mm/hugetlb.c: delete duplicated words
[linux-2.6-microblaze.git] / mm / hugetlb.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Generic hugetlb support.
4  * (C) Nadia Yvette Chambers, April 2004
5  */
6 #include <linux/list.h>
7 #include <linux/init.h>
8 #include <linux/mm.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/compiler.h>
17 #include <linux/cpuset.h>
18 #include <linux/mutex.h>
19 #include <linux/memblock.h>
20 #include <linux/sysfs.h>
21 #include <linux/slab.h>
22 #include <linux/mmdebug.h>
23 #include <linux/sched/signal.h>
24 #include <linux/rmap.h>
25 #include <linux/string_helpers.h>
26 #include <linux/swap.h>
27 #include <linux/swapops.h>
28 #include <linux/jhash.h>
29 #include <linux/numa.h>
30 #include <linux/llist.h>
31 #include <linux/cma.h>
32
33 #include <asm/page.h>
34 #include <asm/pgalloc.h>
35 #include <asm/tlb.h>
36
37 #include <linux/io.h>
38 #include <linux/hugetlb.h>
39 #include <linux/hugetlb_cgroup.h>
40 #include <linux/node.h>
41 #include <linux/userfaultfd_k.h>
42 #include <linux/page_owner.h>
43 #include "internal.h"
44
45 int hugetlb_max_hstate __read_mostly;
46 unsigned int default_hstate_idx;
47 struct hstate hstates[HUGE_MAX_HSTATE];
48
49 #ifdef CONFIG_CMA
50 static struct cma *hugetlb_cma[MAX_NUMNODES];
51 #endif
52 static unsigned long hugetlb_cma_size __initdata;
53
54 /*
55  * Minimum page order among possible hugepage sizes, set to a proper value
56  * at boot time.
57  */
58 static unsigned int minimum_order __read_mostly = UINT_MAX;
59
60 __initdata LIST_HEAD(huge_boot_pages);
61
62 /* for command line parsing */
63 static struct hstate * __initdata parsed_hstate;
64 static unsigned long __initdata default_hstate_max_huge_pages;
65 static bool __initdata parsed_valid_hugepagesz = true;
66 static bool __initdata parsed_default_hugepagesz;
67
68 /*
69  * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
70  * free_huge_pages, and surplus_huge_pages.
71  */
72 DEFINE_SPINLOCK(hugetlb_lock);
73
74 /*
75  * Serializes faults on the same logical page.  This is used to
76  * prevent spurious OOMs when the hugepage pool is fully utilized.
77  */
78 static int num_fault_mutexes;
79 struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
80
81 /* Forward declaration */
82 static int hugetlb_acct_memory(struct hstate *h, long delta);
83
84 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
85 {
86         bool free = (spool->count == 0) && (spool->used_hpages == 0);
87
88         spin_unlock(&spool->lock);
89
90         /* If no pages are used, and no other handles to the subpool
91          * remain, give up any reservations based on minimum size and
92          * free the subpool */
93         if (free) {
94                 if (spool->min_hpages != -1)
95                         hugetlb_acct_memory(spool->hstate,
96                                                 -spool->min_hpages);
97                 kfree(spool);
98         }
99 }
100
101 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
102                                                 long min_hpages)
103 {
104         struct hugepage_subpool *spool;
105
106         spool = kzalloc(sizeof(*spool), GFP_KERNEL);
107         if (!spool)
108                 return NULL;
109
110         spin_lock_init(&spool->lock);
111         spool->count = 1;
112         spool->max_hpages = max_hpages;
113         spool->hstate = h;
114         spool->min_hpages = min_hpages;
115
116         if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
117                 kfree(spool);
118                 return NULL;
119         }
120         spool->rsv_hpages = min_hpages;
121
122         return spool;
123 }
124
125 void hugepage_put_subpool(struct hugepage_subpool *spool)
126 {
127         spin_lock(&spool->lock);
128         BUG_ON(!spool->count);
129         spool->count--;
130         unlock_or_release_subpool(spool);
131 }
132
133 /*
134  * Subpool accounting for allocating and reserving pages.
135  * Return -ENOMEM if there are not enough resources to satisfy the
136  * request.  Otherwise, return the number of pages by which the
137  * global pools must be adjusted (upward).  The returned value may
138  * only be different than the passed value (delta) in the case where
139  * a subpool minimum size must be maintained.
140  */
141 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
142                                       long delta)
143 {
144         long ret = delta;
145
146         if (!spool)
147                 return ret;
148
149         spin_lock(&spool->lock);
150
151         if (spool->max_hpages != -1) {          /* maximum size accounting */
152                 if ((spool->used_hpages + delta) <= spool->max_hpages)
153                         spool->used_hpages += delta;
154                 else {
155                         ret = -ENOMEM;
156                         goto unlock_ret;
157                 }
158         }
159
160         /* minimum size accounting */
161         if (spool->min_hpages != -1 && spool->rsv_hpages) {
162                 if (delta > spool->rsv_hpages) {
163                         /*
164                          * Asking for more reserves than those already taken on
165                          * behalf of subpool.  Return difference.
166                          */
167                         ret = delta - spool->rsv_hpages;
168                         spool->rsv_hpages = 0;
169                 } else {
170                         ret = 0;        /* reserves already accounted for */
171                         spool->rsv_hpages -= delta;
172                 }
173         }
174
175 unlock_ret:
176         spin_unlock(&spool->lock);
177         return ret;
178 }
179
180 /*
181  * Subpool accounting for freeing and unreserving pages.
182  * Return the number of global page reservations that must be dropped.
183  * The return value may only be different than the passed value (delta)
184  * in the case where a subpool minimum size must be maintained.
185  */
186 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
187                                        long delta)
188 {
189         long ret = delta;
190
191         if (!spool)
192                 return delta;
193
194         spin_lock(&spool->lock);
195
196         if (spool->max_hpages != -1)            /* maximum size accounting */
197                 spool->used_hpages -= delta;
198
199          /* minimum size accounting */
200         if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
201                 if (spool->rsv_hpages + delta <= spool->min_hpages)
202                         ret = 0;
203                 else
204                         ret = spool->rsv_hpages + delta - spool->min_hpages;
205
206                 spool->rsv_hpages += delta;
207                 if (spool->rsv_hpages > spool->min_hpages)
208                         spool->rsv_hpages = spool->min_hpages;
209         }
210
211         /*
212          * If hugetlbfs_put_super couldn't free spool due to an outstanding
213          * quota reference, free it now.
214          */
215         unlock_or_release_subpool(spool);
216
217         return ret;
218 }
219
220 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
221 {
222         return HUGETLBFS_SB(inode->i_sb)->spool;
223 }
224
225 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
226 {
227         return subpool_inode(file_inode(vma->vm_file));
228 }
229
230 /* Helper that removes a struct file_region from the resv_map cache and returns
231  * it for use.
232  */
233 static struct file_region *
234 get_file_region_entry_from_cache(struct resv_map *resv, long from, long to)
235 {
236         struct file_region *nrg = NULL;
237
238         VM_BUG_ON(resv->region_cache_count <= 0);
239
240         resv->region_cache_count--;
241         nrg = list_first_entry(&resv->region_cache, struct file_region, link);
242         VM_BUG_ON(!nrg);
243         list_del(&nrg->link);
244
245         nrg->from = from;
246         nrg->to = to;
247
248         return nrg;
249 }
250
251 static void copy_hugetlb_cgroup_uncharge_info(struct file_region *nrg,
252                                               struct file_region *rg)
253 {
254 #ifdef CONFIG_CGROUP_HUGETLB
255         nrg->reservation_counter = rg->reservation_counter;
256         nrg->css = rg->css;
257         if (rg->css)
258                 css_get(rg->css);
259 #endif
260 }
261
262 /* Helper that records hugetlb_cgroup uncharge info. */
263 static void record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup *h_cg,
264                                                 struct hstate *h,
265                                                 struct resv_map *resv,
266                                                 struct file_region *nrg)
267 {
268 #ifdef CONFIG_CGROUP_HUGETLB
269         if (h_cg) {
270                 nrg->reservation_counter =
271                         &h_cg->rsvd_hugepage[hstate_index(h)];
272                 nrg->css = &h_cg->css;
273                 if (!resv->pages_per_hpage)
274                         resv->pages_per_hpage = pages_per_huge_page(h);
275                 /* pages_per_hpage should be the same for all entries in
276                  * a resv_map.
277                  */
278                 VM_BUG_ON(resv->pages_per_hpage != pages_per_huge_page(h));
279         } else {
280                 nrg->reservation_counter = NULL;
281                 nrg->css = NULL;
282         }
283 #endif
284 }
285
286 static bool has_same_uncharge_info(struct file_region *rg,
287                                    struct file_region *org)
288 {
289 #ifdef CONFIG_CGROUP_HUGETLB
290         return rg && org &&
291                rg->reservation_counter == org->reservation_counter &&
292                rg->css == org->css;
293
294 #else
295         return true;
296 #endif
297 }
298
299 static void coalesce_file_region(struct resv_map *resv, struct file_region *rg)
300 {
301         struct file_region *nrg = NULL, *prg = NULL;
302
303         prg = list_prev_entry(rg, link);
304         if (&prg->link != &resv->regions && prg->to == rg->from &&
305             has_same_uncharge_info(prg, rg)) {
306                 prg->to = rg->to;
307
308                 list_del(&rg->link);
309                 kfree(rg);
310
311                 coalesce_file_region(resv, prg);
312                 return;
313         }
314
315         nrg = list_next_entry(rg, link);
316         if (&nrg->link != &resv->regions && nrg->from == rg->to &&
317             has_same_uncharge_info(nrg, rg)) {
318                 nrg->from = rg->from;
319
320                 list_del(&rg->link);
321                 kfree(rg);
322
323                 coalesce_file_region(resv, nrg);
324                 return;
325         }
326 }
327
328 /* Must be called with resv->lock held. Calling this with count_only == true
329  * will count the number of pages to be added but will not modify the linked
330  * list. If regions_needed != NULL and count_only == true, then regions_needed
331  * will indicate the number of file_regions needed in the cache to carry out to
332  * add the regions for this range.
333  */
334 static long add_reservation_in_range(struct resv_map *resv, long f, long t,
335                                      struct hugetlb_cgroup *h_cg,
336                                      struct hstate *h, long *regions_needed,
337                                      bool count_only)
338 {
339         long add = 0;
340         struct list_head *head = &resv->regions;
341         long last_accounted_offset = f;
342         struct file_region *rg = NULL, *trg = NULL, *nrg = NULL;
343
344         if (regions_needed)
345                 *regions_needed = 0;
346
347         /* In this loop, we essentially handle an entry for the range
348          * [last_accounted_offset, rg->from), at every iteration, with some
349          * bounds checking.
350          */
351         list_for_each_entry_safe(rg, trg, head, link) {
352                 /* Skip irrelevant regions that start before our range. */
353                 if (rg->from < f) {
354                         /* If this region ends after the last accounted offset,
355                          * then we need to update last_accounted_offset.
356                          */
357                         if (rg->to > last_accounted_offset)
358                                 last_accounted_offset = rg->to;
359                         continue;
360                 }
361
362                 /* When we find a region that starts beyond our range, we've
363                  * finished.
364                  */
365                 if (rg->from > t)
366                         break;
367
368                 /* Add an entry for last_accounted_offset -> rg->from, and
369                  * update last_accounted_offset.
370                  */
371                 if (rg->from > last_accounted_offset) {
372                         add += rg->from - last_accounted_offset;
373                         if (!count_only) {
374                                 nrg = get_file_region_entry_from_cache(
375                                         resv, last_accounted_offset, rg->from);
376                                 record_hugetlb_cgroup_uncharge_info(h_cg, h,
377                                                                     resv, nrg);
378                                 list_add(&nrg->link, rg->link.prev);
379                                 coalesce_file_region(resv, nrg);
380                         } else if (regions_needed)
381                                 *regions_needed += 1;
382                 }
383
384                 last_accounted_offset = rg->to;
385         }
386
387         /* Handle the case where our range extends beyond
388          * last_accounted_offset.
389          */
390         if (last_accounted_offset < t) {
391                 add += t - last_accounted_offset;
392                 if (!count_only) {
393                         nrg = get_file_region_entry_from_cache(
394                                 resv, last_accounted_offset, t);
395                         record_hugetlb_cgroup_uncharge_info(h_cg, h, resv, nrg);
396                         list_add(&nrg->link, rg->link.prev);
397                         coalesce_file_region(resv, nrg);
398                 } else if (regions_needed)
399                         *regions_needed += 1;
400         }
401
402         VM_BUG_ON(add < 0);
403         return add;
404 }
405
406 /* Must be called with resv->lock acquired. Will drop lock to allocate entries.
407  */
408 static int allocate_file_region_entries(struct resv_map *resv,
409                                         int regions_needed)
410         __must_hold(&resv->lock)
411 {
412         struct list_head allocated_regions;
413         int to_allocate = 0, i = 0;
414         struct file_region *trg = NULL, *rg = NULL;
415
416         VM_BUG_ON(regions_needed < 0);
417
418         INIT_LIST_HEAD(&allocated_regions);
419
420         /*
421          * Check for sufficient descriptors in the cache to accommodate
422          * the number of in progress add operations plus regions_needed.
423          *
424          * This is a while loop because when we drop the lock, some other call
425          * to region_add or region_del may have consumed some region_entries,
426          * so we keep looping here until we finally have enough entries for
427          * (adds_in_progress + regions_needed).
428          */
429         while (resv->region_cache_count <
430                (resv->adds_in_progress + regions_needed)) {
431                 to_allocate = resv->adds_in_progress + regions_needed -
432                               resv->region_cache_count;
433
434                 /* At this point, we should have enough entries in the cache
435                  * for all the existings adds_in_progress. We should only be
436                  * needing to allocate for regions_needed.
437                  */
438                 VM_BUG_ON(resv->region_cache_count < resv->adds_in_progress);
439
440                 spin_unlock(&resv->lock);
441                 for (i = 0; i < to_allocate; i++) {
442                         trg = kmalloc(sizeof(*trg), GFP_KERNEL);
443                         if (!trg)
444                                 goto out_of_memory;
445                         list_add(&trg->link, &allocated_regions);
446                 }
447
448                 spin_lock(&resv->lock);
449
450                 list_for_each_entry_safe(rg, trg, &allocated_regions, link) {
451                         list_del(&rg->link);
452                         list_add(&rg->link, &resv->region_cache);
453                         resv->region_cache_count++;
454                 }
455         }
456
457         return 0;
458
459 out_of_memory:
460         list_for_each_entry_safe(rg, trg, &allocated_regions, link) {
461                 list_del(&rg->link);
462                 kfree(rg);
463         }
464         return -ENOMEM;
465 }
466
467 /*
468  * Add the huge page range represented by [f, t) to the reserve
469  * map.  Regions will be taken from the cache to fill in this range.
470  * Sufficient regions should exist in the cache due to the previous
471  * call to region_chg with the same range, but in some cases the cache will not
472  * have sufficient entries due to races with other code doing region_add or
473  * region_del.  The extra needed entries will be allocated.
474  *
475  * regions_needed is the out value provided by a previous call to region_chg.
476  *
477  * Return the number of new huge pages added to the map.  This number is greater
478  * than or equal to zero.  If file_region entries needed to be allocated for
479  * this operation and we were not able to allocate, it returns -ENOMEM.
480  * region_add of regions of length 1 never allocate file_regions and cannot
481  * fail; region_chg will always allocate at least 1 entry and a region_add for
482  * 1 page will only require at most 1 entry.
483  */
484 static long region_add(struct resv_map *resv, long f, long t,
485                        long in_regions_needed, struct hstate *h,
486                        struct hugetlb_cgroup *h_cg)
487 {
488         long add = 0, actual_regions_needed = 0;
489
490         spin_lock(&resv->lock);
491 retry:
492
493         /* Count how many regions are actually needed to execute this add. */
494         add_reservation_in_range(resv, f, t, NULL, NULL, &actual_regions_needed,
495                                  true);
496
497         /*
498          * Check for sufficient descriptors in the cache to accommodate
499          * this add operation. Note that actual_regions_needed may be greater
500          * than in_regions_needed, as the resv_map may have been modified since
501          * the region_chg call. In this case, we need to make sure that we
502          * allocate extra entries, such that we have enough for all the
503          * existing adds_in_progress, plus the excess needed for this
504          * operation.
505          */
506         if (actual_regions_needed > in_regions_needed &&
507             resv->region_cache_count <
508                     resv->adds_in_progress +
509                             (actual_regions_needed - in_regions_needed)) {
510                 /* region_add operation of range 1 should never need to
511                  * allocate file_region entries.
512                  */
513                 VM_BUG_ON(t - f <= 1);
514
515                 if (allocate_file_region_entries(
516                             resv, actual_regions_needed - in_regions_needed)) {
517                         return -ENOMEM;
518                 }
519
520                 goto retry;
521         }
522
523         add = add_reservation_in_range(resv, f, t, h_cg, h, NULL, false);
524
525         resv->adds_in_progress -= in_regions_needed;
526
527         spin_unlock(&resv->lock);
528         VM_BUG_ON(add < 0);
529         return add;
530 }
531
532 /*
533  * Examine the existing reserve map and determine how many
534  * huge pages in the specified range [f, t) are NOT currently
535  * represented.  This routine is called before a subsequent
536  * call to region_add that will actually modify the reserve
537  * map to add the specified range [f, t).  region_chg does
538  * not change the number of huge pages represented by the
539  * map.  A number of new file_region structures is added to the cache as a
540  * placeholder, for the subsequent region_add call to use. At least 1
541  * file_region structure is added.
542  *
543  * out_regions_needed is the number of regions added to the
544  * resv->adds_in_progress.  This value needs to be provided to a follow up call
545  * to region_add or region_abort for proper accounting.
546  *
547  * Returns the number of huge pages that need to be added to the existing
548  * reservation map for the range [f, t).  This number is greater or equal to
549  * zero.  -ENOMEM is returned if a new file_region structure or cache entry
550  * is needed and can not be allocated.
551  */
552 static long region_chg(struct resv_map *resv, long f, long t,
553                        long *out_regions_needed)
554 {
555         long chg = 0;
556
557         spin_lock(&resv->lock);
558
559         /* Count how many hugepages in this range are NOT respresented. */
560         chg = add_reservation_in_range(resv, f, t, NULL, NULL,
561                                        out_regions_needed, true);
562
563         if (*out_regions_needed == 0)
564                 *out_regions_needed = 1;
565
566         if (allocate_file_region_entries(resv, *out_regions_needed))
567                 return -ENOMEM;
568
569         resv->adds_in_progress += *out_regions_needed;
570
571         spin_unlock(&resv->lock);
572         return chg;
573 }
574
575 /*
576  * Abort the in progress add operation.  The adds_in_progress field
577  * of the resv_map keeps track of the operations in progress between
578  * calls to region_chg and region_add.  Operations are sometimes
579  * aborted after the call to region_chg.  In such cases, region_abort
580  * is called to decrement the adds_in_progress counter. regions_needed
581  * is the value returned by the region_chg call, it is used to decrement
582  * the adds_in_progress counter.
583  *
584  * NOTE: The range arguments [f, t) are not needed or used in this
585  * routine.  They are kept to make reading the calling code easier as
586  * arguments will match the associated region_chg call.
587  */
588 static void region_abort(struct resv_map *resv, long f, long t,
589                          long regions_needed)
590 {
591         spin_lock(&resv->lock);
592         VM_BUG_ON(!resv->region_cache_count);
593         resv->adds_in_progress -= regions_needed;
594         spin_unlock(&resv->lock);
595 }
596
597 /*
598  * Delete the specified range [f, t) from the reserve map.  If the
599  * t parameter is LONG_MAX, this indicates that ALL regions after f
600  * should be deleted.  Locate the regions which intersect [f, t)
601  * and either trim, delete or split the existing regions.
602  *
603  * Returns the number of huge pages deleted from the reserve map.
604  * In the normal case, the return value is zero or more.  In the
605  * case where a region must be split, a new region descriptor must
606  * be allocated.  If the allocation fails, -ENOMEM will be returned.
607  * NOTE: If the parameter t == LONG_MAX, then we will never split
608  * a region and possibly return -ENOMEM.  Callers specifying
609  * t == LONG_MAX do not need to check for -ENOMEM error.
610  */
611 static long region_del(struct resv_map *resv, long f, long t)
612 {
613         struct list_head *head = &resv->regions;
614         struct file_region *rg, *trg;
615         struct file_region *nrg = NULL;
616         long del = 0;
617
618 retry:
619         spin_lock(&resv->lock);
620         list_for_each_entry_safe(rg, trg, head, link) {
621                 /*
622                  * Skip regions before the range to be deleted.  file_region
623                  * ranges are normally of the form [from, to).  However, there
624                  * may be a "placeholder" entry in the map which is of the form
625                  * (from, to) with from == to.  Check for placeholder entries
626                  * at the beginning of the range to be deleted.
627                  */
628                 if (rg->to <= f && (rg->to != rg->from || rg->to != f))
629                         continue;
630
631                 if (rg->from >= t)
632                         break;
633
634                 if (f > rg->from && t < rg->to) { /* Must split region */
635                         /*
636                          * Check for an entry in the cache before dropping
637                          * lock and attempting allocation.
638                          */
639                         if (!nrg &&
640                             resv->region_cache_count > resv->adds_in_progress) {
641                                 nrg = list_first_entry(&resv->region_cache,
642                                                         struct file_region,
643                                                         link);
644                                 list_del(&nrg->link);
645                                 resv->region_cache_count--;
646                         }
647
648                         if (!nrg) {
649                                 spin_unlock(&resv->lock);
650                                 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
651                                 if (!nrg)
652                                         return -ENOMEM;
653                                 goto retry;
654                         }
655
656                         del += t - f;
657
658                         /* New entry for end of split region */
659                         nrg->from = t;
660                         nrg->to = rg->to;
661
662                         copy_hugetlb_cgroup_uncharge_info(nrg, rg);
663
664                         INIT_LIST_HEAD(&nrg->link);
665
666                         /* Original entry is trimmed */
667                         rg->to = f;
668
669                         hugetlb_cgroup_uncharge_file_region(
670                                 resv, rg, nrg->to - nrg->from);
671
672                         list_add(&nrg->link, &rg->link);
673                         nrg = NULL;
674                         break;
675                 }
676
677                 if (f <= rg->from && t >= rg->to) { /* Remove entire region */
678                         del += rg->to - rg->from;
679                         hugetlb_cgroup_uncharge_file_region(resv, rg,
680                                                             rg->to - rg->from);
681                         list_del(&rg->link);
682                         kfree(rg);
683                         continue;
684                 }
685
686                 if (f <= rg->from) {    /* Trim beginning of region */
687                         del += t - rg->from;
688                         rg->from = t;
689
690                         hugetlb_cgroup_uncharge_file_region(resv, rg,
691                                                             t - rg->from);
692                 } else {                /* Trim end of region */
693                         del += rg->to - f;
694                         rg->to = f;
695
696                         hugetlb_cgroup_uncharge_file_region(resv, rg,
697                                                             rg->to - f);
698                 }
699         }
700
701         spin_unlock(&resv->lock);
702         kfree(nrg);
703         return del;
704 }
705
706 /*
707  * A rare out of memory error was encountered which prevented removal of
708  * the reserve map region for a page.  The huge page itself was free'ed
709  * and removed from the page cache.  This routine will adjust the subpool
710  * usage count, and the global reserve count if needed.  By incrementing
711  * these counts, the reserve map entry which could not be deleted will
712  * appear as a "reserved" entry instead of simply dangling with incorrect
713  * counts.
714  */
715 void hugetlb_fix_reserve_counts(struct inode *inode)
716 {
717         struct hugepage_subpool *spool = subpool_inode(inode);
718         long rsv_adjust;
719
720         rsv_adjust = hugepage_subpool_get_pages(spool, 1);
721         if (rsv_adjust) {
722                 struct hstate *h = hstate_inode(inode);
723
724                 hugetlb_acct_memory(h, 1);
725         }
726 }
727
728 /*
729  * Count and return the number of huge pages in the reserve map
730  * that intersect with the range [f, t).
731  */
732 static long region_count(struct resv_map *resv, long f, long t)
733 {
734         struct list_head *head = &resv->regions;
735         struct file_region *rg;
736         long chg = 0;
737
738         spin_lock(&resv->lock);
739         /* Locate each segment we overlap with, and count that overlap. */
740         list_for_each_entry(rg, head, link) {
741                 long seg_from;
742                 long seg_to;
743
744                 if (rg->to <= f)
745                         continue;
746                 if (rg->from >= t)
747                         break;
748
749                 seg_from = max(rg->from, f);
750                 seg_to = min(rg->to, t);
751
752                 chg += seg_to - seg_from;
753         }
754         spin_unlock(&resv->lock);
755
756         return chg;
757 }
758
759 /*
760  * Convert the address within this vma to the page offset within
761  * the mapping, in pagecache page units; huge pages here.
762  */
763 static pgoff_t vma_hugecache_offset(struct hstate *h,
764                         struct vm_area_struct *vma, unsigned long address)
765 {
766         return ((address - vma->vm_start) >> huge_page_shift(h)) +
767                         (vma->vm_pgoff >> huge_page_order(h));
768 }
769
770 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
771                                      unsigned long address)
772 {
773         return vma_hugecache_offset(hstate_vma(vma), vma, address);
774 }
775 EXPORT_SYMBOL_GPL(linear_hugepage_index);
776
777 /*
778  * Return the size of the pages allocated when backing a VMA. In the majority
779  * cases this will be same size as used by the page table entries.
780  */
781 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
782 {
783         if (vma->vm_ops && vma->vm_ops->pagesize)
784                 return vma->vm_ops->pagesize(vma);
785         return PAGE_SIZE;
786 }
787 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
788
789 /*
790  * Return the page size being used by the MMU to back a VMA. In the majority
791  * of cases, the page size used by the kernel matches the MMU size. On
792  * architectures where it differs, an architecture-specific 'strong'
793  * version of this symbol is required.
794  */
795 __weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
796 {
797         return vma_kernel_pagesize(vma);
798 }
799
800 /*
801  * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
802  * bits of the reservation map pointer, which are always clear due to
803  * alignment.
804  */
805 #define HPAGE_RESV_OWNER    (1UL << 0)
806 #define HPAGE_RESV_UNMAPPED (1UL << 1)
807 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
808
809 /*
810  * These helpers are used to track how many pages are reserved for
811  * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
812  * is guaranteed to have their future faults succeed.
813  *
814  * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
815  * the reserve counters are updated with the hugetlb_lock held. It is safe
816  * to reset the VMA at fork() time as it is not in use yet and there is no
817  * chance of the global counters getting corrupted as a result of the values.
818  *
819  * The private mapping reservation is represented in a subtly different
820  * manner to a shared mapping.  A shared mapping has a region map associated
821  * with the underlying file, this region map represents the backing file
822  * pages which have ever had a reservation assigned which this persists even
823  * after the page is instantiated.  A private mapping has a region map
824  * associated with the original mmap which is attached to all VMAs which
825  * reference it, this region map represents those offsets which have consumed
826  * reservation ie. where pages have been instantiated.
827  */
828 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
829 {
830         return (unsigned long)vma->vm_private_data;
831 }
832
833 static void set_vma_private_data(struct vm_area_struct *vma,
834                                                         unsigned long value)
835 {
836         vma->vm_private_data = (void *)value;
837 }
838
839 static void
840 resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map *resv_map,
841                                           struct hugetlb_cgroup *h_cg,
842                                           struct hstate *h)
843 {
844 #ifdef CONFIG_CGROUP_HUGETLB
845         if (!h_cg || !h) {
846                 resv_map->reservation_counter = NULL;
847                 resv_map->pages_per_hpage = 0;
848                 resv_map->css = NULL;
849         } else {
850                 resv_map->reservation_counter =
851                         &h_cg->rsvd_hugepage[hstate_index(h)];
852                 resv_map->pages_per_hpage = pages_per_huge_page(h);
853                 resv_map->css = &h_cg->css;
854         }
855 #endif
856 }
857
858 struct resv_map *resv_map_alloc(void)
859 {
860         struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
861         struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
862
863         if (!resv_map || !rg) {
864                 kfree(resv_map);
865                 kfree(rg);
866                 return NULL;
867         }
868
869         kref_init(&resv_map->refs);
870         spin_lock_init(&resv_map->lock);
871         INIT_LIST_HEAD(&resv_map->regions);
872
873         resv_map->adds_in_progress = 0;
874         /*
875          * Initialize these to 0. On shared mappings, 0's here indicate these
876          * fields don't do cgroup accounting. On private mappings, these will be
877          * re-initialized to the proper values, to indicate that hugetlb cgroup
878          * reservations are to be un-charged from here.
879          */
880         resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, NULL, NULL);
881
882         INIT_LIST_HEAD(&resv_map->region_cache);
883         list_add(&rg->link, &resv_map->region_cache);
884         resv_map->region_cache_count = 1;
885
886         return resv_map;
887 }
888
889 void resv_map_release(struct kref *ref)
890 {
891         struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
892         struct list_head *head = &resv_map->region_cache;
893         struct file_region *rg, *trg;
894
895         /* Clear out any active regions before we release the map. */
896         region_del(resv_map, 0, LONG_MAX);
897
898         /* ... and any entries left in the cache */
899         list_for_each_entry_safe(rg, trg, head, link) {
900                 list_del(&rg->link);
901                 kfree(rg);
902         }
903
904         VM_BUG_ON(resv_map->adds_in_progress);
905
906         kfree(resv_map);
907 }
908
909 static inline struct resv_map *inode_resv_map(struct inode *inode)
910 {
911         /*
912          * At inode evict time, i_mapping may not point to the original
913          * address space within the inode.  This original address space
914          * contains the pointer to the resv_map.  So, always use the
915          * address space embedded within the inode.
916          * The VERY common case is inode->mapping == &inode->i_data but,
917          * this may not be true for device special inodes.
918          */
919         return (struct resv_map *)(&inode->i_data)->private_data;
920 }
921
922 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
923 {
924         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
925         if (vma->vm_flags & VM_MAYSHARE) {
926                 struct address_space *mapping = vma->vm_file->f_mapping;
927                 struct inode *inode = mapping->host;
928
929                 return inode_resv_map(inode);
930
931         } else {
932                 return (struct resv_map *)(get_vma_private_data(vma) &
933                                                         ~HPAGE_RESV_MASK);
934         }
935 }
936
937 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
938 {
939         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
940         VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
941
942         set_vma_private_data(vma, (get_vma_private_data(vma) &
943                                 HPAGE_RESV_MASK) | (unsigned long)map);
944 }
945
946 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
947 {
948         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
949         VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
950
951         set_vma_private_data(vma, get_vma_private_data(vma) | flags);
952 }
953
954 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
955 {
956         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
957
958         return (get_vma_private_data(vma) & flag) != 0;
959 }
960
961 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
962 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
963 {
964         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
965         if (!(vma->vm_flags & VM_MAYSHARE))
966                 vma->vm_private_data = (void *)0;
967 }
968
969 /* Returns true if the VMA has associated reserve pages */
970 static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
971 {
972         if (vma->vm_flags & VM_NORESERVE) {
973                 /*
974                  * This address is already reserved by other process(chg == 0),
975                  * so, we should decrement reserved count. Without decrementing,
976                  * reserve count remains after releasing inode, because this
977                  * allocated page will go into page cache and is regarded as
978                  * coming from reserved pool in releasing step.  Currently, we
979                  * don't have any other solution to deal with this situation
980                  * properly, so add work-around here.
981                  */
982                 if (vma->vm_flags & VM_MAYSHARE && chg == 0)
983                         return true;
984                 else
985                         return false;
986         }
987
988         /* Shared mappings always use reserves */
989         if (vma->vm_flags & VM_MAYSHARE) {
990                 /*
991                  * We know VM_NORESERVE is not set.  Therefore, there SHOULD
992                  * be a region map for all pages.  The only situation where
993                  * there is no region map is if a hole was punched via
994                  * fallocate.  In this case, there really are no reserves to
995                  * use.  This situation is indicated if chg != 0.
996                  */
997                 if (chg)
998                         return false;
999                 else
1000                         return true;
1001         }
1002
1003         /*
1004          * Only the process that called mmap() has reserves for
1005          * private mappings.
1006          */
1007         if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1008                 /*
1009                  * Like the shared case above, a hole punch or truncate
1010                  * could have been performed on the private mapping.
1011                  * Examine the value of chg to determine if reserves
1012                  * actually exist or were previously consumed.
1013                  * Very Subtle - The value of chg comes from a previous
1014                  * call to vma_needs_reserves().  The reserve map for
1015                  * private mappings has different (opposite) semantics
1016                  * than that of shared mappings.  vma_needs_reserves()
1017                  * has already taken this difference in semantics into
1018                  * account.  Therefore, the meaning of chg is the same
1019                  * as in the shared case above.  Code could easily be
1020                  * combined, but keeping it separate draws attention to
1021                  * subtle differences.
1022                  */
1023                 if (chg)
1024                         return false;
1025                 else
1026                         return true;
1027         }
1028
1029         return false;
1030 }
1031
1032 static void enqueue_huge_page(struct hstate *h, struct page *page)
1033 {
1034         int nid = page_to_nid(page);
1035         list_move(&page->lru, &h->hugepage_freelists[nid]);
1036         h->free_huge_pages++;
1037         h->free_huge_pages_node[nid]++;
1038 }
1039
1040 static struct page *dequeue_huge_page_node_exact(struct hstate *h, int nid)
1041 {
1042         struct page *page;
1043
1044         list_for_each_entry(page, &h->hugepage_freelists[nid], lru)
1045                 if (!PageHWPoison(page))
1046                         break;
1047         /*
1048          * if 'non-isolated free hugepage' not found on the list,
1049          * the allocation fails.
1050          */
1051         if (&h->hugepage_freelists[nid] == &page->lru)
1052                 return NULL;
1053         list_move(&page->lru, &h->hugepage_activelist);
1054         set_page_refcounted(page);
1055         h->free_huge_pages--;
1056         h->free_huge_pages_node[nid]--;
1057         return page;
1058 }
1059
1060 static struct page *dequeue_huge_page_nodemask(struct hstate *h, gfp_t gfp_mask, int nid,
1061                 nodemask_t *nmask)
1062 {
1063         unsigned int cpuset_mems_cookie;
1064         struct zonelist *zonelist;
1065         struct zone *zone;
1066         struct zoneref *z;
1067         int node = NUMA_NO_NODE;
1068
1069         zonelist = node_zonelist(nid, gfp_mask);
1070
1071 retry_cpuset:
1072         cpuset_mems_cookie = read_mems_allowed_begin();
1073         for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
1074                 struct page *page;
1075
1076                 if (!cpuset_zone_allowed(zone, gfp_mask))
1077                         continue;
1078                 /*
1079                  * no need to ask again on the same node. Pool is node rather than
1080                  * zone aware
1081                  */
1082                 if (zone_to_nid(zone) == node)
1083                         continue;
1084                 node = zone_to_nid(zone);
1085
1086                 page = dequeue_huge_page_node_exact(h, node);
1087                 if (page)
1088                         return page;
1089         }
1090         if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
1091                 goto retry_cpuset;
1092
1093         return NULL;
1094 }
1095
1096 /* Movability of hugepages depends on migration support. */
1097 static inline gfp_t htlb_alloc_mask(struct hstate *h)
1098 {
1099         if (hugepage_movable_supported(h))
1100                 return GFP_HIGHUSER_MOVABLE;
1101         else
1102                 return GFP_HIGHUSER;
1103 }
1104
1105 static struct page *dequeue_huge_page_vma(struct hstate *h,
1106                                 struct vm_area_struct *vma,
1107                                 unsigned long address, int avoid_reserve,
1108                                 long chg)
1109 {
1110         struct page *page;
1111         struct mempolicy *mpol;
1112         gfp_t gfp_mask;
1113         nodemask_t *nodemask;
1114         int nid;
1115
1116         /*
1117          * A child process with MAP_PRIVATE mappings created by their parent
1118          * have no page reserves. This check ensures that reservations are
1119          * not "stolen". The child may still get SIGKILLed
1120          */
1121         if (!vma_has_reserves(vma, chg) &&
1122                         h->free_huge_pages - h->resv_huge_pages == 0)
1123                 goto err;
1124
1125         /* If reserves cannot be used, ensure enough pages are in the pool */
1126         if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
1127                 goto err;
1128
1129         gfp_mask = htlb_alloc_mask(h);
1130         nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
1131         page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
1132         if (page && !avoid_reserve && vma_has_reserves(vma, chg)) {
1133                 SetPagePrivate(page);
1134                 h->resv_huge_pages--;
1135         }
1136
1137         mpol_cond_put(mpol);
1138         return page;
1139
1140 err:
1141         return NULL;
1142 }
1143
1144 /*
1145  * common helper functions for hstate_next_node_to_{alloc|free}.
1146  * We may have allocated or freed a huge page based on a different
1147  * nodes_allowed previously, so h->next_node_to_{alloc|free} might
1148  * be outside of *nodes_allowed.  Ensure that we use an allowed
1149  * node for alloc or free.
1150  */
1151 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
1152 {
1153         nid = next_node_in(nid, *nodes_allowed);
1154         VM_BUG_ON(nid >= MAX_NUMNODES);
1155
1156         return nid;
1157 }
1158
1159 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
1160 {
1161         if (!node_isset(nid, *nodes_allowed))
1162                 nid = next_node_allowed(nid, nodes_allowed);
1163         return nid;
1164 }
1165
1166 /*
1167  * returns the previously saved node ["this node"] from which to
1168  * allocate a persistent huge page for the pool and advance the
1169  * next node from which to allocate, handling wrap at end of node
1170  * mask.
1171  */
1172 static int hstate_next_node_to_alloc(struct hstate *h,
1173                                         nodemask_t *nodes_allowed)
1174 {
1175         int nid;
1176
1177         VM_BUG_ON(!nodes_allowed);
1178
1179         nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
1180         h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
1181
1182         return nid;
1183 }
1184
1185 /*
1186  * helper for free_pool_huge_page() - return the previously saved
1187  * node ["this node"] from which to free a huge page.  Advance the
1188  * next node id whether or not we find a free huge page to free so
1189  * that the next attempt to free addresses the next node.
1190  */
1191 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1192 {
1193         int nid;
1194
1195         VM_BUG_ON(!nodes_allowed);
1196
1197         nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1198         h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1199
1200         return nid;
1201 }
1202
1203 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask)           \
1204         for (nr_nodes = nodes_weight(*mask);                            \
1205                 nr_nodes > 0 &&                                         \
1206                 ((node = hstate_next_node_to_alloc(hs, mask)) || 1);    \
1207                 nr_nodes--)
1208
1209 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask)            \
1210         for (nr_nodes = nodes_weight(*mask);                            \
1211                 nr_nodes > 0 &&                                         \
1212                 ((node = hstate_next_node_to_free(hs, mask)) || 1);     \
1213                 nr_nodes--)
1214
1215 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
1216 static void destroy_compound_gigantic_page(struct page *page,
1217                                         unsigned int order)
1218 {
1219         int i;
1220         int nr_pages = 1 << order;
1221         struct page *p = page + 1;
1222
1223         atomic_set(compound_mapcount_ptr(page), 0);
1224         if (hpage_pincount_available(page))
1225                 atomic_set(compound_pincount_ptr(page), 0);
1226
1227         for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1228                 clear_compound_head(p);
1229                 set_page_refcounted(p);
1230         }
1231
1232         set_compound_order(page, 0);
1233         __ClearPageHead(page);
1234 }
1235
1236 static void free_gigantic_page(struct page *page, unsigned int order)
1237 {
1238         /*
1239          * If the page isn't allocated using the cma allocator,
1240          * cma_release() returns false.
1241          */
1242 #ifdef CONFIG_CMA
1243         if (cma_release(hugetlb_cma[page_to_nid(page)], page, 1 << order))
1244                 return;
1245 #endif
1246
1247         free_contig_range(page_to_pfn(page), 1 << order);
1248 }
1249
1250 #ifdef CONFIG_CONTIG_ALLOC
1251 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1252                 int nid, nodemask_t *nodemask)
1253 {
1254         unsigned long nr_pages = 1UL << huge_page_order(h);
1255
1256 #ifdef CONFIG_CMA
1257         {
1258                 struct page *page;
1259                 int node;
1260
1261                 for_each_node_mask(node, *nodemask) {
1262                         if (!hugetlb_cma[node])
1263                                 continue;
1264
1265                         page = cma_alloc(hugetlb_cma[node], nr_pages,
1266                                          huge_page_order(h), true);
1267                         if (page)
1268                                 return page;
1269                 }
1270         }
1271 #endif
1272
1273         return alloc_contig_pages(nr_pages, gfp_mask, nid, nodemask);
1274 }
1275
1276 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid);
1277 static void prep_compound_gigantic_page(struct page *page, unsigned int order);
1278 #else /* !CONFIG_CONTIG_ALLOC */
1279 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1280                                         int nid, nodemask_t *nodemask)
1281 {
1282         return NULL;
1283 }
1284 #endif /* CONFIG_CONTIG_ALLOC */
1285
1286 #else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
1287 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1288                                         int nid, nodemask_t *nodemask)
1289 {
1290         return NULL;
1291 }
1292 static inline void free_gigantic_page(struct page *page, unsigned int order) { }
1293 static inline void destroy_compound_gigantic_page(struct page *page,
1294                                                 unsigned int order) { }
1295 #endif
1296
1297 static void update_and_free_page(struct hstate *h, struct page *page)
1298 {
1299         int i;
1300
1301         if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1302                 return;
1303
1304         h->nr_huge_pages--;
1305         h->nr_huge_pages_node[page_to_nid(page)]--;
1306         for (i = 0; i < pages_per_huge_page(h); i++) {
1307                 page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
1308                                 1 << PG_referenced | 1 << PG_dirty |
1309                                 1 << PG_active | 1 << PG_private |
1310                                 1 << PG_writeback);
1311         }
1312         VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
1313         VM_BUG_ON_PAGE(hugetlb_cgroup_from_page_rsvd(page), page);
1314         set_compound_page_dtor(page, NULL_COMPOUND_DTOR);
1315         set_page_refcounted(page);
1316         if (hstate_is_gigantic(h)) {
1317                 /*
1318                  * Temporarily drop the hugetlb_lock, because
1319                  * we might block in free_gigantic_page().
1320                  */
1321                 spin_unlock(&hugetlb_lock);
1322                 destroy_compound_gigantic_page(page, huge_page_order(h));
1323                 free_gigantic_page(page, huge_page_order(h));
1324                 spin_lock(&hugetlb_lock);
1325         } else {
1326                 __free_pages(page, huge_page_order(h));
1327         }
1328 }
1329
1330 struct hstate *size_to_hstate(unsigned long size)
1331 {
1332         struct hstate *h;
1333
1334         for_each_hstate(h) {
1335                 if (huge_page_size(h) == size)
1336                         return h;
1337         }
1338         return NULL;
1339 }
1340
1341 /*
1342  * Test to determine whether the hugepage is "active/in-use" (i.e. being linked
1343  * to hstate->hugepage_activelist.)
1344  *
1345  * This function can be called for tail pages, but never returns true for them.
1346  */
1347 bool page_huge_active(struct page *page)
1348 {
1349         VM_BUG_ON_PAGE(!PageHuge(page), page);
1350         return PageHead(page) && PagePrivate(&page[1]);
1351 }
1352
1353 /* never called for tail page */
1354 static void set_page_huge_active(struct page *page)
1355 {
1356         VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1357         SetPagePrivate(&page[1]);
1358 }
1359
1360 static void clear_page_huge_active(struct page *page)
1361 {
1362         VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1363         ClearPagePrivate(&page[1]);
1364 }
1365
1366 /*
1367  * Internal hugetlb specific page flag. Do not use outside of the hugetlb
1368  * code
1369  */
1370 static inline bool PageHugeTemporary(struct page *page)
1371 {
1372         if (!PageHuge(page))
1373                 return false;
1374
1375         return (unsigned long)page[2].mapping == -1U;
1376 }
1377
1378 static inline void SetPageHugeTemporary(struct page *page)
1379 {
1380         page[2].mapping = (void *)-1U;
1381 }
1382
1383 static inline void ClearPageHugeTemporary(struct page *page)
1384 {
1385         page[2].mapping = NULL;
1386 }
1387
1388 static void __free_huge_page(struct page *page)
1389 {
1390         /*
1391          * Can't pass hstate in here because it is called from the
1392          * compound page destructor.
1393          */
1394         struct hstate *h = page_hstate(page);
1395         int nid = page_to_nid(page);
1396         struct hugepage_subpool *spool =
1397                 (struct hugepage_subpool *)page_private(page);
1398         bool restore_reserve;
1399
1400         VM_BUG_ON_PAGE(page_count(page), page);
1401         VM_BUG_ON_PAGE(page_mapcount(page), page);
1402
1403         set_page_private(page, 0);
1404         page->mapping = NULL;
1405         restore_reserve = PagePrivate(page);
1406         ClearPagePrivate(page);
1407
1408         /*
1409          * If PagePrivate() was set on page, page allocation consumed a
1410          * reservation.  If the page was associated with a subpool, there
1411          * would have been a page reserved in the subpool before allocation
1412          * via hugepage_subpool_get_pages().  Since we are 'restoring' the
1413          * reservtion, do not call hugepage_subpool_put_pages() as this will
1414          * remove the reserved page from the subpool.
1415          */
1416         if (!restore_reserve) {
1417                 /*
1418                  * A return code of zero implies that the subpool will be
1419                  * under its minimum size if the reservation is not restored
1420                  * after page is free.  Therefore, force restore_reserve
1421                  * operation.
1422                  */
1423                 if (hugepage_subpool_put_pages(spool, 1) == 0)
1424                         restore_reserve = true;
1425         }
1426
1427         spin_lock(&hugetlb_lock);
1428         clear_page_huge_active(page);
1429         hugetlb_cgroup_uncharge_page(hstate_index(h),
1430                                      pages_per_huge_page(h), page);
1431         hugetlb_cgroup_uncharge_page_rsvd(hstate_index(h),
1432                                           pages_per_huge_page(h), page);
1433         if (restore_reserve)
1434                 h->resv_huge_pages++;
1435
1436         if (PageHugeTemporary(page)) {
1437                 list_del(&page->lru);
1438                 ClearPageHugeTemporary(page);
1439                 update_and_free_page(h, page);
1440         } else if (h->surplus_huge_pages_node[nid]) {
1441                 /* remove the page from active list */
1442                 list_del(&page->lru);
1443                 update_and_free_page(h, page);
1444                 h->surplus_huge_pages--;
1445                 h->surplus_huge_pages_node[nid]--;
1446         } else {
1447                 arch_clear_hugepage_flags(page);
1448                 enqueue_huge_page(h, page);
1449         }
1450         spin_unlock(&hugetlb_lock);
1451 }
1452
1453 /*
1454  * As free_huge_page() can be called from a non-task context, we have
1455  * to defer the actual freeing in a workqueue to prevent potential
1456  * hugetlb_lock deadlock.
1457  *
1458  * free_hpage_workfn() locklessly retrieves the linked list of pages to
1459  * be freed and frees them one-by-one. As the page->mapping pointer is
1460  * going to be cleared in __free_huge_page() anyway, it is reused as the
1461  * llist_node structure of a lockless linked list of huge pages to be freed.
1462  */
1463 static LLIST_HEAD(hpage_freelist);
1464
1465 static void free_hpage_workfn(struct work_struct *work)
1466 {
1467         struct llist_node *node;
1468         struct page *page;
1469
1470         node = llist_del_all(&hpage_freelist);
1471
1472         while (node) {
1473                 page = container_of((struct address_space **)node,
1474                                      struct page, mapping);
1475                 node = node->next;
1476                 __free_huge_page(page);
1477         }
1478 }
1479 static DECLARE_WORK(free_hpage_work, free_hpage_workfn);
1480
1481 void free_huge_page(struct page *page)
1482 {
1483         /*
1484          * Defer freeing if in non-task context to avoid hugetlb_lock deadlock.
1485          */
1486         if (!in_task()) {
1487                 /*
1488                  * Only call schedule_work() if hpage_freelist is previously
1489                  * empty. Otherwise, schedule_work() had been called but the
1490                  * workfn hasn't retrieved the list yet.
1491                  */
1492                 if (llist_add((struct llist_node *)&page->mapping,
1493                               &hpage_freelist))
1494                         schedule_work(&free_hpage_work);
1495                 return;
1496         }
1497
1498         __free_huge_page(page);
1499 }
1500
1501 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
1502 {
1503         INIT_LIST_HEAD(&page->lru);
1504         set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1505         spin_lock(&hugetlb_lock);
1506         set_hugetlb_cgroup(page, NULL);
1507         set_hugetlb_cgroup_rsvd(page, NULL);
1508         h->nr_huge_pages++;
1509         h->nr_huge_pages_node[nid]++;
1510         spin_unlock(&hugetlb_lock);
1511 }
1512
1513 static void prep_compound_gigantic_page(struct page *page, unsigned int order)
1514 {
1515         int i;
1516         int nr_pages = 1 << order;
1517         struct page *p = page + 1;
1518
1519         /* we rely on prep_new_huge_page to set the destructor */
1520         set_compound_order(page, order);
1521         __ClearPageReserved(page);
1522         __SetPageHead(page);
1523         for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1524                 /*
1525                  * For gigantic hugepages allocated through bootmem at
1526                  * boot, it's safer to be consistent with the not-gigantic
1527                  * hugepages and clear the PG_reserved bit from all tail pages
1528                  * too.  Otherwise drivers using get_user_pages() to access tail
1529                  * pages may get the reference counting wrong if they see
1530                  * PG_reserved set on a tail page (despite the head page not
1531                  * having PG_reserved set).  Enforcing this consistency between
1532                  * head and tail pages allows drivers to optimize away a check
1533                  * on the head page when they need know if put_page() is needed
1534                  * after get_user_pages().
1535                  */
1536                 __ClearPageReserved(p);
1537                 set_page_count(p, 0);
1538                 set_compound_head(p, page);
1539         }
1540         atomic_set(compound_mapcount_ptr(page), -1);
1541
1542         if (hpage_pincount_available(page))
1543                 atomic_set(compound_pincount_ptr(page), 0);
1544 }
1545
1546 /*
1547  * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1548  * transparent huge pages.  See the PageTransHuge() documentation for more
1549  * details.
1550  */
1551 int PageHuge(struct page *page)
1552 {
1553         if (!PageCompound(page))
1554                 return 0;
1555
1556         page = compound_head(page);
1557         return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
1558 }
1559 EXPORT_SYMBOL_GPL(PageHuge);
1560
1561 /*
1562  * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1563  * normal or transparent huge pages.
1564  */
1565 int PageHeadHuge(struct page *page_head)
1566 {
1567         if (!PageHead(page_head))
1568                 return 0;
1569
1570         return page_head[1].compound_dtor == HUGETLB_PAGE_DTOR;
1571 }
1572
1573 /*
1574  * Find address_space associated with hugetlbfs page.
1575  * Upon entry page is locked and page 'was' mapped although mapped state
1576  * could change.  If necessary, use anon_vma to find vma and associated
1577  * address space.  The returned mapping may be stale, but it can not be
1578  * invalid as page lock (which is held) is required to destroy mapping.
1579  */
1580 static struct address_space *_get_hugetlb_page_mapping(struct page *hpage)
1581 {
1582         struct anon_vma *anon_vma;
1583         pgoff_t pgoff_start, pgoff_end;
1584         struct anon_vma_chain *avc;
1585         struct address_space *mapping = page_mapping(hpage);
1586
1587         /* Simple file based mapping */
1588         if (mapping)
1589                 return mapping;
1590
1591         /*
1592          * Even anonymous hugetlbfs mappings are associated with an
1593          * underlying hugetlbfs file (see hugetlb_file_setup in mmap
1594          * code).  Find a vma associated with the anonymous vma, and
1595          * use the file pointer to get address_space.
1596          */
1597         anon_vma = page_lock_anon_vma_read(hpage);
1598         if (!anon_vma)
1599                 return mapping;  /* NULL */
1600
1601         /* Use first found vma */
1602         pgoff_start = page_to_pgoff(hpage);
1603         pgoff_end = pgoff_start + pages_per_huge_page(page_hstate(hpage)) - 1;
1604         anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root,
1605                                         pgoff_start, pgoff_end) {
1606                 struct vm_area_struct *vma = avc->vma;
1607
1608                 mapping = vma->vm_file->f_mapping;
1609                 break;
1610         }
1611
1612         anon_vma_unlock_read(anon_vma);
1613         return mapping;
1614 }
1615
1616 /*
1617  * Find and lock address space (mapping) in write mode.
1618  *
1619  * Upon entry, the page is locked which allows us to find the mapping
1620  * even in the case of an anon page.  However, locking order dictates
1621  * the i_mmap_rwsem be acquired BEFORE the page lock.  This is hugetlbfs
1622  * specific.  So, we first try to lock the sema while still holding the
1623  * page lock.  If this works, great!  If not, then we need to drop the
1624  * page lock and then acquire i_mmap_rwsem and reacquire page lock.  Of
1625  * course, need to revalidate state along the way.
1626  */
1627 struct address_space *hugetlb_page_mapping_lock_write(struct page *hpage)
1628 {
1629         struct address_space *mapping, *mapping2;
1630
1631         mapping = _get_hugetlb_page_mapping(hpage);
1632 retry:
1633         if (!mapping)
1634                 return mapping;
1635
1636         /*
1637          * If no contention, take lock and return
1638          */
1639         if (i_mmap_trylock_write(mapping))
1640                 return mapping;
1641
1642         /*
1643          * Must drop page lock and wait on mapping sema.
1644          * Note:  Once page lock is dropped, mapping could become invalid.
1645          * As a hack, increase map count until we lock page again.
1646          */
1647         atomic_inc(&hpage->_mapcount);
1648         unlock_page(hpage);
1649         i_mmap_lock_write(mapping);
1650         lock_page(hpage);
1651         atomic_add_negative(-1, &hpage->_mapcount);
1652
1653         /* verify page is still mapped */
1654         if (!page_mapped(hpage)) {
1655                 i_mmap_unlock_write(mapping);
1656                 return NULL;
1657         }
1658
1659         /*
1660          * Get address space again and verify it is the same one
1661          * we locked.  If not, drop lock and retry.
1662          */
1663         mapping2 = _get_hugetlb_page_mapping(hpage);
1664         if (mapping2 != mapping) {
1665                 i_mmap_unlock_write(mapping);
1666                 mapping = mapping2;
1667                 goto retry;
1668         }
1669
1670         return mapping;
1671 }
1672
1673 pgoff_t __basepage_index(struct page *page)
1674 {
1675         struct page *page_head = compound_head(page);
1676         pgoff_t index = page_index(page_head);
1677         unsigned long compound_idx;
1678
1679         if (!PageHuge(page_head))
1680                 return page_index(page);
1681
1682         if (compound_order(page_head) >= MAX_ORDER)
1683                 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
1684         else
1685                 compound_idx = page - page_head;
1686
1687         return (index << compound_order(page_head)) + compound_idx;
1688 }
1689
1690 static struct page *alloc_buddy_huge_page(struct hstate *h,
1691                 gfp_t gfp_mask, int nid, nodemask_t *nmask,
1692                 nodemask_t *node_alloc_noretry)
1693 {
1694         int order = huge_page_order(h);
1695         struct page *page;
1696         bool alloc_try_hard = true;
1697
1698         /*
1699          * By default we always try hard to allocate the page with
1700          * __GFP_RETRY_MAYFAIL flag.  However, if we are allocating pages in
1701          * a loop (to adjust global huge page counts) and previous allocation
1702          * failed, do not continue to try hard on the same node.  Use the
1703          * node_alloc_noretry bitmap to manage this state information.
1704          */
1705         if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry))
1706                 alloc_try_hard = false;
1707         gfp_mask |= __GFP_COMP|__GFP_NOWARN;
1708         if (alloc_try_hard)
1709                 gfp_mask |= __GFP_RETRY_MAYFAIL;
1710         if (nid == NUMA_NO_NODE)
1711                 nid = numa_mem_id();
1712         page = __alloc_pages_nodemask(gfp_mask, order, nid, nmask);
1713         if (page)
1714                 __count_vm_event(HTLB_BUDDY_PGALLOC);
1715         else
1716                 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1717
1718         /*
1719          * If we did not specify __GFP_RETRY_MAYFAIL, but still got a page this
1720          * indicates an overall state change.  Clear bit so that we resume
1721          * normal 'try hard' allocations.
1722          */
1723         if (node_alloc_noretry && page && !alloc_try_hard)
1724                 node_clear(nid, *node_alloc_noretry);
1725
1726         /*
1727          * If we tried hard to get a page but failed, set bit so that
1728          * subsequent attempts will not try as hard until there is an
1729          * overall state change.
1730          */
1731         if (node_alloc_noretry && !page && alloc_try_hard)
1732                 node_set(nid, *node_alloc_noretry);
1733
1734         return page;
1735 }
1736
1737 /*
1738  * Common helper to allocate a fresh hugetlb page. All specific allocators
1739  * should use this function to get new hugetlb pages
1740  */
1741 static struct page *alloc_fresh_huge_page(struct hstate *h,
1742                 gfp_t gfp_mask, int nid, nodemask_t *nmask,
1743                 nodemask_t *node_alloc_noretry)
1744 {
1745         struct page *page;
1746
1747         if (hstate_is_gigantic(h))
1748                 page = alloc_gigantic_page(h, gfp_mask, nid, nmask);
1749         else
1750                 page = alloc_buddy_huge_page(h, gfp_mask,
1751                                 nid, nmask, node_alloc_noretry);
1752         if (!page)
1753                 return NULL;
1754
1755         if (hstate_is_gigantic(h))
1756                 prep_compound_gigantic_page(page, huge_page_order(h));
1757         prep_new_huge_page(h, page, page_to_nid(page));
1758
1759         return page;
1760 }
1761
1762 /*
1763  * Allocates a fresh page to the hugetlb allocator pool in the node interleaved
1764  * manner.
1765  */
1766 static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1767                                 nodemask_t *node_alloc_noretry)
1768 {
1769         struct page *page;
1770         int nr_nodes, node;
1771         gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
1772
1773         for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1774                 page = alloc_fresh_huge_page(h, gfp_mask, node, nodes_allowed,
1775                                                 node_alloc_noretry);
1776                 if (page)
1777                         break;
1778         }
1779
1780         if (!page)
1781                 return 0;
1782
1783         put_page(page); /* free it into the hugepage allocator */
1784
1785         return 1;
1786 }
1787
1788 /*
1789  * Free huge page from pool from next node to free.
1790  * Attempt to keep persistent huge pages more or less
1791  * balanced over allowed nodes.
1792  * Called with hugetlb_lock locked.
1793  */
1794 static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1795                                                          bool acct_surplus)
1796 {
1797         int nr_nodes, node;
1798         int ret = 0;
1799
1800         for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1801                 /*
1802                  * If we're returning unused surplus pages, only examine
1803                  * nodes with surplus pages.
1804                  */
1805                 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
1806                     !list_empty(&h->hugepage_freelists[node])) {
1807                         struct page *page =
1808                                 list_entry(h->hugepage_freelists[node].next,
1809                                           struct page, lru);
1810                         list_del(&page->lru);
1811                         h->free_huge_pages--;
1812                         h->free_huge_pages_node[node]--;
1813                         if (acct_surplus) {
1814                                 h->surplus_huge_pages--;
1815                                 h->surplus_huge_pages_node[node]--;
1816                         }
1817                         update_and_free_page(h, page);
1818                         ret = 1;
1819                         break;
1820                 }
1821         }
1822
1823         return ret;
1824 }
1825
1826 /*
1827  * Dissolve a given free hugepage into free buddy pages. This function does
1828  * nothing for in-use hugepages and non-hugepages.
1829  * This function returns values like below:
1830  *
1831  *  -EBUSY: failed to dissolved free hugepages or the hugepage is in-use
1832  *          (allocated or reserved.)
1833  *       0: successfully dissolved free hugepages or the page is not a
1834  *          hugepage (considered as already dissolved)
1835  */
1836 int dissolve_free_huge_page(struct page *page)
1837 {
1838         int rc = -EBUSY;
1839
1840         /* Not to disrupt normal path by vainly holding hugetlb_lock */
1841         if (!PageHuge(page))
1842                 return 0;
1843
1844         spin_lock(&hugetlb_lock);
1845         if (!PageHuge(page)) {
1846                 rc = 0;
1847                 goto out;
1848         }
1849
1850         if (!page_count(page)) {
1851                 struct page *head = compound_head(page);
1852                 struct hstate *h = page_hstate(head);
1853                 int nid = page_to_nid(head);
1854                 if (h->free_huge_pages - h->resv_huge_pages == 0)
1855                         goto out;
1856                 /*
1857                  * Move PageHWPoison flag from head page to the raw error page,
1858                  * which makes any subpages rather than the error page reusable.
1859                  */
1860                 if (PageHWPoison(head) && page != head) {
1861                         SetPageHWPoison(page);
1862                         ClearPageHWPoison(head);
1863                 }
1864                 list_del(&head->lru);
1865                 h->free_huge_pages--;
1866                 h->free_huge_pages_node[nid]--;
1867                 h->max_huge_pages--;
1868                 update_and_free_page(h, head);
1869                 rc = 0;
1870         }
1871 out:
1872         spin_unlock(&hugetlb_lock);
1873         return rc;
1874 }
1875
1876 /*
1877  * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
1878  * make specified memory blocks removable from the system.
1879  * Note that this will dissolve a free gigantic hugepage completely, if any
1880  * part of it lies within the given range.
1881  * Also note that if dissolve_free_huge_page() returns with an error, all
1882  * free hugepages that were dissolved before that error are lost.
1883  */
1884 int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
1885 {
1886         unsigned long pfn;
1887         struct page *page;
1888         int rc = 0;
1889
1890         if (!hugepages_supported())
1891                 return rc;
1892
1893         for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order) {
1894                 page = pfn_to_page(pfn);
1895                 rc = dissolve_free_huge_page(page);
1896                 if (rc)
1897                         break;
1898         }
1899
1900         return rc;
1901 }
1902
1903 /*
1904  * Allocates a fresh surplus page from the page allocator.
1905  */
1906 static struct page *alloc_surplus_huge_page(struct hstate *h, gfp_t gfp_mask,
1907                 int nid, nodemask_t *nmask)
1908 {
1909         struct page *page = NULL;
1910
1911         if (hstate_is_gigantic(h))
1912                 return NULL;
1913
1914         spin_lock(&hugetlb_lock);
1915         if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages)
1916                 goto out_unlock;
1917         spin_unlock(&hugetlb_lock);
1918
1919         page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
1920         if (!page)
1921                 return NULL;
1922
1923         spin_lock(&hugetlb_lock);
1924         /*
1925          * We could have raced with the pool size change.
1926          * Double check that and simply deallocate the new page
1927          * if we would end up overcommiting the surpluses. Abuse
1928          * temporary page to workaround the nasty free_huge_page
1929          * codeflow
1930          */
1931         if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
1932                 SetPageHugeTemporary(page);
1933                 spin_unlock(&hugetlb_lock);
1934                 put_page(page);
1935                 return NULL;
1936         } else {
1937                 h->surplus_huge_pages++;
1938                 h->surplus_huge_pages_node[page_to_nid(page)]++;
1939         }
1940
1941 out_unlock:
1942         spin_unlock(&hugetlb_lock);
1943
1944         return page;
1945 }
1946
1947 struct page *alloc_migrate_huge_page(struct hstate *h, gfp_t gfp_mask,
1948                                      int nid, nodemask_t *nmask)
1949 {
1950         struct page *page;
1951
1952         if (hstate_is_gigantic(h))
1953                 return NULL;
1954
1955         page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
1956         if (!page)
1957                 return NULL;
1958
1959         /*
1960          * We do not account these pages as surplus because they are only
1961          * temporary and will be released properly on the last reference
1962          */
1963         SetPageHugeTemporary(page);
1964
1965         return page;
1966 }
1967
1968 /*
1969  * Use the VMA's mpolicy to allocate a huge page from the buddy.
1970  */
1971 static
1972 struct page *alloc_buddy_huge_page_with_mpol(struct hstate *h,
1973                 struct vm_area_struct *vma, unsigned long addr)
1974 {
1975         struct page *page;
1976         struct mempolicy *mpol;
1977         gfp_t gfp_mask = htlb_alloc_mask(h);
1978         int nid;
1979         nodemask_t *nodemask;
1980
1981         nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
1982         page = alloc_surplus_huge_page(h, gfp_mask, nid, nodemask);
1983         mpol_cond_put(mpol);
1984
1985         return page;
1986 }
1987
1988 /* page migration callback function */
1989 struct page *alloc_huge_page_node(struct hstate *h, int nid)
1990 {
1991         gfp_t gfp_mask = htlb_alloc_mask(h);
1992         struct page *page = NULL;
1993
1994         if (nid != NUMA_NO_NODE)
1995                 gfp_mask |= __GFP_THISNODE;
1996
1997         spin_lock(&hugetlb_lock);
1998         if (h->free_huge_pages - h->resv_huge_pages > 0)
1999                 page = dequeue_huge_page_nodemask(h, gfp_mask, nid, NULL);
2000         spin_unlock(&hugetlb_lock);
2001
2002         if (!page)
2003                 page = alloc_migrate_huge_page(h, gfp_mask, nid, NULL);
2004
2005         return page;
2006 }
2007
2008 /* page migration callback function */
2009 struct page *alloc_huge_page_nodemask(struct hstate *h, int preferred_nid,
2010                 nodemask_t *nmask)
2011 {
2012         gfp_t gfp_mask = htlb_alloc_mask(h);
2013
2014         spin_lock(&hugetlb_lock);
2015         if (h->free_huge_pages - h->resv_huge_pages > 0) {
2016                 struct page *page;
2017
2018                 page = dequeue_huge_page_nodemask(h, gfp_mask, preferred_nid, nmask);
2019                 if (page) {
2020                         spin_unlock(&hugetlb_lock);
2021                         return page;
2022                 }
2023         }
2024         spin_unlock(&hugetlb_lock);
2025
2026         return alloc_migrate_huge_page(h, gfp_mask, preferred_nid, nmask);
2027 }
2028
2029 /* mempolicy aware migration callback */
2030 struct page *alloc_huge_page_vma(struct hstate *h, struct vm_area_struct *vma,
2031                 unsigned long address)
2032 {
2033         struct mempolicy *mpol;
2034         nodemask_t *nodemask;
2035         struct page *page;
2036         gfp_t gfp_mask;
2037         int node;
2038
2039         gfp_mask = htlb_alloc_mask(h);
2040         node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
2041         page = alloc_huge_page_nodemask(h, node, nodemask);
2042         mpol_cond_put(mpol);
2043
2044         return page;
2045 }
2046
2047 /*
2048  * Increase the hugetlb pool such that it can accommodate a reservation
2049  * of size 'delta'.
2050  */
2051 static int gather_surplus_pages(struct hstate *h, int delta)
2052         __must_hold(&hugetlb_lock)
2053 {
2054         struct list_head surplus_list;
2055         struct page *page, *tmp;
2056         int ret, i;
2057         int needed, allocated;
2058         bool alloc_ok = true;
2059
2060         needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
2061         if (needed <= 0) {
2062                 h->resv_huge_pages += delta;
2063                 return 0;
2064         }
2065
2066         allocated = 0;
2067         INIT_LIST_HEAD(&surplus_list);
2068
2069         ret = -ENOMEM;
2070 retry:
2071         spin_unlock(&hugetlb_lock);
2072         for (i = 0; i < needed; i++) {
2073                 page = alloc_surplus_huge_page(h, htlb_alloc_mask(h),
2074                                 NUMA_NO_NODE, NULL);
2075                 if (!page) {
2076                         alloc_ok = false;
2077                         break;
2078                 }
2079                 list_add(&page->lru, &surplus_list);
2080                 cond_resched();
2081         }
2082         allocated += i;
2083
2084         /*
2085          * After retaking hugetlb_lock, we need to recalculate 'needed'
2086          * because either resv_huge_pages or free_huge_pages may have changed.
2087          */
2088         spin_lock(&hugetlb_lock);
2089         needed = (h->resv_huge_pages + delta) -
2090                         (h->free_huge_pages + allocated);
2091         if (needed > 0) {
2092                 if (alloc_ok)
2093                         goto retry;
2094                 /*
2095                  * We were not able to allocate enough pages to
2096                  * satisfy the entire reservation so we free what
2097                  * we've allocated so far.
2098                  */
2099                 goto free;
2100         }
2101         /*
2102          * The surplus_list now contains _at_least_ the number of extra pages
2103          * needed to accommodate the reservation.  Add the appropriate number
2104          * of pages to the hugetlb pool and free the extras back to the buddy
2105          * allocator.  Commit the entire reservation here to prevent another
2106          * process from stealing the pages as they are added to the pool but
2107          * before they are reserved.
2108          */
2109         needed += allocated;
2110         h->resv_huge_pages += delta;
2111         ret = 0;
2112
2113         /* Free the needed pages to the hugetlb pool */
2114         list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
2115                 if ((--needed) < 0)
2116                         break;
2117                 /*
2118                  * This page is now managed by the hugetlb allocator and has
2119                  * no users -- drop the buddy allocator's reference.
2120                  */
2121                 put_page_testzero(page);
2122                 VM_BUG_ON_PAGE(page_count(page), page);
2123                 enqueue_huge_page(h, page);
2124         }
2125 free:
2126         spin_unlock(&hugetlb_lock);
2127
2128         /* Free unnecessary surplus pages to the buddy allocator */
2129         list_for_each_entry_safe(page, tmp, &surplus_list, lru)
2130                 put_page(page);
2131         spin_lock(&hugetlb_lock);
2132
2133         return ret;
2134 }
2135
2136 /*
2137  * This routine has two main purposes:
2138  * 1) Decrement the reservation count (resv_huge_pages) by the value passed
2139  *    in unused_resv_pages.  This corresponds to the prior adjustments made
2140  *    to the associated reservation map.
2141  * 2) Free any unused surplus pages that may have been allocated to satisfy
2142  *    the reservation.  As many as unused_resv_pages may be freed.
2143  *
2144  * Called with hugetlb_lock held.  However, the lock could be dropped (and
2145  * reacquired) during calls to cond_resched_lock.  Whenever dropping the lock,
2146  * we must make sure nobody else can claim pages we are in the process of
2147  * freeing.  Do this by ensuring resv_huge_page always is greater than the
2148  * number of huge pages we plan to free when dropping the lock.
2149  */
2150 static void return_unused_surplus_pages(struct hstate *h,
2151                                         unsigned long unused_resv_pages)
2152 {
2153         unsigned long nr_pages;
2154
2155         /* Cannot return gigantic pages currently */
2156         if (hstate_is_gigantic(h))
2157                 goto out;
2158
2159         /*
2160          * Part (or even all) of the reservation could have been backed
2161          * by pre-allocated pages. Only free surplus pages.
2162          */
2163         nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
2164
2165         /*
2166          * We want to release as many surplus pages as possible, spread
2167          * evenly across all nodes with memory. Iterate across these nodes
2168          * until we can no longer free unreserved surplus pages. This occurs
2169          * when the nodes with surplus pages have no free pages.
2170          * free_pool_huge_page() will balance the freed pages across the
2171          * on-line nodes with memory and will handle the hstate accounting.
2172          *
2173          * Note that we decrement resv_huge_pages as we free the pages.  If
2174          * we drop the lock, resv_huge_pages will still be sufficiently large
2175          * to cover subsequent pages we may free.
2176          */
2177         while (nr_pages--) {
2178                 h->resv_huge_pages--;
2179                 unused_resv_pages--;
2180                 if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
2181                         goto out;
2182                 cond_resched_lock(&hugetlb_lock);
2183         }
2184
2185 out:
2186         /* Fully uncommit the reservation */
2187         h->resv_huge_pages -= unused_resv_pages;
2188 }
2189
2190
2191 /*
2192  * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
2193  * are used by the huge page allocation routines to manage reservations.
2194  *
2195  * vma_needs_reservation is called to determine if the huge page at addr
2196  * within the vma has an associated reservation.  If a reservation is
2197  * needed, the value 1 is returned.  The caller is then responsible for
2198  * managing the global reservation and subpool usage counts.  After
2199  * the huge page has been allocated, vma_commit_reservation is called
2200  * to add the page to the reservation map.  If the page allocation fails,
2201  * the reservation must be ended instead of committed.  vma_end_reservation
2202  * is called in such cases.
2203  *
2204  * In the normal case, vma_commit_reservation returns the same value
2205  * as the preceding vma_needs_reservation call.  The only time this
2206  * is not the case is if a reserve map was changed between calls.  It
2207  * is the responsibility of the caller to notice the difference and
2208  * take appropriate action.
2209  *
2210  * vma_add_reservation is used in error paths where a reservation must
2211  * be restored when a newly allocated huge page must be freed.  It is
2212  * to be called after calling vma_needs_reservation to determine if a
2213  * reservation exists.
2214  */
2215 enum vma_resv_mode {
2216         VMA_NEEDS_RESV,
2217         VMA_COMMIT_RESV,
2218         VMA_END_RESV,
2219         VMA_ADD_RESV,
2220 };
2221 static long __vma_reservation_common(struct hstate *h,
2222                                 struct vm_area_struct *vma, unsigned long addr,
2223                                 enum vma_resv_mode mode)
2224 {
2225         struct resv_map *resv;
2226         pgoff_t idx;
2227         long ret;
2228         long dummy_out_regions_needed;
2229
2230         resv = vma_resv_map(vma);
2231         if (!resv)
2232                 return 1;
2233
2234         idx = vma_hugecache_offset(h, vma, addr);
2235         switch (mode) {
2236         case VMA_NEEDS_RESV:
2237                 ret = region_chg(resv, idx, idx + 1, &dummy_out_regions_needed);
2238                 /* We assume that vma_reservation_* routines always operate on
2239                  * 1 page, and that adding to resv map a 1 page entry can only
2240                  * ever require 1 region.
2241                  */
2242                 VM_BUG_ON(dummy_out_regions_needed != 1);
2243                 break;
2244         case VMA_COMMIT_RESV:
2245                 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2246                 /* region_add calls of range 1 should never fail. */
2247                 VM_BUG_ON(ret < 0);
2248                 break;
2249         case VMA_END_RESV:
2250                 region_abort(resv, idx, idx + 1, 1);
2251                 ret = 0;
2252                 break;
2253         case VMA_ADD_RESV:
2254                 if (vma->vm_flags & VM_MAYSHARE) {
2255                         ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2256                         /* region_add calls of range 1 should never fail. */
2257                         VM_BUG_ON(ret < 0);
2258                 } else {
2259                         region_abort(resv, idx, idx + 1, 1);
2260                         ret = region_del(resv, idx, idx + 1);
2261                 }
2262                 break;
2263         default:
2264                 BUG();
2265         }
2266
2267         if (vma->vm_flags & VM_MAYSHARE)
2268                 return ret;
2269         else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && ret >= 0) {
2270                 /*
2271                  * In most cases, reserves always exist for private mappings.
2272                  * However, a file associated with mapping could have been
2273                  * hole punched or truncated after reserves were consumed.
2274                  * As subsequent fault on such a range will not use reserves.
2275                  * Subtle - The reserve map for private mappings has the
2276                  * opposite meaning than that of shared mappings.  If NO
2277                  * entry is in the reserve map, it means a reservation exists.
2278                  * If an entry exists in the reserve map, it means the
2279                  * reservation has already been consumed.  As a result, the
2280                  * return value of this routine is the opposite of the
2281                  * value returned from reserve map manipulation routines above.
2282                  */
2283                 if (ret)
2284                         return 0;
2285                 else
2286                         return 1;
2287         }
2288         else
2289                 return ret < 0 ? ret : 0;
2290 }
2291
2292 static long vma_needs_reservation(struct hstate *h,
2293                         struct vm_area_struct *vma, unsigned long addr)
2294 {
2295         return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
2296 }
2297
2298 static long vma_commit_reservation(struct hstate *h,
2299                         struct vm_area_struct *vma, unsigned long addr)
2300 {
2301         return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
2302 }
2303
2304 static void vma_end_reservation(struct hstate *h,
2305                         struct vm_area_struct *vma, unsigned long addr)
2306 {
2307         (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
2308 }
2309
2310 static long vma_add_reservation(struct hstate *h,
2311                         struct vm_area_struct *vma, unsigned long addr)
2312 {
2313         return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
2314 }
2315
2316 /*
2317  * This routine is called to restore a reservation on error paths.  In the
2318  * specific error paths, a huge page was allocated (via alloc_huge_page)
2319  * and is about to be freed.  If a reservation for the page existed,
2320  * alloc_huge_page would have consumed the reservation and set PagePrivate
2321  * in the newly allocated page.  When the page is freed via free_huge_page,
2322  * the global reservation count will be incremented if PagePrivate is set.
2323  * However, free_huge_page can not adjust the reserve map.  Adjust the
2324  * reserve map here to be consistent with global reserve count adjustments
2325  * to be made by free_huge_page.
2326  */
2327 static void restore_reserve_on_error(struct hstate *h,
2328                         struct vm_area_struct *vma, unsigned long address,
2329                         struct page *page)
2330 {
2331         if (unlikely(PagePrivate(page))) {
2332                 long rc = vma_needs_reservation(h, vma, address);
2333
2334                 if (unlikely(rc < 0)) {
2335                         /*
2336                          * Rare out of memory condition in reserve map
2337                          * manipulation.  Clear PagePrivate so that
2338                          * global reserve count will not be incremented
2339                          * by free_huge_page.  This will make it appear
2340                          * as though the reservation for this page was
2341                          * consumed.  This may prevent the task from
2342                          * faulting in the page at a later time.  This
2343                          * is better than inconsistent global huge page
2344                          * accounting of reserve counts.
2345                          */
2346                         ClearPagePrivate(page);
2347                 } else if (rc) {
2348                         rc = vma_add_reservation(h, vma, address);
2349                         if (unlikely(rc < 0))
2350                                 /*
2351                                  * See above comment about rare out of
2352                                  * memory condition.
2353                                  */
2354                                 ClearPagePrivate(page);
2355                 } else
2356                         vma_end_reservation(h, vma, address);
2357         }
2358 }
2359
2360 struct page *alloc_huge_page(struct vm_area_struct *vma,
2361                                     unsigned long addr, int avoid_reserve)
2362 {
2363         struct hugepage_subpool *spool = subpool_vma(vma);
2364         struct hstate *h = hstate_vma(vma);
2365         struct page *page;
2366         long map_chg, map_commit;
2367         long gbl_chg;
2368         int ret, idx;
2369         struct hugetlb_cgroup *h_cg;
2370         bool deferred_reserve;
2371
2372         idx = hstate_index(h);
2373         /*
2374          * Examine the region/reserve map to determine if the process
2375          * has a reservation for the page to be allocated.  A return
2376          * code of zero indicates a reservation exists (no change).
2377          */
2378         map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
2379         if (map_chg < 0)
2380                 return ERR_PTR(-ENOMEM);
2381
2382         /*
2383          * Processes that did not create the mapping will have no
2384          * reserves as indicated by the region/reserve map. Check
2385          * that the allocation will not exceed the subpool limit.
2386          * Allocations for MAP_NORESERVE mappings also need to be
2387          * checked against any subpool limit.
2388          */
2389         if (map_chg || avoid_reserve) {
2390                 gbl_chg = hugepage_subpool_get_pages(spool, 1);
2391                 if (gbl_chg < 0) {
2392                         vma_end_reservation(h, vma, addr);
2393                         return ERR_PTR(-ENOSPC);
2394                 }
2395
2396                 /*
2397                  * Even though there was no reservation in the region/reserve
2398                  * map, there could be reservations associated with the
2399                  * subpool that can be used.  This would be indicated if the
2400                  * return value of hugepage_subpool_get_pages() is zero.
2401                  * However, if avoid_reserve is specified we still avoid even
2402                  * the subpool reservations.
2403                  */
2404                 if (avoid_reserve)
2405                         gbl_chg = 1;
2406         }
2407
2408         /* If this allocation is not consuming a reservation, charge it now.
2409          */
2410         deferred_reserve = map_chg || avoid_reserve || !vma_resv_map(vma);
2411         if (deferred_reserve) {
2412                 ret = hugetlb_cgroup_charge_cgroup_rsvd(
2413                         idx, pages_per_huge_page(h), &h_cg);
2414                 if (ret)
2415                         goto out_subpool_put;
2416         }
2417
2418         ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
2419         if (ret)
2420                 goto out_uncharge_cgroup_reservation;
2421
2422         spin_lock(&hugetlb_lock);
2423         /*
2424          * glb_chg is passed to indicate whether or not a page must be taken
2425          * from the global free pool (global change).  gbl_chg == 0 indicates
2426          * a reservation exists for the allocation.
2427          */
2428         page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
2429         if (!page) {
2430                 spin_unlock(&hugetlb_lock);
2431                 page = alloc_buddy_huge_page_with_mpol(h, vma, addr);
2432                 if (!page)
2433                         goto out_uncharge_cgroup;
2434                 if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
2435                         SetPagePrivate(page);
2436                         h->resv_huge_pages--;
2437                 }
2438                 spin_lock(&hugetlb_lock);
2439                 list_move(&page->lru, &h->hugepage_activelist);
2440                 /* Fall through */
2441         }
2442         hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
2443         /* If allocation is not consuming a reservation, also store the
2444          * hugetlb_cgroup pointer on the page.
2445          */
2446         if (deferred_reserve) {
2447                 hugetlb_cgroup_commit_charge_rsvd(idx, pages_per_huge_page(h),
2448                                                   h_cg, page);
2449         }
2450
2451         spin_unlock(&hugetlb_lock);
2452
2453         set_page_private(page, (unsigned long)spool);
2454
2455         map_commit = vma_commit_reservation(h, vma, addr);
2456         if (unlikely(map_chg > map_commit)) {
2457                 /*
2458                  * The page was added to the reservation map between
2459                  * vma_needs_reservation and vma_commit_reservation.
2460                  * This indicates a race with hugetlb_reserve_pages.
2461                  * Adjust for the subpool count incremented above AND
2462                  * in hugetlb_reserve_pages for the same page.  Also,
2463                  * the reservation count added in hugetlb_reserve_pages
2464                  * no longer applies.
2465                  */
2466                 long rsv_adjust;
2467
2468                 rsv_adjust = hugepage_subpool_put_pages(spool, 1);
2469                 hugetlb_acct_memory(h, -rsv_adjust);
2470         }
2471         return page;
2472
2473 out_uncharge_cgroup:
2474         hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
2475 out_uncharge_cgroup_reservation:
2476         if (deferred_reserve)
2477                 hugetlb_cgroup_uncharge_cgroup_rsvd(idx, pages_per_huge_page(h),
2478                                                     h_cg);
2479 out_subpool_put:
2480         if (map_chg || avoid_reserve)
2481                 hugepage_subpool_put_pages(spool, 1);
2482         vma_end_reservation(h, vma, addr);
2483         return ERR_PTR(-ENOSPC);
2484 }
2485
2486 int alloc_bootmem_huge_page(struct hstate *h)
2487         __attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
2488 int __alloc_bootmem_huge_page(struct hstate *h)
2489 {
2490         struct huge_bootmem_page *m;
2491         int nr_nodes, node;
2492
2493         for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
2494                 void *addr;
2495
2496                 addr = memblock_alloc_try_nid_raw(
2497                                 huge_page_size(h), huge_page_size(h),
2498                                 0, MEMBLOCK_ALLOC_ACCESSIBLE, node);
2499                 if (addr) {
2500                         /*
2501                          * Use the beginning of the huge page to store the
2502                          * huge_bootmem_page struct (until gather_bootmem
2503                          * puts them into the mem_map).
2504                          */
2505                         m = addr;
2506                         goto found;
2507                 }
2508         }
2509         return 0;
2510
2511 found:
2512         BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h)));
2513         /* Put them into a private list first because mem_map is not up yet */
2514         INIT_LIST_HEAD(&m->list);
2515         list_add(&m->list, &huge_boot_pages);
2516         m->hstate = h;
2517         return 1;
2518 }
2519
2520 static void __init prep_compound_huge_page(struct page *page,
2521                 unsigned int order)
2522 {
2523         if (unlikely(order > (MAX_ORDER - 1)))
2524                 prep_compound_gigantic_page(page, order);
2525         else
2526                 prep_compound_page(page, order);
2527 }
2528
2529 /* Put bootmem huge pages into the standard lists after mem_map is up */
2530 static void __init gather_bootmem_prealloc(void)
2531 {
2532         struct huge_bootmem_page *m;
2533
2534         list_for_each_entry(m, &huge_boot_pages, list) {
2535                 struct page *page = virt_to_page(m);
2536                 struct hstate *h = m->hstate;
2537
2538                 WARN_ON(page_count(page) != 1);
2539                 prep_compound_huge_page(page, h->order);
2540                 WARN_ON(PageReserved(page));
2541                 prep_new_huge_page(h, page, page_to_nid(page));
2542                 put_page(page); /* free it into the hugepage allocator */
2543
2544                 /*
2545                  * If we had gigantic hugepages allocated at boot time, we need
2546                  * to restore the 'stolen' pages to totalram_pages in order to
2547                  * fix confusing memory reports from free(1) and another
2548                  * side-effects, like CommitLimit going negative.
2549                  */
2550                 if (hstate_is_gigantic(h))
2551                         adjust_managed_page_count(page, 1 << h->order);
2552                 cond_resched();
2553         }
2554 }
2555
2556 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
2557 {
2558         unsigned long i;
2559         nodemask_t *node_alloc_noretry;
2560
2561         if (!hstate_is_gigantic(h)) {
2562                 /*
2563                  * Bit mask controlling how hard we retry per-node allocations.
2564                  * Ignore errors as lower level routines can deal with
2565                  * node_alloc_noretry == NULL.  If this kmalloc fails at boot
2566                  * time, we are likely in bigger trouble.
2567                  */
2568                 node_alloc_noretry = kmalloc(sizeof(*node_alloc_noretry),
2569                                                 GFP_KERNEL);
2570         } else {
2571                 /* allocations done at boot time */
2572                 node_alloc_noretry = NULL;
2573         }
2574
2575         /* bit mask controlling how hard we retry per-node allocations */
2576         if (node_alloc_noretry)
2577                 nodes_clear(*node_alloc_noretry);
2578
2579         for (i = 0; i < h->max_huge_pages; ++i) {
2580                 if (hstate_is_gigantic(h)) {
2581                         if (hugetlb_cma_size) {
2582                                 pr_warn_once("HugeTLB: hugetlb_cma is enabled, skip boot time allocation\n");
2583                                 break;
2584                         }
2585                         if (!alloc_bootmem_huge_page(h))
2586                                 break;
2587                 } else if (!alloc_pool_huge_page(h,
2588                                          &node_states[N_MEMORY],
2589                                          node_alloc_noretry))
2590                         break;
2591                 cond_resched();
2592         }
2593         if (i < h->max_huge_pages) {
2594                 char buf[32];
2595
2596                 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
2597                 pr_warn("HugeTLB: allocating %lu of page size %s failed.  Only allocated %lu hugepages.\n",
2598                         h->max_huge_pages, buf, i);
2599                 h->max_huge_pages = i;
2600         }
2601
2602         kfree(node_alloc_noretry);
2603 }
2604
2605 static void __init hugetlb_init_hstates(void)
2606 {
2607         struct hstate *h;
2608
2609         for_each_hstate(h) {
2610                 if (minimum_order > huge_page_order(h))
2611                         minimum_order = huge_page_order(h);
2612
2613                 /* oversize hugepages were init'ed in early boot */
2614                 if (!hstate_is_gigantic(h))
2615                         hugetlb_hstate_alloc_pages(h);
2616         }
2617         VM_BUG_ON(minimum_order == UINT_MAX);
2618 }
2619
2620 static void __init report_hugepages(void)
2621 {
2622         struct hstate *h;
2623
2624         for_each_hstate(h) {
2625                 char buf[32];
2626
2627                 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
2628                 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
2629                         buf, h->free_huge_pages);
2630         }
2631 }
2632
2633 #ifdef CONFIG_HIGHMEM
2634 static void try_to_free_low(struct hstate *h, unsigned long count,
2635                                                 nodemask_t *nodes_allowed)
2636 {
2637         int i;
2638
2639         if (hstate_is_gigantic(h))
2640                 return;
2641
2642         for_each_node_mask(i, *nodes_allowed) {
2643                 struct page *page, *next;
2644                 struct list_head *freel = &h->hugepage_freelists[i];
2645                 list_for_each_entry_safe(page, next, freel, lru) {
2646                         if (count >= h->nr_huge_pages)
2647                                 return;
2648                         if (PageHighMem(page))
2649                                 continue;
2650                         list_del(&page->lru);
2651                         update_and_free_page(h, page);
2652                         h->free_huge_pages--;
2653                         h->free_huge_pages_node[page_to_nid(page)]--;
2654                 }
2655         }
2656 }
2657 #else
2658 static inline void try_to_free_low(struct hstate *h, unsigned long count,
2659                                                 nodemask_t *nodes_allowed)
2660 {
2661 }
2662 #endif
2663
2664 /*
2665  * Increment or decrement surplus_huge_pages.  Keep node-specific counters
2666  * balanced by operating on them in a round-robin fashion.
2667  * Returns 1 if an adjustment was made.
2668  */
2669 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
2670                                 int delta)
2671 {
2672         int nr_nodes, node;
2673
2674         VM_BUG_ON(delta != -1 && delta != 1);
2675
2676         if (delta < 0) {
2677                 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
2678                         if (h->surplus_huge_pages_node[node])
2679                                 goto found;
2680                 }
2681         } else {
2682                 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2683                         if (h->surplus_huge_pages_node[node] <
2684                                         h->nr_huge_pages_node[node])
2685                                 goto found;
2686                 }
2687         }
2688         return 0;
2689
2690 found:
2691         h->surplus_huge_pages += delta;
2692         h->surplus_huge_pages_node[node] += delta;
2693         return 1;
2694 }
2695
2696 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
2697 static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid,
2698                               nodemask_t *nodes_allowed)
2699 {
2700         unsigned long min_count, ret;
2701         NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL);
2702
2703         /*
2704          * Bit mask controlling how hard we retry per-node allocations.
2705          * If we can not allocate the bit mask, do not attempt to allocate
2706          * the requested huge pages.
2707          */
2708         if (node_alloc_noretry)
2709                 nodes_clear(*node_alloc_noretry);
2710         else
2711                 return -ENOMEM;
2712
2713         spin_lock(&hugetlb_lock);
2714
2715         /*
2716          * Check for a node specific request.
2717          * Changing node specific huge page count may require a corresponding
2718          * change to the global count.  In any case, the passed node mask
2719          * (nodes_allowed) will restrict alloc/free to the specified node.
2720          */
2721         if (nid != NUMA_NO_NODE) {
2722                 unsigned long old_count = count;
2723
2724                 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
2725                 /*
2726                  * User may have specified a large count value which caused the
2727                  * above calculation to overflow.  In this case, they wanted
2728                  * to allocate as many huge pages as possible.  Set count to
2729                  * largest possible value to align with their intention.
2730                  */
2731                 if (count < old_count)
2732                         count = ULONG_MAX;
2733         }
2734
2735         /*
2736          * Gigantic pages runtime allocation depend on the capability for large
2737          * page range allocation.
2738          * If the system does not provide this feature, return an error when
2739          * the user tries to allocate gigantic pages but let the user free the
2740          * boottime allocated gigantic pages.
2741          */
2742         if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) {
2743                 if (count > persistent_huge_pages(h)) {
2744                         spin_unlock(&hugetlb_lock);
2745                         NODEMASK_FREE(node_alloc_noretry);
2746                         return -EINVAL;
2747                 }
2748                 /* Fall through to decrease pool */
2749         }
2750
2751         /*
2752          * Increase the pool size
2753          * First take pages out of surplus state.  Then make up the
2754          * remaining difference by allocating fresh huge pages.
2755          *
2756          * We might race with alloc_surplus_huge_page() here and be unable
2757          * to convert a surplus huge page to a normal huge page. That is
2758          * not critical, though, it just means the overall size of the
2759          * pool might be one hugepage larger than it needs to be, but
2760          * within all the constraints specified by the sysctls.
2761          */
2762         while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
2763                 if (!adjust_pool_surplus(h, nodes_allowed, -1))
2764                         break;
2765         }
2766
2767         while (count > persistent_huge_pages(h)) {
2768                 /*
2769                  * If this allocation races such that we no longer need the
2770                  * page, free_huge_page will handle it by freeing the page
2771                  * and reducing the surplus.
2772                  */
2773                 spin_unlock(&hugetlb_lock);
2774
2775                 /* yield cpu to avoid soft lockup */
2776                 cond_resched();
2777
2778                 ret = alloc_pool_huge_page(h, nodes_allowed,
2779                                                 node_alloc_noretry);
2780                 spin_lock(&hugetlb_lock);
2781                 if (!ret)
2782                         goto out;
2783
2784                 /* Bail for signals. Probably ctrl-c from user */
2785                 if (signal_pending(current))
2786                         goto out;
2787         }
2788
2789         /*
2790          * Decrease the pool size
2791          * First return free pages to the buddy allocator (being careful
2792          * to keep enough around to satisfy reservations).  Then place
2793          * pages into surplus state as needed so the pool will shrink
2794          * to the desired size as pages become free.
2795          *
2796          * By placing pages into the surplus state independent of the
2797          * overcommit value, we are allowing the surplus pool size to
2798          * exceed overcommit. There are few sane options here. Since
2799          * alloc_surplus_huge_page() is checking the global counter,
2800          * though, we'll note that we're not allowed to exceed surplus
2801          * and won't grow the pool anywhere else. Not until one of the
2802          * sysctls are changed, or the surplus pages go out of use.
2803          */
2804         min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
2805         min_count = max(count, min_count);
2806         try_to_free_low(h, min_count, nodes_allowed);
2807         while (min_count < persistent_huge_pages(h)) {
2808                 if (!free_pool_huge_page(h, nodes_allowed, 0))
2809                         break;
2810                 cond_resched_lock(&hugetlb_lock);
2811         }
2812         while (count < persistent_huge_pages(h)) {
2813                 if (!adjust_pool_surplus(h, nodes_allowed, 1))
2814                         break;
2815         }
2816 out:
2817         h->max_huge_pages = persistent_huge_pages(h);
2818         spin_unlock(&hugetlb_lock);
2819
2820         NODEMASK_FREE(node_alloc_noretry);
2821
2822         return 0;
2823 }
2824
2825 #define HSTATE_ATTR_RO(_name) \
2826         static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2827
2828 #define HSTATE_ATTR(_name) \
2829         static struct kobj_attribute _name##_attr = \
2830                 __ATTR(_name, 0644, _name##_show, _name##_store)
2831
2832 static struct kobject *hugepages_kobj;
2833 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2834
2835 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
2836
2837 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
2838 {
2839         int i;
2840
2841         for (i = 0; i < HUGE_MAX_HSTATE; i++)
2842                 if (hstate_kobjs[i] == kobj) {
2843                         if (nidp)
2844                                 *nidp = NUMA_NO_NODE;
2845                         return &hstates[i];
2846                 }
2847
2848         return kobj_to_node_hstate(kobj, nidp);
2849 }
2850
2851 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
2852                                         struct kobj_attribute *attr, char *buf)
2853 {
2854         struct hstate *h;
2855         unsigned long nr_huge_pages;
2856         int nid;
2857
2858         h = kobj_to_hstate(kobj, &nid);
2859         if (nid == NUMA_NO_NODE)
2860                 nr_huge_pages = h->nr_huge_pages;
2861         else
2862                 nr_huge_pages = h->nr_huge_pages_node[nid];
2863
2864         return sprintf(buf, "%lu\n", nr_huge_pages);
2865 }
2866
2867 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
2868                                            struct hstate *h, int nid,
2869                                            unsigned long count, size_t len)
2870 {
2871         int err;
2872         nodemask_t nodes_allowed, *n_mask;
2873
2874         if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
2875                 return -EINVAL;
2876
2877         if (nid == NUMA_NO_NODE) {
2878                 /*
2879                  * global hstate attribute
2880                  */
2881                 if (!(obey_mempolicy &&
2882                                 init_nodemask_of_mempolicy(&nodes_allowed)))
2883                         n_mask = &node_states[N_MEMORY];
2884                 else
2885                         n_mask = &nodes_allowed;
2886         } else {
2887                 /*
2888                  * Node specific request.  count adjustment happens in
2889                  * set_max_huge_pages() after acquiring hugetlb_lock.
2890                  */
2891                 init_nodemask_of_node(&nodes_allowed, nid);
2892                 n_mask = &nodes_allowed;
2893         }
2894
2895         err = set_max_huge_pages(h, count, nid, n_mask);
2896
2897         return err ? err : len;
2898 }
2899
2900 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
2901                                          struct kobject *kobj, const char *buf,
2902                                          size_t len)
2903 {
2904         struct hstate *h;
2905         unsigned long count;
2906         int nid;
2907         int err;
2908
2909         err = kstrtoul(buf, 10, &count);
2910         if (err)
2911                 return err;
2912
2913         h = kobj_to_hstate(kobj, &nid);
2914         return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
2915 }
2916
2917 static ssize_t nr_hugepages_show(struct kobject *kobj,
2918                                        struct kobj_attribute *attr, char *buf)
2919 {
2920         return nr_hugepages_show_common(kobj, attr, buf);
2921 }
2922
2923 static ssize_t nr_hugepages_store(struct kobject *kobj,
2924                struct kobj_attribute *attr, const char *buf, size_t len)
2925 {
2926         return nr_hugepages_store_common(false, kobj, buf, len);
2927 }
2928 HSTATE_ATTR(nr_hugepages);
2929
2930 #ifdef CONFIG_NUMA
2931
2932 /*
2933  * hstate attribute for optionally mempolicy-based constraint on persistent
2934  * huge page alloc/free.
2935  */
2936 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
2937                                        struct kobj_attribute *attr, char *buf)
2938 {
2939         return nr_hugepages_show_common(kobj, attr, buf);
2940 }
2941
2942 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
2943                struct kobj_attribute *attr, const char *buf, size_t len)
2944 {
2945         return nr_hugepages_store_common(true, kobj, buf, len);
2946 }
2947 HSTATE_ATTR(nr_hugepages_mempolicy);
2948 #endif
2949
2950
2951 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
2952                                         struct kobj_attribute *attr, char *buf)
2953 {
2954         struct hstate *h = kobj_to_hstate(kobj, NULL);
2955         return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
2956 }
2957
2958 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
2959                 struct kobj_attribute *attr, const char *buf, size_t count)
2960 {
2961         int err;
2962         unsigned long input;
2963         struct hstate *h = kobj_to_hstate(kobj, NULL);
2964
2965         if (hstate_is_gigantic(h))
2966                 return -EINVAL;
2967
2968         err = kstrtoul(buf, 10, &input);
2969         if (err)
2970                 return err;
2971
2972         spin_lock(&hugetlb_lock);
2973         h->nr_overcommit_huge_pages = input;
2974         spin_unlock(&hugetlb_lock);
2975
2976         return count;
2977 }
2978 HSTATE_ATTR(nr_overcommit_hugepages);
2979
2980 static ssize_t free_hugepages_show(struct kobject *kobj,
2981                                         struct kobj_attribute *attr, char *buf)
2982 {
2983         struct hstate *h;
2984         unsigned long free_huge_pages;
2985         int nid;
2986
2987         h = kobj_to_hstate(kobj, &nid);
2988         if (nid == NUMA_NO_NODE)
2989                 free_huge_pages = h->free_huge_pages;
2990         else
2991                 free_huge_pages = h->free_huge_pages_node[nid];
2992
2993         return sprintf(buf, "%lu\n", free_huge_pages);
2994 }
2995 HSTATE_ATTR_RO(free_hugepages);
2996
2997 static ssize_t resv_hugepages_show(struct kobject *kobj,
2998                                         struct kobj_attribute *attr, char *buf)
2999 {
3000         struct hstate *h = kobj_to_hstate(kobj, NULL);
3001         return sprintf(buf, "%lu\n", h->resv_huge_pages);
3002 }
3003 HSTATE_ATTR_RO(resv_hugepages);
3004
3005 static ssize_t surplus_hugepages_show(struct kobject *kobj,
3006                                         struct kobj_attribute *attr, char *buf)
3007 {
3008         struct hstate *h;
3009         unsigned long surplus_huge_pages;
3010         int nid;
3011
3012         h = kobj_to_hstate(kobj, &nid);
3013         if (nid == NUMA_NO_NODE)
3014                 surplus_huge_pages = h->surplus_huge_pages;
3015         else
3016                 surplus_huge_pages = h->surplus_huge_pages_node[nid];
3017
3018         return sprintf(buf, "%lu\n", surplus_huge_pages);
3019 }
3020 HSTATE_ATTR_RO(surplus_hugepages);
3021
3022 static struct attribute *hstate_attrs[] = {
3023         &nr_hugepages_attr.attr,
3024         &nr_overcommit_hugepages_attr.attr,
3025         &free_hugepages_attr.attr,
3026         &resv_hugepages_attr.attr,
3027         &surplus_hugepages_attr.attr,
3028 #ifdef CONFIG_NUMA
3029         &nr_hugepages_mempolicy_attr.attr,
3030 #endif
3031         NULL,
3032 };
3033
3034 static const struct attribute_group hstate_attr_group = {
3035         .attrs = hstate_attrs,
3036 };
3037
3038 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
3039                                     struct kobject **hstate_kobjs,
3040                                     const struct attribute_group *hstate_attr_group)
3041 {
3042         int retval;
3043         int hi = hstate_index(h);
3044
3045         hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
3046         if (!hstate_kobjs[hi])
3047                 return -ENOMEM;
3048
3049         retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
3050         if (retval)
3051                 kobject_put(hstate_kobjs[hi]);
3052
3053         return retval;
3054 }
3055
3056 static void __init hugetlb_sysfs_init(void)
3057 {
3058         struct hstate *h;
3059         int err;
3060
3061         hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
3062         if (!hugepages_kobj)
3063                 return;
3064
3065         for_each_hstate(h) {
3066                 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
3067                                          hstate_kobjs, &hstate_attr_group);
3068                 if (err)
3069                         pr_err("HugeTLB: Unable to add hstate %s", h->name);
3070         }
3071 }
3072
3073 #ifdef CONFIG_NUMA
3074
3075 /*
3076  * node_hstate/s - associate per node hstate attributes, via their kobjects,
3077  * with node devices in node_devices[] using a parallel array.  The array
3078  * index of a node device or _hstate == node id.
3079  * This is here to avoid any static dependency of the node device driver, in
3080  * the base kernel, on the hugetlb module.
3081  */
3082 struct node_hstate {
3083         struct kobject          *hugepages_kobj;
3084         struct kobject          *hstate_kobjs[HUGE_MAX_HSTATE];
3085 };
3086 static struct node_hstate node_hstates[MAX_NUMNODES];
3087
3088 /*
3089  * A subset of global hstate attributes for node devices
3090  */
3091 static struct attribute *per_node_hstate_attrs[] = {
3092         &nr_hugepages_attr.attr,
3093         &free_hugepages_attr.attr,
3094         &surplus_hugepages_attr.attr,
3095         NULL,
3096 };
3097
3098 static const struct attribute_group per_node_hstate_attr_group = {
3099         .attrs = per_node_hstate_attrs,
3100 };
3101
3102 /*
3103  * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
3104  * Returns node id via non-NULL nidp.
3105  */
3106 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
3107 {
3108         int nid;
3109
3110         for (nid = 0; nid < nr_node_ids; nid++) {
3111                 struct node_hstate *nhs = &node_hstates[nid];
3112                 int i;
3113                 for (i = 0; i < HUGE_MAX_HSTATE; i++)
3114                         if (nhs->hstate_kobjs[i] == kobj) {
3115                                 if (nidp)
3116                                         *nidp = nid;
3117                                 return &hstates[i];
3118                         }
3119         }
3120
3121         BUG();
3122         return NULL;
3123 }
3124
3125 /*
3126  * Unregister hstate attributes from a single node device.
3127  * No-op if no hstate attributes attached.
3128  */
3129 static void hugetlb_unregister_node(struct node *node)
3130 {
3131         struct hstate *h;
3132         struct node_hstate *nhs = &node_hstates[node->dev.id];
3133
3134         if (!nhs->hugepages_kobj)
3135                 return;         /* no hstate attributes */
3136
3137         for_each_hstate(h) {
3138                 int idx = hstate_index(h);
3139                 if (nhs->hstate_kobjs[idx]) {
3140                         kobject_put(nhs->hstate_kobjs[idx]);
3141                         nhs->hstate_kobjs[idx] = NULL;
3142                 }
3143         }
3144
3145         kobject_put(nhs->hugepages_kobj);
3146         nhs->hugepages_kobj = NULL;
3147 }
3148
3149
3150 /*
3151  * Register hstate attributes for a single node device.
3152  * No-op if attributes already registered.
3153  */
3154 static void hugetlb_register_node(struct node *node)
3155 {
3156         struct hstate *h;
3157         struct node_hstate *nhs = &node_hstates[node->dev.id];
3158         int err;
3159
3160         if (nhs->hugepages_kobj)
3161                 return;         /* already allocated */
3162
3163         nhs->hugepages_kobj = kobject_create_and_add("hugepages",
3164                                                         &node->dev.kobj);
3165         if (!nhs->hugepages_kobj)
3166                 return;
3167
3168         for_each_hstate(h) {
3169                 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
3170                                                 nhs->hstate_kobjs,
3171                                                 &per_node_hstate_attr_group);
3172                 if (err) {
3173                         pr_err("HugeTLB: Unable to add hstate %s for node %d\n",
3174                                 h->name, node->dev.id);
3175                         hugetlb_unregister_node(node);
3176                         break;
3177                 }
3178         }
3179 }
3180
3181 /*
3182  * hugetlb init time:  register hstate attributes for all registered node
3183  * devices of nodes that have memory.  All on-line nodes should have
3184  * registered their associated device by this time.
3185  */
3186 static void __init hugetlb_register_all_nodes(void)
3187 {
3188         int nid;
3189
3190         for_each_node_state(nid, N_MEMORY) {
3191                 struct node *node = node_devices[nid];
3192                 if (node->dev.id == nid)
3193                         hugetlb_register_node(node);
3194         }
3195
3196         /*
3197          * Let the node device driver know we're here so it can
3198          * [un]register hstate attributes on node hotplug.
3199          */
3200         register_hugetlbfs_with_node(hugetlb_register_node,
3201                                      hugetlb_unregister_node);
3202 }
3203 #else   /* !CONFIG_NUMA */
3204
3205 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
3206 {
3207         BUG();
3208         if (nidp)
3209                 *nidp = -1;
3210         return NULL;
3211 }
3212
3213 static void hugetlb_register_all_nodes(void) { }
3214
3215 #endif
3216
3217 static int __init hugetlb_init(void)
3218 {
3219         int i;
3220
3221         if (!hugepages_supported()) {
3222                 if (hugetlb_max_hstate || default_hstate_max_huge_pages)
3223                         pr_warn("HugeTLB: huge pages not supported, ignoring associated command-line parameters\n");
3224                 return 0;
3225         }
3226
3227         /*
3228          * Make sure HPAGE_SIZE (HUGETLB_PAGE_ORDER) hstate exists.  Some
3229          * architectures depend on setup being done here.
3230          */
3231         hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
3232         if (!parsed_default_hugepagesz) {
3233                 /*
3234                  * If we did not parse a default huge page size, set
3235                  * default_hstate_idx to HPAGE_SIZE hstate. And, if the
3236                  * number of huge pages for this default size was implicitly
3237                  * specified, set that here as well.
3238                  * Note that the implicit setting will overwrite an explicit
3239                  * setting.  A warning will be printed in this case.
3240                  */
3241                 default_hstate_idx = hstate_index(size_to_hstate(HPAGE_SIZE));
3242                 if (default_hstate_max_huge_pages) {
3243                         if (default_hstate.max_huge_pages) {
3244                                 char buf[32];
3245
3246                                 string_get_size(huge_page_size(&default_hstate),
3247                                         1, STRING_UNITS_2, buf, 32);
3248                                 pr_warn("HugeTLB: Ignoring hugepages=%lu associated with %s page size\n",
3249                                         default_hstate.max_huge_pages, buf);
3250                                 pr_warn("HugeTLB: Using hugepages=%lu for number of default huge pages\n",
3251                                         default_hstate_max_huge_pages);
3252                         }
3253                         default_hstate.max_huge_pages =
3254                                 default_hstate_max_huge_pages;
3255                 }
3256         }
3257
3258         hugetlb_cma_check();
3259         hugetlb_init_hstates();
3260         gather_bootmem_prealloc();
3261         report_hugepages();
3262
3263         hugetlb_sysfs_init();
3264         hugetlb_register_all_nodes();
3265         hugetlb_cgroup_file_init();
3266
3267 #ifdef CONFIG_SMP
3268         num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
3269 #else
3270         num_fault_mutexes = 1;
3271 #endif
3272         hugetlb_fault_mutex_table =
3273                 kmalloc_array(num_fault_mutexes, sizeof(struct mutex),
3274                               GFP_KERNEL);
3275         BUG_ON(!hugetlb_fault_mutex_table);
3276
3277         for (i = 0; i < num_fault_mutexes; i++)
3278                 mutex_init(&hugetlb_fault_mutex_table[i]);
3279         return 0;
3280 }
3281 subsys_initcall(hugetlb_init);
3282
3283 /* Overwritten by architectures with more huge page sizes */
3284 bool __init __attribute((weak)) arch_hugetlb_valid_size(unsigned long size)
3285 {
3286         return size == HPAGE_SIZE;
3287 }
3288
3289 void __init hugetlb_add_hstate(unsigned int order)
3290 {
3291         struct hstate *h;
3292         unsigned long i;
3293
3294         if (size_to_hstate(PAGE_SIZE << order)) {
3295                 return;
3296         }
3297         BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
3298         BUG_ON(order == 0);
3299         h = &hstates[hugetlb_max_hstate++];
3300         h->order = order;
3301         h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
3302         h->nr_huge_pages = 0;
3303         h->free_huge_pages = 0;
3304         for (i = 0; i < MAX_NUMNODES; ++i)
3305                 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
3306         INIT_LIST_HEAD(&h->hugepage_activelist);
3307         h->next_nid_to_alloc = first_memory_node;
3308         h->next_nid_to_free = first_memory_node;
3309         snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
3310                                         huge_page_size(h)/1024);
3311
3312         parsed_hstate = h;
3313 }
3314
3315 /*
3316  * hugepages command line processing
3317  * hugepages normally follows a valid hugepagsz or default_hugepagsz
3318  * specification.  If not, ignore the hugepages value.  hugepages can also
3319  * be the first huge page command line  option in which case it implicitly
3320  * specifies the number of huge pages for the default size.
3321  */
3322 static int __init hugepages_setup(char *s)
3323 {
3324         unsigned long *mhp;
3325         static unsigned long *last_mhp;
3326
3327         if (!parsed_valid_hugepagesz) {
3328                 pr_warn("HugeTLB: hugepages=%s does not follow a valid hugepagesz, ignoring\n", s);
3329                 parsed_valid_hugepagesz = true;
3330                 return 0;
3331         }
3332
3333         /*
3334          * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter
3335          * yet, so this hugepages= parameter goes to the "default hstate".
3336          * Otherwise, it goes with the previously parsed hugepagesz or
3337          * default_hugepagesz.
3338          */
3339         else if (!hugetlb_max_hstate)
3340                 mhp = &default_hstate_max_huge_pages;
3341         else
3342                 mhp = &parsed_hstate->max_huge_pages;
3343
3344         if (mhp == last_mhp) {
3345                 pr_warn("HugeTLB: hugepages= specified twice without interleaving hugepagesz=, ignoring hugepages=%s\n", s);
3346                 return 0;
3347         }
3348
3349         if (sscanf(s, "%lu", mhp) <= 0)
3350                 *mhp = 0;
3351
3352         /*
3353          * Global state is always initialized later in hugetlb_init.
3354          * But we need to allocate >= MAX_ORDER hstates here early to still
3355          * use the bootmem allocator.
3356          */
3357         if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
3358                 hugetlb_hstate_alloc_pages(parsed_hstate);
3359
3360         last_mhp = mhp;
3361
3362         return 1;
3363 }
3364 __setup("hugepages=", hugepages_setup);
3365
3366 /*
3367  * hugepagesz command line processing
3368  * A specific huge page size can only be specified once with hugepagesz.
3369  * hugepagesz is followed by hugepages on the command line.  The global
3370  * variable 'parsed_valid_hugepagesz' is used to determine if prior
3371  * hugepagesz argument was valid.
3372  */
3373 static int __init hugepagesz_setup(char *s)
3374 {
3375         unsigned long size;
3376         struct hstate *h;
3377
3378         parsed_valid_hugepagesz = false;
3379         size = (unsigned long)memparse(s, NULL);
3380
3381         if (!arch_hugetlb_valid_size(size)) {
3382                 pr_err("HugeTLB: unsupported hugepagesz=%s\n", s);
3383                 return 0;
3384         }
3385
3386         h = size_to_hstate(size);
3387         if (h) {
3388                 /*
3389                  * hstate for this size already exists.  This is normally
3390                  * an error, but is allowed if the existing hstate is the
3391                  * default hstate.  More specifically, it is only allowed if
3392                  * the number of huge pages for the default hstate was not
3393                  * previously specified.
3394                  */
3395                 if (!parsed_default_hugepagesz ||  h != &default_hstate ||
3396                     default_hstate.max_huge_pages) {
3397                         pr_warn("HugeTLB: hugepagesz=%s specified twice, ignoring\n", s);
3398                         return 0;
3399                 }
3400
3401                 /*
3402                  * No need to call hugetlb_add_hstate() as hstate already
3403                  * exists.  But, do set parsed_hstate so that a following
3404                  * hugepages= parameter will be applied to this hstate.
3405                  */
3406                 parsed_hstate = h;
3407                 parsed_valid_hugepagesz = true;
3408                 return 1;
3409         }
3410
3411         hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
3412         parsed_valid_hugepagesz = true;
3413         return 1;
3414 }
3415 __setup("hugepagesz=", hugepagesz_setup);
3416
3417 /*
3418  * default_hugepagesz command line input
3419  * Only one instance of default_hugepagesz allowed on command line.
3420  */
3421 static int __init default_hugepagesz_setup(char *s)
3422 {
3423         unsigned long size;
3424
3425         parsed_valid_hugepagesz = false;
3426         if (parsed_default_hugepagesz) {
3427                 pr_err("HugeTLB: default_hugepagesz previously specified, ignoring %s\n", s);
3428                 return 0;
3429         }
3430
3431         size = (unsigned long)memparse(s, NULL);
3432
3433         if (!arch_hugetlb_valid_size(size)) {
3434                 pr_err("HugeTLB: unsupported default_hugepagesz=%s\n", s);
3435                 return 0;
3436         }
3437
3438         hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
3439         parsed_valid_hugepagesz = true;
3440         parsed_default_hugepagesz = true;
3441         default_hstate_idx = hstate_index(size_to_hstate(size));
3442
3443         /*
3444          * The number of default huge pages (for this size) could have been
3445          * specified as the first hugetlb parameter: hugepages=X.  If so,
3446          * then default_hstate_max_huge_pages is set.  If the default huge
3447          * page size is gigantic (>= MAX_ORDER), then the pages must be
3448          * allocated here from bootmem allocator.
3449          */
3450         if (default_hstate_max_huge_pages) {
3451                 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
3452                 if (hstate_is_gigantic(&default_hstate))
3453                         hugetlb_hstate_alloc_pages(&default_hstate);
3454                 default_hstate_max_huge_pages = 0;
3455         }
3456
3457         return 1;
3458 }
3459 __setup("default_hugepagesz=", default_hugepagesz_setup);
3460
3461 static unsigned int allowed_mems_nr(struct hstate *h)
3462 {
3463         int node;
3464         unsigned int nr = 0;
3465         nodemask_t *mpol_allowed;
3466         unsigned int *array = h->free_huge_pages_node;
3467         gfp_t gfp_mask = htlb_alloc_mask(h);
3468
3469         mpol_allowed = policy_nodemask_current(gfp_mask);
3470
3471         for_each_node_mask(node, cpuset_current_mems_allowed) {
3472                 if (!mpol_allowed ||
3473                     (mpol_allowed && node_isset(node, *mpol_allowed)))
3474                         nr += array[node];
3475         }
3476
3477         return nr;
3478 }
3479
3480 #ifdef CONFIG_SYSCTL
3481 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
3482                          struct ctl_table *table, int write,
3483                          void *buffer, size_t *length, loff_t *ppos)
3484 {
3485         struct hstate *h = &default_hstate;
3486         unsigned long tmp = h->max_huge_pages;
3487         int ret;
3488
3489         if (!hugepages_supported())
3490                 return -EOPNOTSUPP;
3491
3492         table->data = &tmp;
3493         table->maxlen = sizeof(unsigned long);
3494         ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
3495         if (ret)
3496                 goto out;
3497
3498         if (write)
3499                 ret = __nr_hugepages_store_common(obey_mempolicy, h,
3500                                                   NUMA_NO_NODE, tmp, *length);
3501 out:
3502         return ret;
3503 }
3504
3505 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
3506                           void *buffer, size_t *length, loff_t *ppos)
3507 {
3508
3509         return hugetlb_sysctl_handler_common(false, table, write,
3510                                                         buffer, length, ppos);
3511 }
3512
3513 #ifdef CONFIG_NUMA
3514 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
3515                           void *buffer, size_t *length, loff_t *ppos)
3516 {
3517         return hugetlb_sysctl_handler_common(true, table, write,
3518                                                         buffer, length, ppos);
3519 }
3520 #endif /* CONFIG_NUMA */
3521
3522 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
3523                 void *buffer, size_t *length, loff_t *ppos)
3524 {
3525         struct hstate *h = &default_hstate;
3526         unsigned long tmp;
3527         int ret;
3528
3529         if (!hugepages_supported())
3530                 return -EOPNOTSUPP;
3531
3532         tmp = h->nr_overcommit_huge_pages;
3533
3534         if (write && hstate_is_gigantic(h))
3535                 return -EINVAL;
3536
3537         table->data = &tmp;
3538         table->maxlen = sizeof(unsigned long);
3539         ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
3540         if (ret)
3541                 goto out;
3542
3543         if (write) {
3544                 spin_lock(&hugetlb_lock);
3545                 h->nr_overcommit_huge_pages = tmp;
3546                 spin_unlock(&hugetlb_lock);
3547         }
3548 out:
3549         return ret;
3550 }
3551
3552 #endif /* CONFIG_SYSCTL */
3553
3554 void hugetlb_report_meminfo(struct seq_file *m)
3555 {
3556         struct hstate *h;
3557         unsigned long total = 0;
3558
3559         if (!hugepages_supported())
3560                 return;
3561
3562         for_each_hstate(h) {
3563                 unsigned long count = h->nr_huge_pages;
3564
3565                 total += (PAGE_SIZE << huge_page_order(h)) * count;
3566
3567                 if (h == &default_hstate)
3568                         seq_printf(m,
3569                                    "HugePages_Total:   %5lu\n"
3570                                    "HugePages_Free:    %5lu\n"
3571                                    "HugePages_Rsvd:    %5lu\n"
3572                                    "HugePages_Surp:    %5lu\n"
3573                                    "Hugepagesize:   %8lu kB\n",
3574                                    count,
3575                                    h->free_huge_pages,
3576                                    h->resv_huge_pages,
3577                                    h->surplus_huge_pages,
3578                                    (PAGE_SIZE << huge_page_order(h)) / 1024);
3579         }
3580
3581         seq_printf(m, "Hugetlb:        %8lu kB\n", total / 1024);
3582 }
3583
3584 int hugetlb_report_node_meminfo(int nid, char *buf)
3585 {
3586         struct hstate *h = &default_hstate;
3587         if (!hugepages_supported())
3588                 return 0;
3589         return sprintf(buf,
3590                 "Node %d HugePages_Total: %5u\n"
3591                 "Node %d HugePages_Free:  %5u\n"
3592                 "Node %d HugePages_Surp:  %5u\n",
3593                 nid, h->nr_huge_pages_node[nid],
3594                 nid, h->free_huge_pages_node[nid],
3595                 nid, h->surplus_huge_pages_node[nid]);
3596 }
3597
3598 void hugetlb_show_meminfo(void)
3599 {
3600         struct hstate *h;
3601         int nid;
3602
3603         if (!hugepages_supported())
3604                 return;
3605
3606         for_each_node_state(nid, N_MEMORY)
3607                 for_each_hstate(h)
3608                         pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
3609                                 nid,
3610                                 h->nr_huge_pages_node[nid],
3611                                 h->free_huge_pages_node[nid],
3612                                 h->surplus_huge_pages_node[nid],
3613                                 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
3614 }
3615
3616 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
3617 {
3618         seq_printf(m, "HugetlbPages:\t%8lu kB\n",
3619                    atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
3620 }
3621
3622 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
3623 unsigned long hugetlb_total_pages(void)
3624 {
3625         struct hstate *h;
3626         unsigned long nr_total_pages = 0;
3627
3628         for_each_hstate(h)
3629                 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
3630         return nr_total_pages;
3631 }
3632
3633 static int hugetlb_acct_memory(struct hstate *h, long delta)
3634 {
3635         int ret = -ENOMEM;
3636
3637         spin_lock(&hugetlb_lock);
3638         /*
3639          * When cpuset is configured, it breaks the strict hugetlb page
3640          * reservation as the accounting is done on a global variable. Such
3641          * reservation is completely rubbish in the presence of cpuset because
3642          * the reservation is not checked against page availability for the
3643          * current cpuset. Application can still potentially OOM'ed by kernel
3644          * with lack of free htlb page in cpuset that the task is in.
3645          * Attempt to enforce strict accounting with cpuset is almost
3646          * impossible (or too ugly) because cpuset is too fluid that
3647          * task or memory node can be dynamically moved between cpusets.
3648          *
3649          * The change of semantics for shared hugetlb mapping with cpuset is
3650          * undesirable. However, in order to preserve some of the semantics,
3651          * we fall back to check against current free page availability as
3652          * a best attempt and hopefully to minimize the impact of changing
3653          * semantics that cpuset has.
3654          *
3655          * Apart from cpuset, we also have memory policy mechanism that
3656          * also determines from which node the kernel will allocate memory
3657          * in a NUMA system. So similar to cpuset, we also should consider
3658          * the memory policy of the current task. Similar to the description
3659          * above.
3660          */
3661         if (delta > 0) {
3662                 if (gather_surplus_pages(h, delta) < 0)
3663                         goto out;
3664
3665                 if (delta > allowed_mems_nr(h)) {
3666                         return_unused_surplus_pages(h, delta);
3667                         goto out;
3668                 }
3669         }
3670
3671         ret = 0;
3672         if (delta < 0)
3673                 return_unused_surplus_pages(h, (unsigned long) -delta);
3674
3675 out:
3676         spin_unlock(&hugetlb_lock);
3677         return ret;
3678 }
3679
3680 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
3681 {
3682         struct resv_map *resv = vma_resv_map(vma);
3683
3684         /*
3685          * This new VMA should share its siblings reservation map if present.
3686          * The VMA will only ever have a valid reservation map pointer where
3687          * it is being copied for another still existing VMA.  As that VMA
3688          * has a reference to the reservation map it cannot disappear until
3689          * after this open call completes.  It is therefore safe to take a
3690          * new reference here without additional locking.
3691          */
3692         if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3693                 kref_get(&resv->refs);
3694 }
3695
3696 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
3697 {
3698         struct hstate *h = hstate_vma(vma);
3699         struct resv_map *resv = vma_resv_map(vma);
3700         struct hugepage_subpool *spool = subpool_vma(vma);
3701         unsigned long reserve, start, end;
3702         long gbl_reserve;
3703
3704         if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3705                 return;
3706
3707         start = vma_hugecache_offset(h, vma, vma->vm_start);
3708         end = vma_hugecache_offset(h, vma, vma->vm_end);
3709
3710         reserve = (end - start) - region_count(resv, start, end);
3711         hugetlb_cgroup_uncharge_counter(resv, start, end);
3712         if (reserve) {
3713                 /*
3714                  * Decrement reserve counts.  The global reserve count may be
3715                  * adjusted if the subpool has a minimum size.
3716                  */
3717                 gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
3718                 hugetlb_acct_memory(h, -gbl_reserve);
3719         }
3720
3721         kref_put(&resv->refs, resv_map_release);
3722 }
3723
3724 static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
3725 {
3726         if (addr & ~(huge_page_mask(hstate_vma(vma))))
3727                 return -EINVAL;
3728         return 0;
3729 }
3730
3731 static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma)
3732 {
3733         struct hstate *hstate = hstate_vma(vma);
3734
3735         return 1UL << huge_page_shift(hstate);
3736 }
3737
3738 /*
3739  * We cannot handle pagefaults against hugetlb pages at all.  They cause
3740  * handle_mm_fault() to try to instantiate regular-sized pages in the
3741  * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
3742  * this far.
3743  */
3744 static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf)
3745 {
3746         BUG();
3747         return 0;
3748 }
3749
3750 /*
3751  * When a new function is introduced to vm_operations_struct and added
3752  * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops.
3753  * This is because under System V memory model, mappings created via
3754  * shmget/shmat with "huge page" specified are backed by hugetlbfs files,
3755  * their original vm_ops are overwritten with shm_vm_ops.
3756  */
3757 const struct vm_operations_struct hugetlb_vm_ops = {
3758         .fault = hugetlb_vm_op_fault,
3759         .open = hugetlb_vm_op_open,
3760         .close = hugetlb_vm_op_close,
3761         .split = hugetlb_vm_op_split,
3762         .pagesize = hugetlb_vm_op_pagesize,
3763 };
3764
3765 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
3766                                 int writable)
3767 {
3768         pte_t entry;
3769
3770         if (writable) {
3771                 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
3772                                          vma->vm_page_prot)));
3773         } else {
3774                 entry = huge_pte_wrprotect(mk_huge_pte(page,
3775                                            vma->vm_page_prot));
3776         }
3777         entry = pte_mkyoung(entry);
3778         entry = pte_mkhuge(entry);
3779         entry = arch_make_huge_pte(entry, vma, page, writable);
3780
3781         return entry;
3782 }
3783
3784 static void set_huge_ptep_writable(struct vm_area_struct *vma,
3785                                    unsigned long address, pte_t *ptep)
3786 {
3787         pte_t entry;
3788
3789         entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
3790         if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
3791                 update_mmu_cache(vma, address, ptep);
3792 }
3793
3794 bool is_hugetlb_entry_migration(pte_t pte)
3795 {
3796         swp_entry_t swp;
3797
3798         if (huge_pte_none(pte) || pte_present(pte))
3799                 return false;
3800         swp = pte_to_swp_entry(pte);
3801         if (non_swap_entry(swp) && is_migration_entry(swp))
3802                 return true;
3803         else
3804                 return false;
3805 }
3806
3807 static int is_hugetlb_entry_hwpoisoned(pte_t pte)
3808 {
3809         swp_entry_t swp;
3810
3811         if (huge_pte_none(pte) || pte_present(pte))
3812                 return 0;
3813         swp = pte_to_swp_entry(pte);
3814         if (non_swap_entry(swp) && is_hwpoison_entry(swp))
3815                 return 1;
3816         else
3817                 return 0;
3818 }
3819
3820 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
3821                             struct vm_area_struct *vma)
3822 {
3823         pte_t *src_pte, *dst_pte, entry, dst_entry;
3824         struct page *ptepage;
3825         unsigned long addr;
3826         int cow;
3827         struct hstate *h = hstate_vma(vma);
3828         unsigned long sz = huge_page_size(h);
3829         struct address_space *mapping = vma->vm_file->f_mapping;
3830         struct mmu_notifier_range range;
3831         int ret = 0;
3832
3833         cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
3834
3835         if (cow) {
3836                 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, src,
3837                                         vma->vm_start,
3838                                         vma->vm_end);
3839                 mmu_notifier_invalidate_range_start(&range);
3840         } else {
3841                 /*
3842                  * For shared mappings i_mmap_rwsem must be held to call
3843                  * huge_pte_alloc, otherwise the returned ptep could go
3844                  * away if part of a shared pmd and another thread calls
3845                  * huge_pmd_unshare.
3846                  */
3847                 i_mmap_lock_read(mapping);
3848         }
3849
3850         for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
3851                 spinlock_t *src_ptl, *dst_ptl;
3852                 src_pte = huge_pte_offset(src, addr, sz);
3853                 if (!src_pte)
3854                         continue;
3855                 dst_pte = huge_pte_alloc(dst, addr, sz);
3856                 if (!dst_pte) {
3857                         ret = -ENOMEM;
3858                         break;
3859                 }
3860
3861                 /*
3862                  * If the pagetables are shared don't copy or take references.
3863                  * dst_pte == src_pte is the common case of src/dest sharing.
3864                  *
3865                  * However, src could have 'unshared' and dst shares with
3866                  * another vma.  If dst_pte !none, this implies sharing.
3867                  * Check here before taking page table lock, and once again
3868                  * after taking the lock below.
3869                  */
3870                 dst_entry = huge_ptep_get(dst_pte);
3871                 if ((dst_pte == src_pte) || !huge_pte_none(dst_entry))
3872                         continue;
3873
3874                 dst_ptl = huge_pte_lock(h, dst, dst_pte);
3875                 src_ptl = huge_pte_lockptr(h, src, src_pte);
3876                 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
3877                 entry = huge_ptep_get(src_pte);
3878                 dst_entry = huge_ptep_get(dst_pte);
3879                 if (huge_pte_none(entry) || !huge_pte_none(dst_entry)) {
3880                         /*
3881                          * Skip if src entry none.  Also, skip in the
3882                          * unlikely case dst entry !none as this implies
3883                          * sharing with another vma.
3884                          */
3885                         ;
3886                 } else if (unlikely(is_hugetlb_entry_migration(entry) ||
3887                                     is_hugetlb_entry_hwpoisoned(entry))) {
3888                         swp_entry_t swp_entry = pte_to_swp_entry(entry);
3889
3890                         if (is_write_migration_entry(swp_entry) && cow) {
3891                                 /*
3892                                  * COW mappings require pages in both
3893                                  * parent and child to be set to read.
3894                                  */
3895                                 make_migration_entry_read(&swp_entry);
3896                                 entry = swp_entry_to_pte(swp_entry);
3897                                 set_huge_swap_pte_at(src, addr, src_pte,
3898                                                      entry, sz);
3899                         }
3900                         set_huge_swap_pte_at(dst, addr, dst_pte, entry, sz);
3901                 } else {
3902                         if (cow) {
3903                                 /*
3904                                  * No need to notify as we are downgrading page
3905                                  * table protection not changing it to point
3906                                  * to a new page.
3907                                  *
3908                                  * See Documentation/vm/mmu_notifier.rst
3909                                  */
3910                                 huge_ptep_set_wrprotect(src, addr, src_pte);
3911                         }
3912                         entry = huge_ptep_get(src_pte);
3913                         ptepage = pte_page(entry);
3914                         get_page(ptepage);
3915                         page_dup_rmap(ptepage, true);
3916                         set_huge_pte_at(dst, addr, dst_pte, entry);
3917                         hugetlb_count_add(pages_per_huge_page(h), dst);
3918                 }
3919                 spin_unlock(src_ptl);
3920                 spin_unlock(dst_ptl);
3921         }
3922
3923         if (cow)
3924                 mmu_notifier_invalidate_range_end(&range);
3925         else
3926                 i_mmap_unlock_read(mapping);
3927
3928         return ret;
3929 }
3930
3931 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
3932                             unsigned long start, unsigned long end,
3933                             struct page *ref_page)
3934 {
3935         struct mm_struct *mm = vma->vm_mm;
3936         unsigned long address;
3937         pte_t *ptep;
3938         pte_t pte;
3939         spinlock_t *ptl;
3940         struct page *page;
3941         struct hstate *h = hstate_vma(vma);
3942         unsigned long sz = huge_page_size(h);
3943         struct mmu_notifier_range range;
3944
3945         WARN_ON(!is_vm_hugetlb_page(vma));
3946         BUG_ON(start & ~huge_page_mask(h));
3947         BUG_ON(end & ~huge_page_mask(h));
3948
3949         /*
3950          * This is a hugetlb vma, all the pte entries should point
3951          * to huge page.
3952          */
3953         tlb_change_page_size(tlb, sz);
3954         tlb_start_vma(tlb, vma);
3955
3956         /*
3957          * If sharing possible, alert mmu notifiers of worst case.
3958          */
3959         mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, mm, start,
3960                                 end);
3961         adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
3962         mmu_notifier_invalidate_range_start(&range);
3963         address = start;
3964         for (; address < end; address += sz) {
3965                 ptep = huge_pte_offset(mm, address, sz);
3966                 if (!ptep)
3967                         continue;
3968
3969                 ptl = huge_pte_lock(h, mm, ptep);
3970                 if (huge_pmd_unshare(mm, vma, &address, ptep)) {
3971                         spin_unlock(ptl);
3972                         /*
3973                          * We just unmapped a page of PMDs by clearing a PUD.
3974                          * The caller's TLB flush range should cover this area.
3975                          */
3976                         continue;
3977                 }
3978
3979                 pte = huge_ptep_get(ptep);
3980                 if (huge_pte_none(pte)) {
3981                         spin_unlock(ptl);
3982                         continue;
3983                 }
3984
3985                 /*
3986                  * Migrating hugepage or HWPoisoned hugepage is already
3987                  * unmapped and its refcount is dropped, so just clear pte here.
3988                  */
3989                 if (unlikely(!pte_present(pte))) {
3990                         huge_pte_clear(mm, address, ptep, sz);
3991                         spin_unlock(ptl);
3992                         continue;
3993                 }
3994
3995                 page = pte_page(pte);
3996                 /*
3997                  * If a reference page is supplied, it is because a specific
3998                  * page is being unmapped, not a range. Ensure the page we
3999                  * are about to unmap is the actual page of interest.
4000                  */
4001                 if (ref_page) {
4002                         if (page != ref_page) {
4003                                 spin_unlock(ptl);
4004                                 continue;
4005                         }
4006                         /*
4007                          * Mark the VMA as having unmapped its page so that
4008                          * future faults in this VMA will fail rather than
4009                          * looking like data was lost
4010                          */
4011                         set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
4012                 }
4013
4014                 pte = huge_ptep_get_and_clear(mm, address, ptep);
4015                 tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
4016                 if (huge_pte_dirty(pte))
4017                         set_page_dirty(page);
4018
4019                 hugetlb_count_sub(pages_per_huge_page(h), mm);
4020                 page_remove_rmap(page, true);
4021
4022                 spin_unlock(ptl);
4023                 tlb_remove_page_size(tlb, page, huge_page_size(h));
4024                 /*
4025                  * Bail out after unmapping reference page if supplied
4026                  */
4027                 if (ref_page)
4028                         break;
4029         }
4030         mmu_notifier_invalidate_range_end(&range);
4031         tlb_end_vma(tlb, vma);
4032 }
4033
4034 void __unmap_hugepage_range_final(struct mmu_gather *tlb,
4035                           struct vm_area_struct *vma, unsigned long start,
4036                           unsigned long end, struct page *ref_page)
4037 {
4038         __unmap_hugepage_range(tlb, vma, start, end, ref_page);
4039
4040         /*
4041          * Clear this flag so that x86's huge_pmd_share page_table_shareable
4042          * test will fail on a vma being torn down, and not grab a page table
4043          * on its way out.  We're lucky that the flag has such an appropriate
4044          * name, and can in fact be safely cleared here. We could clear it
4045          * before the __unmap_hugepage_range above, but all that's necessary
4046          * is to clear it before releasing the i_mmap_rwsem. This works
4047          * because in the context this is called, the VMA is about to be
4048          * destroyed and the i_mmap_rwsem is held.
4049          */
4050         vma->vm_flags &= ~VM_MAYSHARE;
4051 }
4052
4053 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
4054                           unsigned long end, struct page *ref_page)
4055 {
4056         struct mm_struct *mm;
4057         struct mmu_gather tlb;
4058         unsigned long tlb_start = start;
4059         unsigned long tlb_end = end;
4060
4061         /*
4062          * If shared PMDs were possibly used within this vma range, adjust
4063          * start/end for worst case tlb flushing.
4064          * Note that we can not be sure if PMDs are shared until we try to
4065          * unmap pages.  However, we want to make sure TLB flushing covers
4066          * the largest possible range.
4067          */
4068         adjust_range_if_pmd_sharing_possible(vma, &tlb_start, &tlb_end);
4069
4070         mm = vma->vm_mm;
4071
4072         tlb_gather_mmu(&tlb, mm, tlb_start, tlb_end);
4073         __unmap_hugepage_range(&tlb, vma, start, end, ref_page);
4074         tlb_finish_mmu(&tlb, tlb_start, tlb_end);
4075 }
4076
4077 /*
4078  * This is called when the original mapper is failing to COW a MAP_PRIVATE
4079  * mappping it owns the reserve page for. The intention is to unmap the page
4080  * from other VMAs and let the children be SIGKILLed if they are faulting the
4081  * same region.
4082  */
4083 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
4084                               struct page *page, unsigned long address)
4085 {
4086         struct hstate *h = hstate_vma(vma);
4087         struct vm_area_struct *iter_vma;
4088         struct address_space *mapping;
4089         pgoff_t pgoff;
4090
4091         /*
4092          * vm_pgoff is in PAGE_SIZE units, hence the different calculation
4093          * from page cache lookup which is in HPAGE_SIZE units.
4094          */
4095         address = address & huge_page_mask(h);
4096         pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
4097                         vma->vm_pgoff;
4098         mapping = vma->vm_file->f_mapping;
4099
4100         /*
4101          * Take the mapping lock for the duration of the table walk. As
4102          * this mapping should be shared between all the VMAs,
4103          * __unmap_hugepage_range() is called as the lock is already held
4104          */
4105         i_mmap_lock_write(mapping);
4106         vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
4107                 /* Do not unmap the current VMA */
4108                 if (iter_vma == vma)
4109                         continue;
4110
4111                 /*
4112                  * Shared VMAs have their own reserves and do not affect
4113                  * MAP_PRIVATE accounting but it is possible that a shared
4114                  * VMA is using the same page so check and skip such VMAs.
4115                  */
4116                 if (iter_vma->vm_flags & VM_MAYSHARE)
4117                         continue;
4118
4119                 /*
4120                  * Unmap the page from other VMAs without their own reserves.
4121                  * They get marked to be SIGKILLed if they fault in these
4122                  * areas. This is because a future no-page fault on this VMA
4123                  * could insert a zeroed page instead of the data existing
4124                  * from the time of fork. This would look like data corruption
4125                  */
4126                 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
4127                         unmap_hugepage_range(iter_vma, address,
4128                                              address + huge_page_size(h), page);
4129         }
4130         i_mmap_unlock_write(mapping);
4131 }
4132
4133 /*
4134  * Hugetlb_cow() should be called with page lock of the original hugepage held.
4135  * Called with hugetlb_instantiation_mutex held and pte_page locked so we
4136  * cannot race with other handlers or page migration.
4137  * Keep the pte_same checks anyway to make transition from the mutex easier.
4138  */
4139 static vm_fault_t hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
4140                        unsigned long address, pte_t *ptep,
4141                        struct page *pagecache_page, spinlock_t *ptl)
4142 {
4143         pte_t pte;
4144         struct hstate *h = hstate_vma(vma);
4145         struct page *old_page, *new_page;
4146         int outside_reserve = 0;
4147         vm_fault_t ret = 0;
4148         unsigned long haddr = address & huge_page_mask(h);
4149         struct mmu_notifier_range range;
4150
4151         pte = huge_ptep_get(ptep);
4152         old_page = pte_page(pte);
4153
4154 retry_avoidcopy:
4155         /* If no-one else is actually using this page, avoid the copy
4156          * and just make the page writable */
4157         if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
4158                 page_move_anon_rmap(old_page, vma);
4159                 set_huge_ptep_writable(vma, haddr, ptep);
4160                 return 0;
4161         }
4162
4163         /*
4164          * If the process that created a MAP_PRIVATE mapping is about to
4165          * perform a COW due to a shared page count, attempt to satisfy
4166          * the allocation without using the existing reserves. The pagecache
4167          * page is used to determine if the reserve at this address was
4168          * consumed or not. If reserves were used, a partial faulted mapping
4169          * at the time of fork() could consume its reserves on COW instead
4170          * of the full address range.
4171          */
4172         if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
4173                         old_page != pagecache_page)
4174                 outside_reserve = 1;
4175
4176         get_page(old_page);
4177
4178         /*
4179          * Drop page table lock as buddy allocator may be called. It will
4180          * be acquired again before returning to the caller, as expected.
4181          */
4182         spin_unlock(ptl);
4183         new_page = alloc_huge_page(vma, haddr, outside_reserve);
4184
4185         if (IS_ERR(new_page)) {
4186                 /*
4187                  * If a process owning a MAP_PRIVATE mapping fails to COW,
4188                  * it is due to references held by a child and an insufficient
4189                  * huge page pool. To guarantee the original mappers
4190                  * reliability, unmap the page from child processes. The child
4191                  * may get SIGKILLed if it later faults.
4192                  */
4193                 if (outside_reserve) {
4194                         put_page(old_page);
4195                         BUG_ON(huge_pte_none(pte));
4196                         unmap_ref_private(mm, vma, old_page, haddr);
4197                         BUG_ON(huge_pte_none(pte));
4198                         spin_lock(ptl);
4199                         ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
4200                         if (likely(ptep &&
4201                                    pte_same(huge_ptep_get(ptep), pte)))
4202                                 goto retry_avoidcopy;
4203                         /*
4204                          * race occurs while re-acquiring page table
4205                          * lock, and our job is done.
4206                          */
4207                         return 0;
4208                 }
4209
4210                 ret = vmf_error(PTR_ERR(new_page));
4211                 goto out_release_old;
4212         }
4213
4214         /*
4215          * When the original hugepage is shared one, it does not have
4216          * anon_vma prepared.
4217          */
4218         if (unlikely(anon_vma_prepare(vma))) {
4219                 ret = VM_FAULT_OOM;
4220                 goto out_release_all;
4221         }
4222
4223         copy_user_huge_page(new_page, old_page, address, vma,
4224                             pages_per_huge_page(h));
4225         __SetPageUptodate(new_page);
4226
4227         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, haddr,
4228                                 haddr + huge_page_size(h));
4229         mmu_notifier_invalidate_range_start(&range);
4230
4231         /*
4232          * Retake the page table lock to check for racing updates
4233          * before the page tables are altered
4234          */
4235         spin_lock(ptl);
4236         ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
4237         if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
4238                 ClearPagePrivate(new_page);
4239
4240                 /* Break COW */
4241                 huge_ptep_clear_flush(vma, haddr, ptep);
4242                 mmu_notifier_invalidate_range(mm, range.start, range.end);
4243                 set_huge_pte_at(mm, haddr, ptep,
4244                                 make_huge_pte(vma, new_page, 1));
4245                 page_remove_rmap(old_page, true);
4246                 hugepage_add_new_anon_rmap(new_page, vma, haddr);
4247                 set_page_huge_active(new_page);
4248                 /* Make the old page be freed below */
4249                 new_page = old_page;
4250         }
4251         spin_unlock(ptl);
4252         mmu_notifier_invalidate_range_end(&range);
4253 out_release_all:
4254         restore_reserve_on_error(h, vma, haddr, new_page);
4255         put_page(new_page);
4256 out_release_old:
4257         put_page(old_page);
4258
4259         spin_lock(ptl); /* Caller expects lock to be held */
4260         return ret;
4261 }
4262
4263 /* Return the pagecache page at a given address within a VMA */
4264 static struct page *hugetlbfs_pagecache_page(struct hstate *h,
4265                         struct vm_area_struct *vma, unsigned long address)
4266 {
4267         struct address_space *mapping;
4268         pgoff_t idx;
4269
4270         mapping = vma->vm_file->f_mapping;
4271         idx = vma_hugecache_offset(h, vma, address);
4272
4273         return find_lock_page(mapping, idx);
4274 }
4275
4276 /*
4277  * Return whether there is a pagecache page to back given address within VMA.
4278  * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
4279  */
4280 static bool hugetlbfs_pagecache_present(struct hstate *h,
4281                         struct vm_area_struct *vma, unsigned long address)
4282 {
4283         struct address_space *mapping;
4284         pgoff_t idx;
4285         struct page *page;
4286
4287         mapping = vma->vm_file->f_mapping;
4288         idx = vma_hugecache_offset(h, vma, address);
4289
4290         page = find_get_page(mapping, idx);
4291         if (page)
4292                 put_page(page);
4293         return page != NULL;
4294 }
4295
4296 int huge_add_to_page_cache(struct page *page, struct address_space *mapping,
4297                            pgoff_t idx)
4298 {
4299         struct inode *inode = mapping->host;
4300         struct hstate *h = hstate_inode(inode);
4301         int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
4302
4303         if (err)
4304                 return err;
4305         ClearPagePrivate(page);
4306
4307         /*
4308          * set page dirty so that it will not be removed from cache/file
4309          * by non-hugetlbfs specific code paths.
4310          */
4311         set_page_dirty(page);
4312
4313         spin_lock(&inode->i_lock);
4314         inode->i_blocks += blocks_per_huge_page(h);
4315         spin_unlock(&inode->i_lock);
4316         return 0;
4317 }
4318
4319 static vm_fault_t hugetlb_no_page(struct mm_struct *mm,
4320                         struct vm_area_struct *vma,
4321                         struct address_space *mapping, pgoff_t idx,
4322                         unsigned long address, pte_t *ptep, unsigned int flags)
4323 {
4324         struct hstate *h = hstate_vma(vma);
4325         vm_fault_t ret = VM_FAULT_SIGBUS;
4326         int anon_rmap = 0;
4327         unsigned long size;
4328         struct page *page;
4329         pte_t new_pte;
4330         spinlock_t *ptl;
4331         unsigned long haddr = address & huge_page_mask(h);
4332         bool new_page = false;
4333
4334         /*
4335          * Currently, we are forced to kill the process in the event the
4336          * original mapper has unmapped pages from the child due to a failed
4337          * COW. Warn that such a situation has occurred as it may not be obvious
4338          */
4339         if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
4340                 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
4341                            current->pid);
4342                 return ret;
4343         }
4344
4345         /*
4346          * We can not race with truncation due to holding i_mmap_rwsem.
4347          * i_size is modified when holding i_mmap_rwsem, so check here
4348          * once for faults beyond end of file.
4349          */
4350         size = i_size_read(mapping->host) >> huge_page_shift(h);
4351         if (idx >= size)
4352                 goto out;
4353
4354 retry:
4355         page = find_lock_page(mapping, idx);
4356         if (!page) {
4357                 /*
4358                  * Check for page in userfault range
4359                  */
4360                 if (userfaultfd_missing(vma)) {
4361                         u32 hash;
4362                         struct vm_fault vmf = {
4363                                 .vma = vma,
4364                                 .address = haddr,
4365                                 .flags = flags,
4366                                 /*
4367                                  * Hard to debug if it ends up being
4368                                  * used by a callee that assumes
4369                                  * something about the other
4370                                  * uninitialized fields... same as in
4371                                  * memory.c
4372                                  */
4373                         };
4374
4375                         /*
4376                          * hugetlb_fault_mutex and i_mmap_rwsem must be
4377                          * dropped before handling userfault.  Reacquire
4378                          * after handling fault to make calling code simpler.
4379                          */
4380                         hash = hugetlb_fault_mutex_hash(mapping, idx);
4381                         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
4382                         i_mmap_unlock_read(mapping);
4383                         ret = handle_userfault(&vmf, VM_UFFD_MISSING);
4384                         i_mmap_lock_read(mapping);
4385                         mutex_lock(&hugetlb_fault_mutex_table[hash]);
4386                         goto out;
4387                 }
4388
4389                 page = alloc_huge_page(vma, haddr, 0);
4390                 if (IS_ERR(page)) {
4391                         /*
4392                          * Returning error will result in faulting task being
4393                          * sent SIGBUS.  The hugetlb fault mutex prevents two
4394                          * tasks from racing to fault in the same page which
4395                          * could result in false unable to allocate errors.
4396                          * Page migration does not take the fault mutex, but
4397                          * does a clear then write of pte's under page table
4398                          * lock.  Page fault code could race with migration,
4399                          * notice the clear pte and try to allocate a page
4400                          * here.  Before returning error, get ptl and make
4401                          * sure there really is no pte entry.
4402                          */
4403                         ptl = huge_pte_lock(h, mm, ptep);
4404                         if (!huge_pte_none(huge_ptep_get(ptep))) {
4405                                 ret = 0;
4406                                 spin_unlock(ptl);
4407                                 goto out;
4408                         }
4409                         spin_unlock(ptl);
4410                         ret = vmf_error(PTR_ERR(page));
4411                         goto out;
4412                 }
4413                 clear_huge_page(page, address, pages_per_huge_page(h));
4414                 __SetPageUptodate(page);
4415                 new_page = true;
4416
4417                 if (vma->vm_flags & VM_MAYSHARE) {
4418                         int err = huge_add_to_page_cache(page, mapping, idx);
4419                         if (err) {
4420                                 put_page(page);
4421                                 if (err == -EEXIST)
4422                                         goto retry;
4423                                 goto out;
4424                         }
4425                 } else {
4426                         lock_page(page);
4427                         if (unlikely(anon_vma_prepare(vma))) {
4428                                 ret = VM_FAULT_OOM;
4429                                 goto backout_unlocked;
4430                         }
4431                         anon_rmap = 1;
4432                 }
4433         } else {
4434                 /*
4435                  * If memory error occurs between mmap() and fault, some process
4436                  * don't have hwpoisoned swap entry for errored virtual address.
4437                  * So we need to block hugepage fault by PG_hwpoison bit check.
4438                  */
4439                 if (unlikely(PageHWPoison(page))) {
4440                         ret = VM_FAULT_HWPOISON |
4441                                 VM_FAULT_SET_HINDEX(hstate_index(h));
4442                         goto backout_unlocked;
4443                 }
4444         }
4445
4446         /*
4447          * If we are going to COW a private mapping later, we examine the
4448          * pending reservations for this page now. This will ensure that
4449          * any allocations necessary to record that reservation occur outside
4450          * the spinlock.
4451          */
4452         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
4453                 if (vma_needs_reservation(h, vma, haddr) < 0) {
4454                         ret = VM_FAULT_OOM;
4455                         goto backout_unlocked;
4456                 }
4457                 /* Just decrements count, does not deallocate */
4458                 vma_end_reservation(h, vma, haddr);
4459         }
4460
4461         ptl = huge_pte_lock(h, mm, ptep);
4462         ret = 0;
4463         if (!huge_pte_none(huge_ptep_get(ptep)))
4464                 goto backout;
4465
4466         if (anon_rmap) {
4467                 ClearPagePrivate(page);
4468                 hugepage_add_new_anon_rmap(page, vma, haddr);
4469         } else
4470                 page_dup_rmap(page, true);
4471         new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
4472                                 && (vma->vm_flags & VM_SHARED)));
4473         set_huge_pte_at(mm, haddr, ptep, new_pte);
4474
4475         hugetlb_count_add(pages_per_huge_page(h), mm);
4476         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
4477                 /* Optimization, do the COW without a second fault */
4478                 ret = hugetlb_cow(mm, vma, address, ptep, page, ptl);
4479         }
4480
4481         spin_unlock(ptl);
4482
4483         /*
4484          * Only make newly allocated pages active.  Existing pages found
4485          * in the pagecache could be !page_huge_active() if they have been
4486          * isolated for migration.
4487          */
4488         if (new_page)
4489                 set_page_huge_active(page);
4490
4491         unlock_page(page);
4492 out:
4493         return ret;
4494
4495 backout:
4496         spin_unlock(ptl);
4497 backout_unlocked:
4498         unlock_page(page);
4499         restore_reserve_on_error(h, vma, haddr, page);
4500         put_page(page);
4501         goto out;
4502 }
4503
4504 #ifdef CONFIG_SMP
4505 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
4506 {
4507         unsigned long key[2];
4508         u32 hash;
4509
4510         key[0] = (unsigned long) mapping;
4511         key[1] = idx;
4512
4513         hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0);
4514
4515         return hash & (num_fault_mutexes - 1);
4516 }
4517 #else
4518 /*
4519  * For uniprocesor systems we always use a single mutex, so just
4520  * return 0 and avoid the hashing overhead.
4521  */
4522 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
4523 {
4524         return 0;
4525 }
4526 #endif
4527
4528 vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
4529                         unsigned long address, unsigned int flags)
4530 {
4531         pte_t *ptep, entry;
4532         spinlock_t *ptl;
4533         vm_fault_t ret;
4534         u32 hash;
4535         pgoff_t idx;
4536         struct page *page = NULL;
4537         struct page *pagecache_page = NULL;
4538         struct hstate *h = hstate_vma(vma);
4539         struct address_space *mapping;
4540         int need_wait_lock = 0;
4541         unsigned long haddr = address & huge_page_mask(h);
4542
4543         ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
4544         if (ptep) {
4545                 /*
4546                  * Since we hold no locks, ptep could be stale.  That is
4547                  * OK as we are only making decisions based on content and
4548                  * not actually modifying content here.
4549                  */
4550                 entry = huge_ptep_get(ptep);
4551                 if (unlikely(is_hugetlb_entry_migration(entry))) {
4552                         migration_entry_wait_huge(vma, mm, ptep);
4553                         return 0;
4554                 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
4555                         return VM_FAULT_HWPOISON_LARGE |
4556                                 VM_FAULT_SET_HINDEX(hstate_index(h));
4557         }
4558
4559         /*
4560          * Acquire i_mmap_rwsem before calling huge_pte_alloc and hold
4561          * until finished with ptep.  This serves two purposes:
4562          * 1) It prevents huge_pmd_unshare from being called elsewhere
4563          *    and making the ptep no longer valid.
4564          * 2) It synchronizes us with i_size modifications during truncation.
4565          *
4566          * ptep could have already be assigned via huge_pte_offset.  That
4567          * is OK, as huge_pte_alloc will return the same value unless
4568          * something has changed.
4569          */
4570         mapping = vma->vm_file->f_mapping;
4571         i_mmap_lock_read(mapping);
4572         ptep = huge_pte_alloc(mm, haddr, huge_page_size(h));
4573         if (!ptep) {
4574                 i_mmap_unlock_read(mapping);
4575                 return VM_FAULT_OOM;
4576         }
4577
4578         /*
4579          * Serialize hugepage allocation and instantiation, so that we don't
4580          * get spurious allocation failures if two CPUs race to instantiate
4581          * the same page in the page cache.
4582          */
4583         idx = vma_hugecache_offset(h, vma, haddr);
4584         hash = hugetlb_fault_mutex_hash(mapping, idx);
4585         mutex_lock(&hugetlb_fault_mutex_table[hash]);
4586
4587         entry = huge_ptep_get(ptep);
4588         if (huge_pte_none(entry)) {
4589                 ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
4590                 goto out_mutex;
4591         }
4592
4593         ret = 0;
4594
4595         /*
4596          * entry could be a migration/hwpoison entry at this point, so this
4597          * check prevents the kernel from going below assuming that we have
4598          * an active hugepage in pagecache. This goto expects the 2nd page
4599          * fault, and is_hugetlb_entry_(migration|hwpoisoned) check will
4600          * properly handle it.
4601          */
4602         if (!pte_present(entry))
4603                 goto out_mutex;
4604
4605         /*
4606          * If we are going to COW the mapping later, we examine the pending
4607          * reservations for this page now. This will ensure that any
4608          * allocations necessary to record that reservation occur outside the
4609          * spinlock. For private mappings, we also lookup the pagecache
4610          * page now as it is used to determine if a reservation has been
4611          * consumed.
4612          */
4613         if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
4614                 if (vma_needs_reservation(h, vma, haddr) < 0) {
4615                         ret = VM_FAULT_OOM;
4616                         goto out_mutex;
4617                 }
4618                 /* Just decrements count, does not deallocate */
4619                 vma_end_reservation(h, vma, haddr);
4620
4621                 if (!(vma->vm_flags & VM_MAYSHARE))
4622                         pagecache_page = hugetlbfs_pagecache_page(h,
4623                                                                 vma, haddr);
4624         }
4625
4626         ptl = huge_pte_lock(h, mm, ptep);
4627
4628         /* Check for a racing update before calling hugetlb_cow */
4629         if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
4630                 goto out_ptl;
4631
4632         /*
4633          * hugetlb_cow() requires page locks of pte_page(entry) and
4634          * pagecache_page, so here we need take the former one
4635          * when page != pagecache_page or !pagecache_page.
4636          */
4637         page = pte_page(entry);
4638         if (page != pagecache_page)
4639                 if (!trylock_page(page)) {
4640                         need_wait_lock = 1;
4641                         goto out_ptl;
4642                 }
4643
4644         get_page(page);
4645
4646         if (flags & FAULT_FLAG_WRITE) {
4647                 if (!huge_pte_write(entry)) {
4648                         ret = hugetlb_cow(mm, vma, address, ptep,
4649                                           pagecache_page, ptl);
4650                         goto out_put_page;
4651                 }
4652                 entry = huge_pte_mkdirty(entry);
4653         }
4654         entry = pte_mkyoung(entry);
4655         if (huge_ptep_set_access_flags(vma, haddr, ptep, entry,
4656                                                 flags & FAULT_FLAG_WRITE))
4657                 update_mmu_cache(vma, haddr, ptep);
4658 out_put_page:
4659         if (page != pagecache_page)
4660                 unlock_page(page);
4661         put_page(page);
4662 out_ptl:
4663         spin_unlock(ptl);
4664
4665         if (pagecache_page) {
4666                 unlock_page(pagecache_page);
4667                 put_page(pagecache_page);
4668         }
4669 out_mutex:
4670         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
4671         i_mmap_unlock_read(mapping);
4672         /*
4673          * Generally it's safe to hold refcount during waiting page lock. But
4674          * here we just wait to defer the next page fault to avoid busy loop and
4675          * the page is not used after unlocked before returning from the current
4676          * page fault. So we are safe from accessing freed page, even if we wait
4677          * here without taking refcount.
4678          */
4679         if (need_wait_lock)
4680                 wait_on_page_locked(page);
4681         return ret;
4682 }
4683
4684 /*
4685  * Used by userfaultfd UFFDIO_COPY.  Based on mcopy_atomic_pte with
4686  * modifications for huge pages.
4687  */
4688 int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm,
4689                             pte_t *dst_pte,
4690                             struct vm_area_struct *dst_vma,
4691                             unsigned long dst_addr,
4692                             unsigned long src_addr,
4693                             struct page **pagep)
4694 {
4695         struct address_space *mapping;
4696         pgoff_t idx;
4697         unsigned long size;
4698         int vm_shared = dst_vma->vm_flags & VM_SHARED;
4699         struct hstate *h = hstate_vma(dst_vma);
4700         pte_t _dst_pte;
4701         spinlock_t *ptl;
4702         int ret;
4703         struct page *page;
4704
4705         if (!*pagep) {
4706                 ret = -ENOMEM;
4707                 page = alloc_huge_page(dst_vma, dst_addr, 0);
4708                 if (IS_ERR(page))
4709                         goto out;
4710
4711                 ret = copy_huge_page_from_user(page,
4712                                                 (const void __user *) src_addr,
4713                                                 pages_per_huge_page(h), false);
4714
4715                 /* fallback to copy_from_user outside mmap_lock */
4716                 if (unlikely(ret)) {
4717                         ret = -ENOENT;
4718                         *pagep = page;
4719                         /* don't free the page */
4720                         goto out;
4721                 }
4722         } else {
4723                 page = *pagep;
4724                 *pagep = NULL;
4725         }
4726
4727         /*
4728          * The memory barrier inside __SetPageUptodate makes sure that
4729          * preceding stores to the page contents become visible before
4730          * the set_pte_at() write.
4731          */
4732         __SetPageUptodate(page);
4733
4734         mapping = dst_vma->vm_file->f_mapping;
4735         idx = vma_hugecache_offset(h, dst_vma, dst_addr);
4736
4737         /*
4738          * If shared, add to page cache
4739          */
4740         if (vm_shared) {
4741                 size = i_size_read(mapping->host) >> huge_page_shift(h);
4742                 ret = -EFAULT;
4743                 if (idx >= size)
4744                         goto out_release_nounlock;
4745
4746                 /*
4747                  * Serialization between remove_inode_hugepages() and
4748                  * huge_add_to_page_cache() below happens through the
4749                  * hugetlb_fault_mutex_table that here must be hold by
4750                  * the caller.
4751                  */
4752                 ret = huge_add_to_page_cache(page, mapping, idx);
4753                 if (ret)
4754                         goto out_release_nounlock;
4755         }
4756
4757         ptl = huge_pte_lockptr(h, dst_mm, dst_pte);
4758         spin_lock(ptl);
4759
4760         /*
4761          * Recheck the i_size after holding PT lock to make sure not
4762          * to leave any page mapped (as page_mapped()) beyond the end
4763          * of the i_size (remove_inode_hugepages() is strict about
4764          * enforcing that). If we bail out here, we'll also leave a
4765          * page in the radix tree in the vm_shared case beyond the end
4766          * of the i_size, but remove_inode_hugepages() will take care
4767          * of it as soon as we drop the hugetlb_fault_mutex_table.
4768          */
4769         size = i_size_read(mapping->host) >> huge_page_shift(h);
4770         ret = -EFAULT;
4771         if (idx >= size)
4772                 goto out_release_unlock;
4773
4774         ret = -EEXIST;
4775         if (!huge_pte_none(huge_ptep_get(dst_pte)))
4776                 goto out_release_unlock;
4777
4778         if (vm_shared) {
4779                 page_dup_rmap(page, true);
4780         } else {
4781                 ClearPagePrivate(page);
4782                 hugepage_add_new_anon_rmap(page, dst_vma, dst_addr);
4783         }
4784
4785         _dst_pte = make_huge_pte(dst_vma, page, dst_vma->vm_flags & VM_WRITE);
4786         if (dst_vma->vm_flags & VM_WRITE)
4787                 _dst_pte = huge_pte_mkdirty(_dst_pte);
4788         _dst_pte = pte_mkyoung(_dst_pte);
4789
4790         set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
4791
4792         (void)huge_ptep_set_access_flags(dst_vma, dst_addr, dst_pte, _dst_pte,
4793                                         dst_vma->vm_flags & VM_WRITE);
4794         hugetlb_count_add(pages_per_huge_page(h), dst_mm);
4795
4796         /* No need to invalidate - it was non-present before */
4797         update_mmu_cache(dst_vma, dst_addr, dst_pte);
4798
4799         spin_unlock(ptl);
4800         set_page_huge_active(page);
4801         if (vm_shared)
4802                 unlock_page(page);
4803         ret = 0;
4804 out:
4805         return ret;
4806 out_release_unlock:
4807         spin_unlock(ptl);
4808         if (vm_shared)
4809                 unlock_page(page);
4810 out_release_nounlock:
4811         put_page(page);
4812         goto out;
4813 }
4814
4815 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
4816                          struct page **pages, struct vm_area_struct **vmas,
4817                          unsigned long *position, unsigned long *nr_pages,
4818                          long i, unsigned int flags, int *locked)
4819 {
4820         unsigned long pfn_offset;
4821         unsigned long vaddr = *position;
4822         unsigned long remainder = *nr_pages;
4823         struct hstate *h = hstate_vma(vma);
4824         int err = -EFAULT;
4825
4826         while (vaddr < vma->vm_end && remainder) {
4827                 pte_t *pte;
4828                 spinlock_t *ptl = NULL;
4829                 int absent;
4830                 struct page *page;
4831
4832                 /*
4833                  * If we have a pending SIGKILL, don't keep faulting pages and
4834                  * potentially allocating memory.
4835                  */
4836                 if (fatal_signal_pending(current)) {
4837                         remainder = 0;
4838                         break;
4839                 }
4840
4841                 /*
4842                  * Some archs (sparc64, sh*) have multiple pte_ts to
4843                  * each hugepage.  We have to make sure we get the
4844                  * first, for the page indexing below to work.
4845                  *
4846                  * Note that page table lock is not held when pte is null.
4847                  */
4848                 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h),
4849                                       huge_page_size(h));
4850                 if (pte)
4851                         ptl = huge_pte_lock(h, mm, pte);
4852                 absent = !pte || huge_pte_none(huge_ptep_get(pte));
4853
4854                 /*
4855                  * When coredumping, it suits get_dump_page if we just return
4856                  * an error where there's an empty slot with no huge pagecache
4857                  * to back it.  This way, we avoid allocating a hugepage, and
4858                  * the sparse dumpfile avoids allocating disk blocks, but its
4859                  * huge holes still show up with zeroes where they need to be.
4860                  */
4861                 if (absent && (flags & FOLL_DUMP) &&
4862                     !hugetlbfs_pagecache_present(h, vma, vaddr)) {
4863                         if (pte)
4864                                 spin_unlock(ptl);
4865                         remainder = 0;
4866                         break;
4867                 }
4868
4869                 /*
4870                  * We need call hugetlb_fault for both hugepages under migration
4871                  * (in which case hugetlb_fault waits for the migration,) and
4872                  * hwpoisoned hugepages (in which case we need to prevent the
4873                  * caller from accessing to them.) In order to do this, we use
4874                  * here is_swap_pte instead of is_hugetlb_entry_migration and
4875                  * is_hugetlb_entry_hwpoisoned. This is because it simply covers
4876                  * both cases, and because we can't follow correct pages
4877                  * directly from any kind of swap entries.
4878                  */
4879                 if (absent || is_swap_pte(huge_ptep_get(pte)) ||
4880                     ((flags & FOLL_WRITE) &&
4881                       !huge_pte_write(huge_ptep_get(pte)))) {
4882                         vm_fault_t ret;
4883                         unsigned int fault_flags = 0;
4884
4885                         if (pte)
4886                                 spin_unlock(ptl);
4887                         if (flags & FOLL_WRITE)
4888                                 fault_flags |= FAULT_FLAG_WRITE;
4889                         if (locked)
4890                                 fault_flags |= FAULT_FLAG_ALLOW_RETRY |
4891                                         FAULT_FLAG_KILLABLE;
4892                         if (flags & FOLL_NOWAIT)
4893                                 fault_flags |= FAULT_FLAG_ALLOW_RETRY |
4894                                         FAULT_FLAG_RETRY_NOWAIT;
4895                         if (flags & FOLL_TRIED) {
4896                                 /*
4897                                  * Note: FAULT_FLAG_ALLOW_RETRY and
4898                                  * FAULT_FLAG_TRIED can co-exist
4899                                  */
4900                                 fault_flags |= FAULT_FLAG_TRIED;
4901                         }
4902                         ret = hugetlb_fault(mm, vma, vaddr, fault_flags);
4903                         if (ret & VM_FAULT_ERROR) {
4904                                 err = vm_fault_to_errno(ret, flags);
4905                                 remainder = 0;
4906                                 break;
4907                         }
4908                         if (ret & VM_FAULT_RETRY) {
4909                                 if (locked &&
4910                                     !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
4911                                         *locked = 0;
4912                                 *nr_pages = 0;
4913                                 /*
4914                                  * VM_FAULT_RETRY must not return an
4915                                  * error, it will return zero
4916                                  * instead.
4917                                  *
4918                                  * No need to update "position" as the
4919                                  * caller will not check it after
4920                                  * *nr_pages is set to 0.
4921                                  */
4922                                 return i;
4923                         }
4924                         continue;
4925                 }
4926
4927                 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
4928                 page = pte_page(huge_ptep_get(pte));
4929
4930                 /*
4931                  * If subpage information not requested, update counters
4932                  * and skip the same_page loop below.
4933                  */
4934                 if (!pages && !vmas && !pfn_offset &&
4935                     (vaddr + huge_page_size(h) < vma->vm_end) &&
4936                     (remainder >= pages_per_huge_page(h))) {
4937                         vaddr += huge_page_size(h);
4938                         remainder -= pages_per_huge_page(h);
4939                         i += pages_per_huge_page(h);
4940                         spin_unlock(ptl);
4941                         continue;
4942                 }
4943
4944 same_page:
4945                 if (pages) {
4946                         pages[i] = mem_map_offset(page, pfn_offset);
4947                         /*
4948                          * try_grab_page() should always succeed here, because:
4949                          * a) we hold the ptl lock, and b) we've just checked
4950                          * that the huge page is present in the page tables. If
4951                          * the huge page is present, then the tail pages must
4952                          * also be present. The ptl prevents the head page and
4953                          * tail pages from being rearranged in any way. So this
4954                          * page must be available at this point, unless the page
4955                          * refcount overflowed:
4956                          */
4957                         if (WARN_ON_ONCE(!try_grab_page(pages[i], flags))) {
4958                                 spin_unlock(ptl);
4959                                 remainder = 0;
4960                                 err = -ENOMEM;
4961                                 break;
4962                         }
4963                 }
4964
4965                 if (vmas)
4966                         vmas[i] = vma;
4967
4968                 vaddr += PAGE_SIZE;
4969                 ++pfn_offset;
4970                 --remainder;
4971                 ++i;
4972                 if (vaddr < vma->vm_end && remainder &&
4973                                 pfn_offset < pages_per_huge_page(h)) {
4974                         /*
4975                          * We use pfn_offset to avoid touching the pageframes
4976                          * of this compound page.
4977                          */
4978                         goto same_page;
4979                 }
4980                 spin_unlock(ptl);
4981         }
4982         *nr_pages = remainder;
4983         /*
4984          * setting position is actually required only if remainder is
4985          * not zero but it's faster not to add a "if (remainder)"
4986          * branch.
4987          */
4988         *position = vaddr;
4989
4990         return i ? i : err;
4991 }
4992
4993 #ifndef __HAVE_ARCH_FLUSH_HUGETLB_TLB_RANGE
4994 /*
4995  * ARCHes with special requirements for evicting HUGETLB backing TLB entries can
4996  * implement this.
4997  */
4998 #define flush_hugetlb_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end)
4999 #endif
5000
5001 unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
5002                 unsigned long address, unsigned long end, pgprot_t newprot)
5003 {
5004         struct mm_struct *mm = vma->vm_mm;
5005         unsigned long start = address;
5006         pte_t *ptep;
5007         pte_t pte;
5008         struct hstate *h = hstate_vma(vma);
5009         unsigned long pages = 0;
5010         bool shared_pmd = false;
5011         struct mmu_notifier_range range;
5012
5013         /*
5014          * In the case of shared PMDs, the area to flush could be beyond
5015          * start/end.  Set range.start/range.end to cover the maximum possible
5016          * range if PMD sharing is possible.
5017          */
5018         mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA,
5019                                 0, vma, mm, start, end);
5020         adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
5021
5022         BUG_ON(address >= end);
5023         flush_cache_range(vma, range.start, range.end);
5024
5025         mmu_notifier_invalidate_range_start(&range);
5026         i_mmap_lock_write(vma->vm_file->f_mapping);
5027         for (; address < end; address += huge_page_size(h)) {
5028                 spinlock_t *ptl;
5029                 ptep = huge_pte_offset(mm, address, huge_page_size(h));
5030                 if (!ptep)
5031                         continue;
5032                 ptl = huge_pte_lock(h, mm, ptep);
5033                 if (huge_pmd_unshare(mm, vma, &address, ptep)) {
5034                         pages++;
5035                         spin_unlock(ptl);
5036                         shared_pmd = true;
5037                         continue;
5038                 }
5039                 pte = huge_ptep_get(ptep);
5040                 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
5041                         spin_unlock(ptl);
5042                         continue;
5043                 }
5044                 if (unlikely(is_hugetlb_entry_migration(pte))) {
5045                         swp_entry_t entry = pte_to_swp_entry(pte);
5046
5047                         if (is_write_migration_entry(entry)) {
5048                                 pte_t newpte;
5049
5050                                 make_migration_entry_read(&entry);
5051                                 newpte = swp_entry_to_pte(entry);
5052                                 set_huge_swap_pte_at(mm, address, ptep,
5053                                                      newpte, huge_page_size(h));
5054                                 pages++;
5055                         }
5056                         spin_unlock(ptl);
5057                         continue;
5058                 }
5059                 if (!huge_pte_none(pte)) {
5060                         pte_t old_pte;
5061
5062                         old_pte = huge_ptep_modify_prot_start(vma, address, ptep);
5063                         pte = pte_mkhuge(huge_pte_modify(old_pte, newprot));
5064                         pte = arch_make_huge_pte(pte, vma, NULL, 0);
5065                         huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte);
5066                         pages++;
5067                 }
5068                 spin_unlock(ptl);
5069         }
5070         /*
5071          * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
5072          * may have cleared our pud entry and done put_page on the page table:
5073          * once we release i_mmap_rwsem, another task can do the final put_page
5074          * and that page table be reused and filled with junk.  If we actually
5075          * did unshare a page of pmds, flush the range corresponding to the pud.
5076          */
5077         if (shared_pmd)
5078                 flush_hugetlb_tlb_range(vma, range.start, range.end);
5079         else
5080                 flush_hugetlb_tlb_range(vma, start, end);
5081         /*
5082          * No need to call mmu_notifier_invalidate_range() we are downgrading
5083          * page table protection not changing it to point to a new page.
5084          *
5085          * See Documentation/vm/mmu_notifier.rst
5086          */
5087         i_mmap_unlock_write(vma->vm_file->f_mapping);
5088         mmu_notifier_invalidate_range_end(&range);
5089
5090         return pages << h->order;
5091 }
5092
5093 int hugetlb_reserve_pages(struct inode *inode,
5094                                         long from, long to,
5095                                         struct vm_area_struct *vma,
5096                                         vm_flags_t vm_flags)
5097 {
5098         long ret, chg, add = -1;
5099         struct hstate *h = hstate_inode(inode);
5100         struct hugepage_subpool *spool = subpool_inode(inode);
5101         struct resv_map *resv_map;
5102         struct hugetlb_cgroup *h_cg = NULL;
5103         long gbl_reserve, regions_needed = 0;
5104
5105         /* This should never happen */
5106         if (from > to) {
5107                 VM_WARN(1, "%s called with a negative range\n", __func__);
5108                 return -EINVAL;
5109         }
5110
5111         /*
5112          * Only apply hugepage reservation if asked. At fault time, an
5113          * attempt will be made for VM_NORESERVE to allocate a page
5114          * without using reserves
5115          */
5116         if (vm_flags & VM_NORESERVE)
5117                 return 0;
5118
5119         /*
5120          * Shared mappings base their reservation on the number of pages that
5121          * are already allocated on behalf of the file. Private mappings need
5122          * to reserve the full area even if read-only as mprotect() may be
5123          * called to make the mapping read-write. Assume !vma is a shm mapping
5124          */
5125         if (!vma || vma->vm_flags & VM_MAYSHARE) {
5126                 /*
5127                  * resv_map can not be NULL as hugetlb_reserve_pages is only
5128                  * called for inodes for which resv_maps were created (see
5129                  * hugetlbfs_get_inode).
5130                  */
5131                 resv_map = inode_resv_map(inode);
5132
5133                 chg = region_chg(resv_map, from, to, &regions_needed);
5134
5135         } else {
5136                 /* Private mapping. */
5137                 resv_map = resv_map_alloc();
5138                 if (!resv_map)
5139                         return -ENOMEM;
5140
5141                 chg = to - from;
5142
5143                 set_vma_resv_map(vma, resv_map);
5144                 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
5145         }
5146
5147         if (chg < 0) {
5148                 ret = chg;
5149                 goto out_err;
5150         }
5151
5152         ret = hugetlb_cgroup_charge_cgroup_rsvd(
5153                 hstate_index(h), chg * pages_per_huge_page(h), &h_cg);
5154
5155         if (ret < 0) {
5156                 ret = -ENOMEM;
5157                 goto out_err;
5158         }
5159
5160         if (vma && !(vma->vm_flags & VM_MAYSHARE) && h_cg) {
5161                 /* For private mappings, the hugetlb_cgroup uncharge info hangs
5162                  * of the resv_map.
5163                  */
5164                 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, h_cg, h);
5165         }
5166
5167         /*
5168          * There must be enough pages in the subpool for the mapping. If
5169          * the subpool has a minimum size, there may be some global
5170          * reservations already in place (gbl_reserve).
5171          */
5172         gbl_reserve = hugepage_subpool_get_pages(spool, chg);
5173         if (gbl_reserve < 0) {
5174                 ret = -ENOSPC;
5175                 goto out_uncharge_cgroup;
5176         }
5177
5178         /*
5179          * Check enough hugepages are available for the reservation.
5180          * Hand the pages back to the subpool if there are not
5181          */
5182         ret = hugetlb_acct_memory(h, gbl_reserve);
5183         if (ret < 0) {
5184                 goto out_put_pages;
5185         }
5186
5187         /*
5188          * Account for the reservations made. Shared mappings record regions
5189          * that have reservations as they are shared by multiple VMAs.
5190          * When the last VMA disappears, the region map says how much
5191          * the reservation was and the page cache tells how much of
5192          * the reservation was consumed. Private mappings are per-VMA and
5193          * only the consumed reservations are tracked. When the VMA
5194          * disappears, the original reservation is the VMA size and the
5195          * consumed reservations are stored in the map. Hence, nothing
5196          * else has to be done for private mappings here
5197          */
5198         if (!vma || vma->vm_flags & VM_MAYSHARE) {
5199                 add = region_add(resv_map, from, to, regions_needed, h, h_cg);
5200
5201                 if (unlikely(add < 0)) {
5202                         hugetlb_acct_memory(h, -gbl_reserve);
5203                         goto out_put_pages;
5204                 } else if (unlikely(chg > add)) {
5205                         /*
5206                          * pages in this range were added to the reserve
5207                          * map between region_chg and region_add.  This
5208                          * indicates a race with alloc_huge_page.  Adjust
5209                          * the subpool and reserve counts modified above
5210                          * based on the difference.
5211                          */
5212                         long rsv_adjust;
5213
5214                         hugetlb_cgroup_uncharge_cgroup_rsvd(
5215                                 hstate_index(h),
5216                                 (chg - add) * pages_per_huge_page(h), h_cg);
5217
5218                         rsv_adjust = hugepage_subpool_put_pages(spool,
5219                                                                 chg - add);
5220                         hugetlb_acct_memory(h, -rsv_adjust);
5221                 }
5222         }
5223         return 0;
5224 out_put_pages:
5225         /* put back original number of pages, chg */
5226         (void)hugepage_subpool_put_pages(spool, chg);
5227 out_uncharge_cgroup:
5228         hugetlb_cgroup_uncharge_cgroup_rsvd(hstate_index(h),
5229                                             chg * pages_per_huge_page(h), h_cg);
5230 out_err:
5231         if (!vma || vma->vm_flags & VM_MAYSHARE)
5232                 /* Only call region_abort if the region_chg succeeded but the
5233                  * region_add failed or didn't run.
5234                  */
5235                 if (chg >= 0 && add < 0)
5236                         region_abort(resv_map, from, to, regions_needed);
5237         if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
5238                 kref_put(&resv_map->refs, resv_map_release);
5239         return ret;
5240 }
5241
5242 long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
5243                                                                 long freed)
5244 {
5245         struct hstate *h = hstate_inode(inode);
5246         struct resv_map *resv_map = inode_resv_map(inode);
5247         long chg = 0;
5248         struct hugepage_subpool *spool = subpool_inode(inode);
5249         long gbl_reserve;
5250
5251         /*
5252          * Since this routine can be called in the evict inode path for all
5253          * hugetlbfs inodes, resv_map could be NULL.
5254          */
5255         if (resv_map) {
5256                 chg = region_del(resv_map, start, end);
5257                 /*
5258                  * region_del() can fail in the rare case where a region
5259                  * must be split and another region descriptor can not be
5260                  * allocated.  If end == LONG_MAX, it will not fail.
5261                  */
5262                 if (chg < 0)
5263                         return chg;
5264         }
5265
5266         spin_lock(&inode->i_lock);
5267         inode->i_blocks -= (blocks_per_huge_page(h) * freed);
5268         spin_unlock(&inode->i_lock);
5269
5270         /*
5271          * If the subpool has a minimum size, the number of global
5272          * reservations to be released may be adjusted.
5273          */
5274         gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
5275         hugetlb_acct_memory(h, -gbl_reserve);
5276
5277         return 0;
5278 }
5279
5280 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
5281 static unsigned long page_table_shareable(struct vm_area_struct *svma,
5282                                 struct vm_area_struct *vma,
5283                                 unsigned long addr, pgoff_t idx)
5284 {
5285         unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
5286                                 svma->vm_start;
5287         unsigned long sbase = saddr & PUD_MASK;
5288         unsigned long s_end = sbase + PUD_SIZE;
5289
5290         /* Allow segments to share if only one is marked locked */
5291         unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
5292         unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
5293
5294         /*
5295          * match the virtual addresses, permission and the alignment of the
5296          * page table page.
5297          */
5298         if (pmd_index(addr) != pmd_index(saddr) ||
5299             vm_flags != svm_flags ||
5300             sbase < svma->vm_start || svma->vm_end < s_end)
5301                 return 0;
5302
5303         return saddr;
5304 }
5305
5306 static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr)
5307 {
5308         unsigned long base = addr & PUD_MASK;
5309         unsigned long end = base + PUD_SIZE;
5310
5311         /*
5312          * check on proper vm_flags and page table alignment
5313          */
5314         if (vma->vm_flags & VM_MAYSHARE && range_in_vma(vma, base, end))
5315                 return true;
5316         return false;
5317 }
5318
5319 /*
5320  * Determine if start,end range within vma could be mapped by shared pmd.
5321  * If yes, adjust start and end to cover range associated with possible
5322  * shared pmd mappings.
5323  */
5324 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
5325                                 unsigned long *start, unsigned long *end)
5326 {
5327         unsigned long a_start, a_end;
5328
5329         if (!(vma->vm_flags & VM_MAYSHARE))
5330                 return;
5331
5332         /* Extend the range to be PUD aligned for a worst case scenario */
5333         a_start = ALIGN_DOWN(*start, PUD_SIZE);
5334         a_end = ALIGN(*end, PUD_SIZE);
5335
5336         /*
5337          * Intersect the range with the vma range, since pmd sharing won't be
5338          * across vma after all
5339          */
5340         *start = max(vma->vm_start, a_start);
5341         *end = min(vma->vm_end, a_end);
5342 }
5343
5344 /*
5345  * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
5346  * and returns the corresponding pte. While this is not necessary for the
5347  * !shared pmd case because we can allocate the pmd later as well, it makes the
5348  * code much cleaner.
5349  *
5350  * This routine must be called with i_mmap_rwsem held in at least read mode.
5351  * For hugetlbfs, this prevents removal of any page table entries associated
5352  * with the address space.  This is important as we are setting up sharing
5353  * based on existing page table entries (mappings).
5354  */
5355 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
5356 {
5357         struct vm_area_struct *vma = find_vma(mm, addr);
5358         struct address_space *mapping = vma->vm_file->f_mapping;
5359         pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
5360                         vma->vm_pgoff;
5361         struct vm_area_struct *svma;
5362         unsigned long saddr;
5363         pte_t *spte = NULL;
5364         pte_t *pte;
5365         spinlock_t *ptl;
5366
5367         if (!vma_shareable(vma, addr))
5368                 return (pte_t *)pmd_alloc(mm, pud, addr);
5369
5370         vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
5371                 if (svma == vma)
5372                         continue;
5373
5374                 saddr = page_table_shareable(svma, vma, addr, idx);
5375                 if (saddr) {
5376                         spte = huge_pte_offset(svma->vm_mm, saddr,
5377                                                vma_mmu_pagesize(svma));
5378                         if (spte) {
5379                                 get_page(virt_to_page(spte));
5380                                 break;
5381                         }
5382                 }
5383         }
5384
5385         if (!spte)
5386                 goto out;
5387
5388         ptl = huge_pte_lock(hstate_vma(vma), mm, spte);
5389         if (pud_none(*pud)) {
5390                 pud_populate(mm, pud,
5391                                 (pmd_t *)((unsigned long)spte & PAGE_MASK));
5392                 mm_inc_nr_pmds(mm);
5393         } else {
5394                 put_page(virt_to_page(spte));
5395         }
5396         spin_unlock(ptl);
5397 out:
5398         pte = (pte_t *)pmd_alloc(mm, pud, addr);
5399         return pte;
5400 }
5401
5402 /*
5403  * unmap huge page backed by shared pte.
5404  *
5405  * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
5406  * indicated by page_count > 1, unmap is achieved by clearing pud and
5407  * decrementing the ref count. If count == 1, the pte page is not shared.
5408  *
5409  * Called with page table lock held and i_mmap_rwsem held in write mode.
5410  *
5411  * returns: 1 successfully unmapped a shared pte page
5412  *          0 the underlying pte page is not shared, or it is the last user
5413  */
5414 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
5415                                         unsigned long *addr, pte_t *ptep)
5416 {
5417         pgd_t *pgd = pgd_offset(mm, *addr);
5418         p4d_t *p4d = p4d_offset(pgd, *addr);
5419         pud_t *pud = pud_offset(p4d, *addr);
5420
5421         i_mmap_assert_write_locked(vma->vm_file->f_mapping);
5422         BUG_ON(page_count(virt_to_page(ptep)) == 0);
5423         if (page_count(virt_to_page(ptep)) == 1)
5424                 return 0;
5425
5426         pud_clear(pud);
5427         put_page(virt_to_page(ptep));
5428         mm_dec_nr_pmds(mm);
5429         *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
5430         return 1;
5431 }
5432 #define want_pmd_share()        (1)
5433 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
5434 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
5435 {
5436         return NULL;
5437 }
5438
5439 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
5440                                 unsigned long *addr, pte_t *ptep)
5441 {
5442         return 0;
5443 }
5444
5445 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
5446                                 unsigned long *start, unsigned long *end)
5447 {
5448 }
5449 #define want_pmd_share()        (0)
5450 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
5451
5452 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
5453 pte_t *huge_pte_alloc(struct mm_struct *mm,
5454                         unsigned long addr, unsigned long sz)
5455 {
5456         pgd_t *pgd;
5457         p4d_t *p4d;
5458         pud_t *pud;
5459         pte_t *pte = NULL;
5460
5461         pgd = pgd_offset(mm, addr);
5462         p4d = p4d_alloc(mm, pgd, addr);
5463         if (!p4d)
5464                 return NULL;
5465         pud = pud_alloc(mm, p4d, addr);
5466         if (pud) {
5467                 if (sz == PUD_SIZE) {
5468                         pte = (pte_t *)pud;
5469                 } else {
5470                         BUG_ON(sz != PMD_SIZE);
5471                         if (want_pmd_share() && pud_none(*pud))
5472                                 pte = huge_pmd_share(mm, addr, pud);
5473                         else
5474                                 pte = (pte_t *)pmd_alloc(mm, pud, addr);
5475                 }
5476         }
5477         BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte));
5478
5479         return pte;
5480 }
5481
5482 /*
5483  * huge_pte_offset() - Walk the page table to resolve the hugepage
5484  * entry at address @addr
5485  *
5486  * Return: Pointer to page table entry (PUD or PMD) for
5487  * address @addr, or NULL if a !p*d_present() entry is encountered and the
5488  * size @sz doesn't match the hugepage size at this level of the page
5489  * table.
5490  */
5491 pte_t *huge_pte_offset(struct mm_struct *mm,
5492                        unsigned long addr, unsigned long sz)
5493 {
5494         pgd_t *pgd;
5495         p4d_t *p4d;
5496         pud_t *pud;
5497         pmd_t *pmd;
5498
5499         pgd = pgd_offset(mm, addr);
5500         if (!pgd_present(*pgd))
5501                 return NULL;
5502         p4d = p4d_offset(pgd, addr);
5503         if (!p4d_present(*p4d))
5504                 return NULL;
5505
5506         pud = pud_offset(p4d, addr);
5507         if (sz == PUD_SIZE)
5508                 /* must be pud huge, non-present or none */
5509                 return (pte_t *)pud;
5510         if (!pud_present(*pud))
5511                 return NULL;
5512         /* must have a valid entry and size to go further */
5513
5514         pmd = pmd_offset(pud, addr);
5515         /* must be pmd huge, non-present or none */
5516         return (pte_t *)pmd;
5517 }
5518
5519 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
5520
5521 /*
5522  * These functions are overwritable if your architecture needs its own
5523  * behavior.
5524  */
5525 struct page * __weak
5526 follow_huge_addr(struct mm_struct *mm, unsigned long address,
5527                               int write)
5528 {
5529         return ERR_PTR(-EINVAL);
5530 }
5531
5532 struct page * __weak
5533 follow_huge_pd(struct vm_area_struct *vma,
5534                unsigned long address, hugepd_t hpd, int flags, int pdshift)
5535 {
5536         WARN(1, "hugepd follow called with no support for hugepage directory format\n");
5537         return NULL;
5538 }
5539
5540 struct page * __weak
5541 follow_huge_pmd(struct mm_struct *mm, unsigned long address,
5542                 pmd_t *pmd, int flags)
5543 {
5544         struct page *page = NULL;
5545         spinlock_t *ptl;
5546         pte_t pte;
5547
5548         /* FOLL_GET and FOLL_PIN are mutually exclusive. */
5549         if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
5550                          (FOLL_PIN | FOLL_GET)))
5551                 return NULL;
5552
5553 retry:
5554         ptl = pmd_lockptr(mm, pmd);
5555         spin_lock(ptl);
5556         /*
5557          * make sure that the address range covered by this pmd is not
5558          * unmapped from other threads.
5559          */
5560         if (!pmd_huge(*pmd))
5561                 goto out;
5562         pte = huge_ptep_get((pte_t *)pmd);
5563         if (pte_present(pte)) {
5564                 page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
5565                 /*
5566                  * try_grab_page() should always succeed here, because: a) we
5567                  * hold the pmd (ptl) lock, and b) we've just checked that the
5568                  * huge pmd (head) page is present in the page tables. The ptl
5569                  * prevents the head page and tail pages from being rearranged
5570                  * in any way. So this page must be available at this point,
5571                  * unless the page refcount overflowed:
5572                  */
5573                 if (WARN_ON_ONCE(!try_grab_page(page, flags))) {
5574                         page = NULL;
5575                         goto out;
5576                 }
5577         } else {
5578                 if (is_hugetlb_entry_migration(pte)) {
5579                         spin_unlock(ptl);
5580                         __migration_entry_wait(mm, (pte_t *)pmd, ptl);
5581                         goto retry;
5582                 }
5583                 /*
5584                  * hwpoisoned entry is treated as no_page_table in
5585                  * follow_page_mask().
5586                  */
5587         }
5588 out:
5589         spin_unlock(ptl);
5590         return page;
5591 }
5592
5593 struct page * __weak
5594 follow_huge_pud(struct mm_struct *mm, unsigned long address,
5595                 pud_t *pud, int flags)
5596 {
5597         if (flags & (FOLL_GET | FOLL_PIN))
5598                 return NULL;
5599
5600         return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
5601 }
5602
5603 struct page * __weak
5604 follow_huge_pgd(struct mm_struct *mm, unsigned long address, pgd_t *pgd, int flags)
5605 {
5606         if (flags & (FOLL_GET | FOLL_PIN))
5607                 return NULL;
5608
5609         return pte_page(*(pte_t *)pgd) + ((address & ~PGDIR_MASK) >> PAGE_SHIFT);
5610 }
5611
5612 bool isolate_huge_page(struct page *page, struct list_head *list)
5613 {
5614         bool ret = true;
5615
5616         VM_BUG_ON_PAGE(!PageHead(page), page);
5617         spin_lock(&hugetlb_lock);
5618         if (!page_huge_active(page) || !get_page_unless_zero(page)) {
5619                 ret = false;
5620                 goto unlock;
5621         }
5622         clear_page_huge_active(page);
5623         list_move_tail(&page->lru, list);
5624 unlock:
5625         spin_unlock(&hugetlb_lock);
5626         return ret;
5627 }
5628
5629 void putback_active_hugepage(struct page *page)
5630 {
5631         VM_BUG_ON_PAGE(!PageHead(page), page);
5632         spin_lock(&hugetlb_lock);
5633         set_page_huge_active(page);
5634         list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
5635         spin_unlock(&hugetlb_lock);
5636         put_page(page);
5637 }
5638
5639 void move_hugetlb_state(struct page *oldpage, struct page *newpage, int reason)
5640 {
5641         struct hstate *h = page_hstate(oldpage);
5642
5643         hugetlb_cgroup_migrate(oldpage, newpage);
5644         set_page_owner_migrate_reason(newpage, reason);
5645
5646         /*
5647          * transfer temporary state of the new huge page. This is
5648          * reverse to other transitions because the newpage is going to
5649          * be final while the old one will be freed so it takes over
5650          * the temporary status.
5651          *
5652          * Also note that we have to transfer the per-node surplus state
5653          * here as well otherwise the global surplus count will not match
5654          * the per-node's.
5655          */
5656         if (PageHugeTemporary(newpage)) {
5657                 int old_nid = page_to_nid(oldpage);
5658                 int new_nid = page_to_nid(newpage);
5659
5660                 SetPageHugeTemporary(oldpage);
5661                 ClearPageHugeTemporary(newpage);
5662
5663                 spin_lock(&hugetlb_lock);
5664                 if (h->surplus_huge_pages_node[old_nid]) {
5665                         h->surplus_huge_pages_node[old_nid]--;
5666                         h->surplus_huge_pages_node[new_nid]++;
5667                 }
5668                 spin_unlock(&hugetlb_lock);
5669         }
5670 }
5671
5672 #ifdef CONFIG_CMA
5673 static bool cma_reserve_called __initdata;
5674
5675 static int __init cmdline_parse_hugetlb_cma(char *p)
5676 {
5677         hugetlb_cma_size = memparse(p, &p);
5678         return 0;
5679 }
5680
5681 early_param("hugetlb_cma", cmdline_parse_hugetlb_cma);
5682
5683 void __init hugetlb_cma_reserve(int order)
5684 {
5685         unsigned long size, reserved, per_node;
5686         int nid;
5687
5688         cma_reserve_called = true;
5689
5690         if (!hugetlb_cma_size)
5691                 return;
5692
5693         if (hugetlb_cma_size < (PAGE_SIZE << order)) {
5694                 pr_warn("hugetlb_cma: cma area should be at least %lu MiB\n",
5695                         (PAGE_SIZE << order) / SZ_1M);
5696                 return;
5697         }
5698
5699         /*
5700          * If 3 GB area is requested on a machine with 4 numa nodes,
5701          * let's allocate 1 GB on first three nodes and ignore the last one.
5702          */
5703         per_node = DIV_ROUND_UP(hugetlb_cma_size, nr_online_nodes);
5704         pr_info("hugetlb_cma: reserve %lu MiB, up to %lu MiB per node\n",
5705                 hugetlb_cma_size / SZ_1M, per_node / SZ_1M);
5706
5707         reserved = 0;
5708         for_each_node_state(nid, N_ONLINE) {
5709                 int res;
5710                 char name[20];
5711
5712                 size = min(per_node, hugetlb_cma_size - reserved);
5713                 size = round_up(size, PAGE_SIZE << order);
5714
5715                 snprintf(name, 20, "hugetlb%d", nid);
5716                 res = cma_declare_contiguous_nid(0, size, 0, PAGE_SIZE << order,
5717                                                  0, false, name,
5718                                                  &hugetlb_cma[nid], nid);
5719                 if (res) {
5720                         pr_warn("hugetlb_cma: reservation failed: err %d, node %d",
5721                                 res, nid);
5722                         continue;
5723                 }
5724
5725                 reserved += size;
5726                 pr_info("hugetlb_cma: reserved %lu MiB on node %d\n",
5727                         size / SZ_1M, nid);
5728
5729                 if (reserved >= hugetlb_cma_size)
5730                         break;
5731         }
5732 }
5733
5734 void __init hugetlb_cma_check(void)
5735 {
5736         if (!hugetlb_cma_size || cma_reserve_called)
5737                 return;
5738
5739         pr_warn("hugetlb_cma: the option isn't supported by current arch\n");
5740 }
5741
5742 #endif /* CONFIG_CMA */