hugetlb: add per-hstate mutex to synchronize user adjustments
[linux-2.6-microblaze.git] / mm / hugetlb.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Generic hugetlb support.
4  * (C) Nadia Yvette Chambers, April 2004
5  */
6 #include <linux/list.h>
7 #include <linux/init.h>
8 #include <linux/mm.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/compiler.h>
17 #include <linux/cpuset.h>
18 #include <linux/mutex.h>
19 #include <linux/memblock.h>
20 #include <linux/sysfs.h>
21 #include <linux/slab.h>
22 #include <linux/sched/mm.h>
23 #include <linux/mmdebug.h>
24 #include <linux/sched/signal.h>
25 #include <linux/rmap.h>
26 #include <linux/string_helpers.h>
27 #include <linux/swap.h>
28 #include <linux/swapops.h>
29 #include <linux/jhash.h>
30 #include <linux/numa.h>
31 #include <linux/llist.h>
32 #include <linux/cma.h>
33
34 #include <asm/page.h>
35 #include <asm/pgalloc.h>
36 #include <asm/tlb.h>
37
38 #include <linux/io.h>
39 #include <linux/hugetlb.h>
40 #include <linux/hugetlb_cgroup.h>
41 #include <linux/node.h>
42 #include <linux/userfaultfd_k.h>
43 #include <linux/page_owner.h>
44 #include "internal.h"
45
46 int hugetlb_max_hstate __read_mostly;
47 unsigned int default_hstate_idx;
48 struct hstate hstates[HUGE_MAX_HSTATE];
49
50 #ifdef CONFIG_CMA
51 static struct cma *hugetlb_cma[MAX_NUMNODES];
52 #endif
53 static unsigned long hugetlb_cma_size __initdata;
54
55 /*
56  * Minimum page order among possible hugepage sizes, set to a proper value
57  * at boot time.
58  */
59 static unsigned int minimum_order __read_mostly = UINT_MAX;
60
61 __initdata LIST_HEAD(huge_boot_pages);
62
63 /* for command line parsing */
64 static struct hstate * __initdata parsed_hstate;
65 static unsigned long __initdata default_hstate_max_huge_pages;
66 static bool __initdata parsed_valid_hugepagesz = true;
67 static bool __initdata parsed_default_hugepagesz;
68
69 /*
70  * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
71  * free_huge_pages, and surplus_huge_pages.
72  */
73 DEFINE_SPINLOCK(hugetlb_lock);
74
75 /*
76  * Serializes faults on the same logical page.  This is used to
77  * prevent spurious OOMs when the hugepage pool is fully utilized.
78  */
79 static int num_fault_mutexes;
80 struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
81
82 /* Forward declaration */
83 static int hugetlb_acct_memory(struct hstate *h, long delta);
84
85 static inline bool subpool_is_free(struct hugepage_subpool *spool)
86 {
87         if (spool->count)
88                 return false;
89         if (spool->max_hpages != -1)
90                 return spool->used_hpages == 0;
91         if (spool->min_hpages != -1)
92                 return spool->rsv_hpages == spool->min_hpages;
93
94         return true;
95 }
96
97 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
98 {
99         spin_unlock(&spool->lock);
100
101         /* If no pages are used, and no other handles to the subpool
102          * remain, give up any reservations based on minimum size and
103          * free the subpool */
104         if (subpool_is_free(spool)) {
105                 if (spool->min_hpages != -1)
106                         hugetlb_acct_memory(spool->hstate,
107                                                 -spool->min_hpages);
108                 kfree(spool);
109         }
110 }
111
112 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
113                                                 long min_hpages)
114 {
115         struct hugepage_subpool *spool;
116
117         spool = kzalloc(sizeof(*spool), GFP_KERNEL);
118         if (!spool)
119                 return NULL;
120
121         spin_lock_init(&spool->lock);
122         spool->count = 1;
123         spool->max_hpages = max_hpages;
124         spool->hstate = h;
125         spool->min_hpages = min_hpages;
126
127         if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
128                 kfree(spool);
129                 return NULL;
130         }
131         spool->rsv_hpages = min_hpages;
132
133         return spool;
134 }
135
136 void hugepage_put_subpool(struct hugepage_subpool *spool)
137 {
138         spin_lock(&spool->lock);
139         BUG_ON(!spool->count);
140         spool->count--;
141         unlock_or_release_subpool(spool);
142 }
143
144 /*
145  * Subpool accounting for allocating and reserving pages.
146  * Return -ENOMEM if there are not enough resources to satisfy the
147  * request.  Otherwise, return the number of pages by which the
148  * global pools must be adjusted (upward).  The returned value may
149  * only be different than the passed value (delta) in the case where
150  * a subpool minimum size must be maintained.
151  */
152 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
153                                       long delta)
154 {
155         long ret = delta;
156
157         if (!spool)
158                 return ret;
159
160         spin_lock(&spool->lock);
161
162         if (spool->max_hpages != -1) {          /* maximum size accounting */
163                 if ((spool->used_hpages + delta) <= spool->max_hpages)
164                         spool->used_hpages += delta;
165                 else {
166                         ret = -ENOMEM;
167                         goto unlock_ret;
168                 }
169         }
170
171         /* minimum size accounting */
172         if (spool->min_hpages != -1 && spool->rsv_hpages) {
173                 if (delta > spool->rsv_hpages) {
174                         /*
175                          * Asking for more reserves than those already taken on
176                          * behalf of subpool.  Return difference.
177                          */
178                         ret = delta - spool->rsv_hpages;
179                         spool->rsv_hpages = 0;
180                 } else {
181                         ret = 0;        /* reserves already accounted for */
182                         spool->rsv_hpages -= delta;
183                 }
184         }
185
186 unlock_ret:
187         spin_unlock(&spool->lock);
188         return ret;
189 }
190
191 /*
192  * Subpool accounting for freeing and unreserving pages.
193  * Return the number of global page reservations that must be dropped.
194  * The return value may only be different than the passed value (delta)
195  * in the case where a subpool minimum size must be maintained.
196  */
197 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
198                                        long delta)
199 {
200         long ret = delta;
201
202         if (!spool)
203                 return delta;
204
205         spin_lock(&spool->lock);
206
207         if (spool->max_hpages != -1)            /* maximum size accounting */
208                 spool->used_hpages -= delta;
209
210          /* minimum size accounting */
211         if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
212                 if (spool->rsv_hpages + delta <= spool->min_hpages)
213                         ret = 0;
214                 else
215                         ret = spool->rsv_hpages + delta - spool->min_hpages;
216
217                 spool->rsv_hpages += delta;
218                 if (spool->rsv_hpages > spool->min_hpages)
219                         spool->rsv_hpages = spool->min_hpages;
220         }
221
222         /*
223          * If hugetlbfs_put_super couldn't free spool due to an outstanding
224          * quota reference, free it now.
225          */
226         unlock_or_release_subpool(spool);
227
228         return ret;
229 }
230
231 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
232 {
233         return HUGETLBFS_SB(inode->i_sb)->spool;
234 }
235
236 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
237 {
238         return subpool_inode(file_inode(vma->vm_file));
239 }
240
241 /* Helper that removes a struct file_region from the resv_map cache and returns
242  * it for use.
243  */
244 static struct file_region *
245 get_file_region_entry_from_cache(struct resv_map *resv, long from, long to)
246 {
247         struct file_region *nrg = NULL;
248
249         VM_BUG_ON(resv->region_cache_count <= 0);
250
251         resv->region_cache_count--;
252         nrg = list_first_entry(&resv->region_cache, struct file_region, link);
253         list_del(&nrg->link);
254
255         nrg->from = from;
256         nrg->to = to;
257
258         return nrg;
259 }
260
261 static void copy_hugetlb_cgroup_uncharge_info(struct file_region *nrg,
262                                               struct file_region *rg)
263 {
264 #ifdef CONFIG_CGROUP_HUGETLB
265         nrg->reservation_counter = rg->reservation_counter;
266         nrg->css = rg->css;
267         if (rg->css)
268                 css_get(rg->css);
269 #endif
270 }
271
272 /* Helper that records hugetlb_cgroup uncharge info. */
273 static void record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup *h_cg,
274                                                 struct hstate *h,
275                                                 struct resv_map *resv,
276                                                 struct file_region *nrg)
277 {
278 #ifdef CONFIG_CGROUP_HUGETLB
279         if (h_cg) {
280                 nrg->reservation_counter =
281                         &h_cg->rsvd_hugepage[hstate_index(h)];
282                 nrg->css = &h_cg->css;
283                 /*
284                  * The caller will hold exactly one h_cg->css reference for the
285                  * whole contiguous reservation region. But this area might be
286                  * scattered when there are already some file_regions reside in
287                  * it. As a result, many file_regions may share only one css
288                  * reference. In order to ensure that one file_region must hold
289                  * exactly one h_cg->css reference, we should do css_get for
290                  * each file_region and leave the reference held by caller
291                  * untouched.
292                  */
293                 css_get(&h_cg->css);
294                 if (!resv->pages_per_hpage)
295                         resv->pages_per_hpage = pages_per_huge_page(h);
296                 /* pages_per_hpage should be the same for all entries in
297                  * a resv_map.
298                  */
299                 VM_BUG_ON(resv->pages_per_hpage != pages_per_huge_page(h));
300         } else {
301                 nrg->reservation_counter = NULL;
302                 nrg->css = NULL;
303         }
304 #endif
305 }
306
307 static void put_uncharge_info(struct file_region *rg)
308 {
309 #ifdef CONFIG_CGROUP_HUGETLB
310         if (rg->css)
311                 css_put(rg->css);
312 #endif
313 }
314
315 static bool has_same_uncharge_info(struct file_region *rg,
316                                    struct file_region *org)
317 {
318 #ifdef CONFIG_CGROUP_HUGETLB
319         return rg && org &&
320                rg->reservation_counter == org->reservation_counter &&
321                rg->css == org->css;
322
323 #else
324         return true;
325 #endif
326 }
327
328 static void coalesce_file_region(struct resv_map *resv, struct file_region *rg)
329 {
330         struct file_region *nrg = NULL, *prg = NULL;
331
332         prg = list_prev_entry(rg, link);
333         if (&prg->link != &resv->regions && prg->to == rg->from &&
334             has_same_uncharge_info(prg, rg)) {
335                 prg->to = rg->to;
336
337                 list_del(&rg->link);
338                 put_uncharge_info(rg);
339                 kfree(rg);
340
341                 rg = prg;
342         }
343
344         nrg = list_next_entry(rg, link);
345         if (&nrg->link != &resv->regions && nrg->from == rg->to &&
346             has_same_uncharge_info(nrg, rg)) {
347                 nrg->from = rg->from;
348
349                 list_del(&rg->link);
350                 put_uncharge_info(rg);
351                 kfree(rg);
352         }
353 }
354
355 static inline long
356 hugetlb_resv_map_add(struct resv_map *map, struct file_region *rg, long from,
357                      long to, struct hstate *h, struct hugetlb_cgroup *cg,
358                      long *regions_needed)
359 {
360         struct file_region *nrg;
361
362         if (!regions_needed) {
363                 nrg = get_file_region_entry_from_cache(map, from, to);
364                 record_hugetlb_cgroup_uncharge_info(cg, h, map, nrg);
365                 list_add(&nrg->link, rg->link.prev);
366                 coalesce_file_region(map, nrg);
367         } else
368                 *regions_needed += 1;
369
370         return to - from;
371 }
372
373 /*
374  * Must be called with resv->lock held.
375  *
376  * Calling this with regions_needed != NULL will count the number of pages
377  * to be added but will not modify the linked list. And regions_needed will
378  * indicate the number of file_regions needed in the cache to carry out to add
379  * the regions for this range.
380  */
381 static long add_reservation_in_range(struct resv_map *resv, long f, long t,
382                                      struct hugetlb_cgroup *h_cg,
383                                      struct hstate *h, long *regions_needed)
384 {
385         long add = 0;
386         struct list_head *head = &resv->regions;
387         long last_accounted_offset = f;
388         struct file_region *rg = NULL, *trg = NULL;
389
390         if (regions_needed)
391                 *regions_needed = 0;
392
393         /* In this loop, we essentially handle an entry for the range
394          * [last_accounted_offset, rg->from), at every iteration, with some
395          * bounds checking.
396          */
397         list_for_each_entry_safe(rg, trg, head, link) {
398                 /* Skip irrelevant regions that start before our range. */
399                 if (rg->from < f) {
400                         /* If this region ends after the last accounted offset,
401                          * then we need to update last_accounted_offset.
402                          */
403                         if (rg->to > last_accounted_offset)
404                                 last_accounted_offset = rg->to;
405                         continue;
406                 }
407
408                 /* When we find a region that starts beyond our range, we've
409                  * finished.
410                  */
411                 if (rg->from >= t)
412                         break;
413
414                 /* Add an entry for last_accounted_offset -> rg->from, and
415                  * update last_accounted_offset.
416                  */
417                 if (rg->from > last_accounted_offset)
418                         add += hugetlb_resv_map_add(resv, rg,
419                                                     last_accounted_offset,
420                                                     rg->from, h, h_cg,
421                                                     regions_needed);
422
423                 last_accounted_offset = rg->to;
424         }
425
426         /* Handle the case where our range extends beyond
427          * last_accounted_offset.
428          */
429         if (last_accounted_offset < t)
430                 add += hugetlb_resv_map_add(resv, rg, last_accounted_offset,
431                                             t, h, h_cg, regions_needed);
432
433         VM_BUG_ON(add < 0);
434         return add;
435 }
436
437 /* Must be called with resv->lock acquired. Will drop lock to allocate entries.
438  */
439 static int allocate_file_region_entries(struct resv_map *resv,
440                                         int regions_needed)
441         __must_hold(&resv->lock)
442 {
443         struct list_head allocated_regions;
444         int to_allocate = 0, i = 0;
445         struct file_region *trg = NULL, *rg = NULL;
446
447         VM_BUG_ON(regions_needed < 0);
448
449         INIT_LIST_HEAD(&allocated_regions);
450
451         /*
452          * Check for sufficient descriptors in the cache to accommodate
453          * the number of in progress add operations plus regions_needed.
454          *
455          * This is a while loop because when we drop the lock, some other call
456          * to region_add or region_del may have consumed some region_entries,
457          * so we keep looping here until we finally have enough entries for
458          * (adds_in_progress + regions_needed).
459          */
460         while (resv->region_cache_count <
461                (resv->adds_in_progress + regions_needed)) {
462                 to_allocate = resv->adds_in_progress + regions_needed -
463                               resv->region_cache_count;
464
465                 /* At this point, we should have enough entries in the cache
466                  * for all the existings adds_in_progress. We should only be
467                  * needing to allocate for regions_needed.
468                  */
469                 VM_BUG_ON(resv->region_cache_count < resv->adds_in_progress);
470
471                 spin_unlock(&resv->lock);
472                 for (i = 0; i < to_allocate; i++) {
473                         trg = kmalloc(sizeof(*trg), GFP_KERNEL);
474                         if (!trg)
475                                 goto out_of_memory;
476                         list_add(&trg->link, &allocated_regions);
477                 }
478
479                 spin_lock(&resv->lock);
480
481                 list_splice(&allocated_regions, &resv->region_cache);
482                 resv->region_cache_count += to_allocate;
483         }
484
485         return 0;
486
487 out_of_memory:
488         list_for_each_entry_safe(rg, trg, &allocated_regions, link) {
489                 list_del(&rg->link);
490                 kfree(rg);
491         }
492         return -ENOMEM;
493 }
494
495 /*
496  * Add the huge page range represented by [f, t) to the reserve
497  * map.  Regions will be taken from the cache to fill in this range.
498  * Sufficient regions should exist in the cache due to the previous
499  * call to region_chg with the same range, but in some cases the cache will not
500  * have sufficient entries due to races with other code doing region_add or
501  * region_del.  The extra needed entries will be allocated.
502  *
503  * regions_needed is the out value provided by a previous call to region_chg.
504  *
505  * Return the number of new huge pages added to the map.  This number is greater
506  * than or equal to zero.  If file_region entries needed to be allocated for
507  * this operation and we were not able to allocate, it returns -ENOMEM.
508  * region_add of regions of length 1 never allocate file_regions and cannot
509  * fail; region_chg will always allocate at least 1 entry and a region_add for
510  * 1 page will only require at most 1 entry.
511  */
512 static long region_add(struct resv_map *resv, long f, long t,
513                        long in_regions_needed, struct hstate *h,
514                        struct hugetlb_cgroup *h_cg)
515 {
516         long add = 0, actual_regions_needed = 0;
517
518         spin_lock(&resv->lock);
519 retry:
520
521         /* Count how many regions are actually needed to execute this add. */
522         add_reservation_in_range(resv, f, t, NULL, NULL,
523                                  &actual_regions_needed);
524
525         /*
526          * Check for sufficient descriptors in the cache to accommodate
527          * this add operation. Note that actual_regions_needed may be greater
528          * than in_regions_needed, as the resv_map may have been modified since
529          * the region_chg call. In this case, we need to make sure that we
530          * allocate extra entries, such that we have enough for all the
531          * existing adds_in_progress, plus the excess needed for this
532          * operation.
533          */
534         if (actual_regions_needed > in_regions_needed &&
535             resv->region_cache_count <
536                     resv->adds_in_progress +
537                             (actual_regions_needed - in_regions_needed)) {
538                 /* region_add operation of range 1 should never need to
539                  * allocate file_region entries.
540                  */
541                 VM_BUG_ON(t - f <= 1);
542
543                 if (allocate_file_region_entries(
544                             resv, actual_regions_needed - in_regions_needed)) {
545                         return -ENOMEM;
546                 }
547
548                 goto retry;
549         }
550
551         add = add_reservation_in_range(resv, f, t, h_cg, h, NULL);
552
553         resv->adds_in_progress -= in_regions_needed;
554
555         spin_unlock(&resv->lock);
556         return add;
557 }
558
559 /*
560  * Examine the existing reserve map and determine how many
561  * huge pages in the specified range [f, t) are NOT currently
562  * represented.  This routine is called before a subsequent
563  * call to region_add that will actually modify the reserve
564  * map to add the specified range [f, t).  region_chg does
565  * not change the number of huge pages represented by the
566  * map.  A number of new file_region structures is added to the cache as a
567  * placeholder, for the subsequent region_add call to use. At least 1
568  * file_region structure is added.
569  *
570  * out_regions_needed is the number of regions added to the
571  * resv->adds_in_progress.  This value needs to be provided to a follow up call
572  * to region_add or region_abort for proper accounting.
573  *
574  * Returns the number of huge pages that need to be added to the existing
575  * reservation map for the range [f, t).  This number is greater or equal to
576  * zero.  -ENOMEM is returned if a new file_region structure or cache entry
577  * is needed and can not be allocated.
578  */
579 static long region_chg(struct resv_map *resv, long f, long t,
580                        long *out_regions_needed)
581 {
582         long chg = 0;
583
584         spin_lock(&resv->lock);
585
586         /* Count how many hugepages in this range are NOT represented. */
587         chg = add_reservation_in_range(resv, f, t, NULL, NULL,
588                                        out_regions_needed);
589
590         if (*out_regions_needed == 0)
591                 *out_regions_needed = 1;
592
593         if (allocate_file_region_entries(resv, *out_regions_needed))
594                 return -ENOMEM;
595
596         resv->adds_in_progress += *out_regions_needed;
597
598         spin_unlock(&resv->lock);
599         return chg;
600 }
601
602 /*
603  * Abort the in progress add operation.  The adds_in_progress field
604  * of the resv_map keeps track of the operations in progress between
605  * calls to region_chg and region_add.  Operations are sometimes
606  * aborted after the call to region_chg.  In such cases, region_abort
607  * is called to decrement the adds_in_progress counter. regions_needed
608  * is the value returned by the region_chg call, it is used to decrement
609  * the adds_in_progress counter.
610  *
611  * NOTE: The range arguments [f, t) are not needed or used in this
612  * routine.  They are kept to make reading the calling code easier as
613  * arguments will match the associated region_chg call.
614  */
615 static void region_abort(struct resv_map *resv, long f, long t,
616                          long regions_needed)
617 {
618         spin_lock(&resv->lock);
619         VM_BUG_ON(!resv->region_cache_count);
620         resv->adds_in_progress -= regions_needed;
621         spin_unlock(&resv->lock);
622 }
623
624 /*
625  * Delete the specified range [f, t) from the reserve map.  If the
626  * t parameter is LONG_MAX, this indicates that ALL regions after f
627  * should be deleted.  Locate the regions which intersect [f, t)
628  * and either trim, delete or split the existing regions.
629  *
630  * Returns the number of huge pages deleted from the reserve map.
631  * In the normal case, the return value is zero or more.  In the
632  * case where a region must be split, a new region descriptor must
633  * be allocated.  If the allocation fails, -ENOMEM will be returned.
634  * NOTE: If the parameter t == LONG_MAX, then we will never split
635  * a region and possibly return -ENOMEM.  Callers specifying
636  * t == LONG_MAX do not need to check for -ENOMEM error.
637  */
638 static long region_del(struct resv_map *resv, long f, long t)
639 {
640         struct list_head *head = &resv->regions;
641         struct file_region *rg, *trg;
642         struct file_region *nrg = NULL;
643         long del = 0;
644
645 retry:
646         spin_lock(&resv->lock);
647         list_for_each_entry_safe(rg, trg, head, link) {
648                 /*
649                  * Skip regions before the range to be deleted.  file_region
650                  * ranges are normally of the form [from, to).  However, there
651                  * may be a "placeholder" entry in the map which is of the form
652                  * (from, to) with from == to.  Check for placeholder entries
653                  * at the beginning of the range to be deleted.
654                  */
655                 if (rg->to <= f && (rg->to != rg->from || rg->to != f))
656                         continue;
657
658                 if (rg->from >= t)
659                         break;
660
661                 if (f > rg->from && t < rg->to) { /* Must split region */
662                         /*
663                          * Check for an entry in the cache before dropping
664                          * lock and attempting allocation.
665                          */
666                         if (!nrg &&
667                             resv->region_cache_count > resv->adds_in_progress) {
668                                 nrg = list_first_entry(&resv->region_cache,
669                                                         struct file_region,
670                                                         link);
671                                 list_del(&nrg->link);
672                                 resv->region_cache_count--;
673                         }
674
675                         if (!nrg) {
676                                 spin_unlock(&resv->lock);
677                                 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
678                                 if (!nrg)
679                                         return -ENOMEM;
680                                 goto retry;
681                         }
682
683                         del += t - f;
684                         hugetlb_cgroup_uncharge_file_region(
685                                 resv, rg, t - f, false);
686
687                         /* New entry for end of split region */
688                         nrg->from = t;
689                         nrg->to = rg->to;
690
691                         copy_hugetlb_cgroup_uncharge_info(nrg, rg);
692
693                         INIT_LIST_HEAD(&nrg->link);
694
695                         /* Original entry is trimmed */
696                         rg->to = f;
697
698                         list_add(&nrg->link, &rg->link);
699                         nrg = NULL;
700                         break;
701                 }
702
703                 if (f <= rg->from && t >= rg->to) { /* Remove entire region */
704                         del += rg->to - rg->from;
705                         hugetlb_cgroup_uncharge_file_region(resv, rg,
706                                                             rg->to - rg->from, true);
707                         list_del(&rg->link);
708                         kfree(rg);
709                         continue;
710                 }
711
712                 if (f <= rg->from) {    /* Trim beginning of region */
713                         hugetlb_cgroup_uncharge_file_region(resv, rg,
714                                                             t - rg->from, false);
715
716                         del += t - rg->from;
717                         rg->from = t;
718                 } else {                /* Trim end of region */
719                         hugetlb_cgroup_uncharge_file_region(resv, rg,
720                                                             rg->to - f, false);
721
722                         del += rg->to - f;
723                         rg->to = f;
724                 }
725         }
726
727         spin_unlock(&resv->lock);
728         kfree(nrg);
729         return del;
730 }
731
732 /*
733  * A rare out of memory error was encountered which prevented removal of
734  * the reserve map region for a page.  The huge page itself was free'ed
735  * and removed from the page cache.  This routine will adjust the subpool
736  * usage count, and the global reserve count if needed.  By incrementing
737  * these counts, the reserve map entry which could not be deleted will
738  * appear as a "reserved" entry instead of simply dangling with incorrect
739  * counts.
740  */
741 void hugetlb_fix_reserve_counts(struct inode *inode)
742 {
743         struct hugepage_subpool *spool = subpool_inode(inode);
744         long rsv_adjust;
745         bool reserved = false;
746
747         rsv_adjust = hugepage_subpool_get_pages(spool, 1);
748         if (rsv_adjust > 0) {
749                 struct hstate *h = hstate_inode(inode);
750
751                 if (!hugetlb_acct_memory(h, 1))
752                         reserved = true;
753         } else if (!rsv_adjust) {
754                 reserved = true;
755         }
756
757         if (!reserved)
758                 pr_warn("hugetlb: Huge Page Reserved count may go negative.\n");
759 }
760
761 /*
762  * Count and return the number of huge pages in the reserve map
763  * that intersect with the range [f, t).
764  */
765 static long region_count(struct resv_map *resv, long f, long t)
766 {
767         struct list_head *head = &resv->regions;
768         struct file_region *rg;
769         long chg = 0;
770
771         spin_lock(&resv->lock);
772         /* Locate each segment we overlap with, and count that overlap. */
773         list_for_each_entry(rg, head, link) {
774                 long seg_from;
775                 long seg_to;
776
777                 if (rg->to <= f)
778                         continue;
779                 if (rg->from >= t)
780                         break;
781
782                 seg_from = max(rg->from, f);
783                 seg_to = min(rg->to, t);
784
785                 chg += seg_to - seg_from;
786         }
787         spin_unlock(&resv->lock);
788
789         return chg;
790 }
791
792 /*
793  * Convert the address within this vma to the page offset within
794  * the mapping, in pagecache page units; huge pages here.
795  */
796 static pgoff_t vma_hugecache_offset(struct hstate *h,
797                         struct vm_area_struct *vma, unsigned long address)
798 {
799         return ((address - vma->vm_start) >> huge_page_shift(h)) +
800                         (vma->vm_pgoff >> huge_page_order(h));
801 }
802
803 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
804                                      unsigned long address)
805 {
806         return vma_hugecache_offset(hstate_vma(vma), vma, address);
807 }
808 EXPORT_SYMBOL_GPL(linear_hugepage_index);
809
810 /*
811  * Return the size of the pages allocated when backing a VMA. In the majority
812  * cases this will be same size as used by the page table entries.
813  */
814 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
815 {
816         if (vma->vm_ops && vma->vm_ops->pagesize)
817                 return vma->vm_ops->pagesize(vma);
818         return PAGE_SIZE;
819 }
820 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
821
822 /*
823  * Return the page size being used by the MMU to back a VMA. In the majority
824  * of cases, the page size used by the kernel matches the MMU size. On
825  * architectures where it differs, an architecture-specific 'strong'
826  * version of this symbol is required.
827  */
828 __weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
829 {
830         return vma_kernel_pagesize(vma);
831 }
832
833 /*
834  * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
835  * bits of the reservation map pointer, which are always clear due to
836  * alignment.
837  */
838 #define HPAGE_RESV_OWNER    (1UL << 0)
839 #define HPAGE_RESV_UNMAPPED (1UL << 1)
840 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
841
842 /*
843  * These helpers are used to track how many pages are reserved for
844  * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
845  * is guaranteed to have their future faults succeed.
846  *
847  * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
848  * the reserve counters are updated with the hugetlb_lock held. It is safe
849  * to reset the VMA at fork() time as it is not in use yet and there is no
850  * chance of the global counters getting corrupted as a result of the values.
851  *
852  * The private mapping reservation is represented in a subtly different
853  * manner to a shared mapping.  A shared mapping has a region map associated
854  * with the underlying file, this region map represents the backing file
855  * pages which have ever had a reservation assigned which this persists even
856  * after the page is instantiated.  A private mapping has a region map
857  * associated with the original mmap which is attached to all VMAs which
858  * reference it, this region map represents those offsets which have consumed
859  * reservation ie. where pages have been instantiated.
860  */
861 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
862 {
863         return (unsigned long)vma->vm_private_data;
864 }
865
866 static void set_vma_private_data(struct vm_area_struct *vma,
867                                                         unsigned long value)
868 {
869         vma->vm_private_data = (void *)value;
870 }
871
872 static void
873 resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map *resv_map,
874                                           struct hugetlb_cgroup *h_cg,
875                                           struct hstate *h)
876 {
877 #ifdef CONFIG_CGROUP_HUGETLB
878         if (!h_cg || !h) {
879                 resv_map->reservation_counter = NULL;
880                 resv_map->pages_per_hpage = 0;
881                 resv_map->css = NULL;
882         } else {
883                 resv_map->reservation_counter =
884                         &h_cg->rsvd_hugepage[hstate_index(h)];
885                 resv_map->pages_per_hpage = pages_per_huge_page(h);
886                 resv_map->css = &h_cg->css;
887         }
888 #endif
889 }
890
891 struct resv_map *resv_map_alloc(void)
892 {
893         struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
894         struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
895
896         if (!resv_map || !rg) {
897                 kfree(resv_map);
898                 kfree(rg);
899                 return NULL;
900         }
901
902         kref_init(&resv_map->refs);
903         spin_lock_init(&resv_map->lock);
904         INIT_LIST_HEAD(&resv_map->regions);
905
906         resv_map->adds_in_progress = 0;
907         /*
908          * Initialize these to 0. On shared mappings, 0's here indicate these
909          * fields don't do cgroup accounting. On private mappings, these will be
910          * re-initialized to the proper values, to indicate that hugetlb cgroup
911          * reservations are to be un-charged from here.
912          */
913         resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, NULL, NULL);
914
915         INIT_LIST_HEAD(&resv_map->region_cache);
916         list_add(&rg->link, &resv_map->region_cache);
917         resv_map->region_cache_count = 1;
918
919         return resv_map;
920 }
921
922 void resv_map_release(struct kref *ref)
923 {
924         struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
925         struct list_head *head = &resv_map->region_cache;
926         struct file_region *rg, *trg;
927
928         /* Clear out any active regions before we release the map. */
929         region_del(resv_map, 0, LONG_MAX);
930
931         /* ... and any entries left in the cache */
932         list_for_each_entry_safe(rg, trg, head, link) {
933                 list_del(&rg->link);
934                 kfree(rg);
935         }
936
937         VM_BUG_ON(resv_map->adds_in_progress);
938
939         kfree(resv_map);
940 }
941
942 static inline struct resv_map *inode_resv_map(struct inode *inode)
943 {
944         /*
945          * At inode evict time, i_mapping may not point to the original
946          * address space within the inode.  This original address space
947          * contains the pointer to the resv_map.  So, always use the
948          * address space embedded within the inode.
949          * The VERY common case is inode->mapping == &inode->i_data but,
950          * this may not be true for device special inodes.
951          */
952         return (struct resv_map *)(&inode->i_data)->private_data;
953 }
954
955 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
956 {
957         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
958         if (vma->vm_flags & VM_MAYSHARE) {
959                 struct address_space *mapping = vma->vm_file->f_mapping;
960                 struct inode *inode = mapping->host;
961
962                 return inode_resv_map(inode);
963
964         } else {
965                 return (struct resv_map *)(get_vma_private_data(vma) &
966                                                         ~HPAGE_RESV_MASK);
967         }
968 }
969
970 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
971 {
972         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
973         VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
974
975         set_vma_private_data(vma, (get_vma_private_data(vma) &
976                                 HPAGE_RESV_MASK) | (unsigned long)map);
977 }
978
979 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
980 {
981         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
982         VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
983
984         set_vma_private_data(vma, get_vma_private_data(vma) | flags);
985 }
986
987 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
988 {
989         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
990
991         return (get_vma_private_data(vma) & flag) != 0;
992 }
993
994 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
995 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
996 {
997         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
998         if (!(vma->vm_flags & VM_MAYSHARE))
999                 vma->vm_private_data = (void *)0;
1000 }
1001
1002 /* Returns true if the VMA has associated reserve pages */
1003 static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
1004 {
1005         if (vma->vm_flags & VM_NORESERVE) {
1006                 /*
1007                  * This address is already reserved by other process(chg == 0),
1008                  * so, we should decrement reserved count. Without decrementing,
1009                  * reserve count remains after releasing inode, because this
1010                  * allocated page will go into page cache and is regarded as
1011                  * coming from reserved pool in releasing step.  Currently, we
1012                  * don't have any other solution to deal with this situation
1013                  * properly, so add work-around here.
1014                  */
1015                 if (vma->vm_flags & VM_MAYSHARE && chg == 0)
1016                         return true;
1017                 else
1018                         return false;
1019         }
1020
1021         /* Shared mappings always use reserves */
1022         if (vma->vm_flags & VM_MAYSHARE) {
1023                 /*
1024                  * We know VM_NORESERVE is not set.  Therefore, there SHOULD
1025                  * be a region map for all pages.  The only situation where
1026                  * there is no region map is if a hole was punched via
1027                  * fallocate.  In this case, there really are no reserves to
1028                  * use.  This situation is indicated if chg != 0.
1029                  */
1030                 if (chg)
1031                         return false;
1032                 else
1033                         return true;
1034         }
1035
1036         /*
1037          * Only the process that called mmap() has reserves for
1038          * private mappings.
1039          */
1040         if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1041                 /*
1042                  * Like the shared case above, a hole punch or truncate
1043                  * could have been performed on the private mapping.
1044                  * Examine the value of chg to determine if reserves
1045                  * actually exist or were previously consumed.
1046                  * Very Subtle - The value of chg comes from a previous
1047                  * call to vma_needs_reserves().  The reserve map for
1048                  * private mappings has different (opposite) semantics
1049                  * than that of shared mappings.  vma_needs_reserves()
1050                  * has already taken this difference in semantics into
1051                  * account.  Therefore, the meaning of chg is the same
1052                  * as in the shared case above.  Code could easily be
1053                  * combined, but keeping it separate draws attention to
1054                  * subtle differences.
1055                  */
1056                 if (chg)
1057                         return false;
1058                 else
1059                         return true;
1060         }
1061
1062         return false;
1063 }
1064
1065 static void enqueue_huge_page(struct hstate *h, struct page *page)
1066 {
1067         int nid = page_to_nid(page);
1068         list_move(&page->lru, &h->hugepage_freelists[nid]);
1069         h->free_huge_pages++;
1070         h->free_huge_pages_node[nid]++;
1071         SetHPageFreed(page);
1072 }
1073
1074 static struct page *dequeue_huge_page_node_exact(struct hstate *h, int nid)
1075 {
1076         struct page *page;
1077         bool nocma = !!(current->flags & PF_MEMALLOC_NOCMA);
1078
1079         list_for_each_entry(page, &h->hugepage_freelists[nid], lru) {
1080                 if (nocma && is_migrate_cma_page(page))
1081                         continue;
1082
1083                 if (PageHWPoison(page))
1084                         continue;
1085
1086                 list_move(&page->lru, &h->hugepage_activelist);
1087                 set_page_refcounted(page);
1088                 ClearHPageFreed(page);
1089                 h->free_huge_pages--;
1090                 h->free_huge_pages_node[nid]--;
1091                 return page;
1092         }
1093
1094         return NULL;
1095 }
1096
1097 static struct page *dequeue_huge_page_nodemask(struct hstate *h, gfp_t gfp_mask, int nid,
1098                 nodemask_t *nmask)
1099 {
1100         unsigned int cpuset_mems_cookie;
1101         struct zonelist *zonelist;
1102         struct zone *zone;
1103         struct zoneref *z;
1104         int node = NUMA_NO_NODE;
1105
1106         zonelist = node_zonelist(nid, gfp_mask);
1107
1108 retry_cpuset:
1109         cpuset_mems_cookie = read_mems_allowed_begin();
1110         for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
1111                 struct page *page;
1112
1113                 if (!cpuset_zone_allowed(zone, gfp_mask))
1114                         continue;
1115                 /*
1116                  * no need to ask again on the same node. Pool is node rather than
1117                  * zone aware
1118                  */
1119                 if (zone_to_nid(zone) == node)
1120                         continue;
1121                 node = zone_to_nid(zone);
1122
1123                 page = dequeue_huge_page_node_exact(h, node);
1124                 if (page)
1125                         return page;
1126         }
1127         if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
1128                 goto retry_cpuset;
1129
1130         return NULL;
1131 }
1132
1133 static struct page *dequeue_huge_page_vma(struct hstate *h,
1134                                 struct vm_area_struct *vma,
1135                                 unsigned long address, int avoid_reserve,
1136                                 long chg)
1137 {
1138         struct page *page;
1139         struct mempolicy *mpol;
1140         gfp_t gfp_mask;
1141         nodemask_t *nodemask;
1142         int nid;
1143
1144         /*
1145          * A child process with MAP_PRIVATE mappings created by their parent
1146          * have no page reserves. This check ensures that reservations are
1147          * not "stolen". The child may still get SIGKILLed
1148          */
1149         if (!vma_has_reserves(vma, chg) &&
1150                         h->free_huge_pages - h->resv_huge_pages == 0)
1151                 goto err;
1152
1153         /* If reserves cannot be used, ensure enough pages are in the pool */
1154         if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
1155                 goto err;
1156
1157         gfp_mask = htlb_alloc_mask(h);
1158         nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
1159         page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
1160         if (page && !avoid_reserve && vma_has_reserves(vma, chg)) {
1161                 SetHPageRestoreReserve(page);
1162                 h->resv_huge_pages--;
1163         }
1164
1165         mpol_cond_put(mpol);
1166         return page;
1167
1168 err:
1169         return NULL;
1170 }
1171
1172 /*
1173  * common helper functions for hstate_next_node_to_{alloc|free}.
1174  * We may have allocated or freed a huge page based on a different
1175  * nodes_allowed previously, so h->next_node_to_{alloc|free} might
1176  * be outside of *nodes_allowed.  Ensure that we use an allowed
1177  * node for alloc or free.
1178  */
1179 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
1180 {
1181         nid = next_node_in(nid, *nodes_allowed);
1182         VM_BUG_ON(nid >= MAX_NUMNODES);
1183
1184         return nid;
1185 }
1186
1187 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
1188 {
1189         if (!node_isset(nid, *nodes_allowed))
1190                 nid = next_node_allowed(nid, nodes_allowed);
1191         return nid;
1192 }
1193
1194 /*
1195  * returns the previously saved node ["this node"] from which to
1196  * allocate a persistent huge page for the pool and advance the
1197  * next node from which to allocate, handling wrap at end of node
1198  * mask.
1199  */
1200 static int hstate_next_node_to_alloc(struct hstate *h,
1201                                         nodemask_t *nodes_allowed)
1202 {
1203         int nid;
1204
1205         VM_BUG_ON(!nodes_allowed);
1206
1207         nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
1208         h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
1209
1210         return nid;
1211 }
1212
1213 /*
1214  * helper for free_pool_huge_page() - return the previously saved
1215  * node ["this node"] from which to free a huge page.  Advance the
1216  * next node id whether or not we find a free huge page to free so
1217  * that the next attempt to free addresses the next node.
1218  */
1219 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1220 {
1221         int nid;
1222
1223         VM_BUG_ON(!nodes_allowed);
1224
1225         nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1226         h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1227
1228         return nid;
1229 }
1230
1231 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask)           \
1232         for (nr_nodes = nodes_weight(*mask);                            \
1233                 nr_nodes > 0 &&                                         \
1234                 ((node = hstate_next_node_to_alloc(hs, mask)) || 1);    \
1235                 nr_nodes--)
1236
1237 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask)            \
1238         for (nr_nodes = nodes_weight(*mask);                            \
1239                 nr_nodes > 0 &&                                         \
1240                 ((node = hstate_next_node_to_free(hs, mask)) || 1);     \
1241                 nr_nodes--)
1242
1243 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
1244 static void destroy_compound_gigantic_page(struct page *page,
1245                                         unsigned int order)
1246 {
1247         int i;
1248         int nr_pages = 1 << order;
1249         struct page *p = page + 1;
1250
1251         atomic_set(compound_mapcount_ptr(page), 0);
1252         atomic_set(compound_pincount_ptr(page), 0);
1253
1254         for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1255                 clear_compound_head(p);
1256                 set_page_refcounted(p);
1257         }
1258
1259         set_compound_order(page, 0);
1260         page[1].compound_nr = 0;
1261         __ClearPageHead(page);
1262 }
1263
1264 static void free_gigantic_page(struct page *page, unsigned int order)
1265 {
1266         /*
1267          * If the page isn't allocated using the cma allocator,
1268          * cma_release() returns false.
1269          */
1270 #ifdef CONFIG_CMA
1271         if (cma_release(hugetlb_cma[page_to_nid(page)], page, 1 << order))
1272                 return;
1273 #endif
1274
1275         free_contig_range(page_to_pfn(page), 1 << order);
1276 }
1277
1278 #ifdef CONFIG_CONTIG_ALLOC
1279 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1280                 int nid, nodemask_t *nodemask)
1281 {
1282         unsigned long nr_pages = pages_per_huge_page(h);
1283         if (nid == NUMA_NO_NODE)
1284                 nid = numa_mem_id();
1285
1286 #ifdef CONFIG_CMA
1287         {
1288                 struct page *page;
1289                 int node;
1290
1291                 if (hugetlb_cma[nid]) {
1292                         page = cma_alloc(hugetlb_cma[nid], nr_pages,
1293                                         huge_page_order(h), true);
1294                         if (page)
1295                                 return page;
1296                 }
1297
1298                 if (!(gfp_mask & __GFP_THISNODE)) {
1299                         for_each_node_mask(node, *nodemask) {
1300                                 if (node == nid || !hugetlb_cma[node])
1301                                         continue;
1302
1303                                 page = cma_alloc(hugetlb_cma[node], nr_pages,
1304                                                 huge_page_order(h), true);
1305                                 if (page)
1306                                         return page;
1307                         }
1308                 }
1309         }
1310 #endif
1311
1312         return alloc_contig_pages(nr_pages, gfp_mask, nid, nodemask);
1313 }
1314
1315 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid);
1316 static void prep_compound_gigantic_page(struct page *page, unsigned int order);
1317 #else /* !CONFIG_CONTIG_ALLOC */
1318 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1319                                         int nid, nodemask_t *nodemask)
1320 {
1321         return NULL;
1322 }
1323 #endif /* CONFIG_CONTIG_ALLOC */
1324
1325 #else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
1326 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1327                                         int nid, nodemask_t *nodemask)
1328 {
1329         return NULL;
1330 }
1331 static inline void free_gigantic_page(struct page *page, unsigned int order) { }
1332 static inline void destroy_compound_gigantic_page(struct page *page,
1333                                                 unsigned int order) { }
1334 #endif
1335
1336 static void update_and_free_page(struct hstate *h, struct page *page)
1337 {
1338         int i;
1339         struct page *subpage = page;
1340
1341         if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1342                 return;
1343
1344         h->nr_huge_pages--;
1345         h->nr_huge_pages_node[page_to_nid(page)]--;
1346         for (i = 0; i < pages_per_huge_page(h);
1347              i++, subpage = mem_map_next(subpage, page, i)) {
1348                 subpage->flags &= ~(1 << PG_locked | 1 << PG_error |
1349                                 1 << PG_referenced | 1 << PG_dirty |
1350                                 1 << PG_active | 1 << PG_private |
1351                                 1 << PG_writeback);
1352         }
1353         VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
1354         VM_BUG_ON_PAGE(hugetlb_cgroup_from_page_rsvd(page), page);
1355         set_compound_page_dtor(page, NULL_COMPOUND_DTOR);
1356         set_page_refcounted(page);
1357         if (hstate_is_gigantic(h)) {
1358                 destroy_compound_gigantic_page(page, huge_page_order(h));
1359                 free_gigantic_page(page, huge_page_order(h));
1360         } else {
1361                 __free_pages(page, huge_page_order(h));
1362         }
1363 }
1364
1365 struct hstate *size_to_hstate(unsigned long size)
1366 {
1367         struct hstate *h;
1368
1369         for_each_hstate(h) {
1370                 if (huge_page_size(h) == size)
1371                         return h;
1372         }
1373         return NULL;
1374 }
1375
1376 static void __free_huge_page(struct page *page)
1377 {
1378         /*
1379          * Can't pass hstate in here because it is called from the
1380          * compound page destructor.
1381          */
1382         struct hstate *h = page_hstate(page);
1383         int nid = page_to_nid(page);
1384         struct hugepage_subpool *spool = hugetlb_page_subpool(page);
1385         bool restore_reserve;
1386
1387         VM_BUG_ON_PAGE(page_count(page), page);
1388         VM_BUG_ON_PAGE(page_mapcount(page), page);
1389
1390         hugetlb_set_page_subpool(page, NULL);
1391         page->mapping = NULL;
1392         restore_reserve = HPageRestoreReserve(page);
1393         ClearHPageRestoreReserve(page);
1394
1395         /*
1396          * If HPageRestoreReserve was set on page, page allocation consumed a
1397          * reservation.  If the page was associated with a subpool, there
1398          * would have been a page reserved in the subpool before allocation
1399          * via hugepage_subpool_get_pages().  Since we are 'restoring' the
1400          * reservation, do not call hugepage_subpool_put_pages() as this will
1401          * remove the reserved page from the subpool.
1402          */
1403         if (!restore_reserve) {
1404                 /*
1405                  * A return code of zero implies that the subpool will be
1406                  * under its minimum size if the reservation is not restored
1407                  * after page is free.  Therefore, force restore_reserve
1408                  * operation.
1409                  */
1410                 if (hugepage_subpool_put_pages(spool, 1) == 0)
1411                         restore_reserve = true;
1412         }
1413
1414         spin_lock(&hugetlb_lock);
1415         ClearHPageMigratable(page);
1416         hugetlb_cgroup_uncharge_page(hstate_index(h),
1417                                      pages_per_huge_page(h), page);
1418         hugetlb_cgroup_uncharge_page_rsvd(hstate_index(h),
1419                                           pages_per_huge_page(h), page);
1420         if (restore_reserve)
1421                 h->resv_huge_pages++;
1422
1423         if (HPageTemporary(page)) {
1424                 list_del(&page->lru);
1425                 ClearHPageTemporary(page);
1426                 update_and_free_page(h, page);
1427         } else if (h->surplus_huge_pages_node[nid]) {
1428                 /* remove the page from active list */
1429                 list_del(&page->lru);
1430                 update_and_free_page(h, page);
1431                 h->surplus_huge_pages--;
1432                 h->surplus_huge_pages_node[nid]--;
1433         } else {
1434                 arch_clear_hugepage_flags(page);
1435                 enqueue_huge_page(h, page);
1436         }
1437         spin_unlock(&hugetlb_lock);
1438 }
1439
1440 /*
1441  * As free_huge_page() can be called from a non-task context, we have
1442  * to defer the actual freeing in a workqueue to prevent potential
1443  * hugetlb_lock deadlock.
1444  *
1445  * free_hpage_workfn() locklessly retrieves the linked list of pages to
1446  * be freed and frees them one-by-one. As the page->mapping pointer is
1447  * going to be cleared in __free_huge_page() anyway, it is reused as the
1448  * llist_node structure of a lockless linked list of huge pages to be freed.
1449  */
1450 static LLIST_HEAD(hpage_freelist);
1451
1452 static void free_hpage_workfn(struct work_struct *work)
1453 {
1454         struct llist_node *node;
1455         struct page *page;
1456
1457         node = llist_del_all(&hpage_freelist);
1458
1459         while (node) {
1460                 page = container_of((struct address_space **)node,
1461                                      struct page, mapping);
1462                 node = node->next;
1463                 __free_huge_page(page);
1464         }
1465 }
1466 static DECLARE_WORK(free_hpage_work, free_hpage_workfn);
1467
1468 void free_huge_page(struct page *page)
1469 {
1470         /*
1471          * Defer freeing if in non-task context to avoid hugetlb_lock deadlock.
1472          */
1473         if (!in_task()) {
1474                 /*
1475                  * Only call schedule_work() if hpage_freelist is previously
1476                  * empty. Otherwise, schedule_work() had been called but the
1477                  * workfn hasn't retrieved the list yet.
1478                  */
1479                 if (llist_add((struct llist_node *)&page->mapping,
1480                               &hpage_freelist))
1481                         schedule_work(&free_hpage_work);
1482                 return;
1483         }
1484
1485         __free_huge_page(page);
1486 }
1487
1488 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
1489 {
1490         INIT_LIST_HEAD(&page->lru);
1491         set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1492         hugetlb_set_page_subpool(page, NULL);
1493         set_hugetlb_cgroup(page, NULL);
1494         set_hugetlb_cgroup_rsvd(page, NULL);
1495         spin_lock(&hugetlb_lock);
1496         h->nr_huge_pages++;
1497         h->nr_huge_pages_node[nid]++;
1498         ClearHPageFreed(page);
1499         spin_unlock(&hugetlb_lock);
1500 }
1501
1502 static void prep_compound_gigantic_page(struct page *page, unsigned int order)
1503 {
1504         int i;
1505         int nr_pages = 1 << order;
1506         struct page *p = page + 1;
1507
1508         /* we rely on prep_new_huge_page to set the destructor */
1509         set_compound_order(page, order);
1510         __ClearPageReserved(page);
1511         __SetPageHead(page);
1512         for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1513                 /*
1514                  * For gigantic hugepages allocated through bootmem at
1515                  * boot, it's safer to be consistent with the not-gigantic
1516                  * hugepages and clear the PG_reserved bit from all tail pages
1517                  * too.  Otherwise drivers using get_user_pages() to access tail
1518                  * pages may get the reference counting wrong if they see
1519                  * PG_reserved set on a tail page (despite the head page not
1520                  * having PG_reserved set).  Enforcing this consistency between
1521                  * head and tail pages allows drivers to optimize away a check
1522                  * on the head page when they need know if put_page() is needed
1523                  * after get_user_pages().
1524                  */
1525                 __ClearPageReserved(p);
1526                 set_page_count(p, 0);
1527                 set_compound_head(p, page);
1528         }
1529         atomic_set(compound_mapcount_ptr(page), -1);
1530         atomic_set(compound_pincount_ptr(page), 0);
1531 }
1532
1533 /*
1534  * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1535  * transparent huge pages.  See the PageTransHuge() documentation for more
1536  * details.
1537  */
1538 int PageHuge(struct page *page)
1539 {
1540         if (!PageCompound(page))
1541                 return 0;
1542
1543         page = compound_head(page);
1544         return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
1545 }
1546 EXPORT_SYMBOL_GPL(PageHuge);
1547
1548 /*
1549  * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1550  * normal or transparent huge pages.
1551  */
1552 int PageHeadHuge(struct page *page_head)
1553 {
1554         if (!PageHead(page_head))
1555                 return 0;
1556
1557         return page_head[1].compound_dtor == HUGETLB_PAGE_DTOR;
1558 }
1559
1560 /*
1561  * Find and lock address space (mapping) in write mode.
1562  *
1563  * Upon entry, the page is locked which means that page_mapping() is
1564  * stable.  Due to locking order, we can only trylock_write.  If we can
1565  * not get the lock, simply return NULL to caller.
1566  */
1567 struct address_space *hugetlb_page_mapping_lock_write(struct page *hpage)
1568 {
1569         struct address_space *mapping = page_mapping(hpage);
1570
1571         if (!mapping)
1572                 return mapping;
1573
1574         if (i_mmap_trylock_write(mapping))
1575                 return mapping;
1576
1577         return NULL;
1578 }
1579
1580 pgoff_t __basepage_index(struct page *page)
1581 {
1582         struct page *page_head = compound_head(page);
1583         pgoff_t index = page_index(page_head);
1584         unsigned long compound_idx;
1585
1586         if (!PageHuge(page_head))
1587                 return page_index(page);
1588
1589         if (compound_order(page_head) >= MAX_ORDER)
1590                 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
1591         else
1592                 compound_idx = page - page_head;
1593
1594         return (index << compound_order(page_head)) + compound_idx;
1595 }
1596
1597 static struct page *alloc_buddy_huge_page(struct hstate *h,
1598                 gfp_t gfp_mask, int nid, nodemask_t *nmask,
1599                 nodemask_t *node_alloc_noretry)
1600 {
1601         int order = huge_page_order(h);
1602         struct page *page;
1603         bool alloc_try_hard = true;
1604
1605         /*
1606          * By default we always try hard to allocate the page with
1607          * __GFP_RETRY_MAYFAIL flag.  However, if we are allocating pages in
1608          * a loop (to adjust global huge page counts) and previous allocation
1609          * failed, do not continue to try hard on the same node.  Use the
1610          * node_alloc_noretry bitmap to manage this state information.
1611          */
1612         if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry))
1613                 alloc_try_hard = false;
1614         gfp_mask |= __GFP_COMP|__GFP_NOWARN;
1615         if (alloc_try_hard)
1616                 gfp_mask |= __GFP_RETRY_MAYFAIL;
1617         if (nid == NUMA_NO_NODE)
1618                 nid = numa_mem_id();
1619         page = __alloc_pages(gfp_mask, order, nid, nmask);
1620         if (page)
1621                 __count_vm_event(HTLB_BUDDY_PGALLOC);
1622         else
1623                 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1624
1625         /*
1626          * If we did not specify __GFP_RETRY_MAYFAIL, but still got a page this
1627          * indicates an overall state change.  Clear bit so that we resume
1628          * normal 'try hard' allocations.
1629          */
1630         if (node_alloc_noretry && page && !alloc_try_hard)
1631                 node_clear(nid, *node_alloc_noretry);
1632
1633         /*
1634          * If we tried hard to get a page but failed, set bit so that
1635          * subsequent attempts will not try as hard until there is an
1636          * overall state change.
1637          */
1638         if (node_alloc_noretry && !page && alloc_try_hard)
1639                 node_set(nid, *node_alloc_noretry);
1640
1641         return page;
1642 }
1643
1644 /*
1645  * Common helper to allocate a fresh hugetlb page. All specific allocators
1646  * should use this function to get new hugetlb pages
1647  */
1648 static struct page *alloc_fresh_huge_page(struct hstate *h,
1649                 gfp_t gfp_mask, int nid, nodemask_t *nmask,
1650                 nodemask_t *node_alloc_noretry)
1651 {
1652         struct page *page;
1653
1654         if (hstate_is_gigantic(h))
1655                 page = alloc_gigantic_page(h, gfp_mask, nid, nmask);
1656         else
1657                 page = alloc_buddy_huge_page(h, gfp_mask,
1658                                 nid, nmask, node_alloc_noretry);
1659         if (!page)
1660                 return NULL;
1661
1662         if (hstate_is_gigantic(h))
1663                 prep_compound_gigantic_page(page, huge_page_order(h));
1664         prep_new_huge_page(h, page, page_to_nid(page));
1665
1666         return page;
1667 }
1668
1669 /*
1670  * Allocates a fresh page to the hugetlb allocator pool in the node interleaved
1671  * manner.
1672  */
1673 static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1674                                 nodemask_t *node_alloc_noretry)
1675 {
1676         struct page *page;
1677         int nr_nodes, node;
1678         gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
1679
1680         for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1681                 page = alloc_fresh_huge_page(h, gfp_mask, node, nodes_allowed,
1682                                                 node_alloc_noretry);
1683                 if (page)
1684                         break;
1685         }
1686
1687         if (!page)
1688                 return 0;
1689
1690         put_page(page); /* free it into the hugepage allocator */
1691
1692         return 1;
1693 }
1694
1695 /*
1696  * Free huge page from pool from next node to free.
1697  * Attempt to keep persistent huge pages more or less
1698  * balanced over allowed nodes.
1699  * Called with hugetlb_lock locked.
1700  */
1701 static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1702                                                          bool acct_surplus)
1703 {
1704         int nr_nodes, node;
1705         int ret = 0;
1706
1707         for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1708                 /*
1709                  * If we're returning unused surplus pages, only examine
1710                  * nodes with surplus pages.
1711                  */
1712                 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
1713                     !list_empty(&h->hugepage_freelists[node])) {
1714                         struct page *page =
1715                                 list_entry(h->hugepage_freelists[node].next,
1716                                           struct page, lru);
1717                         list_del(&page->lru);
1718                         h->free_huge_pages--;
1719                         h->free_huge_pages_node[node]--;
1720                         if (acct_surplus) {
1721                                 h->surplus_huge_pages--;
1722                                 h->surplus_huge_pages_node[node]--;
1723                         }
1724                         update_and_free_page(h, page);
1725                         ret = 1;
1726                         break;
1727                 }
1728         }
1729
1730         return ret;
1731 }
1732
1733 /*
1734  * Dissolve a given free hugepage into free buddy pages. This function does
1735  * nothing for in-use hugepages and non-hugepages.
1736  * This function returns values like below:
1737  *
1738  *  -EBUSY: failed to dissolved free hugepages or the hugepage is in-use
1739  *          (allocated or reserved.)
1740  *       0: successfully dissolved free hugepages or the page is not a
1741  *          hugepage (considered as already dissolved)
1742  */
1743 int dissolve_free_huge_page(struct page *page)
1744 {
1745         int rc = -EBUSY;
1746
1747 retry:
1748         /* Not to disrupt normal path by vainly holding hugetlb_lock */
1749         if (!PageHuge(page))
1750                 return 0;
1751
1752         spin_lock(&hugetlb_lock);
1753         if (!PageHuge(page)) {
1754                 rc = 0;
1755                 goto out;
1756         }
1757
1758         if (!page_count(page)) {
1759                 struct page *head = compound_head(page);
1760                 struct hstate *h = page_hstate(head);
1761                 int nid = page_to_nid(head);
1762                 if (h->free_huge_pages - h->resv_huge_pages == 0)
1763                         goto out;
1764
1765                 /*
1766                  * We should make sure that the page is already on the free list
1767                  * when it is dissolved.
1768                  */
1769                 if (unlikely(!HPageFreed(head))) {
1770                         spin_unlock(&hugetlb_lock);
1771                         cond_resched();
1772
1773                         /*
1774                          * Theoretically, we should return -EBUSY when we
1775                          * encounter this race. In fact, we have a chance
1776                          * to successfully dissolve the page if we do a
1777                          * retry. Because the race window is quite small.
1778                          * If we seize this opportunity, it is an optimization
1779                          * for increasing the success rate of dissolving page.
1780                          */
1781                         goto retry;
1782                 }
1783
1784                 /*
1785                  * Move PageHWPoison flag from head page to the raw error page,
1786                  * which makes any subpages rather than the error page reusable.
1787                  */
1788                 if (PageHWPoison(head) && page != head) {
1789                         SetPageHWPoison(page);
1790                         ClearPageHWPoison(head);
1791                 }
1792                 list_del(&head->lru);
1793                 h->free_huge_pages--;
1794                 h->free_huge_pages_node[nid]--;
1795                 h->max_huge_pages--;
1796                 update_and_free_page(h, head);
1797                 rc = 0;
1798         }
1799 out:
1800         spin_unlock(&hugetlb_lock);
1801         return rc;
1802 }
1803
1804 /*
1805  * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
1806  * make specified memory blocks removable from the system.
1807  * Note that this will dissolve a free gigantic hugepage completely, if any
1808  * part of it lies within the given range.
1809  * Also note that if dissolve_free_huge_page() returns with an error, all
1810  * free hugepages that were dissolved before that error are lost.
1811  */
1812 int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
1813 {
1814         unsigned long pfn;
1815         struct page *page;
1816         int rc = 0;
1817
1818         if (!hugepages_supported())
1819                 return rc;
1820
1821         for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order) {
1822                 page = pfn_to_page(pfn);
1823                 rc = dissolve_free_huge_page(page);
1824                 if (rc)
1825                         break;
1826         }
1827
1828         return rc;
1829 }
1830
1831 /*
1832  * Allocates a fresh surplus page from the page allocator.
1833  */
1834 static struct page *alloc_surplus_huge_page(struct hstate *h, gfp_t gfp_mask,
1835                 int nid, nodemask_t *nmask)
1836 {
1837         struct page *page = NULL;
1838
1839         if (hstate_is_gigantic(h))
1840                 return NULL;
1841
1842         spin_lock(&hugetlb_lock);
1843         if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages)
1844                 goto out_unlock;
1845         spin_unlock(&hugetlb_lock);
1846
1847         page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
1848         if (!page)
1849                 return NULL;
1850
1851         spin_lock(&hugetlb_lock);
1852         /*
1853          * We could have raced with the pool size change.
1854          * Double check that and simply deallocate the new page
1855          * if we would end up overcommiting the surpluses. Abuse
1856          * temporary page to workaround the nasty free_huge_page
1857          * codeflow
1858          */
1859         if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
1860                 SetHPageTemporary(page);
1861                 spin_unlock(&hugetlb_lock);
1862                 put_page(page);
1863                 return NULL;
1864         } else {
1865                 h->surplus_huge_pages++;
1866                 h->surplus_huge_pages_node[page_to_nid(page)]++;
1867         }
1868
1869 out_unlock:
1870         spin_unlock(&hugetlb_lock);
1871
1872         return page;
1873 }
1874
1875 static struct page *alloc_migrate_huge_page(struct hstate *h, gfp_t gfp_mask,
1876                                      int nid, nodemask_t *nmask)
1877 {
1878         struct page *page;
1879
1880         if (hstate_is_gigantic(h))
1881                 return NULL;
1882
1883         page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
1884         if (!page)
1885                 return NULL;
1886
1887         /*
1888          * We do not account these pages as surplus because they are only
1889          * temporary and will be released properly on the last reference
1890          */
1891         SetHPageTemporary(page);
1892
1893         return page;
1894 }
1895
1896 /*
1897  * Use the VMA's mpolicy to allocate a huge page from the buddy.
1898  */
1899 static
1900 struct page *alloc_buddy_huge_page_with_mpol(struct hstate *h,
1901                 struct vm_area_struct *vma, unsigned long addr)
1902 {
1903         struct page *page;
1904         struct mempolicy *mpol;
1905         gfp_t gfp_mask = htlb_alloc_mask(h);
1906         int nid;
1907         nodemask_t *nodemask;
1908
1909         nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
1910         page = alloc_surplus_huge_page(h, gfp_mask, nid, nodemask);
1911         mpol_cond_put(mpol);
1912
1913         return page;
1914 }
1915
1916 /* page migration callback function */
1917 struct page *alloc_huge_page_nodemask(struct hstate *h, int preferred_nid,
1918                 nodemask_t *nmask, gfp_t gfp_mask)
1919 {
1920         spin_lock(&hugetlb_lock);
1921         if (h->free_huge_pages - h->resv_huge_pages > 0) {
1922                 struct page *page;
1923
1924                 page = dequeue_huge_page_nodemask(h, gfp_mask, preferred_nid, nmask);
1925                 if (page) {
1926                         spin_unlock(&hugetlb_lock);
1927                         return page;
1928                 }
1929         }
1930         spin_unlock(&hugetlb_lock);
1931
1932         return alloc_migrate_huge_page(h, gfp_mask, preferred_nid, nmask);
1933 }
1934
1935 /* mempolicy aware migration callback */
1936 struct page *alloc_huge_page_vma(struct hstate *h, struct vm_area_struct *vma,
1937                 unsigned long address)
1938 {
1939         struct mempolicy *mpol;
1940         nodemask_t *nodemask;
1941         struct page *page;
1942         gfp_t gfp_mask;
1943         int node;
1944
1945         gfp_mask = htlb_alloc_mask(h);
1946         node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
1947         page = alloc_huge_page_nodemask(h, node, nodemask, gfp_mask);
1948         mpol_cond_put(mpol);
1949
1950         return page;
1951 }
1952
1953 /*
1954  * Increase the hugetlb pool such that it can accommodate a reservation
1955  * of size 'delta'.
1956  */
1957 static int gather_surplus_pages(struct hstate *h, long delta)
1958         __must_hold(&hugetlb_lock)
1959 {
1960         struct list_head surplus_list;
1961         struct page *page, *tmp;
1962         int ret;
1963         long i;
1964         long needed, allocated;
1965         bool alloc_ok = true;
1966
1967         needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
1968         if (needed <= 0) {
1969                 h->resv_huge_pages += delta;
1970                 return 0;
1971         }
1972
1973         allocated = 0;
1974         INIT_LIST_HEAD(&surplus_list);
1975
1976         ret = -ENOMEM;
1977 retry:
1978         spin_unlock(&hugetlb_lock);
1979         for (i = 0; i < needed; i++) {
1980                 page = alloc_surplus_huge_page(h, htlb_alloc_mask(h),
1981                                 NUMA_NO_NODE, NULL);
1982                 if (!page) {
1983                         alloc_ok = false;
1984                         break;
1985                 }
1986                 list_add(&page->lru, &surplus_list);
1987                 cond_resched();
1988         }
1989         allocated += i;
1990
1991         /*
1992          * After retaking hugetlb_lock, we need to recalculate 'needed'
1993          * because either resv_huge_pages or free_huge_pages may have changed.
1994          */
1995         spin_lock(&hugetlb_lock);
1996         needed = (h->resv_huge_pages + delta) -
1997                         (h->free_huge_pages + allocated);
1998         if (needed > 0) {
1999                 if (alloc_ok)
2000                         goto retry;
2001                 /*
2002                  * We were not able to allocate enough pages to
2003                  * satisfy the entire reservation so we free what
2004                  * we've allocated so far.
2005                  */
2006                 goto free;
2007         }
2008         /*
2009          * The surplus_list now contains _at_least_ the number of extra pages
2010          * needed to accommodate the reservation.  Add the appropriate number
2011          * of pages to the hugetlb pool and free the extras back to the buddy
2012          * allocator.  Commit the entire reservation here to prevent another
2013          * process from stealing the pages as they are added to the pool but
2014          * before they are reserved.
2015          */
2016         needed += allocated;
2017         h->resv_huge_pages += delta;
2018         ret = 0;
2019
2020         /* Free the needed pages to the hugetlb pool */
2021         list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
2022                 int zeroed;
2023
2024                 if ((--needed) < 0)
2025                         break;
2026                 /*
2027                  * This page is now managed by the hugetlb allocator and has
2028                  * no users -- drop the buddy allocator's reference.
2029                  */
2030                 zeroed = put_page_testzero(page);
2031                 VM_BUG_ON_PAGE(!zeroed, page);
2032                 enqueue_huge_page(h, page);
2033         }
2034 free:
2035         spin_unlock(&hugetlb_lock);
2036
2037         /* Free unnecessary surplus pages to the buddy allocator */
2038         list_for_each_entry_safe(page, tmp, &surplus_list, lru)
2039                 put_page(page);
2040         spin_lock(&hugetlb_lock);
2041
2042         return ret;
2043 }
2044
2045 /*
2046  * This routine has two main purposes:
2047  * 1) Decrement the reservation count (resv_huge_pages) by the value passed
2048  *    in unused_resv_pages.  This corresponds to the prior adjustments made
2049  *    to the associated reservation map.
2050  * 2) Free any unused surplus pages that may have been allocated to satisfy
2051  *    the reservation.  As many as unused_resv_pages may be freed.
2052  *
2053  * Called with hugetlb_lock held.  However, the lock could be dropped (and
2054  * reacquired) during calls to cond_resched_lock.  Whenever dropping the lock,
2055  * we must make sure nobody else can claim pages we are in the process of
2056  * freeing.  Do this by ensuring resv_huge_page always is greater than the
2057  * number of huge pages we plan to free when dropping the lock.
2058  */
2059 static void return_unused_surplus_pages(struct hstate *h,
2060                                         unsigned long unused_resv_pages)
2061 {
2062         unsigned long nr_pages;
2063
2064         /* Cannot return gigantic pages currently */
2065         if (hstate_is_gigantic(h))
2066                 goto out;
2067
2068         /*
2069          * Part (or even all) of the reservation could have been backed
2070          * by pre-allocated pages. Only free surplus pages.
2071          */
2072         nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
2073
2074         /*
2075          * We want to release as many surplus pages as possible, spread
2076          * evenly across all nodes with memory. Iterate across these nodes
2077          * until we can no longer free unreserved surplus pages. This occurs
2078          * when the nodes with surplus pages have no free pages.
2079          * free_pool_huge_page() will balance the freed pages across the
2080          * on-line nodes with memory and will handle the hstate accounting.
2081          *
2082          * Note that we decrement resv_huge_pages as we free the pages.  If
2083          * we drop the lock, resv_huge_pages will still be sufficiently large
2084          * to cover subsequent pages we may free.
2085          */
2086         while (nr_pages--) {
2087                 h->resv_huge_pages--;
2088                 unused_resv_pages--;
2089                 if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
2090                         goto out;
2091                 cond_resched_lock(&hugetlb_lock);
2092         }
2093
2094 out:
2095         /* Fully uncommit the reservation */
2096         h->resv_huge_pages -= unused_resv_pages;
2097 }
2098
2099
2100 /*
2101  * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
2102  * are used by the huge page allocation routines to manage reservations.
2103  *
2104  * vma_needs_reservation is called to determine if the huge page at addr
2105  * within the vma has an associated reservation.  If a reservation is
2106  * needed, the value 1 is returned.  The caller is then responsible for
2107  * managing the global reservation and subpool usage counts.  After
2108  * the huge page has been allocated, vma_commit_reservation is called
2109  * to add the page to the reservation map.  If the page allocation fails,
2110  * the reservation must be ended instead of committed.  vma_end_reservation
2111  * is called in such cases.
2112  *
2113  * In the normal case, vma_commit_reservation returns the same value
2114  * as the preceding vma_needs_reservation call.  The only time this
2115  * is not the case is if a reserve map was changed between calls.  It
2116  * is the responsibility of the caller to notice the difference and
2117  * take appropriate action.
2118  *
2119  * vma_add_reservation is used in error paths where a reservation must
2120  * be restored when a newly allocated huge page must be freed.  It is
2121  * to be called after calling vma_needs_reservation to determine if a
2122  * reservation exists.
2123  */
2124 enum vma_resv_mode {
2125         VMA_NEEDS_RESV,
2126         VMA_COMMIT_RESV,
2127         VMA_END_RESV,
2128         VMA_ADD_RESV,
2129 };
2130 static long __vma_reservation_common(struct hstate *h,
2131                                 struct vm_area_struct *vma, unsigned long addr,
2132                                 enum vma_resv_mode mode)
2133 {
2134         struct resv_map *resv;
2135         pgoff_t idx;
2136         long ret;
2137         long dummy_out_regions_needed;
2138
2139         resv = vma_resv_map(vma);
2140         if (!resv)
2141                 return 1;
2142
2143         idx = vma_hugecache_offset(h, vma, addr);
2144         switch (mode) {
2145         case VMA_NEEDS_RESV:
2146                 ret = region_chg(resv, idx, idx + 1, &dummy_out_regions_needed);
2147                 /* We assume that vma_reservation_* routines always operate on
2148                  * 1 page, and that adding to resv map a 1 page entry can only
2149                  * ever require 1 region.
2150                  */
2151                 VM_BUG_ON(dummy_out_regions_needed != 1);
2152                 break;
2153         case VMA_COMMIT_RESV:
2154                 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2155                 /* region_add calls of range 1 should never fail. */
2156                 VM_BUG_ON(ret < 0);
2157                 break;
2158         case VMA_END_RESV:
2159                 region_abort(resv, idx, idx + 1, 1);
2160                 ret = 0;
2161                 break;
2162         case VMA_ADD_RESV:
2163                 if (vma->vm_flags & VM_MAYSHARE) {
2164                         ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2165                         /* region_add calls of range 1 should never fail. */
2166                         VM_BUG_ON(ret < 0);
2167                 } else {
2168                         region_abort(resv, idx, idx + 1, 1);
2169                         ret = region_del(resv, idx, idx + 1);
2170                 }
2171                 break;
2172         default:
2173                 BUG();
2174         }
2175
2176         if (vma->vm_flags & VM_MAYSHARE)
2177                 return ret;
2178         /*
2179          * We know private mapping must have HPAGE_RESV_OWNER set.
2180          *
2181          * In most cases, reserves always exist for private mappings.
2182          * However, a file associated with mapping could have been
2183          * hole punched or truncated after reserves were consumed.
2184          * As subsequent fault on such a range will not use reserves.
2185          * Subtle - The reserve map for private mappings has the
2186          * opposite meaning than that of shared mappings.  If NO
2187          * entry is in the reserve map, it means a reservation exists.
2188          * If an entry exists in the reserve map, it means the
2189          * reservation has already been consumed.  As a result, the
2190          * return value of this routine is the opposite of the
2191          * value returned from reserve map manipulation routines above.
2192          */
2193         if (ret > 0)
2194                 return 0;
2195         if (ret == 0)
2196                 return 1;
2197         return ret;
2198 }
2199
2200 static long vma_needs_reservation(struct hstate *h,
2201                         struct vm_area_struct *vma, unsigned long addr)
2202 {
2203         return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
2204 }
2205
2206 static long vma_commit_reservation(struct hstate *h,
2207                         struct vm_area_struct *vma, unsigned long addr)
2208 {
2209         return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
2210 }
2211
2212 static void vma_end_reservation(struct hstate *h,
2213                         struct vm_area_struct *vma, unsigned long addr)
2214 {
2215         (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
2216 }
2217
2218 static long vma_add_reservation(struct hstate *h,
2219                         struct vm_area_struct *vma, unsigned long addr)
2220 {
2221         return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
2222 }
2223
2224 /*
2225  * This routine is called to restore a reservation on error paths.  In the
2226  * specific error paths, a huge page was allocated (via alloc_huge_page)
2227  * and is about to be freed.  If a reservation for the page existed,
2228  * alloc_huge_page would have consumed the reservation and set
2229  * HPageRestoreReserve in the newly allocated page.  When the page is freed
2230  * via free_huge_page, the global reservation count will be incremented if
2231  * HPageRestoreReserve is set.  However, free_huge_page can not adjust the
2232  * reserve map.  Adjust the reserve map here to be consistent with global
2233  * reserve count adjustments to be made by free_huge_page.
2234  */
2235 static void restore_reserve_on_error(struct hstate *h,
2236                         struct vm_area_struct *vma, unsigned long address,
2237                         struct page *page)
2238 {
2239         if (unlikely(HPageRestoreReserve(page))) {
2240                 long rc = vma_needs_reservation(h, vma, address);
2241
2242                 if (unlikely(rc < 0)) {
2243                         /*
2244                          * Rare out of memory condition in reserve map
2245                          * manipulation.  Clear HPageRestoreReserve so that
2246                          * global reserve count will not be incremented
2247                          * by free_huge_page.  This will make it appear
2248                          * as though the reservation for this page was
2249                          * consumed.  This may prevent the task from
2250                          * faulting in the page at a later time.  This
2251                          * is better than inconsistent global huge page
2252                          * accounting of reserve counts.
2253                          */
2254                         ClearHPageRestoreReserve(page);
2255                 } else if (rc) {
2256                         rc = vma_add_reservation(h, vma, address);
2257                         if (unlikely(rc < 0))
2258                                 /*
2259                                  * See above comment about rare out of
2260                                  * memory condition.
2261                                  */
2262                                 ClearHPageRestoreReserve(page);
2263                 } else
2264                         vma_end_reservation(h, vma, address);
2265         }
2266 }
2267
2268 struct page *alloc_huge_page(struct vm_area_struct *vma,
2269                                     unsigned long addr, int avoid_reserve)
2270 {
2271         struct hugepage_subpool *spool = subpool_vma(vma);
2272         struct hstate *h = hstate_vma(vma);
2273         struct page *page;
2274         long map_chg, map_commit;
2275         long gbl_chg;
2276         int ret, idx;
2277         struct hugetlb_cgroup *h_cg;
2278         bool deferred_reserve;
2279
2280         idx = hstate_index(h);
2281         /*
2282          * Examine the region/reserve map to determine if the process
2283          * has a reservation for the page to be allocated.  A return
2284          * code of zero indicates a reservation exists (no change).
2285          */
2286         map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
2287         if (map_chg < 0)
2288                 return ERR_PTR(-ENOMEM);
2289
2290         /*
2291          * Processes that did not create the mapping will have no
2292          * reserves as indicated by the region/reserve map. Check
2293          * that the allocation will not exceed the subpool limit.
2294          * Allocations for MAP_NORESERVE mappings also need to be
2295          * checked against any subpool limit.
2296          */
2297         if (map_chg || avoid_reserve) {
2298                 gbl_chg = hugepage_subpool_get_pages(spool, 1);
2299                 if (gbl_chg < 0) {
2300                         vma_end_reservation(h, vma, addr);
2301                         return ERR_PTR(-ENOSPC);
2302                 }
2303
2304                 /*
2305                  * Even though there was no reservation in the region/reserve
2306                  * map, there could be reservations associated with the
2307                  * subpool that can be used.  This would be indicated if the
2308                  * return value of hugepage_subpool_get_pages() is zero.
2309                  * However, if avoid_reserve is specified we still avoid even
2310                  * the subpool reservations.
2311                  */
2312                 if (avoid_reserve)
2313                         gbl_chg = 1;
2314         }
2315
2316         /* If this allocation is not consuming a reservation, charge it now.
2317          */
2318         deferred_reserve = map_chg || avoid_reserve;
2319         if (deferred_reserve) {
2320                 ret = hugetlb_cgroup_charge_cgroup_rsvd(
2321                         idx, pages_per_huge_page(h), &h_cg);
2322                 if (ret)
2323                         goto out_subpool_put;
2324         }
2325
2326         ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
2327         if (ret)
2328                 goto out_uncharge_cgroup_reservation;
2329
2330         spin_lock(&hugetlb_lock);
2331         /*
2332          * glb_chg is passed to indicate whether or not a page must be taken
2333          * from the global free pool (global change).  gbl_chg == 0 indicates
2334          * a reservation exists for the allocation.
2335          */
2336         page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
2337         if (!page) {
2338                 spin_unlock(&hugetlb_lock);
2339                 page = alloc_buddy_huge_page_with_mpol(h, vma, addr);
2340                 if (!page)
2341                         goto out_uncharge_cgroup;
2342                 if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
2343                         SetHPageRestoreReserve(page);
2344                         h->resv_huge_pages--;
2345                 }
2346                 spin_lock(&hugetlb_lock);
2347                 list_add(&page->lru, &h->hugepage_activelist);
2348                 /* Fall through */
2349         }
2350         hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
2351         /* If allocation is not consuming a reservation, also store the
2352          * hugetlb_cgroup pointer on the page.
2353          */
2354         if (deferred_reserve) {
2355                 hugetlb_cgroup_commit_charge_rsvd(idx, pages_per_huge_page(h),
2356                                                   h_cg, page);
2357         }
2358
2359         spin_unlock(&hugetlb_lock);
2360
2361         hugetlb_set_page_subpool(page, spool);
2362
2363         map_commit = vma_commit_reservation(h, vma, addr);
2364         if (unlikely(map_chg > map_commit)) {
2365                 /*
2366                  * The page was added to the reservation map between
2367                  * vma_needs_reservation and vma_commit_reservation.
2368                  * This indicates a race with hugetlb_reserve_pages.
2369                  * Adjust for the subpool count incremented above AND
2370                  * in hugetlb_reserve_pages for the same page.  Also,
2371                  * the reservation count added in hugetlb_reserve_pages
2372                  * no longer applies.
2373                  */
2374                 long rsv_adjust;
2375
2376                 rsv_adjust = hugepage_subpool_put_pages(spool, 1);
2377                 hugetlb_acct_memory(h, -rsv_adjust);
2378                 if (deferred_reserve)
2379                         hugetlb_cgroup_uncharge_page_rsvd(hstate_index(h),
2380                                         pages_per_huge_page(h), page);
2381         }
2382         return page;
2383
2384 out_uncharge_cgroup:
2385         hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
2386 out_uncharge_cgroup_reservation:
2387         if (deferred_reserve)
2388                 hugetlb_cgroup_uncharge_cgroup_rsvd(idx, pages_per_huge_page(h),
2389                                                     h_cg);
2390 out_subpool_put:
2391         if (map_chg || avoid_reserve)
2392                 hugepage_subpool_put_pages(spool, 1);
2393         vma_end_reservation(h, vma, addr);
2394         return ERR_PTR(-ENOSPC);
2395 }
2396
2397 int alloc_bootmem_huge_page(struct hstate *h)
2398         __attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
2399 int __alloc_bootmem_huge_page(struct hstate *h)
2400 {
2401         struct huge_bootmem_page *m;
2402         int nr_nodes, node;
2403
2404         for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
2405                 void *addr;
2406
2407                 addr = memblock_alloc_try_nid_raw(
2408                                 huge_page_size(h), huge_page_size(h),
2409                                 0, MEMBLOCK_ALLOC_ACCESSIBLE, node);
2410                 if (addr) {
2411                         /*
2412                          * Use the beginning of the huge page to store the
2413                          * huge_bootmem_page struct (until gather_bootmem
2414                          * puts them into the mem_map).
2415                          */
2416                         m = addr;
2417                         goto found;
2418                 }
2419         }
2420         return 0;
2421
2422 found:
2423         BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h)));
2424         /* Put them into a private list first because mem_map is not up yet */
2425         INIT_LIST_HEAD(&m->list);
2426         list_add(&m->list, &huge_boot_pages);
2427         m->hstate = h;
2428         return 1;
2429 }
2430
2431 static void __init prep_compound_huge_page(struct page *page,
2432                 unsigned int order)
2433 {
2434         if (unlikely(order > (MAX_ORDER - 1)))
2435                 prep_compound_gigantic_page(page, order);
2436         else
2437                 prep_compound_page(page, order);
2438 }
2439
2440 /* Put bootmem huge pages into the standard lists after mem_map is up */
2441 static void __init gather_bootmem_prealloc(void)
2442 {
2443         struct huge_bootmem_page *m;
2444
2445         list_for_each_entry(m, &huge_boot_pages, list) {
2446                 struct page *page = virt_to_page(m);
2447                 struct hstate *h = m->hstate;
2448
2449                 WARN_ON(page_count(page) != 1);
2450                 prep_compound_huge_page(page, huge_page_order(h));
2451                 WARN_ON(PageReserved(page));
2452                 prep_new_huge_page(h, page, page_to_nid(page));
2453                 put_page(page); /* free it into the hugepage allocator */
2454
2455                 /*
2456                  * If we had gigantic hugepages allocated at boot time, we need
2457                  * to restore the 'stolen' pages to totalram_pages in order to
2458                  * fix confusing memory reports from free(1) and another
2459                  * side-effects, like CommitLimit going negative.
2460                  */
2461                 if (hstate_is_gigantic(h))
2462                         adjust_managed_page_count(page, pages_per_huge_page(h));
2463                 cond_resched();
2464         }
2465 }
2466
2467 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
2468 {
2469         unsigned long i;
2470         nodemask_t *node_alloc_noretry;
2471
2472         if (!hstate_is_gigantic(h)) {
2473                 /*
2474                  * Bit mask controlling how hard we retry per-node allocations.
2475                  * Ignore errors as lower level routines can deal with
2476                  * node_alloc_noretry == NULL.  If this kmalloc fails at boot
2477                  * time, we are likely in bigger trouble.
2478                  */
2479                 node_alloc_noretry = kmalloc(sizeof(*node_alloc_noretry),
2480                                                 GFP_KERNEL);
2481         } else {
2482                 /* allocations done at boot time */
2483                 node_alloc_noretry = NULL;
2484         }
2485
2486         /* bit mask controlling how hard we retry per-node allocations */
2487         if (node_alloc_noretry)
2488                 nodes_clear(*node_alloc_noretry);
2489
2490         for (i = 0; i < h->max_huge_pages; ++i) {
2491                 if (hstate_is_gigantic(h)) {
2492                         if (hugetlb_cma_size) {
2493                                 pr_warn_once("HugeTLB: hugetlb_cma is enabled, skip boot time allocation\n");
2494                                 goto free;
2495                         }
2496                         if (!alloc_bootmem_huge_page(h))
2497                                 break;
2498                 } else if (!alloc_pool_huge_page(h,
2499                                          &node_states[N_MEMORY],
2500                                          node_alloc_noretry))
2501                         break;
2502                 cond_resched();
2503         }
2504         if (i < h->max_huge_pages) {
2505                 char buf[32];
2506
2507                 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
2508                 pr_warn("HugeTLB: allocating %lu of page size %s failed.  Only allocated %lu hugepages.\n",
2509                         h->max_huge_pages, buf, i);
2510                 h->max_huge_pages = i;
2511         }
2512 free:
2513         kfree(node_alloc_noretry);
2514 }
2515
2516 static void __init hugetlb_init_hstates(void)
2517 {
2518         struct hstate *h;
2519
2520         for_each_hstate(h) {
2521                 if (minimum_order > huge_page_order(h))
2522                         minimum_order = huge_page_order(h);
2523
2524                 /* oversize hugepages were init'ed in early boot */
2525                 if (!hstate_is_gigantic(h))
2526                         hugetlb_hstate_alloc_pages(h);
2527         }
2528         VM_BUG_ON(minimum_order == UINT_MAX);
2529 }
2530
2531 static void __init report_hugepages(void)
2532 {
2533         struct hstate *h;
2534
2535         for_each_hstate(h) {
2536                 char buf[32];
2537
2538                 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
2539                 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
2540                         buf, h->free_huge_pages);
2541         }
2542 }
2543
2544 #ifdef CONFIG_HIGHMEM
2545 static void try_to_free_low(struct hstate *h, unsigned long count,
2546                                                 nodemask_t *nodes_allowed)
2547 {
2548         int i;
2549
2550         if (hstate_is_gigantic(h))
2551                 return;
2552
2553         for_each_node_mask(i, *nodes_allowed) {
2554                 struct page *page, *next;
2555                 struct list_head *freel = &h->hugepage_freelists[i];
2556                 list_for_each_entry_safe(page, next, freel, lru) {
2557                         if (count >= h->nr_huge_pages)
2558                                 return;
2559                         if (PageHighMem(page))
2560                                 continue;
2561                         list_del(&page->lru);
2562                         update_and_free_page(h, page);
2563                         h->free_huge_pages--;
2564                         h->free_huge_pages_node[page_to_nid(page)]--;
2565                 }
2566         }
2567 }
2568 #else
2569 static inline void try_to_free_low(struct hstate *h, unsigned long count,
2570                                                 nodemask_t *nodes_allowed)
2571 {
2572 }
2573 #endif
2574
2575 /*
2576  * Increment or decrement surplus_huge_pages.  Keep node-specific counters
2577  * balanced by operating on them in a round-robin fashion.
2578  * Returns 1 if an adjustment was made.
2579  */
2580 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
2581                                 int delta)
2582 {
2583         int nr_nodes, node;
2584
2585         VM_BUG_ON(delta != -1 && delta != 1);
2586
2587         if (delta < 0) {
2588                 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
2589                         if (h->surplus_huge_pages_node[node])
2590                                 goto found;
2591                 }
2592         } else {
2593                 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2594                         if (h->surplus_huge_pages_node[node] <
2595                                         h->nr_huge_pages_node[node])
2596                                 goto found;
2597                 }
2598         }
2599         return 0;
2600
2601 found:
2602         h->surplus_huge_pages += delta;
2603         h->surplus_huge_pages_node[node] += delta;
2604         return 1;
2605 }
2606
2607 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
2608 static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid,
2609                               nodemask_t *nodes_allowed)
2610 {
2611         unsigned long min_count, ret;
2612         NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL);
2613
2614         /*
2615          * Bit mask controlling how hard we retry per-node allocations.
2616          * If we can not allocate the bit mask, do not attempt to allocate
2617          * the requested huge pages.
2618          */
2619         if (node_alloc_noretry)
2620                 nodes_clear(*node_alloc_noretry);
2621         else
2622                 return -ENOMEM;
2623
2624         /*
2625          * resize_lock mutex prevents concurrent adjustments to number of
2626          * pages in hstate via the proc/sysfs interfaces.
2627          */
2628         mutex_lock(&h->resize_lock);
2629         spin_lock(&hugetlb_lock);
2630
2631         /*
2632          * Check for a node specific request.
2633          * Changing node specific huge page count may require a corresponding
2634          * change to the global count.  In any case, the passed node mask
2635          * (nodes_allowed) will restrict alloc/free to the specified node.
2636          */
2637         if (nid != NUMA_NO_NODE) {
2638                 unsigned long old_count = count;
2639
2640                 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
2641                 /*
2642                  * User may have specified a large count value which caused the
2643                  * above calculation to overflow.  In this case, they wanted
2644                  * to allocate as many huge pages as possible.  Set count to
2645                  * largest possible value to align with their intention.
2646                  */
2647                 if (count < old_count)
2648                         count = ULONG_MAX;
2649         }
2650
2651         /*
2652          * Gigantic pages runtime allocation depend on the capability for large
2653          * page range allocation.
2654          * If the system does not provide this feature, return an error when
2655          * the user tries to allocate gigantic pages but let the user free the
2656          * boottime allocated gigantic pages.
2657          */
2658         if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) {
2659                 if (count > persistent_huge_pages(h)) {
2660                         spin_unlock(&hugetlb_lock);
2661                         mutex_unlock(&h->resize_lock);
2662                         NODEMASK_FREE(node_alloc_noretry);
2663                         return -EINVAL;
2664                 }
2665                 /* Fall through to decrease pool */
2666         }
2667
2668         /*
2669          * Increase the pool size
2670          * First take pages out of surplus state.  Then make up the
2671          * remaining difference by allocating fresh huge pages.
2672          *
2673          * We might race with alloc_surplus_huge_page() here and be unable
2674          * to convert a surplus huge page to a normal huge page. That is
2675          * not critical, though, it just means the overall size of the
2676          * pool might be one hugepage larger than it needs to be, but
2677          * within all the constraints specified by the sysctls.
2678          */
2679         while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
2680                 if (!adjust_pool_surplus(h, nodes_allowed, -1))
2681                         break;
2682         }
2683
2684         while (count > persistent_huge_pages(h)) {
2685                 /*
2686                  * If this allocation races such that we no longer need the
2687                  * page, free_huge_page will handle it by freeing the page
2688                  * and reducing the surplus.
2689                  */
2690                 spin_unlock(&hugetlb_lock);
2691
2692                 /* yield cpu to avoid soft lockup */
2693                 cond_resched();
2694
2695                 ret = alloc_pool_huge_page(h, nodes_allowed,
2696                                                 node_alloc_noretry);
2697                 spin_lock(&hugetlb_lock);
2698                 if (!ret)
2699                         goto out;
2700
2701                 /* Bail for signals. Probably ctrl-c from user */
2702                 if (signal_pending(current))
2703                         goto out;
2704         }
2705
2706         /*
2707          * Decrease the pool size
2708          * First return free pages to the buddy allocator (being careful
2709          * to keep enough around to satisfy reservations).  Then place
2710          * pages into surplus state as needed so the pool will shrink
2711          * to the desired size as pages become free.
2712          *
2713          * By placing pages into the surplus state independent of the
2714          * overcommit value, we are allowing the surplus pool size to
2715          * exceed overcommit. There are few sane options here. Since
2716          * alloc_surplus_huge_page() is checking the global counter,
2717          * though, we'll note that we're not allowed to exceed surplus
2718          * and won't grow the pool anywhere else. Not until one of the
2719          * sysctls are changed, or the surplus pages go out of use.
2720          */
2721         min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
2722         min_count = max(count, min_count);
2723         try_to_free_low(h, min_count, nodes_allowed);
2724         while (min_count < persistent_huge_pages(h)) {
2725                 if (!free_pool_huge_page(h, nodes_allowed, 0))
2726                         break;
2727                 cond_resched_lock(&hugetlb_lock);
2728         }
2729         while (count < persistent_huge_pages(h)) {
2730                 if (!adjust_pool_surplus(h, nodes_allowed, 1))
2731                         break;
2732         }
2733 out:
2734         h->max_huge_pages = persistent_huge_pages(h);
2735         spin_unlock(&hugetlb_lock);
2736         mutex_unlock(&h->resize_lock);
2737
2738         NODEMASK_FREE(node_alloc_noretry);
2739
2740         return 0;
2741 }
2742
2743 #define HSTATE_ATTR_RO(_name) \
2744         static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2745
2746 #define HSTATE_ATTR(_name) \
2747         static struct kobj_attribute _name##_attr = \
2748                 __ATTR(_name, 0644, _name##_show, _name##_store)
2749
2750 static struct kobject *hugepages_kobj;
2751 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2752
2753 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
2754
2755 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
2756 {
2757         int i;
2758
2759         for (i = 0; i < HUGE_MAX_HSTATE; i++)
2760                 if (hstate_kobjs[i] == kobj) {
2761                         if (nidp)
2762                                 *nidp = NUMA_NO_NODE;
2763                         return &hstates[i];
2764                 }
2765
2766         return kobj_to_node_hstate(kobj, nidp);
2767 }
2768
2769 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
2770                                         struct kobj_attribute *attr, char *buf)
2771 {
2772         struct hstate *h;
2773         unsigned long nr_huge_pages;
2774         int nid;
2775
2776         h = kobj_to_hstate(kobj, &nid);
2777         if (nid == NUMA_NO_NODE)
2778                 nr_huge_pages = h->nr_huge_pages;
2779         else
2780                 nr_huge_pages = h->nr_huge_pages_node[nid];
2781
2782         return sysfs_emit(buf, "%lu\n", nr_huge_pages);
2783 }
2784
2785 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
2786                                            struct hstate *h, int nid,
2787                                            unsigned long count, size_t len)
2788 {
2789         int err;
2790         nodemask_t nodes_allowed, *n_mask;
2791
2792         if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
2793                 return -EINVAL;
2794
2795         if (nid == NUMA_NO_NODE) {
2796                 /*
2797                  * global hstate attribute
2798                  */
2799                 if (!(obey_mempolicy &&
2800                                 init_nodemask_of_mempolicy(&nodes_allowed)))
2801                         n_mask = &node_states[N_MEMORY];
2802                 else
2803                         n_mask = &nodes_allowed;
2804         } else {
2805                 /*
2806                  * Node specific request.  count adjustment happens in
2807                  * set_max_huge_pages() after acquiring hugetlb_lock.
2808                  */
2809                 init_nodemask_of_node(&nodes_allowed, nid);
2810                 n_mask = &nodes_allowed;
2811         }
2812
2813         err = set_max_huge_pages(h, count, nid, n_mask);
2814
2815         return err ? err : len;
2816 }
2817
2818 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
2819                                          struct kobject *kobj, const char *buf,
2820                                          size_t len)
2821 {
2822         struct hstate *h;
2823         unsigned long count;
2824         int nid;
2825         int err;
2826
2827         err = kstrtoul(buf, 10, &count);
2828         if (err)
2829                 return err;
2830
2831         h = kobj_to_hstate(kobj, &nid);
2832         return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
2833 }
2834
2835 static ssize_t nr_hugepages_show(struct kobject *kobj,
2836                                        struct kobj_attribute *attr, char *buf)
2837 {
2838         return nr_hugepages_show_common(kobj, attr, buf);
2839 }
2840
2841 static ssize_t nr_hugepages_store(struct kobject *kobj,
2842                struct kobj_attribute *attr, const char *buf, size_t len)
2843 {
2844         return nr_hugepages_store_common(false, kobj, buf, len);
2845 }
2846 HSTATE_ATTR(nr_hugepages);
2847
2848 #ifdef CONFIG_NUMA
2849
2850 /*
2851  * hstate attribute for optionally mempolicy-based constraint on persistent
2852  * huge page alloc/free.
2853  */
2854 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
2855                                            struct kobj_attribute *attr,
2856                                            char *buf)
2857 {
2858         return nr_hugepages_show_common(kobj, attr, buf);
2859 }
2860
2861 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
2862                struct kobj_attribute *attr, const char *buf, size_t len)
2863 {
2864         return nr_hugepages_store_common(true, kobj, buf, len);
2865 }
2866 HSTATE_ATTR(nr_hugepages_mempolicy);
2867 #endif
2868
2869
2870 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
2871                                         struct kobj_attribute *attr, char *buf)
2872 {
2873         struct hstate *h = kobj_to_hstate(kobj, NULL);
2874         return sysfs_emit(buf, "%lu\n", h->nr_overcommit_huge_pages);
2875 }
2876
2877 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
2878                 struct kobj_attribute *attr, const char *buf, size_t count)
2879 {
2880         int err;
2881         unsigned long input;
2882         struct hstate *h = kobj_to_hstate(kobj, NULL);
2883
2884         if (hstate_is_gigantic(h))
2885                 return -EINVAL;
2886
2887         err = kstrtoul(buf, 10, &input);
2888         if (err)
2889                 return err;
2890
2891         spin_lock(&hugetlb_lock);
2892         h->nr_overcommit_huge_pages = input;
2893         spin_unlock(&hugetlb_lock);
2894
2895         return count;
2896 }
2897 HSTATE_ATTR(nr_overcommit_hugepages);
2898
2899 static ssize_t free_hugepages_show(struct kobject *kobj,
2900                                         struct kobj_attribute *attr, char *buf)
2901 {
2902         struct hstate *h;
2903         unsigned long free_huge_pages;
2904         int nid;
2905
2906         h = kobj_to_hstate(kobj, &nid);
2907         if (nid == NUMA_NO_NODE)
2908                 free_huge_pages = h->free_huge_pages;
2909         else
2910                 free_huge_pages = h->free_huge_pages_node[nid];
2911
2912         return sysfs_emit(buf, "%lu\n", free_huge_pages);
2913 }
2914 HSTATE_ATTR_RO(free_hugepages);
2915
2916 static ssize_t resv_hugepages_show(struct kobject *kobj,
2917                                         struct kobj_attribute *attr, char *buf)
2918 {
2919         struct hstate *h = kobj_to_hstate(kobj, NULL);
2920         return sysfs_emit(buf, "%lu\n", h->resv_huge_pages);
2921 }
2922 HSTATE_ATTR_RO(resv_hugepages);
2923
2924 static ssize_t surplus_hugepages_show(struct kobject *kobj,
2925                                         struct kobj_attribute *attr, char *buf)
2926 {
2927         struct hstate *h;
2928         unsigned long surplus_huge_pages;
2929         int nid;
2930
2931         h = kobj_to_hstate(kobj, &nid);
2932         if (nid == NUMA_NO_NODE)
2933                 surplus_huge_pages = h->surplus_huge_pages;
2934         else
2935                 surplus_huge_pages = h->surplus_huge_pages_node[nid];
2936
2937         return sysfs_emit(buf, "%lu\n", surplus_huge_pages);
2938 }
2939 HSTATE_ATTR_RO(surplus_hugepages);
2940
2941 static struct attribute *hstate_attrs[] = {
2942         &nr_hugepages_attr.attr,
2943         &nr_overcommit_hugepages_attr.attr,
2944         &free_hugepages_attr.attr,
2945         &resv_hugepages_attr.attr,
2946         &surplus_hugepages_attr.attr,
2947 #ifdef CONFIG_NUMA
2948         &nr_hugepages_mempolicy_attr.attr,
2949 #endif
2950         NULL,
2951 };
2952
2953 static const struct attribute_group hstate_attr_group = {
2954         .attrs = hstate_attrs,
2955 };
2956
2957 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
2958                                     struct kobject **hstate_kobjs,
2959                                     const struct attribute_group *hstate_attr_group)
2960 {
2961         int retval;
2962         int hi = hstate_index(h);
2963
2964         hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
2965         if (!hstate_kobjs[hi])
2966                 return -ENOMEM;
2967
2968         retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
2969         if (retval) {
2970                 kobject_put(hstate_kobjs[hi]);
2971                 hstate_kobjs[hi] = NULL;
2972         }
2973
2974         return retval;
2975 }
2976
2977 static void __init hugetlb_sysfs_init(void)
2978 {
2979         struct hstate *h;
2980         int err;
2981
2982         hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
2983         if (!hugepages_kobj)
2984                 return;
2985
2986         for_each_hstate(h) {
2987                 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
2988                                          hstate_kobjs, &hstate_attr_group);
2989                 if (err)
2990                         pr_err("HugeTLB: Unable to add hstate %s", h->name);
2991         }
2992 }
2993
2994 #ifdef CONFIG_NUMA
2995
2996 /*
2997  * node_hstate/s - associate per node hstate attributes, via their kobjects,
2998  * with node devices in node_devices[] using a parallel array.  The array
2999  * index of a node device or _hstate == node id.
3000  * This is here to avoid any static dependency of the node device driver, in
3001  * the base kernel, on the hugetlb module.
3002  */
3003 struct node_hstate {
3004         struct kobject          *hugepages_kobj;
3005         struct kobject          *hstate_kobjs[HUGE_MAX_HSTATE];
3006 };
3007 static struct node_hstate node_hstates[MAX_NUMNODES];
3008
3009 /*
3010  * A subset of global hstate attributes for node devices
3011  */
3012 static struct attribute *per_node_hstate_attrs[] = {
3013         &nr_hugepages_attr.attr,
3014         &free_hugepages_attr.attr,
3015         &surplus_hugepages_attr.attr,
3016         NULL,
3017 };
3018
3019 static const struct attribute_group per_node_hstate_attr_group = {
3020         .attrs = per_node_hstate_attrs,
3021 };
3022
3023 /*
3024  * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
3025  * Returns node id via non-NULL nidp.
3026  */
3027 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
3028 {
3029         int nid;
3030
3031         for (nid = 0; nid < nr_node_ids; nid++) {
3032                 struct node_hstate *nhs = &node_hstates[nid];
3033                 int i;
3034                 for (i = 0; i < HUGE_MAX_HSTATE; i++)
3035                         if (nhs->hstate_kobjs[i] == kobj) {
3036                                 if (nidp)
3037                                         *nidp = nid;
3038                                 return &hstates[i];
3039                         }
3040         }
3041
3042         BUG();
3043         return NULL;
3044 }
3045
3046 /*
3047  * Unregister hstate attributes from a single node device.
3048  * No-op if no hstate attributes attached.
3049  */
3050 static void hugetlb_unregister_node(struct node *node)
3051 {
3052         struct hstate *h;
3053         struct node_hstate *nhs = &node_hstates[node->dev.id];
3054
3055         if (!nhs->hugepages_kobj)
3056                 return;         /* no hstate attributes */
3057
3058         for_each_hstate(h) {
3059                 int idx = hstate_index(h);
3060                 if (nhs->hstate_kobjs[idx]) {
3061                         kobject_put(nhs->hstate_kobjs[idx]);
3062                         nhs->hstate_kobjs[idx] = NULL;
3063                 }
3064         }
3065
3066         kobject_put(nhs->hugepages_kobj);
3067         nhs->hugepages_kobj = NULL;
3068 }
3069
3070
3071 /*
3072  * Register hstate attributes for a single node device.
3073  * No-op if attributes already registered.
3074  */
3075 static void hugetlb_register_node(struct node *node)
3076 {
3077         struct hstate *h;
3078         struct node_hstate *nhs = &node_hstates[node->dev.id];
3079         int err;
3080
3081         if (nhs->hugepages_kobj)
3082                 return;         /* already allocated */
3083
3084         nhs->hugepages_kobj = kobject_create_and_add("hugepages",
3085                                                         &node->dev.kobj);
3086         if (!nhs->hugepages_kobj)
3087                 return;
3088
3089         for_each_hstate(h) {
3090                 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
3091                                                 nhs->hstate_kobjs,
3092                                                 &per_node_hstate_attr_group);
3093                 if (err) {
3094                         pr_err("HugeTLB: Unable to add hstate %s for node %d\n",
3095                                 h->name, node->dev.id);
3096                         hugetlb_unregister_node(node);
3097                         break;
3098                 }
3099         }
3100 }
3101
3102 /*
3103  * hugetlb init time:  register hstate attributes for all registered node
3104  * devices of nodes that have memory.  All on-line nodes should have
3105  * registered their associated device by this time.
3106  */
3107 static void __init hugetlb_register_all_nodes(void)
3108 {
3109         int nid;
3110
3111         for_each_node_state(nid, N_MEMORY) {
3112                 struct node *node = node_devices[nid];
3113                 if (node->dev.id == nid)
3114                         hugetlb_register_node(node);
3115         }
3116
3117         /*
3118          * Let the node device driver know we're here so it can
3119          * [un]register hstate attributes on node hotplug.
3120          */
3121         register_hugetlbfs_with_node(hugetlb_register_node,
3122                                      hugetlb_unregister_node);
3123 }
3124 #else   /* !CONFIG_NUMA */
3125
3126 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
3127 {
3128         BUG();
3129         if (nidp)
3130                 *nidp = -1;
3131         return NULL;
3132 }
3133
3134 static void hugetlb_register_all_nodes(void) { }
3135
3136 #endif
3137
3138 static int __init hugetlb_init(void)
3139 {
3140         int i;
3141
3142         BUILD_BUG_ON(sizeof_field(struct page, private) * BITS_PER_BYTE <
3143                         __NR_HPAGEFLAGS);
3144
3145         if (!hugepages_supported()) {
3146                 if (hugetlb_max_hstate || default_hstate_max_huge_pages)
3147                         pr_warn("HugeTLB: huge pages not supported, ignoring associated command-line parameters\n");
3148                 return 0;
3149         }
3150
3151         /*
3152          * Make sure HPAGE_SIZE (HUGETLB_PAGE_ORDER) hstate exists.  Some
3153          * architectures depend on setup being done here.
3154          */
3155         hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
3156         if (!parsed_default_hugepagesz) {
3157                 /*
3158                  * If we did not parse a default huge page size, set
3159                  * default_hstate_idx to HPAGE_SIZE hstate. And, if the
3160                  * number of huge pages for this default size was implicitly
3161                  * specified, set that here as well.
3162                  * Note that the implicit setting will overwrite an explicit
3163                  * setting.  A warning will be printed in this case.
3164                  */
3165                 default_hstate_idx = hstate_index(size_to_hstate(HPAGE_SIZE));
3166                 if (default_hstate_max_huge_pages) {
3167                         if (default_hstate.max_huge_pages) {
3168                                 char buf[32];
3169
3170                                 string_get_size(huge_page_size(&default_hstate),
3171                                         1, STRING_UNITS_2, buf, 32);
3172                                 pr_warn("HugeTLB: Ignoring hugepages=%lu associated with %s page size\n",
3173                                         default_hstate.max_huge_pages, buf);
3174                                 pr_warn("HugeTLB: Using hugepages=%lu for number of default huge pages\n",
3175                                         default_hstate_max_huge_pages);
3176                         }
3177                         default_hstate.max_huge_pages =
3178                                 default_hstate_max_huge_pages;
3179                 }
3180         }
3181
3182         hugetlb_cma_check();
3183         hugetlb_init_hstates();
3184         gather_bootmem_prealloc();
3185         report_hugepages();
3186
3187         hugetlb_sysfs_init();
3188         hugetlb_register_all_nodes();
3189         hugetlb_cgroup_file_init();
3190
3191 #ifdef CONFIG_SMP
3192         num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
3193 #else
3194         num_fault_mutexes = 1;
3195 #endif
3196         hugetlb_fault_mutex_table =
3197                 kmalloc_array(num_fault_mutexes, sizeof(struct mutex),
3198                               GFP_KERNEL);
3199         BUG_ON(!hugetlb_fault_mutex_table);
3200
3201         for (i = 0; i < num_fault_mutexes; i++)
3202                 mutex_init(&hugetlb_fault_mutex_table[i]);
3203         return 0;
3204 }
3205 subsys_initcall(hugetlb_init);
3206
3207 /* Overwritten by architectures with more huge page sizes */
3208 bool __init __attribute((weak)) arch_hugetlb_valid_size(unsigned long size)
3209 {
3210         return size == HPAGE_SIZE;
3211 }
3212
3213 void __init hugetlb_add_hstate(unsigned int order)
3214 {
3215         struct hstate *h;
3216         unsigned long i;
3217
3218         if (size_to_hstate(PAGE_SIZE << order)) {
3219                 return;
3220         }
3221         BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
3222         BUG_ON(order == 0);
3223         h = &hstates[hugetlb_max_hstate++];
3224         mutex_init(&h->resize_lock);
3225         h->order = order;
3226         h->mask = ~(huge_page_size(h) - 1);
3227         for (i = 0; i < MAX_NUMNODES; ++i)
3228                 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
3229         INIT_LIST_HEAD(&h->hugepage_activelist);
3230         h->next_nid_to_alloc = first_memory_node;
3231         h->next_nid_to_free = first_memory_node;
3232         snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
3233                                         huge_page_size(h)/1024);
3234
3235         parsed_hstate = h;
3236 }
3237
3238 /*
3239  * hugepages command line processing
3240  * hugepages normally follows a valid hugepagsz or default_hugepagsz
3241  * specification.  If not, ignore the hugepages value.  hugepages can also
3242  * be the first huge page command line  option in which case it implicitly
3243  * specifies the number of huge pages for the default size.
3244  */
3245 static int __init hugepages_setup(char *s)
3246 {
3247         unsigned long *mhp;
3248         static unsigned long *last_mhp;
3249
3250         if (!parsed_valid_hugepagesz) {
3251                 pr_warn("HugeTLB: hugepages=%s does not follow a valid hugepagesz, ignoring\n", s);
3252                 parsed_valid_hugepagesz = true;
3253                 return 0;
3254         }
3255
3256         /*
3257          * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter
3258          * yet, so this hugepages= parameter goes to the "default hstate".
3259          * Otherwise, it goes with the previously parsed hugepagesz or
3260          * default_hugepagesz.
3261          */
3262         else if (!hugetlb_max_hstate)
3263                 mhp = &default_hstate_max_huge_pages;
3264         else
3265                 mhp = &parsed_hstate->max_huge_pages;
3266
3267         if (mhp == last_mhp) {
3268                 pr_warn("HugeTLB: hugepages= specified twice without interleaving hugepagesz=, ignoring hugepages=%s\n", s);
3269                 return 0;
3270         }
3271
3272         if (sscanf(s, "%lu", mhp) <= 0)
3273                 *mhp = 0;
3274
3275         /*
3276          * Global state is always initialized later in hugetlb_init.
3277          * But we need to allocate gigantic hstates here early to still
3278          * use the bootmem allocator.
3279          */
3280         if (hugetlb_max_hstate && hstate_is_gigantic(parsed_hstate))
3281                 hugetlb_hstate_alloc_pages(parsed_hstate);
3282
3283         last_mhp = mhp;
3284
3285         return 1;
3286 }
3287 __setup("hugepages=", hugepages_setup);
3288
3289 /*
3290  * hugepagesz command line processing
3291  * A specific huge page size can only be specified once with hugepagesz.
3292  * hugepagesz is followed by hugepages on the command line.  The global
3293  * variable 'parsed_valid_hugepagesz' is used to determine if prior
3294  * hugepagesz argument was valid.
3295  */
3296 static int __init hugepagesz_setup(char *s)
3297 {
3298         unsigned long size;
3299         struct hstate *h;
3300
3301         parsed_valid_hugepagesz = false;
3302         size = (unsigned long)memparse(s, NULL);
3303
3304         if (!arch_hugetlb_valid_size(size)) {
3305                 pr_err("HugeTLB: unsupported hugepagesz=%s\n", s);
3306                 return 0;
3307         }
3308
3309         h = size_to_hstate(size);
3310         if (h) {
3311                 /*
3312                  * hstate for this size already exists.  This is normally
3313                  * an error, but is allowed if the existing hstate is the
3314                  * default hstate.  More specifically, it is only allowed if
3315                  * the number of huge pages for the default hstate was not
3316                  * previously specified.
3317                  */
3318                 if (!parsed_default_hugepagesz ||  h != &default_hstate ||
3319                     default_hstate.max_huge_pages) {
3320                         pr_warn("HugeTLB: hugepagesz=%s specified twice, ignoring\n", s);
3321                         return 0;
3322                 }
3323
3324                 /*
3325                  * No need to call hugetlb_add_hstate() as hstate already
3326                  * exists.  But, do set parsed_hstate so that a following
3327                  * hugepages= parameter will be applied to this hstate.
3328                  */
3329                 parsed_hstate = h;
3330                 parsed_valid_hugepagesz = true;
3331                 return 1;
3332         }
3333
3334         hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
3335         parsed_valid_hugepagesz = true;
3336         return 1;
3337 }
3338 __setup("hugepagesz=", hugepagesz_setup);
3339
3340 /*
3341  * default_hugepagesz command line input
3342  * Only one instance of default_hugepagesz allowed on command line.
3343  */
3344 static int __init default_hugepagesz_setup(char *s)
3345 {
3346         unsigned long size;
3347
3348         parsed_valid_hugepagesz = false;
3349         if (parsed_default_hugepagesz) {
3350                 pr_err("HugeTLB: default_hugepagesz previously specified, ignoring %s\n", s);
3351                 return 0;
3352         }
3353
3354         size = (unsigned long)memparse(s, NULL);
3355
3356         if (!arch_hugetlb_valid_size(size)) {
3357                 pr_err("HugeTLB: unsupported default_hugepagesz=%s\n", s);
3358                 return 0;
3359         }
3360
3361         hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
3362         parsed_valid_hugepagesz = true;
3363         parsed_default_hugepagesz = true;
3364         default_hstate_idx = hstate_index(size_to_hstate(size));
3365
3366         /*
3367          * The number of default huge pages (for this size) could have been
3368          * specified as the first hugetlb parameter: hugepages=X.  If so,
3369          * then default_hstate_max_huge_pages is set.  If the default huge
3370          * page size is gigantic (>= MAX_ORDER), then the pages must be
3371          * allocated here from bootmem allocator.
3372          */
3373         if (default_hstate_max_huge_pages) {
3374                 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
3375                 if (hstate_is_gigantic(&default_hstate))
3376                         hugetlb_hstate_alloc_pages(&default_hstate);
3377                 default_hstate_max_huge_pages = 0;
3378         }
3379
3380         return 1;
3381 }
3382 __setup("default_hugepagesz=", default_hugepagesz_setup);
3383
3384 static unsigned int allowed_mems_nr(struct hstate *h)
3385 {
3386         int node;
3387         unsigned int nr = 0;
3388         nodemask_t *mpol_allowed;
3389         unsigned int *array = h->free_huge_pages_node;
3390         gfp_t gfp_mask = htlb_alloc_mask(h);
3391
3392         mpol_allowed = policy_nodemask_current(gfp_mask);
3393
3394         for_each_node_mask(node, cpuset_current_mems_allowed) {
3395                 if (!mpol_allowed || node_isset(node, *mpol_allowed))
3396                         nr += array[node];
3397         }
3398
3399         return nr;
3400 }
3401
3402 #ifdef CONFIG_SYSCTL
3403 static int proc_hugetlb_doulongvec_minmax(struct ctl_table *table, int write,
3404                                           void *buffer, size_t *length,
3405                                           loff_t *ppos, unsigned long *out)
3406 {
3407         struct ctl_table dup_table;
3408
3409         /*
3410          * In order to avoid races with __do_proc_doulongvec_minmax(), we
3411          * can duplicate the @table and alter the duplicate of it.
3412          */
3413         dup_table = *table;
3414         dup_table.data = out;
3415
3416         return proc_doulongvec_minmax(&dup_table, write, buffer, length, ppos);
3417 }
3418
3419 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
3420                          struct ctl_table *table, int write,
3421                          void *buffer, size_t *length, loff_t *ppos)
3422 {
3423         struct hstate *h = &default_hstate;
3424         unsigned long tmp = h->max_huge_pages;
3425         int ret;
3426
3427         if (!hugepages_supported())
3428                 return -EOPNOTSUPP;
3429
3430         ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
3431                                              &tmp);
3432         if (ret)
3433                 goto out;
3434
3435         if (write)
3436                 ret = __nr_hugepages_store_common(obey_mempolicy, h,
3437                                                   NUMA_NO_NODE, tmp, *length);
3438 out:
3439         return ret;
3440 }
3441
3442 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
3443                           void *buffer, size_t *length, loff_t *ppos)
3444 {
3445
3446         return hugetlb_sysctl_handler_common(false, table, write,
3447                                                         buffer, length, ppos);
3448 }
3449
3450 #ifdef CONFIG_NUMA
3451 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
3452                           void *buffer, size_t *length, loff_t *ppos)
3453 {
3454         return hugetlb_sysctl_handler_common(true, table, write,
3455                                                         buffer, length, ppos);
3456 }
3457 #endif /* CONFIG_NUMA */
3458
3459 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
3460                 void *buffer, size_t *length, loff_t *ppos)
3461 {
3462         struct hstate *h = &default_hstate;
3463         unsigned long tmp;
3464         int ret;
3465
3466         if (!hugepages_supported())
3467                 return -EOPNOTSUPP;
3468
3469         tmp = h->nr_overcommit_huge_pages;
3470
3471         if (write && hstate_is_gigantic(h))
3472                 return -EINVAL;
3473
3474         ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
3475                                              &tmp);
3476         if (ret)
3477                 goto out;
3478
3479         if (write) {
3480                 spin_lock(&hugetlb_lock);
3481                 h->nr_overcommit_huge_pages = tmp;
3482                 spin_unlock(&hugetlb_lock);
3483         }
3484 out:
3485         return ret;
3486 }
3487
3488 #endif /* CONFIG_SYSCTL */
3489
3490 void hugetlb_report_meminfo(struct seq_file *m)
3491 {
3492         struct hstate *h;
3493         unsigned long total = 0;
3494
3495         if (!hugepages_supported())
3496                 return;
3497
3498         for_each_hstate(h) {
3499                 unsigned long count = h->nr_huge_pages;
3500
3501                 total += huge_page_size(h) * count;
3502
3503                 if (h == &default_hstate)
3504                         seq_printf(m,
3505                                    "HugePages_Total:   %5lu\n"
3506                                    "HugePages_Free:    %5lu\n"
3507                                    "HugePages_Rsvd:    %5lu\n"
3508                                    "HugePages_Surp:    %5lu\n"
3509                                    "Hugepagesize:   %8lu kB\n",
3510                                    count,
3511                                    h->free_huge_pages,
3512                                    h->resv_huge_pages,
3513                                    h->surplus_huge_pages,
3514                                    huge_page_size(h) / SZ_1K);
3515         }
3516
3517         seq_printf(m, "Hugetlb:        %8lu kB\n", total / SZ_1K);
3518 }
3519
3520 int hugetlb_report_node_meminfo(char *buf, int len, int nid)
3521 {
3522         struct hstate *h = &default_hstate;
3523
3524         if (!hugepages_supported())
3525                 return 0;
3526
3527         return sysfs_emit_at(buf, len,
3528                              "Node %d HugePages_Total: %5u\n"
3529                              "Node %d HugePages_Free:  %5u\n"
3530                              "Node %d HugePages_Surp:  %5u\n",
3531                              nid, h->nr_huge_pages_node[nid],
3532                              nid, h->free_huge_pages_node[nid],
3533                              nid, h->surplus_huge_pages_node[nid]);
3534 }
3535
3536 void hugetlb_show_meminfo(void)
3537 {
3538         struct hstate *h;
3539         int nid;
3540
3541         if (!hugepages_supported())
3542                 return;
3543
3544         for_each_node_state(nid, N_MEMORY)
3545                 for_each_hstate(h)
3546                         pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
3547                                 nid,
3548                                 h->nr_huge_pages_node[nid],
3549                                 h->free_huge_pages_node[nid],
3550                                 h->surplus_huge_pages_node[nid],
3551                                 huge_page_size(h) / SZ_1K);
3552 }
3553
3554 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
3555 {
3556         seq_printf(m, "HugetlbPages:\t%8lu kB\n",
3557                    atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
3558 }
3559
3560 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
3561 unsigned long hugetlb_total_pages(void)
3562 {
3563         struct hstate *h;
3564         unsigned long nr_total_pages = 0;
3565
3566         for_each_hstate(h)
3567                 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
3568         return nr_total_pages;
3569 }
3570
3571 static int hugetlb_acct_memory(struct hstate *h, long delta)
3572 {
3573         int ret = -ENOMEM;
3574
3575         if (!delta)
3576                 return 0;
3577
3578         spin_lock(&hugetlb_lock);
3579         /*
3580          * When cpuset is configured, it breaks the strict hugetlb page
3581          * reservation as the accounting is done on a global variable. Such
3582          * reservation is completely rubbish in the presence of cpuset because
3583          * the reservation is not checked against page availability for the
3584          * current cpuset. Application can still potentially OOM'ed by kernel
3585          * with lack of free htlb page in cpuset that the task is in.
3586          * Attempt to enforce strict accounting with cpuset is almost
3587          * impossible (or too ugly) because cpuset is too fluid that
3588          * task or memory node can be dynamically moved between cpusets.
3589          *
3590          * The change of semantics for shared hugetlb mapping with cpuset is
3591          * undesirable. However, in order to preserve some of the semantics,
3592          * we fall back to check against current free page availability as
3593          * a best attempt and hopefully to minimize the impact of changing
3594          * semantics that cpuset has.
3595          *
3596          * Apart from cpuset, we also have memory policy mechanism that
3597          * also determines from which node the kernel will allocate memory
3598          * in a NUMA system. So similar to cpuset, we also should consider
3599          * the memory policy of the current task. Similar to the description
3600          * above.
3601          */
3602         if (delta > 0) {
3603                 if (gather_surplus_pages(h, delta) < 0)
3604                         goto out;
3605
3606                 if (delta > allowed_mems_nr(h)) {
3607                         return_unused_surplus_pages(h, delta);
3608                         goto out;
3609                 }
3610         }
3611
3612         ret = 0;
3613         if (delta < 0)
3614                 return_unused_surplus_pages(h, (unsigned long) -delta);
3615
3616 out:
3617         spin_unlock(&hugetlb_lock);
3618         return ret;
3619 }
3620
3621 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
3622 {
3623         struct resv_map *resv = vma_resv_map(vma);
3624
3625         /*
3626          * This new VMA should share its siblings reservation map if present.
3627          * The VMA will only ever have a valid reservation map pointer where
3628          * it is being copied for another still existing VMA.  As that VMA
3629          * has a reference to the reservation map it cannot disappear until
3630          * after this open call completes.  It is therefore safe to take a
3631          * new reference here without additional locking.
3632          */
3633         if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3634                 kref_get(&resv->refs);
3635 }
3636
3637 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
3638 {
3639         struct hstate *h = hstate_vma(vma);
3640         struct resv_map *resv = vma_resv_map(vma);
3641         struct hugepage_subpool *spool = subpool_vma(vma);
3642         unsigned long reserve, start, end;
3643         long gbl_reserve;
3644
3645         if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3646                 return;
3647
3648         start = vma_hugecache_offset(h, vma, vma->vm_start);
3649         end = vma_hugecache_offset(h, vma, vma->vm_end);
3650
3651         reserve = (end - start) - region_count(resv, start, end);
3652         hugetlb_cgroup_uncharge_counter(resv, start, end);
3653         if (reserve) {
3654                 /*
3655                  * Decrement reserve counts.  The global reserve count may be
3656                  * adjusted if the subpool has a minimum size.
3657                  */
3658                 gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
3659                 hugetlb_acct_memory(h, -gbl_reserve);
3660         }
3661
3662         kref_put(&resv->refs, resv_map_release);
3663 }
3664
3665 static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
3666 {
3667         if (addr & ~(huge_page_mask(hstate_vma(vma))))
3668                 return -EINVAL;
3669         return 0;
3670 }
3671
3672 static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma)
3673 {
3674         return huge_page_size(hstate_vma(vma));
3675 }
3676
3677 /*
3678  * We cannot handle pagefaults against hugetlb pages at all.  They cause
3679  * handle_mm_fault() to try to instantiate regular-sized pages in the
3680  * hugepage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
3681  * this far.
3682  */
3683 static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf)
3684 {
3685         BUG();
3686         return 0;
3687 }
3688
3689 /*
3690  * When a new function is introduced to vm_operations_struct and added
3691  * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops.
3692  * This is because under System V memory model, mappings created via
3693  * shmget/shmat with "huge page" specified are backed by hugetlbfs files,
3694  * their original vm_ops are overwritten with shm_vm_ops.
3695  */
3696 const struct vm_operations_struct hugetlb_vm_ops = {
3697         .fault = hugetlb_vm_op_fault,
3698         .open = hugetlb_vm_op_open,
3699         .close = hugetlb_vm_op_close,
3700         .may_split = hugetlb_vm_op_split,
3701         .pagesize = hugetlb_vm_op_pagesize,
3702 };
3703
3704 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
3705                                 int writable)
3706 {
3707         pte_t entry;
3708
3709         if (writable) {
3710                 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
3711                                          vma->vm_page_prot)));
3712         } else {
3713                 entry = huge_pte_wrprotect(mk_huge_pte(page,
3714                                            vma->vm_page_prot));
3715         }
3716         entry = pte_mkyoung(entry);
3717         entry = pte_mkhuge(entry);
3718         entry = arch_make_huge_pte(entry, vma, page, writable);
3719
3720         return entry;
3721 }
3722
3723 static void set_huge_ptep_writable(struct vm_area_struct *vma,
3724                                    unsigned long address, pte_t *ptep)
3725 {
3726         pte_t entry;
3727
3728         entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
3729         if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
3730                 update_mmu_cache(vma, address, ptep);
3731 }
3732
3733 bool is_hugetlb_entry_migration(pte_t pte)
3734 {
3735         swp_entry_t swp;
3736
3737         if (huge_pte_none(pte) || pte_present(pte))
3738                 return false;
3739         swp = pte_to_swp_entry(pte);
3740         if (is_migration_entry(swp))
3741                 return true;
3742         else
3743                 return false;
3744 }
3745
3746 static bool is_hugetlb_entry_hwpoisoned(pte_t pte)
3747 {
3748         swp_entry_t swp;
3749
3750         if (huge_pte_none(pte) || pte_present(pte))
3751                 return false;
3752         swp = pte_to_swp_entry(pte);
3753         if (is_hwpoison_entry(swp))
3754                 return true;
3755         else
3756                 return false;
3757 }
3758
3759 static void
3760 hugetlb_install_page(struct vm_area_struct *vma, pte_t *ptep, unsigned long addr,
3761                      struct page *new_page)
3762 {
3763         __SetPageUptodate(new_page);
3764         set_huge_pte_at(vma->vm_mm, addr, ptep, make_huge_pte(vma, new_page, 1));
3765         hugepage_add_new_anon_rmap(new_page, vma, addr);
3766         hugetlb_count_add(pages_per_huge_page(hstate_vma(vma)), vma->vm_mm);
3767         ClearHPageRestoreReserve(new_page);
3768         SetHPageMigratable(new_page);
3769 }
3770
3771 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
3772                             struct vm_area_struct *vma)
3773 {
3774         pte_t *src_pte, *dst_pte, entry, dst_entry;
3775         struct page *ptepage;
3776         unsigned long addr;
3777         bool cow = is_cow_mapping(vma->vm_flags);
3778         struct hstate *h = hstate_vma(vma);
3779         unsigned long sz = huge_page_size(h);
3780         unsigned long npages = pages_per_huge_page(h);
3781         struct address_space *mapping = vma->vm_file->f_mapping;
3782         struct mmu_notifier_range range;
3783         int ret = 0;
3784
3785         if (cow) {
3786                 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, src,
3787                                         vma->vm_start,
3788                                         vma->vm_end);
3789                 mmu_notifier_invalidate_range_start(&range);
3790         } else {
3791                 /*
3792                  * For shared mappings i_mmap_rwsem must be held to call
3793                  * huge_pte_alloc, otherwise the returned ptep could go
3794                  * away if part of a shared pmd and another thread calls
3795                  * huge_pmd_unshare.
3796                  */
3797                 i_mmap_lock_read(mapping);
3798         }
3799
3800         for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
3801                 spinlock_t *src_ptl, *dst_ptl;
3802                 src_pte = huge_pte_offset(src, addr, sz);
3803                 if (!src_pte)
3804                         continue;
3805                 dst_pte = huge_pte_alloc(dst, vma, addr, sz);
3806                 if (!dst_pte) {
3807                         ret = -ENOMEM;
3808                         break;
3809                 }
3810
3811                 /*
3812                  * If the pagetables are shared don't copy or take references.
3813                  * dst_pte == src_pte is the common case of src/dest sharing.
3814                  *
3815                  * However, src could have 'unshared' and dst shares with
3816                  * another vma.  If dst_pte !none, this implies sharing.
3817                  * Check here before taking page table lock, and once again
3818                  * after taking the lock below.
3819                  */
3820                 dst_entry = huge_ptep_get(dst_pte);
3821                 if ((dst_pte == src_pte) || !huge_pte_none(dst_entry))
3822                         continue;
3823
3824                 dst_ptl = huge_pte_lock(h, dst, dst_pte);
3825                 src_ptl = huge_pte_lockptr(h, src, src_pte);
3826                 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
3827                 entry = huge_ptep_get(src_pte);
3828                 dst_entry = huge_ptep_get(dst_pte);
3829 again:
3830                 if (huge_pte_none(entry) || !huge_pte_none(dst_entry)) {
3831                         /*
3832                          * Skip if src entry none.  Also, skip in the
3833                          * unlikely case dst entry !none as this implies
3834                          * sharing with another vma.
3835                          */
3836                         ;
3837                 } else if (unlikely(is_hugetlb_entry_migration(entry) ||
3838                                     is_hugetlb_entry_hwpoisoned(entry))) {
3839                         swp_entry_t swp_entry = pte_to_swp_entry(entry);
3840
3841                         if (is_write_migration_entry(swp_entry) && cow) {
3842                                 /*
3843                                  * COW mappings require pages in both
3844                                  * parent and child to be set to read.
3845                                  */
3846                                 make_migration_entry_read(&swp_entry);
3847                                 entry = swp_entry_to_pte(swp_entry);
3848                                 set_huge_swap_pte_at(src, addr, src_pte,
3849                                                      entry, sz);
3850                         }
3851                         set_huge_swap_pte_at(dst, addr, dst_pte, entry, sz);
3852                 } else {
3853                         entry = huge_ptep_get(src_pte);
3854                         ptepage = pte_page(entry);
3855                         get_page(ptepage);
3856
3857                         /*
3858                          * This is a rare case where we see pinned hugetlb
3859                          * pages while they're prone to COW.  We need to do the
3860                          * COW earlier during fork.
3861                          *
3862                          * When pre-allocating the page or copying data, we
3863                          * need to be without the pgtable locks since we could
3864                          * sleep during the process.
3865                          */
3866                         if (unlikely(page_needs_cow_for_dma(vma, ptepage))) {
3867                                 pte_t src_pte_old = entry;
3868                                 struct page *new;
3869
3870                                 spin_unlock(src_ptl);
3871                                 spin_unlock(dst_ptl);
3872                                 /* Do not use reserve as it's private owned */
3873                                 new = alloc_huge_page(vma, addr, 1);
3874                                 if (IS_ERR(new)) {
3875                                         put_page(ptepage);
3876                                         ret = PTR_ERR(new);
3877                                         break;
3878                                 }
3879                                 copy_user_huge_page(new, ptepage, addr, vma,
3880                                                     npages);
3881                                 put_page(ptepage);
3882
3883                                 /* Install the new huge page if src pte stable */
3884                                 dst_ptl = huge_pte_lock(h, dst, dst_pte);
3885                                 src_ptl = huge_pte_lockptr(h, src, src_pte);
3886                                 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
3887                                 entry = huge_ptep_get(src_pte);
3888                                 if (!pte_same(src_pte_old, entry)) {
3889                                         put_page(new);
3890                                         /* dst_entry won't change as in child */
3891                                         goto again;
3892                                 }
3893                                 hugetlb_install_page(vma, dst_pte, addr, new);
3894                                 spin_unlock(src_ptl);
3895                                 spin_unlock(dst_ptl);
3896                                 continue;
3897                         }
3898
3899                         if (cow) {
3900                                 /*
3901                                  * No need to notify as we are downgrading page
3902                                  * table protection not changing it to point
3903                                  * to a new page.
3904                                  *
3905                                  * See Documentation/vm/mmu_notifier.rst
3906                                  */
3907                                 huge_ptep_set_wrprotect(src, addr, src_pte);
3908                         }
3909
3910                         page_dup_rmap(ptepage, true);
3911                         set_huge_pte_at(dst, addr, dst_pte, entry);
3912                         hugetlb_count_add(npages, dst);
3913                 }
3914                 spin_unlock(src_ptl);
3915                 spin_unlock(dst_ptl);
3916         }
3917
3918         if (cow)
3919                 mmu_notifier_invalidate_range_end(&range);
3920         else
3921                 i_mmap_unlock_read(mapping);
3922
3923         return ret;
3924 }
3925
3926 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
3927                             unsigned long start, unsigned long end,
3928                             struct page *ref_page)
3929 {
3930         struct mm_struct *mm = vma->vm_mm;
3931         unsigned long address;
3932         pte_t *ptep;
3933         pte_t pte;
3934         spinlock_t *ptl;
3935         struct page *page;
3936         struct hstate *h = hstate_vma(vma);
3937         unsigned long sz = huge_page_size(h);
3938         struct mmu_notifier_range range;
3939
3940         WARN_ON(!is_vm_hugetlb_page(vma));
3941         BUG_ON(start & ~huge_page_mask(h));
3942         BUG_ON(end & ~huge_page_mask(h));
3943
3944         /*
3945          * This is a hugetlb vma, all the pte entries should point
3946          * to huge page.
3947          */
3948         tlb_change_page_size(tlb, sz);
3949         tlb_start_vma(tlb, vma);
3950
3951         /*
3952          * If sharing possible, alert mmu notifiers of worst case.
3953          */
3954         mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, mm, start,
3955                                 end);
3956         adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
3957         mmu_notifier_invalidate_range_start(&range);
3958         address = start;
3959         for (; address < end; address += sz) {
3960                 ptep = huge_pte_offset(mm, address, sz);
3961                 if (!ptep)
3962                         continue;
3963
3964                 ptl = huge_pte_lock(h, mm, ptep);
3965                 if (huge_pmd_unshare(mm, vma, &address, ptep)) {
3966                         spin_unlock(ptl);
3967                         /*
3968                          * We just unmapped a page of PMDs by clearing a PUD.
3969                          * The caller's TLB flush range should cover this area.
3970                          */
3971                         continue;
3972                 }
3973
3974                 pte = huge_ptep_get(ptep);
3975                 if (huge_pte_none(pte)) {
3976                         spin_unlock(ptl);
3977                         continue;
3978                 }
3979
3980                 /*
3981                  * Migrating hugepage or HWPoisoned hugepage is already
3982                  * unmapped and its refcount is dropped, so just clear pte here.
3983                  */
3984                 if (unlikely(!pte_present(pte))) {
3985                         huge_pte_clear(mm, address, ptep, sz);
3986                         spin_unlock(ptl);
3987                         continue;
3988                 }
3989
3990                 page = pte_page(pte);
3991                 /*
3992                  * If a reference page is supplied, it is because a specific
3993                  * page is being unmapped, not a range. Ensure the page we
3994                  * are about to unmap is the actual page of interest.
3995                  */
3996                 if (ref_page) {
3997                         if (page != ref_page) {
3998                                 spin_unlock(ptl);
3999                                 continue;
4000                         }
4001                         /*
4002                          * Mark the VMA as having unmapped its page so that
4003                          * future faults in this VMA will fail rather than
4004                          * looking like data was lost
4005                          */
4006                         set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
4007                 }
4008
4009                 pte = huge_ptep_get_and_clear(mm, address, ptep);
4010                 tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
4011                 if (huge_pte_dirty(pte))
4012                         set_page_dirty(page);
4013
4014                 hugetlb_count_sub(pages_per_huge_page(h), mm);
4015                 page_remove_rmap(page, true);
4016
4017                 spin_unlock(ptl);
4018                 tlb_remove_page_size(tlb, page, huge_page_size(h));
4019                 /*
4020                  * Bail out after unmapping reference page if supplied
4021                  */
4022                 if (ref_page)
4023                         break;
4024         }
4025         mmu_notifier_invalidate_range_end(&range);
4026         tlb_end_vma(tlb, vma);
4027 }
4028
4029 void __unmap_hugepage_range_final(struct mmu_gather *tlb,
4030                           struct vm_area_struct *vma, unsigned long start,
4031                           unsigned long end, struct page *ref_page)
4032 {
4033         __unmap_hugepage_range(tlb, vma, start, end, ref_page);
4034
4035         /*
4036          * Clear this flag so that x86's huge_pmd_share page_table_shareable
4037          * test will fail on a vma being torn down, and not grab a page table
4038          * on its way out.  We're lucky that the flag has such an appropriate
4039          * name, and can in fact be safely cleared here. We could clear it
4040          * before the __unmap_hugepage_range above, but all that's necessary
4041          * is to clear it before releasing the i_mmap_rwsem. This works
4042          * because in the context this is called, the VMA is about to be
4043          * destroyed and the i_mmap_rwsem is held.
4044          */
4045         vma->vm_flags &= ~VM_MAYSHARE;
4046 }
4047
4048 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
4049                           unsigned long end, struct page *ref_page)
4050 {
4051         struct mmu_gather tlb;
4052
4053         tlb_gather_mmu(&tlb, vma->vm_mm);
4054         __unmap_hugepage_range(&tlb, vma, start, end, ref_page);
4055         tlb_finish_mmu(&tlb);
4056 }
4057
4058 /*
4059  * This is called when the original mapper is failing to COW a MAP_PRIVATE
4060  * mapping it owns the reserve page for. The intention is to unmap the page
4061  * from other VMAs and let the children be SIGKILLed if they are faulting the
4062  * same region.
4063  */
4064 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
4065                               struct page *page, unsigned long address)
4066 {
4067         struct hstate *h = hstate_vma(vma);
4068         struct vm_area_struct *iter_vma;
4069         struct address_space *mapping;
4070         pgoff_t pgoff;
4071
4072         /*
4073          * vm_pgoff is in PAGE_SIZE units, hence the different calculation
4074          * from page cache lookup which is in HPAGE_SIZE units.
4075          */
4076         address = address & huge_page_mask(h);
4077         pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
4078                         vma->vm_pgoff;
4079         mapping = vma->vm_file->f_mapping;
4080
4081         /*
4082          * Take the mapping lock for the duration of the table walk. As
4083          * this mapping should be shared between all the VMAs,
4084          * __unmap_hugepage_range() is called as the lock is already held
4085          */
4086         i_mmap_lock_write(mapping);
4087         vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
4088                 /* Do not unmap the current VMA */
4089                 if (iter_vma == vma)
4090                         continue;
4091
4092                 /*
4093                  * Shared VMAs have their own reserves and do not affect
4094                  * MAP_PRIVATE accounting but it is possible that a shared
4095                  * VMA is using the same page so check and skip such VMAs.
4096                  */
4097                 if (iter_vma->vm_flags & VM_MAYSHARE)
4098                         continue;
4099
4100                 /*
4101                  * Unmap the page from other VMAs without their own reserves.
4102                  * They get marked to be SIGKILLed if they fault in these
4103                  * areas. This is because a future no-page fault on this VMA
4104                  * could insert a zeroed page instead of the data existing
4105                  * from the time of fork. This would look like data corruption
4106                  */
4107                 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
4108                         unmap_hugepage_range(iter_vma, address,
4109                                              address + huge_page_size(h), page);
4110         }
4111         i_mmap_unlock_write(mapping);
4112 }
4113
4114 /*
4115  * Hugetlb_cow() should be called with page lock of the original hugepage held.
4116  * Called with hugetlb_instantiation_mutex held and pte_page locked so we
4117  * cannot race with other handlers or page migration.
4118  * Keep the pte_same checks anyway to make transition from the mutex easier.
4119  */
4120 static vm_fault_t hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
4121                        unsigned long address, pte_t *ptep,
4122                        struct page *pagecache_page, spinlock_t *ptl)
4123 {
4124         pte_t pte;
4125         struct hstate *h = hstate_vma(vma);
4126         struct page *old_page, *new_page;
4127         int outside_reserve = 0;
4128         vm_fault_t ret = 0;
4129         unsigned long haddr = address & huge_page_mask(h);
4130         struct mmu_notifier_range range;
4131
4132         pte = huge_ptep_get(ptep);
4133         old_page = pte_page(pte);
4134
4135 retry_avoidcopy:
4136         /* If no-one else is actually using this page, avoid the copy
4137          * and just make the page writable */
4138         if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
4139                 page_move_anon_rmap(old_page, vma);
4140                 set_huge_ptep_writable(vma, haddr, ptep);
4141                 return 0;
4142         }
4143
4144         /*
4145          * If the process that created a MAP_PRIVATE mapping is about to
4146          * perform a COW due to a shared page count, attempt to satisfy
4147          * the allocation without using the existing reserves. The pagecache
4148          * page is used to determine if the reserve at this address was
4149          * consumed or not. If reserves were used, a partial faulted mapping
4150          * at the time of fork() could consume its reserves on COW instead
4151          * of the full address range.
4152          */
4153         if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
4154                         old_page != pagecache_page)
4155                 outside_reserve = 1;
4156
4157         get_page(old_page);
4158
4159         /*
4160          * Drop page table lock as buddy allocator may be called. It will
4161          * be acquired again before returning to the caller, as expected.
4162          */
4163         spin_unlock(ptl);
4164         new_page = alloc_huge_page(vma, haddr, outside_reserve);
4165
4166         if (IS_ERR(new_page)) {
4167                 /*
4168                  * If a process owning a MAP_PRIVATE mapping fails to COW,
4169                  * it is due to references held by a child and an insufficient
4170                  * huge page pool. To guarantee the original mappers
4171                  * reliability, unmap the page from child processes. The child
4172                  * may get SIGKILLed if it later faults.
4173                  */
4174                 if (outside_reserve) {
4175                         struct address_space *mapping = vma->vm_file->f_mapping;
4176                         pgoff_t idx;
4177                         u32 hash;
4178
4179                         put_page(old_page);
4180                         BUG_ON(huge_pte_none(pte));
4181                         /*
4182                          * Drop hugetlb_fault_mutex and i_mmap_rwsem before
4183                          * unmapping.  unmapping needs to hold i_mmap_rwsem
4184                          * in write mode.  Dropping i_mmap_rwsem in read mode
4185                          * here is OK as COW mappings do not interact with
4186                          * PMD sharing.
4187                          *
4188                          * Reacquire both after unmap operation.
4189                          */
4190                         idx = vma_hugecache_offset(h, vma, haddr);
4191                         hash = hugetlb_fault_mutex_hash(mapping, idx);
4192                         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
4193                         i_mmap_unlock_read(mapping);
4194
4195                         unmap_ref_private(mm, vma, old_page, haddr);
4196
4197                         i_mmap_lock_read(mapping);
4198                         mutex_lock(&hugetlb_fault_mutex_table[hash]);
4199                         spin_lock(ptl);
4200                         ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
4201                         if (likely(ptep &&
4202                                    pte_same(huge_ptep_get(ptep), pte)))
4203                                 goto retry_avoidcopy;
4204                         /*
4205                          * race occurs while re-acquiring page table
4206                          * lock, and our job is done.
4207                          */
4208                         return 0;
4209                 }
4210
4211                 ret = vmf_error(PTR_ERR(new_page));
4212                 goto out_release_old;
4213         }
4214
4215         /*
4216          * When the original hugepage is shared one, it does not have
4217          * anon_vma prepared.
4218          */
4219         if (unlikely(anon_vma_prepare(vma))) {
4220                 ret = VM_FAULT_OOM;
4221                 goto out_release_all;
4222         }
4223
4224         copy_user_huge_page(new_page, old_page, address, vma,
4225                             pages_per_huge_page(h));
4226         __SetPageUptodate(new_page);
4227
4228         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, haddr,
4229                                 haddr + huge_page_size(h));
4230         mmu_notifier_invalidate_range_start(&range);
4231
4232         /*
4233          * Retake the page table lock to check for racing updates
4234          * before the page tables are altered
4235          */
4236         spin_lock(ptl);
4237         ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
4238         if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
4239                 ClearHPageRestoreReserve(new_page);
4240
4241                 /* Break COW */
4242                 huge_ptep_clear_flush(vma, haddr, ptep);
4243                 mmu_notifier_invalidate_range(mm, range.start, range.end);
4244                 set_huge_pte_at(mm, haddr, ptep,
4245                                 make_huge_pte(vma, new_page, 1));
4246                 page_remove_rmap(old_page, true);
4247                 hugepage_add_new_anon_rmap(new_page, vma, haddr);
4248                 SetHPageMigratable(new_page);
4249                 /* Make the old page be freed below */
4250                 new_page = old_page;
4251         }
4252         spin_unlock(ptl);
4253         mmu_notifier_invalidate_range_end(&range);
4254 out_release_all:
4255         restore_reserve_on_error(h, vma, haddr, new_page);
4256         put_page(new_page);
4257 out_release_old:
4258         put_page(old_page);
4259
4260         spin_lock(ptl); /* Caller expects lock to be held */
4261         return ret;
4262 }
4263
4264 /* Return the pagecache page at a given address within a VMA */
4265 static struct page *hugetlbfs_pagecache_page(struct hstate *h,
4266                         struct vm_area_struct *vma, unsigned long address)
4267 {
4268         struct address_space *mapping;
4269         pgoff_t idx;
4270
4271         mapping = vma->vm_file->f_mapping;
4272         idx = vma_hugecache_offset(h, vma, address);
4273
4274         return find_lock_page(mapping, idx);
4275 }
4276
4277 /*
4278  * Return whether there is a pagecache page to back given address within VMA.
4279  * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
4280  */
4281 static bool hugetlbfs_pagecache_present(struct hstate *h,
4282                         struct vm_area_struct *vma, unsigned long address)
4283 {
4284         struct address_space *mapping;
4285         pgoff_t idx;
4286         struct page *page;
4287
4288         mapping = vma->vm_file->f_mapping;
4289         idx = vma_hugecache_offset(h, vma, address);
4290
4291         page = find_get_page(mapping, idx);
4292         if (page)
4293                 put_page(page);
4294         return page != NULL;
4295 }
4296
4297 int huge_add_to_page_cache(struct page *page, struct address_space *mapping,
4298                            pgoff_t idx)
4299 {
4300         struct inode *inode = mapping->host;
4301         struct hstate *h = hstate_inode(inode);
4302         int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
4303
4304         if (err)
4305                 return err;
4306         ClearHPageRestoreReserve(page);
4307
4308         /*
4309          * set page dirty so that it will not be removed from cache/file
4310          * by non-hugetlbfs specific code paths.
4311          */
4312         set_page_dirty(page);
4313
4314         spin_lock(&inode->i_lock);
4315         inode->i_blocks += blocks_per_huge_page(h);
4316         spin_unlock(&inode->i_lock);
4317         return 0;
4318 }
4319
4320 static vm_fault_t hugetlb_no_page(struct mm_struct *mm,
4321                         struct vm_area_struct *vma,
4322                         struct address_space *mapping, pgoff_t idx,
4323                         unsigned long address, pte_t *ptep, unsigned int flags)
4324 {
4325         struct hstate *h = hstate_vma(vma);
4326         vm_fault_t ret = VM_FAULT_SIGBUS;
4327         int anon_rmap = 0;
4328         unsigned long size;
4329         struct page *page;
4330         pte_t new_pte;
4331         spinlock_t *ptl;
4332         unsigned long haddr = address & huge_page_mask(h);
4333         bool new_page = false;
4334
4335         /*
4336          * Currently, we are forced to kill the process in the event the
4337          * original mapper has unmapped pages from the child due to a failed
4338          * COW. Warn that such a situation has occurred as it may not be obvious
4339          */
4340         if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
4341                 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
4342                            current->pid);
4343                 return ret;
4344         }
4345
4346         /*
4347          * We can not race with truncation due to holding i_mmap_rwsem.
4348          * i_size is modified when holding i_mmap_rwsem, so check here
4349          * once for faults beyond end of file.
4350          */
4351         size = i_size_read(mapping->host) >> huge_page_shift(h);
4352         if (idx >= size)
4353                 goto out;
4354
4355 retry:
4356         page = find_lock_page(mapping, idx);
4357         if (!page) {
4358                 /*
4359                  * Check for page in userfault range
4360                  */
4361                 if (userfaultfd_missing(vma)) {
4362                         u32 hash;
4363                         struct vm_fault vmf = {
4364                                 .vma = vma,
4365                                 .address = haddr,
4366                                 .flags = flags,
4367                                 /*
4368                                  * Hard to debug if it ends up being
4369                                  * used by a callee that assumes
4370                                  * something about the other
4371                                  * uninitialized fields... same as in
4372                                  * memory.c
4373                                  */
4374                         };
4375
4376                         /*
4377                          * hugetlb_fault_mutex and i_mmap_rwsem must be
4378                          * dropped before handling userfault.  Reacquire
4379                          * after handling fault to make calling code simpler.
4380                          */
4381                         hash = hugetlb_fault_mutex_hash(mapping, idx);
4382                         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
4383                         i_mmap_unlock_read(mapping);
4384                         ret = handle_userfault(&vmf, VM_UFFD_MISSING);
4385                         i_mmap_lock_read(mapping);
4386                         mutex_lock(&hugetlb_fault_mutex_table[hash]);
4387                         goto out;
4388                 }
4389
4390                 page = alloc_huge_page(vma, haddr, 0);
4391                 if (IS_ERR(page)) {
4392                         /*
4393                          * Returning error will result in faulting task being
4394                          * sent SIGBUS.  The hugetlb fault mutex prevents two
4395                          * tasks from racing to fault in the same page which
4396                          * could result in false unable to allocate errors.
4397                          * Page migration does not take the fault mutex, but
4398                          * does a clear then write of pte's under page table
4399                          * lock.  Page fault code could race with migration,
4400                          * notice the clear pte and try to allocate a page
4401                          * here.  Before returning error, get ptl and make
4402                          * sure there really is no pte entry.
4403                          */
4404                         ptl = huge_pte_lock(h, mm, ptep);
4405                         ret = 0;
4406                         if (huge_pte_none(huge_ptep_get(ptep)))
4407                                 ret = vmf_error(PTR_ERR(page));
4408                         spin_unlock(ptl);
4409                         goto out;
4410                 }
4411                 clear_huge_page(page, address, pages_per_huge_page(h));
4412                 __SetPageUptodate(page);
4413                 new_page = true;
4414
4415                 if (vma->vm_flags & VM_MAYSHARE) {
4416                         int err = huge_add_to_page_cache(page, mapping, idx);
4417                         if (err) {
4418                                 put_page(page);
4419                                 if (err == -EEXIST)
4420                                         goto retry;
4421                                 goto out;
4422                         }
4423                 } else {
4424                         lock_page(page);
4425                         if (unlikely(anon_vma_prepare(vma))) {
4426                                 ret = VM_FAULT_OOM;
4427                                 goto backout_unlocked;
4428                         }
4429                         anon_rmap = 1;
4430                 }
4431         } else {
4432                 /*
4433                  * If memory error occurs between mmap() and fault, some process
4434                  * don't have hwpoisoned swap entry for errored virtual address.
4435                  * So we need to block hugepage fault by PG_hwpoison bit check.
4436                  */
4437                 if (unlikely(PageHWPoison(page))) {
4438                         ret = VM_FAULT_HWPOISON_LARGE |
4439                                 VM_FAULT_SET_HINDEX(hstate_index(h));
4440                         goto backout_unlocked;
4441                 }
4442         }
4443
4444         /*
4445          * If we are going to COW a private mapping later, we examine the
4446          * pending reservations for this page now. This will ensure that
4447          * any allocations necessary to record that reservation occur outside
4448          * the spinlock.
4449          */
4450         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
4451                 if (vma_needs_reservation(h, vma, haddr) < 0) {
4452                         ret = VM_FAULT_OOM;
4453                         goto backout_unlocked;
4454                 }
4455                 /* Just decrements count, does not deallocate */
4456                 vma_end_reservation(h, vma, haddr);
4457         }
4458
4459         ptl = huge_pte_lock(h, mm, ptep);
4460         ret = 0;
4461         if (!huge_pte_none(huge_ptep_get(ptep)))
4462                 goto backout;
4463
4464         if (anon_rmap) {
4465                 ClearHPageRestoreReserve(page);
4466                 hugepage_add_new_anon_rmap(page, vma, haddr);
4467         } else
4468                 page_dup_rmap(page, true);
4469         new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
4470                                 && (vma->vm_flags & VM_SHARED)));
4471         set_huge_pte_at(mm, haddr, ptep, new_pte);
4472
4473         hugetlb_count_add(pages_per_huge_page(h), mm);
4474         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
4475                 /* Optimization, do the COW without a second fault */
4476                 ret = hugetlb_cow(mm, vma, address, ptep, page, ptl);
4477         }
4478
4479         spin_unlock(ptl);
4480
4481         /*
4482          * Only set HPageMigratable in newly allocated pages.  Existing pages
4483          * found in the pagecache may not have HPageMigratableset if they have
4484          * been isolated for migration.
4485          */
4486         if (new_page)
4487                 SetHPageMigratable(page);
4488
4489         unlock_page(page);
4490 out:
4491         return ret;
4492
4493 backout:
4494         spin_unlock(ptl);
4495 backout_unlocked:
4496         unlock_page(page);
4497         restore_reserve_on_error(h, vma, haddr, page);
4498         put_page(page);
4499         goto out;
4500 }
4501
4502 #ifdef CONFIG_SMP
4503 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
4504 {
4505         unsigned long key[2];
4506         u32 hash;
4507
4508         key[0] = (unsigned long) mapping;
4509         key[1] = idx;
4510
4511         hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0);
4512
4513         return hash & (num_fault_mutexes - 1);
4514 }
4515 #else
4516 /*
4517  * For uniprocessor systems we always use a single mutex, so just
4518  * return 0 and avoid the hashing overhead.
4519  */
4520 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
4521 {
4522         return 0;
4523 }
4524 #endif
4525
4526 vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
4527                         unsigned long address, unsigned int flags)
4528 {
4529         pte_t *ptep, entry;
4530         spinlock_t *ptl;
4531         vm_fault_t ret;
4532         u32 hash;
4533         pgoff_t idx;
4534         struct page *page = NULL;
4535         struct page *pagecache_page = NULL;
4536         struct hstate *h = hstate_vma(vma);
4537         struct address_space *mapping;
4538         int need_wait_lock = 0;
4539         unsigned long haddr = address & huge_page_mask(h);
4540
4541         ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
4542         if (ptep) {
4543                 /*
4544                  * Since we hold no locks, ptep could be stale.  That is
4545                  * OK as we are only making decisions based on content and
4546                  * not actually modifying content here.
4547                  */
4548                 entry = huge_ptep_get(ptep);
4549                 if (unlikely(is_hugetlb_entry_migration(entry))) {
4550                         migration_entry_wait_huge(vma, mm, ptep);
4551                         return 0;
4552                 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
4553                         return VM_FAULT_HWPOISON_LARGE |
4554                                 VM_FAULT_SET_HINDEX(hstate_index(h));
4555         }
4556
4557         /*
4558          * Acquire i_mmap_rwsem before calling huge_pte_alloc and hold
4559          * until finished with ptep.  This serves two purposes:
4560          * 1) It prevents huge_pmd_unshare from being called elsewhere
4561          *    and making the ptep no longer valid.
4562          * 2) It synchronizes us with i_size modifications during truncation.
4563          *
4564          * ptep could have already be assigned via huge_pte_offset.  That
4565          * is OK, as huge_pte_alloc will return the same value unless
4566          * something has changed.
4567          */
4568         mapping = vma->vm_file->f_mapping;
4569         i_mmap_lock_read(mapping);
4570         ptep = huge_pte_alloc(mm, vma, haddr, huge_page_size(h));
4571         if (!ptep) {
4572                 i_mmap_unlock_read(mapping);
4573                 return VM_FAULT_OOM;
4574         }
4575
4576         /*
4577          * Serialize hugepage allocation and instantiation, so that we don't
4578          * get spurious allocation failures if two CPUs race to instantiate
4579          * the same page in the page cache.
4580          */
4581         idx = vma_hugecache_offset(h, vma, haddr);
4582         hash = hugetlb_fault_mutex_hash(mapping, idx);
4583         mutex_lock(&hugetlb_fault_mutex_table[hash]);
4584
4585         entry = huge_ptep_get(ptep);
4586         if (huge_pte_none(entry)) {
4587                 ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
4588                 goto out_mutex;
4589         }
4590
4591         ret = 0;
4592
4593         /*
4594          * entry could be a migration/hwpoison entry at this point, so this
4595          * check prevents the kernel from going below assuming that we have
4596          * an active hugepage in pagecache. This goto expects the 2nd page
4597          * fault, and is_hugetlb_entry_(migration|hwpoisoned) check will
4598          * properly handle it.
4599          */
4600         if (!pte_present(entry))
4601                 goto out_mutex;
4602
4603         /*
4604          * If we are going to COW the mapping later, we examine the pending
4605          * reservations for this page now. This will ensure that any
4606          * allocations necessary to record that reservation occur outside the
4607          * spinlock. For private mappings, we also lookup the pagecache
4608          * page now as it is used to determine if a reservation has been
4609          * consumed.
4610          */
4611         if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
4612                 if (vma_needs_reservation(h, vma, haddr) < 0) {
4613                         ret = VM_FAULT_OOM;
4614                         goto out_mutex;
4615                 }
4616                 /* Just decrements count, does not deallocate */
4617                 vma_end_reservation(h, vma, haddr);
4618
4619                 if (!(vma->vm_flags & VM_MAYSHARE))
4620                         pagecache_page = hugetlbfs_pagecache_page(h,
4621                                                                 vma, haddr);
4622         }
4623
4624         ptl = huge_pte_lock(h, mm, ptep);
4625
4626         /* Check for a racing update before calling hugetlb_cow */
4627         if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
4628                 goto out_ptl;
4629
4630         /*
4631          * hugetlb_cow() requires page locks of pte_page(entry) and
4632          * pagecache_page, so here we need take the former one
4633          * when page != pagecache_page or !pagecache_page.
4634          */
4635         page = pte_page(entry);
4636         if (page != pagecache_page)
4637                 if (!trylock_page(page)) {
4638                         need_wait_lock = 1;
4639                         goto out_ptl;
4640                 }
4641
4642         get_page(page);
4643
4644         if (flags & FAULT_FLAG_WRITE) {
4645                 if (!huge_pte_write(entry)) {
4646                         ret = hugetlb_cow(mm, vma, address, ptep,
4647                                           pagecache_page, ptl);
4648                         goto out_put_page;
4649                 }
4650                 entry = huge_pte_mkdirty(entry);
4651         }
4652         entry = pte_mkyoung(entry);
4653         if (huge_ptep_set_access_flags(vma, haddr, ptep, entry,
4654                                                 flags & FAULT_FLAG_WRITE))
4655                 update_mmu_cache(vma, haddr, ptep);
4656 out_put_page:
4657         if (page != pagecache_page)
4658                 unlock_page(page);
4659         put_page(page);
4660 out_ptl:
4661         spin_unlock(ptl);
4662
4663         if (pagecache_page) {
4664                 unlock_page(pagecache_page);
4665                 put_page(pagecache_page);
4666         }
4667 out_mutex:
4668         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
4669         i_mmap_unlock_read(mapping);
4670         /*
4671          * Generally it's safe to hold refcount during waiting page lock. But
4672          * here we just wait to defer the next page fault to avoid busy loop and
4673          * the page is not used after unlocked before returning from the current
4674          * page fault. So we are safe from accessing freed page, even if we wait
4675          * here without taking refcount.
4676          */
4677         if (need_wait_lock)
4678                 wait_on_page_locked(page);
4679         return ret;
4680 }
4681
4682 /*
4683  * Used by userfaultfd UFFDIO_COPY.  Based on mcopy_atomic_pte with
4684  * modifications for huge pages.
4685  */
4686 int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm,
4687                             pte_t *dst_pte,
4688                             struct vm_area_struct *dst_vma,
4689                             unsigned long dst_addr,
4690                             unsigned long src_addr,
4691                             struct page **pagep)
4692 {
4693         struct address_space *mapping;
4694         pgoff_t idx;
4695         unsigned long size;
4696         int vm_shared = dst_vma->vm_flags & VM_SHARED;
4697         struct hstate *h = hstate_vma(dst_vma);
4698         pte_t _dst_pte;
4699         spinlock_t *ptl;
4700         int ret;
4701         struct page *page;
4702
4703         if (!*pagep) {
4704                 ret = -ENOMEM;
4705                 page = alloc_huge_page(dst_vma, dst_addr, 0);
4706                 if (IS_ERR(page))
4707                         goto out;
4708
4709                 ret = copy_huge_page_from_user(page,
4710                                                 (const void __user *) src_addr,
4711                                                 pages_per_huge_page(h), false);
4712
4713                 /* fallback to copy_from_user outside mmap_lock */
4714                 if (unlikely(ret)) {
4715                         ret = -ENOENT;
4716                         *pagep = page;
4717                         /* don't free the page */
4718                         goto out;
4719                 }
4720         } else {
4721                 page = *pagep;
4722                 *pagep = NULL;
4723         }
4724
4725         /*
4726          * The memory barrier inside __SetPageUptodate makes sure that
4727          * preceding stores to the page contents become visible before
4728          * the set_pte_at() write.
4729          */
4730         __SetPageUptodate(page);
4731
4732         mapping = dst_vma->vm_file->f_mapping;
4733         idx = vma_hugecache_offset(h, dst_vma, dst_addr);
4734
4735         /*
4736          * If shared, add to page cache
4737          */
4738         if (vm_shared) {
4739                 size = i_size_read(mapping->host) >> huge_page_shift(h);
4740                 ret = -EFAULT;
4741                 if (idx >= size)
4742                         goto out_release_nounlock;
4743
4744                 /*
4745                  * Serialization between remove_inode_hugepages() and
4746                  * huge_add_to_page_cache() below happens through the
4747                  * hugetlb_fault_mutex_table that here must be hold by
4748                  * the caller.
4749                  */
4750                 ret = huge_add_to_page_cache(page, mapping, idx);
4751                 if (ret)
4752                         goto out_release_nounlock;
4753         }
4754
4755         ptl = huge_pte_lockptr(h, dst_mm, dst_pte);
4756         spin_lock(ptl);
4757
4758         /*
4759          * Recheck the i_size after holding PT lock to make sure not
4760          * to leave any page mapped (as page_mapped()) beyond the end
4761          * of the i_size (remove_inode_hugepages() is strict about
4762          * enforcing that). If we bail out here, we'll also leave a
4763          * page in the radix tree in the vm_shared case beyond the end
4764          * of the i_size, but remove_inode_hugepages() will take care
4765          * of it as soon as we drop the hugetlb_fault_mutex_table.
4766          */
4767         size = i_size_read(mapping->host) >> huge_page_shift(h);
4768         ret = -EFAULT;
4769         if (idx >= size)
4770                 goto out_release_unlock;
4771
4772         ret = -EEXIST;
4773         if (!huge_pte_none(huge_ptep_get(dst_pte)))
4774                 goto out_release_unlock;
4775
4776         if (vm_shared) {
4777                 page_dup_rmap(page, true);
4778         } else {
4779                 ClearHPageRestoreReserve(page);
4780                 hugepage_add_new_anon_rmap(page, dst_vma, dst_addr);
4781         }
4782
4783         _dst_pte = make_huge_pte(dst_vma, page, dst_vma->vm_flags & VM_WRITE);
4784         if (dst_vma->vm_flags & VM_WRITE)
4785                 _dst_pte = huge_pte_mkdirty(_dst_pte);
4786         _dst_pte = pte_mkyoung(_dst_pte);
4787
4788         set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
4789
4790         (void)huge_ptep_set_access_flags(dst_vma, dst_addr, dst_pte, _dst_pte,
4791                                         dst_vma->vm_flags & VM_WRITE);
4792         hugetlb_count_add(pages_per_huge_page(h), dst_mm);
4793
4794         /* No need to invalidate - it was non-present before */
4795         update_mmu_cache(dst_vma, dst_addr, dst_pte);
4796
4797         spin_unlock(ptl);
4798         SetHPageMigratable(page);
4799         if (vm_shared)
4800                 unlock_page(page);
4801         ret = 0;
4802 out:
4803         return ret;
4804 out_release_unlock:
4805         spin_unlock(ptl);
4806         if (vm_shared)
4807                 unlock_page(page);
4808 out_release_nounlock:
4809         put_page(page);
4810         goto out;
4811 }
4812
4813 static void record_subpages_vmas(struct page *page, struct vm_area_struct *vma,
4814                                  int refs, struct page **pages,
4815                                  struct vm_area_struct **vmas)
4816 {
4817         int nr;
4818
4819         for (nr = 0; nr < refs; nr++) {
4820                 if (likely(pages))
4821                         pages[nr] = mem_map_offset(page, nr);
4822                 if (vmas)
4823                         vmas[nr] = vma;
4824         }
4825 }
4826
4827 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
4828                          struct page **pages, struct vm_area_struct **vmas,
4829                          unsigned long *position, unsigned long *nr_pages,
4830                          long i, unsigned int flags, int *locked)
4831 {
4832         unsigned long pfn_offset;
4833         unsigned long vaddr = *position;
4834         unsigned long remainder = *nr_pages;
4835         struct hstate *h = hstate_vma(vma);
4836         int err = -EFAULT, refs;
4837
4838         while (vaddr < vma->vm_end && remainder) {
4839                 pte_t *pte;
4840                 spinlock_t *ptl = NULL;
4841                 int absent;
4842                 struct page *page;
4843
4844                 /*
4845                  * If we have a pending SIGKILL, don't keep faulting pages and
4846                  * potentially allocating memory.
4847                  */
4848                 if (fatal_signal_pending(current)) {
4849                         remainder = 0;
4850                         break;
4851                 }
4852
4853                 /*
4854                  * Some archs (sparc64, sh*) have multiple pte_ts to
4855                  * each hugepage.  We have to make sure we get the
4856                  * first, for the page indexing below to work.
4857                  *
4858                  * Note that page table lock is not held when pte is null.
4859                  */
4860                 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h),
4861                                       huge_page_size(h));
4862                 if (pte)
4863                         ptl = huge_pte_lock(h, mm, pte);
4864                 absent = !pte || huge_pte_none(huge_ptep_get(pte));
4865
4866                 /*
4867                  * When coredumping, it suits get_dump_page if we just return
4868                  * an error where there's an empty slot with no huge pagecache
4869                  * to back it.  This way, we avoid allocating a hugepage, and
4870                  * the sparse dumpfile avoids allocating disk blocks, but its
4871                  * huge holes still show up with zeroes where they need to be.
4872                  */
4873                 if (absent && (flags & FOLL_DUMP) &&
4874                     !hugetlbfs_pagecache_present(h, vma, vaddr)) {
4875                         if (pte)
4876                                 spin_unlock(ptl);
4877                         remainder = 0;
4878                         break;
4879                 }
4880
4881                 /*
4882                  * We need call hugetlb_fault for both hugepages under migration
4883                  * (in which case hugetlb_fault waits for the migration,) and
4884                  * hwpoisoned hugepages (in which case we need to prevent the
4885                  * caller from accessing to them.) In order to do this, we use
4886                  * here is_swap_pte instead of is_hugetlb_entry_migration and
4887                  * is_hugetlb_entry_hwpoisoned. This is because it simply covers
4888                  * both cases, and because we can't follow correct pages
4889                  * directly from any kind of swap entries.
4890                  */
4891                 if (absent || is_swap_pte(huge_ptep_get(pte)) ||
4892                     ((flags & FOLL_WRITE) &&
4893                       !huge_pte_write(huge_ptep_get(pte)))) {
4894                         vm_fault_t ret;
4895                         unsigned int fault_flags = 0;
4896
4897                         if (pte)
4898                                 spin_unlock(ptl);
4899                         if (flags & FOLL_WRITE)
4900                                 fault_flags |= FAULT_FLAG_WRITE;
4901                         if (locked)
4902                                 fault_flags |= FAULT_FLAG_ALLOW_RETRY |
4903                                         FAULT_FLAG_KILLABLE;
4904                         if (flags & FOLL_NOWAIT)
4905                                 fault_flags |= FAULT_FLAG_ALLOW_RETRY |
4906                                         FAULT_FLAG_RETRY_NOWAIT;
4907                         if (flags & FOLL_TRIED) {
4908                                 /*
4909                                  * Note: FAULT_FLAG_ALLOW_RETRY and
4910                                  * FAULT_FLAG_TRIED can co-exist
4911                                  */
4912                                 fault_flags |= FAULT_FLAG_TRIED;
4913                         }
4914                         ret = hugetlb_fault(mm, vma, vaddr, fault_flags);
4915                         if (ret & VM_FAULT_ERROR) {
4916                                 err = vm_fault_to_errno(ret, flags);
4917                                 remainder = 0;
4918                                 break;
4919                         }
4920                         if (ret & VM_FAULT_RETRY) {
4921                                 if (locked &&
4922                                     !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
4923                                         *locked = 0;
4924                                 *nr_pages = 0;
4925                                 /*
4926                                  * VM_FAULT_RETRY must not return an
4927                                  * error, it will return zero
4928                                  * instead.
4929                                  *
4930                                  * No need to update "position" as the
4931                                  * caller will not check it after
4932                                  * *nr_pages is set to 0.
4933                                  */
4934                                 return i;
4935                         }
4936                         continue;
4937                 }
4938
4939                 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
4940                 page = pte_page(huge_ptep_get(pte));
4941
4942                 /*
4943                  * If subpage information not requested, update counters
4944                  * and skip the same_page loop below.
4945                  */
4946                 if (!pages && !vmas && !pfn_offset &&
4947                     (vaddr + huge_page_size(h) < vma->vm_end) &&
4948                     (remainder >= pages_per_huge_page(h))) {
4949                         vaddr += huge_page_size(h);
4950                         remainder -= pages_per_huge_page(h);
4951                         i += pages_per_huge_page(h);
4952                         spin_unlock(ptl);
4953                         continue;
4954                 }
4955
4956                 refs = min3(pages_per_huge_page(h) - pfn_offset,
4957                             (vma->vm_end - vaddr) >> PAGE_SHIFT, remainder);
4958
4959                 if (pages || vmas)
4960                         record_subpages_vmas(mem_map_offset(page, pfn_offset),
4961                                              vma, refs,
4962                                              likely(pages) ? pages + i : NULL,
4963                                              vmas ? vmas + i : NULL);
4964
4965                 if (pages) {
4966                         /*
4967                          * try_grab_compound_head() should always succeed here,
4968                          * because: a) we hold the ptl lock, and b) we've just
4969                          * checked that the huge page is present in the page
4970                          * tables. If the huge page is present, then the tail
4971                          * pages must also be present. The ptl prevents the
4972                          * head page and tail pages from being rearranged in
4973                          * any way. So this page must be available at this
4974                          * point, unless the page refcount overflowed:
4975                          */
4976                         if (WARN_ON_ONCE(!try_grab_compound_head(pages[i],
4977                                                                  refs,
4978                                                                  flags))) {
4979                                 spin_unlock(ptl);
4980                                 remainder = 0;
4981                                 err = -ENOMEM;
4982                                 break;
4983                         }
4984                 }
4985
4986                 vaddr += (refs << PAGE_SHIFT);
4987                 remainder -= refs;
4988                 i += refs;
4989
4990                 spin_unlock(ptl);
4991         }
4992         *nr_pages = remainder;
4993         /*
4994          * setting position is actually required only if remainder is
4995          * not zero but it's faster not to add a "if (remainder)"
4996          * branch.
4997          */
4998         *position = vaddr;
4999
5000         return i ? i : err;
5001 }
5002
5003 unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
5004                 unsigned long address, unsigned long end, pgprot_t newprot)
5005 {
5006         struct mm_struct *mm = vma->vm_mm;
5007         unsigned long start = address;
5008         pte_t *ptep;
5009         pte_t pte;
5010         struct hstate *h = hstate_vma(vma);
5011         unsigned long pages = 0;
5012         bool shared_pmd = false;
5013         struct mmu_notifier_range range;
5014
5015         /*
5016          * In the case of shared PMDs, the area to flush could be beyond
5017          * start/end.  Set range.start/range.end to cover the maximum possible
5018          * range if PMD sharing is possible.
5019          */
5020         mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA,
5021                                 0, vma, mm, start, end);
5022         adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
5023
5024         BUG_ON(address >= end);
5025         flush_cache_range(vma, range.start, range.end);
5026
5027         mmu_notifier_invalidate_range_start(&range);
5028         i_mmap_lock_write(vma->vm_file->f_mapping);
5029         for (; address < end; address += huge_page_size(h)) {
5030                 spinlock_t *ptl;
5031                 ptep = huge_pte_offset(mm, address, huge_page_size(h));
5032                 if (!ptep)
5033                         continue;
5034                 ptl = huge_pte_lock(h, mm, ptep);
5035                 if (huge_pmd_unshare(mm, vma, &address, ptep)) {
5036                         pages++;
5037                         spin_unlock(ptl);
5038                         shared_pmd = true;
5039                         continue;
5040                 }
5041                 pte = huge_ptep_get(ptep);
5042                 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
5043                         spin_unlock(ptl);
5044                         continue;
5045                 }
5046                 if (unlikely(is_hugetlb_entry_migration(pte))) {
5047                         swp_entry_t entry = pte_to_swp_entry(pte);
5048
5049                         if (is_write_migration_entry(entry)) {
5050                                 pte_t newpte;
5051
5052                                 make_migration_entry_read(&entry);
5053                                 newpte = swp_entry_to_pte(entry);
5054                                 set_huge_swap_pte_at(mm, address, ptep,
5055                                                      newpte, huge_page_size(h));
5056                                 pages++;
5057                         }
5058                         spin_unlock(ptl);
5059                         continue;
5060                 }
5061                 if (!huge_pte_none(pte)) {
5062                         pte_t old_pte;
5063
5064                         old_pte = huge_ptep_modify_prot_start(vma, address, ptep);
5065                         pte = pte_mkhuge(huge_pte_modify(old_pte, newprot));
5066                         pte = arch_make_huge_pte(pte, vma, NULL, 0);
5067                         huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte);
5068                         pages++;
5069                 }
5070                 spin_unlock(ptl);
5071         }
5072         /*
5073          * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
5074          * may have cleared our pud entry and done put_page on the page table:
5075          * once we release i_mmap_rwsem, another task can do the final put_page
5076          * and that page table be reused and filled with junk.  If we actually
5077          * did unshare a page of pmds, flush the range corresponding to the pud.
5078          */
5079         if (shared_pmd)
5080                 flush_hugetlb_tlb_range(vma, range.start, range.end);
5081         else
5082                 flush_hugetlb_tlb_range(vma, start, end);
5083         /*
5084          * No need to call mmu_notifier_invalidate_range() we are downgrading
5085          * page table protection not changing it to point to a new page.
5086          *
5087          * See Documentation/vm/mmu_notifier.rst
5088          */
5089         i_mmap_unlock_write(vma->vm_file->f_mapping);
5090         mmu_notifier_invalidate_range_end(&range);
5091
5092         return pages << h->order;
5093 }
5094
5095 /* Return true if reservation was successful, false otherwise.  */
5096 bool hugetlb_reserve_pages(struct inode *inode,
5097                                         long from, long to,
5098                                         struct vm_area_struct *vma,
5099                                         vm_flags_t vm_flags)
5100 {
5101         long chg, add = -1;
5102         struct hstate *h = hstate_inode(inode);
5103         struct hugepage_subpool *spool = subpool_inode(inode);
5104         struct resv_map *resv_map;
5105         struct hugetlb_cgroup *h_cg = NULL;
5106         long gbl_reserve, regions_needed = 0;
5107
5108         /* This should never happen */
5109         if (from > to) {
5110                 VM_WARN(1, "%s called with a negative range\n", __func__);
5111                 return false;
5112         }
5113
5114         /*
5115          * Only apply hugepage reservation if asked. At fault time, an
5116          * attempt will be made for VM_NORESERVE to allocate a page
5117          * without using reserves
5118          */
5119         if (vm_flags & VM_NORESERVE)
5120                 return true;
5121
5122         /*
5123          * Shared mappings base their reservation on the number of pages that
5124          * are already allocated on behalf of the file. Private mappings need
5125          * to reserve the full area even if read-only as mprotect() may be
5126          * called to make the mapping read-write. Assume !vma is a shm mapping
5127          */
5128         if (!vma || vma->vm_flags & VM_MAYSHARE) {
5129                 /*
5130                  * resv_map can not be NULL as hugetlb_reserve_pages is only
5131                  * called for inodes for which resv_maps were created (see
5132                  * hugetlbfs_get_inode).
5133                  */
5134                 resv_map = inode_resv_map(inode);
5135
5136                 chg = region_chg(resv_map, from, to, &regions_needed);
5137
5138         } else {
5139                 /* Private mapping. */
5140                 resv_map = resv_map_alloc();
5141                 if (!resv_map)
5142                         return false;
5143
5144                 chg = to - from;
5145
5146                 set_vma_resv_map(vma, resv_map);
5147                 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
5148         }
5149
5150         if (chg < 0)
5151                 goto out_err;
5152
5153         if (hugetlb_cgroup_charge_cgroup_rsvd(hstate_index(h),
5154                                 chg * pages_per_huge_page(h), &h_cg) < 0)
5155                 goto out_err;
5156
5157         if (vma && !(vma->vm_flags & VM_MAYSHARE) && h_cg) {
5158                 /* For private mappings, the hugetlb_cgroup uncharge info hangs
5159                  * of the resv_map.
5160                  */
5161                 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, h_cg, h);
5162         }
5163
5164         /*
5165          * There must be enough pages in the subpool for the mapping. If
5166          * the subpool has a minimum size, there may be some global
5167          * reservations already in place (gbl_reserve).
5168          */
5169         gbl_reserve = hugepage_subpool_get_pages(spool, chg);
5170         if (gbl_reserve < 0)
5171                 goto out_uncharge_cgroup;
5172
5173         /*
5174          * Check enough hugepages are available for the reservation.
5175          * Hand the pages back to the subpool if there are not
5176          */
5177         if (hugetlb_acct_memory(h, gbl_reserve) < 0)
5178                 goto out_put_pages;
5179
5180         /*
5181          * Account for the reservations made. Shared mappings record regions
5182          * that have reservations as they are shared by multiple VMAs.
5183          * When the last VMA disappears, the region map says how much
5184          * the reservation was and the page cache tells how much of
5185          * the reservation was consumed. Private mappings are per-VMA and
5186          * only the consumed reservations are tracked. When the VMA
5187          * disappears, the original reservation is the VMA size and the
5188          * consumed reservations are stored in the map. Hence, nothing
5189          * else has to be done for private mappings here
5190          */
5191         if (!vma || vma->vm_flags & VM_MAYSHARE) {
5192                 add = region_add(resv_map, from, to, regions_needed, h, h_cg);
5193
5194                 if (unlikely(add < 0)) {
5195                         hugetlb_acct_memory(h, -gbl_reserve);
5196                         goto out_put_pages;
5197                 } else if (unlikely(chg > add)) {
5198                         /*
5199                          * pages in this range were added to the reserve
5200                          * map between region_chg and region_add.  This
5201                          * indicates a race with alloc_huge_page.  Adjust
5202                          * the subpool and reserve counts modified above
5203                          * based on the difference.
5204                          */
5205                         long rsv_adjust;
5206
5207                         /*
5208                          * hugetlb_cgroup_uncharge_cgroup_rsvd() will put the
5209                          * reference to h_cg->css. See comment below for detail.
5210                          */
5211                         hugetlb_cgroup_uncharge_cgroup_rsvd(
5212                                 hstate_index(h),
5213                                 (chg - add) * pages_per_huge_page(h), h_cg);
5214
5215                         rsv_adjust = hugepage_subpool_put_pages(spool,
5216                                                                 chg - add);
5217                         hugetlb_acct_memory(h, -rsv_adjust);
5218                 } else if (h_cg) {
5219                         /*
5220                          * The file_regions will hold their own reference to
5221                          * h_cg->css. So we should release the reference held
5222                          * via hugetlb_cgroup_charge_cgroup_rsvd() when we are
5223                          * done.
5224                          */
5225                         hugetlb_cgroup_put_rsvd_cgroup(h_cg);
5226                 }
5227         }
5228         return true;
5229
5230 out_put_pages:
5231         /* put back original number of pages, chg */
5232         (void)hugepage_subpool_put_pages(spool, chg);
5233 out_uncharge_cgroup:
5234         hugetlb_cgroup_uncharge_cgroup_rsvd(hstate_index(h),
5235                                             chg * pages_per_huge_page(h), h_cg);
5236 out_err:
5237         if (!vma || vma->vm_flags & VM_MAYSHARE)
5238                 /* Only call region_abort if the region_chg succeeded but the
5239                  * region_add failed or didn't run.
5240                  */
5241                 if (chg >= 0 && add < 0)
5242                         region_abort(resv_map, from, to, regions_needed);
5243         if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
5244                 kref_put(&resv_map->refs, resv_map_release);
5245         return false;
5246 }
5247
5248 long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
5249                                                                 long freed)
5250 {
5251         struct hstate *h = hstate_inode(inode);
5252         struct resv_map *resv_map = inode_resv_map(inode);
5253         long chg = 0;
5254         struct hugepage_subpool *spool = subpool_inode(inode);
5255         long gbl_reserve;
5256
5257         /*
5258          * Since this routine can be called in the evict inode path for all
5259          * hugetlbfs inodes, resv_map could be NULL.
5260          */
5261         if (resv_map) {
5262                 chg = region_del(resv_map, start, end);
5263                 /*
5264                  * region_del() can fail in the rare case where a region
5265                  * must be split and another region descriptor can not be
5266                  * allocated.  If end == LONG_MAX, it will not fail.
5267                  */
5268                 if (chg < 0)
5269                         return chg;
5270         }
5271
5272         spin_lock(&inode->i_lock);
5273         inode->i_blocks -= (blocks_per_huge_page(h) * freed);
5274         spin_unlock(&inode->i_lock);
5275
5276         /*
5277          * If the subpool has a minimum size, the number of global
5278          * reservations to be released may be adjusted.
5279          *
5280          * Note that !resv_map implies freed == 0. So (chg - freed)
5281          * won't go negative.
5282          */
5283         gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
5284         hugetlb_acct_memory(h, -gbl_reserve);
5285
5286         return 0;
5287 }
5288
5289 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
5290 static unsigned long page_table_shareable(struct vm_area_struct *svma,
5291                                 struct vm_area_struct *vma,
5292                                 unsigned long addr, pgoff_t idx)
5293 {
5294         unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
5295                                 svma->vm_start;
5296         unsigned long sbase = saddr & PUD_MASK;
5297         unsigned long s_end = sbase + PUD_SIZE;
5298
5299         /* Allow segments to share if only one is marked locked */
5300         unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
5301         unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
5302
5303         /*
5304          * match the virtual addresses, permission and the alignment of the
5305          * page table page.
5306          */
5307         if (pmd_index(addr) != pmd_index(saddr) ||
5308             vm_flags != svm_flags ||
5309             !range_in_vma(svma, sbase, s_end))
5310                 return 0;
5311
5312         return saddr;
5313 }
5314
5315 static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr)
5316 {
5317         unsigned long base = addr & PUD_MASK;
5318         unsigned long end = base + PUD_SIZE;
5319
5320         /*
5321          * check on proper vm_flags and page table alignment
5322          */
5323         if (vma->vm_flags & VM_MAYSHARE && range_in_vma(vma, base, end))
5324                 return true;
5325         return false;
5326 }
5327
5328 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
5329 {
5330 #ifdef CONFIG_USERFAULTFD
5331         if (uffd_disable_huge_pmd_share(vma))
5332                 return false;
5333 #endif
5334         return vma_shareable(vma, addr);
5335 }
5336
5337 /*
5338  * Determine if start,end range within vma could be mapped by shared pmd.
5339  * If yes, adjust start and end to cover range associated with possible
5340  * shared pmd mappings.
5341  */
5342 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
5343                                 unsigned long *start, unsigned long *end)
5344 {
5345         unsigned long v_start = ALIGN(vma->vm_start, PUD_SIZE),
5346                 v_end = ALIGN_DOWN(vma->vm_end, PUD_SIZE);
5347
5348         /*
5349          * vma need span at least one aligned PUD size and the start,end range
5350          * must at least partialy within it.
5351          */
5352         if (!(vma->vm_flags & VM_MAYSHARE) || !(v_end > v_start) ||
5353                 (*end <= v_start) || (*start >= v_end))
5354                 return;
5355
5356         /* Extend the range to be PUD aligned for a worst case scenario */
5357         if (*start > v_start)
5358                 *start = ALIGN_DOWN(*start, PUD_SIZE);
5359
5360         if (*end < v_end)
5361                 *end = ALIGN(*end, PUD_SIZE);
5362 }
5363
5364 /*
5365  * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
5366  * and returns the corresponding pte. While this is not necessary for the
5367  * !shared pmd case because we can allocate the pmd later as well, it makes the
5368  * code much cleaner.
5369  *
5370  * This routine must be called with i_mmap_rwsem held in at least read mode if
5371  * sharing is possible.  For hugetlbfs, this prevents removal of any page
5372  * table entries associated with the address space.  This is important as we
5373  * are setting up sharing based on existing page table entries (mappings).
5374  *
5375  * NOTE: This routine is only called from huge_pte_alloc.  Some callers of
5376  * huge_pte_alloc know that sharing is not possible and do not take
5377  * i_mmap_rwsem as a performance optimization.  This is handled by the
5378  * if !vma_shareable check at the beginning of the routine. i_mmap_rwsem is
5379  * only required for subsequent processing.
5380  */
5381 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
5382                       unsigned long addr, pud_t *pud)
5383 {
5384         struct address_space *mapping = vma->vm_file->f_mapping;
5385         pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
5386                         vma->vm_pgoff;
5387         struct vm_area_struct *svma;
5388         unsigned long saddr;
5389         pte_t *spte = NULL;
5390         pte_t *pte;
5391         spinlock_t *ptl;
5392
5393         i_mmap_assert_locked(mapping);
5394         vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
5395                 if (svma == vma)
5396                         continue;
5397
5398                 saddr = page_table_shareable(svma, vma, addr, idx);
5399                 if (saddr) {
5400                         spte = huge_pte_offset(svma->vm_mm, saddr,
5401                                                vma_mmu_pagesize(svma));
5402                         if (spte) {
5403                                 get_page(virt_to_page(spte));
5404                                 break;
5405                         }
5406                 }
5407         }
5408
5409         if (!spte)
5410                 goto out;
5411
5412         ptl = huge_pte_lock(hstate_vma(vma), mm, spte);
5413         if (pud_none(*pud)) {
5414                 pud_populate(mm, pud,
5415                                 (pmd_t *)((unsigned long)spte & PAGE_MASK));
5416                 mm_inc_nr_pmds(mm);
5417         } else {
5418                 put_page(virt_to_page(spte));
5419         }
5420         spin_unlock(ptl);
5421 out:
5422         pte = (pte_t *)pmd_alloc(mm, pud, addr);
5423         return pte;
5424 }
5425
5426 /*
5427  * unmap huge page backed by shared pte.
5428  *
5429  * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
5430  * indicated by page_count > 1, unmap is achieved by clearing pud and
5431  * decrementing the ref count. If count == 1, the pte page is not shared.
5432  *
5433  * Called with page table lock held and i_mmap_rwsem held in write mode.
5434  *
5435  * returns: 1 successfully unmapped a shared pte page
5436  *          0 the underlying pte page is not shared, or it is the last user
5437  */
5438 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
5439                                         unsigned long *addr, pte_t *ptep)
5440 {
5441         pgd_t *pgd = pgd_offset(mm, *addr);
5442         p4d_t *p4d = p4d_offset(pgd, *addr);
5443         pud_t *pud = pud_offset(p4d, *addr);
5444
5445         i_mmap_assert_write_locked(vma->vm_file->f_mapping);
5446         BUG_ON(page_count(virt_to_page(ptep)) == 0);
5447         if (page_count(virt_to_page(ptep)) == 1)
5448                 return 0;
5449
5450         pud_clear(pud);
5451         put_page(virt_to_page(ptep));
5452         mm_dec_nr_pmds(mm);
5453         *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
5454         return 1;
5455 }
5456
5457 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
5458 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
5459                       unsigned long addr, pud_t *pud)
5460 {
5461         return NULL;
5462 }
5463
5464 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
5465                                 unsigned long *addr, pte_t *ptep)
5466 {
5467         return 0;
5468 }
5469
5470 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
5471                                 unsigned long *start, unsigned long *end)
5472 {
5473 }
5474
5475 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
5476 {
5477         return false;
5478 }
5479 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
5480
5481 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
5482 pte_t *huge_pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
5483                         unsigned long addr, unsigned long sz)
5484 {
5485         pgd_t *pgd;
5486         p4d_t *p4d;
5487         pud_t *pud;
5488         pte_t *pte = NULL;
5489
5490         pgd = pgd_offset(mm, addr);
5491         p4d = p4d_alloc(mm, pgd, addr);
5492         if (!p4d)
5493                 return NULL;
5494         pud = pud_alloc(mm, p4d, addr);
5495         if (pud) {
5496                 if (sz == PUD_SIZE) {
5497                         pte = (pte_t *)pud;
5498                 } else {
5499                         BUG_ON(sz != PMD_SIZE);
5500                         if (want_pmd_share(vma, addr) && pud_none(*pud))
5501                                 pte = huge_pmd_share(mm, vma, addr, pud);
5502                         else
5503                                 pte = (pte_t *)pmd_alloc(mm, pud, addr);
5504                 }
5505         }
5506         BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte));
5507
5508         return pte;
5509 }
5510
5511 /*
5512  * huge_pte_offset() - Walk the page table to resolve the hugepage
5513  * entry at address @addr
5514  *
5515  * Return: Pointer to page table entry (PUD or PMD) for
5516  * address @addr, or NULL if a !p*d_present() entry is encountered and the
5517  * size @sz doesn't match the hugepage size at this level of the page
5518  * table.
5519  */
5520 pte_t *huge_pte_offset(struct mm_struct *mm,
5521                        unsigned long addr, unsigned long sz)
5522 {
5523         pgd_t *pgd;
5524         p4d_t *p4d;
5525         pud_t *pud;
5526         pmd_t *pmd;
5527
5528         pgd = pgd_offset(mm, addr);
5529         if (!pgd_present(*pgd))
5530                 return NULL;
5531         p4d = p4d_offset(pgd, addr);
5532         if (!p4d_present(*p4d))
5533                 return NULL;
5534
5535         pud = pud_offset(p4d, addr);
5536         if (sz == PUD_SIZE)
5537                 /* must be pud huge, non-present or none */
5538                 return (pte_t *)pud;
5539         if (!pud_present(*pud))
5540                 return NULL;
5541         /* must have a valid entry and size to go further */
5542
5543         pmd = pmd_offset(pud, addr);
5544         /* must be pmd huge, non-present or none */
5545         return (pte_t *)pmd;
5546 }
5547
5548 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
5549
5550 /*
5551  * These functions are overwritable if your architecture needs its own
5552  * behavior.
5553  */
5554 struct page * __weak
5555 follow_huge_addr(struct mm_struct *mm, unsigned long address,
5556                               int write)
5557 {
5558         return ERR_PTR(-EINVAL);
5559 }
5560
5561 struct page * __weak
5562 follow_huge_pd(struct vm_area_struct *vma,
5563                unsigned long address, hugepd_t hpd, int flags, int pdshift)
5564 {
5565         WARN(1, "hugepd follow called with no support for hugepage directory format\n");
5566         return NULL;
5567 }
5568
5569 struct page * __weak
5570 follow_huge_pmd(struct mm_struct *mm, unsigned long address,
5571                 pmd_t *pmd, int flags)
5572 {
5573         struct page *page = NULL;
5574         spinlock_t *ptl;
5575         pte_t pte;
5576
5577         /* FOLL_GET and FOLL_PIN are mutually exclusive. */
5578         if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
5579                          (FOLL_PIN | FOLL_GET)))
5580                 return NULL;
5581
5582 retry:
5583         ptl = pmd_lockptr(mm, pmd);
5584         spin_lock(ptl);
5585         /*
5586          * make sure that the address range covered by this pmd is not
5587          * unmapped from other threads.
5588          */
5589         if (!pmd_huge(*pmd))
5590                 goto out;
5591         pte = huge_ptep_get((pte_t *)pmd);
5592         if (pte_present(pte)) {
5593                 page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
5594                 /*
5595                  * try_grab_page() should always succeed here, because: a) we
5596                  * hold the pmd (ptl) lock, and b) we've just checked that the
5597                  * huge pmd (head) page is present in the page tables. The ptl
5598                  * prevents the head page and tail pages from being rearranged
5599                  * in any way. So this page must be available at this point,
5600                  * unless the page refcount overflowed:
5601                  */
5602                 if (WARN_ON_ONCE(!try_grab_page(page, flags))) {
5603                         page = NULL;
5604                         goto out;
5605                 }
5606         } else {
5607                 if (is_hugetlb_entry_migration(pte)) {
5608                         spin_unlock(ptl);
5609                         __migration_entry_wait(mm, (pte_t *)pmd, ptl);
5610                         goto retry;
5611                 }
5612                 /*
5613                  * hwpoisoned entry is treated as no_page_table in
5614                  * follow_page_mask().
5615                  */
5616         }
5617 out:
5618         spin_unlock(ptl);
5619         return page;
5620 }
5621
5622 struct page * __weak
5623 follow_huge_pud(struct mm_struct *mm, unsigned long address,
5624                 pud_t *pud, int flags)
5625 {
5626         if (flags & (FOLL_GET | FOLL_PIN))
5627                 return NULL;
5628
5629         return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
5630 }
5631
5632 struct page * __weak
5633 follow_huge_pgd(struct mm_struct *mm, unsigned long address, pgd_t *pgd, int flags)
5634 {
5635         if (flags & (FOLL_GET | FOLL_PIN))
5636                 return NULL;
5637
5638         return pte_page(*(pte_t *)pgd) + ((address & ~PGDIR_MASK) >> PAGE_SHIFT);
5639 }
5640
5641 bool isolate_huge_page(struct page *page, struct list_head *list)
5642 {
5643         bool ret = true;
5644
5645         spin_lock(&hugetlb_lock);
5646         if (!PageHeadHuge(page) ||
5647             !HPageMigratable(page) ||
5648             !get_page_unless_zero(page)) {
5649                 ret = false;
5650                 goto unlock;
5651         }
5652         ClearHPageMigratable(page);
5653         list_move_tail(&page->lru, list);
5654 unlock:
5655         spin_unlock(&hugetlb_lock);
5656         return ret;
5657 }
5658
5659 void putback_active_hugepage(struct page *page)
5660 {
5661         spin_lock(&hugetlb_lock);
5662         SetHPageMigratable(page);
5663         list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
5664         spin_unlock(&hugetlb_lock);
5665         put_page(page);
5666 }
5667
5668 void move_hugetlb_state(struct page *oldpage, struct page *newpage, int reason)
5669 {
5670         struct hstate *h = page_hstate(oldpage);
5671
5672         hugetlb_cgroup_migrate(oldpage, newpage);
5673         set_page_owner_migrate_reason(newpage, reason);
5674
5675         /*
5676          * transfer temporary state of the new huge page. This is
5677          * reverse to other transitions because the newpage is going to
5678          * be final while the old one will be freed so it takes over
5679          * the temporary status.
5680          *
5681          * Also note that we have to transfer the per-node surplus state
5682          * here as well otherwise the global surplus count will not match
5683          * the per-node's.
5684          */
5685         if (HPageTemporary(newpage)) {
5686                 int old_nid = page_to_nid(oldpage);
5687                 int new_nid = page_to_nid(newpage);
5688
5689                 SetHPageTemporary(oldpage);
5690                 ClearHPageTemporary(newpage);
5691
5692                 /*
5693                  * There is no need to transfer the per-node surplus state
5694                  * when we do not cross the node.
5695                  */
5696                 if (new_nid == old_nid)
5697                         return;
5698                 spin_lock(&hugetlb_lock);
5699                 if (h->surplus_huge_pages_node[old_nid]) {
5700                         h->surplus_huge_pages_node[old_nid]--;
5701                         h->surplus_huge_pages_node[new_nid]++;
5702                 }
5703                 spin_unlock(&hugetlb_lock);
5704         }
5705 }
5706
5707 /*
5708  * This function will unconditionally remove all the shared pmd pgtable entries
5709  * within the specific vma for a hugetlbfs memory range.
5710  */
5711 void hugetlb_unshare_all_pmds(struct vm_area_struct *vma)
5712 {
5713         struct hstate *h = hstate_vma(vma);
5714         unsigned long sz = huge_page_size(h);
5715         struct mm_struct *mm = vma->vm_mm;
5716         struct mmu_notifier_range range;
5717         unsigned long address, start, end;
5718         spinlock_t *ptl;
5719         pte_t *ptep;
5720
5721         if (!(vma->vm_flags & VM_MAYSHARE))
5722                 return;
5723
5724         start = ALIGN(vma->vm_start, PUD_SIZE);
5725         end = ALIGN_DOWN(vma->vm_end, PUD_SIZE);
5726
5727         if (start >= end)
5728                 return;
5729
5730         /*
5731          * No need to call adjust_range_if_pmd_sharing_possible(), because
5732          * we have already done the PUD_SIZE alignment.
5733          */
5734         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
5735                                 start, end);
5736         mmu_notifier_invalidate_range_start(&range);
5737         i_mmap_lock_write(vma->vm_file->f_mapping);
5738         for (address = start; address < end; address += PUD_SIZE) {
5739                 unsigned long tmp = address;
5740
5741                 ptep = huge_pte_offset(mm, address, sz);
5742                 if (!ptep)
5743                         continue;
5744                 ptl = huge_pte_lock(h, mm, ptep);
5745                 /* We don't want 'address' to be changed */
5746                 huge_pmd_unshare(mm, vma, &tmp, ptep);
5747                 spin_unlock(ptl);
5748         }
5749         flush_hugetlb_tlb_range(vma, start, end);
5750         i_mmap_unlock_write(vma->vm_file->f_mapping);
5751         /*
5752          * No need to call mmu_notifier_invalidate_range(), see
5753          * Documentation/vm/mmu_notifier.rst.
5754          */
5755         mmu_notifier_invalidate_range_end(&range);
5756 }
5757
5758 #ifdef CONFIG_CMA
5759 static bool cma_reserve_called __initdata;
5760
5761 static int __init cmdline_parse_hugetlb_cma(char *p)
5762 {
5763         hugetlb_cma_size = memparse(p, &p);
5764         return 0;
5765 }
5766
5767 early_param("hugetlb_cma", cmdline_parse_hugetlb_cma);
5768
5769 void __init hugetlb_cma_reserve(int order)
5770 {
5771         unsigned long size, reserved, per_node;
5772         int nid;
5773
5774         cma_reserve_called = true;
5775
5776         if (!hugetlb_cma_size)
5777                 return;
5778
5779         if (hugetlb_cma_size < (PAGE_SIZE << order)) {
5780                 pr_warn("hugetlb_cma: cma area should be at least %lu MiB\n",
5781                         (PAGE_SIZE << order) / SZ_1M);
5782                 return;
5783         }
5784
5785         /*
5786          * If 3 GB area is requested on a machine with 4 numa nodes,
5787          * let's allocate 1 GB on first three nodes and ignore the last one.
5788          */
5789         per_node = DIV_ROUND_UP(hugetlb_cma_size, nr_online_nodes);
5790         pr_info("hugetlb_cma: reserve %lu MiB, up to %lu MiB per node\n",
5791                 hugetlb_cma_size / SZ_1M, per_node / SZ_1M);
5792
5793         reserved = 0;
5794         for_each_node_state(nid, N_ONLINE) {
5795                 int res;
5796                 char name[CMA_MAX_NAME];
5797
5798                 size = min(per_node, hugetlb_cma_size - reserved);
5799                 size = round_up(size, PAGE_SIZE << order);
5800
5801                 snprintf(name, sizeof(name), "hugetlb%d", nid);
5802                 res = cma_declare_contiguous_nid(0, size, 0, PAGE_SIZE << order,
5803                                                  0, false, name,
5804                                                  &hugetlb_cma[nid], nid);
5805                 if (res) {
5806                         pr_warn("hugetlb_cma: reservation failed: err %d, node %d",
5807                                 res, nid);
5808                         continue;
5809                 }
5810
5811                 reserved += size;
5812                 pr_info("hugetlb_cma: reserved %lu MiB on node %d\n",
5813                         size / SZ_1M, nid);
5814
5815                 if (reserved >= hugetlb_cma_size)
5816                         break;
5817         }
5818 }
5819
5820 void __init hugetlb_cma_check(void)
5821 {
5822         if (!hugetlb_cma_size || cma_reserve_called)
5823                 return;
5824
5825         pr_warn("hugetlb_cma: the option isn't supported by current arch\n");
5826 }
5827
5828 #endif /* CONFIG_CMA */