hugetlb: add lockdep_assert_held() calls for hugetlb_lock
[linux-2.6-microblaze.git] / mm / hugetlb.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Generic hugetlb support.
4  * (C) Nadia Yvette Chambers, April 2004
5  */
6 #include <linux/list.h>
7 #include <linux/init.h>
8 #include <linux/mm.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/compiler.h>
17 #include <linux/cpuset.h>
18 #include <linux/mutex.h>
19 #include <linux/memblock.h>
20 #include <linux/sysfs.h>
21 #include <linux/slab.h>
22 #include <linux/sched/mm.h>
23 #include <linux/mmdebug.h>
24 #include <linux/sched/signal.h>
25 #include <linux/rmap.h>
26 #include <linux/string_helpers.h>
27 #include <linux/swap.h>
28 #include <linux/swapops.h>
29 #include <linux/jhash.h>
30 #include <linux/numa.h>
31 #include <linux/llist.h>
32 #include <linux/cma.h>
33
34 #include <asm/page.h>
35 #include <asm/pgalloc.h>
36 #include <asm/tlb.h>
37
38 #include <linux/io.h>
39 #include <linux/hugetlb.h>
40 #include <linux/hugetlb_cgroup.h>
41 #include <linux/node.h>
42 #include <linux/userfaultfd_k.h>
43 #include <linux/page_owner.h>
44 #include "internal.h"
45
46 int hugetlb_max_hstate __read_mostly;
47 unsigned int default_hstate_idx;
48 struct hstate hstates[HUGE_MAX_HSTATE];
49
50 #ifdef CONFIG_CMA
51 static struct cma *hugetlb_cma[MAX_NUMNODES];
52 #endif
53 static unsigned long hugetlb_cma_size __initdata;
54
55 /*
56  * Minimum page order among possible hugepage sizes, set to a proper value
57  * at boot time.
58  */
59 static unsigned int minimum_order __read_mostly = UINT_MAX;
60
61 __initdata LIST_HEAD(huge_boot_pages);
62
63 /* for command line parsing */
64 static struct hstate * __initdata parsed_hstate;
65 static unsigned long __initdata default_hstate_max_huge_pages;
66 static bool __initdata parsed_valid_hugepagesz = true;
67 static bool __initdata parsed_default_hugepagesz;
68
69 /*
70  * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
71  * free_huge_pages, and surplus_huge_pages.
72  */
73 DEFINE_SPINLOCK(hugetlb_lock);
74
75 /*
76  * Serializes faults on the same logical page.  This is used to
77  * prevent spurious OOMs when the hugepage pool is fully utilized.
78  */
79 static int num_fault_mutexes;
80 struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
81
82 /* Forward declaration */
83 static int hugetlb_acct_memory(struct hstate *h, long delta);
84
85 static inline bool subpool_is_free(struct hugepage_subpool *spool)
86 {
87         if (spool->count)
88                 return false;
89         if (spool->max_hpages != -1)
90                 return spool->used_hpages == 0;
91         if (spool->min_hpages != -1)
92                 return spool->rsv_hpages == spool->min_hpages;
93
94         return true;
95 }
96
97 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool,
98                                                 unsigned long irq_flags)
99 {
100         spin_unlock_irqrestore(&spool->lock, irq_flags);
101
102         /* If no pages are used, and no other handles to the subpool
103          * remain, give up any reservations based on minimum size and
104          * free the subpool */
105         if (subpool_is_free(spool)) {
106                 if (spool->min_hpages != -1)
107                         hugetlb_acct_memory(spool->hstate,
108                                                 -spool->min_hpages);
109                 kfree(spool);
110         }
111 }
112
113 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
114                                                 long min_hpages)
115 {
116         struct hugepage_subpool *spool;
117
118         spool = kzalloc(sizeof(*spool), GFP_KERNEL);
119         if (!spool)
120                 return NULL;
121
122         spin_lock_init(&spool->lock);
123         spool->count = 1;
124         spool->max_hpages = max_hpages;
125         spool->hstate = h;
126         spool->min_hpages = min_hpages;
127
128         if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
129                 kfree(spool);
130                 return NULL;
131         }
132         spool->rsv_hpages = min_hpages;
133
134         return spool;
135 }
136
137 void hugepage_put_subpool(struct hugepage_subpool *spool)
138 {
139         unsigned long flags;
140
141         spin_lock_irqsave(&spool->lock, flags);
142         BUG_ON(!spool->count);
143         spool->count--;
144         unlock_or_release_subpool(spool, flags);
145 }
146
147 /*
148  * Subpool accounting for allocating and reserving pages.
149  * Return -ENOMEM if there are not enough resources to satisfy the
150  * request.  Otherwise, return the number of pages by which the
151  * global pools must be adjusted (upward).  The returned value may
152  * only be different than the passed value (delta) in the case where
153  * a subpool minimum size must be maintained.
154  */
155 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
156                                       long delta)
157 {
158         long ret = delta;
159
160         if (!spool)
161                 return ret;
162
163         spin_lock_irq(&spool->lock);
164
165         if (spool->max_hpages != -1) {          /* maximum size accounting */
166                 if ((spool->used_hpages + delta) <= spool->max_hpages)
167                         spool->used_hpages += delta;
168                 else {
169                         ret = -ENOMEM;
170                         goto unlock_ret;
171                 }
172         }
173
174         /* minimum size accounting */
175         if (spool->min_hpages != -1 && spool->rsv_hpages) {
176                 if (delta > spool->rsv_hpages) {
177                         /*
178                          * Asking for more reserves than those already taken on
179                          * behalf of subpool.  Return difference.
180                          */
181                         ret = delta - spool->rsv_hpages;
182                         spool->rsv_hpages = 0;
183                 } else {
184                         ret = 0;        /* reserves already accounted for */
185                         spool->rsv_hpages -= delta;
186                 }
187         }
188
189 unlock_ret:
190         spin_unlock_irq(&spool->lock);
191         return ret;
192 }
193
194 /*
195  * Subpool accounting for freeing and unreserving pages.
196  * Return the number of global page reservations that must be dropped.
197  * The return value may only be different than the passed value (delta)
198  * in the case where a subpool minimum size must be maintained.
199  */
200 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
201                                        long delta)
202 {
203         long ret = delta;
204         unsigned long flags;
205
206         if (!spool)
207                 return delta;
208
209         spin_lock_irqsave(&spool->lock, flags);
210
211         if (spool->max_hpages != -1)            /* maximum size accounting */
212                 spool->used_hpages -= delta;
213
214          /* minimum size accounting */
215         if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
216                 if (spool->rsv_hpages + delta <= spool->min_hpages)
217                         ret = 0;
218                 else
219                         ret = spool->rsv_hpages + delta - spool->min_hpages;
220
221                 spool->rsv_hpages += delta;
222                 if (spool->rsv_hpages > spool->min_hpages)
223                         spool->rsv_hpages = spool->min_hpages;
224         }
225
226         /*
227          * If hugetlbfs_put_super couldn't free spool due to an outstanding
228          * quota reference, free it now.
229          */
230         unlock_or_release_subpool(spool, flags);
231
232         return ret;
233 }
234
235 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
236 {
237         return HUGETLBFS_SB(inode->i_sb)->spool;
238 }
239
240 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
241 {
242         return subpool_inode(file_inode(vma->vm_file));
243 }
244
245 /* Helper that removes a struct file_region from the resv_map cache and returns
246  * it for use.
247  */
248 static struct file_region *
249 get_file_region_entry_from_cache(struct resv_map *resv, long from, long to)
250 {
251         struct file_region *nrg = NULL;
252
253         VM_BUG_ON(resv->region_cache_count <= 0);
254
255         resv->region_cache_count--;
256         nrg = list_first_entry(&resv->region_cache, struct file_region, link);
257         list_del(&nrg->link);
258
259         nrg->from = from;
260         nrg->to = to;
261
262         return nrg;
263 }
264
265 static void copy_hugetlb_cgroup_uncharge_info(struct file_region *nrg,
266                                               struct file_region *rg)
267 {
268 #ifdef CONFIG_CGROUP_HUGETLB
269         nrg->reservation_counter = rg->reservation_counter;
270         nrg->css = rg->css;
271         if (rg->css)
272                 css_get(rg->css);
273 #endif
274 }
275
276 /* Helper that records hugetlb_cgroup uncharge info. */
277 static void record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup *h_cg,
278                                                 struct hstate *h,
279                                                 struct resv_map *resv,
280                                                 struct file_region *nrg)
281 {
282 #ifdef CONFIG_CGROUP_HUGETLB
283         if (h_cg) {
284                 nrg->reservation_counter =
285                         &h_cg->rsvd_hugepage[hstate_index(h)];
286                 nrg->css = &h_cg->css;
287                 /*
288                  * The caller will hold exactly one h_cg->css reference for the
289                  * whole contiguous reservation region. But this area might be
290                  * scattered when there are already some file_regions reside in
291                  * it. As a result, many file_regions may share only one css
292                  * reference. In order to ensure that one file_region must hold
293                  * exactly one h_cg->css reference, we should do css_get for
294                  * each file_region and leave the reference held by caller
295                  * untouched.
296                  */
297                 css_get(&h_cg->css);
298                 if (!resv->pages_per_hpage)
299                         resv->pages_per_hpage = pages_per_huge_page(h);
300                 /* pages_per_hpage should be the same for all entries in
301                  * a resv_map.
302                  */
303                 VM_BUG_ON(resv->pages_per_hpage != pages_per_huge_page(h));
304         } else {
305                 nrg->reservation_counter = NULL;
306                 nrg->css = NULL;
307         }
308 #endif
309 }
310
311 static void put_uncharge_info(struct file_region *rg)
312 {
313 #ifdef CONFIG_CGROUP_HUGETLB
314         if (rg->css)
315                 css_put(rg->css);
316 #endif
317 }
318
319 static bool has_same_uncharge_info(struct file_region *rg,
320                                    struct file_region *org)
321 {
322 #ifdef CONFIG_CGROUP_HUGETLB
323         return rg && org &&
324                rg->reservation_counter == org->reservation_counter &&
325                rg->css == org->css;
326
327 #else
328         return true;
329 #endif
330 }
331
332 static void coalesce_file_region(struct resv_map *resv, struct file_region *rg)
333 {
334         struct file_region *nrg = NULL, *prg = NULL;
335
336         prg = list_prev_entry(rg, link);
337         if (&prg->link != &resv->regions && prg->to == rg->from &&
338             has_same_uncharge_info(prg, rg)) {
339                 prg->to = rg->to;
340
341                 list_del(&rg->link);
342                 put_uncharge_info(rg);
343                 kfree(rg);
344
345                 rg = prg;
346         }
347
348         nrg = list_next_entry(rg, link);
349         if (&nrg->link != &resv->regions && nrg->from == rg->to &&
350             has_same_uncharge_info(nrg, rg)) {
351                 nrg->from = rg->from;
352
353                 list_del(&rg->link);
354                 put_uncharge_info(rg);
355                 kfree(rg);
356         }
357 }
358
359 static inline long
360 hugetlb_resv_map_add(struct resv_map *map, struct file_region *rg, long from,
361                      long to, struct hstate *h, struct hugetlb_cgroup *cg,
362                      long *regions_needed)
363 {
364         struct file_region *nrg;
365
366         if (!regions_needed) {
367                 nrg = get_file_region_entry_from_cache(map, from, to);
368                 record_hugetlb_cgroup_uncharge_info(cg, h, map, nrg);
369                 list_add(&nrg->link, rg->link.prev);
370                 coalesce_file_region(map, nrg);
371         } else
372                 *regions_needed += 1;
373
374         return to - from;
375 }
376
377 /*
378  * Must be called with resv->lock held.
379  *
380  * Calling this with regions_needed != NULL will count the number of pages
381  * to be added but will not modify the linked list. And regions_needed will
382  * indicate the number of file_regions needed in the cache to carry out to add
383  * the regions for this range.
384  */
385 static long add_reservation_in_range(struct resv_map *resv, long f, long t,
386                                      struct hugetlb_cgroup *h_cg,
387                                      struct hstate *h, long *regions_needed)
388 {
389         long add = 0;
390         struct list_head *head = &resv->regions;
391         long last_accounted_offset = f;
392         struct file_region *rg = NULL, *trg = NULL;
393
394         if (regions_needed)
395                 *regions_needed = 0;
396
397         /* In this loop, we essentially handle an entry for the range
398          * [last_accounted_offset, rg->from), at every iteration, with some
399          * bounds checking.
400          */
401         list_for_each_entry_safe(rg, trg, head, link) {
402                 /* Skip irrelevant regions that start before our range. */
403                 if (rg->from < f) {
404                         /* If this region ends after the last accounted offset,
405                          * then we need to update last_accounted_offset.
406                          */
407                         if (rg->to > last_accounted_offset)
408                                 last_accounted_offset = rg->to;
409                         continue;
410                 }
411
412                 /* When we find a region that starts beyond our range, we've
413                  * finished.
414                  */
415                 if (rg->from >= t)
416                         break;
417
418                 /* Add an entry for last_accounted_offset -> rg->from, and
419                  * update last_accounted_offset.
420                  */
421                 if (rg->from > last_accounted_offset)
422                         add += hugetlb_resv_map_add(resv, rg,
423                                                     last_accounted_offset,
424                                                     rg->from, h, h_cg,
425                                                     regions_needed);
426
427                 last_accounted_offset = rg->to;
428         }
429
430         /* Handle the case where our range extends beyond
431          * last_accounted_offset.
432          */
433         if (last_accounted_offset < t)
434                 add += hugetlb_resv_map_add(resv, rg, last_accounted_offset,
435                                             t, h, h_cg, regions_needed);
436
437         VM_BUG_ON(add < 0);
438         return add;
439 }
440
441 /* Must be called with resv->lock acquired. Will drop lock to allocate entries.
442  */
443 static int allocate_file_region_entries(struct resv_map *resv,
444                                         int regions_needed)
445         __must_hold(&resv->lock)
446 {
447         struct list_head allocated_regions;
448         int to_allocate = 0, i = 0;
449         struct file_region *trg = NULL, *rg = NULL;
450
451         VM_BUG_ON(regions_needed < 0);
452
453         INIT_LIST_HEAD(&allocated_regions);
454
455         /*
456          * Check for sufficient descriptors in the cache to accommodate
457          * the number of in progress add operations plus regions_needed.
458          *
459          * This is a while loop because when we drop the lock, some other call
460          * to region_add or region_del may have consumed some region_entries,
461          * so we keep looping here until we finally have enough entries for
462          * (adds_in_progress + regions_needed).
463          */
464         while (resv->region_cache_count <
465                (resv->adds_in_progress + regions_needed)) {
466                 to_allocate = resv->adds_in_progress + regions_needed -
467                               resv->region_cache_count;
468
469                 /* At this point, we should have enough entries in the cache
470                  * for all the existings adds_in_progress. We should only be
471                  * needing to allocate for regions_needed.
472                  */
473                 VM_BUG_ON(resv->region_cache_count < resv->adds_in_progress);
474
475                 spin_unlock(&resv->lock);
476                 for (i = 0; i < to_allocate; i++) {
477                         trg = kmalloc(sizeof(*trg), GFP_KERNEL);
478                         if (!trg)
479                                 goto out_of_memory;
480                         list_add(&trg->link, &allocated_regions);
481                 }
482
483                 spin_lock(&resv->lock);
484
485                 list_splice(&allocated_regions, &resv->region_cache);
486                 resv->region_cache_count += to_allocate;
487         }
488
489         return 0;
490
491 out_of_memory:
492         list_for_each_entry_safe(rg, trg, &allocated_regions, link) {
493                 list_del(&rg->link);
494                 kfree(rg);
495         }
496         return -ENOMEM;
497 }
498
499 /*
500  * Add the huge page range represented by [f, t) to the reserve
501  * map.  Regions will be taken from the cache to fill in this range.
502  * Sufficient regions should exist in the cache due to the previous
503  * call to region_chg with the same range, but in some cases the cache will not
504  * have sufficient entries due to races with other code doing region_add or
505  * region_del.  The extra needed entries will be allocated.
506  *
507  * regions_needed is the out value provided by a previous call to region_chg.
508  *
509  * Return the number of new huge pages added to the map.  This number is greater
510  * than or equal to zero.  If file_region entries needed to be allocated for
511  * this operation and we were not able to allocate, it returns -ENOMEM.
512  * region_add of regions of length 1 never allocate file_regions and cannot
513  * fail; region_chg will always allocate at least 1 entry and a region_add for
514  * 1 page will only require at most 1 entry.
515  */
516 static long region_add(struct resv_map *resv, long f, long t,
517                        long in_regions_needed, struct hstate *h,
518                        struct hugetlb_cgroup *h_cg)
519 {
520         long add = 0, actual_regions_needed = 0;
521
522         spin_lock(&resv->lock);
523 retry:
524
525         /* Count how many regions are actually needed to execute this add. */
526         add_reservation_in_range(resv, f, t, NULL, NULL,
527                                  &actual_regions_needed);
528
529         /*
530          * Check for sufficient descriptors in the cache to accommodate
531          * this add operation. Note that actual_regions_needed may be greater
532          * than in_regions_needed, as the resv_map may have been modified since
533          * the region_chg call. In this case, we need to make sure that we
534          * allocate extra entries, such that we have enough for all the
535          * existing adds_in_progress, plus the excess needed for this
536          * operation.
537          */
538         if (actual_regions_needed > in_regions_needed &&
539             resv->region_cache_count <
540                     resv->adds_in_progress +
541                             (actual_regions_needed - in_regions_needed)) {
542                 /* region_add operation of range 1 should never need to
543                  * allocate file_region entries.
544                  */
545                 VM_BUG_ON(t - f <= 1);
546
547                 if (allocate_file_region_entries(
548                             resv, actual_regions_needed - in_regions_needed)) {
549                         return -ENOMEM;
550                 }
551
552                 goto retry;
553         }
554
555         add = add_reservation_in_range(resv, f, t, h_cg, h, NULL);
556
557         resv->adds_in_progress -= in_regions_needed;
558
559         spin_unlock(&resv->lock);
560         return add;
561 }
562
563 /*
564  * Examine the existing reserve map and determine how many
565  * huge pages in the specified range [f, t) are NOT currently
566  * represented.  This routine is called before a subsequent
567  * call to region_add that will actually modify the reserve
568  * map to add the specified range [f, t).  region_chg does
569  * not change the number of huge pages represented by the
570  * map.  A number of new file_region structures is added to the cache as a
571  * placeholder, for the subsequent region_add call to use. At least 1
572  * file_region structure is added.
573  *
574  * out_regions_needed is the number of regions added to the
575  * resv->adds_in_progress.  This value needs to be provided to a follow up call
576  * to region_add or region_abort for proper accounting.
577  *
578  * Returns the number of huge pages that need to be added to the existing
579  * reservation map for the range [f, t).  This number is greater or equal to
580  * zero.  -ENOMEM is returned if a new file_region structure or cache entry
581  * is needed and can not be allocated.
582  */
583 static long region_chg(struct resv_map *resv, long f, long t,
584                        long *out_regions_needed)
585 {
586         long chg = 0;
587
588         spin_lock(&resv->lock);
589
590         /* Count how many hugepages in this range are NOT represented. */
591         chg = add_reservation_in_range(resv, f, t, NULL, NULL,
592                                        out_regions_needed);
593
594         if (*out_regions_needed == 0)
595                 *out_regions_needed = 1;
596
597         if (allocate_file_region_entries(resv, *out_regions_needed))
598                 return -ENOMEM;
599
600         resv->adds_in_progress += *out_regions_needed;
601
602         spin_unlock(&resv->lock);
603         return chg;
604 }
605
606 /*
607  * Abort the in progress add operation.  The adds_in_progress field
608  * of the resv_map keeps track of the operations in progress between
609  * calls to region_chg and region_add.  Operations are sometimes
610  * aborted after the call to region_chg.  In such cases, region_abort
611  * is called to decrement the adds_in_progress counter. regions_needed
612  * is the value returned by the region_chg call, it is used to decrement
613  * the adds_in_progress counter.
614  *
615  * NOTE: The range arguments [f, t) are not needed or used in this
616  * routine.  They are kept to make reading the calling code easier as
617  * arguments will match the associated region_chg call.
618  */
619 static void region_abort(struct resv_map *resv, long f, long t,
620                          long regions_needed)
621 {
622         spin_lock(&resv->lock);
623         VM_BUG_ON(!resv->region_cache_count);
624         resv->adds_in_progress -= regions_needed;
625         spin_unlock(&resv->lock);
626 }
627
628 /*
629  * Delete the specified range [f, t) from the reserve map.  If the
630  * t parameter is LONG_MAX, this indicates that ALL regions after f
631  * should be deleted.  Locate the regions which intersect [f, t)
632  * and either trim, delete or split the existing regions.
633  *
634  * Returns the number of huge pages deleted from the reserve map.
635  * In the normal case, the return value is zero or more.  In the
636  * case where a region must be split, a new region descriptor must
637  * be allocated.  If the allocation fails, -ENOMEM will be returned.
638  * NOTE: If the parameter t == LONG_MAX, then we will never split
639  * a region and possibly return -ENOMEM.  Callers specifying
640  * t == LONG_MAX do not need to check for -ENOMEM error.
641  */
642 static long region_del(struct resv_map *resv, long f, long t)
643 {
644         struct list_head *head = &resv->regions;
645         struct file_region *rg, *trg;
646         struct file_region *nrg = NULL;
647         long del = 0;
648
649 retry:
650         spin_lock(&resv->lock);
651         list_for_each_entry_safe(rg, trg, head, link) {
652                 /*
653                  * Skip regions before the range to be deleted.  file_region
654                  * ranges are normally of the form [from, to).  However, there
655                  * may be a "placeholder" entry in the map which is of the form
656                  * (from, to) with from == to.  Check for placeholder entries
657                  * at the beginning of the range to be deleted.
658                  */
659                 if (rg->to <= f && (rg->to != rg->from || rg->to != f))
660                         continue;
661
662                 if (rg->from >= t)
663                         break;
664
665                 if (f > rg->from && t < rg->to) { /* Must split region */
666                         /*
667                          * Check for an entry in the cache before dropping
668                          * lock and attempting allocation.
669                          */
670                         if (!nrg &&
671                             resv->region_cache_count > resv->adds_in_progress) {
672                                 nrg = list_first_entry(&resv->region_cache,
673                                                         struct file_region,
674                                                         link);
675                                 list_del(&nrg->link);
676                                 resv->region_cache_count--;
677                         }
678
679                         if (!nrg) {
680                                 spin_unlock(&resv->lock);
681                                 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
682                                 if (!nrg)
683                                         return -ENOMEM;
684                                 goto retry;
685                         }
686
687                         del += t - f;
688                         hugetlb_cgroup_uncharge_file_region(
689                                 resv, rg, t - f, false);
690
691                         /* New entry for end of split region */
692                         nrg->from = t;
693                         nrg->to = rg->to;
694
695                         copy_hugetlb_cgroup_uncharge_info(nrg, rg);
696
697                         INIT_LIST_HEAD(&nrg->link);
698
699                         /* Original entry is trimmed */
700                         rg->to = f;
701
702                         list_add(&nrg->link, &rg->link);
703                         nrg = NULL;
704                         break;
705                 }
706
707                 if (f <= rg->from && t >= rg->to) { /* Remove entire region */
708                         del += rg->to - rg->from;
709                         hugetlb_cgroup_uncharge_file_region(resv, rg,
710                                                             rg->to - rg->from, true);
711                         list_del(&rg->link);
712                         kfree(rg);
713                         continue;
714                 }
715
716                 if (f <= rg->from) {    /* Trim beginning of region */
717                         hugetlb_cgroup_uncharge_file_region(resv, rg,
718                                                             t - rg->from, false);
719
720                         del += t - rg->from;
721                         rg->from = t;
722                 } else {                /* Trim end of region */
723                         hugetlb_cgroup_uncharge_file_region(resv, rg,
724                                                             rg->to - f, false);
725
726                         del += rg->to - f;
727                         rg->to = f;
728                 }
729         }
730
731         spin_unlock(&resv->lock);
732         kfree(nrg);
733         return del;
734 }
735
736 /*
737  * A rare out of memory error was encountered which prevented removal of
738  * the reserve map region for a page.  The huge page itself was free'ed
739  * and removed from the page cache.  This routine will adjust the subpool
740  * usage count, and the global reserve count if needed.  By incrementing
741  * these counts, the reserve map entry which could not be deleted will
742  * appear as a "reserved" entry instead of simply dangling with incorrect
743  * counts.
744  */
745 void hugetlb_fix_reserve_counts(struct inode *inode)
746 {
747         struct hugepage_subpool *spool = subpool_inode(inode);
748         long rsv_adjust;
749         bool reserved = false;
750
751         rsv_adjust = hugepage_subpool_get_pages(spool, 1);
752         if (rsv_adjust > 0) {
753                 struct hstate *h = hstate_inode(inode);
754
755                 if (!hugetlb_acct_memory(h, 1))
756                         reserved = true;
757         } else if (!rsv_adjust) {
758                 reserved = true;
759         }
760
761         if (!reserved)
762                 pr_warn("hugetlb: Huge Page Reserved count may go negative.\n");
763 }
764
765 /*
766  * Count and return the number of huge pages in the reserve map
767  * that intersect with the range [f, t).
768  */
769 static long region_count(struct resv_map *resv, long f, long t)
770 {
771         struct list_head *head = &resv->regions;
772         struct file_region *rg;
773         long chg = 0;
774
775         spin_lock(&resv->lock);
776         /* Locate each segment we overlap with, and count that overlap. */
777         list_for_each_entry(rg, head, link) {
778                 long seg_from;
779                 long seg_to;
780
781                 if (rg->to <= f)
782                         continue;
783                 if (rg->from >= t)
784                         break;
785
786                 seg_from = max(rg->from, f);
787                 seg_to = min(rg->to, t);
788
789                 chg += seg_to - seg_from;
790         }
791         spin_unlock(&resv->lock);
792
793         return chg;
794 }
795
796 /*
797  * Convert the address within this vma to the page offset within
798  * the mapping, in pagecache page units; huge pages here.
799  */
800 static pgoff_t vma_hugecache_offset(struct hstate *h,
801                         struct vm_area_struct *vma, unsigned long address)
802 {
803         return ((address - vma->vm_start) >> huge_page_shift(h)) +
804                         (vma->vm_pgoff >> huge_page_order(h));
805 }
806
807 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
808                                      unsigned long address)
809 {
810         return vma_hugecache_offset(hstate_vma(vma), vma, address);
811 }
812 EXPORT_SYMBOL_GPL(linear_hugepage_index);
813
814 /*
815  * Return the size of the pages allocated when backing a VMA. In the majority
816  * cases this will be same size as used by the page table entries.
817  */
818 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
819 {
820         if (vma->vm_ops && vma->vm_ops->pagesize)
821                 return vma->vm_ops->pagesize(vma);
822         return PAGE_SIZE;
823 }
824 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
825
826 /*
827  * Return the page size being used by the MMU to back a VMA. In the majority
828  * of cases, the page size used by the kernel matches the MMU size. On
829  * architectures where it differs, an architecture-specific 'strong'
830  * version of this symbol is required.
831  */
832 __weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
833 {
834         return vma_kernel_pagesize(vma);
835 }
836
837 /*
838  * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
839  * bits of the reservation map pointer, which are always clear due to
840  * alignment.
841  */
842 #define HPAGE_RESV_OWNER    (1UL << 0)
843 #define HPAGE_RESV_UNMAPPED (1UL << 1)
844 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
845
846 /*
847  * These helpers are used to track how many pages are reserved for
848  * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
849  * is guaranteed to have their future faults succeed.
850  *
851  * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
852  * the reserve counters are updated with the hugetlb_lock held. It is safe
853  * to reset the VMA at fork() time as it is not in use yet and there is no
854  * chance of the global counters getting corrupted as a result of the values.
855  *
856  * The private mapping reservation is represented in a subtly different
857  * manner to a shared mapping.  A shared mapping has a region map associated
858  * with the underlying file, this region map represents the backing file
859  * pages which have ever had a reservation assigned which this persists even
860  * after the page is instantiated.  A private mapping has a region map
861  * associated with the original mmap which is attached to all VMAs which
862  * reference it, this region map represents those offsets which have consumed
863  * reservation ie. where pages have been instantiated.
864  */
865 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
866 {
867         return (unsigned long)vma->vm_private_data;
868 }
869
870 static void set_vma_private_data(struct vm_area_struct *vma,
871                                                         unsigned long value)
872 {
873         vma->vm_private_data = (void *)value;
874 }
875
876 static void
877 resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map *resv_map,
878                                           struct hugetlb_cgroup *h_cg,
879                                           struct hstate *h)
880 {
881 #ifdef CONFIG_CGROUP_HUGETLB
882         if (!h_cg || !h) {
883                 resv_map->reservation_counter = NULL;
884                 resv_map->pages_per_hpage = 0;
885                 resv_map->css = NULL;
886         } else {
887                 resv_map->reservation_counter =
888                         &h_cg->rsvd_hugepage[hstate_index(h)];
889                 resv_map->pages_per_hpage = pages_per_huge_page(h);
890                 resv_map->css = &h_cg->css;
891         }
892 #endif
893 }
894
895 struct resv_map *resv_map_alloc(void)
896 {
897         struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
898         struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
899
900         if (!resv_map || !rg) {
901                 kfree(resv_map);
902                 kfree(rg);
903                 return NULL;
904         }
905
906         kref_init(&resv_map->refs);
907         spin_lock_init(&resv_map->lock);
908         INIT_LIST_HEAD(&resv_map->regions);
909
910         resv_map->adds_in_progress = 0;
911         /*
912          * Initialize these to 0. On shared mappings, 0's here indicate these
913          * fields don't do cgroup accounting. On private mappings, these will be
914          * re-initialized to the proper values, to indicate that hugetlb cgroup
915          * reservations are to be un-charged from here.
916          */
917         resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, NULL, NULL);
918
919         INIT_LIST_HEAD(&resv_map->region_cache);
920         list_add(&rg->link, &resv_map->region_cache);
921         resv_map->region_cache_count = 1;
922
923         return resv_map;
924 }
925
926 void resv_map_release(struct kref *ref)
927 {
928         struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
929         struct list_head *head = &resv_map->region_cache;
930         struct file_region *rg, *trg;
931
932         /* Clear out any active regions before we release the map. */
933         region_del(resv_map, 0, LONG_MAX);
934
935         /* ... and any entries left in the cache */
936         list_for_each_entry_safe(rg, trg, head, link) {
937                 list_del(&rg->link);
938                 kfree(rg);
939         }
940
941         VM_BUG_ON(resv_map->adds_in_progress);
942
943         kfree(resv_map);
944 }
945
946 static inline struct resv_map *inode_resv_map(struct inode *inode)
947 {
948         /*
949          * At inode evict time, i_mapping may not point to the original
950          * address space within the inode.  This original address space
951          * contains the pointer to the resv_map.  So, always use the
952          * address space embedded within the inode.
953          * The VERY common case is inode->mapping == &inode->i_data but,
954          * this may not be true for device special inodes.
955          */
956         return (struct resv_map *)(&inode->i_data)->private_data;
957 }
958
959 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
960 {
961         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
962         if (vma->vm_flags & VM_MAYSHARE) {
963                 struct address_space *mapping = vma->vm_file->f_mapping;
964                 struct inode *inode = mapping->host;
965
966                 return inode_resv_map(inode);
967
968         } else {
969                 return (struct resv_map *)(get_vma_private_data(vma) &
970                                                         ~HPAGE_RESV_MASK);
971         }
972 }
973
974 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
975 {
976         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
977         VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
978
979         set_vma_private_data(vma, (get_vma_private_data(vma) &
980                                 HPAGE_RESV_MASK) | (unsigned long)map);
981 }
982
983 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
984 {
985         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
986         VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
987
988         set_vma_private_data(vma, get_vma_private_data(vma) | flags);
989 }
990
991 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
992 {
993         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
994
995         return (get_vma_private_data(vma) & flag) != 0;
996 }
997
998 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
999 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
1000 {
1001         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1002         if (!(vma->vm_flags & VM_MAYSHARE))
1003                 vma->vm_private_data = (void *)0;
1004 }
1005
1006 /* Returns true if the VMA has associated reserve pages */
1007 static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
1008 {
1009         if (vma->vm_flags & VM_NORESERVE) {
1010                 /*
1011                  * This address is already reserved by other process(chg == 0),
1012                  * so, we should decrement reserved count. Without decrementing,
1013                  * reserve count remains after releasing inode, because this
1014                  * allocated page will go into page cache and is regarded as
1015                  * coming from reserved pool in releasing step.  Currently, we
1016                  * don't have any other solution to deal with this situation
1017                  * properly, so add work-around here.
1018                  */
1019                 if (vma->vm_flags & VM_MAYSHARE && chg == 0)
1020                         return true;
1021                 else
1022                         return false;
1023         }
1024
1025         /* Shared mappings always use reserves */
1026         if (vma->vm_flags & VM_MAYSHARE) {
1027                 /*
1028                  * We know VM_NORESERVE is not set.  Therefore, there SHOULD
1029                  * be a region map for all pages.  The only situation where
1030                  * there is no region map is if a hole was punched via
1031                  * fallocate.  In this case, there really are no reserves to
1032                  * use.  This situation is indicated if chg != 0.
1033                  */
1034                 if (chg)
1035                         return false;
1036                 else
1037                         return true;
1038         }
1039
1040         /*
1041          * Only the process that called mmap() has reserves for
1042          * private mappings.
1043          */
1044         if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1045                 /*
1046                  * Like the shared case above, a hole punch or truncate
1047                  * could have been performed on the private mapping.
1048                  * Examine the value of chg to determine if reserves
1049                  * actually exist or were previously consumed.
1050                  * Very Subtle - The value of chg comes from a previous
1051                  * call to vma_needs_reserves().  The reserve map for
1052                  * private mappings has different (opposite) semantics
1053                  * than that of shared mappings.  vma_needs_reserves()
1054                  * has already taken this difference in semantics into
1055                  * account.  Therefore, the meaning of chg is the same
1056                  * as in the shared case above.  Code could easily be
1057                  * combined, but keeping it separate draws attention to
1058                  * subtle differences.
1059                  */
1060                 if (chg)
1061                         return false;
1062                 else
1063                         return true;
1064         }
1065
1066         return false;
1067 }
1068
1069 static void enqueue_huge_page(struct hstate *h, struct page *page)
1070 {
1071         int nid = page_to_nid(page);
1072
1073         lockdep_assert_held(&hugetlb_lock);
1074         list_move(&page->lru, &h->hugepage_freelists[nid]);
1075         h->free_huge_pages++;
1076         h->free_huge_pages_node[nid]++;
1077         SetHPageFreed(page);
1078 }
1079
1080 static struct page *dequeue_huge_page_node_exact(struct hstate *h, int nid)
1081 {
1082         struct page *page;
1083         bool nocma = !!(current->flags & PF_MEMALLOC_NOCMA);
1084
1085         lockdep_assert_held(&hugetlb_lock);
1086         list_for_each_entry(page, &h->hugepage_freelists[nid], lru) {
1087                 if (nocma && is_migrate_cma_page(page))
1088                         continue;
1089
1090                 if (PageHWPoison(page))
1091                         continue;
1092
1093                 list_move(&page->lru, &h->hugepage_activelist);
1094                 set_page_refcounted(page);
1095                 ClearHPageFreed(page);
1096                 h->free_huge_pages--;
1097                 h->free_huge_pages_node[nid]--;
1098                 return page;
1099         }
1100
1101         return NULL;
1102 }
1103
1104 static struct page *dequeue_huge_page_nodemask(struct hstate *h, gfp_t gfp_mask, int nid,
1105                 nodemask_t *nmask)
1106 {
1107         unsigned int cpuset_mems_cookie;
1108         struct zonelist *zonelist;
1109         struct zone *zone;
1110         struct zoneref *z;
1111         int node = NUMA_NO_NODE;
1112
1113         zonelist = node_zonelist(nid, gfp_mask);
1114
1115 retry_cpuset:
1116         cpuset_mems_cookie = read_mems_allowed_begin();
1117         for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
1118                 struct page *page;
1119
1120                 if (!cpuset_zone_allowed(zone, gfp_mask))
1121                         continue;
1122                 /*
1123                  * no need to ask again on the same node. Pool is node rather than
1124                  * zone aware
1125                  */
1126                 if (zone_to_nid(zone) == node)
1127                         continue;
1128                 node = zone_to_nid(zone);
1129
1130                 page = dequeue_huge_page_node_exact(h, node);
1131                 if (page)
1132                         return page;
1133         }
1134         if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
1135                 goto retry_cpuset;
1136
1137         return NULL;
1138 }
1139
1140 static struct page *dequeue_huge_page_vma(struct hstate *h,
1141                                 struct vm_area_struct *vma,
1142                                 unsigned long address, int avoid_reserve,
1143                                 long chg)
1144 {
1145         struct page *page;
1146         struct mempolicy *mpol;
1147         gfp_t gfp_mask;
1148         nodemask_t *nodemask;
1149         int nid;
1150
1151         /*
1152          * A child process with MAP_PRIVATE mappings created by their parent
1153          * have no page reserves. This check ensures that reservations are
1154          * not "stolen". The child may still get SIGKILLed
1155          */
1156         if (!vma_has_reserves(vma, chg) &&
1157                         h->free_huge_pages - h->resv_huge_pages == 0)
1158                 goto err;
1159
1160         /* If reserves cannot be used, ensure enough pages are in the pool */
1161         if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
1162                 goto err;
1163
1164         gfp_mask = htlb_alloc_mask(h);
1165         nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
1166         page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
1167         if (page && !avoid_reserve && vma_has_reserves(vma, chg)) {
1168                 SetHPageRestoreReserve(page);
1169                 h->resv_huge_pages--;
1170         }
1171
1172         mpol_cond_put(mpol);
1173         return page;
1174
1175 err:
1176         return NULL;
1177 }
1178
1179 /*
1180  * common helper functions for hstate_next_node_to_{alloc|free}.
1181  * We may have allocated or freed a huge page based on a different
1182  * nodes_allowed previously, so h->next_node_to_{alloc|free} might
1183  * be outside of *nodes_allowed.  Ensure that we use an allowed
1184  * node for alloc or free.
1185  */
1186 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
1187 {
1188         nid = next_node_in(nid, *nodes_allowed);
1189         VM_BUG_ON(nid >= MAX_NUMNODES);
1190
1191         return nid;
1192 }
1193
1194 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
1195 {
1196         if (!node_isset(nid, *nodes_allowed))
1197                 nid = next_node_allowed(nid, nodes_allowed);
1198         return nid;
1199 }
1200
1201 /*
1202  * returns the previously saved node ["this node"] from which to
1203  * allocate a persistent huge page for the pool and advance the
1204  * next node from which to allocate, handling wrap at end of node
1205  * mask.
1206  */
1207 static int hstate_next_node_to_alloc(struct hstate *h,
1208                                         nodemask_t *nodes_allowed)
1209 {
1210         int nid;
1211
1212         VM_BUG_ON(!nodes_allowed);
1213
1214         nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
1215         h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
1216
1217         return nid;
1218 }
1219
1220 /*
1221  * helper for remove_pool_huge_page() - return the previously saved
1222  * node ["this node"] from which to free a huge page.  Advance the
1223  * next node id whether or not we find a free huge page to free so
1224  * that the next attempt to free addresses the next node.
1225  */
1226 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1227 {
1228         int nid;
1229
1230         VM_BUG_ON(!nodes_allowed);
1231
1232         nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1233         h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1234
1235         return nid;
1236 }
1237
1238 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask)           \
1239         for (nr_nodes = nodes_weight(*mask);                            \
1240                 nr_nodes > 0 &&                                         \
1241                 ((node = hstate_next_node_to_alloc(hs, mask)) || 1);    \
1242                 nr_nodes--)
1243
1244 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask)            \
1245         for (nr_nodes = nodes_weight(*mask);                            \
1246                 nr_nodes > 0 &&                                         \
1247                 ((node = hstate_next_node_to_free(hs, mask)) || 1);     \
1248                 nr_nodes--)
1249
1250 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
1251 static void destroy_compound_gigantic_page(struct page *page,
1252                                         unsigned int order)
1253 {
1254         int i;
1255         int nr_pages = 1 << order;
1256         struct page *p = page + 1;
1257
1258         atomic_set(compound_mapcount_ptr(page), 0);
1259         atomic_set(compound_pincount_ptr(page), 0);
1260
1261         for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1262                 clear_compound_head(p);
1263                 set_page_refcounted(p);
1264         }
1265
1266         set_compound_order(page, 0);
1267         page[1].compound_nr = 0;
1268         __ClearPageHead(page);
1269 }
1270
1271 static void free_gigantic_page(struct page *page, unsigned int order)
1272 {
1273         /*
1274          * If the page isn't allocated using the cma allocator,
1275          * cma_release() returns false.
1276          */
1277 #ifdef CONFIG_CMA
1278         if (cma_release(hugetlb_cma[page_to_nid(page)], page, 1 << order))
1279                 return;
1280 #endif
1281
1282         free_contig_range(page_to_pfn(page), 1 << order);
1283 }
1284
1285 #ifdef CONFIG_CONTIG_ALLOC
1286 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1287                 int nid, nodemask_t *nodemask)
1288 {
1289         unsigned long nr_pages = pages_per_huge_page(h);
1290         if (nid == NUMA_NO_NODE)
1291                 nid = numa_mem_id();
1292
1293 #ifdef CONFIG_CMA
1294         {
1295                 struct page *page;
1296                 int node;
1297
1298                 if (hugetlb_cma[nid]) {
1299                         page = cma_alloc(hugetlb_cma[nid], nr_pages,
1300                                         huge_page_order(h), true);
1301                         if (page)
1302                                 return page;
1303                 }
1304
1305                 if (!(gfp_mask & __GFP_THISNODE)) {
1306                         for_each_node_mask(node, *nodemask) {
1307                                 if (node == nid || !hugetlb_cma[node])
1308                                         continue;
1309
1310                                 page = cma_alloc(hugetlb_cma[node], nr_pages,
1311                                                 huge_page_order(h), true);
1312                                 if (page)
1313                                         return page;
1314                         }
1315                 }
1316         }
1317 #endif
1318
1319         return alloc_contig_pages(nr_pages, gfp_mask, nid, nodemask);
1320 }
1321
1322 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid);
1323 static void prep_compound_gigantic_page(struct page *page, unsigned int order);
1324 #else /* !CONFIG_CONTIG_ALLOC */
1325 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1326                                         int nid, nodemask_t *nodemask)
1327 {
1328         return NULL;
1329 }
1330 #endif /* CONFIG_CONTIG_ALLOC */
1331
1332 #else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
1333 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1334                                         int nid, nodemask_t *nodemask)
1335 {
1336         return NULL;
1337 }
1338 static inline void free_gigantic_page(struct page *page, unsigned int order) { }
1339 static inline void destroy_compound_gigantic_page(struct page *page,
1340                                                 unsigned int order) { }
1341 #endif
1342
1343 /*
1344  * Remove hugetlb page from lists, and update dtor so that page appears
1345  * as just a compound page.  A reference is held on the page.
1346  *
1347  * Must be called with hugetlb lock held.
1348  */
1349 static void remove_hugetlb_page(struct hstate *h, struct page *page,
1350                                                         bool adjust_surplus)
1351 {
1352         int nid = page_to_nid(page);
1353
1354         VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
1355         VM_BUG_ON_PAGE(hugetlb_cgroup_from_page_rsvd(page), page);
1356
1357         lockdep_assert_held(&hugetlb_lock);
1358         if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1359                 return;
1360
1361         list_del(&page->lru);
1362
1363         if (HPageFreed(page)) {
1364                 h->free_huge_pages--;
1365                 h->free_huge_pages_node[nid]--;
1366         }
1367         if (adjust_surplus) {
1368                 h->surplus_huge_pages--;
1369                 h->surplus_huge_pages_node[nid]--;
1370         }
1371
1372         set_page_refcounted(page);
1373         set_compound_page_dtor(page, NULL_COMPOUND_DTOR);
1374
1375         h->nr_huge_pages--;
1376         h->nr_huge_pages_node[nid]--;
1377 }
1378
1379 static void update_and_free_page(struct hstate *h, struct page *page)
1380 {
1381         int i;
1382         struct page *subpage = page;
1383
1384         if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1385                 return;
1386
1387         for (i = 0; i < pages_per_huge_page(h);
1388              i++, subpage = mem_map_next(subpage, page, i)) {
1389                 subpage->flags &= ~(1 << PG_locked | 1 << PG_error |
1390                                 1 << PG_referenced | 1 << PG_dirty |
1391                                 1 << PG_active | 1 << PG_private |
1392                                 1 << PG_writeback);
1393         }
1394         if (hstate_is_gigantic(h)) {
1395                 destroy_compound_gigantic_page(page, huge_page_order(h));
1396                 free_gigantic_page(page, huge_page_order(h));
1397         } else {
1398                 __free_pages(page, huge_page_order(h));
1399         }
1400 }
1401
1402 static void update_and_free_pages_bulk(struct hstate *h, struct list_head *list)
1403 {
1404         struct page *page, *t_page;
1405
1406         list_for_each_entry_safe(page, t_page, list, lru) {
1407                 update_and_free_page(h, page);
1408                 cond_resched();
1409         }
1410 }
1411
1412 struct hstate *size_to_hstate(unsigned long size)
1413 {
1414         struct hstate *h;
1415
1416         for_each_hstate(h) {
1417                 if (huge_page_size(h) == size)
1418                         return h;
1419         }
1420         return NULL;
1421 }
1422
1423 void free_huge_page(struct page *page)
1424 {
1425         /*
1426          * Can't pass hstate in here because it is called from the
1427          * compound page destructor.
1428          */
1429         struct hstate *h = page_hstate(page);
1430         int nid = page_to_nid(page);
1431         struct hugepage_subpool *spool = hugetlb_page_subpool(page);
1432         bool restore_reserve;
1433         unsigned long flags;
1434
1435         VM_BUG_ON_PAGE(page_count(page), page);
1436         VM_BUG_ON_PAGE(page_mapcount(page), page);
1437
1438         hugetlb_set_page_subpool(page, NULL);
1439         page->mapping = NULL;
1440         restore_reserve = HPageRestoreReserve(page);
1441         ClearHPageRestoreReserve(page);
1442
1443         /*
1444          * If HPageRestoreReserve was set on page, page allocation consumed a
1445          * reservation.  If the page was associated with a subpool, there
1446          * would have been a page reserved in the subpool before allocation
1447          * via hugepage_subpool_get_pages().  Since we are 'restoring' the
1448          * reservation, do not call hugepage_subpool_put_pages() as this will
1449          * remove the reserved page from the subpool.
1450          */
1451         if (!restore_reserve) {
1452                 /*
1453                  * A return code of zero implies that the subpool will be
1454                  * under its minimum size if the reservation is not restored
1455                  * after page is free.  Therefore, force restore_reserve
1456                  * operation.
1457                  */
1458                 if (hugepage_subpool_put_pages(spool, 1) == 0)
1459                         restore_reserve = true;
1460         }
1461
1462         spin_lock_irqsave(&hugetlb_lock, flags);
1463         ClearHPageMigratable(page);
1464         hugetlb_cgroup_uncharge_page(hstate_index(h),
1465                                      pages_per_huge_page(h), page);
1466         hugetlb_cgroup_uncharge_page_rsvd(hstate_index(h),
1467                                           pages_per_huge_page(h), page);
1468         if (restore_reserve)
1469                 h->resv_huge_pages++;
1470
1471         if (HPageTemporary(page)) {
1472                 remove_hugetlb_page(h, page, false);
1473                 spin_unlock_irqrestore(&hugetlb_lock, flags);
1474                 update_and_free_page(h, page);
1475         } else if (h->surplus_huge_pages_node[nid]) {
1476                 /* remove the page from active list */
1477                 remove_hugetlb_page(h, page, true);
1478                 spin_unlock_irqrestore(&hugetlb_lock, flags);
1479                 update_and_free_page(h, page);
1480         } else {
1481                 arch_clear_hugepage_flags(page);
1482                 enqueue_huge_page(h, page);
1483                 spin_unlock_irqrestore(&hugetlb_lock, flags);
1484         }
1485 }
1486
1487 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
1488 {
1489         INIT_LIST_HEAD(&page->lru);
1490         set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1491         hugetlb_set_page_subpool(page, NULL);
1492         set_hugetlb_cgroup(page, NULL);
1493         set_hugetlb_cgroup_rsvd(page, NULL);
1494         spin_lock_irq(&hugetlb_lock);
1495         h->nr_huge_pages++;
1496         h->nr_huge_pages_node[nid]++;
1497         ClearHPageFreed(page);
1498         spin_unlock_irq(&hugetlb_lock);
1499 }
1500
1501 static void prep_compound_gigantic_page(struct page *page, unsigned int order)
1502 {
1503         int i;
1504         int nr_pages = 1 << order;
1505         struct page *p = page + 1;
1506
1507         /* we rely on prep_new_huge_page to set the destructor */
1508         set_compound_order(page, order);
1509         __ClearPageReserved(page);
1510         __SetPageHead(page);
1511         for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1512                 /*
1513                  * For gigantic hugepages allocated through bootmem at
1514                  * boot, it's safer to be consistent with the not-gigantic
1515                  * hugepages and clear the PG_reserved bit from all tail pages
1516                  * too.  Otherwise drivers using get_user_pages() to access tail
1517                  * pages may get the reference counting wrong if they see
1518                  * PG_reserved set on a tail page (despite the head page not
1519                  * having PG_reserved set).  Enforcing this consistency between
1520                  * head and tail pages allows drivers to optimize away a check
1521                  * on the head page when they need know if put_page() is needed
1522                  * after get_user_pages().
1523                  */
1524                 __ClearPageReserved(p);
1525                 set_page_count(p, 0);
1526                 set_compound_head(p, page);
1527         }
1528         atomic_set(compound_mapcount_ptr(page), -1);
1529         atomic_set(compound_pincount_ptr(page), 0);
1530 }
1531
1532 /*
1533  * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1534  * transparent huge pages.  See the PageTransHuge() documentation for more
1535  * details.
1536  */
1537 int PageHuge(struct page *page)
1538 {
1539         if (!PageCompound(page))
1540                 return 0;
1541
1542         page = compound_head(page);
1543         return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
1544 }
1545 EXPORT_SYMBOL_GPL(PageHuge);
1546
1547 /*
1548  * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1549  * normal or transparent huge pages.
1550  */
1551 int PageHeadHuge(struct page *page_head)
1552 {
1553         if (!PageHead(page_head))
1554                 return 0;
1555
1556         return page_head[1].compound_dtor == HUGETLB_PAGE_DTOR;
1557 }
1558
1559 /*
1560  * Find and lock address space (mapping) in write mode.
1561  *
1562  * Upon entry, the page is locked which means that page_mapping() is
1563  * stable.  Due to locking order, we can only trylock_write.  If we can
1564  * not get the lock, simply return NULL to caller.
1565  */
1566 struct address_space *hugetlb_page_mapping_lock_write(struct page *hpage)
1567 {
1568         struct address_space *mapping = page_mapping(hpage);
1569
1570         if (!mapping)
1571                 return mapping;
1572
1573         if (i_mmap_trylock_write(mapping))
1574                 return mapping;
1575
1576         return NULL;
1577 }
1578
1579 pgoff_t __basepage_index(struct page *page)
1580 {
1581         struct page *page_head = compound_head(page);
1582         pgoff_t index = page_index(page_head);
1583         unsigned long compound_idx;
1584
1585         if (!PageHuge(page_head))
1586                 return page_index(page);
1587
1588         if (compound_order(page_head) >= MAX_ORDER)
1589                 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
1590         else
1591                 compound_idx = page - page_head;
1592
1593         return (index << compound_order(page_head)) + compound_idx;
1594 }
1595
1596 static struct page *alloc_buddy_huge_page(struct hstate *h,
1597                 gfp_t gfp_mask, int nid, nodemask_t *nmask,
1598                 nodemask_t *node_alloc_noretry)
1599 {
1600         int order = huge_page_order(h);
1601         struct page *page;
1602         bool alloc_try_hard = true;
1603
1604         /*
1605          * By default we always try hard to allocate the page with
1606          * __GFP_RETRY_MAYFAIL flag.  However, if we are allocating pages in
1607          * a loop (to adjust global huge page counts) and previous allocation
1608          * failed, do not continue to try hard on the same node.  Use the
1609          * node_alloc_noretry bitmap to manage this state information.
1610          */
1611         if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry))
1612                 alloc_try_hard = false;
1613         gfp_mask |= __GFP_COMP|__GFP_NOWARN;
1614         if (alloc_try_hard)
1615                 gfp_mask |= __GFP_RETRY_MAYFAIL;
1616         if (nid == NUMA_NO_NODE)
1617                 nid = numa_mem_id();
1618         page = __alloc_pages(gfp_mask, order, nid, nmask);
1619         if (page)
1620                 __count_vm_event(HTLB_BUDDY_PGALLOC);
1621         else
1622                 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1623
1624         /*
1625          * If we did not specify __GFP_RETRY_MAYFAIL, but still got a page this
1626          * indicates an overall state change.  Clear bit so that we resume
1627          * normal 'try hard' allocations.
1628          */
1629         if (node_alloc_noretry && page && !alloc_try_hard)
1630                 node_clear(nid, *node_alloc_noretry);
1631
1632         /*
1633          * If we tried hard to get a page but failed, set bit so that
1634          * subsequent attempts will not try as hard until there is an
1635          * overall state change.
1636          */
1637         if (node_alloc_noretry && !page && alloc_try_hard)
1638                 node_set(nid, *node_alloc_noretry);
1639
1640         return page;
1641 }
1642
1643 /*
1644  * Common helper to allocate a fresh hugetlb page. All specific allocators
1645  * should use this function to get new hugetlb pages
1646  */
1647 static struct page *alloc_fresh_huge_page(struct hstate *h,
1648                 gfp_t gfp_mask, int nid, nodemask_t *nmask,
1649                 nodemask_t *node_alloc_noretry)
1650 {
1651         struct page *page;
1652
1653         if (hstate_is_gigantic(h))
1654                 page = alloc_gigantic_page(h, gfp_mask, nid, nmask);
1655         else
1656                 page = alloc_buddy_huge_page(h, gfp_mask,
1657                                 nid, nmask, node_alloc_noretry);
1658         if (!page)
1659                 return NULL;
1660
1661         if (hstate_is_gigantic(h))
1662                 prep_compound_gigantic_page(page, huge_page_order(h));
1663         prep_new_huge_page(h, page, page_to_nid(page));
1664
1665         return page;
1666 }
1667
1668 /*
1669  * Allocates a fresh page to the hugetlb allocator pool in the node interleaved
1670  * manner.
1671  */
1672 static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1673                                 nodemask_t *node_alloc_noretry)
1674 {
1675         struct page *page;
1676         int nr_nodes, node;
1677         gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
1678
1679         for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1680                 page = alloc_fresh_huge_page(h, gfp_mask, node, nodes_allowed,
1681                                                 node_alloc_noretry);
1682                 if (page)
1683                         break;
1684         }
1685
1686         if (!page)
1687                 return 0;
1688
1689         put_page(page); /* free it into the hugepage allocator */
1690
1691         return 1;
1692 }
1693
1694 /*
1695  * Remove huge page from pool from next node to free.  Attempt to keep
1696  * persistent huge pages more or less balanced over allowed nodes.
1697  * This routine only 'removes' the hugetlb page.  The caller must make
1698  * an additional call to free the page to low level allocators.
1699  * Called with hugetlb_lock locked.
1700  */
1701 static struct page *remove_pool_huge_page(struct hstate *h,
1702                                                 nodemask_t *nodes_allowed,
1703                                                  bool acct_surplus)
1704 {
1705         int nr_nodes, node;
1706         struct page *page = NULL;
1707
1708         lockdep_assert_held(&hugetlb_lock);
1709         for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1710                 /*
1711                  * If we're returning unused surplus pages, only examine
1712                  * nodes with surplus pages.
1713                  */
1714                 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
1715                     !list_empty(&h->hugepage_freelists[node])) {
1716                         page = list_entry(h->hugepage_freelists[node].next,
1717                                           struct page, lru);
1718                         remove_hugetlb_page(h, page, acct_surplus);
1719                         break;
1720                 }
1721         }
1722
1723         return page;
1724 }
1725
1726 /*
1727  * Dissolve a given free hugepage into free buddy pages. This function does
1728  * nothing for in-use hugepages and non-hugepages.
1729  * This function returns values like below:
1730  *
1731  *  -EBUSY: failed to dissolved free hugepages or the hugepage is in-use
1732  *          (allocated or reserved.)
1733  *       0: successfully dissolved free hugepages or the page is not a
1734  *          hugepage (considered as already dissolved)
1735  */
1736 int dissolve_free_huge_page(struct page *page)
1737 {
1738         int rc = -EBUSY;
1739
1740 retry:
1741         /* Not to disrupt normal path by vainly holding hugetlb_lock */
1742         if (!PageHuge(page))
1743                 return 0;
1744
1745         spin_lock_irq(&hugetlb_lock);
1746         if (!PageHuge(page)) {
1747                 rc = 0;
1748                 goto out;
1749         }
1750
1751         if (!page_count(page)) {
1752                 struct page *head = compound_head(page);
1753                 struct hstate *h = page_hstate(head);
1754                 if (h->free_huge_pages - h->resv_huge_pages == 0)
1755                         goto out;
1756
1757                 /*
1758                  * We should make sure that the page is already on the free list
1759                  * when it is dissolved.
1760                  */
1761                 if (unlikely(!HPageFreed(head))) {
1762                         spin_unlock_irq(&hugetlb_lock);
1763                         cond_resched();
1764
1765                         /*
1766                          * Theoretically, we should return -EBUSY when we
1767                          * encounter this race. In fact, we have a chance
1768                          * to successfully dissolve the page if we do a
1769                          * retry. Because the race window is quite small.
1770                          * If we seize this opportunity, it is an optimization
1771                          * for increasing the success rate of dissolving page.
1772                          */
1773                         goto retry;
1774                 }
1775
1776                 /*
1777                  * Move PageHWPoison flag from head page to the raw error page,
1778                  * which makes any subpages rather than the error page reusable.
1779                  */
1780                 if (PageHWPoison(head) && page != head) {
1781                         SetPageHWPoison(page);
1782                         ClearPageHWPoison(head);
1783                 }
1784                 remove_hugetlb_page(h, page, false);
1785                 h->max_huge_pages--;
1786                 spin_unlock_irq(&hugetlb_lock);
1787                 update_and_free_page(h, head);
1788                 return 0;
1789         }
1790 out:
1791         spin_unlock_irq(&hugetlb_lock);
1792         return rc;
1793 }
1794
1795 /*
1796  * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
1797  * make specified memory blocks removable from the system.
1798  * Note that this will dissolve a free gigantic hugepage completely, if any
1799  * part of it lies within the given range.
1800  * Also note that if dissolve_free_huge_page() returns with an error, all
1801  * free hugepages that were dissolved before that error are lost.
1802  */
1803 int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
1804 {
1805         unsigned long pfn;
1806         struct page *page;
1807         int rc = 0;
1808
1809         if (!hugepages_supported())
1810                 return rc;
1811
1812         for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order) {
1813                 page = pfn_to_page(pfn);
1814                 rc = dissolve_free_huge_page(page);
1815                 if (rc)
1816                         break;
1817         }
1818
1819         return rc;
1820 }
1821
1822 /*
1823  * Allocates a fresh surplus page from the page allocator.
1824  */
1825 static struct page *alloc_surplus_huge_page(struct hstate *h, gfp_t gfp_mask,
1826                 int nid, nodemask_t *nmask)
1827 {
1828         struct page *page = NULL;
1829
1830         if (hstate_is_gigantic(h))
1831                 return NULL;
1832
1833         spin_lock_irq(&hugetlb_lock);
1834         if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages)
1835                 goto out_unlock;
1836         spin_unlock_irq(&hugetlb_lock);
1837
1838         page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
1839         if (!page)
1840                 return NULL;
1841
1842         spin_lock_irq(&hugetlb_lock);
1843         /*
1844          * We could have raced with the pool size change.
1845          * Double check that and simply deallocate the new page
1846          * if we would end up overcommiting the surpluses. Abuse
1847          * temporary page to workaround the nasty free_huge_page
1848          * codeflow
1849          */
1850         if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
1851                 SetHPageTemporary(page);
1852                 spin_unlock_irq(&hugetlb_lock);
1853                 put_page(page);
1854                 return NULL;
1855         } else {
1856                 h->surplus_huge_pages++;
1857                 h->surplus_huge_pages_node[page_to_nid(page)]++;
1858         }
1859
1860 out_unlock:
1861         spin_unlock_irq(&hugetlb_lock);
1862
1863         return page;
1864 }
1865
1866 static struct page *alloc_migrate_huge_page(struct hstate *h, gfp_t gfp_mask,
1867                                      int nid, nodemask_t *nmask)
1868 {
1869         struct page *page;
1870
1871         if (hstate_is_gigantic(h))
1872                 return NULL;
1873
1874         page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
1875         if (!page)
1876                 return NULL;
1877
1878         /*
1879          * We do not account these pages as surplus because they are only
1880          * temporary and will be released properly on the last reference
1881          */
1882         SetHPageTemporary(page);
1883
1884         return page;
1885 }
1886
1887 /*
1888  * Use the VMA's mpolicy to allocate a huge page from the buddy.
1889  */
1890 static
1891 struct page *alloc_buddy_huge_page_with_mpol(struct hstate *h,
1892                 struct vm_area_struct *vma, unsigned long addr)
1893 {
1894         struct page *page;
1895         struct mempolicy *mpol;
1896         gfp_t gfp_mask = htlb_alloc_mask(h);
1897         int nid;
1898         nodemask_t *nodemask;
1899
1900         nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
1901         page = alloc_surplus_huge_page(h, gfp_mask, nid, nodemask);
1902         mpol_cond_put(mpol);
1903
1904         return page;
1905 }
1906
1907 /* page migration callback function */
1908 struct page *alloc_huge_page_nodemask(struct hstate *h, int preferred_nid,
1909                 nodemask_t *nmask, gfp_t gfp_mask)
1910 {
1911         spin_lock_irq(&hugetlb_lock);
1912         if (h->free_huge_pages - h->resv_huge_pages > 0) {
1913                 struct page *page;
1914
1915                 page = dequeue_huge_page_nodemask(h, gfp_mask, preferred_nid, nmask);
1916                 if (page) {
1917                         spin_unlock_irq(&hugetlb_lock);
1918                         return page;
1919                 }
1920         }
1921         spin_unlock_irq(&hugetlb_lock);
1922
1923         return alloc_migrate_huge_page(h, gfp_mask, preferred_nid, nmask);
1924 }
1925
1926 /* mempolicy aware migration callback */
1927 struct page *alloc_huge_page_vma(struct hstate *h, struct vm_area_struct *vma,
1928                 unsigned long address)
1929 {
1930         struct mempolicy *mpol;
1931         nodemask_t *nodemask;
1932         struct page *page;
1933         gfp_t gfp_mask;
1934         int node;
1935
1936         gfp_mask = htlb_alloc_mask(h);
1937         node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
1938         page = alloc_huge_page_nodemask(h, node, nodemask, gfp_mask);
1939         mpol_cond_put(mpol);
1940
1941         return page;
1942 }
1943
1944 /*
1945  * Increase the hugetlb pool such that it can accommodate a reservation
1946  * of size 'delta'.
1947  */
1948 static int gather_surplus_pages(struct hstate *h, long delta)
1949         __must_hold(&hugetlb_lock)
1950 {
1951         struct list_head surplus_list;
1952         struct page *page, *tmp;
1953         int ret;
1954         long i;
1955         long needed, allocated;
1956         bool alloc_ok = true;
1957
1958         lockdep_assert_held(&hugetlb_lock);
1959         needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
1960         if (needed <= 0) {
1961                 h->resv_huge_pages += delta;
1962                 return 0;
1963         }
1964
1965         allocated = 0;
1966         INIT_LIST_HEAD(&surplus_list);
1967
1968         ret = -ENOMEM;
1969 retry:
1970         spin_unlock_irq(&hugetlb_lock);
1971         for (i = 0; i < needed; i++) {
1972                 page = alloc_surplus_huge_page(h, htlb_alloc_mask(h),
1973                                 NUMA_NO_NODE, NULL);
1974                 if (!page) {
1975                         alloc_ok = false;
1976                         break;
1977                 }
1978                 list_add(&page->lru, &surplus_list);
1979                 cond_resched();
1980         }
1981         allocated += i;
1982
1983         /*
1984          * After retaking hugetlb_lock, we need to recalculate 'needed'
1985          * because either resv_huge_pages or free_huge_pages may have changed.
1986          */
1987         spin_lock_irq(&hugetlb_lock);
1988         needed = (h->resv_huge_pages + delta) -
1989                         (h->free_huge_pages + allocated);
1990         if (needed > 0) {
1991                 if (alloc_ok)
1992                         goto retry;
1993                 /*
1994                  * We were not able to allocate enough pages to
1995                  * satisfy the entire reservation so we free what
1996                  * we've allocated so far.
1997                  */
1998                 goto free;
1999         }
2000         /*
2001          * The surplus_list now contains _at_least_ the number of extra pages
2002          * needed to accommodate the reservation.  Add the appropriate number
2003          * of pages to the hugetlb pool and free the extras back to the buddy
2004          * allocator.  Commit the entire reservation here to prevent another
2005          * process from stealing the pages as they are added to the pool but
2006          * before they are reserved.
2007          */
2008         needed += allocated;
2009         h->resv_huge_pages += delta;
2010         ret = 0;
2011
2012         /* Free the needed pages to the hugetlb pool */
2013         list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
2014                 int zeroed;
2015
2016                 if ((--needed) < 0)
2017                         break;
2018                 /*
2019                  * This page is now managed by the hugetlb allocator and has
2020                  * no users -- drop the buddy allocator's reference.
2021                  */
2022                 zeroed = put_page_testzero(page);
2023                 VM_BUG_ON_PAGE(!zeroed, page);
2024                 enqueue_huge_page(h, page);
2025         }
2026 free:
2027         spin_unlock_irq(&hugetlb_lock);
2028
2029         /* Free unnecessary surplus pages to the buddy allocator */
2030         list_for_each_entry_safe(page, tmp, &surplus_list, lru)
2031                 put_page(page);
2032         spin_lock_irq(&hugetlb_lock);
2033
2034         return ret;
2035 }
2036
2037 /*
2038  * This routine has two main purposes:
2039  * 1) Decrement the reservation count (resv_huge_pages) by the value passed
2040  *    in unused_resv_pages.  This corresponds to the prior adjustments made
2041  *    to the associated reservation map.
2042  * 2) Free any unused surplus pages that may have been allocated to satisfy
2043  *    the reservation.  As many as unused_resv_pages may be freed.
2044  */
2045 static void return_unused_surplus_pages(struct hstate *h,
2046                                         unsigned long unused_resv_pages)
2047 {
2048         unsigned long nr_pages;
2049         struct page *page;
2050         LIST_HEAD(page_list);
2051
2052         lockdep_assert_held(&hugetlb_lock);
2053         /* Uncommit the reservation */
2054         h->resv_huge_pages -= unused_resv_pages;
2055
2056         /* Cannot return gigantic pages currently */
2057         if (hstate_is_gigantic(h))
2058                 goto out;
2059
2060         /*
2061          * Part (or even all) of the reservation could have been backed
2062          * by pre-allocated pages. Only free surplus pages.
2063          */
2064         nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
2065
2066         /*
2067          * We want to release as many surplus pages as possible, spread
2068          * evenly across all nodes with memory. Iterate across these nodes
2069          * until we can no longer free unreserved surplus pages. This occurs
2070          * when the nodes with surplus pages have no free pages.
2071          * remove_pool_huge_page() will balance the freed pages across the
2072          * on-line nodes with memory and will handle the hstate accounting.
2073          */
2074         while (nr_pages--) {
2075                 page = remove_pool_huge_page(h, &node_states[N_MEMORY], 1);
2076                 if (!page)
2077                         goto out;
2078
2079                 list_add(&page->lru, &page_list);
2080         }
2081
2082 out:
2083         spin_unlock_irq(&hugetlb_lock);
2084         update_and_free_pages_bulk(h, &page_list);
2085         spin_lock_irq(&hugetlb_lock);
2086 }
2087
2088
2089 /*
2090  * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
2091  * are used by the huge page allocation routines to manage reservations.
2092  *
2093  * vma_needs_reservation is called to determine if the huge page at addr
2094  * within the vma has an associated reservation.  If a reservation is
2095  * needed, the value 1 is returned.  The caller is then responsible for
2096  * managing the global reservation and subpool usage counts.  After
2097  * the huge page has been allocated, vma_commit_reservation is called
2098  * to add the page to the reservation map.  If the page allocation fails,
2099  * the reservation must be ended instead of committed.  vma_end_reservation
2100  * is called in such cases.
2101  *
2102  * In the normal case, vma_commit_reservation returns the same value
2103  * as the preceding vma_needs_reservation call.  The only time this
2104  * is not the case is if a reserve map was changed between calls.  It
2105  * is the responsibility of the caller to notice the difference and
2106  * take appropriate action.
2107  *
2108  * vma_add_reservation is used in error paths where a reservation must
2109  * be restored when a newly allocated huge page must be freed.  It is
2110  * to be called after calling vma_needs_reservation to determine if a
2111  * reservation exists.
2112  */
2113 enum vma_resv_mode {
2114         VMA_NEEDS_RESV,
2115         VMA_COMMIT_RESV,
2116         VMA_END_RESV,
2117         VMA_ADD_RESV,
2118 };
2119 static long __vma_reservation_common(struct hstate *h,
2120                                 struct vm_area_struct *vma, unsigned long addr,
2121                                 enum vma_resv_mode mode)
2122 {
2123         struct resv_map *resv;
2124         pgoff_t idx;
2125         long ret;
2126         long dummy_out_regions_needed;
2127
2128         resv = vma_resv_map(vma);
2129         if (!resv)
2130                 return 1;
2131
2132         idx = vma_hugecache_offset(h, vma, addr);
2133         switch (mode) {
2134         case VMA_NEEDS_RESV:
2135                 ret = region_chg(resv, idx, idx + 1, &dummy_out_regions_needed);
2136                 /* We assume that vma_reservation_* routines always operate on
2137                  * 1 page, and that adding to resv map a 1 page entry can only
2138                  * ever require 1 region.
2139                  */
2140                 VM_BUG_ON(dummy_out_regions_needed != 1);
2141                 break;
2142         case VMA_COMMIT_RESV:
2143                 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2144                 /* region_add calls of range 1 should never fail. */
2145                 VM_BUG_ON(ret < 0);
2146                 break;
2147         case VMA_END_RESV:
2148                 region_abort(resv, idx, idx + 1, 1);
2149                 ret = 0;
2150                 break;
2151         case VMA_ADD_RESV:
2152                 if (vma->vm_flags & VM_MAYSHARE) {
2153                         ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2154                         /* region_add calls of range 1 should never fail. */
2155                         VM_BUG_ON(ret < 0);
2156                 } else {
2157                         region_abort(resv, idx, idx + 1, 1);
2158                         ret = region_del(resv, idx, idx + 1);
2159                 }
2160                 break;
2161         default:
2162                 BUG();
2163         }
2164
2165         if (vma->vm_flags & VM_MAYSHARE)
2166                 return ret;
2167         /*
2168          * We know private mapping must have HPAGE_RESV_OWNER set.
2169          *
2170          * In most cases, reserves always exist for private mappings.
2171          * However, a file associated with mapping could have been
2172          * hole punched or truncated after reserves were consumed.
2173          * As subsequent fault on such a range will not use reserves.
2174          * Subtle - The reserve map for private mappings has the
2175          * opposite meaning than that of shared mappings.  If NO
2176          * entry is in the reserve map, it means a reservation exists.
2177          * If an entry exists in the reserve map, it means the
2178          * reservation has already been consumed.  As a result, the
2179          * return value of this routine is the opposite of the
2180          * value returned from reserve map manipulation routines above.
2181          */
2182         if (ret > 0)
2183                 return 0;
2184         if (ret == 0)
2185                 return 1;
2186         return ret;
2187 }
2188
2189 static long vma_needs_reservation(struct hstate *h,
2190                         struct vm_area_struct *vma, unsigned long addr)
2191 {
2192         return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
2193 }
2194
2195 static long vma_commit_reservation(struct hstate *h,
2196                         struct vm_area_struct *vma, unsigned long addr)
2197 {
2198         return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
2199 }
2200
2201 static void vma_end_reservation(struct hstate *h,
2202                         struct vm_area_struct *vma, unsigned long addr)
2203 {
2204         (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
2205 }
2206
2207 static long vma_add_reservation(struct hstate *h,
2208                         struct vm_area_struct *vma, unsigned long addr)
2209 {
2210         return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
2211 }
2212
2213 /*
2214  * This routine is called to restore a reservation on error paths.  In the
2215  * specific error paths, a huge page was allocated (via alloc_huge_page)
2216  * and is about to be freed.  If a reservation for the page existed,
2217  * alloc_huge_page would have consumed the reservation and set
2218  * HPageRestoreReserve in the newly allocated page.  When the page is freed
2219  * via free_huge_page, the global reservation count will be incremented if
2220  * HPageRestoreReserve is set.  However, free_huge_page can not adjust the
2221  * reserve map.  Adjust the reserve map here to be consistent with global
2222  * reserve count adjustments to be made by free_huge_page.
2223  */
2224 static void restore_reserve_on_error(struct hstate *h,
2225                         struct vm_area_struct *vma, unsigned long address,
2226                         struct page *page)
2227 {
2228         if (unlikely(HPageRestoreReserve(page))) {
2229                 long rc = vma_needs_reservation(h, vma, address);
2230
2231                 if (unlikely(rc < 0)) {
2232                         /*
2233                          * Rare out of memory condition in reserve map
2234                          * manipulation.  Clear HPageRestoreReserve so that
2235                          * global reserve count will not be incremented
2236                          * by free_huge_page.  This will make it appear
2237                          * as though the reservation for this page was
2238                          * consumed.  This may prevent the task from
2239                          * faulting in the page at a later time.  This
2240                          * is better than inconsistent global huge page
2241                          * accounting of reserve counts.
2242                          */
2243                         ClearHPageRestoreReserve(page);
2244                 } else if (rc) {
2245                         rc = vma_add_reservation(h, vma, address);
2246                         if (unlikely(rc < 0))
2247                                 /*
2248                                  * See above comment about rare out of
2249                                  * memory condition.
2250                                  */
2251                                 ClearHPageRestoreReserve(page);
2252                 } else
2253                         vma_end_reservation(h, vma, address);
2254         }
2255 }
2256
2257 struct page *alloc_huge_page(struct vm_area_struct *vma,
2258                                     unsigned long addr, int avoid_reserve)
2259 {
2260         struct hugepage_subpool *spool = subpool_vma(vma);
2261         struct hstate *h = hstate_vma(vma);
2262         struct page *page;
2263         long map_chg, map_commit;
2264         long gbl_chg;
2265         int ret, idx;
2266         struct hugetlb_cgroup *h_cg;
2267         bool deferred_reserve;
2268
2269         idx = hstate_index(h);
2270         /*
2271          * Examine the region/reserve map to determine if the process
2272          * has a reservation for the page to be allocated.  A return
2273          * code of zero indicates a reservation exists (no change).
2274          */
2275         map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
2276         if (map_chg < 0)
2277                 return ERR_PTR(-ENOMEM);
2278
2279         /*
2280          * Processes that did not create the mapping will have no
2281          * reserves as indicated by the region/reserve map. Check
2282          * that the allocation will not exceed the subpool limit.
2283          * Allocations for MAP_NORESERVE mappings also need to be
2284          * checked against any subpool limit.
2285          */
2286         if (map_chg || avoid_reserve) {
2287                 gbl_chg = hugepage_subpool_get_pages(spool, 1);
2288                 if (gbl_chg < 0) {
2289                         vma_end_reservation(h, vma, addr);
2290                         return ERR_PTR(-ENOSPC);
2291                 }
2292
2293                 /*
2294                  * Even though there was no reservation in the region/reserve
2295                  * map, there could be reservations associated with the
2296                  * subpool that can be used.  This would be indicated if the
2297                  * return value of hugepage_subpool_get_pages() is zero.
2298                  * However, if avoid_reserve is specified we still avoid even
2299                  * the subpool reservations.
2300                  */
2301                 if (avoid_reserve)
2302                         gbl_chg = 1;
2303         }
2304
2305         /* If this allocation is not consuming a reservation, charge it now.
2306          */
2307         deferred_reserve = map_chg || avoid_reserve;
2308         if (deferred_reserve) {
2309                 ret = hugetlb_cgroup_charge_cgroup_rsvd(
2310                         idx, pages_per_huge_page(h), &h_cg);
2311                 if (ret)
2312                         goto out_subpool_put;
2313         }
2314
2315         ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
2316         if (ret)
2317                 goto out_uncharge_cgroup_reservation;
2318
2319         spin_lock_irq(&hugetlb_lock);
2320         /*
2321          * glb_chg is passed to indicate whether or not a page must be taken
2322          * from the global free pool (global change).  gbl_chg == 0 indicates
2323          * a reservation exists for the allocation.
2324          */
2325         page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
2326         if (!page) {
2327                 spin_unlock_irq(&hugetlb_lock);
2328                 page = alloc_buddy_huge_page_with_mpol(h, vma, addr);
2329                 if (!page)
2330                         goto out_uncharge_cgroup;
2331                 if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
2332                         SetHPageRestoreReserve(page);
2333                         h->resv_huge_pages--;
2334                 }
2335                 spin_lock_irq(&hugetlb_lock);
2336                 list_add(&page->lru, &h->hugepage_activelist);
2337                 /* Fall through */
2338         }
2339         hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
2340         /* If allocation is not consuming a reservation, also store the
2341          * hugetlb_cgroup pointer on the page.
2342          */
2343         if (deferred_reserve) {
2344                 hugetlb_cgroup_commit_charge_rsvd(idx, pages_per_huge_page(h),
2345                                                   h_cg, page);
2346         }
2347
2348         spin_unlock_irq(&hugetlb_lock);
2349
2350         hugetlb_set_page_subpool(page, spool);
2351
2352         map_commit = vma_commit_reservation(h, vma, addr);
2353         if (unlikely(map_chg > map_commit)) {
2354                 /*
2355                  * The page was added to the reservation map between
2356                  * vma_needs_reservation and vma_commit_reservation.
2357                  * This indicates a race with hugetlb_reserve_pages.
2358                  * Adjust for the subpool count incremented above AND
2359                  * in hugetlb_reserve_pages for the same page.  Also,
2360                  * the reservation count added in hugetlb_reserve_pages
2361                  * no longer applies.
2362                  */
2363                 long rsv_adjust;
2364
2365                 rsv_adjust = hugepage_subpool_put_pages(spool, 1);
2366                 hugetlb_acct_memory(h, -rsv_adjust);
2367                 if (deferred_reserve)
2368                         hugetlb_cgroup_uncharge_page_rsvd(hstate_index(h),
2369                                         pages_per_huge_page(h), page);
2370         }
2371         return page;
2372
2373 out_uncharge_cgroup:
2374         hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
2375 out_uncharge_cgroup_reservation:
2376         if (deferred_reserve)
2377                 hugetlb_cgroup_uncharge_cgroup_rsvd(idx, pages_per_huge_page(h),
2378                                                     h_cg);
2379 out_subpool_put:
2380         if (map_chg || avoid_reserve)
2381                 hugepage_subpool_put_pages(spool, 1);
2382         vma_end_reservation(h, vma, addr);
2383         return ERR_PTR(-ENOSPC);
2384 }
2385
2386 int alloc_bootmem_huge_page(struct hstate *h)
2387         __attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
2388 int __alloc_bootmem_huge_page(struct hstate *h)
2389 {
2390         struct huge_bootmem_page *m;
2391         int nr_nodes, node;
2392
2393         for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
2394                 void *addr;
2395
2396                 addr = memblock_alloc_try_nid_raw(
2397                                 huge_page_size(h), huge_page_size(h),
2398                                 0, MEMBLOCK_ALLOC_ACCESSIBLE, node);
2399                 if (addr) {
2400                         /*
2401                          * Use the beginning of the huge page to store the
2402                          * huge_bootmem_page struct (until gather_bootmem
2403                          * puts them into the mem_map).
2404                          */
2405                         m = addr;
2406                         goto found;
2407                 }
2408         }
2409         return 0;
2410
2411 found:
2412         BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h)));
2413         /* Put them into a private list first because mem_map is not up yet */
2414         INIT_LIST_HEAD(&m->list);
2415         list_add(&m->list, &huge_boot_pages);
2416         m->hstate = h;
2417         return 1;
2418 }
2419
2420 static void __init prep_compound_huge_page(struct page *page,
2421                 unsigned int order)
2422 {
2423         if (unlikely(order > (MAX_ORDER - 1)))
2424                 prep_compound_gigantic_page(page, order);
2425         else
2426                 prep_compound_page(page, order);
2427 }
2428
2429 /* Put bootmem huge pages into the standard lists after mem_map is up */
2430 static void __init gather_bootmem_prealloc(void)
2431 {
2432         struct huge_bootmem_page *m;
2433
2434         list_for_each_entry(m, &huge_boot_pages, list) {
2435                 struct page *page = virt_to_page(m);
2436                 struct hstate *h = m->hstate;
2437
2438                 WARN_ON(page_count(page) != 1);
2439                 prep_compound_huge_page(page, huge_page_order(h));
2440                 WARN_ON(PageReserved(page));
2441                 prep_new_huge_page(h, page, page_to_nid(page));
2442                 put_page(page); /* free it into the hugepage allocator */
2443
2444                 /*
2445                  * If we had gigantic hugepages allocated at boot time, we need
2446                  * to restore the 'stolen' pages to totalram_pages in order to
2447                  * fix confusing memory reports from free(1) and another
2448                  * side-effects, like CommitLimit going negative.
2449                  */
2450                 if (hstate_is_gigantic(h))
2451                         adjust_managed_page_count(page, pages_per_huge_page(h));
2452                 cond_resched();
2453         }
2454 }
2455
2456 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
2457 {
2458         unsigned long i;
2459         nodemask_t *node_alloc_noretry;
2460
2461         if (!hstate_is_gigantic(h)) {
2462                 /*
2463                  * Bit mask controlling how hard we retry per-node allocations.
2464                  * Ignore errors as lower level routines can deal with
2465                  * node_alloc_noretry == NULL.  If this kmalloc fails at boot
2466                  * time, we are likely in bigger trouble.
2467                  */
2468                 node_alloc_noretry = kmalloc(sizeof(*node_alloc_noretry),
2469                                                 GFP_KERNEL);
2470         } else {
2471                 /* allocations done at boot time */
2472                 node_alloc_noretry = NULL;
2473         }
2474
2475         /* bit mask controlling how hard we retry per-node allocations */
2476         if (node_alloc_noretry)
2477                 nodes_clear(*node_alloc_noretry);
2478
2479         for (i = 0; i < h->max_huge_pages; ++i) {
2480                 if (hstate_is_gigantic(h)) {
2481                         if (hugetlb_cma_size) {
2482                                 pr_warn_once("HugeTLB: hugetlb_cma is enabled, skip boot time allocation\n");
2483                                 goto free;
2484                         }
2485                         if (!alloc_bootmem_huge_page(h))
2486                                 break;
2487                 } else if (!alloc_pool_huge_page(h,
2488                                          &node_states[N_MEMORY],
2489                                          node_alloc_noretry))
2490                         break;
2491                 cond_resched();
2492         }
2493         if (i < h->max_huge_pages) {
2494                 char buf[32];
2495
2496                 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
2497                 pr_warn("HugeTLB: allocating %lu of page size %s failed.  Only allocated %lu hugepages.\n",
2498                         h->max_huge_pages, buf, i);
2499                 h->max_huge_pages = i;
2500         }
2501 free:
2502         kfree(node_alloc_noretry);
2503 }
2504
2505 static void __init hugetlb_init_hstates(void)
2506 {
2507         struct hstate *h;
2508
2509         for_each_hstate(h) {
2510                 if (minimum_order > huge_page_order(h))
2511                         minimum_order = huge_page_order(h);
2512
2513                 /* oversize hugepages were init'ed in early boot */
2514                 if (!hstate_is_gigantic(h))
2515                         hugetlb_hstate_alloc_pages(h);
2516         }
2517         VM_BUG_ON(minimum_order == UINT_MAX);
2518 }
2519
2520 static void __init report_hugepages(void)
2521 {
2522         struct hstate *h;
2523
2524         for_each_hstate(h) {
2525                 char buf[32];
2526
2527                 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
2528                 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
2529                         buf, h->free_huge_pages);
2530         }
2531 }
2532
2533 #ifdef CONFIG_HIGHMEM
2534 static void try_to_free_low(struct hstate *h, unsigned long count,
2535                                                 nodemask_t *nodes_allowed)
2536 {
2537         int i;
2538         LIST_HEAD(page_list);
2539
2540         lockdep_assert_held(&hugetlb_lock);
2541         if (hstate_is_gigantic(h))
2542                 return;
2543
2544         /*
2545          * Collect pages to be freed on a list, and free after dropping lock
2546          */
2547         for_each_node_mask(i, *nodes_allowed) {
2548                 struct page *page, *next;
2549                 struct list_head *freel = &h->hugepage_freelists[i];
2550                 list_for_each_entry_safe(page, next, freel, lru) {
2551                         if (count >= h->nr_huge_pages)
2552                                 goto out;
2553                         if (PageHighMem(page))
2554                                 continue;
2555                         remove_hugetlb_page(h, page, false);
2556                         list_add(&page->lru, &page_list);
2557                 }
2558         }
2559
2560 out:
2561         spin_unlock_irq(&hugetlb_lock);
2562         update_and_free_pages_bulk(h, &page_list);
2563         spin_lock_irq(&hugetlb_lock);
2564 }
2565 #else
2566 static inline void try_to_free_low(struct hstate *h, unsigned long count,
2567                                                 nodemask_t *nodes_allowed)
2568 {
2569 }
2570 #endif
2571
2572 /*
2573  * Increment or decrement surplus_huge_pages.  Keep node-specific counters
2574  * balanced by operating on them in a round-robin fashion.
2575  * Returns 1 if an adjustment was made.
2576  */
2577 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
2578                                 int delta)
2579 {
2580         int nr_nodes, node;
2581
2582         lockdep_assert_held(&hugetlb_lock);
2583         VM_BUG_ON(delta != -1 && delta != 1);
2584
2585         if (delta < 0) {
2586                 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
2587                         if (h->surplus_huge_pages_node[node])
2588                                 goto found;
2589                 }
2590         } else {
2591                 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2592                         if (h->surplus_huge_pages_node[node] <
2593                                         h->nr_huge_pages_node[node])
2594                                 goto found;
2595                 }
2596         }
2597         return 0;
2598
2599 found:
2600         h->surplus_huge_pages += delta;
2601         h->surplus_huge_pages_node[node] += delta;
2602         return 1;
2603 }
2604
2605 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
2606 static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid,
2607                               nodemask_t *nodes_allowed)
2608 {
2609         unsigned long min_count, ret;
2610         struct page *page;
2611         LIST_HEAD(page_list);
2612         NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL);
2613
2614         /*
2615          * Bit mask controlling how hard we retry per-node allocations.
2616          * If we can not allocate the bit mask, do not attempt to allocate
2617          * the requested huge pages.
2618          */
2619         if (node_alloc_noretry)
2620                 nodes_clear(*node_alloc_noretry);
2621         else
2622                 return -ENOMEM;
2623
2624         /*
2625          * resize_lock mutex prevents concurrent adjustments to number of
2626          * pages in hstate via the proc/sysfs interfaces.
2627          */
2628         mutex_lock(&h->resize_lock);
2629         spin_lock_irq(&hugetlb_lock);
2630
2631         /*
2632          * Check for a node specific request.
2633          * Changing node specific huge page count may require a corresponding
2634          * change to the global count.  In any case, the passed node mask
2635          * (nodes_allowed) will restrict alloc/free to the specified node.
2636          */
2637         if (nid != NUMA_NO_NODE) {
2638                 unsigned long old_count = count;
2639
2640                 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
2641                 /*
2642                  * User may have specified a large count value which caused the
2643                  * above calculation to overflow.  In this case, they wanted
2644                  * to allocate as many huge pages as possible.  Set count to
2645                  * largest possible value to align with their intention.
2646                  */
2647                 if (count < old_count)
2648                         count = ULONG_MAX;
2649         }
2650
2651         /*
2652          * Gigantic pages runtime allocation depend on the capability for large
2653          * page range allocation.
2654          * If the system does not provide this feature, return an error when
2655          * the user tries to allocate gigantic pages but let the user free the
2656          * boottime allocated gigantic pages.
2657          */
2658         if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) {
2659                 if (count > persistent_huge_pages(h)) {
2660                         spin_unlock_irq(&hugetlb_lock);
2661                         mutex_unlock(&h->resize_lock);
2662                         NODEMASK_FREE(node_alloc_noretry);
2663                         return -EINVAL;
2664                 }
2665                 /* Fall through to decrease pool */
2666         }
2667
2668         /*
2669          * Increase the pool size
2670          * First take pages out of surplus state.  Then make up the
2671          * remaining difference by allocating fresh huge pages.
2672          *
2673          * We might race with alloc_surplus_huge_page() here and be unable
2674          * to convert a surplus huge page to a normal huge page. That is
2675          * not critical, though, it just means the overall size of the
2676          * pool might be one hugepage larger than it needs to be, but
2677          * within all the constraints specified by the sysctls.
2678          */
2679         while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
2680                 if (!adjust_pool_surplus(h, nodes_allowed, -1))
2681                         break;
2682         }
2683
2684         while (count > persistent_huge_pages(h)) {
2685                 /*
2686                  * If this allocation races such that we no longer need the
2687                  * page, free_huge_page will handle it by freeing the page
2688                  * and reducing the surplus.
2689                  */
2690                 spin_unlock_irq(&hugetlb_lock);
2691
2692                 /* yield cpu to avoid soft lockup */
2693                 cond_resched();
2694
2695                 ret = alloc_pool_huge_page(h, nodes_allowed,
2696                                                 node_alloc_noretry);
2697                 spin_lock_irq(&hugetlb_lock);
2698                 if (!ret)
2699                         goto out;
2700
2701                 /* Bail for signals. Probably ctrl-c from user */
2702                 if (signal_pending(current))
2703                         goto out;
2704         }
2705
2706         /*
2707          * Decrease the pool size
2708          * First return free pages to the buddy allocator (being careful
2709          * to keep enough around to satisfy reservations).  Then place
2710          * pages into surplus state as needed so the pool will shrink
2711          * to the desired size as pages become free.
2712          *
2713          * By placing pages into the surplus state independent of the
2714          * overcommit value, we are allowing the surplus pool size to
2715          * exceed overcommit. There are few sane options here. Since
2716          * alloc_surplus_huge_page() is checking the global counter,
2717          * though, we'll note that we're not allowed to exceed surplus
2718          * and won't grow the pool anywhere else. Not until one of the
2719          * sysctls are changed, or the surplus pages go out of use.
2720          */
2721         min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
2722         min_count = max(count, min_count);
2723         try_to_free_low(h, min_count, nodes_allowed);
2724
2725         /*
2726          * Collect pages to be removed on list without dropping lock
2727          */
2728         while (min_count < persistent_huge_pages(h)) {
2729                 page = remove_pool_huge_page(h, nodes_allowed, 0);
2730                 if (!page)
2731                         break;
2732
2733                 list_add(&page->lru, &page_list);
2734         }
2735         /* free the pages after dropping lock */
2736         spin_unlock_irq(&hugetlb_lock);
2737         update_and_free_pages_bulk(h, &page_list);
2738         spin_lock_irq(&hugetlb_lock);
2739
2740         while (count < persistent_huge_pages(h)) {
2741                 if (!adjust_pool_surplus(h, nodes_allowed, 1))
2742                         break;
2743         }
2744 out:
2745         h->max_huge_pages = persistent_huge_pages(h);
2746         spin_unlock_irq(&hugetlb_lock);
2747         mutex_unlock(&h->resize_lock);
2748
2749         NODEMASK_FREE(node_alloc_noretry);
2750
2751         return 0;
2752 }
2753
2754 #define HSTATE_ATTR_RO(_name) \
2755         static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2756
2757 #define HSTATE_ATTR(_name) \
2758         static struct kobj_attribute _name##_attr = \
2759                 __ATTR(_name, 0644, _name##_show, _name##_store)
2760
2761 static struct kobject *hugepages_kobj;
2762 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2763
2764 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
2765
2766 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
2767 {
2768         int i;
2769
2770         for (i = 0; i < HUGE_MAX_HSTATE; i++)
2771                 if (hstate_kobjs[i] == kobj) {
2772                         if (nidp)
2773                                 *nidp = NUMA_NO_NODE;
2774                         return &hstates[i];
2775                 }
2776
2777         return kobj_to_node_hstate(kobj, nidp);
2778 }
2779
2780 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
2781                                         struct kobj_attribute *attr, char *buf)
2782 {
2783         struct hstate *h;
2784         unsigned long nr_huge_pages;
2785         int nid;
2786
2787         h = kobj_to_hstate(kobj, &nid);
2788         if (nid == NUMA_NO_NODE)
2789                 nr_huge_pages = h->nr_huge_pages;
2790         else
2791                 nr_huge_pages = h->nr_huge_pages_node[nid];
2792
2793         return sysfs_emit(buf, "%lu\n", nr_huge_pages);
2794 }
2795
2796 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
2797                                            struct hstate *h, int nid,
2798                                            unsigned long count, size_t len)
2799 {
2800         int err;
2801         nodemask_t nodes_allowed, *n_mask;
2802
2803         if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
2804                 return -EINVAL;
2805
2806         if (nid == NUMA_NO_NODE) {
2807                 /*
2808                  * global hstate attribute
2809                  */
2810                 if (!(obey_mempolicy &&
2811                                 init_nodemask_of_mempolicy(&nodes_allowed)))
2812                         n_mask = &node_states[N_MEMORY];
2813                 else
2814                         n_mask = &nodes_allowed;
2815         } else {
2816                 /*
2817                  * Node specific request.  count adjustment happens in
2818                  * set_max_huge_pages() after acquiring hugetlb_lock.
2819                  */
2820                 init_nodemask_of_node(&nodes_allowed, nid);
2821                 n_mask = &nodes_allowed;
2822         }
2823
2824         err = set_max_huge_pages(h, count, nid, n_mask);
2825
2826         return err ? err : len;
2827 }
2828
2829 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
2830                                          struct kobject *kobj, const char *buf,
2831                                          size_t len)
2832 {
2833         struct hstate *h;
2834         unsigned long count;
2835         int nid;
2836         int err;
2837
2838         err = kstrtoul(buf, 10, &count);
2839         if (err)
2840                 return err;
2841
2842         h = kobj_to_hstate(kobj, &nid);
2843         return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
2844 }
2845
2846 static ssize_t nr_hugepages_show(struct kobject *kobj,
2847                                        struct kobj_attribute *attr, char *buf)
2848 {
2849         return nr_hugepages_show_common(kobj, attr, buf);
2850 }
2851
2852 static ssize_t nr_hugepages_store(struct kobject *kobj,
2853                struct kobj_attribute *attr, const char *buf, size_t len)
2854 {
2855         return nr_hugepages_store_common(false, kobj, buf, len);
2856 }
2857 HSTATE_ATTR(nr_hugepages);
2858
2859 #ifdef CONFIG_NUMA
2860
2861 /*
2862  * hstate attribute for optionally mempolicy-based constraint on persistent
2863  * huge page alloc/free.
2864  */
2865 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
2866                                            struct kobj_attribute *attr,
2867                                            char *buf)
2868 {
2869         return nr_hugepages_show_common(kobj, attr, buf);
2870 }
2871
2872 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
2873                struct kobj_attribute *attr, const char *buf, size_t len)
2874 {
2875         return nr_hugepages_store_common(true, kobj, buf, len);
2876 }
2877 HSTATE_ATTR(nr_hugepages_mempolicy);
2878 #endif
2879
2880
2881 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
2882                                         struct kobj_attribute *attr, char *buf)
2883 {
2884         struct hstate *h = kobj_to_hstate(kobj, NULL);
2885         return sysfs_emit(buf, "%lu\n", h->nr_overcommit_huge_pages);
2886 }
2887
2888 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
2889                 struct kobj_attribute *attr, const char *buf, size_t count)
2890 {
2891         int err;
2892         unsigned long input;
2893         struct hstate *h = kobj_to_hstate(kobj, NULL);
2894
2895         if (hstate_is_gigantic(h))
2896                 return -EINVAL;
2897
2898         err = kstrtoul(buf, 10, &input);
2899         if (err)
2900                 return err;
2901
2902         spin_lock_irq(&hugetlb_lock);
2903         h->nr_overcommit_huge_pages = input;
2904         spin_unlock_irq(&hugetlb_lock);
2905
2906         return count;
2907 }
2908 HSTATE_ATTR(nr_overcommit_hugepages);
2909
2910 static ssize_t free_hugepages_show(struct kobject *kobj,
2911                                         struct kobj_attribute *attr, char *buf)
2912 {
2913         struct hstate *h;
2914         unsigned long free_huge_pages;
2915         int nid;
2916
2917         h = kobj_to_hstate(kobj, &nid);
2918         if (nid == NUMA_NO_NODE)
2919                 free_huge_pages = h->free_huge_pages;
2920         else
2921                 free_huge_pages = h->free_huge_pages_node[nid];
2922
2923         return sysfs_emit(buf, "%lu\n", free_huge_pages);
2924 }
2925 HSTATE_ATTR_RO(free_hugepages);
2926
2927 static ssize_t resv_hugepages_show(struct kobject *kobj,
2928                                         struct kobj_attribute *attr, char *buf)
2929 {
2930         struct hstate *h = kobj_to_hstate(kobj, NULL);
2931         return sysfs_emit(buf, "%lu\n", h->resv_huge_pages);
2932 }
2933 HSTATE_ATTR_RO(resv_hugepages);
2934
2935 static ssize_t surplus_hugepages_show(struct kobject *kobj,
2936                                         struct kobj_attribute *attr, char *buf)
2937 {
2938         struct hstate *h;
2939         unsigned long surplus_huge_pages;
2940         int nid;
2941
2942         h = kobj_to_hstate(kobj, &nid);
2943         if (nid == NUMA_NO_NODE)
2944                 surplus_huge_pages = h->surplus_huge_pages;
2945         else
2946                 surplus_huge_pages = h->surplus_huge_pages_node[nid];
2947
2948         return sysfs_emit(buf, "%lu\n", surplus_huge_pages);
2949 }
2950 HSTATE_ATTR_RO(surplus_hugepages);
2951
2952 static struct attribute *hstate_attrs[] = {
2953         &nr_hugepages_attr.attr,
2954         &nr_overcommit_hugepages_attr.attr,
2955         &free_hugepages_attr.attr,
2956         &resv_hugepages_attr.attr,
2957         &surplus_hugepages_attr.attr,
2958 #ifdef CONFIG_NUMA
2959         &nr_hugepages_mempolicy_attr.attr,
2960 #endif
2961         NULL,
2962 };
2963
2964 static const struct attribute_group hstate_attr_group = {
2965         .attrs = hstate_attrs,
2966 };
2967
2968 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
2969                                     struct kobject **hstate_kobjs,
2970                                     const struct attribute_group *hstate_attr_group)
2971 {
2972         int retval;
2973         int hi = hstate_index(h);
2974
2975         hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
2976         if (!hstate_kobjs[hi])
2977                 return -ENOMEM;
2978
2979         retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
2980         if (retval) {
2981                 kobject_put(hstate_kobjs[hi]);
2982                 hstate_kobjs[hi] = NULL;
2983         }
2984
2985         return retval;
2986 }
2987
2988 static void __init hugetlb_sysfs_init(void)
2989 {
2990         struct hstate *h;
2991         int err;
2992
2993         hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
2994         if (!hugepages_kobj)
2995                 return;
2996
2997         for_each_hstate(h) {
2998                 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
2999                                          hstate_kobjs, &hstate_attr_group);
3000                 if (err)
3001                         pr_err("HugeTLB: Unable to add hstate %s", h->name);
3002         }
3003 }
3004
3005 #ifdef CONFIG_NUMA
3006
3007 /*
3008  * node_hstate/s - associate per node hstate attributes, via their kobjects,
3009  * with node devices in node_devices[] using a parallel array.  The array
3010  * index of a node device or _hstate == node id.
3011  * This is here to avoid any static dependency of the node device driver, in
3012  * the base kernel, on the hugetlb module.
3013  */
3014 struct node_hstate {
3015         struct kobject          *hugepages_kobj;
3016         struct kobject          *hstate_kobjs[HUGE_MAX_HSTATE];
3017 };
3018 static struct node_hstate node_hstates[MAX_NUMNODES];
3019
3020 /*
3021  * A subset of global hstate attributes for node devices
3022  */
3023 static struct attribute *per_node_hstate_attrs[] = {
3024         &nr_hugepages_attr.attr,
3025         &free_hugepages_attr.attr,
3026         &surplus_hugepages_attr.attr,
3027         NULL,
3028 };
3029
3030 static const struct attribute_group per_node_hstate_attr_group = {
3031         .attrs = per_node_hstate_attrs,
3032 };
3033
3034 /*
3035  * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
3036  * Returns node id via non-NULL nidp.
3037  */
3038 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
3039 {
3040         int nid;
3041
3042         for (nid = 0; nid < nr_node_ids; nid++) {
3043                 struct node_hstate *nhs = &node_hstates[nid];
3044                 int i;
3045                 for (i = 0; i < HUGE_MAX_HSTATE; i++)
3046                         if (nhs->hstate_kobjs[i] == kobj) {
3047                                 if (nidp)
3048                                         *nidp = nid;
3049                                 return &hstates[i];
3050                         }
3051         }
3052
3053         BUG();
3054         return NULL;
3055 }
3056
3057 /*
3058  * Unregister hstate attributes from a single node device.
3059  * No-op if no hstate attributes attached.
3060  */
3061 static void hugetlb_unregister_node(struct node *node)
3062 {
3063         struct hstate *h;
3064         struct node_hstate *nhs = &node_hstates[node->dev.id];
3065
3066         if (!nhs->hugepages_kobj)
3067                 return;         /* no hstate attributes */
3068
3069         for_each_hstate(h) {
3070                 int idx = hstate_index(h);
3071                 if (nhs->hstate_kobjs[idx]) {
3072                         kobject_put(nhs->hstate_kobjs[idx]);
3073                         nhs->hstate_kobjs[idx] = NULL;
3074                 }
3075         }
3076
3077         kobject_put(nhs->hugepages_kobj);
3078         nhs->hugepages_kobj = NULL;
3079 }
3080
3081
3082 /*
3083  * Register hstate attributes for a single node device.
3084  * No-op if attributes already registered.
3085  */
3086 static void hugetlb_register_node(struct node *node)
3087 {
3088         struct hstate *h;
3089         struct node_hstate *nhs = &node_hstates[node->dev.id];
3090         int err;
3091
3092         if (nhs->hugepages_kobj)
3093                 return;         /* already allocated */
3094
3095         nhs->hugepages_kobj = kobject_create_and_add("hugepages",
3096                                                         &node->dev.kobj);
3097         if (!nhs->hugepages_kobj)
3098                 return;
3099
3100         for_each_hstate(h) {
3101                 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
3102                                                 nhs->hstate_kobjs,
3103                                                 &per_node_hstate_attr_group);
3104                 if (err) {
3105                         pr_err("HugeTLB: Unable to add hstate %s for node %d\n",
3106                                 h->name, node->dev.id);
3107                         hugetlb_unregister_node(node);
3108                         break;
3109                 }
3110         }
3111 }
3112
3113 /*
3114  * hugetlb init time:  register hstate attributes for all registered node
3115  * devices of nodes that have memory.  All on-line nodes should have
3116  * registered their associated device by this time.
3117  */
3118 static void __init hugetlb_register_all_nodes(void)
3119 {
3120         int nid;
3121
3122         for_each_node_state(nid, N_MEMORY) {
3123                 struct node *node = node_devices[nid];
3124                 if (node->dev.id == nid)
3125                         hugetlb_register_node(node);
3126         }
3127
3128         /*
3129          * Let the node device driver know we're here so it can
3130          * [un]register hstate attributes on node hotplug.
3131          */
3132         register_hugetlbfs_with_node(hugetlb_register_node,
3133                                      hugetlb_unregister_node);
3134 }
3135 #else   /* !CONFIG_NUMA */
3136
3137 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
3138 {
3139         BUG();
3140         if (nidp)
3141                 *nidp = -1;
3142         return NULL;
3143 }
3144
3145 static void hugetlb_register_all_nodes(void) { }
3146
3147 #endif
3148
3149 static int __init hugetlb_init(void)
3150 {
3151         int i;
3152
3153         BUILD_BUG_ON(sizeof_field(struct page, private) * BITS_PER_BYTE <
3154                         __NR_HPAGEFLAGS);
3155
3156         if (!hugepages_supported()) {
3157                 if (hugetlb_max_hstate || default_hstate_max_huge_pages)
3158                         pr_warn("HugeTLB: huge pages not supported, ignoring associated command-line parameters\n");
3159                 return 0;
3160         }
3161
3162         /*
3163          * Make sure HPAGE_SIZE (HUGETLB_PAGE_ORDER) hstate exists.  Some
3164          * architectures depend on setup being done here.
3165          */
3166         hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
3167         if (!parsed_default_hugepagesz) {
3168                 /*
3169                  * If we did not parse a default huge page size, set
3170                  * default_hstate_idx to HPAGE_SIZE hstate. And, if the
3171                  * number of huge pages for this default size was implicitly
3172                  * specified, set that here as well.
3173                  * Note that the implicit setting will overwrite an explicit
3174                  * setting.  A warning will be printed in this case.
3175                  */
3176                 default_hstate_idx = hstate_index(size_to_hstate(HPAGE_SIZE));
3177                 if (default_hstate_max_huge_pages) {
3178                         if (default_hstate.max_huge_pages) {
3179                                 char buf[32];
3180
3181                                 string_get_size(huge_page_size(&default_hstate),
3182                                         1, STRING_UNITS_2, buf, 32);
3183                                 pr_warn("HugeTLB: Ignoring hugepages=%lu associated with %s page size\n",
3184                                         default_hstate.max_huge_pages, buf);
3185                                 pr_warn("HugeTLB: Using hugepages=%lu for number of default huge pages\n",
3186                                         default_hstate_max_huge_pages);
3187                         }
3188                         default_hstate.max_huge_pages =
3189                                 default_hstate_max_huge_pages;
3190                 }
3191         }
3192
3193         hugetlb_cma_check();
3194         hugetlb_init_hstates();
3195         gather_bootmem_prealloc();
3196         report_hugepages();
3197
3198         hugetlb_sysfs_init();
3199         hugetlb_register_all_nodes();
3200         hugetlb_cgroup_file_init();
3201
3202 #ifdef CONFIG_SMP
3203         num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
3204 #else
3205         num_fault_mutexes = 1;
3206 #endif
3207         hugetlb_fault_mutex_table =
3208                 kmalloc_array(num_fault_mutexes, sizeof(struct mutex),
3209                               GFP_KERNEL);
3210         BUG_ON(!hugetlb_fault_mutex_table);
3211
3212         for (i = 0; i < num_fault_mutexes; i++)
3213                 mutex_init(&hugetlb_fault_mutex_table[i]);
3214         return 0;
3215 }
3216 subsys_initcall(hugetlb_init);
3217
3218 /* Overwritten by architectures with more huge page sizes */
3219 bool __init __attribute((weak)) arch_hugetlb_valid_size(unsigned long size)
3220 {
3221         return size == HPAGE_SIZE;
3222 }
3223
3224 void __init hugetlb_add_hstate(unsigned int order)
3225 {
3226         struct hstate *h;
3227         unsigned long i;
3228
3229         if (size_to_hstate(PAGE_SIZE << order)) {
3230                 return;
3231         }
3232         BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
3233         BUG_ON(order == 0);
3234         h = &hstates[hugetlb_max_hstate++];
3235         mutex_init(&h->resize_lock);
3236         h->order = order;
3237         h->mask = ~(huge_page_size(h) - 1);
3238         for (i = 0; i < MAX_NUMNODES; ++i)
3239                 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
3240         INIT_LIST_HEAD(&h->hugepage_activelist);
3241         h->next_nid_to_alloc = first_memory_node;
3242         h->next_nid_to_free = first_memory_node;
3243         snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
3244                                         huge_page_size(h)/1024);
3245
3246         parsed_hstate = h;
3247 }
3248
3249 /*
3250  * hugepages command line processing
3251  * hugepages normally follows a valid hugepagsz or default_hugepagsz
3252  * specification.  If not, ignore the hugepages value.  hugepages can also
3253  * be the first huge page command line  option in which case it implicitly
3254  * specifies the number of huge pages for the default size.
3255  */
3256 static int __init hugepages_setup(char *s)
3257 {
3258         unsigned long *mhp;
3259         static unsigned long *last_mhp;
3260
3261         if (!parsed_valid_hugepagesz) {
3262                 pr_warn("HugeTLB: hugepages=%s does not follow a valid hugepagesz, ignoring\n", s);
3263                 parsed_valid_hugepagesz = true;
3264                 return 0;
3265         }
3266
3267         /*
3268          * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter
3269          * yet, so this hugepages= parameter goes to the "default hstate".
3270          * Otherwise, it goes with the previously parsed hugepagesz or
3271          * default_hugepagesz.
3272          */
3273         else if (!hugetlb_max_hstate)
3274                 mhp = &default_hstate_max_huge_pages;
3275         else
3276                 mhp = &parsed_hstate->max_huge_pages;
3277
3278         if (mhp == last_mhp) {
3279                 pr_warn("HugeTLB: hugepages= specified twice without interleaving hugepagesz=, ignoring hugepages=%s\n", s);
3280                 return 0;
3281         }
3282
3283         if (sscanf(s, "%lu", mhp) <= 0)
3284                 *mhp = 0;
3285
3286         /*
3287          * Global state is always initialized later in hugetlb_init.
3288          * But we need to allocate gigantic hstates here early to still
3289          * use the bootmem allocator.
3290          */
3291         if (hugetlb_max_hstate && hstate_is_gigantic(parsed_hstate))
3292                 hugetlb_hstate_alloc_pages(parsed_hstate);
3293
3294         last_mhp = mhp;
3295
3296         return 1;
3297 }
3298 __setup("hugepages=", hugepages_setup);
3299
3300 /*
3301  * hugepagesz command line processing
3302  * A specific huge page size can only be specified once with hugepagesz.
3303  * hugepagesz is followed by hugepages on the command line.  The global
3304  * variable 'parsed_valid_hugepagesz' is used to determine if prior
3305  * hugepagesz argument was valid.
3306  */
3307 static int __init hugepagesz_setup(char *s)
3308 {
3309         unsigned long size;
3310         struct hstate *h;
3311
3312         parsed_valid_hugepagesz = false;
3313         size = (unsigned long)memparse(s, NULL);
3314
3315         if (!arch_hugetlb_valid_size(size)) {
3316                 pr_err("HugeTLB: unsupported hugepagesz=%s\n", s);
3317                 return 0;
3318         }
3319
3320         h = size_to_hstate(size);
3321         if (h) {
3322                 /*
3323                  * hstate for this size already exists.  This is normally
3324                  * an error, but is allowed if the existing hstate is the
3325                  * default hstate.  More specifically, it is only allowed if
3326                  * the number of huge pages for the default hstate was not
3327                  * previously specified.
3328                  */
3329                 if (!parsed_default_hugepagesz ||  h != &default_hstate ||
3330                     default_hstate.max_huge_pages) {
3331                         pr_warn("HugeTLB: hugepagesz=%s specified twice, ignoring\n", s);
3332                         return 0;
3333                 }
3334
3335                 /*
3336                  * No need to call hugetlb_add_hstate() as hstate already
3337                  * exists.  But, do set parsed_hstate so that a following
3338                  * hugepages= parameter will be applied to this hstate.
3339                  */
3340                 parsed_hstate = h;
3341                 parsed_valid_hugepagesz = true;
3342                 return 1;
3343         }
3344
3345         hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
3346         parsed_valid_hugepagesz = true;
3347         return 1;
3348 }
3349 __setup("hugepagesz=", hugepagesz_setup);
3350
3351 /*
3352  * default_hugepagesz command line input
3353  * Only one instance of default_hugepagesz allowed on command line.
3354  */
3355 static int __init default_hugepagesz_setup(char *s)
3356 {
3357         unsigned long size;
3358
3359         parsed_valid_hugepagesz = false;
3360         if (parsed_default_hugepagesz) {
3361                 pr_err("HugeTLB: default_hugepagesz previously specified, ignoring %s\n", s);
3362                 return 0;
3363         }
3364
3365         size = (unsigned long)memparse(s, NULL);
3366
3367         if (!arch_hugetlb_valid_size(size)) {
3368                 pr_err("HugeTLB: unsupported default_hugepagesz=%s\n", s);
3369                 return 0;
3370         }
3371
3372         hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
3373         parsed_valid_hugepagesz = true;
3374         parsed_default_hugepagesz = true;
3375         default_hstate_idx = hstate_index(size_to_hstate(size));
3376
3377         /*
3378          * The number of default huge pages (for this size) could have been
3379          * specified as the first hugetlb parameter: hugepages=X.  If so,
3380          * then default_hstate_max_huge_pages is set.  If the default huge
3381          * page size is gigantic (>= MAX_ORDER), then the pages must be
3382          * allocated here from bootmem allocator.
3383          */
3384         if (default_hstate_max_huge_pages) {
3385                 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
3386                 if (hstate_is_gigantic(&default_hstate))
3387                         hugetlb_hstate_alloc_pages(&default_hstate);
3388                 default_hstate_max_huge_pages = 0;
3389         }
3390
3391         return 1;
3392 }
3393 __setup("default_hugepagesz=", default_hugepagesz_setup);
3394
3395 static unsigned int allowed_mems_nr(struct hstate *h)
3396 {
3397         int node;
3398         unsigned int nr = 0;
3399         nodemask_t *mpol_allowed;
3400         unsigned int *array = h->free_huge_pages_node;
3401         gfp_t gfp_mask = htlb_alloc_mask(h);
3402
3403         mpol_allowed = policy_nodemask_current(gfp_mask);
3404
3405         for_each_node_mask(node, cpuset_current_mems_allowed) {
3406                 if (!mpol_allowed || node_isset(node, *mpol_allowed))
3407                         nr += array[node];
3408         }
3409
3410         return nr;
3411 }
3412
3413 #ifdef CONFIG_SYSCTL
3414 static int proc_hugetlb_doulongvec_minmax(struct ctl_table *table, int write,
3415                                           void *buffer, size_t *length,
3416                                           loff_t *ppos, unsigned long *out)
3417 {
3418         struct ctl_table dup_table;
3419
3420         /*
3421          * In order to avoid races with __do_proc_doulongvec_minmax(), we
3422          * can duplicate the @table and alter the duplicate of it.
3423          */
3424         dup_table = *table;
3425         dup_table.data = out;
3426
3427         return proc_doulongvec_minmax(&dup_table, write, buffer, length, ppos);
3428 }
3429
3430 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
3431                          struct ctl_table *table, int write,
3432                          void *buffer, size_t *length, loff_t *ppos)
3433 {
3434         struct hstate *h = &default_hstate;
3435         unsigned long tmp = h->max_huge_pages;
3436         int ret;
3437
3438         if (!hugepages_supported())
3439                 return -EOPNOTSUPP;
3440
3441         ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
3442                                              &tmp);
3443         if (ret)
3444                 goto out;
3445
3446         if (write)
3447                 ret = __nr_hugepages_store_common(obey_mempolicy, h,
3448                                                   NUMA_NO_NODE, tmp, *length);
3449 out:
3450         return ret;
3451 }
3452
3453 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
3454                           void *buffer, size_t *length, loff_t *ppos)
3455 {
3456
3457         return hugetlb_sysctl_handler_common(false, table, write,
3458                                                         buffer, length, ppos);
3459 }
3460
3461 #ifdef CONFIG_NUMA
3462 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
3463                           void *buffer, size_t *length, loff_t *ppos)
3464 {
3465         return hugetlb_sysctl_handler_common(true, table, write,
3466                                                         buffer, length, ppos);
3467 }
3468 #endif /* CONFIG_NUMA */
3469
3470 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
3471                 void *buffer, size_t *length, loff_t *ppos)
3472 {
3473         struct hstate *h = &default_hstate;
3474         unsigned long tmp;
3475         int ret;
3476
3477         if (!hugepages_supported())
3478                 return -EOPNOTSUPP;
3479
3480         tmp = h->nr_overcommit_huge_pages;
3481
3482         if (write && hstate_is_gigantic(h))
3483                 return -EINVAL;
3484
3485         ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
3486                                              &tmp);
3487         if (ret)
3488                 goto out;
3489
3490         if (write) {
3491                 spin_lock_irq(&hugetlb_lock);
3492                 h->nr_overcommit_huge_pages = tmp;
3493                 spin_unlock_irq(&hugetlb_lock);
3494         }
3495 out:
3496         return ret;
3497 }
3498
3499 #endif /* CONFIG_SYSCTL */
3500
3501 void hugetlb_report_meminfo(struct seq_file *m)
3502 {
3503         struct hstate *h;
3504         unsigned long total = 0;
3505
3506         if (!hugepages_supported())
3507                 return;
3508
3509         for_each_hstate(h) {
3510                 unsigned long count = h->nr_huge_pages;
3511
3512                 total += huge_page_size(h) * count;
3513
3514                 if (h == &default_hstate)
3515                         seq_printf(m,
3516                                    "HugePages_Total:   %5lu\n"
3517                                    "HugePages_Free:    %5lu\n"
3518                                    "HugePages_Rsvd:    %5lu\n"
3519                                    "HugePages_Surp:    %5lu\n"
3520                                    "Hugepagesize:   %8lu kB\n",
3521                                    count,
3522                                    h->free_huge_pages,
3523                                    h->resv_huge_pages,
3524                                    h->surplus_huge_pages,
3525                                    huge_page_size(h) / SZ_1K);
3526         }
3527
3528         seq_printf(m, "Hugetlb:        %8lu kB\n", total / SZ_1K);
3529 }
3530
3531 int hugetlb_report_node_meminfo(char *buf, int len, int nid)
3532 {
3533         struct hstate *h = &default_hstate;
3534
3535         if (!hugepages_supported())
3536                 return 0;
3537
3538         return sysfs_emit_at(buf, len,
3539                              "Node %d HugePages_Total: %5u\n"
3540                              "Node %d HugePages_Free:  %5u\n"
3541                              "Node %d HugePages_Surp:  %5u\n",
3542                              nid, h->nr_huge_pages_node[nid],
3543                              nid, h->free_huge_pages_node[nid],
3544                              nid, h->surplus_huge_pages_node[nid]);
3545 }
3546
3547 void hugetlb_show_meminfo(void)
3548 {
3549         struct hstate *h;
3550         int nid;
3551
3552         if (!hugepages_supported())
3553                 return;
3554
3555         for_each_node_state(nid, N_MEMORY)
3556                 for_each_hstate(h)
3557                         pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
3558                                 nid,
3559                                 h->nr_huge_pages_node[nid],
3560                                 h->free_huge_pages_node[nid],
3561                                 h->surplus_huge_pages_node[nid],
3562                                 huge_page_size(h) / SZ_1K);
3563 }
3564
3565 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
3566 {
3567         seq_printf(m, "HugetlbPages:\t%8lu kB\n",
3568                    atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
3569 }
3570
3571 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
3572 unsigned long hugetlb_total_pages(void)
3573 {
3574         struct hstate *h;
3575         unsigned long nr_total_pages = 0;
3576
3577         for_each_hstate(h)
3578                 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
3579         return nr_total_pages;
3580 }
3581
3582 static int hugetlb_acct_memory(struct hstate *h, long delta)
3583 {
3584         int ret = -ENOMEM;
3585
3586         if (!delta)
3587                 return 0;
3588
3589         spin_lock_irq(&hugetlb_lock);
3590         /*
3591          * When cpuset is configured, it breaks the strict hugetlb page
3592          * reservation as the accounting is done on a global variable. Such
3593          * reservation is completely rubbish in the presence of cpuset because
3594          * the reservation is not checked against page availability for the
3595          * current cpuset. Application can still potentially OOM'ed by kernel
3596          * with lack of free htlb page in cpuset that the task is in.
3597          * Attempt to enforce strict accounting with cpuset is almost
3598          * impossible (or too ugly) because cpuset is too fluid that
3599          * task or memory node can be dynamically moved between cpusets.
3600          *
3601          * The change of semantics for shared hugetlb mapping with cpuset is
3602          * undesirable. However, in order to preserve some of the semantics,
3603          * we fall back to check against current free page availability as
3604          * a best attempt and hopefully to minimize the impact of changing
3605          * semantics that cpuset has.
3606          *
3607          * Apart from cpuset, we also have memory policy mechanism that
3608          * also determines from which node the kernel will allocate memory
3609          * in a NUMA system. So similar to cpuset, we also should consider
3610          * the memory policy of the current task. Similar to the description
3611          * above.
3612          */
3613         if (delta > 0) {
3614                 if (gather_surplus_pages(h, delta) < 0)
3615                         goto out;
3616
3617                 if (delta > allowed_mems_nr(h)) {
3618                         return_unused_surplus_pages(h, delta);
3619                         goto out;
3620                 }
3621         }
3622
3623         ret = 0;
3624         if (delta < 0)
3625                 return_unused_surplus_pages(h, (unsigned long) -delta);
3626
3627 out:
3628         spin_unlock_irq(&hugetlb_lock);
3629         return ret;
3630 }
3631
3632 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
3633 {
3634         struct resv_map *resv = vma_resv_map(vma);
3635
3636         /*
3637          * This new VMA should share its siblings reservation map if present.
3638          * The VMA will only ever have a valid reservation map pointer where
3639          * it is being copied for another still existing VMA.  As that VMA
3640          * has a reference to the reservation map it cannot disappear until
3641          * after this open call completes.  It is therefore safe to take a
3642          * new reference here without additional locking.
3643          */
3644         if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3645                 kref_get(&resv->refs);
3646 }
3647
3648 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
3649 {
3650         struct hstate *h = hstate_vma(vma);
3651         struct resv_map *resv = vma_resv_map(vma);
3652         struct hugepage_subpool *spool = subpool_vma(vma);
3653         unsigned long reserve, start, end;
3654         long gbl_reserve;
3655
3656         if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3657                 return;
3658
3659         start = vma_hugecache_offset(h, vma, vma->vm_start);
3660         end = vma_hugecache_offset(h, vma, vma->vm_end);
3661
3662         reserve = (end - start) - region_count(resv, start, end);
3663         hugetlb_cgroup_uncharge_counter(resv, start, end);
3664         if (reserve) {
3665                 /*
3666                  * Decrement reserve counts.  The global reserve count may be
3667                  * adjusted if the subpool has a minimum size.
3668                  */
3669                 gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
3670                 hugetlb_acct_memory(h, -gbl_reserve);
3671         }
3672
3673         kref_put(&resv->refs, resv_map_release);
3674 }
3675
3676 static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
3677 {
3678         if (addr & ~(huge_page_mask(hstate_vma(vma))))
3679                 return -EINVAL;
3680         return 0;
3681 }
3682
3683 static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma)
3684 {
3685         return huge_page_size(hstate_vma(vma));
3686 }
3687
3688 /*
3689  * We cannot handle pagefaults against hugetlb pages at all.  They cause
3690  * handle_mm_fault() to try to instantiate regular-sized pages in the
3691  * hugepage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
3692  * this far.
3693  */
3694 static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf)
3695 {
3696         BUG();
3697         return 0;
3698 }
3699
3700 /*
3701  * When a new function is introduced to vm_operations_struct and added
3702  * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops.
3703  * This is because under System V memory model, mappings created via
3704  * shmget/shmat with "huge page" specified are backed by hugetlbfs files,
3705  * their original vm_ops are overwritten with shm_vm_ops.
3706  */
3707 const struct vm_operations_struct hugetlb_vm_ops = {
3708         .fault = hugetlb_vm_op_fault,
3709         .open = hugetlb_vm_op_open,
3710         .close = hugetlb_vm_op_close,
3711         .may_split = hugetlb_vm_op_split,
3712         .pagesize = hugetlb_vm_op_pagesize,
3713 };
3714
3715 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
3716                                 int writable)
3717 {
3718         pte_t entry;
3719
3720         if (writable) {
3721                 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
3722                                          vma->vm_page_prot)));
3723         } else {
3724                 entry = huge_pte_wrprotect(mk_huge_pte(page,
3725                                            vma->vm_page_prot));
3726         }
3727         entry = pte_mkyoung(entry);
3728         entry = pte_mkhuge(entry);
3729         entry = arch_make_huge_pte(entry, vma, page, writable);
3730
3731         return entry;
3732 }
3733
3734 static void set_huge_ptep_writable(struct vm_area_struct *vma,
3735                                    unsigned long address, pte_t *ptep)
3736 {
3737         pte_t entry;
3738
3739         entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
3740         if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
3741                 update_mmu_cache(vma, address, ptep);
3742 }
3743
3744 bool is_hugetlb_entry_migration(pte_t pte)
3745 {
3746         swp_entry_t swp;
3747
3748         if (huge_pte_none(pte) || pte_present(pte))
3749                 return false;
3750         swp = pte_to_swp_entry(pte);
3751         if (is_migration_entry(swp))
3752                 return true;
3753         else
3754                 return false;
3755 }
3756
3757 static bool is_hugetlb_entry_hwpoisoned(pte_t pte)
3758 {
3759         swp_entry_t swp;
3760
3761         if (huge_pte_none(pte) || pte_present(pte))
3762                 return false;
3763         swp = pte_to_swp_entry(pte);
3764         if (is_hwpoison_entry(swp))
3765                 return true;
3766         else
3767                 return false;
3768 }
3769
3770 static void
3771 hugetlb_install_page(struct vm_area_struct *vma, pte_t *ptep, unsigned long addr,
3772                      struct page *new_page)
3773 {
3774         __SetPageUptodate(new_page);
3775         set_huge_pte_at(vma->vm_mm, addr, ptep, make_huge_pte(vma, new_page, 1));
3776         hugepage_add_new_anon_rmap(new_page, vma, addr);
3777         hugetlb_count_add(pages_per_huge_page(hstate_vma(vma)), vma->vm_mm);
3778         ClearHPageRestoreReserve(new_page);
3779         SetHPageMigratable(new_page);
3780 }
3781
3782 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
3783                             struct vm_area_struct *vma)
3784 {
3785         pte_t *src_pte, *dst_pte, entry, dst_entry;
3786         struct page *ptepage;
3787         unsigned long addr;
3788         bool cow = is_cow_mapping(vma->vm_flags);
3789         struct hstate *h = hstate_vma(vma);
3790         unsigned long sz = huge_page_size(h);
3791         unsigned long npages = pages_per_huge_page(h);
3792         struct address_space *mapping = vma->vm_file->f_mapping;
3793         struct mmu_notifier_range range;
3794         int ret = 0;
3795
3796         if (cow) {
3797                 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, src,
3798                                         vma->vm_start,
3799                                         vma->vm_end);
3800                 mmu_notifier_invalidate_range_start(&range);
3801         } else {
3802                 /*
3803                  * For shared mappings i_mmap_rwsem must be held to call
3804                  * huge_pte_alloc, otherwise the returned ptep could go
3805                  * away if part of a shared pmd and another thread calls
3806                  * huge_pmd_unshare.
3807                  */
3808                 i_mmap_lock_read(mapping);
3809         }
3810
3811         for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
3812                 spinlock_t *src_ptl, *dst_ptl;
3813                 src_pte = huge_pte_offset(src, addr, sz);
3814                 if (!src_pte)
3815                         continue;
3816                 dst_pte = huge_pte_alloc(dst, vma, addr, sz);
3817                 if (!dst_pte) {
3818                         ret = -ENOMEM;
3819                         break;
3820                 }
3821
3822                 /*
3823                  * If the pagetables are shared don't copy or take references.
3824                  * dst_pte == src_pte is the common case of src/dest sharing.
3825                  *
3826                  * However, src could have 'unshared' and dst shares with
3827                  * another vma.  If dst_pte !none, this implies sharing.
3828                  * Check here before taking page table lock, and once again
3829                  * after taking the lock below.
3830                  */
3831                 dst_entry = huge_ptep_get(dst_pte);
3832                 if ((dst_pte == src_pte) || !huge_pte_none(dst_entry))
3833                         continue;
3834
3835                 dst_ptl = huge_pte_lock(h, dst, dst_pte);
3836                 src_ptl = huge_pte_lockptr(h, src, src_pte);
3837                 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
3838                 entry = huge_ptep_get(src_pte);
3839                 dst_entry = huge_ptep_get(dst_pte);
3840 again:
3841                 if (huge_pte_none(entry) || !huge_pte_none(dst_entry)) {
3842                         /*
3843                          * Skip if src entry none.  Also, skip in the
3844                          * unlikely case dst entry !none as this implies
3845                          * sharing with another vma.
3846                          */
3847                         ;
3848                 } else if (unlikely(is_hugetlb_entry_migration(entry) ||
3849                                     is_hugetlb_entry_hwpoisoned(entry))) {
3850                         swp_entry_t swp_entry = pte_to_swp_entry(entry);
3851
3852                         if (is_write_migration_entry(swp_entry) && cow) {
3853                                 /*
3854                                  * COW mappings require pages in both
3855                                  * parent and child to be set to read.
3856                                  */
3857                                 make_migration_entry_read(&swp_entry);
3858                                 entry = swp_entry_to_pte(swp_entry);
3859                                 set_huge_swap_pte_at(src, addr, src_pte,
3860                                                      entry, sz);
3861                         }
3862                         set_huge_swap_pte_at(dst, addr, dst_pte, entry, sz);
3863                 } else {
3864                         entry = huge_ptep_get(src_pte);
3865                         ptepage = pte_page(entry);
3866                         get_page(ptepage);
3867
3868                         /*
3869                          * This is a rare case where we see pinned hugetlb
3870                          * pages while they're prone to COW.  We need to do the
3871                          * COW earlier during fork.
3872                          *
3873                          * When pre-allocating the page or copying data, we
3874                          * need to be without the pgtable locks since we could
3875                          * sleep during the process.
3876                          */
3877                         if (unlikely(page_needs_cow_for_dma(vma, ptepage))) {
3878                                 pte_t src_pte_old = entry;
3879                                 struct page *new;
3880
3881                                 spin_unlock(src_ptl);
3882                                 spin_unlock(dst_ptl);
3883                                 /* Do not use reserve as it's private owned */
3884                                 new = alloc_huge_page(vma, addr, 1);
3885                                 if (IS_ERR(new)) {
3886                                         put_page(ptepage);
3887                                         ret = PTR_ERR(new);
3888                                         break;
3889                                 }
3890                                 copy_user_huge_page(new, ptepage, addr, vma,
3891                                                     npages);
3892                                 put_page(ptepage);
3893
3894                                 /* Install the new huge page if src pte stable */
3895                                 dst_ptl = huge_pte_lock(h, dst, dst_pte);
3896                                 src_ptl = huge_pte_lockptr(h, src, src_pte);
3897                                 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
3898                                 entry = huge_ptep_get(src_pte);
3899                                 if (!pte_same(src_pte_old, entry)) {
3900                                         put_page(new);
3901                                         /* dst_entry won't change as in child */
3902                                         goto again;
3903                                 }
3904                                 hugetlb_install_page(vma, dst_pte, addr, new);
3905                                 spin_unlock(src_ptl);
3906                                 spin_unlock(dst_ptl);
3907                                 continue;
3908                         }
3909
3910                         if (cow) {
3911                                 /*
3912                                  * No need to notify as we are downgrading page
3913                                  * table protection not changing it to point
3914                                  * to a new page.
3915                                  *
3916                                  * See Documentation/vm/mmu_notifier.rst
3917                                  */
3918                                 huge_ptep_set_wrprotect(src, addr, src_pte);
3919                         }
3920
3921                         page_dup_rmap(ptepage, true);
3922                         set_huge_pte_at(dst, addr, dst_pte, entry);
3923                         hugetlb_count_add(npages, dst);
3924                 }
3925                 spin_unlock(src_ptl);
3926                 spin_unlock(dst_ptl);
3927         }
3928
3929         if (cow)
3930                 mmu_notifier_invalidate_range_end(&range);
3931         else
3932                 i_mmap_unlock_read(mapping);
3933
3934         return ret;
3935 }
3936
3937 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
3938                             unsigned long start, unsigned long end,
3939                             struct page *ref_page)
3940 {
3941         struct mm_struct *mm = vma->vm_mm;
3942         unsigned long address;
3943         pte_t *ptep;
3944         pte_t pte;
3945         spinlock_t *ptl;
3946         struct page *page;
3947         struct hstate *h = hstate_vma(vma);
3948         unsigned long sz = huge_page_size(h);
3949         struct mmu_notifier_range range;
3950
3951         WARN_ON(!is_vm_hugetlb_page(vma));
3952         BUG_ON(start & ~huge_page_mask(h));
3953         BUG_ON(end & ~huge_page_mask(h));
3954
3955         /*
3956          * This is a hugetlb vma, all the pte entries should point
3957          * to huge page.
3958          */
3959         tlb_change_page_size(tlb, sz);
3960         tlb_start_vma(tlb, vma);
3961
3962         /*
3963          * If sharing possible, alert mmu notifiers of worst case.
3964          */
3965         mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, mm, start,
3966                                 end);
3967         adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
3968         mmu_notifier_invalidate_range_start(&range);
3969         address = start;
3970         for (; address < end; address += sz) {
3971                 ptep = huge_pte_offset(mm, address, sz);
3972                 if (!ptep)
3973                         continue;
3974
3975                 ptl = huge_pte_lock(h, mm, ptep);
3976                 if (huge_pmd_unshare(mm, vma, &address, ptep)) {
3977                         spin_unlock(ptl);
3978                         /*
3979                          * We just unmapped a page of PMDs by clearing a PUD.
3980                          * The caller's TLB flush range should cover this area.
3981                          */
3982                         continue;
3983                 }
3984
3985                 pte = huge_ptep_get(ptep);
3986                 if (huge_pte_none(pte)) {
3987                         spin_unlock(ptl);
3988                         continue;
3989                 }
3990
3991                 /*
3992                  * Migrating hugepage or HWPoisoned hugepage is already
3993                  * unmapped and its refcount is dropped, so just clear pte here.
3994                  */
3995                 if (unlikely(!pte_present(pte))) {
3996                         huge_pte_clear(mm, address, ptep, sz);
3997                         spin_unlock(ptl);
3998                         continue;
3999                 }
4000
4001                 page = pte_page(pte);
4002                 /*
4003                  * If a reference page is supplied, it is because a specific
4004                  * page is being unmapped, not a range. Ensure the page we
4005                  * are about to unmap is the actual page of interest.
4006                  */
4007                 if (ref_page) {
4008                         if (page != ref_page) {
4009                                 spin_unlock(ptl);
4010                                 continue;
4011                         }
4012                         /*
4013                          * Mark the VMA as having unmapped its page so that
4014                          * future faults in this VMA will fail rather than
4015                          * looking like data was lost
4016                          */
4017                         set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
4018                 }
4019
4020                 pte = huge_ptep_get_and_clear(mm, address, ptep);
4021                 tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
4022                 if (huge_pte_dirty(pte))
4023                         set_page_dirty(page);
4024
4025                 hugetlb_count_sub(pages_per_huge_page(h), mm);
4026                 page_remove_rmap(page, true);
4027
4028                 spin_unlock(ptl);
4029                 tlb_remove_page_size(tlb, page, huge_page_size(h));
4030                 /*
4031                  * Bail out after unmapping reference page if supplied
4032                  */
4033                 if (ref_page)
4034                         break;
4035         }
4036         mmu_notifier_invalidate_range_end(&range);
4037         tlb_end_vma(tlb, vma);
4038 }
4039
4040 void __unmap_hugepage_range_final(struct mmu_gather *tlb,
4041                           struct vm_area_struct *vma, unsigned long start,
4042                           unsigned long end, struct page *ref_page)
4043 {
4044         __unmap_hugepage_range(tlb, vma, start, end, ref_page);
4045
4046         /*
4047          * Clear this flag so that x86's huge_pmd_share page_table_shareable
4048          * test will fail on a vma being torn down, and not grab a page table
4049          * on its way out.  We're lucky that the flag has such an appropriate
4050          * name, and can in fact be safely cleared here. We could clear it
4051          * before the __unmap_hugepage_range above, but all that's necessary
4052          * is to clear it before releasing the i_mmap_rwsem. This works
4053          * because in the context this is called, the VMA is about to be
4054          * destroyed and the i_mmap_rwsem is held.
4055          */
4056         vma->vm_flags &= ~VM_MAYSHARE;
4057 }
4058
4059 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
4060                           unsigned long end, struct page *ref_page)
4061 {
4062         struct mmu_gather tlb;
4063
4064         tlb_gather_mmu(&tlb, vma->vm_mm);
4065         __unmap_hugepage_range(&tlb, vma, start, end, ref_page);
4066         tlb_finish_mmu(&tlb);
4067 }
4068
4069 /*
4070  * This is called when the original mapper is failing to COW a MAP_PRIVATE
4071  * mapping it owns the reserve page for. The intention is to unmap the page
4072  * from other VMAs and let the children be SIGKILLed if they are faulting the
4073  * same region.
4074  */
4075 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
4076                               struct page *page, unsigned long address)
4077 {
4078         struct hstate *h = hstate_vma(vma);
4079         struct vm_area_struct *iter_vma;
4080         struct address_space *mapping;
4081         pgoff_t pgoff;
4082
4083         /*
4084          * vm_pgoff is in PAGE_SIZE units, hence the different calculation
4085          * from page cache lookup which is in HPAGE_SIZE units.
4086          */
4087         address = address & huge_page_mask(h);
4088         pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
4089                         vma->vm_pgoff;
4090         mapping = vma->vm_file->f_mapping;
4091
4092         /*
4093          * Take the mapping lock for the duration of the table walk. As
4094          * this mapping should be shared between all the VMAs,
4095          * __unmap_hugepage_range() is called as the lock is already held
4096          */
4097         i_mmap_lock_write(mapping);
4098         vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
4099                 /* Do not unmap the current VMA */
4100                 if (iter_vma == vma)
4101                         continue;
4102
4103                 /*
4104                  * Shared VMAs have their own reserves and do not affect
4105                  * MAP_PRIVATE accounting but it is possible that a shared
4106                  * VMA is using the same page so check and skip such VMAs.
4107                  */
4108                 if (iter_vma->vm_flags & VM_MAYSHARE)
4109                         continue;
4110
4111                 /*
4112                  * Unmap the page from other VMAs without their own reserves.
4113                  * They get marked to be SIGKILLed if they fault in these
4114                  * areas. This is because a future no-page fault on this VMA
4115                  * could insert a zeroed page instead of the data existing
4116                  * from the time of fork. This would look like data corruption
4117                  */
4118                 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
4119                         unmap_hugepage_range(iter_vma, address,
4120                                              address + huge_page_size(h), page);
4121         }
4122         i_mmap_unlock_write(mapping);
4123 }
4124
4125 /*
4126  * Hugetlb_cow() should be called with page lock of the original hugepage held.
4127  * Called with hugetlb_instantiation_mutex held and pte_page locked so we
4128  * cannot race with other handlers or page migration.
4129  * Keep the pte_same checks anyway to make transition from the mutex easier.
4130  */
4131 static vm_fault_t hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
4132                        unsigned long address, pte_t *ptep,
4133                        struct page *pagecache_page, spinlock_t *ptl)
4134 {
4135         pte_t pte;
4136         struct hstate *h = hstate_vma(vma);
4137         struct page *old_page, *new_page;
4138         int outside_reserve = 0;
4139         vm_fault_t ret = 0;
4140         unsigned long haddr = address & huge_page_mask(h);
4141         struct mmu_notifier_range range;
4142
4143         pte = huge_ptep_get(ptep);
4144         old_page = pte_page(pte);
4145
4146 retry_avoidcopy:
4147         /* If no-one else is actually using this page, avoid the copy
4148          * and just make the page writable */
4149         if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
4150                 page_move_anon_rmap(old_page, vma);
4151                 set_huge_ptep_writable(vma, haddr, ptep);
4152                 return 0;
4153         }
4154
4155         /*
4156          * If the process that created a MAP_PRIVATE mapping is about to
4157          * perform a COW due to a shared page count, attempt to satisfy
4158          * the allocation without using the existing reserves. The pagecache
4159          * page is used to determine if the reserve at this address was
4160          * consumed or not. If reserves were used, a partial faulted mapping
4161          * at the time of fork() could consume its reserves on COW instead
4162          * of the full address range.
4163          */
4164         if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
4165                         old_page != pagecache_page)
4166                 outside_reserve = 1;
4167
4168         get_page(old_page);
4169
4170         /*
4171          * Drop page table lock as buddy allocator may be called. It will
4172          * be acquired again before returning to the caller, as expected.
4173          */
4174         spin_unlock(ptl);
4175         new_page = alloc_huge_page(vma, haddr, outside_reserve);
4176
4177         if (IS_ERR(new_page)) {
4178                 /*
4179                  * If a process owning a MAP_PRIVATE mapping fails to COW,
4180                  * it is due to references held by a child and an insufficient
4181                  * huge page pool. To guarantee the original mappers
4182                  * reliability, unmap the page from child processes. The child
4183                  * may get SIGKILLed if it later faults.
4184                  */
4185                 if (outside_reserve) {
4186                         struct address_space *mapping = vma->vm_file->f_mapping;
4187                         pgoff_t idx;
4188                         u32 hash;
4189
4190                         put_page(old_page);
4191                         BUG_ON(huge_pte_none(pte));
4192                         /*
4193                          * Drop hugetlb_fault_mutex and i_mmap_rwsem before
4194                          * unmapping.  unmapping needs to hold i_mmap_rwsem
4195                          * in write mode.  Dropping i_mmap_rwsem in read mode
4196                          * here is OK as COW mappings do not interact with
4197                          * PMD sharing.
4198                          *
4199                          * Reacquire both after unmap operation.
4200                          */
4201                         idx = vma_hugecache_offset(h, vma, haddr);
4202                         hash = hugetlb_fault_mutex_hash(mapping, idx);
4203                         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
4204                         i_mmap_unlock_read(mapping);
4205
4206                         unmap_ref_private(mm, vma, old_page, haddr);
4207
4208                         i_mmap_lock_read(mapping);
4209                         mutex_lock(&hugetlb_fault_mutex_table[hash]);
4210                         spin_lock(ptl);
4211                         ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
4212                         if (likely(ptep &&
4213                                    pte_same(huge_ptep_get(ptep), pte)))
4214                                 goto retry_avoidcopy;
4215                         /*
4216                          * race occurs while re-acquiring page table
4217                          * lock, and our job is done.
4218                          */
4219                         return 0;
4220                 }
4221
4222                 ret = vmf_error(PTR_ERR(new_page));
4223                 goto out_release_old;
4224         }
4225
4226         /*
4227          * When the original hugepage is shared one, it does not have
4228          * anon_vma prepared.
4229          */
4230         if (unlikely(anon_vma_prepare(vma))) {
4231                 ret = VM_FAULT_OOM;
4232                 goto out_release_all;
4233         }
4234
4235         copy_user_huge_page(new_page, old_page, address, vma,
4236                             pages_per_huge_page(h));
4237         __SetPageUptodate(new_page);
4238
4239         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, haddr,
4240                                 haddr + huge_page_size(h));
4241         mmu_notifier_invalidate_range_start(&range);
4242
4243         /*
4244          * Retake the page table lock to check for racing updates
4245          * before the page tables are altered
4246          */
4247         spin_lock(ptl);
4248         ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
4249         if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
4250                 ClearHPageRestoreReserve(new_page);
4251
4252                 /* Break COW */
4253                 huge_ptep_clear_flush(vma, haddr, ptep);
4254                 mmu_notifier_invalidate_range(mm, range.start, range.end);
4255                 set_huge_pte_at(mm, haddr, ptep,
4256                                 make_huge_pte(vma, new_page, 1));
4257                 page_remove_rmap(old_page, true);
4258                 hugepage_add_new_anon_rmap(new_page, vma, haddr);
4259                 SetHPageMigratable(new_page);
4260                 /* Make the old page be freed below */
4261                 new_page = old_page;
4262         }
4263         spin_unlock(ptl);
4264         mmu_notifier_invalidate_range_end(&range);
4265 out_release_all:
4266         restore_reserve_on_error(h, vma, haddr, new_page);
4267         put_page(new_page);
4268 out_release_old:
4269         put_page(old_page);
4270
4271         spin_lock(ptl); /* Caller expects lock to be held */
4272         return ret;
4273 }
4274
4275 /* Return the pagecache page at a given address within a VMA */
4276 static struct page *hugetlbfs_pagecache_page(struct hstate *h,
4277                         struct vm_area_struct *vma, unsigned long address)
4278 {
4279         struct address_space *mapping;
4280         pgoff_t idx;
4281
4282         mapping = vma->vm_file->f_mapping;
4283         idx = vma_hugecache_offset(h, vma, address);
4284
4285         return find_lock_page(mapping, idx);
4286 }
4287
4288 /*
4289  * Return whether there is a pagecache page to back given address within VMA.
4290  * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
4291  */
4292 static bool hugetlbfs_pagecache_present(struct hstate *h,
4293                         struct vm_area_struct *vma, unsigned long address)
4294 {
4295         struct address_space *mapping;
4296         pgoff_t idx;
4297         struct page *page;
4298
4299         mapping = vma->vm_file->f_mapping;
4300         idx = vma_hugecache_offset(h, vma, address);
4301
4302         page = find_get_page(mapping, idx);
4303         if (page)
4304                 put_page(page);
4305         return page != NULL;
4306 }
4307
4308 int huge_add_to_page_cache(struct page *page, struct address_space *mapping,
4309                            pgoff_t idx)
4310 {
4311         struct inode *inode = mapping->host;
4312         struct hstate *h = hstate_inode(inode);
4313         int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
4314
4315         if (err)
4316                 return err;
4317         ClearHPageRestoreReserve(page);
4318
4319         /*
4320          * set page dirty so that it will not be removed from cache/file
4321          * by non-hugetlbfs specific code paths.
4322          */
4323         set_page_dirty(page);
4324
4325         spin_lock(&inode->i_lock);
4326         inode->i_blocks += blocks_per_huge_page(h);
4327         spin_unlock(&inode->i_lock);
4328         return 0;
4329 }
4330
4331 static vm_fault_t hugetlb_no_page(struct mm_struct *mm,
4332                         struct vm_area_struct *vma,
4333                         struct address_space *mapping, pgoff_t idx,
4334                         unsigned long address, pte_t *ptep, unsigned int flags)
4335 {
4336         struct hstate *h = hstate_vma(vma);
4337         vm_fault_t ret = VM_FAULT_SIGBUS;
4338         int anon_rmap = 0;
4339         unsigned long size;
4340         struct page *page;
4341         pte_t new_pte;
4342         spinlock_t *ptl;
4343         unsigned long haddr = address & huge_page_mask(h);
4344         bool new_page = false;
4345
4346         /*
4347          * Currently, we are forced to kill the process in the event the
4348          * original mapper has unmapped pages from the child due to a failed
4349          * COW. Warn that such a situation has occurred as it may not be obvious
4350          */
4351         if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
4352                 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
4353                            current->pid);
4354                 return ret;
4355         }
4356
4357         /*
4358          * We can not race with truncation due to holding i_mmap_rwsem.
4359          * i_size is modified when holding i_mmap_rwsem, so check here
4360          * once for faults beyond end of file.
4361          */
4362         size = i_size_read(mapping->host) >> huge_page_shift(h);
4363         if (idx >= size)
4364                 goto out;
4365
4366 retry:
4367         page = find_lock_page(mapping, idx);
4368         if (!page) {
4369                 /*
4370                  * Check for page in userfault range
4371                  */
4372                 if (userfaultfd_missing(vma)) {
4373                         u32 hash;
4374                         struct vm_fault vmf = {
4375                                 .vma = vma,
4376                                 .address = haddr,
4377                                 .flags = flags,
4378                                 /*
4379                                  * Hard to debug if it ends up being
4380                                  * used by a callee that assumes
4381                                  * something about the other
4382                                  * uninitialized fields... same as in
4383                                  * memory.c
4384                                  */
4385                         };
4386
4387                         /*
4388                          * hugetlb_fault_mutex and i_mmap_rwsem must be
4389                          * dropped before handling userfault.  Reacquire
4390                          * after handling fault to make calling code simpler.
4391                          */
4392                         hash = hugetlb_fault_mutex_hash(mapping, idx);
4393                         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
4394                         i_mmap_unlock_read(mapping);
4395                         ret = handle_userfault(&vmf, VM_UFFD_MISSING);
4396                         i_mmap_lock_read(mapping);
4397                         mutex_lock(&hugetlb_fault_mutex_table[hash]);
4398                         goto out;
4399                 }
4400
4401                 page = alloc_huge_page(vma, haddr, 0);
4402                 if (IS_ERR(page)) {
4403                         /*
4404                          * Returning error will result in faulting task being
4405                          * sent SIGBUS.  The hugetlb fault mutex prevents two
4406                          * tasks from racing to fault in the same page which
4407                          * could result in false unable to allocate errors.
4408                          * Page migration does not take the fault mutex, but
4409                          * does a clear then write of pte's under page table
4410                          * lock.  Page fault code could race with migration,
4411                          * notice the clear pte and try to allocate a page
4412                          * here.  Before returning error, get ptl and make
4413                          * sure there really is no pte entry.
4414                          */
4415                         ptl = huge_pte_lock(h, mm, ptep);
4416                         ret = 0;
4417                         if (huge_pte_none(huge_ptep_get(ptep)))
4418                                 ret = vmf_error(PTR_ERR(page));
4419                         spin_unlock(ptl);
4420                         goto out;
4421                 }
4422                 clear_huge_page(page, address, pages_per_huge_page(h));
4423                 __SetPageUptodate(page);
4424                 new_page = true;
4425
4426                 if (vma->vm_flags & VM_MAYSHARE) {
4427                         int err = huge_add_to_page_cache(page, mapping, idx);
4428                         if (err) {
4429                                 put_page(page);
4430                                 if (err == -EEXIST)
4431                                         goto retry;
4432                                 goto out;
4433                         }
4434                 } else {
4435                         lock_page(page);
4436                         if (unlikely(anon_vma_prepare(vma))) {
4437                                 ret = VM_FAULT_OOM;
4438                                 goto backout_unlocked;
4439                         }
4440                         anon_rmap = 1;
4441                 }
4442         } else {
4443                 /*
4444                  * If memory error occurs between mmap() and fault, some process
4445                  * don't have hwpoisoned swap entry for errored virtual address.
4446                  * So we need to block hugepage fault by PG_hwpoison bit check.
4447                  */
4448                 if (unlikely(PageHWPoison(page))) {
4449                         ret = VM_FAULT_HWPOISON_LARGE |
4450                                 VM_FAULT_SET_HINDEX(hstate_index(h));
4451                         goto backout_unlocked;
4452                 }
4453         }
4454
4455         /*
4456          * If we are going to COW a private mapping later, we examine the
4457          * pending reservations for this page now. This will ensure that
4458          * any allocations necessary to record that reservation occur outside
4459          * the spinlock.
4460          */
4461         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
4462                 if (vma_needs_reservation(h, vma, haddr) < 0) {
4463                         ret = VM_FAULT_OOM;
4464                         goto backout_unlocked;
4465                 }
4466                 /* Just decrements count, does not deallocate */
4467                 vma_end_reservation(h, vma, haddr);
4468         }
4469
4470         ptl = huge_pte_lock(h, mm, ptep);
4471         ret = 0;
4472         if (!huge_pte_none(huge_ptep_get(ptep)))
4473                 goto backout;
4474
4475         if (anon_rmap) {
4476                 ClearHPageRestoreReserve(page);
4477                 hugepage_add_new_anon_rmap(page, vma, haddr);
4478         } else
4479                 page_dup_rmap(page, true);
4480         new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
4481                                 && (vma->vm_flags & VM_SHARED)));
4482         set_huge_pte_at(mm, haddr, ptep, new_pte);
4483
4484         hugetlb_count_add(pages_per_huge_page(h), mm);
4485         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
4486                 /* Optimization, do the COW without a second fault */
4487                 ret = hugetlb_cow(mm, vma, address, ptep, page, ptl);
4488         }
4489
4490         spin_unlock(ptl);
4491
4492         /*
4493          * Only set HPageMigratable in newly allocated pages.  Existing pages
4494          * found in the pagecache may not have HPageMigratableset if they have
4495          * been isolated for migration.
4496          */
4497         if (new_page)
4498                 SetHPageMigratable(page);
4499
4500         unlock_page(page);
4501 out:
4502         return ret;
4503
4504 backout:
4505         spin_unlock(ptl);
4506 backout_unlocked:
4507         unlock_page(page);
4508         restore_reserve_on_error(h, vma, haddr, page);
4509         put_page(page);
4510         goto out;
4511 }
4512
4513 #ifdef CONFIG_SMP
4514 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
4515 {
4516         unsigned long key[2];
4517         u32 hash;
4518
4519         key[0] = (unsigned long) mapping;
4520         key[1] = idx;
4521
4522         hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0);
4523
4524         return hash & (num_fault_mutexes - 1);
4525 }
4526 #else
4527 /*
4528  * For uniprocessor systems we always use a single mutex, so just
4529  * return 0 and avoid the hashing overhead.
4530  */
4531 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
4532 {
4533         return 0;
4534 }
4535 #endif
4536
4537 vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
4538                         unsigned long address, unsigned int flags)
4539 {
4540         pte_t *ptep, entry;
4541         spinlock_t *ptl;
4542         vm_fault_t ret;
4543         u32 hash;
4544         pgoff_t idx;
4545         struct page *page = NULL;
4546         struct page *pagecache_page = NULL;
4547         struct hstate *h = hstate_vma(vma);
4548         struct address_space *mapping;
4549         int need_wait_lock = 0;
4550         unsigned long haddr = address & huge_page_mask(h);
4551
4552         ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
4553         if (ptep) {
4554                 /*
4555                  * Since we hold no locks, ptep could be stale.  That is
4556                  * OK as we are only making decisions based on content and
4557                  * not actually modifying content here.
4558                  */
4559                 entry = huge_ptep_get(ptep);
4560                 if (unlikely(is_hugetlb_entry_migration(entry))) {
4561                         migration_entry_wait_huge(vma, mm, ptep);
4562                         return 0;
4563                 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
4564                         return VM_FAULT_HWPOISON_LARGE |
4565                                 VM_FAULT_SET_HINDEX(hstate_index(h));
4566         }
4567
4568         /*
4569          * Acquire i_mmap_rwsem before calling huge_pte_alloc and hold
4570          * until finished with ptep.  This serves two purposes:
4571          * 1) It prevents huge_pmd_unshare from being called elsewhere
4572          *    and making the ptep no longer valid.
4573          * 2) It synchronizes us with i_size modifications during truncation.
4574          *
4575          * ptep could have already be assigned via huge_pte_offset.  That
4576          * is OK, as huge_pte_alloc will return the same value unless
4577          * something has changed.
4578          */
4579         mapping = vma->vm_file->f_mapping;
4580         i_mmap_lock_read(mapping);
4581         ptep = huge_pte_alloc(mm, vma, haddr, huge_page_size(h));
4582         if (!ptep) {
4583                 i_mmap_unlock_read(mapping);
4584                 return VM_FAULT_OOM;
4585         }
4586
4587         /*
4588          * Serialize hugepage allocation and instantiation, so that we don't
4589          * get spurious allocation failures if two CPUs race to instantiate
4590          * the same page in the page cache.
4591          */
4592         idx = vma_hugecache_offset(h, vma, haddr);
4593         hash = hugetlb_fault_mutex_hash(mapping, idx);
4594         mutex_lock(&hugetlb_fault_mutex_table[hash]);
4595
4596         entry = huge_ptep_get(ptep);
4597         if (huge_pte_none(entry)) {
4598                 ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
4599                 goto out_mutex;
4600         }
4601
4602         ret = 0;
4603
4604         /*
4605          * entry could be a migration/hwpoison entry at this point, so this
4606          * check prevents the kernel from going below assuming that we have
4607          * an active hugepage in pagecache. This goto expects the 2nd page
4608          * fault, and is_hugetlb_entry_(migration|hwpoisoned) check will
4609          * properly handle it.
4610          */
4611         if (!pte_present(entry))
4612                 goto out_mutex;
4613
4614         /*
4615          * If we are going to COW the mapping later, we examine the pending
4616          * reservations for this page now. This will ensure that any
4617          * allocations necessary to record that reservation occur outside the
4618          * spinlock. For private mappings, we also lookup the pagecache
4619          * page now as it is used to determine if a reservation has been
4620          * consumed.
4621          */
4622         if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
4623                 if (vma_needs_reservation(h, vma, haddr) < 0) {
4624                         ret = VM_FAULT_OOM;
4625                         goto out_mutex;
4626                 }
4627                 /* Just decrements count, does not deallocate */
4628                 vma_end_reservation(h, vma, haddr);
4629
4630                 if (!(vma->vm_flags & VM_MAYSHARE))
4631                         pagecache_page = hugetlbfs_pagecache_page(h,
4632                                                                 vma, haddr);
4633         }
4634
4635         ptl = huge_pte_lock(h, mm, ptep);
4636
4637         /* Check for a racing update before calling hugetlb_cow */
4638         if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
4639                 goto out_ptl;
4640
4641         /*
4642          * hugetlb_cow() requires page locks of pte_page(entry) and
4643          * pagecache_page, so here we need take the former one
4644          * when page != pagecache_page or !pagecache_page.
4645          */
4646         page = pte_page(entry);
4647         if (page != pagecache_page)
4648                 if (!trylock_page(page)) {
4649                         need_wait_lock = 1;
4650                         goto out_ptl;
4651                 }
4652
4653         get_page(page);
4654
4655         if (flags & FAULT_FLAG_WRITE) {
4656                 if (!huge_pte_write(entry)) {
4657                         ret = hugetlb_cow(mm, vma, address, ptep,
4658                                           pagecache_page, ptl);
4659                         goto out_put_page;
4660                 }
4661                 entry = huge_pte_mkdirty(entry);
4662         }
4663         entry = pte_mkyoung(entry);
4664         if (huge_ptep_set_access_flags(vma, haddr, ptep, entry,
4665                                                 flags & FAULT_FLAG_WRITE))
4666                 update_mmu_cache(vma, haddr, ptep);
4667 out_put_page:
4668         if (page != pagecache_page)
4669                 unlock_page(page);
4670         put_page(page);
4671 out_ptl:
4672         spin_unlock(ptl);
4673
4674         if (pagecache_page) {
4675                 unlock_page(pagecache_page);
4676                 put_page(pagecache_page);
4677         }
4678 out_mutex:
4679         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
4680         i_mmap_unlock_read(mapping);
4681         /*
4682          * Generally it's safe to hold refcount during waiting page lock. But
4683          * here we just wait to defer the next page fault to avoid busy loop and
4684          * the page is not used after unlocked before returning from the current
4685          * page fault. So we are safe from accessing freed page, even if we wait
4686          * here without taking refcount.
4687          */
4688         if (need_wait_lock)
4689                 wait_on_page_locked(page);
4690         return ret;
4691 }
4692
4693 /*
4694  * Used by userfaultfd UFFDIO_COPY.  Based on mcopy_atomic_pte with
4695  * modifications for huge pages.
4696  */
4697 int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm,
4698                             pte_t *dst_pte,
4699                             struct vm_area_struct *dst_vma,
4700                             unsigned long dst_addr,
4701                             unsigned long src_addr,
4702                             struct page **pagep)
4703 {
4704         struct address_space *mapping;
4705         pgoff_t idx;
4706         unsigned long size;
4707         int vm_shared = dst_vma->vm_flags & VM_SHARED;
4708         struct hstate *h = hstate_vma(dst_vma);
4709         pte_t _dst_pte;
4710         spinlock_t *ptl;
4711         int ret;
4712         struct page *page;
4713
4714         if (!*pagep) {
4715                 ret = -ENOMEM;
4716                 page = alloc_huge_page(dst_vma, dst_addr, 0);
4717                 if (IS_ERR(page))
4718                         goto out;
4719
4720                 ret = copy_huge_page_from_user(page,
4721                                                 (const void __user *) src_addr,
4722                                                 pages_per_huge_page(h), false);
4723
4724                 /* fallback to copy_from_user outside mmap_lock */
4725                 if (unlikely(ret)) {
4726                         ret = -ENOENT;
4727                         *pagep = page;
4728                         /* don't free the page */
4729                         goto out;
4730                 }
4731         } else {
4732                 page = *pagep;
4733                 *pagep = NULL;
4734         }
4735
4736         /*
4737          * The memory barrier inside __SetPageUptodate makes sure that
4738          * preceding stores to the page contents become visible before
4739          * the set_pte_at() write.
4740          */
4741         __SetPageUptodate(page);
4742
4743         mapping = dst_vma->vm_file->f_mapping;
4744         idx = vma_hugecache_offset(h, dst_vma, dst_addr);
4745
4746         /*
4747          * If shared, add to page cache
4748          */
4749         if (vm_shared) {
4750                 size = i_size_read(mapping->host) >> huge_page_shift(h);
4751                 ret = -EFAULT;
4752                 if (idx >= size)
4753                         goto out_release_nounlock;
4754
4755                 /*
4756                  * Serialization between remove_inode_hugepages() and
4757                  * huge_add_to_page_cache() below happens through the
4758                  * hugetlb_fault_mutex_table that here must be hold by
4759                  * the caller.
4760                  */
4761                 ret = huge_add_to_page_cache(page, mapping, idx);
4762                 if (ret)
4763                         goto out_release_nounlock;
4764         }
4765
4766         ptl = huge_pte_lockptr(h, dst_mm, dst_pte);
4767         spin_lock(ptl);
4768
4769         /*
4770          * Recheck the i_size after holding PT lock to make sure not
4771          * to leave any page mapped (as page_mapped()) beyond the end
4772          * of the i_size (remove_inode_hugepages() is strict about
4773          * enforcing that). If we bail out here, we'll also leave a
4774          * page in the radix tree in the vm_shared case beyond the end
4775          * of the i_size, but remove_inode_hugepages() will take care
4776          * of it as soon as we drop the hugetlb_fault_mutex_table.
4777          */
4778         size = i_size_read(mapping->host) >> huge_page_shift(h);
4779         ret = -EFAULT;
4780         if (idx >= size)
4781                 goto out_release_unlock;
4782
4783         ret = -EEXIST;
4784         if (!huge_pte_none(huge_ptep_get(dst_pte)))
4785                 goto out_release_unlock;
4786
4787         if (vm_shared) {
4788                 page_dup_rmap(page, true);
4789         } else {
4790                 ClearHPageRestoreReserve(page);
4791                 hugepage_add_new_anon_rmap(page, dst_vma, dst_addr);
4792         }
4793
4794         _dst_pte = make_huge_pte(dst_vma, page, dst_vma->vm_flags & VM_WRITE);
4795         if (dst_vma->vm_flags & VM_WRITE)
4796                 _dst_pte = huge_pte_mkdirty(_dst_pte);
4797         _dst_pte = pte_mkyoung(_dst_pte);
4798
4799         set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
4800
4801         (void)huge_ptep_set_access_flags(dst_vma, dst_addr, dst_pte, _dst_pte,
4802                                         dst_vma->vm_flags & VM_WRITE);
4803         hugetlb_count_add(pages_per_huge_page(h), dst_mm);
4804
4805         /* No need to invalidate - it was non-present before */
4806         update_mmu_cache(dst_vma, dst_addr, dst_pte);
4807
4808         spin_unlock(ptl);
4809         SetHPageMigratable(page);
4810         if (vm_shared)
4811                 unlock_page(page);
4812         ret = 0;
4813 out:
4814         return ret;
4815 out_release_unlock:
4816         spin_unlock(ptl);
4817         if (vm_shared)
4818                 unlock_page(page);
4819 out_release_nounlock:
4820         put_page(page);
4821         goto out;
4822 }
4823
4824 static void record_subpages_vmas(struct page *page, struct vm_area_struct *vma,
4825                                  int refs, struct page **pages,
4826                                  struct vm_area_struct **vmas)
4827 {
4828         int nr;
4829
4830         for (nr = 0; nr < refs; nr++) {
4831                 if (likely(pages))
4832                         pages[nr] = mem_map_offset(page, nr);
4833                 if (vmas)
4834                         vmas[nr] = vma;
4835         }
4836 }
4837
4838 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
4839                          struct page **pages, struct vm_area_struct **vmas,
4840                          unsigned long *position, unsigned long *nr_pages,
4841                          long i, unsigned int flags, int *locked)
4842 {
4843         unsigned long pfn_offset;
4844         unsigned long vaddr = *position;
4845         unsigned long remainder = *nr_pages;
4846         struct hstate *h = hstate_vma(vma);
4847         int err = -EFAULT, refs;
4848
4849         while (vaddr < vma->vm_end && remainder) {
4850                 pte_t *pte;
4851                 spinlock_t *ptl = NULL;
4852                 int absent;
4853                 struct page *page;
4854
4855                 /*
4856                  * If we have a pending SIGKILL, don't keep faulting pages and
4857                  * potentially allocating memory.
4858                  */
4859                 if (fatal_signal_pending(current)) {
4860                         remainder = 0;
4861                         break;
4862                 }
4863
4864                 /*
4865                  * Some archs (sparc64, sh*) have multiple pte_ts to
4866                  * each hugepage.  We have to make sure we get the
4867                  * first, for the page indexing below to work.
4868                  *
4869                  * Note that page table lock is not held when pte is null.
4870                  */
4871                 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h),
4872                                       huge_page_size(h));
4873                 if (pte)
4874                         ptl = huge_pte_lock(h, mm, pte);
4875                 absent = !pte || huge_pte_none(huge_ptep_get(pte));
4876
4877                 /*
4878                  * When coredumping, it suits get_dump_page if we just return
4879                  * an error where there's an empty slot with no huge pagecache
4880                  * to back it.  This way, we avoid allocating a hugepage, and
4881                  * the sparse dumpfile avoids allocating disk blocks, but its
4882                  * huge holes still show up with zeroes where they need to be.
4883                  */
4884                 if (absent && (flags & FOLL_DUMP) &&
4885                     !hugetlbfs_pagecache_present(h, vma, vaddr)) {
4886                         if (pte)
4887                                 spin_unlock(ptl);
4888                         remainder = 0;
4889                         break;
4890                 }
4891
4892                 /*
4893                  * We need call hugetlb_fault for both hugepages under migration
4894                  * (in which case hugetlb_fault waits for the migration,) and
4895                  * hwpoisoned hugepages (in which case we need to prevent the
4896                  * caller from accessing to them.) In order to do this, we use
4897                  * here is_swap_pte instead of is_hugetlb_entry_migration and
4898                  * is_hugetlb_entry_hwpoisoned. This is because it simply covers
4899                  * both cases, and because we can't follow correct pages
4900                  * directly from any kind of swap entries.
4901                  */
4902                 if (absent || is_swap_pte(huge_ptep_get(pte)) ||
4903                     ((flags & FOLL_WRITE) &&
4904                       !huge_pte_write(huge_ptep_get(pte)))) {
4905                         vm_fault_t ret;
4906                         unsigned int fault_flags = 0;
4907
4908                         if (pte)
4909                                 spin_unlock(ptl);
4910                         if (flags & FOLL_WRITE)
4911                                 fault_flags |= FAULT_FLAG_WRITE;
4912                         if (locked)
4913                                 fault_flags |= FAULT_FLAG_ALLOW_RETRY |
4914                                         FAULT_FLAG_KILLABLE;
4915                         if (flags & FOLL_NOWAIT)
4916                                 fault_flags |= FAULT_FLAG_ALLOW_RETRY |
4917                                         FAULT_FLAG_RETRY_NOWAIT;
4918                         if (flags & FOLL_TRIED) {
4919                                 /*
4920                                  * Note: FAULT_FLAG_ALLOW_RETRY and
4921                                  * FAULT_FLAG_TRIED can co-exist
4922                                  */
4923                                 fault_flags |= FAULT_FLAG_TRIED;
4924                         }
4925                         ret = hugetlb_fault(mm, vma, vaddr, fault_flags);
4926                         if (ret & VM_FAULT_ERROR) {
4927                                 err = vm_fault_to_errno(ret, flags);
4928                                 remainder = 0;
4929                                 break;
4930                         }
4931                         if (ret & VM_FAULT_RETRY) {
4932                                 if (locked &&
4933                                     !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
4934                                         *locked = 0;
4935                                 *nr_pages = 0;
4936                                 /*
4937                                  * VM_FAULT_RETRY must not return an
4938                                  * error, it will return zero
4939                                  * instead.
4940                                  *
4941                                  * No need to update "position" as the
4942                                  * caller will not check it after
4943                                  * *nr_pages is set to 0.
4944                                  */
4945                                 return i;
4946                         }
4947                         continue;
4948                 }
4949
4950                 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
4951                 page = pte_page(huge_ptep_get(pte));
4952
4953                 /*
4954                  * If subpage information not requested, update counters
4955                  * and skip the same_page loop below.
4956                  */
4957                 if (!pages && !vmas && !pfn_offset &&
4958                     (vaddr + huge_page_size(h) < vma->vm_end) &&
4959                     (remainder >= pages_per_huge_page(h))) {
4960                         vaddr += huge_page_size(h);
4961                         remainder -= pages_per_huge_page(h);
4962                         i += pages_per_huge_page(h);
4963                         spin_unlock(ptl);
4964                         continue;
4965                 }
4966
4967                 refs = min3(pages_per_huge_page(h) - pfn_offset,
4968                             (vma->vm_end - vaddr) >> PAGE_SHIFT, remainder);
4969
4970                 if (pages || vmas)
4971                         record_subpages_vmas(mem_map_offset(page, pfn_offset),
4972                                              vma, refs,
4973                                              likely(pages) ? pages + i : NULL,
4974                                              vmas ? vmas + i : NULL);
4975
4976                 if (pages) {
4977                         /*
4978                          * try_grab_compound_head() should always succeed here,
4979                          * because: a) we hold the ptl lock, and b) we've just
4980                          * checked that the huge page is present in the page
4981                          * tables. If the huge page is present, then the tail
4982                          * pages must also be present. The ptl prevents the
4983                          * head page and tail pages from being rearranged in
4984                          * any way. So this page must be available at this
4985                          * point, unless the page refcount overflowed:
4986                          */
4987                         if (WARN_ON_ONCE(!try_grab_compound_head(pages[i],
4988                                                                  refs,
4989                                                                  flags))) {
4990                                 spin_unlock(ptl);
4991                                 remainder = 0;
4992                                 err = -ENOMEM;
4993                                 break;
4994                         }
4995                 }
4996
4997                 vaddr += (refs << PAGE_SHIFT);
4998                 remainder -= refs;
4999                 i += refs;
5000
5001                 spin_unlock(ptl);
5002         }
5003         *nr_pages = remainder;
5004         /*
5005          * setting position is actually required only if remainder is
5006          * not zero but it's faster not to add a "if (remainder)"
5007          * branch.
5008          */
5009         *position = vaddr;
5010
5011         return i ? i : err;
5012 }
5013
5014 unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
5015                 unsigned long address, unsigned long end, pgprot_t newprot)
5016 {
5017         struct mm_struct *mm = vma->vm_mm;
5018         unsigned long start = address;
5019         pte_t *ptep;
5020         pte_t pte;
5021         struct hstate *h = hstate_vma(vma);
5022         unsigned long pages = 0;
5023         bool shared_pmd = false;
5024         struct mmu_notifier_range range;
5025
5026         /*
5027          * In the case of shared PMDs, the area to flush could be beyond
5028          * start/end.  Set range.start/range.end to cover the maximum possible
5029          * range if PMD sharing is possible.
5030          */
5031         mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA,
5032                                 0, vma, mm, start, end);
5033         adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
5034
5035         BUG_ON(address >= end);
5036         flush_cache_range(vma, range.start, range.end);
5037
5038         mmu_notifier_invalidate_range_start(&range);
5039         i_mmap_lock_write(vma->vm_file->f_mapping);
5040         for (; address < end; address += huge_page_size(h)) {
5041                 spinlock_t *ptl;
5042                 ptep = huge_pte_offset(mm, address, huge_page_size(h));
5043                 if (!ptep)
5044                         continue;
5045                 ptl = huge_pte_lock(h, mm, ptep);
5046                 if (huge_pmd_unshare(mm, vma, &address, ptep)) {
5047                         pages++;
5048                         spin_unlock(ptl);
5049                         shared_pmd = true;
5050                         continue;
5051                 }
5052                 pte = huge_ptep_get(ptep);
5053                 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
5054                         spin_unlock(ptl);
5055                         continue;
5056                 }
5057                 if (unlikely(is_hugetlb_entry_migration(pte))) {
5058                         swp_entry_t entry = pte_to_swp_entry(pte);
5059
5060                         if (is_write_migration_entry(entry)) {
5061                                 pte_t newpte;
5062
5063                                 make_migration_entry_read(&entry);
5064                                 newpte = swp_entry_to_pte(entry);
5065                                 set_huge_swap_pte_at(mm, address, ptep,
5066                                                      newpte, huge_page_size(h));
5067                                 pages++;
5068                         }
5069                         spin_unlock(ptl);
5070                         continue;
5071                 }
5072                 if (!huge_pte_none(pte)) {
5073                         pte_t old_pte;
5074
5075                         old_pte = huge_ptep_modify_prot_start(vma, address, ptep);
5076                         pte = pte_mkhuge(huge_pte_modify(old_pte, newprot));
5077                         pte = arch_make_huge_pte(pte, vma, NULL, 0);
5078                         huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte);
5079                         pages++;
5080                 }
5081                 spin_unlock(ptl);
5082         }
5083         /*
5084          * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
5085          * may have cleared our pud entry and done put_page on the page table:
5086          * once we release i_mmap_rwsem, another task can do the final put_page
5087          * and that page table be reused and filled with junk.  If we actually
5088          * did unshare a page of pmds, flush the range corresponding to the pud.
5089          */
5090         if (shared_pmd)
5091                 flush_hugetlb_tlb_range(vma, range.start, range.end);
5092         else
5093                 flush_hugetlb_tlb_range(vma, start, end);
5094         /*
5095          * No need to call mmu_notifier_invalidate_range() we are downgrading
5096          * page table protection not changing it to point to a new page.
5097          *
5098          * See Documentation/vm/mmu_notifier.rst
5099          */
5100         i_mmap_unlock_write(vma->vm_file->f_mapping);
5101         mmu_notifier_invalidate_range_end(&range);
5102
5103         return pages << h->order;
5104 }
5105
5106 /* Return true if reservation was successful, false otherwise.  */
5107 bool hugetlb_reserve_pages(struct inode *inode,
5108                                         long from, long to,
5109                                         struct vm_area_struct *vma,
5110                                         vm_flags_t vm_flags)
5111 {
5112         long chg, add = -1;
5113         struct hstate *h = hstate_inode(inode);
5114         struct hugepage_subpool *spool = subpool_inode(inode);
5115         struct resv_map *resv_map;
5116         struct hugetlb_cgroup *h_cg = NULL;
5117         long gbl_reserve, regions_needed = 0;
5118
5119         /* This should never happen */
5120         if (from > to) {
5121                 VM_WARN(1, "%s called with a negative range\n", __func__);
5122                 return false;
5123         }
5124
5125         /*
5126          * Only apply hugepage reservation if asked. At fault time, an
5127          * attempt will be made for VM_NORESERVE to allocate a page
5128          * without using reserves
5129          */
5130         if (vm_flags & VM_NORESERVE)
5131                 return true;
5132
5133         /*
5134          * Shared mappings base their reservation on the number of pages that
5135          * are already allocated on behalf of the file. Private mappings need
5136          * to reserve the full area even if read-only as mprotect() may be
5137          * called to make the mapping read-write. Assume !vma is a shm mapping
5138          */
5139         if (!vma || vma->vm_flags & VM_MAYSHARE) {
5140                 /*
5141                  * resv_map can not be NULL as hugetlb_reserve_pages is only
5142                  * called for inodes for which resv_maps were created (see
5143                  * hugetlbfs_get_inode).
5144                  */
5145                 resv_map = inode_resv_map(inode);
5146
5147                 chg = region_chg(resv_map, from, to, &regions_needed);
5148
5149         } else {
5150                 /* Private mapping. */
5151                 resv_map = resv_map_alloc();
5152                 if (!resv_map)
5153                         return false;
5154
5155                 chg = to - from;
5156
5157                 set_vma_resv_map(vma, resv_map);
5158                 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
5159         }
5160
5161         if (chg < 0)
5162                 goto out_err;
5163
5164         if (hugetlb_cgroup_charge_cgroup_rsvd(hstate_index(h),
5165                                 chg * pages_per_huge_page(h), &h_cg) < 0)
5166                 goto out_err;
5167
5168         if (vma && !(vma->vm_flags & VM_MAYSHARE) && h_cg) {
5169                 /* For private mappings, the hugetlb_cgroup uncharge info hangs
5170                  * of the resv_map.
5171                  */
5172                 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, h_cg, h);
5173         }
5174
5175         /*
5176          * There must be enough pages in the subpool for the mapping. If
5177          * the subpool has a minimum size, there may be some global
5178          * reservations already in place (gbl_reserve).
5179          */
5180         gbl_reserve = hugepage_subpool_get_pages(spool, chg);
5181         if (gbl_reserve < 0)
5182                 goto out_uncharge_cgroup;
5183
5184         /*
5185          * Check enough hugepages are available for the reservation.
5186          * Hand the pages back to the subpool if there are not
5187          */
5188         if (hugetlb_acct_memory(h, gbl_reserve) < 0)
5189                 goto out_put_pages;
5190
5191         /*
5192          * Account for the reservations made. Shared mappings record regions
5193          * that have reservations as they are shared by multiple VMAs.
5194          * When the last VMA disappears, the region map says how much
5195          * the reservation was and the page cache tells how much of
5196          * the reservation was consumed. Private mappings are per-VMA and
5197          * only the consumed reservations are tracked. When the VMA
5198          * disappears, the original reservation is the VMA size and the
5199          * consumed reservations are stored in the map. Hence, nothing
5200          * else has to be done for private mappings here
5201          */
5202         if (!vma || vma->vm_flags & VM_MAYSHARE) {
5203                 add = region_add(resv_map, from, to, regions_needed, h, h_cg);
5204
5205                 if (unlikely(add < 0)) {
5206                         hugetlb_acct_memory(h, -gbl_reserve);
5207                         goto out_put_pages;
5208                 } else if (unlikely(chg > add)) {
5209                         /*
5210                          * pages in this range were added to the reserve
5211                          * map between region_chg and region_add.  This
5212                          * indicates a race with alloc_huge_page.  Adjust
5213                          * the subpool and reserve counts modified above
5214                          * based on the difference.
5215                          */
5216                         long rsv_adjust;
5217
5218                         /*
5219                          * hugetlb_cgroup_uncharge_cgroup_rsvd() will put the
5220                          * reference to h_cg->css. See comment below for detail.
5221                          */
5222                         hugetlb_cgroup_uncharge_cgroup_rsvd(
5223                                 hstate_index(h),
5224                                 (chg - add) * pages_per_huge_page(h), h_cg);
5225
5226                         rsv_adjust = hugepage_subpool_put_pages(spool,
5227                                                                 chg - add);
5228                         hugetlb_acct_memory(h, -rsv_adjust);
5229                 } else if (h_cg) {
5230                         /*
5231                          * The file_regions will hold their own reference to
5232                          * h_cg->css. So we should release the reference held
5233                          * via hugetlb_cgroup_charge_cgroup_rsvd() when we are
5234                          * done.
5235                          */
5236                         hugetlb_cgroup_put_rsvd_cgroup(h_cg);
5237                 }
5238         }
5239         return true;
5240
5241 out_put_pages:
5242         /* put back original number of pages, chg */
5243         (void)hugepage_subpool_put_pages(spool, chg);
5244 out_uncharge_cgroup:
5245         hugetlb_cgroup_uncharge_cgroup_rsvd(hstate_index(h),
5246                                             chg * pages_per_huge_page(h), h_cg);
5247 out_err:
5248         if (!vma || vma->vm_flags & VM_MAYSHARE)
5249                 /* Only call region_abort if the region_chg succeeded but the
5250                  * region_add failed or didn't run.
5251                  */
5252                 if (chg >= 0 && add < 0)
5253                         region_abort(resv_map, from, to, regions_needed);
5254         if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
5255                 kref_put(&resv_map->refs, resv_map_release);
5256         return false;
5257 }
5258
5259 long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
5260                                                                 long freed)
5261 {
5262         struct hstate *h = hstate_inode(inode);
5263         struct resv_map *resv_map = inode_resv_map(inode);
5264         long chg = 0;
5265         struct hugepage_subpool *spool = subpool_inode(inode);
5266         long gbl_reserve;
5267
5268         /*
5269          * Since this routine can be called in the evict inode path for all
5270          * hugetlbfs inodes, resv_map could be NULL.
5271          */
5272         if (resv_map) {
5273                 chg = region_del(resv_map, start, end);
5274                 /*
5275                  * region_del() can fail in the rare case where a region
5276                  * must be split and another region descriptor can not be
5277                  * allocated.  If end == LONG_MAX, it will not fail.
5278                  */
5279                 if (chg < 0)
5280                         return chg;
5281         }
5282
5283         spin_lock(&inode->i_lock);
5284         inode->i_blocks -= (blocks_per_huge_page(h) * freed);
5285         spin_unlock(&inode->i_lock);
5286
5287         /*
5288          * If the subpool has a minimum size, the number of global
5289          * reservations to be released may be adjusted.
5290          *
5291          * Note that !resv_map implies freed == 0. So (chg - freed)
5292          * won't go negative.
5293          */
5294         gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
5295         hugetlb_acct_memory(h, -gbl_reserve);
5296
5297         return 0;
5298 }
5299
5300 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
5301 static unsigned long page_table_shareable(struct vm_area_struct *svma,
5302                                 struct vm_area_struct *vma,
5303                                 unsigned long addr, pgoff_t idx)
5304 {
5305         unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
5306                                 svma->vm_start;
5307         unsigned long sbase = saddr & PUD_MASK;
5308         unsigned long s_end = sbase + PUD_SIZE;
5309
5310         /* Allow segments to share if only one is marked locked */
5311         unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
5312         unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
5313
5314         /*
5315          * match the virtual addresses, permission and the alignment of the
5316          * page table page.
5317          */
5318         if (pmd_index(addr) != pmd_index(saddr) ||
5319             vm_flags != svm_flags ||
5320             !range_in_vma(svma, sbase, s_end))
5321                 return 0;
5322
5323         return saddr;
5324 }
5325
5326 static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr)
5327 {
5328         unsigned long base = addr & PUD_MASK;
5329         unsigned long end = base + PUD_SIZE;
5330
5331         /*
5332          * check on proper vm_flags and page table alignment
5333          */
5334         if (vma->vm_flags & VM_MAYSHARE && range_in_vma(vma, base, end))
5335                 return true;
5336         return false;
5337 }
5338
5339 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
5340 {
5341 #ifdef CONFIG_USERFAULTFD
5342         if (uffd_disable_huge_pmd_share(vma))
5343                 return false;
5344 #endif
5345         return vma_shareable(vma, addr);
5346 }
5347
5348 /*
5349  * Determine if start,end range within vma could be mapped by shared pmd.
5350  * If yes, adjust start and end to cover range associated with possible
5351  * shared pmd mappings.
5352  */
5353 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
5354                                 unsigned long *start, unsigned long *end)
5355 {
5356         unsigned long v_start = ALIGN(vma->vm_start, PUD_SIZE),
5357                 v_end = ALIGN_DOWN(vma->vm_end, PUD_SIZE);
5358
5359         /*
5360          * vma need span at least one aligned PUD size and the start,end range
5361          * must at least partialy within it.
5362          */
5363         if (!(vma->vm_flags & VM_MAYSHARE) || !(v_end > v_start) ||
5364                 (*end <= v_start) || (*start >= v_end))
5365                 return;
5366
5367         /* Extend the range to be PUD aligned for a worst case scenario */
5368         if (*start > v_start)
5369                 *start = ALIGN_DOWN(*start, PUD_SIZE);
5370
5371         if (*end < v_end)
5372                 *end = ALIGN(*end, PUD_SIZE);
5373 }
5374
5375 /*
5376  * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
5377  * and returns the corresponding pte. While this is not necessary for the
5378  * !shared pmd case because we can allocate the pmd later as well, it makes the
5379  * code much cleaner.
5380  *
5381  * This routine must be called with i_mmap_rwsem held in at least read mode if
5382  * sharing is possible.  For hugetlbfs, this prevents removal of any page
5383  * table entries associated with the address space.  This is important as we
5384  * are setting up sharing based on existing page table entries (mappings).
5385  *
5386  * NOTE: This routine is only called from huge_pte_alloc.  Some callers of
5387  * huge_pte_alloc know that sharing is not possible and do not take
5388  * i_mmap_rwsem as a performance optimization.  This is handled by the
5389  * if !vma_shareable check at the beginning of the routine. i_mmap_rwsem is
5390  * only required for subsequent processing.
5391  */
5392 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
5393                       unsigned long addr, pud_t *pud)
5394 {
5395         struct address_space *mapping = vma->vm_file->f_mapping;
5396         pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
5397                         vma->vm_pgoff;
5398         struct vm_area_struct *svma;
5399         unsigned long saddr;
5400         pte_t *spte = NULL;
5401         pte_t *pte;
5402         spinlock_t *ptl;
5403
5404         i_mmap_assert_locked(mapping);
5405         vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
5406                 if (svma == vma)
5407                         continue;
5408
5409                 saddr = page_table_shareable(svma, vma, addr, idx);
5410                 if (saddr) {
5411                         spte = huge_pte_offset(svma->vm_mm, saddr,
5412                                                vma_mmu_pagesize(svma));
5413                         if (spte) {
5414                                 get_page(virt_to_page(spte));
5415                                 break;
5416                         }
5417                 }
5418         }
5419
5420         if (!spte)
5421                 goto out;
5422
5423         ptl = huge_pte_lock(hstate_vma(vma), mm, spte);
5424         if (pud_none(*pud)) {
5425                 pud_populate(mm, pud,
5426                                 (pmd_t *)((unsigned long)spte & PAGE_MASK));
5427                 mm_inc_nr_pmds(mm);
5428         } else {
5429                 put_page(virt_to_page(spte));
5430         }
5431         spin_unlock(ptl);
5432 out:
5433         pte = (pte_t *)pmd_alloc(mm, pud, addr);
5434         return pte;
5435 }
5436
5437 /*
5438  * unmap huge page backed by shared pte.
5439  *
5440  * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
5441  * indicated by page_count > 1, unmap is achieved by clearing pud and
5442  * decrementing the ref count. If count == 1, the pte page is not shared.
5443  *
5444  * Called with page table lock held and i_mmap_rwsem held in write mode.
5445  *
5446  * returns: 1 successfully unmapped a shared pte page
5447  *          0 the underlying pte page is not shared, or it is the last user
5448  */
5449 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
5450                                         unsigned long *addr, pte_t *ptep)
5451 {
5452         pgd_t *pgd = pgd_offset(mm, *addr);
5453         p4d_t *p4d = p4d_offset(pgd, *addr);
5454         pud_t *pud = pud_offset(p4d, *addr);
5455
5456         i_mmap_assert_write_locked(vma->vm_file->f_mapping);
5457         BUG_ON(page_count(virt_to_page(ptep)) == 0);
5458         if (page_count(virt_to_page(ptep)) == 1)
5459                 return 0;
5460
5461         pud_clear(pud);
5462         put_page(virt_to_page(ptep));
5463         mm_dec_nr_pmds(mm);
5464         *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
5465         return 1;
5466 }
5467
5468 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
5469 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
5470                       unsigned long addr, pud_t *pud)
5471 {
5472         return NULL;
5473 }
5474
5475 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
5476                                 unsigned long *addr, pte_t *ptep)
5477 {
5478         return 0;
5479 }
5480
5481 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
5482                                 unsigned long *start, unsigned long *end)
5483 {
5484 }
5485
5486 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
5487 {
5488         return false;
5489 }
5490 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
5491
5492 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
5493 pte_t *huge_pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
5494                         unsigned long addr, unsigned long sz)
5495 {
5496         pgd_t *pgd;
5497         p4d_t *p4d;
5498         pud_t *pud;
5499         pte_t *pte = NULL;
5500
5501         pgd = pgd_offset(mm, addr);
5502         p4d = p4d_alloc(mm, pgd, addr);
5503         if (!p4d)
5504                 return NULL;
5505         pud = pud_alloc(mm, p4d, addr);
5506         if (pud) {
5507                 if (sz == PUD_SIZE) {
5508                         pte = (pte_t *)pud;
5509                 } else {
5510                         BUG_ON(sz != PMD_SIZE);
5511                         if (want_pmd_share(vma, addr) && pud_none(*pud))
5512                                 pte = huge_pmd_share(mm, vma, addr, pud);
5513                         else
5514                                 pte = (pte_t *)pmd_alloc(mm, pud, addr);
5515                 }
5516         }
5517         BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte));
5518
5519         return pte;
5520 }
5521
5522 /*
5523  * huge_pte_offset() - Walk the page table to resolve the hugepage
5524  * entry at address @addr
5525  *
5526  * Return: Pointer to page table entry (PUD or PMD) for
5527  * address @addr, or NULL if a !p*d_present() entry is encountered and the
5528  * size @sz doesn't match the hugepage size at this level of the page
5529  * table.
5530  */
5531 pte_t *huge_pte_offset(struct mm_struct *mm,
5532                        unsigned long addr, unsigned long sz)
5533 {
5534         pgd_t *pgd;
5535         p4d_t *p4d;
5536         pud_t *pud;
5537         pmd_t *pmd;
5538
5539         pgd = pgd_offset(mm, addr);
5540         if (!pgd_present(*pgd))
5541                 return NULL;
5542         p4d = p4d_offset(pgd, addr);
5543         if (!p4d_present(*p4d))
5544                 return NULL;
5545
5546         pud = pud_offset(p4d, addr);
5547         if (sz == PUD_SIZE)
5548                 /* must be pud huge, non-present or none */
5549                 return (pte_t *)pud;
5550         if (!pud_present(*pud))
5551                 return NULL;
5552         /* must have a valid entry and size to go further */
5553
5554         pmd = pmd_offset(pud, addr);
5555         /* must be pmd huge, non-present or none */
5556         return (pte_t *)pmd;
5557 }
5558
5559 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
5560
5561 /*
5562  * These functions are overwritable if your architecture needs its own
5563  * behavior.
5564  */
5565 struct page * __weak
5566 follow_huge_addr(struct mm_struct *mm, unsigned long address,
5567                               int write)
5568 {
5569         return ERR_PTR(-EINVAL);
5570 }
5571
5572 struct page * __weak
5573 follow_huge_pd(struct vm_area_struct *vma,
5574                unsigned long address, hugepd_t hpd, int flags, int pdshift)
5575 {
5576         WARN(1, "hugepd follow called with no support for hugepage directory format\n");
5577         return NULL;
5578 }
5579
5580 struct page * __weak
5581 follow_huge_pmd(struct mm_struct *mm, unsigned long address,
5582                 pmd_t *pmd, int flags)
5583 {
5584         struct page *page = NULL;
5585         spinlock_t *ptl;
5586         pte_t pte;
5587
5588         /* FOLL_GET and FOLL_PIN are mutually exclusive. */
5589         if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
5590                          (FOLL_PIN | FOLL_GET)))
5591                 return NULL;
5592
5593 retry:
5594         ptl = pmd_lockptr(mm, pmd);
5595         spin_lock(ptl);
5596         /*
5597          * make sure that the address range covered by this pmd is not
5598          * unmapped from other threads.
5599          */
5600         if (!pmd_huge(*pmd))
5601                 goto out;
5602         pte = huge_ptep_get((pte_t *)pmd);
5603         if (pte_present(pte)) {
5604                 page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
5605                 /*
5606                  * try_grab_page() should always succeed here, because: a) we
5607                  * hold the pmd (ptl) lock, and b) we've just checked that the
5608                  * huge pmd (head) page is present in the page tables. The ptl
5609                  * prevents the head page and tail pages from being rearranged
5610                  * in any way. So this page must be available at this point,
5611                  * unless the page refcount overflowed:
5612                  */
5613                 if (WARN_ON_ONCE(!try_grab_page(page, flags))) {
5614                         page = NULL;
5615                         goto out;
5616                 }
5617         } else {
5618                 if (is_hugetlb_entry_migration(pte)) {
5619                         spin_unlock(ptl);
5620                         __migration_entry_wait(mm, (pte_t *)pmd, ptl);
5621                         goto retry;
5622                 }
5623                 /*
5624                  * hwpoisoned entry is treated as no_page_table in
5625                  * follow_page_mask().
5626                  */
5627         }
5628 out:
5629         spin_unlock(ptl);
5630         return page;
5631 }
5632
5633 struct page * __weak
5634 follow_huge_pud(struct mm_struct *mm, unsigned long address,
5635                 pud_t *pud, int flags)
5636 {
5637         if (flags & (FOLL_GET | FOLL_PIN))
5638                 return NULL;
5639
5640         return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
5641 }
5642
5643 struct page * __weak
5644 follow_huge_pgd(struct mm_struct *mm, unsigned long address, pgd_t *pgd, int flags)
5645 {
5646         if (flags & (FOLL_GET | FOLL_PIN))
5647                 return NULL;
5648
5649         return pte_page(*(pte_t *)pgd) + ((address & ~PGDIR_MASK) >> PAGE_SHIFT);
5650 }
5651
5652 bool isolate_huge_page(struct page *page, struct list_head *list)
5653 {
5654         bool ret = true;
5655
5656         spin_lock_irq(&hugetlb_lock);
5657         if (!PageHeadHuge(page) ||
5658             !HPageMigratable(page) ||
5659             !get_page_unless_zero(page)) {
5660                 ret = false;
5661                 goto unlock;
5662         }
5663         ClearHPageMigratable(page);
5664         list_move_tail(&page->lru, list);
5665 unlock:
5666         spin_unlock_irq(&hugetlb_lock);
5667         return ret;
5668 }
5669
5670 void putback_active_hugepage(struct page *page)
5671 {
5672         spin_lock_irq(&hugetlb_lock);
5673         SetHPageMigratable(page);
5674         list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
5675         spin_unlock_irq(&hugetlb_lock);
5676         put_page(page);
5677 }
5678
5679 void move_hugetlb_state(struct page *oldpage, struct page *newpage, int reason)
5680 {
5681         struct hstate *h = page_hstate(oldpage);
5682
5683         hugetlb_cgroup_migrate(oldpage, newpage);
5684         set_page_owner_migrate_reason(newpage, reason);
5685
5686         /*
5687          * transfer temporary state of the new huge page. This is
5688          * reverse to other transitions because the newpage is going to
5689          * be final while the old one will be freed so it takes over
5690          * the temporary status.
5691          *
5692          * Also note that we have to transfer the per-node surplus state
5693          * here as well otherwise the global surplus count will not match
5694          * the per-node's.
5695          */
5696         if (HPageTemporary(newpage)) {
5697                 int old_nid = page_to_nid(oldpage);
5698                 int new_nid = page_to_nid(newpage);
5699
5700                 SetHPageTemporary(oldpage);
5701                 ClearHPageTemporary(newpage);
5702
5703                 /*
5704                  * There is no need to transfer the per-node surplus state
5705                  * when we do not cross the node.
5706                  */
5707                 if (new_nid == old_nid)
5708                         return;
5709                 spin_lock_irq(&hugetlb_lock);
5710                 if (h->surplus_huge_pages_node[old_nid]) {
5711                         h->surplus_huge_pages_node[old_nid]--;
5712                         h->surplus_huge_pages_node[new_nid]++;
5713                 }
5714                 spin_unlock_irq(&hugetlb_lock);
5715         }
5716 }
5717
5718 /*
5719  * This function will unconditionally remove all the shared pmd pgtable entries
5720  * within the specific vma for a hugetlbfs memory range.
5721  */
5722 void hugetlb_unshare_all_pmds(struct vm_area_struct *vma)
5723 {
5724         struct hstate *h = hstate_vma(vma);
5725         unsigned long sz = huge_page_size(h);
5726         struct mm_struct *mm = vma->vm_mm;
5727         struct mmu_notifier_range range;
5728         unsigned long address, start, end;
5729         spinlock_t *ptl;
5730         pte_t *ptep;
5731
5732         if (!(vma->vm_flags & VM_MAYSHARE))
5733                 return;
5734
5735         start = ALIGN(vma->vm_start, PUD_SIZE);
5736         end = ALIGN_DOWN(vma->vm_end, PUD_SIZE);
5737
5738         if (start >= end)
5739                 return;
5740
5741         /*
5742          * No need to call adjust_range_if_pmd_sharing_possible(), because
5743          * we have already done the PUD_SIZE alignment.
5744          */
5745         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
5746                                 start, end);
5747         mmu_notifier_invalidate_range_start(&range);
5748         i_mmap_lock_write(vma->vm_file->f_mapping);
5749         for (address = start; address < end; address += PUD_SIZE) {
5750                 unsigned long tmp = address;
5751
5752                 ptep = huge_pte_offset(mm, address, sz);
5753                 if (!ptep)
5754                         continue;
5755                 ptl = huge_pte_lock(h, mm, ptep);
5756                 /* We don't want 'address' to be changed */
5757                 huge_pmd_unshare(mm, vma, &tmp, ptep);
5758                 spin_unlock(ptl);
5759         }
5760         flush_hugetlb_tlb_range(vma, start, end);
5761         i_mmap_unlock_write(vma->vm_file->f_mapping);
5762         /*
5763          * No need to call mmu_notifier_invalidate_range(), see
5764          * Documentation/vm/mmu_notifier.rst.
5765          */
5766         mmu_notifier_invalidate_range_end(&range);
5767 }
5768
5769 #ifdef CONFIG_CMA
5770 static bool cma_reserve_called __initdata;
5771
5772 static int __init cmdline_parse_hugetlb_cma(char *p)
5773 {
5774         hugetlb_cma_size = memparse(p, &p);
5775         return 0;
5776 }
5777
5778 early_param("hugetlb_cma", cmdline_parse_hugetlb_cma);
5779
5780 void __init hugetlb_cma_reserve(int order)
5781 {
5782         unsigned long size, reserved, per_node;
5783         int nid;
5784
5785         cma_reserve_called = true;
5786
5787         if (!hugetlb_cma_size)
5788                 return;
5789
5790         if (hugetlb_cma_size < (PAGE_SIZE << order)) {
5791                 pr_warn("hugetlb_cma: cma area should be at least %lu MiB\n",
5792                         (PAGE_SIZE << order) / SZ_1M);
5793                 return;
5794         }
5795
5796         /*
5797          * If 3 GB area is requested on a machine with 4 numa nodes,
5798          * let's allocate 1 GB on first three nodes and ignore the last one.
5799          */
5800         per_node = DIV_ROUND_UP(hugetlb_cma_size, nr_online_nodes);
5801         pr_info("hugetlb_cma: reserve %lu MiB, up to %lu MiB per node\n",
5802                 hugetlb_cma_size / SZ_1M, per_node / SZ_1M);
5803
5804         reserved = 0;
5805         for_each_node_state(nid, N_ONLINE) {
5806                 int res;
5807                 char name[CMA_MAX_NAME];
5808
5809                 size = min(per_node, hugetlb_cma_size - reserved);
5810                 size = round_up(size, PAGE_SIZE << order);
5811
5812                 snprintf(name, sizeof(name), "hugetlb%d", nid);
5813                 res = cma_declare_contiguous_nid(0, size, 0, PAGE_SIZE << order,
5814                                                  0, false, name,
5815                                                  &hugetlb_cma[nid], nid);
5816                 if (res) {
5817                         pr_warn("hugetlb_cma: reservation failed: err %d, node %d",
5818                                 res, nid);
5819                         continue;
5820                 }
5821
5822                 reserved += size;
5823                 pr_info("hugetlb_cma: reserved %lu MiB on node %d\n",
5824                         size / SZ_1M, nid);
5825
5826                 if (reserved >= hugetlb_cma_size)
5827                         break;
5828         }
5829 }
5830
5831 void __init hugetlb_cma_check(void)
5832 {
5833         if (!hugetlb_cma_size || cma_reserve_called)
5834                 return;
5835
5836         pr_warn("hugetlb_cma: the option isn't supported by current arch\n");
5837 }
5838
5839 #endif /* CONFIG_CMA */