using the existing reserves. The pagecache
4158          * page is used to determine if the reserve at this address was
4159          * consumed or not. If reserves were used, a partial faulted mapping
4160          * at the time of fork() could consume its reserves on COW instead
4161          * of the full address range.
4162          */
4163         if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
4164                         old_page != pagecache_page)
4165                 outside_reserve = 1;
4166
4167         get_page(old_page);
4168
4169         /*
4170          * Drop page table lock as buddy allocator may be called. It will
4171          * be acquired again before returning to the caller, as expected.
4172          */
4173         spin_unlock(ptl);
4174         new_page = alloc_huge_page(vma, haddr, outside_reserve);
4175
4176         if (IS_ERR(new_page)) {
4177                 /*
4178                  * If a process owning a MAP_PRIVATE mapping fails to COW,
4179                  * it is due to references held by a child and an insufficient
4180                  * huge page pool. To guarantee the original mappers
4181                  * reliability, unmap the page from child processes. The child
4182                  * may get SIGKILLed if it later faults.
4183                  */
4184                 if (outside_reserve) {
4185                         struct address_space *mapping = vma->vm_file->f_mapping;
4186                         pgoff_t idx;
4187                         u32 hash;
4188
4189                         put_page(old_page);
4190                         BUG_ON(huge_pte_none(pte));
4191                         /*
4192                          * Drop hugetlb_fault_mutex and i_mmap_rwsem before
4193                          * unmapping.  unmapping needs to hold i_mmap_rwsem
4194                          * in write mode.  Dropping i_mmap_rwsem in read mode
4195                          * here is OK as COW mappings do not interact with
4196                          * PMD sharing.
4197                          *
4198                          * Reacquire both after unmap operation.
4199                          */
4200                         idx = vma_hugecache_offset(h, vma, haddr);
4201                         hash = hugetlb_fault_mutex_hash(mapping, idx);
4202                         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
4203                         i_mmap_unlock_read(mapping);
4204
4205                         unmap_ref_private(mm, vma, old_page, haddr);
4206
4207                         i_mmap_lock_read(mapping);
4208                         mutex_lock(&hugetlb_fault_mutex_table[hash]);
4209                         spin_lock(ptl);
4210                         ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
4211                         if (likely(ptep &&
4212                                    pte_same(huge_ptep_get(ptep), pte)))
4213                                 goto retry_avoidcopy;
4214                         /*
4215                          * race occurs while re-acquiring page table
4216                          * lock, and our job is done.
4217                          */
4218                         return 0;
4219                 }
4220
4221                 ret = vmf_error(PTR_ERR(new_page));
4222                 goto out_release_old;
4223         }
4224
4225         /*
4226          * When the original hugepage is shared one, it does not have
4227          * anon_vma prepared.
4228          */
4229         if (unlikely(anon_vma_prepare(vma))) {
4230                 ret = VM_FAULT_OOM;
4231                 goto out_release_all;
4232         }
4233
4234         copy_user_huge_page(new_page, old_page, address, vma,
4235                             pages_per_huge_page(h));
4236         __SetPageUptodate(new_page);
4237
4238         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, haddr,
4239                                 haddr + huge_page_size(h));
4240         mmu_notifier_invalidate_range_start(&range);
4241
4242         /*
4243          * Retake the page table lock to check for racing updates
4244          * before the page tables are altered
4245          */
4246         spin_lock(ptl);
4247         ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
4248         if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
4249                 ClearHPageRestoreReserve(new_page);
4250
4251                 /* Break COW */
4252                 huge_ptep_clear_flush(vma, haddr, ptep);
4253                 mmu_notifier_invalidate_range(mm, range.start, range.end);
4254                 set_huge_pte_at(mm, haddr, ptep,
4255                                 make_huge_pte(vma, new_page, 1));
4256                 page_remove_rmap(old_page, true);
4257                 hugepage_add_new_anon_rmap(new_page, vma, haddr);
4258                 SetHPageMigratable(new_page);
4259                 /* Make the old page be freed below */
4260                 new_page = old_page;
4261         }
4262         spin_unlock(ptl);
4263         mmu_notifier_invalidate_range_end(&range);
4264 out_release_all:
4265         restore_reserve_on_error(h, vma, haddr, new_page);
4266         put_page(new_page);
4267 out_release_old:
4268         put_page(old_page);
4269
4270         spin_lock(ptl); /* Caller expects lock to be held */
4271         return ret;
4272 }
4273
4274 /* Return the pagecache page at a given address within a VMA */
4275 static struct page *hugetlbfs_pagecache_page(struct hstate *h,
4276                         struct vm_area_struct *vma, unsigned long address)
4277 {
4278         struct address_space *mapping;
4279         pgoff_t idx;
4280
4281         mapping = vma->vm_file->f_mapping;
4282         idx = vma_hugecache_offset(h, vma, address);
4283
4284         return find_lock_page(mapping, idx);
4285 }
4286
4287 /*
4288  * Return whether there is a pagecache page to back given address within VMA.
4289  * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
4290  */
4291 static bool hugetlbfs_pagecache_present(struct hstate *h,
4292                         struct vm_area_struct *vma, unsigned long address)
4293 {
4294         struct address_space *mapping;
4295         pgoff_t idx;
4296         struct page *page;
4297
4298         mapping = vma->vm_file->f_mapping;
4299         idx = vma_hugecache_offset(h, vma, address);
4300
4301         page = find_get_page(mapping, idx);
4302         if (page)
4303                 put_page(page);
4304         return page != NULL;
4305 }
4306
4307 int huge_add_to_page_cache(struct page *page, struct address_space *mapping,
4308                            pgoff_t idx)
4309 {
4310         struct inode *inode = mapping->host;
4311         struct hstate *h = hstate_inode(inode);
4312         int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
4313
4314         if (err)
4315                 return err;
4316         ClearHPageRestoreReserve(page);
4317
4318         /*
4319          * set page dirty so that it will not be removed from cache/file
4320          * by non-hugetlbfs specific code paths.
4321          */
4322         set_page_dirty(page);
4323
4324         spin_lock(&inode->i_lock);
4325         inode->i_blocks += blocks_per_huge_page(h);
4326         spin_unlock(&inode->i_lock);
4327         return 0;
4328 }
4329
4330 static vm_fault_t hugetlb_no_page(struct mm_struct *mm,
4331                         struct vm_area_struct *vma,
4332                         struct address_space *mapping, pgoff_t idx,
4333                         unsigned long address, pte_t *ptep, unsigned int flags)
4334 {
4335         struct hstate *h = hstate_vma(vma);
4336         vm_fault_t ret = VM_FAULT_SIGBUS;
4337         int anon_rmap = 0;
4338         unsigned long size;
4339         struct page *page;
4340         pte_t new_pte;
4341         spinlock_t *ptl;
4342         unsigned long haddr = address & huge_page_mask(h);
4343         bool new_page = false;
4344
4345         /*
4346          * Currently, we are forced to kill the process in the event the
4347          * original mapper has unmapped pages from the child due to a failed
4348          * COW. Warn that such a situation has occurred as it may not be obvious
4349          */
4350         if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
4351                 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
4352                            current->pid);
4353                 return ret;
4354         }
4355
4356         /*
4357          * We can not race with truncation due to holding i_mmap_rwsem.
4358          * i_size is modified when holding i_mmap_rwsem, so check here
4359          * once for faults beyond end of file.
4360          */
4361         size = i_size_read(mapping->host) >> huge_page_shift(h);
4362         if (idx >= size)
4363                 goto out;
4364
4365 retry:
4366         page = find_lock_page(mapping, idx);
4367         if (!page) {
4368                 /*
4369                  * Check for page in userfault range
4370                  */
4371                 if (userfaultfd_missing(vma)) {
4372                         u32 hash;
4373                         struct vm_fault vmf = {
4374                                 .vma = vma,
4375                                 .address = haddr,
4376                                 .flags = flags,
4377                                 /*
4378                                  * Hard to debug if it ends up being
4379                                  * used by a callee that assumes
4380                                  * something about the other
4381                                  * uninitialized fields... same as in
4382                                  * memory.c
4383                                  */
4384                         };
4385
4386                         /*
4387                          * hugetlb_fault_mutex and i_mmap_rwsem must be
4388                          * dropped before handling userfault.  Reacquire
4389                          * after handling fault to make calling code simpler.
4390                          */
4391                         hash = hugetlb_fault_mutex_hash(mapping, idx);
4392                         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
4393                         i_mmap_unlock_read(mapping);
4394                         ret = handle_userfault(&vmf, VM_UFFD_MISSING);
4395                         i_mmap_lock_read(mapping);
4396                         mutex_lock(&hugetlb_fault_mutex_table[hash]);
4397                         goto out;
4398                 }
4399
4400                 page = alloc_huge_page(vma, haddr, 0);
4401                 if (IS_ERR(page)) {
4402                         /*
4403                          * Returning error will result in faulting task being
4404                          * sent SIGBUS.  The hugetlb fault mutex prevents two
4405                          * tasks from racing to fault in the same page which
4406                          * could result in false unable to allocate errors.
4407                          * Page migration does not take the fault mutex, but
4408                          * does a clear then write of pte's under page table
4409                          * lock.  Page fault code could race with migration,
4410                          * notice the clear pte and try to allocate a page
4411                          * here.  Before returning error, get ptl and make
4412                          * sure there really is no pte entry.
4413                          */
4414                         ptl = huge_pte_lock(h, mm, ptep);
4415                         ret = 0;
4416                         if (huge_pte_none(huge_ptep_get(ptep)))
4417                                 ret = vmf_error(PTR_ERR(page));
4418                         spin_unlock(ptl);
4419                         goto out;
4420                 }
4421                 clear_huge_page(page, address, pages_per_huge_page(h));
4422                 __SetPageUptodate(page);
4423                 new_page = true;
4424
4425                 if (vma->vm_flags & VM_MAYSHARE) {
4426                         int err = huge_add_to_page_cache(page, mapping, idx);
4427                         if (err) {
4428                                 put_page(page);
4429                                 if (err == -EEXIST)
4430                                         goto retry;
4431                                 goto out;
4432                         }
4433                 } else {
4434                         lock_page(page);
4435                         if (unlikely(anon_vma_prepare(vma))) {
4436                                 ret = VM_FAULT_OOM;
4437                                 goto backout_unlocked;
4438                         }
4439                         anon_rmap = 1;
4440                 }
4441         } else {
4442                 /*
4443                  * If memory error occurs between mmap() and fault, some process
4444                  * don't have hwpoisoned swap entry for errored virtual address.
4445                  * So we need to block hugepage fault by PG_hwpoison bit check.
4446                  */
4447                 if (unlikely(PageHWPoison(page))) {
4448                         ret = VM_FAULT_HWPOISON_LARGE |
4449                                 VM_FAULT_SET_HINDEX(hstate_index(h));
4450                         goto backout_unlocked;
4451                 }
4452         }
4453
4454         /*
4455          * If we are going to COW a private mapping later, we examine the
4456          * pending reservations for this page now. This will ensure that
4457          * any allocations necessary to record that reservation occur outside
4458          * the spinlock.
4459          */
4460         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
4461                 if (vma_needs_reservation(h, vma, haddr) < 0) {
4462                         ret = VM_FAULT_OOM;
4463                         goto backout_unlocked;
4464                 }
4465                 /* Just decrements count, does not deallocate */
4466                 vma_end_reservation(h, vma, haddr);
4467         }
4468
4469         ptl = huge_pte_lock(h, mm, ptep);
4470         ret = 0;
4471         if (!huge_pte_none(huge_ptep_get(ptep)))
4472                 goto backout;
4473
4474         if (anon_rmap) {
4475                 ClearHPageRestoreReserve(page);
4476                 hugepage_add_new_anon_rmap(page, vma, haddr);
4477         } else
4478                 page_dup_rmap(page, true);
4479         new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
4480                                 && (vma->vm_flags & VM_SHARED)));
4481         set_huge_pte_at(mm, haddr, ptep, new_pte);
4482
4483         hugetlb_count_add(pages_per_huge_page(h), mm);
4484         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
4485                 /* Optimization, do the COW without a second fault */
4486                 ret = hugetlb_cow(mm, vma, address, ptep, page, ptl);
4487         }
4488
4489         spin_unlock(ptl);
4490
4491         /*
4492          * Only set HPageMigratable in newly allocated pages.  Existing pages
4493          * found in the pagecache may not have HPageMigratableset if they have
4494          * been isolated for migration.
4495          */
4496         if (new_page)
4497                 SetHPageMigratable(page);
4498
4499         unlock_page(page);
4500 out:
4501         return ret;
4502
4503 backout:
4504         spin_unlock(ptl);
4505 backout_unlocked:
4506         unlock_page(page);
4507         restore_reserve_on_error(h, vma, haddr, page);
4508         put_page(page);
4509         goto out;
4510 }
4511
4512 #ifdef CONFIG_SMP
4513 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
4514 {
4515         unsigned long key[2];
4516         u32 hash;
4517
4518         key[0] = (unsigned long) mapping;
4519         key[1] = idx;
4520
4521         hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0);
4522
4523         return hash & (num_fault_mutexes - 1);
4524 }
4525 #else
4526 /*
4527  * For uniprocessor systems we always use a single mutex, so just
4528  * return 0 and avoid the hashing overhead.
4529  */
4530 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
4531 {
4532         return 0;
4533 }
4534 #endif
4535
4536 vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
4537                         unsigned long address, unsigned int flags)
4538 {
4539         pte_t *ptep, entry;
4540         spinlock_t *ptl;
4541         vm_fault_t ret;
4542         u32 hash;
4543         pgoff_t idx;
4544         struct page *page = NULL;
4545         struct page *pagecache_page = NULL;
4546         struct hstate *h = hstate_vma(vma);
4547         struct address_space *mapping;
4548         int need_wait_lock = 0;
4549         unsigned long haddr = address & huge_page_mask(h);
4550
4551         ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
4552         if (ptep) {
4553                 /*
4554                  * Since we hold no locks, ptep could be stale.  That is
4555                  * OK as we are only making decisions based on content and
4556                  * not actually modifying content here.
4557                  */
4558                 entry = huge_ptep_get(ptep);
4559                 if (unlikely(is_hugetlb_entry_migration(entry))) {
4560                         migration_entry_wait_huge(vma, mm, ptep);
4561                         return 0;
4562                 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
4563                         return VM_FAULT_HWPOISON_LARGE |
4564                                 VM_FAULT_SET_HINDEX(hstate_index(h));
4565         }
4566
4567         /*
4568          * Acquire i_mmap_rwsem before calling huge_pte_alloc and hold
4569          * until finished with ptep.  This serves two purposes:
4570          * 1) It prevents huge_pmd_unshare from being called elsewhere
4571          *    and making the ptep no longer valid.
4572          * 2) It synchronizes us with i_size modifications during truncation.
4573          *
4574          * ptep could have already be assigned via huge_pte_offset.  That
4575          * is OK, as huge_pte_alloc will return the same value unless
4576          * something has changed.
4577          */
4578         mapping = vma->vm_file->f_mapping;
4579         i_mmap_lock_read(mapping);
4580         ptep = huge_pte_alloc(mm, vma, haddr, huge_page_size(h));
4581         if (!ptep) {
4582                 i_mmap_unlock_read(mapping);
4583                 return VM_FAULT_OOM;
4584         }
4585
4586         /*
4587          * Serialize hugepage allocation and instantiation, so that we don't
4588          * get spurious allocation failures if two CPUs race to instantiate
4589          * the same page in the page cache.
4590          */
4591         idx = vma_hugecache_offset(h, vma, haddr);
4592         hash = hugetlb_fault_mutex_hash(mapping, idx);
4593         mutex_lock(&hugetlb_fault_mutex_table[hash]);
4594
4595         entry = huge_ptep_get(ptep);
4596         if (huge_pte_none(entry)) {
4597                 ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
4598                 goto out_mutex;
4599         }
4600
4601         ret = 0;
4602
4603         /*
4604          * entry could be a migration/hwpoison entry at this point, so this
4605          * check prevents the kernel from going below assuming that we have
4606          * an active hugepage in pagecache. This goto expects the 2nd page
4607          * fault, and is_hugetlb_entry_(migration|hwpoisoned) check will
4608          * properly handle it.
4609          */
4610         if (!pte_present(entry))
4611                 goto out_mutex;
4612
4613         /*
4614          * If we are going to COW the mapping later, we examine the pending
4615          * reservations for this page now. This will ensure that any
4616          * allocations necessary to record that reservation occur outside the
4617          * spinlock. For private mappings, we also lookup the pagecache
4618          * page now as it is used to determine if a reservation has been
4619          * consumed.
4620          */
4621         if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
4622                 if (vma_needs_reservation(h, vma, haddr) < 0) {
4623                         ret = VM_FAULT_OOM;
4624                         goto out_mutex;
4625                 }
4626                 /* Just decrements count, does not deallocate */
4627                 vma_end_reservation(h, vma, haddr);
4628
4629                 if (!(vma->vm_flags & VM_MAYSHARE))
4630                         pagecache_page = hugetlbfs_pagecache_page(h,
4631                                                                 vma, haddr);
4632         }
4633
4634         ptl = huge_pte_lock(h, mm, ptep);
4635
4636         /* Check for a racing update before calling hugetlb_cow */
4637         if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
4638                 goto out_ptl;
4639
4640         /*
4641          * hugetlb_cow() requires page locks of pte_page(entry) and
4642          * pagecache_page, so here we need take the former one
4643          * when page != pagecache_page or !pagecache_page.
4644          */
4645         page = pte_page(entry);
4646         if (page != pagecache_page)
4647                 if (!trylock_page(page)) {
4648                         need_wait_lock = 1;
4649                         goto out_ptl;
4650                 }
4651
4652         get_page(page);
4653
4654         if (flags & FAULT_FLAG_WRITE) {
4655                 if (!huge_pte_write(entry)) {
4656                         ret = hugetlb_cow(mm, vma, address, ptep,
4657                                           pagecache_page, ptl);
4658                         goto out_put_page;
4659                 }
4660                 entry = huge_pte_mkdirty(entry);
4661         }
4662         entry = pte_mkyoung(entry);
4663         if (huge_ptep_set_access_flags(vma, haddr, ptep, entry,
4664                                                 flags & FAULT_FLAG_WRITE))
4665                 update_mmu_cache(vma, haddr, ptep);
4666 out_put_page:
4667         if (page != pagecache_page)
4668                 unlock_page(page);
4669         put_page(page);
4670 out_ptl:
4671         spin_unlock(ptl);
4672
4673         if (pagecache_page) {
4674                 unlock_page(pagecache_page);
4675                 put_page(pagecache_page);
4676         }
4677 out_mutex:
4678         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
4679         i_mmap_unlock_read(mapping);
4680         /*
4681          * Generally it's safe to hold refcount during waiting page lock. But
4682          * here we just wait to defer the next page fault to avoid busy loop and
4683          * the page is not used after unlocked before returning from the current
4684          * page fault. So we are safe from accessing freed page, even if we wait
4685          * here without taking refcount.
4686          */
4687         if (need_wait_lock)
4688                 wait_on_page_locked(page);
4689         return ret;
4690 }
4691
4692 /*
4693  * Used by userfaultfd UFFDIO_COPY.  Based on mcopy_atomic_pte with
4694  * modifications for huge pages.
4695  */
4696 int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm,
4697                             pte_t *dst_pte,
4698                             struct vm_area_struct *dst_vma,
4699                             unsigned long dst_addr,
4700                             unsigned long src_addr,
4701                             struct page **pagep)
4702 {
4703         struct address_space *mapping;
4704         pgoff_t idx;
4705         unsigned long size;
4706         int vm_shared = dst_vma->vm_flags & VM_SHARED;
4707         struct hstate *h = hstate_vma(dst_vma);
4708         pte_t _dst_pte;
4709         spinlock_t *ptl;
4710         int ret;
4711         struct page *page;
4712
4713         if (!*pagep) {
4714                 ret = -ENOMEM;
4715                 page = alloc_huge_page(dst_vma, dst_addr, 0);
4716                 if (IS_ERR(page))
4717                         goto out;
4718
4719                 ret = copy_huge_page_from_user(page,
4720                                                 (const void __user *) src_addr,
4721                                                 pages_per_huge_page(h), false);
4722
4723                 /* fallback to copy_from_user outside mmap_lock */
4724                 if (unlikely(ret)) {
4725                         ret = -ENOENT;
4726                         *pagep = page;
4727                         /* don't free the page */
4728                         goto out;
4729                 }
4730         } else {
4731                 page = *pagep;
4732                 *pagep = NULL;
4733         }
4734
4735         /*
4736          * The memory barrier inside __SetPageUptodate makes sure that
4737          * preceding stores to the page contents become visible before
4738          * the set_pte_at() write.
4739          */
4740         __SetPageUptodate(page);
4741
4742         mapping = dst_vma->vm_file->f_mapping;
4743         idx = vma_hugecache_offset(h, dst_vma, dst_addr);
4744
4745         /*
4746          * If shared, add to page cache
4747          */
4748         if (vm_shared) {
4749                 size = i_size_read(mapping->host) >> huge_page_shift(h);
4750                 ret = -EFAULT;
4751                 if (idx >= size)
4752                         goto out_release_nounlock;
4753
4754                 /*
4755                  * Serialization between remove_inode_hugepages() and
4756                  * huge_add_to_page_cache() below happens through the
4757                  * hugetlb_fault_mutex_table that here must be hold by
4758                  * the caller.
4759                  */
4760                 ret = huge_add_to_page_cache(page, mapping, idx);
4761                 if (ret)
4762                         goto out_release_nounlock;
4763         }
4764
4765         ptl = huge_pte_lockptr(h, dst_mm, dst_pte);
4766         spin_lock(ptl);
4767
4768         /*
4769          * Recheck the i_size after holding PT lock to make sure not
4770          * to leave any page mapped (as page_mapped()) beyond the end
4771          * of the i_size (remove_inode_hugepages() is strict about
4772          * enforcing that). If we bail out here, we'll also leave a
4773          * page in the radix tree in the vm_shared case beyond the end
4774          * of the i_size, but remove_inode_hugepages() will take care
4775          * of it as soon as we drop the hugetlb_fault_mutex_table.
4776          */
4777         size = i_size_read(mapping->host) >> huge_page_shift(h);
4778         ret = -EFAULT;
4779         if (idx >= size)
4780                 goto out_release_unlock;
4781
4782         ret = -EEXIST;
4783         if (!huge_pte_none(huge_ptep_get(dst_pte)))
4784                 goto out_release_unlock;
4785
4786         if (vm_shared) {
4787                 page_dup_rmap(page, true);
4788         } else {
4789                 ClearHPageRestoreReserve(page);
4790                 hugepage_add_new_anon_rmap(page, dst_vma, dst_addr);
4791         }
4792
4793         _dst_pte = make_huge_pte(dst_vma, page, dst_vma->vm_flags & VM_WRITE);
4794         if (dst_vma->vm_flags & VM_WRITE)
4795                 _dst_pte = huge_pte_mkdirty(_dst_pte);
4796         _dst_pte = pte_mkyoung(_dst_pte);
4797
4798         set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
4799
4800         (void)huge_ptep_set_access_flags(dst_vma, dst_addr, dst_pte, _dst_pte,
4801                                         dst_vma->vm_flags & VM_WRITE);
4802         hugetlb_count_add(pages_per_huge_page(h), dst_mm);
4803
4804         /* No need to invalidate - it was non-present before */
4805         update_mmu_cache(dst_vma, dst_addr, dst_pte);
4806
4807         spin_unlock(ptl);
4808         SetHPageMigratable(page);
4809         if (vm_shared)
4810                 unlock_page(page);
4811         ret = 0;
4812 out:
4813         return ret;
4814 out_release_unlock:
4815         spin_unlock(ptl);
4816         if (vm_shared)
4817                 unlock_page(page);
4818 out_release_nounlock:
4819         put_page(page);
4820         goto out;
4821 }
4822
4823 static void record_subpages_vmas(struct page *page, struct vm_area_struct *vma,
4824                                  int refs, struct page **pages,
4825                                  struct vm_area_struct **vmas)
4826 {
4827         int nr;
4828
4829         for (nr = 0; nr < refs; nr++) {
4830                 if (likely(pages))
4831                         pages[nr] = mem_map_offset(page, nr);
4832                 if (vmas)
4833                         vmas[nr] = vma;
4834         }
4835 }
4836
4837 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
4838                          struct page **pages, struct vm_area_struct **vmas,
4839                          unsigned long *position, unsigned long *nr_pages,
4840                          long i, unsigned int flags, int *locked)
4841 {
4842         unsigned long pfn_offset;
4843         unsigned long vaddr = *position;
4844         unsigned long remainder = *nr_pages;
4845         struct hstate *h = hstate_vma(vma);
4846         int err = -EFAULT, refs;
4847
4848         while (vaddr < vma->vm_end && remainder) {
4849                 pte_t *pte;
4850                 spinlock_t *ptl = NULL;
4851                 int absent;
4852                 struct page *page;
4853
4854                 /*
4855                  * If we have a pending SIGKILL, don't keep faulting pages and
4856                  * potentially allocating memory.
4857                  */
4858                 if (fatal_signal_pending(current)) {
4859                         remainder = 0;
4860                         break;
4861                 }
4862
4863                 /*
4864                  * Some archs (sparc64, sh*) have multiple pte_ts to
4865                  * each hugepage.  We have to make sure we get the
4866                  * first, for the page indexing below to work.
4867                  *
4868                  * Note that page table lock is not held when pte is null.
4869                  */
4870                 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h),
4871                                       huge_page_size(h));
4872                 if (pte)
4873                         ptl = huge_pte_lock(h, mm, pte);
4874                 absent = !pte || huge_pte_none(huge_ptep_get(pte));
4875
4876                 /*
4877                  * When coredumping, it suits get_dump_page if we just return
4878                  * an error where there's an empty slot with no huge pagecache
4879                  * to back it.  This way, we avoid allocating a hugepage, and
4880                  * the sparse dumpfile avoids allocating disk blocks, but its
4881                  * huge holes still show up with zeroes where they need to be.
4882                  */
4883                 if (absent && (flags & FOLL_DUMP) &&
4884                     !hugetlbfs_pagecache_present(h, vma, vaddr)) {
4885                         if (pte)
4886                                 spin_unlock(ptl);
4887                         remainder = 0;
4888                         break;
4889                 }
4890
4891                 /*
4892                  * We need call hugetlb_fault for both hugepages under migration
4893                  * (in which case hugetlb_fault waits for the migration,) and
4894                  * hwpoisoned hugepages (in which case we need to prevent the
4895                  * caller from accessing to them.) In order to do this, we use
4896                  * here is_swap_pte instead of is_hugetlb_entry_migration and
4897                  * is_hugetlb_entry_hwpoisoned. This is because it simply covers
4898                  * both cases, and because we can't follow correct pages
4899                  * directly from any kind of swap entries.
4900                  */
4901                 if (absent || is_swap_pte(huge_ptep_get(pte)) ||
4902                     ((flags & FOLL_WRITE) &&
4903                       !huge_pte_write(huge_ptep_get(pte)))) {
4904                         vm_fault_t ret;
4905                         unsigned int fault_flags = 0;
4906
4907                         if (pte)
4908                                 spin_unlock(ptl);
4909                         if (flags & FOLL_WRITE)
4910                                 fault_flags |= FAULT_FLAG_WRITE;
4911                         if (locked)
4912                                 fault_flags |= FAULT_FLAG_ALLOW_RETRY |
4913                                         FAULT_FLAG_KILLABLE;
4914                         if (flags & FOLL_NOWAIT)
4915                                 fault_flags |= FAULT_FLAG_ALLOW_RETRY |
4916                                         FAULT_FLAG_RETRY_NOWAIT;
4917                         if (flags & FOLL_TRIED) {
4918                                 /*
4919                                  * Note: FAULT_FLAG_ALLOW_RETRY and
4920                                  * FAULT_FLAG_TRIED can co-exist
4921                                  */
4922                                 fault_flags |= FAULT_FLAG_TRIED;
4923                         }
4924                         ret = hugetlb_fault(mm, vma, vaddr, fault_flags);
4925                         if (ret & VM_FAULT_ERROR) {
4926                                 err = vm_fault_to_errno(ret, flags);
4927                                 remainder = 0;
4928                                 break;
4929                         }
4930                         if (ret & VM_FAULT_RETRY) {
4931                                 if (locked &&
4932                                     !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
4933                                         *locked = 0;
4934                                 *nr_pages = 0;
4935                                 /*
4936                                  * VM_FAULT_RETRY must not return an
4937                                  * error, it will return zero
4938                                  * instead.
4939                                  *
4940                                  * No need to update "position" as the
4941                                  * caller will not check it after
4942                                  * *nr_pages is set to 0.
4943                                  */
4944                                 return i;
4945                         }
4946                         continue;
4947                 }
4948
4949                 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
4950                 page = pte_page(huge_ptep_get(pte));
4951
4952                 /*
4953                  * If subpage information not requested, update counters
4954                  * and skip the same_page loop below.
4955                  */
4956                 if (!pages && !vmas && !pfn_offset &&
4957                     (vaddr + huge_page_size(h) < vma->vm_end) &&
4958                     (remainder >= pages_per_huge_page(h))) {
4959                         vaddr += huge_page_size(h);
4960                         remainder -= pages_per_huge_page(h);
4961                         i += pages_per_huge_page(h);
4962                         spin_unlock(ptl);
4963                         continue;
4964                 }
4965
4966                 refs = min3(pages_per_huge_page(h) - pfn_offset,
4967                             (vma->vm_end - vaddr) >> PAGE_SHIFT, remainder);
4968
4969                 if (pages || vmas)
4970                         record_subpages_vmas(mem_map_offset(page, pfn_offset),
4971                                              vma, refs,
4972                                              likely(pages) ? pages + i : NULL,
4973                                              vmas ? vmas + i : NULL);
4974
4975                 if (pages) {
4976                         /*
4977                          * try_grab_compound_head() should always succeed here,
4978                          * because: a) we hold the ptl lock, and b) we've just
4979                          * checked that the huge page is present in the page
4980                          * tables. If the huge page is present, then the tail
4981                          * pages must also be present. The ptl prevents the
4982                          * head page and tail pages from being rearranged in
4983                          * any way. So this page must be available at this
4984                          * point, unless the page refcount overflowed:
4985                          */
4986                         if (WARN_ON_ONCE(!try_grab_compound_head(pages[i],
4987                                                                  refs,
4988                                                                  flags))) {
4989                                 spin_unlock(ptl);
4990                                 remainder = 0;
4991                                 err = -ENOMEM;
4992                                 break;
4993                         }
4994                 }
4995
4996                 vaddr += (refs << PAGE_SHIFT);
4997                 remainder -= refs;
4998                 i += refs;
4999
5000                 spin_unlock(ptl);
5001         }
5002         *nr_pages = remainder;
5003         /*
5004          * setting position is actually required only if remainder is
5005          * not zero but it's faster not to add a "if (remainder)"
5006          * branch.
5007          */
5008         *position = vaddr;
5009
5010         return i ? i : err;
5011 }
5012
5013 unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
5014                 unsigned long address, unsigned long end, pgprot_t newprot)
5015 {
5016         struct mm_struct *mm = vma->vm_mm;
5017         unsigned long start = address;
5018         pte_t *ptep;
5019         pte_t pte;
5020         struct hstate *h = hstate_vma(vma);
5021         unsigned long pages = 0;
5022         bool shared_pmd = false;
5023         struct mmu_notifier_range range;
5024
5025         /*
5026          * In the case of shared PMDs, the area to flush could be beyond
5027          * start/end.  Set range.start/range.end to cover the maximum possible
5028          * range if PMD sharing is possible.
5029          */
5030         mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA,
5031                                 0, vma, mm, start, end);
5032         adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
5033
5034         BUG_ON(address >= end);
5035         flush_cache_range(vma, range.start, range.end);
5036
5037         mmu_notifier_invalidate_range_start(&range);
5038         i_mmap_lock_write(vma->vm_file->f_mapping);
5039         for (; address < end; address += huge_page_size(h)) {
5040                 spinlock_t *ptl;
5041                 ptep = huge_pte_offset(mm, address, huge_page_size(h));
5042                 if (!ptep)
5043                         continue;
5044                 ptl = huge_pte_lock(h, mm, ptep);
5045                 if (huge_pmd_unshare(mm, vma, &address, ptep)) {
5046                         pages++;
5047                         spin_unlock(ptl);
5048                         shared_pmd = true;
5049                         continue;
5050                 }
5051                 pte = huge_ptep_get(ptep);
5052                 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
5053                         spin_unlock(ptl);
5054                         continue;
5055                 }
5056                 if (unlikely(is_hugetlb_entry_migration(pte))) {
5057                         swp_entry_t entry = pte_to_swp_entry(pte);
5058
5059                         if (is_write_migration_entry(entry)) {
5060                                 pte_t newpte;
5061
5062                                 make_migration_entry_read(&entry);
5063                                 newpte = swp_entry_to_pte(entry);
5064                                 set_huge_swap_pte_at(mm, address, ptep,
5065                                                      newpte, huge_page_size(h));
5066                                 pages++;
5067                         }
5068                         spin_unlock(ptl);
5069                         continue;
5070                 }
5071                 if (!huge_pte_none(pte)) {
5072                         pte_t old_pte;
5073
5074                         old_pte = huge_ptep_modify_prot_start(vma, address, ptep);
5075                         pte = pte_mkhuge(huge_pte_modify(old_pte, newprot));
5076                         pte = arch_make_huge_pte(pte, vma, NULL, 0);
5077                         huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte);
5078                         pages++;
5079                 }
5080                 spin_unlock(ptl);
5081         }
5082         /*
5083          * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
5084          * may have cleared our pud entry and done put_page on the page table:
5085          * once we release i_mmap_rwsem, another task can do the final put_page
5086          * and that page table be reused and filled with junk.  If we actually
5087          * did unshare a page of pmds, flush the range corresponding to the pud.
5088          */
5089         if (shared_pmd)
5090                 flush_hugetlb_tlb_range(vma, range.start, range.end);
5091         else
5092                 flush_hugetlb_tlb_range(vma, start, end);
5093         /*
5094          * No need to call mmu_notifier_invalidate_range() we are downgrading
5095          * page table protection not changing it to point to a new page.
5096          *
5097          * See Documentation/vm/mmu_notifier.rst
5098          */
5099         i_mmap_unlock_write(vma->vm_file->f_mapping);
5100         mmu_notifier_invalidate_range_end(&range);
5101
5102         return pages << h->order;
5103 }
5104
5105 /* Return true if reservation was successful, false otherwise.  */
5106 bool hugetlb_reserve_pages(struct inode *inode,
5107                                         long from, long to,
5108                                         struct vm_area_struct *vma,
5109                                         vm_flags_t vm_flags)
5110 {
5111         long chg, add = -1;
5112         struct hstate *h = hstate_inode(inode);
5113         struct hugepage_subpool *spool = subpool_inode(inode);
5114         struct resv_map *resv_map;
5115         struct hugetlb_cgroup *h_cg = NULL;
5116         long gbl_reserve, regions_needed = 0;
5117
5118         /* This should never happen */
5119         if (from > to) {
5120                 VM_WARN(1, "%s called with a negative range\n", __func__);
5121                 return false;
5122         }
5123
5124         /*
5125          * Only apply hugepage reservation if asked. At fault time, an
5126          * attempt will be made for VM_NORESERVE to allocate a page
5127          * without using reserves
5128          */
5129         if (vm_flags & VM_NORESERVE)
5130                 return true;
5131
5132         /*
5133          * Shared mappings base their reservation on the number of pages that
5134          * are already allocated on behalf of the file. Private mappings need
5135          * to reserve the full area even if read-only as mprotect() may be
5136          * called to make the mapping read-write. Assume !vma is a shm mapping
5137          */
5138         if (!vma || vma->vm_flags & VM_MAYSHARE) {
5139                 /*
5140                  * resv_map can not be NULL as hugetlb_reserve_pages is only
5141                  * called for inodes for which resv_maps were created (see
5142                  * hugetlbfs_get_inode).
5143                  */
5144                 resv_map = inode_resv_map(inode);
5145
5146                 chg = region_chg(resv_map, from, to, &regions_needed);
5147
5148         } else {
5149                 /* Private mapping. */
5150                 resv_map = resv_map_alloc();
5151                 if (!resv_map)
5152                         return false;
5153
5154                 chg = to - from;
5155
5156                 set_vma_resv_map(vma, resv_map);
5157                 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
5158         }
5159
5160         if (chg < 0)
5161                 goto out_err;
5162
5163         if (hugetlb_cgroup_charge_cgroup_rsvd(hstate_index(h),
5164                                 chg * pages_per_huge_page(h), &h_cg) < 0)
5165                 goto out_err;
5166
5167         if (vma && !(vma->vm_flags & VM_MAYSHARE) && h_cg) {
5168                 /* For private mappings, the hugetlb_cgroup uncharge info hangs
5169                  * of the resv_map.
5170                  */
5171                 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, h_cg, h);
5172         }
5173
5174         /*
5175          * There must be enough pages in the subpool for the mapping. If
5176          * the subpool has a minimum size, there may be some global
5177          * reservations already in place (gbl_reserve).
5178          */
5179         gbl_reserve = hugepage_subpool_get_pages(spool, chg);
5180         if (gbl_reserve < 0)
5181                 goto out_uncharge_cgroup;
5182
5183         /*
5184          * Check enough hugepages are available for the reservation.
5185          * Hand the pages back to the subpool if there are not
5186          */
5187         if (hugetlb_acct_memory(h, gbl_reserve) < 0)
5188                 goto out_put_pages;
5189
5190         /*
5191          * Account for the reservations made. Shared mappings record regions
5192          * that have reservations as they are shared by multiple VMAs.
5193          * When the last VMA disappears, the region map says how much
5194          * the reservation was and the page cache tells how much of
5195          * the reservation was consumed. Private mappings are per-VMA and
5196          * only the consumed reservations are tracked. When the VMA
5197          * disappears, the original reservation is the VMA size and the
5198          * consumed reservations are stored in the map. Hence, nothing
5199          * else has to be done for private mappings here
5200          */
5201         if (!vma || vma->vm_flags & VM_MAYSHARE) {
5202                 add = region_add(resv_map, from, to, regions_needed, h, h_cg);
5203
5204                 if (unlikely(add < 0)) {
5205                         hugetlb_acct_memory(h, -gbl_reserve);
5206                         goto out_put_pages;
5207                 } else if (unlikely(chg > add)) {
5208                         /*
5209                          * pages in this range were added to the reserve
5210                          * map between region_chg and region_add.  This
5211                          * indicates a race with alloc_huge_page.  Adjust
5212                          * the subpool and reserve counts modified above
5213                          * based on the difference.
5214                          */
5215                         long rsv_adjust;
5216
5217                         /*
5218                          * hugetlb_cgroup_uncharge_cgroup_rsvd() will put the
5219                          * reference to h_cg->css. See comment below for detail.
5220                          */
5221                         hugetlb_cgroup_uncharge_cgroup_rsvd(
5222                                 hstate_index(h),
5223                                 (chg - add) * pages_per_huge_page(h), h_cg);
5224
5225                         rsv_adjust = hugepage_subpool_put_pages(spool,
5226                                                                 chg - add);
5227                         hugetlb_acct_memory(h, -rsv_adjust);
5228                 } else if (h_cg) {
5229                         /*
5230                          * The file_regions will hold their own reference to
5231                          * h_cg->css. So we should release the reference held
5232                          * via hugetlb_cgroup_charge_cgroup_rsvd() when we are
5233                          * done.
5234                          */
5235                         hugetlb_cgroup_put_rsvd_cgroup(h_cg);
5236                 }
5237         }
5238         return true;
5239
5240 out_put_pages:
5241         /* put back original number of pages, chg */
5242         (void)hugepage_subpool_put_pages(spool, chg);
5243 out_uncharge_cgroup:
5244         hugetlb_cgroup_uncharge_cgroup_rsvd(hstate_index(h),
5245                                             chg * pages_per_huge_page(h), h_cg);
5246 out_err:
5247         if (!vma || vma->vm_flags & VM_MAYSHARE)
5248                 /* Only call region_abort if the region_chg succeeded but the
5249                  * region_add failed or didn't run.
5250                  */
5251                 if (chg >= 0 && add < 0)
5252                         region_abort(resv_map, from, to, regions_needed);
5253         if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
5254                 kref_put(&resv_map->refs, resv_map_release);
5255         return false;
5256 }
5257
5258 long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
5259                                                                 long freed)
5260 {
5261         struct hstate *h = hstate_inode(inode);
5262         struct resv_map *resv_map = inode_resv_map(inode);
5263         long chg = 0;
5264         struct hugepage_subpool *spool = subpool_inode(inode);
5265         long gbl_reserve;
5266
5267         /*
5268          * Since this routine can be called in the evict inode path for all
5269          * hugetlbfs inodes, resv_map could be NULL.
5270          */
5271         if (resv_map) {
5272                 chg = region_del(resv_map, start, end);
5273                 /*
5274                  * region_del() can fail in the rare case where a region
5275                  * must be split and another region descriptor can not be
5276                  * allocated.  If end == LONG_MAX, it will not fail.
5277                  */
5278                 if (chg < 0)
5279                         return chg;
5280         }
5281
5282         spin_lock(&inode->i_lock);
5283         inode->i_blocks -= (blocks_per_huge_page(h) * freed);
5284         spin_unlock(&inode->i_lock);
5285
5286         /*
5287          * If the subpool has a minimum size, the number of global
5288          * reservations to be released may be adjusted.
5289          *
5290          * Note that !resv_map implies freed == 0. So (chg - freed)
5291          * won't go negative.
5292          */
5293         gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
5294         hugetlb_acct_memory(h, -gbl_reserve);
5295
5296         return 0;
5297 }
5298
5299 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
5300 static unsigned long page_table_shareable(struct vm_area_struct *svma,
5301                                 struct vm_area_struct *vma,
5302                                 unsigned long addr, pgoff_t idx)
5303 {
5304         unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
5305                                 svma->vm_start;
5306         unsigned long sbase = saddr & PUD_MASK;
5307         unsigned long s_end = sbase + PUD_SIZE;
5308
5309         /* Allow segments to share if only one is marked locked */
5310         unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
5311         unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
5312
5313         /*
5314          * match the virtual addresses, permission and the alignment of the
5315          * page table page.
5316          */
5317         if (pmd_index(addr) != pmd_index(saddr) ||
5318             vm_flags != svm_flags ||
5319             !range_in_vma(svma, sbase, s_end))
5320                 return 0;
5321
5322         return saddr;
5323 }
5324
5325 static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr)
5326 {
5327         unsigned long base = addr & PUD_MASK;
5328         unsigned long end = base + PUD_SIZE;
5329
5330         /*
5331          * check on proper vm_flags and page table alignment
5332          */
5333         if (vma->vm_flags & VM_MAYSHARE && range_in_vma(vma, base, end))
5334                 return true;
5335         return false;
5336 }
5337
5338 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
5339 {
5340 #ifdef CONFIG_USERFAULTFD
5341         if (uffd_disable_huge_pmd_share(vma))
5342                 return false;
5343 #endif
5344         return vma_shareable(vma, addr);
5345 }
5346
5347 /*
5348  * Determine if start,end range within vma could be mapped by shared pmd.
5349  * If yes, adjust start and end to cover range associated with possible
5350  * shared pmd mappings.
5351  */
5352 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
5353                                 unsigned long *start, unsigned long *end)
5354 {
5355         unsigned long v_start = ALIGN(vma->vm_start, PUD_SIZE),
5356                 v_end = ALIGN_DOWN(vma->vm_end, PUD_SIZE);
5357
5358         /*
5359          * vma need span at least one aligned PUD size and the start,end range
5360          * must at least partialy within it.
5361          */
5362         if (!(vma->vm_flags & VM_MAYSHARE) || !(v_end > v_start) ||
5363                 (*end <= v_start) || (*start >= v_end))
5364                 return;
5365
5366         /* Extend the range to be PUD aligned for a worst case scenario */
5367         if (*start > v_start)
5368                 *start = ALIGN_DOWN(*start, PUD_SIZE);
5369
5370         if (*end < v_end)
5371                 *end = ALIGN(*end, PUD_SIZE);
5372 }
5373
5374 /*
5375  * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
5376  * and returns the corresponding pte. While this is not necessary for the
5377  * !shared pmd case because we can allocate the pmd later as well, it makes the
5378  * code much cleaner.
5379  *
5380  * This routine must be called with i_mmap_rwsem held in at least read mode if
5381  * sharing is possible.  For hugetlbfs, this prevents removal of any page
5382  * table entries associated with the address space.  This is important as we
5383  * are setting up sharing based on existing page table entries (mappings).
5384  *
5385  * NOTE: This routine is only called from huge_pte_alloc.  Some callers of
5386  * huge_pte_alloc know that sharing is not possible and do not take
5387  * i_mmap_rwsem as a performance optimization.  This is handled by the
5388  * if !vma_shareable check at the beginning of the routine. i_mmap_rwsem is
5389  * only required for subsequent processing.
5390  */
5391 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
5392                       unsigned long addr, pud_t *pud)
5393 {
5394         struct address_space *mapping = vma->vm_file->f_mapping;
5395         pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
5396                         vma->vm_pgoff;
5397         struct vm_area_struct *svma;
5398         unsigned long saddr;
5399         pte_t *spte = NULL;
5400         pte_t *pte;
5401         spinlock_t *ptl;
5402
5403         i_mmap_assert_locked(mapping);
5404         vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
5405                 if (svma == vma)
5406                         continue;
5407
5408                 saddr = page_table_shareable(svma, vma, addr, idx);
5409                 if (saddr) {
5410                         spte = huge_pte_offset(svma->vm_mm, saddr,
5411                                                vma_mmu_pagesize(svma));
5412                         if (spte) {
5413                                 get_page(virt_to_page(spte));
5414                                 break;
5415                         }
5416                 }
5417         }
5418
5419         if (!spte)
5420                 goto out;
5421
5422         ptl = huge_pte_lock(hstate_vma(vma), mm, spte);
5423         if (pud_none(*pud)) {
5424                 pud_populate(mm, pud,
5425                                 (pmd_t *)((unsigned long)spte & PAGE_MASK));
5426                 mm_inc_nr_pmds(mm);
5427         } else {
5428                 put_page(virt_to_page(spte));
5429         }
5430         spin_unlock(ptl);
5431 out:
5432         pte = (pte_t *)pmd_alloc(mm, pud, addr);
5433         return pte;
5434 }
5435
5436 /*
5437  * unmap huge page backed by shared pte.
5438  *
5439  * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
5440  * indicated by page_count > 1, unmap is achieved by clearing pud and
5441  * decrementing the ref count. If count == 1, the pte page is not shared.
5442  *
5443  * Called with page table lock held and i_mmap_rwsem held in write mode.
5444  *
5445  * returns: 1 successfully unmapped a shared pte page
5446  *          0 the underlying pte page is not shared, or it is the last user
5447  */
5448 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
5449                                         unsigned long *addr, pte_t *ptep)
5450 {
5451         pgd_t *pgd = pgd_offset(mm, *addr);
5452         p4d_t *p4d = p4d_offset(pgd, *addr);
5453         pud_t *pud = pud_offset(p4d, *addr);
5454
5455         i_mmap_assert_write_locked(vma->vm_file->f_mapping);
5456         BUG_ON(page_count(virt_to_page(ptep)) == 0);
5457         if (page_count(virt_to_page(ptep)) == 1)
5458                 return 0;
5459
5460         pud_clear(pud);
5461         put_page(virt_to_page(ptep));
5462         mm_dec_nr_pmds(mm);
5463         *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
5464         return 1;
5465 }
5466
5467 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
5468 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
5469                       unsigned long addr, pud_t *pud)
5470 {
5471         return NULL;
5472 }
5473
5474 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
5475                                 unsigned long *addr, pte_t *ptep)
5476 {
5477         return 0;
5478 }
5479
5480 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
5481                                 unsigned long *start, unsigned long *end)
5482 {
5483 }
5484
5485 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
5486 {
5487         return false;
5488 }
5489 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
5490
5491 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
5492 pte_t *huge_pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
5493                         unsigned long addr, unsigned long sz)
5494 {
5495         pgd_t *pgd;
5496         p4d_t *p4d;
5497         pud_t *pud;
5498         pte_t *pte = NULL;
5499
5500         pgd = pgd_offset(mm, addr);
5501         p4d = p4d_alloc(mm, pgd, addr);
5502         if (!p4d)
5503                 return NULL;
5504         pud = pud_alloc(mm, p4d, addr);
5505         if (pud) {
5506                 if (sz == PUD_SIZE) {
5507                         pte = (pte_t *)pud;
5508                 } else {
5509                         BUG_ON(sz != PMD_SIZE);
5510                         if (want_pmd_share(vma, addr) && pud_none(*pud))
5511                                 pte = huge_pmd_share(mm, vma, addr, pud);
5512                         else
5513                                 pte = (pte_t *)pmd_alloc(mm, pud, addr);
5514                 }
5515         }
5516         BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte));
5517
5518         return pte;
5519 }
5520
5521 /*
5522  * huge_pte_offset() - Walk the page table to resolve the hugepage
5523  * entry at address @addr
5524  *
5525  * Return: Pointer to page table entry (PUD or PMD) for
5526  * address @addr, or NULL if a !p*d_present() entry is encountered and the
5527  * size @sz doesn't match the hugepage size at this level of the page
5528  * table.
5529  */
5530 pte_t *huge_pte_offset(struct mm_struct *mm,
5531                        unsigned long addr, unsigned long sz)
5532 {
5533         pgd_t *pgd;
5534         p4d_t *p4d;
5535         pud_t *pud;
5536         pmd_t *pmd;
5537
5538         pgd = pgd_offset(mm, addr);
5539         if (!pgd_present(*pgd))
5540                 return NULL;
5541         p4d = p4d_offset(pgd, addr);
5542         if (!p4d_present(*p4d))
5543                 return NULL;
5544
5545         pud = pud_offset(p4d, addr);
5546         if (sz == PUD_SIZE)
5547                 /* must be pud huge, non-present or none */
5548                 return (pte_t *)pud;
5549         if (!pud_present(*pud))
5550                 return NULL;
5551         /* must have a valid entry and size to go further */
5552
5553         pmd = pmd_offset(pud, addr);
5554         /* must be pmd huge, non-present or none */
5555         return (pte_t *)pmd;
5556 }
5557
5558 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
5559
5560 /*
5561  * These functions are overwritable if your architecture needs its own
5562  * behavior.
5563  */
5564 struct page * __weak
5565 follow_huge_addr(struct mm_struct *mm, unsigned long address,
5566                               int write)
5567 {
5568         return ERR_PTR(-EINVAL);
5569 }
5570
5571 struct page * __weak
5572 follow_huge_pd(struct vm_area_struct *vma,
5573                unsigned long address, hugepd_t hpd, int flags, int pdshift)
5574 {
5575         WARN(1, "hugepd follow called with no support for hugepage directory format\n");
5576         return NULL;
5577 }
5578
5579 struct page * __weak
5580 follow_huge_pmd(struct mm_struct *mm, unsigned long address,
5581                 pmd_t *pmd, int flags)
5582 {
5583         struct page *page = NULL;
5584         spinlock_t *ptl;
5585         pte_t pte;
5586
5587         /* FOLL_GET and FOLL_PIN are mutually exclusive. */
5588         if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
5589                          (FOLL_PIN | FOLL_GET)))
5590                 return NULL;
5591
5592 retry:
5593         ptl = pmd_lockptr(mm, pmd);
5594         spin_lock(ptl);
5595         /*
5596          * make sure that the address range covered by this pmd is not
5597          * unmapped from other threads.
5598          */
5599         if (!pmd_huge(*pmd))
5600                 goto out;
5601         pte = huge_ptep_get((pte_t *)pmd);
5602         if (pte_present(pte)) {
5603                 page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
5604                 /*
5605                  * try_grab_page() should always succeed here, because: a) we
5606                  * hold the pmd (ptl) lock, and b) we've just checked that the
5607                  * huge pmd (head) page is present in the page tables. The ptl
5608                  * prevents the head page and tail pages from being rearranged
5609                  * in any way. So this page must be available at this point,
5610                  * unless the page refcount overflowed:
5611                  */
5612                 if (WARN_ON_ONCE(!try_grab_page(page, flags))) {
5613                         page = NULL;
5614                         goto out;
5615                 }
5616         } else {
5617                 if (is_hugetlb_entry_migration(pte)) {
5618                         spin_unlock(ptl);
5619                         __migration_entry_wait(mm, (pte_t *)pmd, ptl);
5620                         goto retry;
5621                 }
5622                 /*
5623                  * hwpoisoned entry is treated as no_page_table in
5624                  * follow_page_mask().
5625                  */
5626         }
5627 out:
5628         spin_unlock(ptl);
5629         return page;
5630 }
5631
5632 struct page * __weak
5633 follow_huge_pud(struct mm_struct *mm, unsigned long address,
5634                 pud_t *pud, int flags)
5635 {
5636         if (flags & (FOLL_GET | FOLL_PIN))
5637                 return NULL;
5638
5639         return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
5640 }
5641
5642 struct page * __weak
5643 follow_huge_pgd(struct mm_struct *mm, unsigned long address, pgd_t *pgd, int flags)
5644 {
5645         if (flags & (FOLL_GET | FOLL_PIN))
5646                 return NULL;
5647
5648         return pte_page(*(pte_t *)pgd) + ((address & ~PGDIR_MASK) >> PAGE_SHIFT);
5649 }
5650
5651 bool isolate_huge_page(struct page *page, struct list_head *list)
5652 {
5653         bool ret = true;
5654
5655         spin_lock_irq(&hugetlb_lock);
5656         if (!PageHeadHuge(page) ||
5657             !HPageMigratable(page) ||
5658             !get_page_unless_zero(page)) {
5659                 ret = false;
5660                 goto unlock;
5661         }
5662         ClearHPageMigratable(page);
5663         list_move_tail(&page->lru, list);
5664 unlock:
5665         spin_unlock_irq(&hugetlb_lock);
5666         return ret;
5667 }
5668
5669 void putback_active_hugepage(struct page *page)
5670 {
5671         spin_lock_irq(&hugetlb_lock);
5672         SetHPageMigratable(page);
5673         list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
5674         spin_unlock_irq(&hugetlb_lock);
5675         put_page(page);
5676 }
5677
5678 void move_hugetlb_state(struct page *oldpage, struct page *newpage, int reason)
5679 {
5680         struct hstate *h = page_hstate(oldpage);
5681
5682         hugetlb_cgroup_migrate(oldpage, newpage);
5683         set_page_owner_migrate_reason(newpage, reason);
5684
5685         /*
5686          * transfer temporary state of the new huge page. This is
5687          * reverse to other transitions because the newpage is going to
5688          * be final while the old one will be freed so it takes over
5689          * the temporary status.
5690          *
5691          * Also note that we have to transfer the per-node surplus state
5692          * here as well otherwise the global surplus count will not match
5693          * the per-node's.
5694          */
5695         if (HPageTemporary(newpage)) {
5696                 int old_nid = page_to_nid(oldpage);
5697                 int new_nid = page_to_nid(newpage);
5698
5699                 SetHPageTemporary(oldpage);
5700                 ClearHPageTemporary(newpage);
5701
5702                 /*
5703                  * There is no need to transfer the per-node surplus state
5704                  * when we do not cross the node.
5705                  */
5706                 if (new_nid == old_nid)
5707                         return;
5708                 spin_lock_irq(&hugetlb_lock);
5709                 if (h->surplus_huge_pages_node[old_nid]) {
5710                         h->surplus_huge_pages_node[old_nid]--;
5711                         h->surplus_huge_pages_node[new_nid]++;
5712                 }
5713                 spin_unlock_irq(&hugetlb_lock);
5714         }
5715 }
5716
5717 /*
5718  * This function will unconditionally remove all the shared pmd pgtable entries
5719  * within the specific vma for a hugetlbfs memory range.
5720  */
5721 void hugetlb_unshare_all_pmds(struct vm_area_struct *vma)
5722 {
5723         struct hstate *h = hstate_vma(vma);
5724         unsigned long sz = huge_page_size(h);
5725         struct mm_struct *mm = vma->vm_mm;
5726         struct mmu_notifier_range range;
5727         unsigned long address, start, end;
5728         spinlock_t *ptl;
5729         pte_t *ptep;
5730
5731         if (!(vma->vm_flags & VM_MAYSHARE))
5732                 return;
5733
5734         start = ALIGN(vma->vm_start, PUD_SIZE);
5735         end = ALIGN_DOWN(vma->vm_end, PUD_SIZE);
5736
5737         if (start >= end)
5738                 return;
5739
5740         /*
5741          * No need to call adjust_range_if_pmd_sharing_possible(), because
5742          * we have already done the PUD_SIZE alignment.
5743          */
5744         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
5745                                 start, end);
5746         mmu_notifier_invalidate_range_start(&range);
5747         i_mmap_lock_write(vma->vm_file->f_mapping);
5748         for (address = start; address < end; address += PUD_SIZE) {
5749                 unsigned long tmp = address;
5750
5751                 ptep = huge_pte_offset(mm, address, sz);
5752                 if (!ptep)
5753                         continue;
5754                 ptl = huge_pte_lock(h, mm, ptep);
5755                 /* We don't want 'address' to be changed */
5756                 huge_pmd_unshare(mm, vma, &tmp, ptep);
5757                 spin_unlock(ptl);
5758         }
5759         flush_hugetlb_tlb_range(vma, start, end);
5760         i_mmap_unlock_write(vma->vm_file->f_mapping);
5761         /*
5762          * No need to call mmu_notifier_invalidate_range(), see
5763          * Documentation/vm/mmu_notifier.rst.
5764          */
5765         mmu_notifier_invalidate_range_end(&range);
5766 }
5767
5768 #ifdef CONFIG_CMA
5769 static bool cma_reserve_called __initdata;
5770
5771 static int __init cmdline_parse_hugetlb_cma(char *p)
5772 {
5773         hugetlb_cma_size = memparse(p, &p);
5774         return 0;
5775 }
5776
5777 early_param("hugetlb_cma", cmdline_parse_hugetlb_cma);
5778
5779 void __init hugetlb_cma_reserve(int order)
5780 {
5781         unsigned long size, reserved, per_node;
5782         int nid;
5783
5784         cma_reserve_called = true;
5785
5786         if (!hugetlb_cma_size)
5787                 return;
5788
5789         if (hugetlb_cma_size < (PAGE_SIZE << order)) {
5790                 pr_warn("hugetlb_cma: cma area should be at least %lu MiB\n",
5791                         (PAGE_SIZE << order) / SZ_1M);
5792                 return;
5793         }
5794
5795         /*
5796          * If 3 GB area is requested on a machine with 4 numa nodes,
5797          * let's allocate 1 GB on first three nodes and ignore the last one.
5798          */
5799         per_node = DIV_ROUND_UP(hugetlb_cma_size, nr_online_nodes);
5800         pr_info("hugetlb_cma: reserve %lu MiB, up to %lu MiB per node\n",
5801                 hugetlb_cma_size / SZ_1M, per_node / SZ_1M);
5802
5803         reserved = 0;
5804         for_each_node_state(nid, N_ONLINE) {
5805                 int res;
5806                 char name[CMA_MAX_NAME];
5807
5808                 size = min(per_node, hugetlb_cma_size - reserved);
5809                 size = round_up(size, PAGE_SIZE << order);
5810
5811                 snprintf(name, sizeof(name), "hugetlb%d", nid);
5812                 res = cma_declare_contiguous_nid(0, size, 0, PAGE_SIZE << order,
5813                                                  0, false, name,
5814                                                  &hugetlb_cma[nid], nid);
5815                 if (res) {
5816                         pr_warn("hugetlb_cma: reservation failed: err %d, node %d",
5817                                 res, nid);
5818                         continue;
5819                 }
5820
5821                 reserved += size;
5822                 pr_info("hugetlb_cma: reserved %lu MiB on node %d\n",
5823                         size / SZ_1M, nid);
5824
5825                 if (reserved >= hugetlb_cma_size)
5826                         break;
5827         }
5828 }
5829
5830 void __init hugetlb_cma_check(void)
5831 {
5832         if (!hugetlb_cma_size || cma_reserve_called)
5833                 return;
5834
5835         pr_warn("hugetlb_cma: the option isn't supported by current arch\n");
5836 }
5837
5838 #endif /* CONFIG_CMA */