Merge tag 'clk-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/clk/linux
[linux-2.6-microblaze.git] / mm / hugetlb.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Generic hugetlb support.
4  * (C) Nadia Yvette Chambers, April 2004
5  */
6 #include <linux/list.h>
7 #include <linux/init.h>
8 #include <linux/mm.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/compiler.h>
17 #include <linux/cpuset.h>
18 #include <linux/mutex.h>
19 #include <linux/memblock.h>
20 #include <linux/sysfs.h>
21 #include <linux/slab.h>
22 #include <linux/mmdebug.h>
23 #include <linux/sched/signal.h>
24 #include <linux/rmap.h>
25 #include <linux/string_helpers.h>
26 #include <linux/swap.h>
27 #include <linux/swapops.h>
28 #include <linux/jhash.h>
29 #include <linux/numa.h>
30 #include <linux/llist.h>
31 #include <linux/cma.h>
32
33 #include <asm/page.h>
34 #include <asm/tlb.h>
35
36 #include <linux/io.h>
37 #include <linux/hugetlb.h>
38 #include <linux/hugetlb_cgroup.h>
39 #include <linux/node.h>
40 #include <linux/userfaultfd_k.h>
41 #include <linux/page_owner.h>
42 #include "internal.h"
43
44 int hugetlb_max_hstate __read_mostly;
45 unsigned int default_hstate_idx;
46 struct hstate hstates[HUGE_MAX_HSTATE];
47
48 static struct cma *hugetlb_cma[MAX_NUMNODES];
49
50 /*
51  * Minimum page order among possible hugepage sizes, set to a proper value
52  * at boot time.
53  */
54 static unsigned int minimum_order __read_mostly = UINT_MAX;
55
56 __initdata LIST_HEAD(huge_boot_pages);
57
58 /* for command line parsing */
59 static struct hstate * __initdata parsed_hstate;
60 static unsigned long __initdata default_hstate_max_huge_pages;
61 static bool __initdata parsed_valid_hugepagesz = true;
62 static bool __initdata parsed_default_hugepagesz;
63
64 /*
65  * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
66  * free_huge_pages, and surplus_huge_pages.
67  */
68 DEFINE_SPINLOCK(hugetlb_lock);
69
70 /*
71  * Serializes faults on the same logical page.  This is used to
72  * prevent spurious OOMs when the hugepage pool is fully utilized.
73  */
74 static int num_fault_mutexes;
75 struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
76
77 /* Forward declaration */
78 static int hugetlb_acct_memory(struct hstate *h, long delta);
79
80 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
81 {
82         bool free = (spool->count == 0) && (spool->used_hpages == 0);
83
84         spin_unlock(&spool->lock);
85
86         /* If no pages are used, and no other handles to the subpool
87          * remain, give up any reservations based on minimum size and
88          * free the subpool */
89         if (free) {
90                 if (spool->min_hpages != -1)
91                         hugetlb_acct_memory(spool->hstate,
92                                                 -spool->min_hpages);
93                 kfree(spool);
94         }
95 }
96
97 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
98                                                 long min_hpages)
99 {
100         struct hugepage_subpool *spool;
101
102         spool = kzalloc(sizeof(*spool), GFP_KERNEL);
103         if (!spool)
104                 return NULL;
105
106         spin_lock_init(&spool->lock);
107         spool->count = 1;
108         spool->max_hpages = max_hpages;
109         spool->hstate = h;
110         spool->min_hpages = min_hpages;
111
112         if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
113                 kfree(spool);
114                 return NULL;
115         }
116         spool->rsv_hpages = min_hpages;
117
118         return spool;
119 }
120
121 void hugepage_put_subpool(struct hugepage_subpool *spool)
122 {
123         spin_lock(&spool->lock);
124         BUG_ON(!spool->count);
125         spool->count--;
126         unlock_or_release_subpool(spool);
127 }
128
129 /*
130  * Subpool accounting for allocating and reserving pages.
131  * Return -ENOMEM if there are not enough resources to satisfy the
132  * the request.  Otherwise, return the number of pages by which the
133  * global pools must be adjusted (upward).  The returned value may
134  * only be different than the passed value (delta) in the case where
135  * a subpool minimum size must be maintained.
136  */
137 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
138                                       long delta)
139 {
140         long ret = delta;
141
142         if (!spool)
143                 return ret;
144
145         spin_lock(&spool->lock);
146
147         if (spool->max_hpages != -1) {          /* maximum size accounting */
148                 if ((spool->used_hpages + delta) <= spool->max_hpages)
149                         spool->used_hpages += delta;
150                 else {
151                         ret = -ENOMEM;
152                         goto unlock_ret;
153                 }
154         }
155
156         /* minimum size accounting */
157         if (spool->min_hpages != -1 && spool->rsv_hpages) {
158                 if (delta > spool->rsv_hpages) {
159                         /*
160                          * Asking for more reserves than those already taken on
161                          * behalf of subpool.  Return difference.
162                          */
163                         ret = delta - spool->rsv_hpages;
164                         spool->rsv_hpages = 0;
165                 } else {
166                         ret = 0;        /* reserves already accounted for */
167                         spool->rsv_hpages -= delta;
168                 }
169         }
170
171 unlock_ret:
172         spin_unlock(&spool->lock);
173         return ret;
174 }
175
176 /*
177  * Subpool accounting for freeing and unreserving pages.
178  * Return the number of global page reservations that must be dropped.
179  * The return value may only be different than the passed value (delta)
180  * in the case where a subpool minimum size must be maintained.
181  */
182 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
183                                        long delta)
184 {
185         long ret = delta;
186
187         if (!spool)
188                 return delta;
189
190         spin_lock(&spool->lock);
191
192         if (spool->max_hpages != -1)            /* maximum size accounting */
193                 spool->used_hpages -= delta;
194
195          /* minimum size accounting */
196         if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
197                 if (spool->rsv_hpages + delta <= spool->min_hpages)
198                         ret = 0;
199                 else
200                         ret = spool->rsv_hpages + delta - spool->min_hpages;
201
202                 spool->rsv_hpages += delta;
203                 if (spool->rsv_hpages > spool->min_hpages)
204                         spool->rsv_hpages = spool->min_hpages;
205         }
206
207         /*
208          * If hugetlbfs_put_super couldn't free spool due to an outstanding
209          * quota reference, free it now.
210          */
211         unlock_or_release_subpool(spool);
212
213         return ret;
214 }
215
216 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
217 {
218         return HUGETLBFS_SB(inode->i_sb)->spool;
219 }
220
221 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
222 {
223         return subpool_inode(file_inode(vma->vm_file));
224 }
225
226 /* Helper that removes a struct file_region from the resv_map cache and returns
227  * it for use.
228  */
229 static struct file_region *
230 get_file_region_entry_from_cache(struct resv_map *resv, long from, long to)
231 {
232         struct file_region *nrg = NULL;
233
234         VM_BUG_ON(resv->region_cache_count <= 0);
235
236         resv->region_cache_count--;
237         nrg = list_first_entry(&resv->region_cache, struct file_region, link);
238         VM_BUG_ON(!nrg);
239         list_del(&nrg->link);
240
241         nrg->from = from;
242         nrg->to = to;
243
244         return nrg;
245 }
246
247 static void copy_hugetlb_cgroup_uncharge_info(struct file_region *nrg,
248                                               struct file_region *rg)
249 {
250 #ifdef CONFIG_CGROUP_HUGETLB
251         nrg->reservation_counter = rg->reservation_counter;
252         nrg->css = rg->css;
253         if (rg->css)
254                 css_get(rg->css);
255 #endif
256 }
257
258 /* Helper that records hugetlb_cgroup uncharge info. */
259 static void record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup *h_cg,
260                                                 struct hstate *h,
261                                                 struct resv_map *resv,
262                                                 struct file_region *nrg)
263 {
264 #ifdef CONFIG_CGROUP_HUGETLB
265         if (h_cg) {
266                 nrg->reservation_counter =
267                         &h_cg->rsvd_hugepage[hstate_index(h)];
268                 nrg->css = &h_cg->css;
269                 if (!resv->pages_per_hpage)
270                         resv->pages_per_hpage = pages_per_huge_page(h);
271                 /* pages_per_hpage should be the same for all entries in
272                  * a resv_map.
273                  */
274                 VM_BUG_ON(resv->pages_per_hpage != pages_per_huge_page(h));
275         } else {
276                 nrg->reservation_counter = NULL;
277                 nrg->css = NULL;
278         }
279 #endif
280 }
281
282 static bool has_same_uncharge_info(struct file_region *rg,
283                                    struct file_region *org)
284 {
285 #ifdef CONFIG_CGROUP_HUGETLB
286         return rg && org &&
287                rg->reservation_counter == org->reservation_counter &&
288                rg->css == org->css;
289
290 #else
291         return true;
292 #endif
293 }
294
295 static void coalesce_file_region(struct resv_map *resv, struct file_region *rg)
296 {
297         struct file_region *nrg = NULL, *prg = NULL;
298
299         prg = list_prev_entry(rg, link);
300         if (&prg->link != &resv->regions && prg->to == rg->from &&
301             has_same_uncharge_info(prg, rg)) {
302                 prg->to = rg->to;
303
304                 list_del(&rg->link);
305                 kfree(rg);
306
307                 coalesce_file_region(resv, prg);
308                 return;
309         }
310
311         nrg = list_next_entry(rg, link);
312         if (&nrg->link != &resv->regions && nrg->from == rg->to &&
313             has_same_uncharge_info(nrg, rg)) {
314                 nrg->from = rg->from;
315
316                 list_del(&rg->link);
317                 kfree(rg);
318
319                 coalesce_file_region(resv, nrg);
320                 return;
321         }
322 }
323
324 /* Must be called with resv->lock held. Calling this with count_only == true
325  * will count the number of pages to be added but will not modify the linked
326  * list. If regions_needed != NULL and count_only == true, then regions_needed
327  * will indicate the number of file_regions needed in the cache to carry out to
328  * add the regions for this range.
329  */
330 static long add_reservation_in_range(struct resv_map *resv, long f, long t,
331                                      struct hugetlb_cgroup *h_cg,
332                                      struct hstate *h, long *regions_needed,
333                                      bool count_only)
334 {
335         long add = 0;
336         struct list_head *head = &resv->regions;
337         long last_accounted_offset = f;
338         struct file_region *rg = NULL, *trg = NULL, *nrg = NULL;
339
340         if (regions_needed)
341                 *regions_needed = 0;
342
343         /* In this loop, we essentially handle an entry for the range
344          * [last_accounted_offset, rg->from), at every iteration, with some
345          * bounds checking.
346          */
347         list_for_each_entry_safe(rg, trg, head, link) {
348                 /* Skip irrelevant regions that start before our range. */
349                 if (rg->from < f) {
350                         /* If this region ends after the last accounted offset,
351                          * then we need to update last_accounted_offset.
352                          */
353                         if (rg->to > last_accounted_offset)
354                                 last_accounted_offset = rg->to;
355                         continue;
356                 }
357
358                 /* When we find a region that starts beyond our range, we've
359                  * finished.
360                  */
361                 if (rg->from > t)
362                         break;
363
364                 /* Add an entry for last_accounted_offset -> rg->from, and
365                  * update last_accounted_offset.
366                  */
367                 if (rg->from > last_accounted_offset) {
368                         add += rg->from - last_accounted_offset;
369                         if (!count_only) {
370                                 nrg = get_file_region_entry_from_cache(
371                                         resv, last_accounted_offset, rg->from);
372                                 record_hugetlb_cgroup_uncharge_info(h_cg, h,
373                                                                     resv, nrg);
374                                 list_add(&nrg->link, rg->link.prev);
375                                 coalesce_file_region(resv, nrg);
376                         } else if (regions_needed)
377                                 *regions_needed += 1;
378                 }
379
380                 last_accounted_offset = rg->to;
381         }
382
383         /* Handle the case where our range extends beyond
384          * last_accounted_offset.
385          */
386         if (last_accounted_offset < t) {
387                 add += t - last_accounted_offset;
388                 if (!count_only) {
389                         nrg = get_file_region_entry_from_cache(
390                                 resv, last_accounted_offset, t);
391                         record_hugetlb_cgroup_uncharge_info(h_cg, h, resv, nrg);
392                         list_add(&nrg->link, rg->link.prev);
393                         coalesce_file_region(resv, nrg);
394                 } else if (regions_needed)
395                         *regions_needed += 1;
396         }
397
398         VM_BUG_ON(add < 0);
399         return add;
400 }
401
402 /* Must be called with resv->lock acquired. Will drop lock to allocate entries.
403  */
404 static int allocate_file_region_entries(struct resv_map *resv,
405                                         int regions_needed)
406         __must_hold(&resv->lock)
407 {
408         struct list_head allocated_regions;
409         int to_allocate = 0, i = 0;
410         struct file_region *trg = NULL, *rg = NULL;
411
412         VM_BUG_ON(regions_needed < 0);
413
414         INIT_LIST_HEAD(&allocated_regions);
415
416         /*
417          * Check for sufficient descriptors in the cache to accommodate
418          * the number of in progress add operations plus regions_needed.
419          *
420          * This is a while loop because when we drop the lock, some other call
421          * to region_add or region_del may have consumed some region_entries,
422          * so we keep looping here until we finally have enough entries for
423          * (adds_in_progress + regions_needed).
424          */
425         while (resv->region_cache_count <
426                (resv->adds_in_progress + regions_needed)) {
427                 to_allocate = resv->adds_in_progress + regions_needed -
428                               resv->region_cache_count;
429
430                 /* At this point, we should have enough entries in the cache
431                  * for all the existings adds_in_progress. We should only be
432                  * needing to allocate for regions_needed.
433                  */
434                 VM_BUG_ON(resv->region_cache_count < resv->adds_in_progress);
435
436                 spin_unlock(&resv->lock);
437                 for (i = 0; i < to_allocate; i++) {
438                         trg = kmalloc(sizeof(*trg), GFP_KERNEL);
439                         if (!trg)
440                                 goto out_of_memory;
441                         list_add(&trg->link, &allocated_regions);
442                 }
443
444                 spin_lock(&resv->lock);
445
446                 list_for_each_entry_safe(rg, trg, &allocated_regions, link) {
447                         list_del(&rg->link);
448                         list_add(&rg->link, &resv->region_cache);
449                         resv->region_cache_count++;
450                 }
451         }
452
453         return 0;
454
455 out_of_memory:
456         list_for_each_entry_safe(rg, trg, &allocated_regions, link) {
457                 list_del(&rg->link);
458                 kfree(rg);
459         }
460         return -ENOMEM;
461 }
462
463 /*
464  * Add the huge page range represented by [f, t) to the reserve
465  * map.  Regions will be taken from the cache to fill in this range.
466  * Sufficient regions should exist in the cache due to the previous
467  * call to region_chg with the same range, but in some cases the cache will not
468  * have sufficient entries due to races with other code doing region_add or
469  * region_del.  The extra needed entries will be allocated.
470  *
471  * regions_needed is the out value provided by a previous call to region_chg.
472  *
473  * Return the number of new huge pages added to the map.  This number is greater
474  * than or equal to zero.  If file_region entries needed to be allocated for
475  * this operation and we were not able to allocate, it returns -ENOMEM.
476  * region_add of regions of length 1 never allocate file_regions and cannot
477  * fail; region_chg will always allocate at least 1 entry and a region_add for
478  * 1 page will only require at most 1 entry.
479  */
480 static long region_add(struct resv_map *resv, long f, long t,
481                        long in_regions_needed, struct hstate *h,
482                        struct hugetlb_cgroup *h_cg)
483 {
484         long add = 0, actual_regions_needed = 0;
485
486         spin_lock(&resv->lock);
487 retry:
488
489         /* Count how many regions are actually needed to execute this add. */
490         add_reservation_in_range(resv, f, t, NULL, NULL, &actual_regions_needed,
491                                  true);
492
493         /*
494          * Check for sufficient descriptors in the cache to accommodate
495          * this add operation. Note that actual_regions_needed may be greater
496          * than in_regions_needed, as the resv_map may have been modified since
497          * the region_chg call. In this case, we need to make sure that we
498          * allocate extra entries, such that we have enough for all the
499          * existing adds_in_progress, plus the excess needed for this
500          * operation.
501          */
502         if (actual_regions_needed > in_regions_needed &&
503             resv->region_cache_count <
504                     resv->adds_in_progress +
505                             (actual_regions_needed - in_regions_needed)) {
506                 /* region_add operation of range 1 should never need to
507                  * allocate file_region entries.
508                  */
509                 VM_BUG_ON(t - f <= 1);
510
511                 if (allocate_file_region_entries(
512                             resv, actual_regions_needed - in_regions_needed)) {
513                         return -ENOMEM;
514                 }
515
516                 goto retry;
517         }
518
519         add = add_reservation_in_range(resv, f, t, h_cg, h, NULL, false);
520
521         resv->adds_in_progress -= in_regions_needed;
522
523         spin_unlock(&resv->lock);
524         VM_BUG_ON(add < 0);
525         return add;
526 }
527
528 /*
529  * Examine the existing reserve map and determine how many
530  * huge pages in the specified range [f, t) are NOT currently
531  * represented.  This routine is called before a subsequent
532  * call to region_add that will actually modify the reserve
533  * map to add the specified range [f, t).  region_chg does
534  * not change the number of huge pages represented by the
535  * map.  A number of new file_region structures is added to the cache as a
536  * placeholder, for the subsequent region_add call to use. At least 1
537  * file_region structure is added.
538  *
539  * out_regions_needed is the number of regions added to the
540  * resv->adds_in_progress.  This value needs to be provided to a follow up call
541  * to region_add or region_abort for proper accounting.
542  *
543  * Returns the number of huge pages that need to be added to the existing
544  * reservation map for the range [f, t).  This number is greater or equal to
545  * zero.  -ENOMEM is returned if a new file_region structure or cache entry
546  * is needed and can not be allocated.
547  */
548 static long region_chg(struct resv_map *resv, long f, long t,
549                        long *out_regions_needed)
550 {
551         long chg = 0;
552
553         spin_lock(&resv->lock);
554
555         /* Count how many hugepages in this range are NOT respresented. */
556         chg = add_reservation_in_range(resv, f, t, NULL, NULL,
557                                        out_regions_needed, true);
558
559         if (*out_regions_needed == 0)
560                 *out_regions_needed = 1;
561
562         if (allocate_file_region_entries(resv, *out_regions_needed))
563                 return -ENOMEM;
564
565         resv->adds_in_progress += *out_regions_needed;
566
567         spin_unlock(&resv->lock);
568         return chg;
569 }
570
571 /*
572  * Abort the in progress add operation.  The adds_in_progress field
573  * of the resv_map keeps track of the operations in progress between
574  * calls to region_chg and region_add.  Operations are sometimes
575  * aborted after the call to region_chg.  In such cases, region_abort
576  * is called to decrement the adds_in_progress counter. regions_needed
577  * is the value returned by the region_chg call, it is used to decrement
578  * the adds_in_progress counter.
579  *
580  * NOTE: The range arguments [f, t) are not needed or used in this
581  * routine.  They are kept to make reading the calling code easier as
582  * arguments will match the associated region_chg call.
583  */
584 static void region_abort(struct resv_map *resv, long f, long t,
585                          long regions_needed)
586 {
587         spin_lock(&resv->lock);
588         VM_BUG_ON(!resv->region_cache_count);
589         resv->adds_in_progress -= regions_needed;
590         spin_unlock(&resv->lock);
591 }
592
593 /*
594  * Delete the specified range [f, t) from the reserve map.  If the
595  * t parameter is LONG_MAX, this indicates that ALL regions after f
596  * should be deleted.  Locate the regions which intersect [f, t)
597  * and either trim, delete or split the existing regions.
598  *
599  * Returns the number of huge pages deleted from the reserve map.
600  * In the normal case, the return value is zero or more.  In the
601  * case where a region must be split, a new region descriptor must
602  * be allocated.  If the allocation fails, -ENOMEM will be returned.
603  * NOTE: If the parameter t == LONG_MAX, then we will never split
604  * a region and possibly return -ENOMEM.  Callers specifying
605  * t == LONG_MAX do not need to check for -ENOMEM error.
606  */
607 static long region_del(struct resv_map *resv, long f, long t)
608 {
609         struct list_head *head = &resv->regions;
610         struct file_region *rg, *trg;
611         struct file_region *nrg = NULL;
612         long del = 0;
613
614 retry:
615         spin_lock(&resv->lock);
616         list_for_each_entry_safe(rg, trg, head, link) {
617                 /*
618                  * Skip regions before the range to be deleted.  file_region
619                  * ranges are normally of the form [from, to).  However, there
620                  * may be a "placeholder" entry in the map which is of the form
621                  * (from, to) with from == to.  Check for placeholder entries
622                  * at the beginning of the range to be deleted.
623                  */
624                 if (rg->to <= f && (rg->to != rg->from || rg->to != f))
625                         continue;
626
627                 if (rg->from >= t)
628                         break;
629
630                 if (f > rg->from && t < rg->to) { /* Must split region */
631                         /*
632                          * Check for an entry in the cache before dropping
633                          * lock and attempting allocation.
634                          */
635                         if (!nrg &&
636                             resv->region_cache_count > resv->adds_in_progress) {
637                                 nrg = list_first_entry(&resv->region_cache,
638                                                         struct file_region,
639                                                         link);
640                                 list_del(&nrg->link);
641                                 resv->region_cache_count--;
642                         }
643
644                         if (!nrg) {
645                                 spin_unlock(&resv->lock);
646                                 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
647                                 if (!nrg)
648                                         return -ENOMEM;
649                                 goto retry;
650                         }
651
652                         del += t - f;
653
654                         /* New entry for end of split region */
655                         nrg->from = t;
656                         nrg->to = rg->to;
657
658                         copy_hugetlb_cgroup_uncharge_info(nrg, rg);
659
660                         INIT_LIST_HEAD(&nrg->link);
661
662                         /* Original entry is trimmed */
663                         rg->to = f;
664
665                         hugetlb_cgroup_uncharge_file_region(
666                                 resv, rg, nrg->to - nrg->from);
667
668                         list_add(&nrg->link, &rg->link);
669                         nrg = NULL;
670                         break;
671                 }
672
673                 if (f <= rg->from && t >= rg->to) { /* Remove entire region */
674                         del += rg->to - rg->from;
675                         hugetlb_cgroup_uncharge_file_region(resv, rg,
676                                                             rg->to - rg->from);
677                         list_del(&rg->link);
678                         kfree(rg);
679                         continue;
680                 }
681
682                 if (f <= rg->from) {    /* Trim beginning of region */
683                         del += t - rg->from;
684                         rg->from = t;
685
686                         hugetlb_cgroup_uncharge_file_region(resv, rg,
687                                                             t - rg->from);
688                 } else {                /* Trim end of region */
689                         del += rg->to - f;
690                         rg->to = f;
691
692                         hugetlb_cgroup_uncharge_file_region(resv, rg,
693                                                             rg->to - f);
694                 }
695         }
696
697         spin_unlock(&resv->lock);
698         kfree(nrg);
699         return del;
700 }
701
702 /*
703  * A rare out of memory error was encountered which prevented removal of
704  * the reserve map region for a page.  The huge page itself was free'ed
705  * and removed from the page cache.  This routine will adjust the subpool
706  * usage count, and the global reserve count if needed.  By incrementing
707  * these counts, the reserve map entry which could not be deleted will
708  * appear as a "reserved" entry instead of simply dangling with incorrect
709  * counts.
710  */
711 void hugetlb_fix_reserve_counts(struct inode *inode)
712 {
713         struct hugepage_subpool *spool = subpool_inode(inode);
714         long rsv_adjust;
715
716         rsv_adjust = hugepage_subpool_get_pages(spool, 1);
717         if (rsv_adjust) {
718                 struct hstate *h = hstate_inode(inode);
719
720                 hugetlb_acct_memory(h, 1);
721         }
722 }
723
724 /*
725  * Count and return the number of huge pages in the reserve map
726  * that intersect with the range [f, t).
727  */
728 static long region_count(struct resv_map *resv, long f, long t)
729 {
730         struct list_head *head = &resv->regions;
731         struct file_region *rg;
732         long chg = 0;
733
734         spin_lock(&resv->lock);
735         /* Locate each segment we overlap with, and count that overlap. */
736         list_for_each_entry(rg, head, link) {
737                 long seg_from;
738                 long seg_to;
739
740                 if (rg->to <= f)
741                         continue;
742                 if (rg->from >= t)
743                         break;
744
745                 seg_from = max(rg->from, f);
746                 seg_to = min(rg->to, t);
747
748                 chg += seg_to - seg_from;
749         }
750         spin_unlock(&resv->lock);
751
752         return chg;
753 }
754
755 /*
756  * Convert the address within this vma to the page offset within
757  * the mapping, in pagecache page units; huge pages here.
758  */
759 static pgoff_t vma_hugecache_offset(struct hstate *h,
760                         struct vm_area_struct *vma, unsigned long address)
761 {
762         return ((address - vma->vm_start) >> huge_page_shift(h)) +
763                         (vma->vm_pgoff >> huge_page_order(h));
764 }
765
766 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
767                                      unsigned long address)
768 {
769         return vma_hugecache_offset(hstate_vma(vma), vma, address);
770 }
771 EXPORT_SYMBOL_GPL(linear_hugepage_index);
772
773 /*
774  * Return the size of the pages allocated when backing a VMA. In the majority
775  * cases this will be same size as used by the page table entries.
776  */
777 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
778 {
779         if (vma->vm_ops && vma->vm_ops->pagesize)
780                 return vma->vm_ops->pagesize(vma);
781         return PAGE_SIZE;
782 }
783 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
784
785 /*
786  * Return the page size being used by the MMU to back a VMA. In the majority
787  * of cases, the page size used by the kernel matches the MMU size. On
788  * architectures where it differs, an architecture-specific 'strong'
789  * version of this symbol is required.
790  */
791 __weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
792 {
793         return vma_kernel_pagesize(vma);
794 }
795
796 /*
797  * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
798  * bits of the reservation map pointer, which are always clear due to
799  * alignment.
800  */
801 #define HPAGE_RESV_OWNER    (1UL << 0)
802 #define HPAGE_RESV_UNMAPPED (1UL << 1)
803 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
804
805 /*
806  * These helpers are used to track how many pages are reserved for
807  * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
808  * is guaranteed to have their future faults succeed.
809  *
810  * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
811  * the reserve counters are updated with the hugetlb_lock held. It is safe
812  * to reset the VMA at fork() time as it is not in use yet and there is no
813  * chance of the global counters getting corrupted as a result of the values.
814  *
815  * The private mapping reservation is represented in a subtly different
816  * manner to a shared mapping.  A shared mapping has a region map associated
817  * with the underlying file, this region map represents the backing file
818  * pages which have ever had a reservation assigned which this persists even
819  * after the page is instantiated.  A private mapping has a region map
820  * associated with the original mmap which is attached to all VMAs which
821  * reference it, this region map represents those offsets which have consumed
822  * reservation ie. where pages have been instantiated.
823  */
824 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
825 {
826         return (unsigned long)vma->vm_private_data;
827 }
828
829 static void set_vma_private_data(struct vm_area_struct *vma,
830                                                         unsigned long value)
831 {
832         vma->vm_private_data = (void *)value;
833 }
834
835 static void
836 resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map *resv_map,
837                                           struct hugetlb_cgroup *h_cg,
838                                           struct hstate *h)
839 {
840 #ifdef CONFIG_CGROUP_HUGETLB
841         if (!h_cg || !h) {
842                 resv_map->reservation_counter = NULL;
843                 resv_map->pages_per_hpage = 0;
844                 resv_map->css = NULL;
845         } else {
846                 resv_map->reservation_counter =
847                         &h_cg->rsvd_hugepage[hstate_index(h)];
848                 resv_map->pages_per_hpage = pages_per_huge_page(h);
849                 resv_map->css = &h_cg->css;
850         }
851 #endif
852 }
853
854 struct resv_map *resv_map_alloc(void)
855 {
856         struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
857         struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
858
859         if (!resv_map || !rg) {
860                 kfree(resv_map);
861                 kfree(rg);
862                 return NULL;
863         }
864
865         kref_init(&resv_map->refs);
866         spin_lock_init(&resv_map->lock);
867         INIT_LIST_HEAD(&resv_map->regions);
868
869         resv_map->adds_in_progress = 0;
870         /*
871          * Initialize these to 0. On shared mappings, 0's here indicate these
872          * fields don't do cgroup accounting. On private mappings, these will be
873          * re-initialized to the proper values, to indicate that hugetlb cgroup
874          * reservations are to be un-charged from here.
875          */
876         resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, NULL, NULL);
877
878         INIT_LIST_HEAD(&resv_map->region_cache);
879         list_add(&rg->link, &resv_map->region_cache);
880         resv_map->region_cache_count = 1;
881
882         return resv_map;
883 }
884
885 void resv_map_release(struct kref *ref)
886 {
887         struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
888         struct list_head *head = &resv_map->region_cache;
889         struct file_region *rg, *trg;
890
891         /* Clear out any active regions before we release the map. */
892         region_del(resv_map, 0, LONG_MAX);
893
894         /* ... and any entries left in the cache */
895         list_for_each_entry_safe(rg, trg, head, link) {
896                 list_del(&rg->link);
897                 kfree(rg);
898         }
899
900         VM_BUG_ON(resv_map->adds_in_progress);
901
902         kfree(resv_map);
903 }
904
905 static inline struct resv_map *inode_resv_map(struct inode *inode)
906 {
907         /*
908          * At inode evict time, i_mapping may not point to the original
909          * address space within the inode.  This original address space
910          * contains the pointer to the resv_map.  So, always use the
911          * address space embedded within the inode.
912          * The VERY common case is inode->mapping == &inode->i_data but,
913          * this may not be true for device special inodes.
914          */
915         return (struct resv_map *)(&inode->i_data)->private_data;
916 }
917
918 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
919 {
920         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
921         if (vma->vm_flags & VM_MAYSHARE) {
922                 struct address_space *mapping = vma->vm_file->f_mapping;
923                 struct inode *inode = mapping->host;
924
925                 return inode_resv_map(inode);
926
927         } else {
928                 return (struct resv_map *)(get_vma_private_data(vma) &
929                                                         ~HPAGE_RESV_MASK);
930         }
931 }
932
933 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
934 {
935         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
936         VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
937
938         set_vma_private_data(vma, (get_vma_private_data(vma) &
939                                 HPAGE_RESV_MASK) | (unsigned long)map);
940 }
941
942 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
943 {
944         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
945         VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
946
947         set_vma_private_data(vma, get_vma_private_data(vma) | flags);
948 }
949
950 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
951 {
952         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
953
954         return (get_vma_private_data(vma) & flag) != 0;
955 }
956
957 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
958 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
959 {
960         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
961         if (!(vma->vm_flags & VM_MAYSHARE))
962                 vma->vm_private_data = (void *)0;
963 }
964
965 /* Returns true if the VMA has associated reserve pages */
966 static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
967 {
968         if (vma->vm_flags & VM_NORESERVE) {
969                 /*
970                  * This address is already reserved by other process(chg == 0),
971                  * so, we should decrement reserved count. Without decrementing,
972                  * reserve count remains after releasing inode, because this
973                  * allocated page will go into page cache and is regarded as
974                  * coming from reserved pool in releasing step.  Currently, we
975                  * don't have any other solution to deal with this situation
976                  * properly, so add work-around here.
977                  */
978                 if (vma->vm_flags & VM_MAYSHARE && chg == 0)
979                         return true;
980                 else
981                         return false;
982         }
983
984         /* Shared mappings always use reserves */
985         if (vma->vm_flags & VM_MAYSHARE) {
986                 /*
987                  * We know VM_NORESERVE is not set.  Therefore, there SHOULD
988                  * be a region map for all pages.  The only situation where
989                  * there is no region map is if a hole was punched via
990                  * fallocate.  In this case, there really are no reserves to
991                  * use.  This situation is indicated if chg != 0.
992                  */
993                 if (chg)
994                         return false;
995                 else
996                         return true;
997         }
998
999         /*
1000          * Only the process that called mmap() has reserves for
1001          * private mappings.
1002          */
1003         if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1004                 /*
1005                  * Like the shared case above, a hole punch or truncate
1006                  * could have been performed on the private mapping.
1007                  * Examine the value of chg to determine if reserves
1008                  * actually exist or were previously consumed.
1009                  * Very Subtle - The value of chg comes from a previous
1010                  * call to vma_needs_reserves().  The reserve map for
1011                  * private mappings has different (opposite) semantics
1012                  * than that of shared mappings.  vma_needs_reserves()
1013                  * has already taken this difference in semantics into
1014                  * account.  Therefore, the meaning of chg is the same
1015                  * as in the shared case above.  Code could easily be
1016                  * combined, but keeping it separate draws attention to
1017                  * subtle differences.
1018                  */
1019                 if (chg)
1020                         return false;
1021                 else
1022                         return true;
1023         }
1024
1025         return false;
1026 }
1027
1028 static void enqueue_huge_page(struct hstate *h, struct page *page)
1029 {
1030         int nid = page_to_nid(page);
1031         list_move(&page->lru, &h->hugepage_freelists[nid]);
1032         h->free_huge_pages++;
1033         h->free_huge_pages_node[nid]++;
1034 }
1035
1036 static struct page *dequeue_huge_page_node_exact(struct hstate *h, int nid)
1037 {
1038         struct page *page;
1039
1040         list_for_each_entry(page, &h->hugepage_freelists[nid], lru)
1041                 if (!PageHWPoison(page))
1042                         break;
1043         /*
1044          * if 'non-isolated free hugepage' not found on the list,
1045          * the allocation fails.
1046          */
1047         if (&h->hugepage_freelists[nid] == &page->lru)
1048                 return NULL;
1049         list_move(&page->lru, &h->hugepage_activelist);
1050         set_page_refcounted(page);
1051         h->free_huge_pages--;
1052         h->free_huge_pages_node[nid]--;
1053         return page;
1054 }
1055
1056 static struct page *dequeue_huge_page_nodemask(struct hstate *h, gfp_t gfp_mask, int nid,
1057                 nodemask_t *nmask)
1058 {
1059         unsigned int cpuset_mems_cookie;
1060         struct zonelist *zonelist;
1061         struct zone *zone;
1062         struct zoneref *z;
1063         int node = NUMA_NO_NODE;
1064
1065         zonelist = node_zonelist(nid, gfp_mask);
1066
1067 retry_cpuset:
1068         cpuset_mems_cookie = read_mems_allowed_begin();
1069         for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
1070                 struct page *page;
1071
1072                 if (!cpuset_zone_allowed(zone, gfp_mask))
1073                         continue;
1074                 /*
1075                  * no need to ask again on the same node. Pool is node rather than
1076                  * zone aware
1077                  */
1078                 if (zone_to_nid(zone) == node)
1079                         continue;
1080                 node = zone_to_nid(zone);
1081
1082                 page = dequeue_huge_page_node_exact(h, node);
1083                 if (page)
1084                         return page;
1085         }
1086         if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
1087                 goto retry_cpuset;
1088
1089         return NULL;
1090 }
1091
1092 /* Movability of hugepages depends on migration support. */
1093 static inline gfp_t htlb_alloc_mask(struct hstate *h)
1094 {
1095         if (hugepage_movable_supported(h))
1096                 return GFP_HIGHUSER_MOVABLE;
1097         else
1098                 return GFP_HIGHUSER;
1099 }
1100
1101 static struct page *dequeue_huge_page_vma(struct hstate *h,
1102                                 struct vm_area_struct *vma,
1103                                 unsigned long address, int avoid_reserve,
1104                                 long chg)
1105 {
1106         struct page *page;
1107         struct mempolicy *mpol;
1108         gfp_t gfp_mask;
1109         nodemask_t *nodemask;
1110         int nid;
1111
1112         /*
1113          * A child process with MAP_PRIVATE mappings created by their parent
1114          * have no page reserves. This check ensures that reservations are
1115          * not "stolen". The child may still get SIGKILLed
1116          */
1117         if (!vma_has_reserves(vma, chg) &&
1118                         h->free_huge_pages - h->resv_huge_pages == 0)
1119                 goto err;
1120
1121         /* If reserves cannot be used, ensure enough pages are in the pool */
1122         if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
1123                 goto err;
1124
1125         gfp_mask = htlb_alloc_mask(h);
1126         nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
1127         page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
1128         if (page && !avoid_reserve && vma_has_reserves(vma, chg)) {
1129                 SetPagePrivate(page);
1130                 h->resv_huge_pages--;
1131         }
1132
1133         mpol_cond_put(mpol);
1134         return page;
1135
1136 err:
1137         return NULL;
1138 }
1139
1140 /*
1141  * common helper functions for hstate_next_node_to_{alloc|free}.
1142  * We may have allocated or freed a huge page based on a different
1143  * nodes_allowed previously, so h->next_node_to_{alloc|free} might
1144  * be outside of *nodes_allowed.  Ensure that we use an allowed
1145  * node for alloc or free.
1146  */
1147 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
1148 {
1149         nid = next_node_in(nid, *nodes_allowed);
1150         VM_BUG_ON(nid >= MAX_NUMNODES);
1151
1152         return nid;
1153 }
1154
1155 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
1156 {
1157         if (!node_isset(nid, *nodes_allowed))
1158                 nid = next_node_allowed(nid, nodes_allowed);
1159         return nid;
1160 }
1161
1162 /*
1163  * returns the previously saved node ["this node"] from which to
1164  * allocate a persistent huge page for the pool and advance the
1165  * next node from which to allocate, handling wrap at end of node
1166  * mask.
1167  */
1168 static int hstate_next_node_to_alloc(struct hstate *h,
1169                                         nodemask_t *nodes_allowed)
1170 {
1171         int nid;
1172
1173         VM_BUG_ON(!nodes_allowed);
1174
1175         nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
1176         h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
1177
1178         return nid;
1179 }
1180
1181 /*
1182  * helper for free_pool_huge_page() - return the previously saved
1183  * node ["this node"] from which to free a huge page.  Advance the
1184  * next node id whether or not we find a free huge page to free so
1185  * that the next attempt to free addresses the next node.
1186  */
1187 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1188 {
1189         int nid;
1190
1191         VM_BUG_ON(!nodes_allowed);
1192
1193         nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1194         h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1195
1196         return nid;
1197 }
1198
1199 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask)           \
1200         for (nr_nodes = nodes_weight(*mask);                            \
1201                 nr_nodes > 0 &&                                         \
1202                 ((node = hstate_next_node_to_alloc(hs, mask)) || 1);    \
1203                 nr_nodes--)
1204
1205 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask)            \
1206         for (nr_nodes = nodes_weight(*mask);                            \
1207                 nr_nodes > 0 &&                                         \
1208                 ((node = hstate_next_node_to_free(hs, mask)) || 1);     \
1209                 nr_nodes--)
1210
1211 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
1212 static void destroy_compound_gigantic_page(struct page *page,
1213                                         unsigned int order)
1214 {
1215         int i;
1216         int nr_pages = 1 << order;
1217         struct page *p = page + 1;
1218
1219         atomic_set(compound_mapcount_ptr(page), 0);
1220         if (hpage_pincount_available(page))
1221                 atomic_set(compound_pincount_ptr(page), 0);
1222
1223         for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1224                 clear_compound_head(p);
1225                 set_page_refcounted(p);
1226         }
1227
1228         set_compound_order(page, 0);
1229         __ClearPageHead(page);
1230 }
1231
1232 static void free_gigantic_page(struct page *page, unsigned int order)
1233 {
1234         /*
1235          * If the page isn't allocated using the cma allocator,
1236          * cma_release() returns false.
1237          */
1238         if (IS_ENABLED(CONFIG_CMA) &&
1239             cma_release(hugetlb_cma[page_to_nid(page)], page, 1 << order))
1240                 return;
1241
1242         free_contig_range(page_to_pfn(page), 1 << order);
1243 }
1244
1245 #ifdef CONFIG_CONTIG_ALLOC
1246 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1247                 int nid, nodemask_t *nodemask)
1248 {
1249         unsigned long nr_pages = 1UL << huge_page_order(h);
1250
1251         if (IS_ENABLED(CONFIG_CMA)) {
1252                 struct page *page;
1253                 int node;
1254
1255                 for_each_node_mask(node, *nodemask) {
1256                         if (!hugetlb_cma[node])
1257                                 continue;
1258
1259                         page = cma_alloc(hugetlb_cma[node], nr_pages,
1260                                          huge_page_order(h), true);
1261                         if (page)
1262                                 return page;
1263                 }
1264         }
1265
1266         return alloc_contig_pages(nr_pages, gfp_mask, nid, nodemask);
1267 }
1268
1269 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid);
1270 static void prep_compound_gigantic_page(struct page *page, unsigned int order);
1271 #else /* !CONFIG_CONTIG_ALLOC */
1272 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1273                                         int nid, nodemask_t *nodemask)
1274 {
1275         return NULL;
1276 }
1277 #endif /* CONFIG_CONTIG_ALLOC */
1278
1279 #else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
1280 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1281                                         int nid, nodemask_t *nodemask)
1282 {
1283         return NULL;
1284 }
1285 static inline void free_gigantic_page(struct page *page, unsigned int order) { }
1286 static inline void destroy_compound_gigantic_page(struct page *page,
1287                                                 unsigned int order) { }
1288 #endif
1289
1290 static void update_and_free_page(struct hstate *h, struct page *page)
1291 {
1292         int i;
1293
1294         if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1295                 return;
1296
1297         h->nr_huge_pages--;
1298         h->nr_huge_pages_node[page_to_nid(page)]--;
1299         for (i = 0; i < pages_per_huge_page(h); i++) {
1300                 page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
1301                                 1 << PG_referenced | 1 << PG_dirty |
1302                                 1 << PG_active | 1 << PG_private |
1303                                 1 << PG_writeback);
1304         }
1305         VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
1306         VM_BUG_ON_PAGE(hugetlb_cgroup_from_page_rsvd(page), page);
1307         set_compound_page_dtor(page, NULL_COMPOUND_DTOR);
1308         set_page_refcounted(page);
1309         if (hstate_is_gigantic(h)) {
1310                 /*
1311                  * Temporarily drop the hugetlb_lock, because
1312                  * we might block in free_gigantic_page().
1313                  */
1314                 spin_unlock(&hugetlb_lock);
1315                 destroy_compound_gigantic_page(page, huge_page_order(h));
1316                 free_gigantic_page(page, huge_page_order(h));
1317                 spin_lock(&hugetlb_lock);
1318         } else {
1319                 __free_pages(page, huge_page_order(h));
1320         }
1321 }
1322
1323 struct hstate *size_to_hstate(unsigned long size)
1324 {
1325         struct hstate *h;
1326
1327         for_each_hstate(h) {
1328                 if (huge_page_size(h) == size)
1329                         return h;
1330         }
1331         return NULL;
1332 }
1333
1334 /*
1335  * Test to determine whether the hugepage is "active/in-use" (i.e. being linked
1336  * to hstate->hugepage_activelist.)
1337  *
1338  * This function can be called for tail pages, but never returns true for them.
1339  */
1340 bool page_huge_active(struct page *page)
1341 {
1342         VM_BUG_ON_PAGE(!PageHuge(page), page);
1343         return PageHead(page) && PagePrivate(&page[1]);
1344 }
1345
1346 /* never called for tail page */
1347 static void set_page_huge_active(struct page *page)
1348 {
1349         VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1350         SetPagePrivate(&page[1]);
1351 }
1352
1353 static void clear_page_huge_active(struct page *page)
1354 {
1355         VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1356         ClearPagePrivate(&page[1]);
1357 }
1358
1359 /*
1360  * Internal hugetlb specific page flag. Do not use outside of the hugetlb
1361  * code
1362  */
1363 static inline bool PageHugeTemporary(struct page *page)
1364 {
1365         if (!PageHuge(page))
1366                 return false;
1367
1368         return (unsigned long)page[2].mapping == -1U;
1369 }
1370
1371 static inline void SetPageHugeTemporary(struct page *page)
1372 {
1373         page[2].mapping = (void *)-1U;
1374 }
1375
1376 static inline void ClearPageHugeTemporary(struct page *page)
1377 {
1378         page[2].mapping = NULL;
1379 }
1380
1381 static void __free_huge_page(struct page *page)
1382 {
1383         /*
1384          * Can't pass hstate in here because it is called from the
1385          * compound page destructor.
1386          */
1387         struct hstate *h = page_hstate(page);
1388         int nid = page_to_nid(page);
1389         struct hugepage_subpool *spool =
1390                 (struct hugepage_subpool *)page_private(page);
1391         bool restore_reserve;
1392
1393         VM_BUG_ON_PAGE(page_count(page), page);
1394         VM_BUG_ON_PAGE(page_mapcount(page), page);
1395
1396         set_page_private(page, 0);
1397         page->mapping = NULL;
1398         restore_reserve = PagePrivate(page);
1399         ClearPagePrivate(page);
1400
1401         /*
1402          * If PagePrivate() was set on page, page allocation consumed a
1403          * reservation.  If the page was associated with a subpool, there
1404          * would have been a page reserved in the subpool before allocation
1405          * via hugepage_subpool_get_pages().  Since we are 'restoring' the
1406          * reservtion, do not call hugepage_subpool_put_pages() as this will
1407          * remove the reserved page from the subpool.
1408          */
1409         if (!restore_reserve) {
1410                 /*
1411                  * A return code of zero implies that the subpool will be
1412                  * under its minimum size if the reservation is not restored
1413                  * after page is free.  Therefore, force restore_reserve
1414                  * operation.
1415                  */
1416                 if (hugepage_subpool_put_pages(spool, 1) == 0)
1417                         restore_reserve = true;
1418         }
1419
1420         spin_lock(&hugetlb_lock);
1421         clear_page_huge_active(page);
1422         hugetlb_cgroup_uncharge_page(hstate_index(h),
1423                                      pages_per_huge_page(h), page);
1424         hugetlb_cgroup_uncharge_page_rsvd(hstate_index(h),
1425                                           pages_per_huge_page(h), page);
1426         if (restore_reserve)
1427                 h->resv_huge_pages++;
1428
1429         if (PageHugeTemporary(page)) {
1430                 list_del(&page->lru);
1431                 ClearPageHugeTemporary(page);
1432                 update_and_free_page(h, page);
1433         } else if (h->surplus_huge_pages_node[nid]) {
1434                 /* remove the page from active list */
1435                 list_del(&page->lru);
1436                 update_and_free_page(h, page);
1437                 h->surplus_huge_pages--;
1438                 h->surplus_huge_pages_node[nid]--;
1439         } else {
1440                 arch_clear_hugepage_flags(page);
1441                 enqueue_huge_page(h, page);
1442         }
1443         spin_unlock(&hugetlb_lock);
1444 }
1445
1446 /*
1447  * As free_huge_page() can be called from a non-task context, we have
1448  * to defer the actual freeing in a workqueue to prevent potential
1449  * hugetlb_lock deadlock.
1450  *
1451  * free_hpage_workfn() locklessly retrieves the linked list of pages to
1452  * be freed and frees them one-by-one. As the page->mapping pointer is
1453  * going to be cleared in __free_huge_page() anyway, it is reused as the
1454  * llist_node structure of a lockless linked list of huge pages to be freed.
1455  */
1456 static LLIST_HEAD(hpage_freelist);
1457
1458 static void free_hpage_workfn(struct work_struct *work)
1459 {
1460         struct llist_node *node;
1461         struct page *page;
1462
1463         node = llist_del_all(&hpage_freelist);
1464
1465         while (node) {
1466                 page = container_of((struct address_space **)node,
1467                                      struct page, mapping);
1468                 node = node->next;
1469                 __free_huge_page(page);
1470         }
1471 }
1472 static DECLARE_WORK(free_hpage_work, free_hpage_workfn);
1473
1474 void free_huge_page(struct page *page)
1475 {
1476         /*
1477          * Defer freeing if in non-task context to avoid hugetlb_lock deadlock.
1478          */
1479         if (!in_task()) {
1480                 /*
1481                  * Only call schedule_work() if hpage_freelist is previously
1482                  * empty. Otherwise, schedule_work() had been called but the
1483                  * workfn hasn't retrieved the list yet.
1484                  */
1485                 if (llist_add((struct llist_node *)&page->mapping,
1486                               &hpage_freelist))
1487                         schedule_work(&free_hpage_work);
1488                 return;
1489         }
1490
1491         __free_huge_page(page);
1492 }
1493
1494 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
1495 {
1496         INIT_LIST_HEAD(&page->lru);
1497         set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1498         spin_lock(&hugetlb_lock);
1499         set_hugetlb_cgroup(page, NULL);
1500         set_hugetlb_cgroup_rsvd(page, NULL);
1501         h->nr_huge_pages++;
1502         h->nr_huge_pages_node[nid]++;
1503         spin_unlock(&hugetlb_lock);
1504 }
1505
1506 static void prep_compound_gigantic_page(struct page *page, unsigned int order)
1507 {
1508         int i;
1509         int nr_pages = 1 << order;
1510         struct page *p = page + 1;
1511
1512         /* we rely on prep_new_huge_page to set the destructor */
1513         set_compound_order(page, order);
1514         __ClearPageReserved(page);
1515         __SetPageHead(page);
1516         for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1517                 /*
1518                  * For gigantic hugepages allocated through bootmem at
1519                  * boot, it's safer to be consistent with the not-gigantic
1520                  * hugepages and clear the PG_reserved bit from all tail pages
1521                  * too.  Otherwise drivers using get_user_pages() to access tail
1522                  * pages may get the reference counting wrong if they see
1523                  * PG_reserved set on a tail page (despite the head page not
1524                  * having PG_reserved set).  Enforcing this consistency between
1525                  * head and tail pages allows drivers to optimize away a check
1526                  * on the head page when they need know if put_page() is needed
1527                  * after get_user_pages().
1528                  */
1529                 __ClearPageReserved(p);
1530                 set_page_count(p, 0);
1531                 set_compound_head(p, page);
1532         }
1533         atomic_set(compound_mapcount_ptr(page), -1);
1534
1535         if (hpage_pincount_available(page))
1536                 atomic_set(compound_pincount_ptr(page), 0);
1537 }
1538
1539 /*
1540  * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1541  * transparent huge pages.  See the PageTransHuge() documentation for more
1542  * details.
1543  */
1544 int PageHuge(struct page *page)
1545 {
1546         if (!PageCompound(page))
1547                 return 0;
1548
1549         page = compound_head(page);
1550         return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
1551 }
1552 EXPORT_SYMBOL_GPL(PageHuge);
1553
1554 /*
1555  * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1556  * normal or transparent huge pages.
1557  */
1558 int PageHeadHuge(struct page *page_head)
1559 {
1560         if (!PageHead(page_head))
1561                 return 0;
1562
1563         return page_head[1].compound_dtor == HUGETLB_PAGE_DTOR;
1564 }
1565
1566 /*
1567  * Find address_space associated with hugetlbfs page.
1568  * Upon entry page is locked and page 'was' mapped although mapped state
1569  * could change.  If necessary, use anon_vma to find vma and associated
1570  * address space.  The returned mapping may be stale, but it can not be
1571  * invalid as page lock (which is held) is required to destroy mapping.
1572  */
1573 static struct address_space *_get_hugetlb_page_mapping(struct page *hpage)
1574 {
1575         struct anon_vma *anon_vma;
1576         pgoff_t pgoff_start, pgoff_end;
1577         struct anon_vma_chain *avc;
1578         struct address_space *mapping = page_mapping(hpage);
1579
1580         /* Simple file based mapping */
1581         if (mapping)
1582                 return mapping;
1583
1584         /*
1585          * Even anonymous hugetlbfs mappings are associated with an
1586          * underlying hugetlbfs file (see hugetlb_file_setup in mmap
1587          * code).  Find a vma associated with the anonymous vma, and
1588          * use the file pointer to get address_space.
1589          */
1590         anon_vma = page_lock_anon_vma_read(hpage);
1591         if (!anon_vma)
1592                 return mapping;  /* NULL */
1593
1594         /* Use first found vma */
1595         pgoff_start = page_to_pgoff(hpage);
1596         pgoff_end = pgoff_start + hpage_nr_pages(hpage) - 1;
1597         anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root,
1598                                         pgoff_start, pgoff_end) {
1599                 struct vm_area_struct *vma = avc->vma;
1600
1601                 mapping = vma->vm_file->f_mapping;
1602                 break;
1603         }
1604
1605         anon_vma_unlock_read(anon_vma);
1606         return mapping;
1607 }
1608
1609 /*
1610  * Find and lock address space (mapping) in write mode.
1611  *
1612  * Upon entry, the page is locked which allows us to find the mapping
1613  * even in the case of an anon page.  However, locking order dictates
1614  * the i_mmap_rwsem be acquired BEFORE the page lock.  This is hugetlbfs
1615  * specific.  So, we first try to lock the sema while still holding the
1616  * page lock.  If this works, great!  If not, then we need to drop the
1617  * page lock and then acquire i_mmap_rwsem and reacquire page lock.  Of
1618  * course, need to revalidate state along the way.
1619  */
1620 struct address_space *hugetlb_page_mapping_lock_write(struct page *hpage)
1621 {
1622         struct address_space *mapping, *mapping2;
1623
1624         mapping = _get_hugetlb_page_mapping(hpage);
1625 retry:
1626         if (!mapping)
1627                 return mapping;
1628
1629         /*
1630          * If no contention, take lock and return
1631          */
1632         if (i_mmap_trylock_write(mapping))
1633                 return mapping;
1634
1635         /*
1636          * Must drop page lock and wait on mapping sema.
1637          * Note:  Once page lock is dropped, mapping could become invalid.
1638          * As a hack, increase map count until we lock page again.
1639          */
1640         atomic_inc(&hpage->_mapcount);
1641         unlock_page(hpage);
1642         i_mmap_lock_write(mapping);
1643         lock_page(hpage);
1644         atomic_add_negative(-1, &hpage->_mapcount);
1645
1646         /* verify page is still mapped */
1647         if (!page_mapped(hpage)) {
1648                 i_mmap_unlock_write(mapping);
1649                 return NULL;
1650         }
1651
1652         /*
1653          * Get address space again and verify it is the same one
1654          * we locked.  If not, drop lock and retry.
1655          */
1656         mapping2 = _get_hugetlb_page_mapping(hpage);
1657         if (mapping2 != mapping) {
1658                 i_mmap_unlock_write(mapping);
1659                 mapping = mapping2;
1660                 goto retry;
1661         }
1662
1663         return mapping;
1664 }
1665
1666 pgoff_t __basepage_index(struct page *page)
1667 {
1668         struct page *page_head = compound_head(page);
1669         pgoff_t index = page_index(page_head);
1670         unsigned long compound_idx;
1671
1672         if (!PageHuge(page_head))
1673                 return page_index(page);
1674
1675         if (compound_order(page_head) >= MAX_ORDER)
1676                 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
1677         else
1678                 compound_idx = page - page_head;
1679
1680         return (index << compound_order(page_head)) + compound_idx;
1681 }
1682
1683 static struct page *alloc_buddy_huge_page(struct hstate *h,
1684                 gfp_t gfp_mask, int nid, nodemask_t *nmask,
1685                 nodemask_t *node_alloc_noretry)
1686 {
1687         int order = huge_page_order(h);
1688         struct page *page;
1689         bool alloc_try_hard = true;
1690
1691         /*
1692          * By default we always try hard to allocate the page with
1693          * __GFP_RETRY_MAYFAIL flag.  However, if we are allocating pages in
1694          * a loop (to adjust global huge page counts) and previous allocation
1695          * failed, do not continue to try hard on the same node.  Use the
1696          * node_alloc_noretry bitmap to manage this state information.
1697          */
1698         if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry))
1699                 alloc_try_hard = false;
1700         gfp_mask |= __GFP_COMP|__GFP_NOWARN;
1701         if (alloc_try_hard)
1702                 gfp_mask |= __GFP_RETRY_MAYFAIL;
1703         if (nid == NUMA_NO_NODE)
1704                 nid = numa_mem_id();
1705         page = __alloc_pages_nodemask(gfp_mask, order, nid, nmask);
1706         if (page)
1707                 __count_vm_event(HTLB_BUDDY_PGALLOC);
1708         else
1709                 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1710
1711         /*
1712          * If we did not specify __GFP_RETRY_MAYFAIL, but still got a page this
1713          * indicates an overall state change.  Clear bit so that we resume
1714          * normal 'try hard' allocations.
1715          */
1716         if (node_alloc_noretry && page && !alloc_try_hard)
1717                 node_clear(nid, *node_alloc_noretry);
1718
1719         /*
1720          * If we tried hard to get a page but failed, set bit so that
1721          * subsequent attempts will not try as hard until there is an
1722          * overall state change.
1723          */
1724         if (node_alloc_noretry && !page && alloc_try_hard)
1725                 node_set(nid, *node_alloc_noretry);
1726
1727         return page;
1728 }
1729
1730 /*
1731  * Common helper to allocate a fresh hugetlb page. All specific allocators
1732  * should use this function to get new hugetlb pages
1733  */
1734 static struct page *alloc_fresh_huge_page(struct hstate *h,
1735                 gfp_t gfp_mask, int nid, nodemask_t *nmask,
1736                 nodemask_t *node_alloc_noretry)
1737 {
1738         struct page *page;
1739
1740         if (hstate_is_gigantic(h))
1741                 page = alloc_gigantic_page(h, gfp_mask, nid, nmask);
1742         else
1743                 page = alloc_buddy_huge_page(h, gfp_mask,
1744                                 nid, nmask, node_alloc_noretry);
1745         if (!page)
1746                 return NULL;
1747
1748         if (hstate_is_gigantic(h))
1749                 prep_compound_gigantic_page(page, huge_page_order(h));
1750         prep_new_huge_page(h, page, page_to_nid(page));
1751
1752         return page;
1753 }
1754
1755 /*
1756  * Allocates a fresh page to the hugetlb allocator pool in the node interleaved
1757  * manner.
1758  */
1759 static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1760                                 nodemask_t *node_alloc_noretry)
1761 {
1762         struct page *page;
1763         int nr_nodes, node;
1764         gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
1765
1766         for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1767                 page = alloc_fresh_huge_page(h, gfp_mask, node, nodes_allowed,
1768                                                 node_alloc_noretry);
1769                 if (page)
1770                         break;
1771         }
1772
1773         if (!page)
1774                 return 0;
1775
1776         put_page(page); /* free it into the hugepage allocator */
1777
1778         return 1;
1779 }
1780
1781 /*
1782  * Free huge page from pool from next node to free.
1783  * Attempt to keep persistent huge pages more or less
1784  * balanced over allowed nodes.
1785  * Called with hugetlb_lock locked.
1786  */
1787 static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1788                                                          bool acct_surplus)
1789 {
1790         int nr_nodes, node;
1791         int ret = 0;
1792
1793         for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1794                 /*
1795                  * If we're returning unused surplus pages, only examine
1796                  * nodes with surplus pages.
1797                  */
1798                 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
1799                     !list_empty(&h->hugepage_freelists[node])) {
1800                         struct page *page =
1801                                 list_entry(h->hugepage_freelists[node].next,
1802                                           struct page, lru);
1803                         list_del(&page->lru);
1804                         h->free_huge_pages--;
1805                         h->free_huge_pages_node[node]--;
1806                         if (acct_surplus) {
1807                                 h->surplus_huge_pages--;
1808                                 h->surplus_huge_pages_node[node]--;
1809                         }
1810                         update_and_free_page(h, page);
1811                         ret = 1;
1812                         break;
1813                 }
1814         }
1815
1816         return ret;
1817 }
1818
1819 /*
1820  * Dissolve a given free hugepage into free buddy pages. This function does
1821  * nothing for in-use hugepages and non-hugepages.
1822  * This function returns values like below:
1823  *
1824  *  -EBUSY: failed to dissolved free hugepages or the hugepage is in-use
1825  *          (allocated or reserved.)
1826  *       0: successfully dissolved free hugepages or the page is not a
1827  *          hugepage (considered as already dissolved)
1828  */
1829 int dissolve_free_huge_page(struct page *page)
1830 {
1831         int rc = -EBUSY;
1832
1833         /* Not to disrupt normal path by vainly holding hugetlb_lock */
1834         if (!PageHuge(page))
1835                 return 0;
1836
1837         spin_lock(&hugetlb_lock);
1838         if (!PageHuge(page)) {
1839                 rc = 0;
1840                 goto out;
1841         }
1842
1843         if (!page_count(page)) {
1844                 struct page *head = compound_head(page);
1845                 struct hstate *h = page_hstate(head);
1846                 int nid = page_to_nid(head);
1847                 if (h->free_huge_pages - h->resv_huge_pages == 0)
1848                         goto out;
1849                 /*
1850                  * Move PageHWPoison flag from head page to the raw error page,
1851                  * which makes any subpages rather than the error page reusable.
1852                  */
1853                 if (PageHWPoison(head) && page != head) {
1854                         SetPageHWPoison(page);
1855                         ClearPageHWPoison(head);
1856                 }
1857                 list_del(&head->lru);
1858                 h->free_huge_pages--;
1859                 h->free_huge_pages_node[nid]--;
1860                 h->max_huge_pages--;
1861                 update_and_free_page(h, head);
1862                 rc = 0;
1863         }
1864 out:
1865         spin_unlock(&hugetlb_lock);
1866         return rc;
1867 }
1868
1869 /*
1870  * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
1871  * make specified memory blocks removable from the system.
1872  * Note that this will dissolve a free gigantic hugepage completely, if any
1873  * part of it lies within the given range.
1874  * Also note that if dissolve_free_huge_page() returns with an error, all
1875  * free hugepages that were dissolved before that error are lost.
1876  */
1877 int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
1878 {
1879         unsigned long pfn;
1880         struct page *page;
1881         int rc = 0;
1882
1883         if (!hugepages_supported())
1884                 return rc;
1885
1886         for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order) {
1887                 page = pfn_to_page(pfn);
1888                 rc = dissolve_free_huge_page(page);
1889                 if (rc)
1890                         break;
1891         }
1892
1893         return rc;
1894 }
1895
1896 /*
1897  * Allocates a fresh surplus page from the page allocator.
1898  */
1899 static struct page *alloc_surplus_huge_page(struct hstate *h, gfp_t gfp_mask,
1900                 int nid, nodemask_t *nmask)
1901 {
1902         struct page *page = NULL;
1903
1904         if (hstate_is_gigantic(h))
1905                 return NULL;
1906
1907         spin_lock(&hugetlb_lock);
1908         if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages)
1909                 goto out_unlock;
1910         spin_unlock(&hugetlb_lock);
1911
1912         page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
1913         if (!page)
1914                 return NULL;
1915
1916         spin_lock(&hugetlb_lock);
1917         /*
1918          * We could have raced with the pool size change.
1919          * Double check that and simply deallocate the new page
1920          * if we would end up overcommiting the surpluses. Abuse
1921          * temporary page to workaround the nasty free_huge_page
1922          * codeflow
1923          */
1924         if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
1925                 SetPageHugeTemporary(page);
1926                 spin_unlock(&hugetlb_lock);
1927                 put_page(page);
1928                 return NULL;
1929         } else {
1930                 h->surplus_huge_pages++;
1931                 h->surplus_huge_pages_node[page_to_nid(page)]++;
1932         }
1933
1934 out_unlock:
1935         spin_unlock(&hugetlb_lock);
1936
1937         return page;
1938 }
1939
1940 struct page *alloc_migrate_huge_page(struct hstate *h, gfp_t gfp_mask,
1941                                      int nid, nodemask_t *nmask)
1942 {
1943         struct page *page;
1944
1945         if (hstate_is_gigantic(h))
1946                 return NULL;
1947
1948         page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
1949         if (!page)
1950                 return NULL;
1951
1952         /*
1953          * We do not account these pages as surplus because they are only
1954          * temporary and will be released properly on the last reference
1955          */
1956         SetPageHugeTemporary(page);
1957
1958         return page;
1959 }
1960
1961 /*
1962  * Use the VMA's mpolicy to allocate a huge page from the buddy.
1963  */
1964 static
1965 struct page *alloc_buddy_huge_page_with_mpol(struct hstate *h,
1966                 struct vm_area_struct *vma, unsigned long addr)
1967 {
1968         struct page *page;
1969         struct mempolicy *mpol;
1970         gfp_t gfp_mask = htlb_alloc_mask(h);
1971         int nid;
1972         nodemask_t *nodemask;
1973
1974         nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
1975         page = alloc_surplus_huge_page(h, gfp_mask, nid, nodemask);
1976         mpol_cond_put(mpol);
1977
1978         return page;
1979 }
1980
1981 /* page migration callback function */
1982 struct page *alloc_huge_page_node(struct hstate *h, int nid)
1983 {
1984         gfp_t gfp_mask = htlb_alloc_mask(h);
1985         struct page *page = NULL;
1986
1987         if (nid != NUMA_NO_NODE)
1988                 gfp_mask |= __GFP_THISNODE;
1989
1990         spin_lock(&hugetlb_lock);
1991         if (h->free_huge_pages - h->resv_huge_pages > 0)
1992                 page = dequeue_huge_page_nodemask(h, gfp_mask, nid, NULL);
1993         spin_unlock(&hugetlb_lock);
1994
1995         if (!page)
1996                 page = alloc_migrate_huge_page(h, gfp_mask, nid, NULL);
1997
1998         return page;
1999 }
2000
2001 /* page migration callback function */
2002 struct page *alloc_huge_page_nodemask(struct hstate *h, int preferred_nid,
2003                 nodemask_t *nmask)
2004 {
2005         gfp_t gfp_mask = htlb_alloc_mask(h);
2006
2007         spin_lock(&hugetlb_lock);
2008         if (h->free_huge_pages - h->resv_huge_pages > 0) {
2009                 struct page *page;
2010
2011                 page = dequeue_huge_page_nodemask(h, gfp_mask, preferred_nid, nmask);
2012                 if (page) {
2013                         spin_unlock(&hugetlb_lock);
2014                         return page;
2015                 }
2016         }
2017         spin_unlock(&hugetlb_lock);
2018
2019         return alloc_migrate_huge_page(h, gfp_mask, preferred_nid, nmask);
2020 }
2021
2022 /* mempolicy aware migration callback */
2023 struct page *alloc_huge_page_vma(struct hstate *h, struct vm_area_struct *vma,
2024                 unsigned long address)
2025 {
2026         struct mempolicy *mpol;
2027         nodemask_t *nodemask;
2028         struct page *page;
2029         gfp_t gfp_mask;
2030         int node;
2031
2032         gfp_mask = htlb_alloc_mask(h);
2033         node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
2034         page = alloc_huge_page_nodemask(h, node, nodemask);
2035         mpol_cond_put(mpol);
2036
2037         return page;
2038 }
2039
2040 /*
2041  * Increase the hugetlb pool such that it can accommodate a reservation
2042  * of size 'delta'.
2043  */
2044 static int gather_surplus_pages(struct hstate *h, int delta)
2045         __must_hold(&hugetlb_lock)
2046 {
2047         struct list_head surplus_list;
2048         struct page *page, *tmp;
2049         int ret, i;
2050         int needed, allocated;
2051         bool alloc_ok = true;
2052
2053         needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
2054         if (needed <= 0) {
2055                 h->resv_huge_pages += delta;
2056                 return 0;
2057         }
2058
2059         allocated = 0;
2060         INIT_LIST_HEAD(&surplus_list);
2061
2062         ret = -ENOMEM;
2063 retry:
2064         spin_unlock(&hugetlb_lock);
2065         for (i = 0; i < needed; i++) {
2066                 page = alloc_surplus_huge_page(h, htlb_alloc_mask(h),
2067                                 NUMA_NO_NODE, NULL);
2068                 if (!page) {
2069                         alloc_ok = false;
2070                         break;
2071                 }
2072                 list_add(&page->lru, &surplus_list);
2073                 cond_resched();
2074         }
2075         allocated += i;
2076
2077         /*
2078          * After retaking hugetlb_lock, we need to recalculate 'needed'
2079          * because either resv_huge_pages or free_huge_pages may have changed.
2080          */
2081         spin_lock(&hugetlb_lock);
2082         needed = (h->resv_huge_pages + delta) -
2083                         (h->free_huge_pages + allocated);
2084         if (needed > 0) {
2085                 if (alloc_ok)
2086                         goto retry;
2087                 /*
2088                  * We were not able to allocate enough pages to
2089                  * satisfy the entire reservation so we free what
2090                  * we've allocated so far.
2091                  */
2092                 goto free;
2093         }
2094         /*
2095          * The surplus_list now contains _at_least_ the number of extra pages
2096          * needed to accommodate the reservation.  Add the appropriate number
2097          * of pages to the hugetlb pool and free the extras back to the buddy
2098          * allocator.  Commit the entire reservation here to prevent another
2099          * process from stealing the pages as they are added to the pool but
2100          * before they are reserved.
2101          */
2102         needed += allocated;
2103         h->resv_huge_pages += delta;
2104         ret = 0;
2105
2106         /* Free the needed pages to the hugetlb pool */
2107         list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
2108                 if ((--needed) < 0)
2109                         break;
2110                 /*
2111                  * This page is now managed by the hugetlb allocator and has
2112                  * no users -- drop the buddy allocator's reference.
2113                  */
2114                 put_page_testzero(page);
2115                 VM_BUG_ON_PAGE(page_count(page), page);
2116                 enqueue_huge_page(h, page);
2117         }
2118 free:
2119         spin_unlock(&hugetlb_lock);
2120
2121         /* Free unnecessary surplus pages to the buddy allocator */
2122         list_for_each_entry_safe(page, tmp, &surplus_list, lru)
2123                 put_page(page);
2124         spin_lock(&hugetlb_lock);
2125
2126         return ret;
2127 }
2128
2129 /*
2130  * This routine has two main purposes:
2131  * 1) Decrement the reservation count (resv_huge_pages) by the value passed
2132  *    in unused_resv_pages.  This corresponds to the prior adjustments made
2133  *    to the associated reservation map.
2134  * 2) Free any unused surplus pages that may have been allocated to satisfy
2135  *    the reservation.  As many as unused_resv_pages may be freed.
2136  *
2137  * Called with hugetlb_lock held.  However, the lock could be dropped (and
2138  * reacquired) during calls to cond_resched_lock.  Whenever dropping the lock,
2139  * we must make sure nobody else can claim pages we are in the process of
2140  * freeing.  Do this by ensuring resv_huge_page always is greater than the
2141  * number of huge pages we plan to free when dropping the lock.
2142  */
2143 static void return_unused_surplus_pages(struct hstate *h,
2144                                         unsigned long unused_resv_pages)
2145 {
2146         unsigned long nr_pages;
2147
2148         /* Cannot return gigantic pages currently */
2149         if (hstate_is_gigantic(h))
2150                 goto out;
2151
2152         /*
2153          * Part (or even all) of the reservation could have been backed
2154          * by pre-allocated pages. Only free surplus pages.
2155          */
2156         nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
2157
2158         /*
2159          * We want to release as many surplus pages as possible, spread
2160          * evenly across all nodes with memory. Iterate across these nodes
2161          * until we can no longer free unreserved surplus pages. This occurs
2162          * when the nodes with surplus pages have no free pages.
2163          * free_pool_huge_page() will balance the the freed pages across the
2164          * on-line nodes with memory and will handle the hstate accounting.
2165          *
2166          * Note that we decrement resv_huge_pages as we free the pages.  If
2167          * we drop the lock, resv_huge_pages will still be sufficiently large
2168          * to cover subsequent pages we may free.
2169          */
2170         while (nr_pages--) {
2171                 h->resv_huge_pages--;
2172                 unused_resv_pages--;
2173                 if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
2174                         goto out;
2175                 cond_resched_lock(&hugetlb_lock);
2176         }
2177
2178 out:
2179         /* Fully uncommit the reservation */
2180         h->resv_huge_pages -= unused_resv_pages;
2181 }
2182
2183
2184 /*
2185  * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
2186  * are used by the huge page allocation routines to manage reservations.
2187  *
2188  * vma_needs_reservation is called to determine if the huge page at addr
2189  * within the vma has an associated reservation.  If a reservation is
2190  * needed, the value 1 is returned.  The caller is then responsible for
2191  * managing the global reservation and subpool usage counts.  After
2192  * the huge page has been allocated, vma_commit_reservation is called
2193  * to add the page to the reservation map.  If the page allocation fails,
2194  * the reservation must be ended instead of committed.  vma_end_reservation
2195  * is called in such cases.
2196  *
2197  * In the normal case, vma_commit_reservation returns the same value
2198  * as the preceding vma_needs_reservation call.  The only time this
2199  * is not the case is if a reserve map was changed between calls.  It
2200  * is the responsibility of the caller to notice the difference and
2201  * take appropriate action.
2202  *
2203  * vma_add_reservation is used in error paths where a reservation must
2204  * be restored when a newly allocated huge page must be freed.  It is
2205  * to be called after calling vma_needs_reservation to determine if a
2206  * reservation exists.
2207  */
2208 enum vma_resv_mode {
2209         VMA_NEEDS_RESV,
2210         VMA_COMMIT_RESV,
2211         VMA_END_RESV,
2212         VMA_ADD_RESV,
2213 };
2214 static long __vma_reservation_common(struct hstate *h,
2215                                 struct vm_area_struct *vma, unsigned long addr,
2216                                 enum vma_resv_mode mode)
2217 {
2218         struct resv_map *resv;
2219         pgoff_t idx;
2220         long ret;
2221         long dummy_out_regions_needed;
2222
2223         resv = vma_resv_map(vma);
2224         if (!resv)
2225                 return 1;
2226
2227         idx = vma_hugecache_offset(h, vma, addr);
2228         switch (mode) {
2229         case VMA_NEEDS_RESV:
2230                 ret = region_chg(resv, idx, idx + 1, &dummy_out_regions_needed);
2231                 /* We assume that vma_reservation_* routines always operate on
2232                  * 1 page, and that adding to resv map a 1 page entry can only
2233                  * ever require 1 region.
2234                  */
2235                 VM_BUG_ON(dummy_out_regions_needed != 1);
2236                 break;
2237         case VMA_COMMIT_RESV:
2238                 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2239                 /* region_add calls of range 1 should never fail. */
2240                 VM_BUG_ON(ret < 0);
2241                 break;
2242         case VMA_END_RESV:
2243                 region_abort(resv, idx, idx + 1, 1);
2244                 ret = 0;
2245                 break;
2246         case VMA_ADD_RESV:
2247                 if (vma->vm_flags & VM_MAYSHARE) {
2248                         ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2249                         /* region_add calls of range 1 should never fail. */
2250                         VM_BUG_ON(ret < 0);
2251                 } else {
2252                         region_abort(resv, idx, idx + 1, 1);
2253                         ret = region_del(resv, idx, idx + 1);
2254                 }
2255                 break;
2256         default:
2257                 BUG();
2258         }
2259
2260         if (vma->vm_flags & VM_MAYSHARE)
2261                 return ret;
2262         else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && ret >= 0) {
2263                 /*
2264                  * In most cases, reserves always exist for private mappings.
2265                  * However, a file associated with mapping could have been
2266                  * hole punched or truncated after reserves were consumed.
2267                  * As subsequent fault on such a range will not use reserves.
2268                  * Subtle - The reserve map for private mappings has the
2269                  * opposite meaning than that of shared mappings.  If NO
2270                  * entry is in the reserve map, it means a reservation exists.
2271                  * If an entry exists in the reserve map, it means the
2272                  * reservation has already been consumed.  As a result, the
2273                  * return value of this routine is the opposite of the
2274                  * value returned from reserve map manipulation routines above.
2275                  */
2276                 if (ret)
2277                         return 0;
2278                 else
2279                         return 1;
2280         }
2281         else
2282                 return ret < 0 ? ret : 0;
2283 }
2284
2285 static long vma_needs_reservation(struct hstate *h,
2286                         struct vm_area_struct *vma, unsigned long addr)
2287 {
2288         return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
2289 }
2290
2291 static long vma_commit_reservation(struct hstate *h,
2292                         struct vm_area_struct *vma, unsigned long addr)
2293 {
2294         return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
2295 }
2296
2297 static void vma_end_reservation(struct hstate *h,
2298                         struct vm_area_struct *vma, unsigned long addr)
2299 {
2300         (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
2301 }
2302
2303 static long vma_add_reservation(struct hstate *h,
2304                         struct vm_area_struct *vma, unsigned long addr)
2305 {
2306         return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
2307 }
2308
2309 /*
2310  * This routine is called to restore a reservation on error paths.  In the
2311  * specific error paths, a huge page was allocated (via alloc_huge_page)
2312  * and is about to be freed.  If a reservation for the page existed,
2313  * alloc_huge_page would have consumed the reservation and set PagePrivate
2314  * in the newly allocated page.  When the page is freed via free_huge_page,
2315  * the global reservation count will be incremented if PagePrivate is set.
2316  * However, free_huge_page can not adjust the reserve map.  Adjust the
2317  * reserve map here to be consistent with global reserve count adjustments
2318  * to be made by free_huge_page.
2319  */
2320 static void restore_reserve_on_error(struct hstate *h,
2321                         struct vm_area_struct *vma, unsigned long address,
2322                         struct page *page)
2323 {
2324         if (unlikely(PagePrivate(page))) {
2325                 long rc = vma_needs_reservation(h, vma, address);
2326
2327                 if (unlikely(rc < 0)) {
2328                         /*
2329                          * Rare out of memory condition in reserve map
2330                          * manipulation.  Clear PagePrivate so that
2331                          * global reserve count will not be incremented
2332                          * by free_huge_page.  This will make it appear
2333                          * as though the reservation for this page was
2334                          * consumed.  This may prevent the task from
2335                          * faulting in the page at a later time.  This
2336                          * is better than inconsistent global huge page
2337                          * accounting of reserve counts.
2338                          */
2339                         ClearPagePrivate(page);
2340                 } else if (rc) {
2341                         rc = vma_add_reservation(h, vma, address);
2342                         if (unlikely(rc < 0))
2343                                 /*
2344                                  * See above comment about rare out of
2345                                  * memory condition.
2346                                  */
2347                                 ClearPagePrivate(page);
2348                 } else
2349                         vma_end_reservation(h, vma, address);
2350         }
2351 }
2352
2353 struct page *alloc_huge_page(struct vm_area_struct *vma,
2354                                     unsigned long addr, int avoid_reserve)
2355 {
2356         struct hugepage_subpool *spool = subpool_vma(vma);
2357         struct hstate *h = hstate_vma(vma);
2358         struct page *page;
2359         long map_chg, map_commit;
2360         long gbl_chg;
2361         int ret, idx;
2362         struct hugetlb_cgroup *h_cg;
2363         bool deferred_reserve;
2364
2365         idx = hstate_index(h);
2366         /*
2367          * Examine the region/reserve map to determine if the process
2368          * has a reservation for the page to be allocated.  A return
2369          * code of zero indicates a reservation exists (no change).
2370          */
2371         map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
2372         if (map_chg < 0)
2373                 return ERR_PTR(-ENOMEM);
2374
2375         /*
2376          * Processes that did not create the mapping will have no
2377          * reserves as indicated by the region/reserve map. Check
2378          * that the allocation will not exceed the subpool limit.
2379          * Allocations for MAP_NORESERVE mappings also need to be
2380          * checked against any subpool limit.
2381          */
2382         if (map_chg || avoid_reserve) {
2383                 gbl_chg = hugepage_subpool_get_pages(spool, 1);
2384                 if (gbl_chg < 0) {
2385                         vma_end_reservation(h, vma, addr);
2386                         return ERR_PTR(-ENOSPC);
2387                 }
2388
2389                 /*
2390                  * Even though there was no reservation in the region/reserve
2391                  * map, there could be reservations associated with the
2392                  * subpool that can be used.  This would be indicated if the
2393                  * return value of hugepage_subpool_get_pages() is zero.
2394                  * However, if avoid_reserve is specified we still avoid even
2395                  * the subpool reservations.
2396                  */
2397                 if (avoid_reserve)
2398                         gbl_chg = 1;
2399         }
2400
2401         /* If this allocation is not consuming a reservation, charge it now.
2402          */
2403         deferred_reserve = map_chg || avoid_reserve || !vma_resv_map(vma);
2404         if (deferred_reserve) {
2405                 ret = hugetlb_cgroup_charge_cgroup_rsvd(
2406                         idx, pages_per_huge_page(h), &h_cg);
2407                 if (ret)
2408                         goto out_subpool_put;
2409         }
2410
2411         ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
2412         if (ret)
2413                 goto out_uncharge_cgroup_reservation;
2414
2415         spin_lock(&hugetlb_lock);
2416         /*
2417          * glb_chg is passed to indicate whether or not a page must be taken
2418          * from the global free pool (global change).  gbl_chg == 0 indicates
2419          * a reservation exists for the allocation.
2420          */
2421         page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
2422         if (!page) {
2423                 spin_unlock(&hugetlb_lock);
2424                 page = alloc_buddy_huge_page_with_mpol(h, vma, addr);
2425                 if (!page)
2426                         goto out_uncharge_cgroup;
2427                 if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
2428                         SetPagePrivate(page);
2429                         h->resv_huge_pages--;
2430                 }
2431                 spin_lock(&hugetlb_lock);
2432                 list_move(&page->lru, &h->hugepage_activelist);
2433                 /* Fall through */
2434         }
2435         hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
2436         /* If allocation is not consuming a reservation, also store the
2437          * hugetlb_cgroup pointer on the page.
2438          */
2439         if (deferred_reserve) {
2440                 hugetlb_cgroup_commit_charge_rsvd(idx, pages_per_huge_page(h),
2441                                                   h_cg, page);
2442         }
2443
2444         spin_unlock(&hugetlb_lock);
2445
2446         set_page_private(page, (unsigned long)spool);
2447
2448         map_commit = vma_commit_reservation(h, vma, addr);
2449         if (unlikely(map_chg > map_commit)) {
2450                 /*
2451                  * The page was added to the reservation map between
2452                  * vma_needs_reservation and vma_commit_reservation.
2453                  * This indicates a race with hugetlb_reserve_pages.
2454                  * Adjust for the subpool count incremented above AND
2455                  * in hugetlb_reserve_pages for the same page.  Also,
2456                  * the reservation count added in hugetlb_reserve_pages
2457                  * no longer applies.
2458                  */
2459                 long rsv_adjust;
2460
2461                 rsv_adjust = hugepage_subpool_put_pages(spool, 1);
2462                 hugetlb_acct_memory(h, -rsv_adjust);
2463         }
2464         return page;
2465
2466 out_uncharge_cgroup:
2467         hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
2468 out_uncharge_cgroup_reservation:
2469         if (deferred_reserve)
2470                 hugetlb_cgroup_uncharge_cgroup_rsvd(idx, pages_per_huge_page(h),
2471                                                     h_cg);
2472 out_subpool_put:
2473         if (map_chg || avoid_reserve)
2474                 hugepage_subpool_put_pages(spool, 1);
2475         vma_end_reservation(h, vma, addr);
2476         return ERR_PTR(-ENOSPC);
2477 }
2478
2479 int alloc_bootmem_huge_page(struct hstate *h)
2480         __attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
2481 int __alloc_bootmem_huge_page(struct hstate *h)
2482 {
2483         struct huge_bootmem_page *m;
2484         int nr_nodes, node;
2485
2486         for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
2487                 void *addr;
2488
2489                 addr = memblock_alloc_try_nid_raw(
2490                                 huge_page_size(h), huge_page_size(h),
2491                                 0, MEMBLOCK_ALLOC_ACCESSIBLE, node);
2492                 if (addr) {
2493                         /*
2494                          * Use the beginning of the huge page to store the
2495                          * huge_bootmem_page struct (until gather_bootmem
2496                          * puts them into the mem_map).
2497                          */
2498                         m = addr;
2499                         goto found;
2500                 }
2501         }
2502         return 0;
2503
2504 found:
2505         BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h)));
2506         /* Put them into a private list first because mem_map is not up yet */
2507         INIT_LIST_HEAD(&m->list);
2508         list_add(&m->list, &huge_boot_pages);
2509         m->hstate = h;
2510         return 1;
2511 }
2512
2513 static void __init prep_compound_huge_page(struct page *page,
2514                 unsigned int order)
2515 {
2516         if (unlikely(order > (MAX_ORDER - 1)))
2517                 prep_compound_gigantic_page(page, order);
2518         else
2519                 prep_compound_page(page, order);
2520 }
2521
2522 /* Put bootmem huge pages into the standard lists after mem_map is up */
2523 static void __init gather_bootmem_prealloc(void)
2524 {
2525         struct huge_bootmem_page *m;
2526
2527         list_for_each_entry(m, &huge_boot_pages, list) {
2528                 struct page *page = virt_to_page(m);
2529                 struct hstate *h = m->hstate;
2530
2531                 WARN_ON(page_count(page) != 1);
2532                 prep_compound_huge_page(page, h->order);
2533                 WARN_ON(PageReserved(page));
2534                 prep_new_huge_page(h, page, page_to_nid(page));
2535                 put_page(page); /* free it into the hugepage allocator */
2536
2537                 /*
2538                  * If we had gigantic hugepages allocated at boot time, we need
2539                  * to restore the 'stolen' pages to totalram_pages in order to
2540                  * fix confusing memory reports from free(1) and another
2541                  * side-effects, like CommitLimit going negative.
2542                  */
2543                 if (hstate_is_gigantic(h))
2544                         adjust_managed_page_count(page, 1 << h->order);
2545                 cond_resched();
2546         }
2547 }
2548
2549 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
2550 {
2551         unsigned long i;
2552         nodemask_t *node_alloc_noretry;
2553
2554         if (!hstate_is_gigantic(h)) {
2555                 /*
2556                  * Bit mask controlling how hard we retry per-node allocations.
2557                  * Ignore errors as lower level routines can deal with
2558                  * node_alloc_noretry == NULL.  If this kmalloc fails at boot
2559                  * time, we are likely in bigger trouble.
2560                  */
2561                 node_alloc_noretry = kmalloc(sizeof(*node_alloc_noretry),
2562                                                 GFP_KERNEL);
2563         } else {
2564                 /* allocations done at boot time */
2565                 node_alloc_noretry = NULL;
2566         }
2567
2568         /* bit mask controlling how hard we retry per-node allocations */
2569         if (node_alloc_noretry)
2570                 nodes_clear(*node_alloc_noretry);
2571
2572         for (i = 0; i < h->max_huge_pages; ++i) {
2573                 if (hstate_is_gigantic(h)) {
2574                         if (IS_ENABLED(CONFIG_CMA) && hugetlb_cma[0]) {
2575                                 pr_warn_once("HugeTLB: hugetlb_cma is enabled, skip boot time allocation\n");
2576                                 break;
2577                         }
2578                         if (!alloc_bootmem_huge_page(h))
2579                                 break;
2580                 } else if (!alloc_pool_huge_page(h,
2581                                          &node_states[N_MEMORY],
2582                                          node_alloc_noretry))
2583                         break;
2584                 cond_resched();
2585         }
2586         if (i < h->max_huge_pages) {
2587                 char buf[32];
2588
2589                 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
2590                 pr_warn("HugeTLB: allocating %lu of page size %s failed.  Only allocated %lu hugepages.\n",
2591                         h->max_huge_pages, buf, i);
2592                 h->max_huge_pages = i;
2593         }
2594
2595         kfree(node_alloc_noretry);
2596 }
2597
2598 static void __init hugetlb_init_hstates(void)
2599 {
2600         struct hstate *h;
2601
2602         for_each_hstate(h) {
2603                 if (minimum_order > huge_page_order(h))
2604                         minimum_order = huge_page_order(h);
2605
2606                 /* oversize hugepages were init'ed in early boot */
2607                 if (!hstate_is_gigantic(h))
2608                         hugetlb_hstate_alloc_pages(h);
2609         }
2610         VM_BUG_ON(minimum_order == UINT_MAX);
2611 }
2612
2613 static void __init report_hugepages(void)
2614 {
2615         struct hstate *h;
2616
2617         for_each_hstate(h) {
2618                 char buf[32];
2619
2620                 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
2621                 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
2622                         buf, h->free_huge_pages);
2623         }
2624 }
2625
2626 #ifdef CONFIG_HIGHMEM
2627 static void try_to_free_low(struct hstate *h, unsigned long count,
2628                                                 nodemask_t *nodes_allowed)
2629 {
2630         int i;
2631
2632         if (hstate_is_gigantic(h))
2633                 return;
2634
2635         for_each_node_mask(i, *nodes_allowed) {
2636                 struct page *page, *next;
2637                 struct list_head *freel = &h->hugepage_freelists[i];
2638                 list_for_each_entry_safe(page, next, freel, lru) {
2639                         if (count >= h->nr_huge_pages)
2640                                 return;
2641                         if (PageHighMem(page))
2642                                 continue;
2643                         list_del(&page->lru);
2644                         update_and_free_page(h, page);
2645                         h->free_huge_pages--;
2646                         h->free_huge_pages_node[page_to_nid(page)]--;
2647                 }
2648         }
2649 }
2650 #else
2651 static inline void try_to_free_low(struct hstate *h, unsigned long count,
2652                                                 nodemask_t *nodes_allowed)
2653 {
2654 }
2655 #endif
2656
2657 /*
2658  * Increment or decrement surplus_huge_pages.  Keep node-specific counters
2659  * balanced by operating on them in a round-robin fashion.
2660  * Returns 1 if an adjustment was made.
2661  */
2662 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
2663                                 int delta)
2664 {
2665         int nr_nodes, node;
2666
2667         VM_BUG_ON(delta != -1 && delta != 1);
2668
2669         if (delta < 0) {
2670                 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
2671                         if (h->surplus_huge_pages_node[node])
2672                                 goto found;
2673                 }
2674         } else {
2675                 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2676                         if (h->surplus_huge_pages_node[node] <
2677                                         h->nr_huge_pages_node[node])
2678                                 goto found;
2679                 }
2680         }
2681         return 0;
2682
2683 found:
2684         h->surplus_huge_pages += delta;
2685         h->surplus_huge_pages_node[node] += delta;
2686         return 1;
2687 }
2688
2689 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
2690 static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid,
2691                               nodemask_t *nodes_allowed)
2692 {
2693         unsigned long min_count, ret;
2694         NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL);
2695
2696         /*
2697          * Bit mask controlling how hard we retry per-node allocations.
2698          * If we can not allocate the bit mask, do not attempt to allocate
2699          * the requested huge pages.
2700          */
2701         if (node_alloc_noretry)
2702                 nodes_clear(*node_alloc_noretry);
2703         else
2704                 return -ENOMEM;
2705
2706         spin_lock(&hugetlb_lock);
2707
2708         /*
2709          * Check for a node specific request.
2710          * Changing node specific huge page count may require a corresponding
2711          * change to the global count.  In any case, the passed node mask
2712          * (nodes_allowed) will restrict alloc/free to the specified node.
2713          */
2714         if (nid != NUMA_NO_NODE) {
2715                 unsigned long old_count = count;
2716
2717                 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
2718                 /*
2719                  * User may have specified a large count value which caused the
2720                  * above calculation to overflow.  In this case, they wanted
2721                  * to allocate as many huge pages as possible.  Set count to
2722                  * largest possible value to align with their intention.
2723                  */
2724                 if (count < old_count)
2725                         count = ULONG_MAX;
2726         }
2727
2728         /*
2729          * Gigantic pages runtime allocation depend on the capability for large
2730          * page range allocation.
2731          * If the system does not provide this feature, return an error when
2732          * the user tries to allocate gigantic pages but let the user free the
2733          * boottime allocated gigantic pages.
2734          */
2735         if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) {
2736                 if (count > persistent_huge_pages(h)) {
2737                         spin_unlock(&hugetlb_lock);
2738                         NODEMASK_FREE(node_alloc_noretry);
2739                         return -EINVAL;
2740                 }
2741                 /* Fall through to decrease pool */
2742         }
2743
2744         /*
2745          * Increase the pool size
2746          * First take pages out of surplus state.  Then make up the
2747          * remaining difference by allocating fresh huge pages.
2748          *
2749          * We might race with alloc_surplus_huge_page() here and be unable
2750          * to convert a surplus huge page to a normal huge page. That is
2751          * not critical, though, it just means the overall size of the
2752          * pool might be one hugepage larger than it needs to be, but
2753          * within all the constraints specified by the sysctls.
2754          */
2755         while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
2756                 if (!adjust_pool_surplus(h, nodes_allowed, -1))
2757                         break;
2758         }
2759
2760         while (count > persistent_huge_pages(h)) {
2761                 /*
2762                  * If this allocation races such that we no longer need the
2763                  * page, free_huge_page will handle it by freeing the page
2764                  * and reducing the surplus.
2765                  */
2766                 spin_unlock(&hugetlb_lock);
2767
2768                 /* yield cpu to avoid soft lockup */
2769                 cond_resched();
2770
2771                 ret = alloc_pool_huge_page(h, nodes_allowed,
2772                                                 node_alloc_noretry);
2773                 spin_lock(&hugetlb_lock);
2774                 if (!ret)
2775                         goto out;
2776
2777                 /* Bail for signals. Probably ctrl-c from user */
2778                 if (signal_pending(current))
2779                         goto out;
2780         }
2781
2782         /*
2783          * Decrease the pool size
2784          * First return free pages to the buddy allocator (being careful
2785          * to keep enough around to satisfy reservations).  Then place
2786          * pages into surplus state as needed so the pool will shrink
2787          * to the desired size as pages become free.
2788          *
2789          * By placing pages into the surplus state independent of the
2790          * overcommit value, we are allowing the surplus pool size to
2791          * exceed overcommit. There are few sane options here. Since
2792          * alloc_surplus_huge_page() is checking the global counter,
2793          * though, we'll note that we're not allowed to exceed surplus
2794          * and won't grow the pool anywhere else. Not until one of the
2795          * sysctls are changed, or the surplus pages go out of use.
2796          */
2797         min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
2798         min_count = max(count, min_count);
2799         try_to_free_low(h, min_count, nodes_allowed);
2800         while (min_count < persistent_huge_pages(h)) {
2801                 if (!free_pool_huge_page(h, nodes_allowed, 0))
2802                         break;
2803                 cond_resched_lock(&hugetlb_lock);
2804         }
2805         while (count < persistent_huge_pages(h)) {
2806                 if (!adjust_pool_surplus(h, nodes_allowed, 1))
2807                         break;
2808         }
2809 out:
2810         h->max_huge_pages = persistent_huge_pages(h);
2811         spin_unlock(&hugetlb_lock);
2812
2813         NODEMASK_FREE(node_alloc_noretry);
2814
2815         return 0;
2816 }
2817
2818 #define HSTATE_ATTR_RO(_name) \
2819         static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2820
2821 #define HSTATE_ATTR(_name) \
2822         static struct kobj_attribute _name##_attr = \
2823                 __ATTR(_name, 0644, _name##_show, _name##_store)
2824
2825 static struct kobject *hugepages_kobj;
2826 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2827
2828 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
2829
2830 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
2831 {
2832         int i;
2833
2834         for (i = 0; i < HUGE_MAX_HSTATE; i++)
2835                 if (hstate_kobjs[i] == kobj) {
2836                         if (nidp)
2837                                 *nidp = NUMA_NO_NODE;
2838                         return &hstates[i];
2839                 }
2840
2841         return kobj_to_node_hstate(kobj, nidp);
2842 }
2843
2844 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
2845                                         struct kobj_attribute *attr, char *buf)
2846 {
2847         struct hstate *h;
2848         unsigned long nr_huge_pages;
2849         int nid;
2850
2851         h = kobj_to_hstate(kobj, &nid);
2852         if (nid == NUMA_NO_NODE)
2853                 nr_huge_pages = h->nr_huge_pages;
2854         else
2855                 nr_huge_pages = h->nr_huge_pages_node[nid];
2856
2857         return sprintf(buf, "%lu\n", nr_huge_pages);
2858 }
2859
2860 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
2861                                            struct hstate *h, int nid,
2862                                            unsigned long count, size_t len)
2863 {
2864         int err;
2865         nodemask_t nodes_allowed, *n_mask;
2866
2867         if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
2868                 return -EINVAL;
2869
2870         if (nid == NUMA_NO_NODE) {
2871                 /*
2872                  * global hstate attribute
2873                  */
2874                 if (!(obey_mempolicy &&
2875                                 init_nodemask_of_mempolicy(&nodes_allowed)))
2876                         n_mask = &node_states[N_MEMORY];
2877                 else
2878                         n_mask = &nodes_allowed;
2879         } else {
2880                 /*
2881                  * Node specific request.  count adjustment happens in
2882                  * set_max_huge_pages() after acquiring hugetlb_lock.
2883                  */
2884                 init_nodemask_of_node(&nodes_allowed, nid);
2885                 n_mask = &nodes_allowed;
2886         }
2887
2888         err = set_max_huge_pages(h, count, nid, n_mask);
2889
2890         return err ? err : len;
2891 }
2892
2893 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
2894                                          struct kobject *kobj, const char *buf,
2895                                          size_t len)
2896 {
2897         struct hstate *h;
2898         unsigned long count;
2899         int nid;
2900         int err;
2901
2902         err = kstrtoul(buf, 10, &count);
2903         if (err)
2904                 return err;
2905
2906         h = kobj_to_hstate(kobj, &nid);
2907         return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
2908 }
2909
2910 static ssize_t nr_hugepages_show(struct kobject *kobj,
2911                                        struct kobj_attribute *attr, char *buf)
2912 {
2913         return nr_hugepages_show_common(kobj, attr, buf);
2914 }
2915
2916 static ssize_t nr_hugepages_store(struct kobject *kobj,
2917                struct kobj_attribute *attr, const char *buf, size_t len)
2918 {
2919         return nr_hugepages_store_common(false, kobj, buf, len);
2920 }
2921 HSTATE_ATTR(nr_hugepages);
2922
2923 #ifdef CONFIG_NUMA
2924
2925 /*
2926  * hstate attribute for optionally mempolicy-based constraint on persistent
2927  * huge page alloc/free.
2928  */
2929 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
2930                                        struct kobj_attribute *attr, char *buf)
2931 {
2932         return nr_hugepages_show_common(kobj, attr, buf);
2933 }
2934
2935 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
2936                struct kobj_attribute *attr, const char *buf, size_t len)
2937 {
2938         return nr_hugepages_store_common(true, kobj, buf, len);
2939 }
2940 HSTATE_ATTR(nr_hugepages_mempolicy);
2941 #endif
2942
2943
2944 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
2945                                         struct kobj_attribute *attr, char *buf)
2946 {
2947         struct hstate *h = kobj_to_hstate(kobj, NULL);
2948         return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
2949 }
2950
2951 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
2952                 struct kobj_attribute *attr, const char *buf, size_t count)
2953 {
2954         int err;
2955         unsigned long input;
2956         struct hstate *h = kobj_to_hstate(kobj, NULL);
2957
2958         if (hstate_is_gigantic(h))
2959                 return -EINVAL;
2960
2961         err = kstrtoul(buf, 10, &input);
2962         if (err)
2963                 return err;
2964
2965         spin_lock(&hugetlb_lock);
2966         h->nr_overcommit_huge_pages = input;
2967         spin_unlock(&hugetlb_lock);
2968
2969         return count;
2970 }
2971 HSTATE_ATTR(nr_overcommit_hugepages);
2972
2973 static ssize_t free_hugepages_show(struct kobject *kobj,
2974                                         struct kobj_attribute *attr, char *buf)
2975 {
2976         struct hstate *h;
2977         unsigned long free_huge_pages;
2978         int nid;
2979
2980         h = kobj_to_hstate(kobj, &nid);
2981         if (nid == NUMA_NO_NODE)
2982                 free_huge_pages = h->free_huge_pages;
2983         else
2984                 free_huge_pages = h->free_huge_pages_node[nid];
2985
2986         return sprintf(buf, "%lu\n", free_huge_pages);
2987 }
2988 HSTATE_ATTR_RO(free_hugepages);
2989
2990 static ssize_t resv_hugepages_show(struct kobject *kobj,
2991                                         struct kobj_attribute *attr, char *buf)
2992 {
2993         struct hstate *h = kobj_to_hstate(kobj, NULL);
2994         return sprintf(buf, "%lu\n", h->resv_huge_pages);
2995 }
2996 HSTATE_ATTR_RO(resv_hugepages);
2997
2998 static ssize_t surplus_hugepages_show(struct kobject *kobj,
2999                                         struct kobj_attribute *attr, char *buf)
3000 {
3001         struct hstate *h;
3002         unsigned long surplus_huge_pages;
3003         int nid;
3004
3005         h = kobj_to_hstate(kobj, &nid);
3006         if (nid == NUMA_NO_NODE)
3007                 surplus_huge_pages = h->surplus_huge_pages;
3008         else
3009                 surplus_huge_pages = h->surplus_huge_pages_node[nid];
3010
3011         return sprintf(buf, "%lu\n", surplus_huge_pages);
3012 }
3013 HSTATE_ATTR_RO(surplus_hugepages);
3014
3015 static struct attribute *hstate_attrs[] = {
3016         &nr_hugepages_attr.attr,
3017         &nr_overcommit_hugepages_attr.attr,
3018         &free_hugepages_attr.attr,
3019         &resv_hugepages_attr.attr,
3020         &surplus_hugepages_attr.attr,
3021 #ifdef CONFIG_NUMA
3022         &nr_hugepages_mempolicy_attr.attr,
3023 #endif
3024         NULL,
3025 };
3026
3027 static const struct attribute_group hstate_attr_group = {
3028         .attrs = hstate_attrs,
3029 };
3030
3031 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
3032                                     struct kobject **hstate_kobjs,
3033                                     const struct attribute_group *hstate_attr_group)
3034 {
3035         int retval;
3036         int hi = hstate_index(h);
3037
3038         hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
3039         if (!hstate_kobjs[hi])
3040                 return -ENOMEM;
3041
3042         retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
3043         if (retval)
3044                 kobject_put(hstate_kobjs[hi]);
3045
3046         return retval;
3047 }
3048
3049 static void __init hugetlb_sysfs_init(void)
3050 {
3051         struct hstate *h;
3052         int err;
3053
3054         hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
3055         if (!hugepages_kobj)
3056                 return;
3057
3058         for_each_hstate(h) {
3059                 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
3060                                          hstate_kobjs, &hstate_attr_group);
3061                 if (err)
3062                         pr_err("HugeTLB: Unable to add hstate %s", h->name);
3063         }
3064 }
3065
3066 #ifdef CONFIG_NUMA
3067
3068 /*
3069  * node_hstate/s - associate per node hstate attributes, via their kobjects,
3070  * with node devices in node_devices[] using a parallel array.  The array
3071  * index of a node device or _hstate == node id.
3072  * This is here to avoid any static dependency of the node device driver, in
3073  * the base kernel, on the hugetlb module.
3074  */
3075 struct node_hstate {
3076         struct kobject          *hugepages_kobj;
3077         struct kobject          *hstate_kobjs[HUGE_MAX_HSTATE];
3078 };
3079 static struct node_hstate node_hstates[MAX_NUMNODES];
3080
3081 /*
3082  * A subset of global hstate attributes for node devices
3083  */
3084 static struct attribute *per_node_hstate_attrs[] = {
3085         &nr_hugepages_attr.attr,
3086         &free_hugepages_attr.attr,
3087         &surplus_hugepages_attr.attr,
3088         NULL,
3089 };
3090
3091 static const struct attribute_group per_node_hstate_attr_group = {
3092         .attrs = per_node_hstate_attrs,
3093 };
3094
3095 /*
3096  * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
3097  * Returns node id via non-NULL nidp.
3098  */
3099 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
3100 {
3101         int nid;
3102
3103         for (nid = 0; nid < nr_node_ids; nid++) {
3104                 struct node_hstate *nhs = &node_hstates[nid];
3105                 int i;
3106                 for (i = 0; i < HUGE_MAX_HSTATE; i++)
3107                         if (nhs->hstate_kobjs[i] == kobj) {
3108                                 if (nidp)
3109                                         *nidp = nid;
3110                                 return &hstates[i];
3111                         }
3112         }
3113
3114         BUG();
3115         return NULL;
3116 }
3117
3118 /*
3119  * Unregister hstate attributes from a single node device.
3120  * No-op if no hstate attributes attached.
3121  */
3122 static void hugetlb_unregister_node(struct node *node)
3123 {
3124         struct hstate *h;
3125         struct node_hstate *nhs = &node_hstates[node->dev.id];
3126
3127         if (!nhs->hugepages_kobj)
3128                 return;         /* no hstate attributes */
3129
3130         for_each_hstate(h) {
3131                 int idx = hstate_index(h);
3132                 if (nhs->hstate_kobjs[idx]) {
3133                         kobject_put(nhs->hstate_kobjs[idx]);
3134                         nhs->hstate_kobjs[idx] = NULL;
3135                 }
3136         }
3137
3138         kobject_put(nhs->hugepages_kobj);
3139         nhs->hugepages_kobj = NULL;
3140 }
3141
3142
3143 /*
3144  * Register hstate attributes for a single node device.
3145  * No-op if attributes already registered.
3146  */
3147 static void hugetlb_register_node(struct node *node)
3148 {
3149         struct hstate *h;
3150         struct node_hstate *nhs = &node_hstates[node->dev.id];
3151         int err;
3152
3153         if (nhs->hugepages_kobj)
3154                 return;         /* already allocated */
3155
3156         nhs->hugepages_kobj = kobject_create_and_add("hugepages",
3157                                                         &node->dev.kobj);
3158         if (!nhs->hugepages_kobj)
3159                 return;
3160
3161         for_each_hstate(h) {
3162                 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
3163                                                 nhs->hstate_kobjs,
3164                                                 &per_node_hstate_attr_group);
3165                 if (err) {
3166                         pr_err("HugeTLB: Unable to add hstate %s for node %d\n",
3167                                 h->name, node->dev.id);
3168                         hugetlb_unregister_node(node);
3169                         break;
3170                 }
3171         }
3172 }
3173
3174 /*
3175  * hugetlb init time:  register hstate attributes for all registered node
3176  * devices of nodes that have memory.  All on-line nodes should have
3177  * registered their associated device by this time.
3178  */
3179 static void __init hugetlb_register_all_nodes(void)
3180 {
3181         int nid;
3182
3183         for_each_node_state(nid, N_MEMORY) {
3184                 struct node *node = node_devices[nid];
3185                 if (node->dev.id == nid)
3186                         hugetlb_register_node(node);
3187         }
3188
3189         /*
3190          * Let the node device driver know we're here so it can
3191          * [un]register hstate attributes on node hotplug.
3192          */
3193         register_hugetlbfs_with_node(hugetlb_register_node,
3194                                      hugetlb_unregister_node);
3195 }
3196 #else   /* !CONFIG_NUMA */
3197
3198 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
3199 {
3200         BUG();
3201         if (nidp)
3202                 *nidp = -1;
3203         return NULL;
3204 }
3205
3206 static void hugetlb_register_all_nodes(void) { }
3207
3208 #endif
3209
3210 static int __init hugetlb_init(void)
3211 {
3212         int i;
3213
3214         if (!hugepages_supported()) {
3215                 if (hugetlb_max_hstate || default_hstate_max_huge_pages)
3216                         pr_warn("HugeTLB: huge pages not supported, ignoring associated command-line parameters\n");
3217                 return 0;
3218         }
3219
3220         /*
3221          * Make sure HPAGE_SIZE (HUGETLB_PAGE_ORDER) hstate exists.  Some
3222          * architectures depend on setup being done here.
3223          */
3224         hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
3225         if (!parsed_default_hugepagesz) {
3226                 /*
3227                  * If we did not parse a default huge page size, set
3228                  * default_hstate_idx to HPAGE_SIZE hstate. And, if the
3229                  * number of huge pages for this default size was implicitly
3230                  * specified, set that here as well.
3231                  * Note that the implicit setting will overwrite an explicit
3232                  * setting.  A warning will be printed in this case.
3233                  */
3234                 default_hstate_idx = hstate_index(size_to_hstate(HPAGE_SIZE));
3235                 if (default_hstate_max_huge_pages) {
3236                         if (default_hstate.max_huge_pages) {
3237                                 char buf[32];
3238
3239                                 string_get_size(huge_page_size(&default_hstate),
3240                                         1, STRING_UNITS_2, buf, 32);
3241                                 pr_warn("HugeTLB: Ignoring hugepages=%lu associated with %s page size\n",
3242                                         default_hstate.max_huge_pages, buf);
3243                                 pr_warn("HugeTLB: Using hugepages=%lu for number of default huge pages\n",
3244                                         default_hstate_max_huge_pages);
3245                         }
3246                         default_hstate.max_huge_pages =
3247                                 default_hstate_max_huge_pages;
3248                 }
3249         }
3250
3251         hugetlb_cma_check();
3252         hugetlb_init_hstates();
3253         gather_bootmem_prealloc();
3254         report_hugepages();
3255
3256         hugetlb_sysfs_init();
3257         hugetlb_register_all_nodes();
3258         hugetlb_cgroup_file_init();
3259
3260 #ifdef CONFIG_SMP
3261         num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
3262 #else
3263         num_fault_mutexes = 1;
3264 #endif
3265         hugetlb_fault_mutex_table =
3266                 kmalloc_array(num_fault_mutexes, sizeof(struct mutex),
3267                               GFP_KERNEL);
3268         BUG_ON(!hugetlb_fault_mutex_table);
3269
3270         for (i = 0; i < num_fault_mutexes; i++)
3271                 mutex_init(&hugetlb_fault_mutex_table[i]);
3272         return 0;
3273 }
3274 subsys_initcall(hugetlb_init);
3275
3276 /* Overwritten by architectures with more huge page sizes */
3277 bool __init __attribute((weak)) arch_hugetlb_valid_size(unsigned long size)
3278 {
3279         return size == HPAGE_SIZE;
3280 }
3281
3282 void __init hugetlb_add_hstate(unsigned int order)
3283 {
3284         struct hstate *h;
3285         unsigned long i;
3286
3287         if (size_to_hstate(PAGE_SIZE << order)) {
3288                 return;
3289         }
3290         BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
3291         BUG_ON(order == 0);
3292         h = &hstates[hugetlb_max_hstate++];
3293         h->order = order;
3294         h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
3295         h->nr_huge_pages = 0;
3296         h->free_huge_pages = 0;
3297         for (i = 0; i < MAX_NUMNODES; ++i)
3298                 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
3299         INIT_LIST_HEAD(&h->hugepage_activelist);
3300         h->next_nid_to_alloc = first_memory_node;
3301         h->next_nid_to_free = first_memory_node;
3302         snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
3303                                         huge_page_size(h)/1024);
3304
3305         parsed_hstate = h;
3306 }
3307
3308 /*
3309  * hugepages command line processing
3310  * hugepages normally follows a valid hugepagsz or default_hugepagsz
3311  * specification.  If not, ignore the hugepages value.  hugepages can also
3312  * be the first huge page command line  option in which case it implicitly
3313  * specifies the number of huge pages for the default size.
3314  */
3315 static int __init hugepages_setup(char *s)
3316 {
3317         unsigned long *mhp;
3318         static unsigned long *last_mhp;
3319
3320         if (!parsed_valid_hugepagesz) {
3321                 pr_warn("HugeTLB: hugepages=%s does not follow a valid hugepagesz, ignoring\n", s);
3322                 parsed_valid_hugepagesz = true;
3323                 return 0;
3324         }
3325
3326         /*
3327          * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter
3328          * yet, so this hugepages= parameter goes to the "default hstate".
3329          * Otherwise, it goes with the previously parsed hugepagesz or
3330          * default_hugepagesz.
3331          */
3332         else if (!hugetlb_max_hstate)
3333                 mhp = &default_hstate_max_huge_pages;
3334         else
3335                 mhp = &parsed_hstate->max_huge_pages;
3336
3337         if (mhp == last_mhp) {
3338                 pr_warn("HugeTLB: hugepages= specified twice without interleaving hugepagesz=, ignoring hugepages=%s\n", s);
3339                 return 0;
3340         }
3341
3342         if (sscanf(s, "%lu", mhp) <= 0)
3343                 *mhp = 0;
3344
3345         /*
3346          * Global state is always initialized later in hugetlb_init.
3347          * But we need to allocate >= MAX_ORDER hstates here early to still
3348          * use the bootmem allocator.
3349          */
3350         if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
3351                 hugetlb_hstate_alloc_pages(parsed_hstate);
3352
3353         last_mhp = mhp;
3354
3355         return 1;
3356 }
3357 __setup("hugepages=", hugepages_setup);
3358
3359 /*
3360  * hugepagesz command line processing
3361  * A specific huge page size can only be specified once with hugepagesz.
3362  * hugepagesz is followed by hugepages on the command line.  The global
3363  * variable 'parsed_valid_hugepagesz' is used to determine if prior
3364  * hugepagesz argument was valid.
3365  */
3366 static int __init hugepagesz_setup(char *s)
3367 {
3368         unsigned long size;
3369         struct hstate *h;
3370
3371         parsed_valid_hugepagesz = false;
3372         size = (unsigned long)memparse(s, NULL);
3373
3374         if (!arch_hugetlb_valid_size(size)) {
3375                 pr_err("HugeTLB: unsupported hugepagesz=%s\n", s);
3376                 return 0;
3377         }
3378
3379         h = size_to_hstate(size);
3380         if (h) {
3381                 /*
3382                  * hstate for this size already exists.  This is normally
3383                  * an error, but is allowed if the existing hstate is the
3384                  * default hstate.  More specifically, it is only allowed if
3385                  * the number of huge pages for the default hstate was not
3386                  * previously specified.
3387                  */
3388                 if (!parsed_default_hugepagesz ||  h != &default_hstate ||
3389                     default_hstate.max_huge_pages) {
3390                         pr_warn("HugeTLB: hugepagesz=%s specified twice, ignoring\n", s);
3391                         return 0;
3392                 }
3393
3394                 /*
3395                  * No need to call hugetlb_add_hstate() as hstate already
3396                  * exists.  But, do set parsed_hstate so that a following
3397                  * hugepages= parameter will be applied to this hstate.
3398                  */
3399                 parsed_hstate = h;
3400                 parsed_valid_hugepagesz = true;
3401                 return 1;
3402         }
3403
3404         hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
3405         parsed_valid_hugepagesz = true;
3406         return 1;
3407 }
3408 __setup("hugepagesz=", hugepagesz_setup);
3409
3410 /*
3411  * default_hugepagesz command line input
3412  * Only one instance of default_hugepagesz allowed on command line.
3413  */
3414 static int __init default_hugepagesz_setup(char *s)
3415 {
3416         unsigned long size;
3417
3418         parsed_valid_hugepagesz = false;
3419         if (parsed_default_hugepagesz) {
3420                 pr_err("HugeTLB: default_hugepagesz previously specified, ignoring %s\n", s);
3421                 return 0;
3422         }
3423
3424         size = (unsigned long)memparse(s, NULL);
3425
3426         if (!arch_hugetlb_valid_size(size)) {
3427                 pr_err("HugeTLB: unsupported default_hugepagesz=%s\n", s);
3428                 return 0;
3429         }
3430
3431         hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
3432         parsed_valid_hugepagesz = true;
3433         parsed_default_hugepagesz = true;
3434         default_hstate_idx = hstate_index(size_to_hstate(size));
3435
3436         /*
3437          * The number of default huge pages (for this size) could have been
3438          * specified as the first hugetlb parameter: hugepages=X.  If so,
3439          * then default_hstate_max_huge_pages is set.  If the default huge
3440          * page size is gigantic (>= MAX_ORDER), then the pages must be
3441          * allocated here from bootmem allocator.
3442          */
3443         if (default_hstate_max_huge_pages) {
3444                 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
3445                 if (hstate_is_gigantic(&default_hstate))
3446                         hugetlb_hstate_alloc_pages(&default_hstate);
3447                 default_hstate_max_huge_pages = 0;
3448         }
3449
3450         return 1;
3451 }
3452 __setup("default_hugepagesz=", default_hugepagesz_setup);
3453
3454 static unsigned int cpuset_mems_nr(unsigned int *array)
3455 {
3456         int node;
3457         unsigned int nr = 0;
3458
3459         for_each_node_mask(node, cpuset_current_mems_allowed)
3460                 nr += array[node];
3461
3462         return nr;
3463 }
3464
3465 #ifdef CONFIG_SYSCTL
3466 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
3467                          struct ctl_table *table, int write,
3468                          void *buffer, size_t *length, loff_t *ppos)
3469 {
3470         struct hstate *h = &default_hstate;
3471         unsigned long tmp = h->max_huge_pages;
3472         int ret;
3473
3474         if (!hugepages_supported())
3475                 return -EOPNOTSUPP;
3476
3477         table->data = &tmp;
3478         table->maxlen = sizeof(unsigned long);
3479         ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
3480         if (ret)
3481                 goto out;
3482
3483         if (write)
3484                 ret = __nr_hugepages_store_common(obey_mempolicy, h,
3485                                                   NUMA_NO_NODE, tmp, *length);
3486 out:
3487         return ret;
3488 }
3489
3490 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
3491                           void *buffer, size_t *length, loff_t *ppos)
3492 {
3493
3494         return hugetlb_sysctl_handler_common(false, table, write,
3495                                                         buffer, length, ppos);
3496 }
3497
3498 #ifdef CONFIG_NUMA
3499 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
3500                           void *buffer, size_t *length, loff_t *ppos)
3501 {
3502         return hugetlb_sysctl_handler_common(true, table, write,
3503                                                         buffer, length, ppos);
3504 }
3505 #endif /* CONFIG_NUMA */
3506
3507 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
3508                 void *buffer, size_t *length, loff_t *ppos)
3509 {
3510         struct hstate *h = &default_hstate;
3511         unsigned long tmp;
3512         int ret;
3513
3514         if (!hugepages_supported())
3515                 return -EOPNOTSUPP;
3516
3517         tmp = h->nr_overcommit_huge_pages;
3518
3519         if (write && hstate_is_gigantic(h))
3520                 return -EINVAL;
3521
3522         table->data = &tmp;
3523         table->maxlen = sizeof(unsigned long);
3524         ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
3525         if (ret)
3526                 goto out;
3527
3528         if (write) {
3529                 spin_lock(&hugetlb_lock);
3530                 h->nr_overcommit_huge_pages = tmp;
3531                 spin_unlock(&hugetlb_lock);
3532         }
3533 out:
3534         return ret;
3535 }
3536
3537 #endif /* CONFIG_SYSCTL */
3538
3539 void hugetlb_report_meminfo(struct seq_file *m)
3540 {
3541         struct hstate *h;
3542         unsigned long total = 0;
3543
3544         if (!hugepages_supported())
3545                 return;
3546
3547         for_each_hstate(h) {
3548                 unsigned long count = h->nr_huge_pages;
3549
3550                 total += (PAGE_SIZE << huge_page_order(h)) * count;
3551
3552                 if (h == &default_hstate)
3553                         seq_printf(m,
3554                                    "HugePages_Total:   %5lu\n"
3555                                    "HugePages_Free:    %5lu\n"
3556                                    "HugePages_Rsvd:    %5lu\n"
3557                                    "HugePages_Surp:    %5lu\n"
3558                                    "Hugepagesize:   %8lu kB\n",
3559                                    count,
3560                                    h->free_huge_pages,
3561                                    h->resv_huge_pages,
3562                                    h->surplus_huge_pages,
3563                                    (PAGE_SIZE << huge_page_order(h)) / 1024);
3564         }
3565
3566         seq_printf(m, "Hugetlb:        %8lu kB\n", total / 1024);
3567 }
3568
3569 int hugetlb_report_node_meminfo(int nid, char *buf)
3570 {
3571         struct hstate *h = &default_hstate;
3572         if (!hugepages_supported())
3573                 return 0;
3574         return sprintf(buf,
3575                 "Node %d HugePages_Total: %5u\n"
3576                 "Node %d HugePages_Free:  %5u\n"
3577                 "Node %d HugePages_Surp:  %5u\n",
3578                 nid, h->nr_huge_pages_node[nid],
3579                 nid, h->free_huge_pages_node[nid],
3580                 nid, h->surplus_huge_pages_node[nid]);
3581 }
3582
3583 void hugetlb_show_meminfo(void)
3584 {
3585         struct hstate *h;
3586         int nid;
3587
3588         if (!hugepages_supported())
3589                 return;
3590
3591         for_each_node_state(nid, N_MEMORY)
3592                 for_each_hstate(h)
3593                         pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
3594                                 nid,
3595                                 h->nr_huge_pages_node[nid],
3596                                 h->free_huge_pages_node[nid],
3597                                 h->surplus_huge_pages_node[nid],
3598                                 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
3599 }
3600
3601 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
3602 {
3603         seq_printf(m, "HugetlbPages:\t%8lu kB\n",
3604                    atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
3605 }
3606
3607 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
3608 unsigned long hugetlb_total_pages(void)
3609 {
3610         struct hstate *h;
3611         unsigned long nr_total_pages = 0;
3612
3613         for_each_hstate(h)
3614                 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
3615         return nr_total_pages;
3616 }
3617
3618 static int hugetlb_acct_memory(struct hstate *h, long delta)
3619 {
3620         int ret = -ENOMEM;
3621
3622         spin_lock(&hugetlb_lock);
3623         /*
3624          * When cpuset is configured, it breaks the strict hugetlb page
3625          * reservation as the accounting is done on a global variable. Such
3626          * reservation is completely rubbish in the presence of cpuset because
3627          * the reservation is not checked against page availability for the
3628          * current cpuset. Application can still potentially OOM'ed by kernel
3629          * with lack of free htlb page in cpuset that the task is in.
3630          * Attempt to enforce strict accounting with cpuset is almost
3631          * impossible (or too ugly) because cpuset is too fluid that
3632          * task or memory node can be dynamically moved between cpusets.
3633          *
3634          * The change of semantics for shared hugetlb mapping with cpuset is
3635          * undesirable. However, in order to preserve some of the semantics,
3636          * we fall back to check against current free page availability as
3637          * a best attempt and hopefully to minimize the impact of changing
3638          * semantics that cpuset has.
3639          */
3640         if (delta > 0) {
3641                 if (gather_surplus_pages(h, delta) < 0)
3642                         goto out;
3643
3644                 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
3645                         return_unused_surplus_pages(h, delta);
3646                         goto out;
3647                 }
3648         }
3649
3650         ret = 0;
3651         if (delta < 0)
3652                 return_unused_surplus_pages(h, (unsigned long) -delta);
3653
3654 out:
3655         spin_unlock(&hugetlb_lock);
3656         return ret;
3657 }
3658
3659 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
3660 {
3661         struct resv_map *resv = vma_resv_map(vma);
3662
3663         /*
3664          * This new VMA should share its siblings reservation map if present.
3665          * The VMA will only ever have a valid reservation map pointer where
3666          * it is being copied for another still existing VMA.  As that VMA
3667          * has a reference to the reservation map it cannot disappear until
3668          * after this open call completes.  It is therefore safe to take a
3669          * new reference here without additional locking.
3670          */
3671         if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3672                 kref_get(&resv->refs);
3673 }
3674
3675 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
3676 {
3677         struct hstate *h = hstate_vma(vma);
3678         struct resv_map *resv = vma_resv_map(vma);
3679         struct hugepage_subpool *spool = subpool_vma(vma);
3680         unsigned long reserve, start, end;
3681         long gbl_reserve;
3682
3683         if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3684                 return;
3685
3686         start = vma_hugecache_offset(h, vma, vma->vm_start);
3687         end = vma_hugecache_offset(h, vma, vma->vm_end);
3688
3689         reserve = (end - start) - region_count(resv, start, end);
3690         hugetlb_cgroup_uncharge_counter(resv, start, end);
3691         if (reserve) {
3692                 /*
3693                  * Decrement reserve counts.  The global reserve count may be
3694                  * adjusted if the subpool has a minimum size.
3695                  */
3696                 gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
3697                 hugetlb_acct_memory(h, -gbl_reserve);
3698         }
3699
3700         kref_put(&resv->refs, resv_map_release);
3701 }
3702
3703 static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
3704 {
3705         if (addr & ~(huge_page_mask(hstate_vma(vma))))
3706                 return -EINVAL;
3707         return 0;
3708 }
3709
3710 static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma)
3711 {
3712         struct hstate *hstate = hstate_vma(vma);
3713
3714         return 1UL << huge_page_shift(hstate);
3715 }
3716
3717 /*
3718  * We cannot handle pagefaults against hugetlb pages at all.  They cause
3719  * handle_mm_fault() to try to instantiate regular-sized pages in the
3720  * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
3721  * this far.
3722  */
3723 static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf)
3724 {
3725         BUG();
3726         return 0;
3727 }
3728
3729 /*
3730  * When a new function is introduced to vm_operations_struct and added
3731  * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops.
3732  * This is because under System V memory model, mappings created via
3733  * shmget/shmat with "huge page" specified are backed by hugetlbfs files,
3734  * their original vm_ops are overwritten with shm_vm_ops.
3735  */
3736 const struct vm_operations_struct hugetlb_vm_ops = {
3737         .fault = hugetlb_vm_op_fault,
3738         .open = hugetlb_vm_op_open,
3739         .close = hugetlb_vm_op_close,
3740         .split = hugetlb_vm_op_split,
3741         .pagesize = hugetlb_vm_op_pagesize,
3742 };
3743
3744 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
3745                                 int writable)
3746 {
3747         pte_t entry;
3748
3749         if (writable) {
3750                 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
3751                                          vma->vm_page_prot)));
3752         } else {
3753                 entry = huge_pte_wrprotect(mk_huge_pte(page,
3754                                            vma->vm_page_prot));
3755         }
3756         entry = pte_mkyoung(entry);
3757         entry = pte_mkhuge(entry);
3758         entry = arch_make_huge_pte(entry, vma, page, writable);
3759
3760         return entry;
3761 }
3762
3763 static void set_huge_ptep_writable(struct vm_area_struct *vma,
3764                                    unsigned long address, pte_t *ptep)
3765 {
3766         pte_t entry;
3767
3768         entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
3769         if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
3770                 update_mmu_cache(vma, address, ptep);
3771 }
3772
3773 bool is_hugetlb_entry_migration(pte_t pte)
3774 {
3775         swp_entry_t swp;
3776
3777         if (huge_pte_none(pte) || pte_present(pte))
3778                 return false;
3779         swp = pte_to_swp_entry(pte);
3780         if (non_swap_entry(swp) && is_migration_entry(swp))
3781                 return true;
3782         else
3783                 return false;
3784 }
3785
3786 static int is_hugetlb_entry_hwpoisoned(pte_t pte)
3787 {
3788         swp_entry_t swp;
3789
3790         if (huge_pte_none(pte) || pte_present(pte))
3791                 return 0;
3792         swp = pte_to_swp_entry(pte);
3793         if (non_swap_entry(swp) && is_hwpoison_entry(swp))
3794                 return 1;
3795         else
3796                 return 0;
3797 }
3798
3799 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
3800                             struct vm_area_struct *vma)
3801 {
3802         pte_t *src_pte, *dst_pte, entry, dst_entry;
3803         struct page *ptepage;
3804         unsigned long addr;
3805         int cow;
3806         struct hstate *h = hstate_vma(vma);
3807         unsigned long sz = huge_page_size(h);
3808         struct address_space *mapping = vma->vm_file->f_mapping;
3809         struct mmu_notifier_range range;
3810         int ret = 0;
3811
3812         cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
3813
3814         if (cow) {
3815                 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, src,
3816                                         vma->vm_start,
3817                                         vma->vm_end);
3818                 mmu_notifier_invalidate_range_start(&range);
3819         } else {
3820                 /*
3821                  * For shared mappings i_mmap_rwsem must be held to call
3822                  * huge_pte_alloc, otherwise the returned ptep could go
3823                  * away if part of a shared pmd and another thread calls
3824                  * huge_pmd_unshare.
3825                  */
3826                 i_mmap_lock_read(mapping);
3827         }
3828
3829         for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
3830                 spinlock_t *src_ptl, *dst_ptl;
3831                 src_pte = huge_pte_offset(src, addr, sz);
3832                 if (!src_pte)
3833                         continue;
3834                 dst_pte = huge_pte_alloc(dst, addr, sz);
3835                 if (!dst_pte) {
3836                         ret = -ENOMEM;
3837                         break;
3838                 }
3839
3840                 /*
3841                  * If the pagetables are shared don't copy or take references.
3842                  * dst_pte == src_pte is the common case of src/dest sharing.
3843                  *
3844                  * However, src could have 'unshared' and dst shares with
3845                  * another vma.  If dst_pte !none, this implies sharing.
3846                  * Check here before taking page table lock, and once again
3847                  * after taking the lock below.
3848                  */
3849                 dst_entry = huge_ptep_get(dst_pte);
3850                 if ((dst_pte == src_pte) || !huge_pte_none(dst_entry))
3851                         continue;
3852
3853                 dst_ptl = huge_pte_lock(h, dst, dst_pte);
3854                 src_ptl = huge_pte_lockptr(h, src, src_pte);
3855                 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
3856                 entry = huge_ptep_get(src_pte);
3857                 dst_entry = huge_ptep_get(dst_pte);
3858                 if (huge_pte_none(entry) || !huge_pte_none(dst_entry)) {
3859                         /*
3860                          * Skip if src entry none.  Also, skip in the
3861                          * unlikely case dst entry !none as this implies
3862                          * sharing with another vma.
3863                          */
3864                         ;
3865                 } else if (unlikely(is_hugetlb_entry_migration(entry) ||
3866                                     is_hugetlb_entry_hwpoisoned(entry))) {
3867                         swp_entry_t swp_entry = pte_to_swp_entry(entry);
3868
3869                         if (is_write_migration_entry(swp_entry) && cow) {
3870                                 /*
3871                                  * COW mappings require pages in both
3872                                  * parent and child to be set to read.
3873                                  */
3874                                 make_migration_entry_read(&swp_entry);
3875                                 entry = swp_entry_to_pte(swp_entry);
3876                                 set_huge_swap_pte_at(src, addr, src_pte,
3877                                                      entry, sz);
3878                         }
3879                         set_huge_swap_pte_at(dst, addr, dst_pte, entry, sz);
3880                 } else {
3881                         if (cow) {
3882                                 /*
3883                                  * No need to notify as we are downgrading page
3884                                  * table protection not changing it to point
3885                                  * to a new page.
3886                                  *
3887                                  * See Documentation/vm/mmu_notifier.rst
3888                                  */
3889                                 huge_ptep_set_wrprotect(src, addr, src_pte);
3890                         }
3891                         entry = huge_ptep_get(src_pte);
3892                         ptepage = pte_page(entry);
3893                         get_page(ptepage);
3894                         page_dup_rmap(ptepage, true);
3895                         set_huge_pte_at(dst, addr, dst_pte, entry);
3896                         hugetlb_count_add(pages_per_huge_page(h), dst);
3897                 }
3898                 spin_unlock(src_ptl);
3899                 spin_unlock(dst_ptl);
3900         }
3901
3902         if (cow)
3903                 mmu_notifier_invalidate_range_end(&range);
3904         else
3905                 i_mmap_unlock_read(mapping);
3906
3907         return ret;
3908 }
3909
3910 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
3911                             unsigned long start, unsigned long end,
3912                             struct page *ref_page)
3913 {
3914         struct mm_struct *mm = vma->vm_mm;
3915         unsigned long address;
3916         pte_t *ptep;
3917         pte_t pte;
3918         spinlock_t *ptl;
3919         struct page *page;
3920         struct hstate *h = hstate_vma(vma);
3921         unsigned long sz = huge_page_size(h);
3922         struct mmu_notifier_range range;
3923
3924         WARN_ON(!is_vm_hugetlb_page(vma));
3925         BUG_ON(start & ~huge_page_mask(h));
3926         BUG_ON(end & ~huge_page_mask(h));
3927
3928         /*
3929          * This is a hugetlb vma, all the pte entries should point
3930          * to huge page.
3931          */
3932         tlb_change_page_size(tlb, sz);
3933         tlb_start_vma(tlb, vma);
3934
3935         /*
3936          * If sharing possible, alert mmu notifiers of worst case.
3937          */
3938         mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, mm, start,
3939                                 end);
3940         adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
3941         mmu_notifier_invalidate_range_start(&range);
3942         address = start;
3943         for (; address < end; address += sz) {
3944                 ptep = huge_pte_offset(mm, address, sz);
3945                 if (!ptep)
3946                         continue;
3947
3948                 ptl = huge_pte_lock(h, mm, ptep);
3949                 if (huge_pmd_unshare(mm, &address, ptep)) {
3950                         spin_unlock(ptl);
3951                         /*
3952                          * We just unmapped a page of PMDs by clearing a PUD.
3953                          * The caller's TLB flush range should cover this area.
3954                          */
3955                         continue;
3956                 }
3957
3958                 pte = huge_ptep_get(ptep);
3959                 if (huge_pte_none(pte)) {
3960                         spin_unlock(ptl);
3961                         continue;
3962                 }
3963
3964                 /*
3965                  * Migrating hugepage or HWPoisoned hugepage is already
3966                  * unmapped and its refcount is dropped, so just clear pte here.
3967                  */
3968                 if (unlikely(!pte_present(pte))) {
3969                         huge_pte_clear(mm, address, ptep, sz);
3970                         spin_unlock(ptl);
3971                         continue;
3972                 }
3973
3974                 page = pte_page(pte);
3975                 /*
3976                  * If a reference page is supplied, it is because a specific
3977                  * page is being unmapped, not a range. Ensure the page we
3978                  * are about to unmap is the actual page of interest.
3979                  */
3980                 if (ref_page) {
3981                         if (page != ref_page) {
3982                                 spin_unlock(ptl);
3983                                 continue;
3984                         }
3985                         /*
3986                          * Mark the VMA as having unmapped its page so that
3987                          * future faults in this VMA will fail rather than
3988                          * looking like data was lost
3989                          */
3990                         set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
3991                 }
3992
3993                 pte = huge_ptep_get_and_clear(mm, address, ptep);
3994                 tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
3995                 if (huge_pte_dirty(pte))
3996                         set_page_dirty(page);
3997
3998                 hugetlb_count_sub(pages_per_huge_page(h), mm);
3999                 page_remove_rmap(page, true);
4000
4001                 spin_unlock(ptl);
4002                 tlb_remove_page_size(tlb, page, huge_page_size(h));
4003                 /*
4004                  * Bail out after unmapping reference page if supplied
4005                  */
4006                 if (ref_page)
4007                         break;
4008         }
4009         mmu_notifier_invalidate_range_end(&range);
4010         tlb_end_vma(tlb, vma);
4011 }
4012
4013 void __unmap_hugepage_range_final(struct mmu_gather *tlb,
4014                           struct vm_area_struct *vma, unsigned long start,
4015                           unsigned long end, struct page *ref_page)
4016 {
4017         __unmap_hugepage_range(tlb, vma, start, end, ref_page);
4018
4019         /*
4020          * Clear this flag so that x86's huge_pmd_share page_table_shareable
4021          * test will fail on a vma being torn down, and not grab a page table
4022          * on its way out.  We're lucky that the flag has such an appropriate
4023          * name, and can in fact be safely cleared here. We could clear it
4024          * before the __unmap_hugepage_range above, but all that's necessary
4025          * is to clear it before releasing the i_mmap_rwsem. This works
4026          * because in the context this is called, the VMA is about to be
4027          * destroyed and the i_mmap_rwsem is held.
4028          */
4029         vma->vm_flags &= ~VM_MAYSHARE;
4030 }
4031
4032 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
4033                           unsigned long end, struct page *ref_page)
4034 {
4035         struct mm_struct *mm;
4036         struct mmu_gather tlb;
4037         unsigned long tlb_start = start;
4038         unsigned long tlb_end = end;
4039
4040         /*
4041          * If shared PMDs were possibly used within this vma range, adjust
4042          * start/end for worst case tlb flushing.
4043          * Note that we can not be sure if PMDs are shared until we try to
4044          * unmap pages.  However, we want to make sure TLB flushing covers
4045          * the largest possible range.
4046          */
4047         adjust_range_if_pmd_sharing_possible(vma, &tlb_start, &tlb_end);
4048
4049         mm = vma->vm_mm;
4050
4051         tlb_gather_mmu(&tlb, mm, tlb_start, tlb_end);
4052         __unmap_hugepage_range(&tlb, vma, start, end, ref_page);
4053         tlb_finish_mmu(&tlb, tlb_start, tlb_end);
4054 }
4055
4056 /*
4057  * This is called when the original mapper is failing to COW a MAP_PRIVATE
4058  * mappping it owns the reserve page for. The intention is to unmap the page
4059  * from other VMAs and let the children be SIGKILLed if they are faulting the
4060  * same region.
4061  */
4062 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
4063                               struct page *page, unsigned long address)
4064 {
4065         struct hstate *h = hstate_vma(vma);
4066         struct vm_area_struct *iter_vma;
4067         struct address_space *mapping;
4068         pgoff_t pgoff;
4069
4070         /*
4071          * vm_pgoff is in PAGE_SIZE units, hence the different calculation
4072          * from page cache lookup which is in HPAGE_SIZE units.
4073          */
4074         address = address & huge_page_mask(h);
4075         pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
4076                         vma->vm_pgoff;
4077         mapping = vma->vm_file->f_mapping;
4078
4079         /*
4080          * Take the mapping lock for the duration of the table walk. As
4081          * this mapping should be shared between all the VMAs,
4082          * __unmap_hugepage_range() is called as the lock is already held
4083          */
4084         i_mmap_lock_write(mapping);
4085         vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
4086                 /* Do not unmap the current VMA */
4087                 if (iter_vma == vma)
4088                         continue;
4089
4090                 /*
4091                  * Shared VMAs have their own reserves and do not affect
4092                  * MAP_PRIVATE accounting but it is possible that a shared
4093                  * VMA is using the same page so check and skip such VMAs.
4094                  */
4095                 if (iter_vma->vm_flags & VM_MAYSHARE)
4096                         continue;
4097
4098                 /*
4099                  * Unmap the page from other VMAs without their own reserves.
4100                  * They get marked to be SIGKILLed if they fault in these
4101                  * areas. This is because a future no-page fault on this VMA
4102                  * could insert a zeroed page instead of the data existing
4103                  * from the time of fork. This would look like data corruption
4104                  */
4105                 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
4106                         unmap_hugepage_range(iter_vma, address,
4107                                              address + huge_page_size(h), page);
4108         }
4109         i_mmap_unlock_write(mapping);
4110 }
4111
4112 /*
4113  * Hugetlb_cow() should be called with page lock of the original hugepage held.
4114  * Called with hugetlb_instantiation_mutex held and pte_page locked so we
4115  * cannot race with other handlers or page migration.
4116  * Keep the pte_same checks anyway to make transition from the mutex easier.
4117  */
4118 static vm_fault_t hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
4119                        unsigned long address, pte_t *ptep,
4120                        struct page *pagecache_page, spinlock_t *ptl)
4121 {
4122         pte_t pte;
4123         struct hstate *h = hstate_vma(vma);
4124         struct page *old_page, *new_page;
4125         int outside_reserve = 0;
4126         vm_fault_t ret = 0;
4127         unsigned long haddr = address & huge_page_mask(h);
4128         struct mmu_notifier_range range;
4129
4130         pte = huge_ptep_get(ptep);
4131         old_page = pte_page(pte);
4132
4133 retry_avoidcopy:
4134         /* If no-one else is actually using this page, avoid the copy
4135          * and just make the page writable */
4136         if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
4137                 page_move_anon_rmap(old_page, vma);
4138                 set_huge_ptep_writable(vma, haddr, ptep);
4139                 return 0;
4140         }
4141
4142         /*
4143          * If the process that created a MAP_PRIVATE mapping is about to
4144          * perform a COW due to a shared page count, attempt to satisfy
4145          * the allocation without using the existing reserves. The pagecache
4146          * page is used to determine if the reserve at this address was
4147          * consumed or not. If reserves were used, a partial faulted mapping
4148          * at the time of fork() could consume its reserves on COW instead
4149          * of the full address range.
4150          */
4151         if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
4152                         old_page != pagecache_page)
4153                 outside_reserve = 1;
4154
4155         get_page(old_page);
4156
4157         /*
4158          * Drop page table lock as buddy allocator may be called. It will
4159          * be acquired again before returning to the caller, as expected.
4160          */
4161         spin_unlock(ptl);
4162         new_page = alloc_huge_page(vma, haddr, outside_reserve);
4163
4164         if (IS_ERR(new_page)) {
4165                 /*
4166                  * If a process owning a MAP_PRIVATE mapping fails to COW,
4167                  * it is due to references held by a child and an insufficient
4168                  * huge page pool. To guarantee the original mappers
4169                  * reliability, unmap the page from child processes. The child
4170                  * may get SIGKILLed if it later faults.
4171                  */
4172                 if (outside_reserve) {
4173                         put_page(old_page);
4174                         BUG_ON(huge_pte_none(pte));
4175                         unmap_ref_private(mm, vma, old_page, haddr);
4176                         BUG_ON(huge_pte_none(pte));
4177                         spin_lock(ptl);
4178                         ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
4179                         if (likely(ptep &&
4180                                    pte_same(huge_ptep_get(ptep), pte)))
4181                                 goto retry_avoidcopy;
4182                         /*
4183                          * race occurs while re-acquiring page table
4184                          * lock, and our job is done.
4185                          */
4186                         return 0;
4187                 }
4188
4189                 ret = vmf_error(PTR_ERR(new_page));
4190                 goto out_release_old;
4191         }
4192
4193         /*
4194          * When the original hugepage is shared one, it does not have
4195          * anon_vma prepared.
4196          */
4197         if (unlikely(anon_vma_prepare(vma))) {
4198                 ret = VM_FAULT_OOM;
4199                 goto out_release_all;
4200         }
4201
4202         copy_user_huge_page(new_page, old_page, address, vma,
4203                             pages_per_huge_page(h));
4204         __SetPageUptodate(new_page);
4205
4206         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, haddr,
4207                                 haddr + huge_page_size(h));
4208         mmu_notifier_invalidate_range_start(&range);
4209
4210         /*
4211          * Retake the page table lock to check for racing updates
4212          * before the page tables are altered
4213          */
4214         spin_lock(ptl);
4215         ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
4216         if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
4217                 ClearPagePrivate(new_page);
4218
4219                 /* Break COW */
4220                 huge_ptep_clear_flush(vma, haddr, ptep);
4221                 mmu_notifier_invalidate_range(mm, range.start, range.end);
4222                 set_huge_pte_at(mm, haddr, ptep,
4223                                 make_huge_pte(vma, new_page, 1));
4224                 page_remove_rmap(old_page, true);
4225                 hugepage_add_new_anon_rmap(new_page, vma, haddr);
4226                 set_page_huge_active(new_page);
4227                 /* Make the old page be freed below */
4228                 new_page = old_page;
4229         }
4230         spin_unlock(ptl);
4231         mmu_notifier_invalidate_range_end(&range);
4232 out_release_all:
4233         restore_reserve_on_error(h, vma, haddr, new_page);
4234         put_page(new_page);
4235 out_release_old:
4236         put_page(old_page);
4237
4238         spin_lock(ptl); /* Caller expects lock to be held */
4239         return ret;
4240 }
4241
4242 /* Return the pagecache page at a given address within a VMA */
4243 static struct page *hugetlbfs_pagecache_page(struct hstate *h,
4244                         struct vm_area_struct *vma, unsigned long address)
4245 {
4246         struct address_space *mapping;
4247         pgoff_t idx;
4248
4249         mapping = vma->vm_file->f_mapping;
4250         idx = vma_hugecache_offset(h, vma, address);
4251
4252         return find_lock_page(mapping, idx);
4253 }
4254
4255 /*
4256  * Return whether there is a pagecache page to back given address within VMA.
4257  * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
4258  */
4259 static bool hugetlbfs_pagecache_present(struct hstate *h,
4260                         struct vm_area_struct *vma, unsigned long address)
4261 {
4262         struct address_space *mapping;
4263         pgoff_t idx;
4264         struct page *page;
4265
4266         mapping = vma->vm_file->f_mapping;
4267         idx = vma_hugecache_offset(h, vma, address);
4268
4269         page = find_get_page(mapping, idx);
4270         if (page)
4271                 put_page(page);
4272         return page != NULL;
4273 }
4274
4275 int huge_add_to_page_cache(struct page *page, struct address_space *mapping,
4276                            pgoff_t idx)
4277 {
4278         struct inode *inode = mapping->host;
4279         struct hstate *h = hstate_inode(inode);
4280         int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
4281
4282         if (err)
4283                 return err;
4284         ClearPagePrivate(page);
4285
4286         /*
4287          * set page dirty so that it will not be removed from cache/file
4288          * by non-hugetlbfs specific code paths.
4289          */
4290         set_page_dirty(page);
4291
4292         spin_lock(&inode->i_lock);
4293         inode->i_blocks += blocks_per_huge_page(h);
4294         spin_unlock(&inode->i_lock);
4295         return 0;
4296 }
4297
4298 static vm_fault_t hugetlb_no_page(struct mm_struct *mm,
4299                         struct vm_area_struct *vma,
4300                         struct address_space *mapping, pgoff_t idx,
4301                         unsigned long address, pte_t *ptep, unsigned int flags)
4302 {
4303         struct hstate *h = hstate_vma(vma);
4304         vm_fault_t ret = VM_FAULT_SIGBUS;
4305         int anon_rmap = 0;
4306         unsigned long size;
4307         struct page *page;
4308         pte_t new_pte;
4309         spinlock_t *ptl;
4310         unsigned long haddr = address & huge_page_mask(h);
4311         bool new_page = false;
4312
4313         /*
4314          * Currently, we are forced to kill the process in the event the
4315          * original mapper has unmapped pages from the child due to a failed
4316          * COW. Warn that such a situation has occurred as it may not be obvious
4317          */
4318         if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
4319                 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
4320                            current->pid);
4321                 return ret;
4322         }
4323
4324         /*
4325          * We can not race with truncation due to holding i_mmap_rwsem.
4326          * i_size is modified when holding i_mmap_rwsem, so check here
4327          * once for faults beyond end of file.
4328          */
4329         size = i_size_read(mapping->host) >> huge_page_shift(h);
4330         if (idx >= size)
4331                 goto out;
4332
4333 retry:
4334         page = find_lock_page(mapping, idx);
4335         if (!page) {
4336                 /*
4337                  * Check for page in userfault range
4338                  */
4339                 if (userfaultfd_missing(vma)) {
4340                         u32 hash;
4341                         struct vm_fault vmf = {
4342                                 .vma = vma,
4343                                 .address = haddr,
4344                                 .flags = flags,
4345                                 /*
4346                                  * Hard to debug if it ends up being
4347                                  * used by a callee that assumes
4348                                  * something about the other
4349                                  * uninitialized fields... same as in
4350                                  * memory.c
4351                                  */
4352                         };
4353
4354                         /*
4355                          * hugetlb_fault_mutex and i_mmap_rwsem must be
4356                          * dropped before handling userfault.  Reacquire
4357                          * after handling fault to make calling code simpler.
4358                          */
4359                         hash = hugetlb_fault_mutex_hash(mapping, idx);
4360                         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
4361                         i_mmap_unlock_read(mapping);
4362                         ret = handle_userfault(&vmf, VM_UFFD_MISSING);
4363                         i_mmap_lock_read(mapping);
4364                         mutex_lock(&hugetlb_fault_mutex_table[hash]);
4365                         goto out;
4366                 }
4367
4368                 page = alloc_huge_page(vma, haddr, 0);
4369                 if (IS_ERR(page)) {
4370                         /*
4371                          * Returning error will result in faulting task being
4372                          * sent SIGBUS.  The hugetlb fault mutex prevents two
4373                          * tasks from racing to fault in the same page which
4374                          * could result in false unable to allocate errors.
4375                          * Page migration does not take the fault mutex, but
4376                          * does a clear then write of pte's under page table
4377                          * lock.  Page fault code could race with migration,
4378                          * notice the clear pte and try to allocate a page
4379                          * here.  Before returning error, get ptl and make
4380                          * sure there really is no pte entry.
4381                          */
4382                         ptl = huge_pte_lock(h, mm, ptep);
4383                         if (!huge_pte_none(huge_ptep_get(ptep))) {
4384                                 ret = 0;
4385                                 spin_unlock(ptl);
4386                                 goto out;
4387                         }
4388                         spin_unlock(ptl);
4389                         ret = vmf_error(PTR_ERR(page));
4390                         goto out;
4391                 }
4392                 clear_huge_page(page, address, pages_per_huge_page(h));
4393                 __SetPageUptodate(page);
4394                 new_page = true;
4395
4396                 if (vma->vm_flags & VM_MAYSHARE) {
4397                         int err = huge_add_to_page_cache(page, mapping, idx);
4398                         if (err) {
4399                                 put_page(page);
4400                                 if (err == -EEXIST)
4401                                         goto retry;
4402                                 goto out;
4403                         }
4404                 } else {
4405                         lock_page(page);
4406                         if (unlikely(anon_vma_prepare(vma))) {
4407                                 ret = VM_FAULT_OOM;
4408                                 goto backout_unlocked;
4409                         }
4410                         anon_rmap = 1;
4411                 }
4412         } else {
4413                 /*
4414                  * If memory error occurs between mmap() and fault, some process
4415                  * don't have hwpoisoned swap entry for errored virtual address.
4416                  * So we need to block hugepage fault by PG_hwpoison bit check.
4417                  */
4418                 if (unlikely(PageHWPoison(page))) {
4419                         ret = VM_FAULT_HWPOISON |
4420                                 VM_FAULT_SET_HINDEX(hstate_index(h));
4421                         goto backout_unlocked;
4422                 }
4423         }
4424
4425         /*
4426          * If we are going to COW a private mapping later, we examine the
4427          * pending reservations for this page now. This will ensure that
4428          * any allocations necessary to record that reservation occur outside
4429          * the spinlock.
4430          */
4431         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
4432                 if (vma_needs_reservation(h, vma, haddr) < 0) {
4433                         ret = VM_FAULT_OOM;
4434                         goto backout_unlocked;
4435                 }
4436                 /* Just decrements count, does not deallocate */
4437                 vma_end_reservation(h, vma, haddr);
4438         }
4439
4440         ptl = huge_pte_lock(h, mm, ptep);
4441         ret = 0;
4442         if (!huge_pte_none(huge_ptep_get(ptep)))
4443                 goto backout;
4444
4445         if (anon_rmap) {
4446                 ClearPagePrivate(page);
4447                 hugepage_add_new_anon_rmap(page, vma, haddr);
4448         } else
4449                 page_dup_rmap(page, true);
4450         new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
4451                                 && (vma->vm_flags & VM_SHARED)));
4452         set_huge_pte_at(mm, haddr, ptep, new_pte);
4453
4454         hugetlb_count_add(pages_per_huge_page(h), mm);
4455         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
4456                 /* Optimization, do the COW without a second fault */
4457                 ret = hugetlb_cow(mm, vma, address, ptep, page, ptl);
4458         }
4459
4460         spin_unlock(ptl);
4461
4462         /*
4463          * Only make newly allocated pages active.  Existing pages found
4464          * in the pagecache could be !page_huge_active() if they have been
4465          * isolated for migration.
4466          */
4467         if (new_page)
4468                 set_page_huge_active(page);
4469
4470         unlock_page(page);
4471 out:
4472         return ret;
4473
4474 backout:
4475         spin_unlock(ptl);
4476 backout_unlocked:
4477         unlock_page(page);
4478         restore_reserve_on_error(h, vma, haddr, page);
4479         put_page(page);
4480         goto out;
4481 }
4482
4483 #ifdef CONFIG_SMP
4484 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
4485 {
4486         unsigned long key[2];
4487         u32 hash;
4488
4489         key[0] = (unsigned long) mapping;
4490         key[1] = idx;
4491
4492         hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0);
4493
4494         return hash & (num_fault_mutexes - 1);
4495 }
4496 #else
4497 /*
4498  * For uniprocesor systems we always use a single mutex, so just
4499  * return 0 and avoid the hashing overhead.
4500  */
4501 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
4502 {
4503         return 0;
4504 }
4505 #endif
4506
4507 vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
4508                         unsigned long address, unsigned int flags)
4509 {
4510         pte_t *ptep, entry;
4511         spinlock_t *ptl;
4512         vm_fault_t ret;
4513         u32 hash;
4514         pgoff_t idx;
4515         struct page *page = NULL;
4516         struct page *pagecache_page = NULL;
4517         struct hstate *h = hstate_vma(vma);
4518         struct address_space *mapping;
4519         int need_wait_lock = 0;
4520         unsigned long haddr = address & huge_page_mask(h);
4521
4522         ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
4523         if (ptep) {
4524                 /*
4525                  * Since we hold no locks, ptep could be stale.  That is
4526                  * OK as we are only making decisions based on content and
4527                  * not actually modifying content here.
4528                  */
4529                 entry = huge_ptep_get(ptep);
4530                 if (unlikely(is_hugetlb_entry_migration(entry))) {
4531                         migration_entry_wait_huge(vma, mm, ptep);
4532                         return 0;
4533                 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
4534                         return VM_FAULT_HWPOISON_LARGE |
4535                                 VM_FAULT_SET_HINDEX(hstate_index(h));
4536         } else {
4537                 ptep = huge_pte_alloc(mm, haddr, huge_page_size(h));
4538                 if (!ptep)
4539                         return VM_FAULT_OOM;
4540         }
4541
4542         /*
4543          * Acquire i_mmap_rwsem before calling huge_pte_alloc and hold
4544          * until finished with ptep.  This serves two purposes:
4545          * 1) It prevents huge_pmd_unshare from being called elsewhere
4546          *    and making the ptep no longer valid.
4547          * 2) It synchronizes us with i_size modifications during truncation.
4548          *
4549          * ptep could have already be assigned via huge_pte_offset.  That
4550          * is OK, as huge_pte_alloc will return the same value unless
4551          * something has changed.
4552          */
4553         mapping = vma->vm_file->f_mapping;
4554         i_mmap_lock_read(mapping);
4555         ptep = huge_pte_alloc(mm, haddr, huge_page_size(h));
4556         if (!ptep) {
4557                 i_mmap_unlock_read(mapping);
4558                 return VM_FAULT_OOM;
4559         }
4560
4561         /*
4562          * Serialize hugepage allocation and instantiation, so that we don't
4563          * get spurious allocation failures if two CPUs race to instantiate
4564          * the same page in the page cache.
4565          */
4566         idx = vma_hugecache_offset(h, vma, haddr);
4567         hash = hugetlb_fault_mutex_hash(mapping, idx);
4568         mutex_lock(&hugetlb_fault_mutex_table[hash]);
4569
4570         entry = huge_ptep_get(ptep);
4571         if (huge_pte_none(entry)) {
4572                 ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
4573                 goto out_mutex;
4574         }
4575
4576         ret = 0;
4577
4578         /*
4579          * entry could be a migration/hwpoison entry at this point, so this
4580          * check prevents the kernel from going below assuming that we have
4581          * an active hugepage in pagecache. This goto expects the 2nd page
4582          * fault, and is_hugetlb_entry_(migration|hwpoisoned) check will
4583          * properly handle it.
4584          */
4585         if (!pte_present(entry))
4586                 goto out_mutex;
4587
4588         /*
4589          * If we are going to COW the mapping later, we examine the pending
4590          * reservations for this page now. This will ensure that any
4591          * allocations necessary to record that reservation occur outside the
4592          * spinlock. For private mappings, we also lookup the pagecache
4593          * page now as it is used to determine if a reservation has been
4594          * consumed.
4595          */
4596         if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
4597                 if (vma_needs_reservation(h, vma, haddr) < 0) {
4598                         ret = VM_FAULT_OOM;
4599                         goto out_mutex;
4600                 }
4601                 /* Just decrements count, does not deallocate */
4602                 vma_end_reservation(h, vma, haddr);
4603
4604                 if (!(vma->vm_flags & VM_MAYSHARE))
4605                         pagecache_page = hugetlbfs_pagecache_page(h,
4606                                                                 vma, haddr);
4607         }
4608
4609         ptl = huge_pte_lock(h, mm, ptep);
4610
4611         /* Check for a racing update before calling hugetlb_cow */
4612         if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
4613                 goto out_ptl;
4614
4615         /*
4616          * hugetlb_cow() requires page locks of pte_page(entry) and
4617          * pagecache_page, so here we need take the former one
4618          * when page != pagecache_page or !pagecache_page.
4619          */
4620         page = pte_page(entry);
4621         if (page != pagecache_page)
4622                 if (!trylock_page(page)) {
4623                         need_wait_lock = 1;
4624                         goto out_ptl;
4625                 }
4626
4627         get_page(page);
4628
4629         if (flags & FAULT_FLAG_WRITE) {
4630                 if (!huge_pte_write(entry)) {
4631                         ret = hugetlb_cow(mm, vma, address, ptep,
4632                                           pagecache_page, ptl);
4633                         goto out_put_page;
4634                 }
4635                 entry = huge_pte_mkdirty(entry);
4636         }
4637         entry = pte_mkyoung(entry);
4638         if (huge_ptep_set_access_flags(vma, haddr, ptep, entry,
4639                                                 flags & FAULT_FLAG_WRITE))
4640                 update_mmu_cache(vma, haddr, ptep);
4641 out_put_page:
4642         if (page != pagecache_page)
4643                 unlock_page(page);
4644         put_page(page);
4645 out_ptl:
4646         spin_unlock(ptl);
4647
4648         if (pagecache_page) {
4649                 unlock_page(pagecache_page);
4650                 put_page(pagecache_page);
4651         }
4652 out_mutex:
4653         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
4654         i_mmap_unlock_read(mapping);
4655         /*
4656          * Generally it's safe to hold refcount during waiting page lock. But
4657          * here we just wait to defer the next page fault to avoid busy loop and
4658          * the page is not used after unlocked before returning from the current
4659          * page fault. So we are safe from accessing freed page, even if we wait
4660          * here without taking refcount.
4661          */
4662         if (need_wait_lock)
4663                 wait_on_page_locked(page);
4664         return ret;
4665 }
4666
4667 /*
4668  * Used by userfaultfd UFFDIO_COPY.  Based on mcopy_atomic_pte with
4669  * modifications for huge pages.
4670  */
4671 int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm,
4672                             pte_t *dst_pte,
4673                             struct vm_area_struct *dst_vma,
4674                             unsigned long dst_addr,
4675                             unsigned long src_addr,
4676                             struct page **pagep)
4677 {
4678         struct address_space *mapping;
4679         pgoff_t idx;
4680         unsigned long size;
4681         int vm_shared = dst_vma->vm_flags & VM_SHARED;
4682         struct hstate *h = hstate_vma(dst_vma);
4683         pte_t _dst_pte;
4684         spinlock_t *ptl;
4685         int ret;
4686         struct page *page;
4687
4688         if (!*pagep) {
4689                 ret = -ENOMEM;
4690                 page = alloc_huge_page(dst_vma, dst_addr, 0);
4691                 if (IS_ERR(page))
4692                         goto out;
4693
4694                 ret = copy_huge_page_from_user(page,
4695                                                 (const void __user *) src_addr,
4696                                                 pages_per_huge_page(h), false);
4697
4698                 /* fallback to copy_from_user outside mmap_lock */
4699                 if (unlikely(ret)) {
4700                         ret = -ENOENT;
4701                         *pagep = page;
4702                         /* don't free the page */
4703                         goto out;
4704                 }
4705         } else {
4706                 page = *pagep;
4707                 *pagep = NULL;
4708         }
4709
4710         /*
4711          * The memory barrier inside __SetPageUptodate makes sure that
4712          * preceding stores to the page contents become visible before
4713          * the set_pte_at() write.
4714          */
4715         __SetPageUptodate(page);
4716
4717         mapping = dst_vma->vm_file->f_mapping;
4718         idx = vma_hugecache_offset(h, dst_vma, dst_addr);
4719
4720         /*
4721          * If shared, add to page cache
4722          */
4723         if (vm_shared) {
4724                 size = i_size_read(mapping->host) >> huge_page_shift(h);
4725                 ret = -EFAULT;
4726                 if (idx >= size)
4727                         goto out_release_nounlock;
4728
4729                 /*
4730                  * Serialization between remove_inode_hugepages() and
4731                  * huge_add_to_page_cache() below happens through the
4732                  * hugetlb_fault_mutex_table that here must be hold by
4733                  * the caller.
4734                  */
4735                 ret = huge_add_to_page_cache(page, mapping, idx);
4736                 if (ret)
4737                         goto out_release_nounlock;
4738         }
4739
4740         ptl = huge_pte_lockptr(h, dst_mm, dst_pte);
4741         spin_lock(ptl);
4742
4743         /*
4744          * Recheck the i_size after holding PT lock to make sure not
4745          * to leave any page mapped (as page_mapped()) beyond the end
4746          * of the i_size (remove_inode_hugepages() is strict about
4747          * enforcing that). If we bail out here, we'll also leave a
4748          * page in the radix tree in the vm_shared case beyond the end
4749          * of the i_size, but remove_inode_hugepages() will take care
4750          * of it as soon as we drop the hugetlb_fault_mutex_table.
4751          */
4752         size = i_size_read(mapping->host) >> huge_page_shift(h);
4753         ret = -EFAULT;
4754         if (idx >= size)
4755                 goto out_release_unlock;
4756
4757         ret = -EEXIST;
4758         if (!huge_pte_none(huge_ptep_get(dst_pte)))
4759                 goto out_release_unlock;
4760
4761         if (vm_shared) {
4762                 page_dup_rmap(page, true);
4763         } else {
4764                 ClearPagePrivate(page);
4765                 hugepage_add_new_anon_rmap(page, dst_vma, dst_addr);
4766         }
4767
4768         _dst_pte = make_huge_pte(dst_vma, page, dst_vma->vm_flags & VM_WRITE);
4769         if (dst_vma->vm_flags & VM_WRITE)
4770                 _dst_pte = huge_pte_mkdirty(_dst_pte);
4771         _dst_pte = pte_mkyoung(_dst_pte);
4772
4773         set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
4774
4775         (void)huge_ptep_set_access_flags(dst_vma, dst_addr, dst_pte, _dst_pte,
4776                                         dst_vma->vm_flags & VM_WRITE);
4777         hugetlb_count_add(pages_per_huge_page(h), dst_mm);
4778
4779         /* No need to invalidate - it was non-present before */
4780         update_mmu_cache(dst_vma, dst_addr, dst_pte);
4781
4782         spin_unlock(ptl);
4783         set_page_huge_active(page);
4784         if (vm_shared)
4785                 unlock_page(page);
4786         ret = 0;
4787 out:
4788         return ret;
4789 out_release_unlock:
4790         spin_unlock(ptl);
4791         if (vm_shared)
4792                 unlock_page(page);
4793 out_release_nounlock:
4794         put_page(page);
4795         goto out;
4796 }
4797
4798 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
4799                          struct page **pages, struct vm_area_struct **vmas,
4800                          unsigned long *position, unsigned long *nr_pages,
4801                          long i, unsigned int flags, int *locked)
4802 {
4803         unsigned long pfn_offset;
4804         unsigned long vaddr = *position;
4805         unsigned long remainder = *nr_pages;
4806         struct hstate *h = hstate_vma(vma);
4807         int err = -EFAULT;
4808
4809         while (vaddr < vma->vm_end && remainder) {
4810                 pte_t *pte;
4811                 spinlock_t *ptl = NULL;
4812                 int absent;
4813                 struct page *page;
4814
4815                 /*
4816                  * If we have a pending SIGKILL, don't keep faulting pages and
4817                  * potentially allocating memory.
4818                  */
4819                 if (fatal_signal_pending(current)) {
4820                         remainder = 0;
4821                         break;
4822                 }
4823
4824                 /*
4825                  * Some archs (sparc64, sh*) have multiple pte_ts to
4826                  * each hugepage.  We have to make sure we get the
4827                  * first, for the page indexing below to work.
4828                  *
4829                  * Note that page table lock is not held when pte is null.
4830                  */
4831                 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h),
4832                                       huge_page_size(h));
4833                 if (pte)
4834                         ptl = huge_pte_lock(h, mm, pte);
4835                 absent = !pte || huge_pte_none(huge_ptep_get(pte));
4836
4837                 /*
4838                  * When coredumping, it suits get_dump_page if we just return
4839                  * an error where there's an empty slot with no huge pagecache
4840                  * to back it.  This way, we avoid allocating a hugepage, and
4841                  * the sparse dumpfile avoids allocating disk blocks, but its
4842                  * huge holes still show up with zeroes where they need to be.
4843                  */
4844                 if (absent && (flags & FOLL_DUMP) &&
4845                     !hugetlbfs_pagecache_present(h, vma, vaddr)) {
4846                         if (pte)
4847                                 spin_unlock(ptl);
4848                         remainder = 0;
4849                         break;
4850                 }
4851
4852                 /*
4853                  * We need call hugetlb_fault for both hugepages under migration
4854                  * (in which case hugetlb_fault waits for the migration,) and
4855                  * hwpoisoned hugepages (in which case we need to prevent the
4856                  * caller from accessing to them.) In order to do this, we use
4857                  * here is_swap_pte instead of is_hugetlb_entry_migration and
4858                  * is_hugetlb_entry_hwpoisoned. This is because it simply covers
4859                  * both cases, and because we can't follow correct pages
4860                  * directly from any kind of swap entries.
4861                  */
4862                 if (absent || is_swap_pte(huge_ptep_get(pte)) ||
4863                     ((flags & FOLL_WRITE) &&
4864                       !huge_pte_write(huge_ptep_get(pte)))) {
4865                         vm_fault_t ret;
4866                         unsigned int fault_flags = 0;
4867
4868                         if (pte)
4869                                 spin_unlock(ptl);
4870                         if (flags & FOLL_WRITE)
4871                                 fault_flags |= FAULT_FLAG_WRITE;
4872                         if (locked)
4873                                 fault_flags |= FAULT_FLAG_ALLOW_RETRY |
4874                                         FAULT_FLAG_KILLABLE;
4875                         if (flags & FOLL_NOWAIT)
4876                                 fault_flags |= FAULT_FLAG_ALLOW_RETRY |
4877                                         FAULT_FLAG_RETRY_NOWAIT;
4878                         if (flags & FOLL_TRIED) {
4879                                 /*
4880                                  * Note: FAULT_FLAG_ALLOW_RETRY and
4881                                  * FAULT_FLAG_TRIED can co-exist
4882                                  */
4883                                 fault_flags |= FAULT_FLAG_TRIED;
4884                         }
4885                         ret = hugetlb_fault(mm, vma, vaddr, fault_flags);
4886                         if (ret & VM_FAULT_ERROR) {
4887                                 err = vm_fault_to_errno(ret, flags);
4888                                 remainder = 0;
4889                                 break;
4890                         }
4891                         if (ret & VM_FAULT_RETRY) {
4892                                 if (locked &&
4893                                     !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
4894                                         *locked = 0;
4895                                 *nr_pages = 0;
4896                                 /*
4897                                  * VM_FAULT_RETRY must not return an
4898                                  * error, it will return zero
4899                                  * instead.
4900                                  *
4901                                  * No need to update "position" as the
4902                                  * caller will not check it after
4903                                  * *nr_pages is set to 0.
4904                                  */
4905                                 return i;
4906                         }
4907                         continue;
4908                 }
4909
4910                 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
4911                 page = pte_page(huge_ptep_get(pte));
4912
4913                 /*
4914                  * If subpage information not requested, update counters
4915                  * and skip the same_page loop below.
4916                  */
4917                 if (!pages && !vmas && !pfn_offset &&
4918                     (vaddr + huge_page_size(h) < vma->vm_end) &&
4919                     (remainder >= pages_per_huge_page(h))) {
4920                         vaddr += huge_page_size(h);
4921                         remainder -= pages_per_huge_page(h);
4922                         i += pages_per_huge_page(h);
4923                         spin_unlock(ptl);
4924                         continue;
4925                 }
4926
4927 same_page:
4928                 if (pages) {
4929                         pages[i] = mem_map_offset(page, pfn_offset);
4930                         /*
4931                          * try_grab_page() should always succeed here, because:
4932                          * a) we hold the ptl lock, and b) we've just checked
4933                          * that the huge page is present in the page tables. If
4934                          * the huge page is present, then the tail pages must
4935                          * also be present. The ptl prevents the head page and
4936                          * tail pages from being rearranged in any way. So this
4937                          * page must be available at this point, unless the page
4938                          * refcount overflowed:
4939                          */
4940                         if (WARN_ON_ONCE(!try_grab_page(pages[i], flags))) {
4941                                 spin_unlock(ptl);
4942                                 remainder = 0;
4943                                 err = -ENOMEM;
4944                                 break;
4945                         }
4946                 }
4947
4948                 if (vmas)
4949                         vmas[i] = vma;
4950
4951                 vaddr += PAGE_SIZE;
4952                 ++pfn_offset;
4953                 --remainder;
4954                 ++i;
4955                 if (vaddr < vma->vm_end && remainder &&
4956                                 pfn_offset < pages_per_huge_page(h)) {
4957                         /*
4958                          * We use pfn_offset to avoid touching the pageframes
4959                          * of this compound page.
4960                          */
4961                         goto same_page;
4962                 }
4963                 spin_unlock(ptl);
4964         }
4965         *nr_pages = remainder;
4966         /*
4967          * setting position is actually required only if remainder is
4968          * not zero but it's faster not to add a "if (remainder)"
4969          * branch.
4970          */
4971         *position = vaddr;
4972
4973         return i ? i : err;
4974 }
4975
4976 #ifndef __HAVE_ARCH_FLUSH_HUGETLB_TLB_RANGE
4977 /*
4978  * ARCHes with special requirements for evicting HUGETLB backing TLB entries can
4979  * implement this.
4980  */
4981 #define flush_hugetlb_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end)
4982 #endif
4983
4984 unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
4985                 unsigned long address, unsigned long end, pgprot_t newprot)
4986 {
4987         struct mm_struct *mm = vma->vm_mm;
4988         unsigned long start = address;
4989         pte_t *ptep;
4990         pte_t pte;
4991         struct hstate *h = hstate_vma(vma);
4992         unsigned long pages = 0;
4993         bool shared_pmd = false;
4994         struct mmu_notifier_range range;
4995
4996         /*
4997          * In the case of shared PMDs, the area to flush could be beyond
4998          * start/end.  Set range.start/range.end to cover the maximum possible
4999          * range if PMD sharing is possible.
5000          */
5001         mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA,
5002                                 0, vma, mm, start, end);
5003         adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
5004
5005         BUG_ON(address >= end);
5006         flush_cache_range(vma, range.start, range.end);
5007
5008         mmu_notifier_invalidate_range_start(&range);
5009         i_mmap_lock_write(vma->vm_file->f_mapping);
5010         for (; address < end; address += huge_page_size(h)) {
5011                 spinlock_t *ptl;
5012                 ptep = huge_pte_offset(mm, address, huge_page_size(h));
5013                 if (!ptep)
5014                         continue;
5015                 ptl = huge_pte_lock(h, mm, ptep);
5016                 if (huge_pmd_unshare(mm, &address, ptep)) {
5017                         pages++;
5018                         spin_unlock(ptl);
5019                         shared_pmd = true;
5020                         continue;
5021                 }
5022                 pte = huge_ptep_get(ptep);
5023                 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
5024                         spin_unlock(ptl);
5025                         continue;
5026                 }
5027                 if (unlikely(is_hugetlb_entry_migration(pte))) {
5028                         swp_entry_t entry = pte_to_swp_entry(pte);
5029
5030                         if (is_write_migration_entry(entry)) {
5031                                 pte_t newpte;
5032
5033                                 make_migration_entry_read(&entry);
5034                                 newpte = swp_entry_to_pte(entry);
5035                                 set_huge_swap_pte_at(mm, address, ptep,
5036                                                      newpte, huge_page_size(h));
5037                                 pages++;
5038                         }
5039                         spin_unlock(ptl);
5040                         continue;
5041                 }
5042                 if (!huge_pte_none(pte)) {
5043                         pte_t old_pte;
5044
5045                         old_pte = huge_ptep_modify_prot_start(vma, address, ptep);
5046                         pte = pte_mkhuge(huge_pte_modify(old_pte, newprot));
5047                         pte = arch_make_huge_pte(pte, vma, NULL, 0);
5048                         huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte);
5049                         pages++;
5050                 }
5051                 spin_unlock(ptl);
5052         }
5053         /*
5054          * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
5055          * may have cleared our pud entry and done put_page on the page table:
5056          * once we release i_mmap_rwsem, another task can do the final put_page
5057          * and that page table be reused and filled with junk.  If we actually
5058          * did unshare a page of pmds, flush the range corresponding to the pud.
5059          */
5060         if (shared_pmd)
5061                 flush_hugetlb_tlb_range(vma, range.start, range.end);
5062         else
5063                 flush_hugetlb_tlb_range(vma, start, end);
5064         /*
5065          * No need to call mmu_notifier_invalidate_range() we are downgrading
5066          * page table protection not changing it to point to a new page.
5067          *
5068          * See Documentation/vm/mmu_notifier.rst
5069          */
5070         i_mmap_unlock_write(vma->vm_file->f_mapping);
5071         mmu_notifier_invalidate_range_end(&range);
5072
5073         return pages << h->order;
5074 }
5075
5076 int hugetlb_reserve_pages(struct inode *inode,
5077                                         long from, long to,
5078                                         struct vm_area_struct *vma,
5079                                         vm_flags_t vm_flags)
5080 {
5081         long ret, chg, add = -1;
5082         struct hstate *h = hstate_inode(inode);
5083         struct hugepage_subpool *spool = subpool_inode(inode);
5084         struct resv_map *resv_map;
5085         struct hugetlb_cgroup *h_cg = NULL;
5086         long gbl_reserve, regions_needed = 0;
5087
5088         /* This should never happen */
5089         if (from > to) {
5090                 VM_WARN(1, "%s called with a negative range\n", __func__);
5091                 return -EINVAL;
5092         }
5093
5094         /*
5095          * Only apply hugepage reservation if asked. At fault time, an
5096          * attempt will be made for VM_NORESERVE to allocate a page
5097          * without using reserves
5098          */
5099         if (vm_flags & VM_NORESERVE)
5100                 return 0;
5101
5102         /*
5103          * Shared mappings base their reservation on the number of pages that
5104          * are already allocated on behalf of the file. Private mappings need
5105          * to reserve the full area even if read-only as mprotect() may be
5106          * called to make the mapping read-write. Assume !vma is a shm mapping
5107          */
5108         if (!vma || vma->vm_flags & VM_MAYSHARE) {
5109                 /*
5110                  * resv_map can not be NULL as hugetlb_reserve_pages is only
5111                  * called for inodes for which resv_maps were created (see
5112                  * hugetlbfs_get_inode).
5113                  */
5114                 resv_map = inode_resv_map(inode);
5115
5116                 chg = region_chg(resv_map, from, to, &regions_needed);
5117
5118         } else {
5119                 /* Private mapping. */
5120                 resv_map = resv_map_alloc();
5121                 if (!resv_map)
5122                         return -ENOMEM;
5123
5124                 chg = to - from;
5125
5126                 set_vma_resv_map(vma, resv_map);
5127                 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
5128         }
5129
5130         if (chg < 0) {
5131                 ret = chg;
5132                 goto out_err;
5133         }
5134
5135         ret = hugetlb_cgroup_charge_cgroup_rsvd(
5136                 hstate_index(h), chg * pages_per_huge_page(h), &h_cg);
5137
5138         if (ret < 0) {
5139                 ret = -ENOMEM;
5140                 goto out_err;
5141         }
5142
5143         if (vma && !(vma->vm_flags & VM_MAYSHARE) && h_cg) {
5144                 /* For private mappings, the hugetlb_cgroup uncharge info hangs
5145                  * of the resv_map.
5146                  */
5147                 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, h_cg, h);
5148         }
5149
5150         /*
5151          * There must be enough pages in the subpool for the mapping. If
5152          * the subpool has a minimum size, there may be some global
5153          * reservations already in place (gbl_reserve).
5154          */
5155         gbl_reserve = hugepage_subpool_get_pages(spool, chg);
5156         if (gbl_reserve < 0) {
5157                 ret = -ENOSPC;
5158                 goto out_uncharge_cgroup;
5159         }
5160
5161         /*
5162          * Check enough hugepages are available for the reservation.
5163          * Hand the pages back to the subpool if there are not
5164          */
5165         ret = hugetlb_acct_memory(h, gbl_reserve);
5166         if (ret < 0) {
5167                 goto out_put_pages;
5168         }
5169
5170         /*
5171          * Account for the reservations made. Shared mappings record regions
5172          * that have reservations as they are shared by multiple VMAs.
5173          * When the last VMA disappears, the region map says how much
5174          * the reservation was and the page cache tells how much of
5175          * the reservation was consumed. Private mappings are per-VMA and
5176          * only the consumed reservations are tracked. When the VMA
5177          * disappears, the original reservation is the VMA size and the
5178          * consumed reservations are stored in the map. Hence, nothing
5179          * else has to be done for private mappings here
5180          */
5181         if (!vma || vma->vm_flags & VM_MAYSHARE) {
5182                 add = region_add(resv_map, from, to, regions_needed, h, h_cg);
5183
5184                 if (unlikely(add < 0)) {
5185                         hugetlb_acct_memory(h, -gbl_reserve);
5186                         goto out_put_pages;
5187                 } else if (unlikely(chg > add)) {
5188                         /*
5189                          * pages in this range were added to the reserve
5190                          * map between region_chg and region_add.  This
5191                          * indicates a race with alloc_huge_page.  Adjust
5192                          * the subpool and reserve counts modified above
5193                          * based on the difference.
5194                          */
5195                         long rsv_adjust;
5196
5197                         hugetlb_cgroup_uncharge_cgroup_rsvd(
5198                                 hstate_index(h),
5199                                 (chg - add) * pages_per_huge_page(h), h_cg);
5200
5201                         rsv_adjust = hugepage_subpool_put_pages(spool,
5202                                                                 chg - add);
5203                         hugetlb_acct_memory(h, -rsv_adjust);
5204                 }
5205         }
5206         return 0;
5207 out_put_pages:
5208         /* put back original number of pages, chg */
5209         (void)hugepage_subpool_put_pages(spool, chg);
5210 out_uncharge_cgroup:
5211         hugetlb_cgroup_uncharge_cgroup_rsvd(hstate_index(h),
5212                                             chg * pages_per_huge_page(h), h_cg);
5213 out_err:
5214         if (!vma || vma->vm_flags & VM_MAYSHARE)
5215                 /* Only call region_abort if the region_chg succeeded but the
5216                  * region_add failed or didn't run.
5217                  */
5218                 if (chg >= 0 && add < 0)
5219                         region_abort(resv_map, from, to, regions_needed);
5220         if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
5221                 kref_put(&resv_map->refs, resv_map_release);
5222         return ret;
5223 }
5224
5225 long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
5226                                                                 long freed)
5227 {
5228         struct hstate *h = hstate_inode(inode);
5229         struct resv_map *resv_map = inode_resv_map(inode);
5230         long chg = 0;
5231         struct hugepage_subpool *spool = subpool_inode(inode);
5232         long gbl_reserve;
5233
5234         /*
5235          * Since this routine can be called in the evict inode path for all
5236          * hugetlbfs inodes, resv_map could be NULL.
5237          */
5238         if (resv_map) {
5239                 chg = region_del(resv_map, start, end);
5240                 /*
5241                  * region_del() can fail in the rare case where a region
5242                  * must be split and another region descriptor can not be
5243                  * allocated.  If end == LONG_MAX, it will not fail.
5244                  */
5245                 if (chg < 0)
5246                         return chg;
5247         }
5248
5249         spin_lock(&inode->i_lock);
5250         inode->i_blocks -= (blocks_per_huge_page(h) * freed);
5251         spin_unlock(&inode->i_lock);
5252
5253         /*
5254          * If the subpool has a minimum size, the number of global
5255          * reservations to be released may be adjusted.
5256          */
5257         gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
5258         hugetlb_acct_memory(h, -gbl_reserve);
5259
5260         return 0;
5261 }
5262
5263 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
5264 static unsigned long page_table_shareable(struct vm_area_struct *svma,
5265                                 struct vm_area_struct *vma,
5266                                 unsigned long addr, pgoff_t idx)
5267 {
5268         unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
5269                                 svma->vm_start;
5270         unsigned long sbase = saddr & PUD_MASK;
5271         unsigned long s_end = sbase + PUD_SIZE;
5272
5273         /* Allow segments to share if only one is marked locked */
5274         unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
5275         unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
5276
5277         /*
5278          * match the virtual addresses, permission and the alignment of the
5279          * page table page.
5280          */
5281         if (pmd_index(addr) != pmd_index(saddr) ||
5282             vm_flags != svm_flags ||
5283             sbase < svma->vm_start || svma->vm_end < s_end)
5284                 return 0;
5285
5286         return saddr;
5287 }
5288
5289 static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr)
5290 {
5291         unsigned long base = addr & PUD_MASK;
5292         unsigned long end = base + PUD_SIZE;
5293
5294         /*
5295          * check on proper vm_flags and page table alignment
5296          */
5297         if (vma->vm_flags & VM_MAYSHARE && range_in_vma(vma, base, end))
5298                 return true;
5299         return false;
5300 }
5301
5302 /*
5303  * Determine if start,end range within vma could be mapped by shared pmd.
5304  * If yes, adjust start and end to cover range associated with possible
5305  * shared pmd mappings.
5306  */
5307 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
5308                                 unsigned long *start, unsigned long *end)
5309 {
5310         unsigned long check_addr;
5311
5312         if (!(vma->vm_flags & VM_MAYSHARE))
5313                 return;
5314
5315         for (check_addr = *start; check_addr < *end; check_addr += PUD_SIZE) {
5316                 unsigned long a_start = check_addr & PUD_MASK;
5317                 unsigned long a_end = a_start + PUD_SIZE;
5318
5319                 /*
5320                  * If sharing is possible, adjust start/end if necessary.
5321                  */
5322                 if (range_in_vma(vma, a_start, a_end)) {
5323                         if (a_start < *start)
5324                                 *start = a_start;
5325                         if (a_end > *end)
5326                                 *end = a_end;
5327                 }
5328         }
5329 }
5330
5331 /*
5332  * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
5333  * and returns the corresponding pte. While this is not necessary for the
5334  * !shared pmd case because we can allocate the pmd later as well, it makes the
5335  * code much cleaner.
5336  *
5337  * This routine must be called with i_mmap_rwsem held in at least read mode.
5338  * For hugetlbfs, this prevents removal of any page table entries associated
5339  * with the address space.  This is important as we are setting up sharing
5340  * based on existing page table entries (mappings).
5341  */
5342 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
5343 {
5344         struct vm_area_struct *vma = find_vma(mm, addr);
5345         struct address_space *mapping = vma->vm_file->f_mapping;
5346         pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
5347                         vma->vm_pgoff;
5348         struct vm_area_struct *svma;
5349         unsigned long saddr;
5350         pte_t *spte = NULL;
5351         pte_t *pte;
5352         spinlock_t *ptl;
5353
5354         if (!vma_shareable(vma, addr))
5355                 return (pte_t *)pmd_alloc(mm, pud, addr);
5356
5357         vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
5358                 if (svma == vma)
5359                         continue;
5360
5361                 saddr = page_table_shareable(svma, vma, addr, idx);
5362                 if (saddr) {
5363                         spte = huge_pte_offset(svma->vm_mm, saddr,
5364                                                vma_mmu_pagesize(svma));
5365                         if (spte) {
5366                                 get_page(virt_to_page(spte));
5367                                 break;
5368                         }
5369                 }
5370         }
5371
5372         if (!spte)
5373                 goto out;
5374
5375         ptl = huge_pte_lock(hstate_vma(vma), mm, spte);
5376         if (pud_none(*pud)) {
5377                 pud_populate(mm, pud,
5378                                 (pmd_t *)((unsigned long)spte & PAGE_MASK));
5379                 mm_inc_nr_pmds(mm);
5380         } else {
5381                 put_page(virt_to_page(spte));
5382         }
5383         spin_unlock(ptl);
5384 out:
5385         pte = (pte_t *)pmd_alloc(mm, pud, addr);
5386         return pte;
5387 }
5388
5389 /*
5390  * unmap huge page backed by shared pte.
5391  *
5392  * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
5393  * indicated by page_count > 1, unmap is achieved by clearing pud and
5394  * decrementing the ref count. If count == 1, the pte page is not shared.
5395  *
5396  * Called with page table lock held and i_mmap_rwsem held in write mode.
5397  *
5398  * returns: 1 successfully unmapped a shared pte page
5399  *          0 the underlying pte page is not shared, or it is the last user
5400  */
5401 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
5402 {
5403         pgd_t *pgd = pgd_offset(mm, *addr);
5404         p4d_t *p4d = p4d_offset(pgd, *addr);
5405         pud_t *pud = pud_offset(p4d, *addr);
5406
5407         BUG_ON(page_count(virt_to_page(ptep)) == 0);
5408         if (page_count(virt_to_page(ptep)) == 1)
5409                 return 0;
5410
5411         pud_clear(pud);
5412         put_page(virt_to_page(ptep));
5413         mm_dec_nr_pmds(mm);
5414         *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
5415         return 1;
5416 }
5417 #define want_pmd_share()        (1)
5418 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
5419 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
5420 {
5421         return NULL;
5422 }
5423
5424 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
5425 {
5426         return 0;
5427 }
5428
5429 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
5430                                 unsigned long *start, unsigned long *end)
5431 {
5432 }
5433 #define want_pmd_share()        (0)
5434 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
5435
5436 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
5437 pte_t *huge_pte_alloc(struct mm_struct *mm,
5438                         unsigned long addr, unsigned long sz)
5439 {
5440         pgd_t *pgd;
5441         p4d_t *p4d;
5442         pud_t *pud;
5443         pte_t *pte = NULL;
5444
5445         pgd = pgd_offset(mm, addr);
5446         p4d = p4d_alloc(mm, pgd, addr);
5447         if (!p4d)
5448                 return NULL;
5449         pud = pud_alloc(mm, p4d, addr);
5450         if (pud) {
5451                 if (sz == PUD_SIZE) {
5452                         pte = (pte_t *)pud;
5453                 } else {
5454                         BUG_ON(sz != PMD_SIZE);
5455                         if (want_pmd_share() && pud_none(*pud))
5456                                 pte = huge_pmd_share(mm, addr, pud);
5457                         else
5458                                 pte = (pte_t *)pmd_alloc(mm, pud, addr);
5459                 }
5460         }
5461         BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte));
5462
5463         return pte;
5464 }
5465
5466 /*
5467  * huge_pte_offset() - Walk the page table to resolve the hugepage
5468  * entry at address @addr
5469  *
5470  * Return: Pointer to page table entry (PUD or PMD) for
5471  * address @addr, or NULL if a !p*d_present() entry is encountered and the
5472  * size @sz doesn't match the hugepage size at this level of the page
5473  * table.
5474  */
5475 pte_t *huge_pte_offset(struct mm_struct *mm,
5476                        unsigned long addr, unsigned long sz)
5477 {
5478         pgd_t *pgd;
5479         p4d_t *p4d;
5480         pud_t *pud;
5481         pmd_t *pmd;
5482
5483         pgd = pgd_offset(mm, addr);
5484         if (!pgd_present(*pgd))
5485                 return NULL;
5486         p4d = p4d_offset(pgd, addr);
5487         if (!p4d_present(*p4d))
5488                 return NULL;
5489
5490         pud = pud_offset(p4d, addr);
5491         if (sz == PUD_SIZE)
5492                 /* must be pud huge, non-present or none */
5493                 return (pte_t *)pud;
5494         if (!pud_present(*pud))
5495                 return NULL;
5496         /* must have a valid entry and size to go further */
5497
5498         pmd = pmd_offset(pud, addr);
5499         /* must be pmd huge, non-present or none */
5500         return (pte_t *)pmd;
5501 }
5502
5503 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
5504
5505 /*
5506  * These functions are overwritable if your architecture needs its own
5507  * behavior.
5508  */
5509 struct page * __weak
5510 follow_huge_addr(struct mm_struct *mm, unsigned long address,
5511                               int write)
5512 {
5513         return ERR_PTR(-EINVAL);
5514 }
5515
5516 struct page * __weak
5517 follow_huge_pd(struct vm_area_struct *vma,
5518                unsigned long address, hugepd_t hpd, int flags, int pdshift)
5519 {
5520         WARN(1, "hugepd follow called with no support for hugepage directory format\n");
5521         return NULL;
5522 }
5523
5524 struct page * __weak
5525 follow_huge_pmd(struct mm_struct *mm, unsigned long address,
5526                 pmd_t *pmd, int flags)
5527 {
5528         struct page *page = NULL;
5529         spinlock_t *ptl;
5530         pte_t pte;
5531
5532         /* FOLL_GET and FOLL_PIN are mutually exclusive. */
5533         if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
5534                          (FOLL_PIN | FOLL_GET)))
5535                 return NULL;
5536
5537 retry:
5538         ptl = pmd_lockptr(mm, pmd);
5539         spin_lock(ptl);
5540         /*
5541          * make sure that the address range covered by this pmd is not
5542          * unmapped from other threads.
5543          */
5544         if (!pmd_huge(*pmd))
5545                 goto out;
5546         pte = huge_ptep_get((pte_t *)pmd);
5547         if (pte_present(pte)) {
5548                 page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
5549                 /*
5550                  * try_grab_page() should always succeed here, because: a) we
5551                  * hold the pmd (ptl) lock, and b) we've just checked that the
5552                  * huge pmd (head) page is present in the page tables. The ptl
5553                  * prevents the head page and tail pages from being rearranged
5554                  * in any way. So this page must be available at this point,
5555                  * unless the page refcount overflowed:
5556                  */
5557                 if (WARN_ON_ONCE(!try_grab_page(page, flags))) {
5558                         page = NULL;
5559                         goto out;
5560                 }
5561         } else {
5562                 if (is_hugetlb_entry_migration(pte)) {
5563                         spin_unlock(ptl);
5564                         __migration_entry_wait(mm, (pte_t *)pmd, ptl);
5565                         goto retry;
5566                 }
5567                 /*
5568                  * hwpoisoned entry is treated as no_page_table in
5569                  * follow_page_mask().
5570                  */
5571         }
5572 out:
5573         spin_unlock(ptl);
5574         return page;
5575 }
5576
5577 struct page * __weak
5578 follow_huge_pud(struct mm_struct *mm, unsigned long address,
5579                 pud_t *pud, int flags)
5580 {
5581         if (flags & (FOLL_GET | FOLL_PIN))
5582                 return NULL;
5583
5584         return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
5585 }
5586
5587 struct page * __weak
5588 follow_huge_pgd(struct mm_struct *mm, unsigned long address, pgd_t *pgd, int flags)
5589 {
5590         if (flags & (FOLL_GET | FOLL_PIN))
5591                 return NULL;
5592
5593         return pte_page(*(pte_t *)pgd) + ((address & ~PGDIR_MASK) >> PAGE_SHIFT);
5594 }
5595
5596 bool isolate_huge_page(struct page *page, struct list_head *list)
5597 {
5598         bool ret = true;
5599
5600         VM_BUG_ON_PAGE(!PageHead(page), page);
5601         spin_lock(&hugetlb_lock);
5602         if (!page_huge_active(page) || !get_page_unless_zero(page)) {
5603                 ret = false;
5604                 goto unlock;
5605         }
5606         clear_page_huge_active(page);
5607         list_move_tail(&page->lru, list);
5608 unlock:
5609         spin_unlock(&hugetlb_lock);
5610         return ret;
5611 }
5612
5613 void putback_active_hugepage(struct page *page)
5614 {
5615         VM_BUG_ON_PAGE(!PageHead(page), page);
5616         spin_lock(&hugetlb_lock);
5617         set_page_huge_active(page);
5618         list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
5619         spin_unlock(&hugetlb_lock);
5620         put_page(page);
5621 }
5622
5623 void move_hugetlb_state(struct page *oldpage, struct page *newpage, int reason)
5624 {
5625         struct hstate *h = page_hstate(oldpage);
5626
5627         hugetlb_cgroup_migrate(oldpage, newpage);
5628         set_page_owner_migrate_reason(newpage, reason);
5629
5630         /*
5631          * transfer temporary state of the new huge page. This is
5632          * reverse to other transitions because the newpage is going to
5633          * be final while the old one will be freed so it takes over
5634          * the temporary status.
5635          *
5636          * Also note that we have to transfer the per-node surplus state
5637          * here as well otherwise the global surplus count will not match
5638          * the per-node's.
5639          */
5640         if (PageHugeTemporary(newpage)) {
5641                 int old_nid = page_to_nid(oldpage);
5642                 int new_nid = page_to_nid(newpage);
5643
5644                 SetPageHugeTemporary(oldpage);
5645                 ClearPageHugeTemporary(newpage);
5646
5647                 spin_lock(&hugetlb_lock);
5648                 if (h->surplus_huge_pages_node[old_nid]) {
5649                         h->surplus_huge_pages_node[old_nid]--;
5650                         h->surplus_huge_pages_node[new_nid]++;
5651                 }
5652                 spin_unlock(&hugetlb_lock);
5653         }
5654 }
5655
5656 #ifdef CONFIG_CMA
5657 static unsigned long hugetlb_cma_size __initdata;
5658 static bool cma_reserve_called __initdata;
5659
5660 static int __init cmdline_parse_hugetlb_cma(char *p)
5661 {
5662         hugetlb_cma_size = memparse(p, &p);
5663         return 0;
5664 }
5665
5666 early_param("hugetlb_cma", cmdline_parse_hugetlb_cma);
5667
5668 void __init hugetlb_cma_reserve(int order)
5669 {
5670         unsigned long size, reserved, per_node;
5671         int nid;
5672
5673         cma_reserve_called = true;
5674
5675         if (!hugetlb_cma_size)
5676                 return;
5677
5678         if (hugetlb_cma_size < (PAGE_SIZE << order)) {
5679                 pr_warn("hugetlb_cma: cma area should be at least %lu MiB\n",
5680                         (PAGE_SIZE << order) / SZ_1M);
5681                 return;
5682         }
5683
5684         /*
5685          * If 3 GB area is requested on a machine with 4 numa nodes,
5686          * let's allocate 1 GB on first three nodes and ignore the last one.
5687          */
5688         per_node = DIV_ROUND_UP(hugetlb_cma_size, nr_online_nodes);
5689         pr_info("hugetlb_cma: reserve %lu MiB, up to %lu MiB per node\n",
5690                 hugetlb_cma_size / SZ_1M, per_node / SZ_1M);
5691
5692         reserved = 0;
5693         for_each_node_state(nid, N_ONLINE) {
5694                 int res;
5695
5696                 size = min(per_node, hugetlb_cma_size - reserved);
5697                 size = round_up(size, PAGE_SIZE << order);
5698
5699                 res = cma_declare_contiguous_nid(0, size, 0, PAGE_SIZE << order,
5700                                                  0, false, "hugetlb",
5701                                                  &hugetlb_cma[nid], nid);
5702                 if (res) {
5703                         pr_warn("hugetlb_cma: reservation failed: err %d, node %d",
5704                                 res, nid);
5705                         continue;
5706                 }
5707
5708                 reserved += size;
5709                 pr_info("hugetlb_cma: reserved %lu MiB on node %d\n",
5710                         size / SZ_1M, nid);
5711
5712                 if (reserved >= hugetlb_cma_size)
5713                         break;
5714         }
5715 }
5716
5717 void __init hugetlb_cma_check(void)
5718 {
5719         if (!hugetlb_cma_size || cma_reserve_called)
5720                 return;
5721
5722         pr_warn("hugetlb_cma: the option isn't supported by current arch\n");
5723 }
5724
5725 #endif /* CONFIG_CMA */