hugetlb: call update_and_free_page without hugetlb_lock
[linux-2.6-microblaze.git] / mm / hugetlb.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Generic hugetlb support.
4  * (C) Nadia Yvette Chambers, April 2004
5  */
6 #include <linux/list.h>
7 #include <linux/init.h>
8 #include <linux/mm.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/compiler.h>
17 #include <linux/cpuset.h>
18 #include <linux/mutex.h>
19 #include <linux/memblock.h>
20 #include <linux/sysfs.h>
21 #include <linux/slab.h>
22 #include <linux/sched/mm.h>
23 #include <linux/mmdebug.h>
24 #include <linux/sched/signal.h>
25 #include <linux/rmap.h>
26 #include <linux/string_helpers.h>
27 #include <linux/swap.h>
28 #include <linux/swapops.h>
29 #include <linux/jhash.h>
30 #include <linux/numa.h>
31 #include <linux/llist.h>
32 #include <linux/cma.h>
33
34 #include <asm/page.h>
35 #include <asm/pgalloc.h>
36 #include <asm/tlb.h>
37
38 #include <linux/io.h>
39 #include <linux/hugetlb.h>
40 #include <linux/hugetlb_cgroup.h>
41 #include <linux/node.h>
42 #include <linux/userfaultfd_k.h>
43 #include <linux/page_owner.h>
44 #include "internal.h"
45
46 int hugetlb_max_hstate __read_mostly;
47 unsigned int default_hstate_idx;
48 struct hstate hstates[HUGE_MAX_HSTATE];
49
50 #ifdef CONFIG_CMA
51 static struct cma *hugetlb_cma[MAX_NUMNODES];
52 #endif
53 static unsigned long hugetlb_cma_size __initdata;
54
55 /*
56  * Minimum page order among possible hugepage sizes, set to a proper value
57  * at boot time.
58  */
59 static unsigned int minimum_order __read_mostly = UINT_MAX;
60
61 __initdata LIST_HEAD(huge_boot_pages);
62
63 /* for command line parsing */
64 static struct hstate * __initdata parsed_hstate;
65 static unsigned long __initdata default_hstate_max_huge_pages;
66 static bool __initdata parsed_valid_hugepagesz = true;
67 static bool __initdata parsed_default_hugepagesz;
68
69 /*
70  * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
71  * free_huge_pages, and surplus_huge_pages.
72  */
73 DEFINE_SPINLOCK(hugetlb_lock);
74
75 /*
76  * Serializes faults on the same logical page.  This is used to
77  * prevent spurious OOMs when the hugepage pool is fully utilized.
78  */
79 static int num_fault_mutexes;
80 struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
81
82 /* Forward declaration */
83 static int hugetlb_acct_memory(struct hstate *h, long delta);
84
85 static inline bool subpool_is_free(struct hugepage_subpool *spool)
86 {
87         if (spool->count)
88                 return false;
89         if (spool->max_hpages != -1)
90                 return spool->used_hpages == 0;
91         if (spool->min_hpages != -1)
92                 return spool->rsv_hpages == spool->min_hpages;
93
94         return true;
95 }
96
97 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
98 {
99         spin_unlock(&spool->lock);
100
101         /* If no pages are used, and no other handles to the subpool
102          * remain, give up any reservations based on minimum size and
103          * free the subpool */
104         if (subpool_is_free(spool)) {
105                 if (spool->min_hpages != -1)
106                         hugetlb_acct_memory(spool->hstate,
107                                                 -spool->min_hpages);
108                 kfree(spool);
109         }
110 }
111
112 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
113                                                 long min_hpages)
114 {
115         struct hugepage_subpool *spool;
116
117         spool = kzalloc(sizeof(*spool), GFP_KERNEL);
118         if (!spool)
119                 return NULL;
120
121         spin_lock_init(&spool->lock);
122         spool->count = 1;
123         spool->max_hpages = max_hpages;
124         spool->hstate = h;
125         spool->min_hpages = min_hpages;
126
127         if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
128                 kfree(spool);
129                 return NULL;
130         }
131         spool->rsv_hpages = min_hpages;
132
133         return spool;
134 }
135
136 void hugepage_put_subpool(struct hugepage_subpool *spool)
137 {
138         spin_lock(&spool->lock);
139         BUG_ON(!spool->count);
140         spool->count--;
141         unlock_or_release_subpool(spool);
142 }
143
144 /*
145  * Subpool accounting for allocating and reserving pages.
146  * Return -ENOMEM if there are not enough resources to satisfy the
147  * request.  Otherwise, return the number of pages by which the
148  * global pools must be adjusted (upward).  The returned value may
149  * only be different than the passed value (delta) in the case where
150  * a subpool minimum size must be maintained.
151  */
152 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
153                                       long delta)
154 {
155         long ret = delta;
156
157         if (!spool)
158                 return ret;
159
160         spin_lock(&spool->lock);
161
162         if (spool->max_hpages != -1) {          /* maximum size accounting */
163                 if ((spool->used_hpages + delta) <= spool->max_hpages)
164                         spool->used_hpages += delta;
165                 else {
166                         ret = -ENOMEM;
167                         goto unlock_ret;
168                 }
169         }
170
171         /* minimum size accounting */
172         if (spool->min_hpages != -1 && spool->rsv_hpages) {
173                 if (delta > spool->rsv_hpages) {
174                         /*
175                          * Asking for more reserves than those already taken on
176                          * behalf of subpool.  Return difference.
177                          */
178                         ret = delta - spool->rsv_hpages;
179                         spool->rsv_hpages = 0;
180                 } else {
181                         ret = 0;        /* reserves already accounted for */
182                         spool->rsv_hpages -= delta;
183                 }
184         }
185
186 unlock_ret:
187         spin_unlock(&spool->lock);
188         return ret;
189 }
190
191 /*
192  * Subpool accounting for freeing and unreserving pages.
193  * Return the number of global page reservations that must be dropped.
194  * The return value may only be different than the passed value (delta)
195  * in the case where a subpool minimum size must be maintained.
196  */
197 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
198                                        long delta)
199 {
200         long ret = delta;
201
202         if (!spool)
203                 return delta;
204
205         spin_lock(&spool->lock);
206
207         if (spool->max_hpages != -1)            /* maximum size accounting */
208                 spool->used_hpages -= delta;
209
210          /* minimum size accounting */
211         if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
212                 if (spool->rsv_hpages + delta <= spool->min_hpages)
213                         ret = 0;
214                 else
215                         ret = spool->rsv_hpages + delta - spool->min_hpages;
216
217                 spool->rsv_hpages += delta;
218                 if (spool->rsv_hpages > spool->min_hpages)
219                         spool->rsv_hpages = spool->min_hpages;
220         }
221
222         /*
223          * If hugetlbfs_put_super couldn't free spool due to an outstanding
224          * quota reference, free it now.
225          */
226         unlock_or_release_subpool(spool);
227
228         return ret;
229 }
230
231 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
232 {
233         return HUGETLBFS_SB(inode->i_sb)->spool;
234 }
235
236 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
237 {
238         return subpool_inode(file_inode(vma->vm_file));
239 }
240
241 /* Helper that removes a struct file_region from the resv_map cache and returns
242  * it for use.
243  */
244 static struct file_region *
245 get_file_region_entry_from_cache(struct resv_map *resv, long from, long to)
246 {
247         struct file_region *nrg = NULL;
248
249         VM_BUG_ON(resv->region_cache_count <= 0);
250
251         resv->region_cache_count--;
252         nrg = list_first_entry(&resv->region_cache, struct file_region, link);
253         list_del(&nrg->link);
254
255         nrg->from = from;
256         nrg->to = to;
257
258         return nrg;
259 }
260
261 static void copy_hugetlb_cgroup_uncharge_info(struct file_region *nrg,
262                                               struct file_region *rg)
263 {
264 #ifdef CONFIG_CGROUP_HUGETLB
265         nrg->reservation_counter = rg->reservation_counter;
266         nrg->css = rg->css;
267         if (rg->css)
268                 css_get(rg->css);
269 #endif
270 }
271
272 /* Helper that records hugetlb_cgroup uncharge info. */
273 static void record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup *h_cg,
274                                                 struct hstate *h,
275                                                 struct resv_map *resv,
276                                                 struct file_region *nrg)
277 {
278 #ifdef CONFIG_CGROUP_HUGETLB
279         if (h_cg) {
280                 nrg->reservation_counter =
281                         &h_cg->rsvd_hugepage[hstate_index(h)];
282                 nrg->css = &h_cg->css;
283                 /*
284                  * The caller will hold exactly one h_cg->css reference for the
285                  * whole contiguous reservation region. But this area might be
286                  * scattered when there are already some file_regions reside in
287                  * it. As a result, many file_regions may share only one css
288                  * reference. In order to ensure that one file_region must hold
289                  * exactly one h_cg->css reference, we should do css_get for
290                  * each file_region and leave the reference held by caller
291                  * untouched.
292                  */
293                 css_get(&h_cg->css);
294                 if (!resv->pages_per_hpage)
295                         resv->pages_per_hpage = pages_per_huge_page(h);
296                 /* pages_per_hpage should be the same for all entries in
297                  * a resv_map.
298                  */
299                 VM_BUG_ON(resv->pages_per_hpage != pages_per_huge_page(h));
300         } else {
301                 nrg->reservation_counter = NULL;
302                 nrg->css = NULL;
303         }
304 #endif
305 }
306
307 static void put_uncharge_info(struct file_region *rg)
308 {
309 #ifdef CONFIG_CGROUP_HUGETLB
310         if (rg->css)
311                 css_put(rg->css);
312 #endif
313 }
314
315 static bool has_same_uncharge_info(struct file_region *rg,
316                                    struct file_region *org)
317 {
318 #ifdef CONFIG_CGROUP_HUGETLB
319         return rg && org &&
320                rg->reservation_counter == org->reservation_counter &&
321                rg->css == org->css;
322
323 #else
324         return true;
325 #endif
326 }
327
328 static void coalesce_file_region(struct resv_map *resv, struct file_region *rg)
329 {
330         struct file_region *nrg = NULL, *prg = NULL;
331
332         prg = list_prev_entry(rg, link);
333         if (&prg->link != &resv->regions && prg->to == rg->from &&
334             has_same_uncharge_info(prg, rg)) {
335                 prg->to = rg->to;
336
337                 list_del(&rg->link);
338                 put_uncharge_info(rg);
339                 kfree(rg);
340
341                 rg = prg;
342         }
343
344         nrg = list_next_entry(rg, link);
345         if (&nrg->link != &resv->regions && nrg->from == rg->to &&
346             has_same_uncharge_info(nrg, rg)) {
347                 nrg->from = rg->from;
348
349                 list_del(&rg->link);
350                 put_uncharge_info(rg);
351                 kfree(rg);
352         }
353 }
354
355 static inline long
356 hugetlb_resv_map_add(struct resv_map *map, struct file_region *rg, long from,
357                      long to, struct hstate *h, struct hugetlb_cgroup *cg,
358                      long *regions_needed)
359 {
360         struct file_region *nrg;
361
362         if (!regions_needed) {
363                 nrg = get_file_region_entry_from_cache(map, from, to);
364                 record_hugetlb_cgroup_uncharge_info(cg, h, map, nrg);
365                 list_add(&nrg->link, rg->link.prev);
366                 coalesce_file_region(map, nrg);
367         } else
368                 *regions_needed += 1;
369
370         return to - from;
371 }
372
373 /*
374  * Must be called with resv->lock held.
375  *
376  * Calling this with regions_needed != NULL will count the number of pages
377  * to be added but will not modify the linked list. And regions_needed will
378  * indicate the number of file_regions needed in the cache to carry out to add
379  * the regions for this range.
380  */
381 static long add_reservation_in_range(struct resv_map *resv, long f, long t,
382                                      struct hugetlb_cgroup *h_cg,
383                                      struct hstate *h, long *regions_needed)
384 {
385         long add = 0;
386         struct list_head *head = &resv->regions;
387         long last_accounted_offset = f;
388         struct file_region *rg = NULL, *trg = NULL;
389
390         if (regions_needed)
391                 *regions_needed = 0;
392
393         /* In this loop, we essentially handle an entry for the range
394          * [last_accounted_offset, rg->from), at every iteration, with some
395          * bounds checking.
396          */
397         list_for_each_entry_safe(rg, trg, head, link) {
398                 /* Skip irrelevant regions that start before our range. */
399                 if (rg->from < f) {
400                         /* If this region ends after the last accounted offset,
401                          * then we need to update last_accounted_offset.
402                          */
403                         if (rg->to > last_accounted_offset)
404                                 last_accounted_offset = rg->to;
405                         continue;
406                 }
407
408                 /* When we find a region that starts beyond our range, we've
409                  * finished.
410                  */
411                 if (rg->from >= t)
412                         break;
413
414                 /* Add an entry for last_accounted_offset -> rg->from, and
415                  * update last_accounted_offset.
416                  */
417                 if (rg->from > last_accounted_offset)
418                         add += hugetlb_resv_map_add(resv, rg,
419                                                     last_accounted_offset,
420                                                     rg->from, h, h_cg,
421                                                     regions_needed);
422
423                 last_accounted_offset = rg->to;
424         }
425
426         /* Handle the case where our range extends beyond
427          * last_accounted_offset.
428          */
429         if (last_accounted_offset < t)
430                 add += hugetlb_resv_map_add(resv, rg, last_accounted_offset,
431                                             t, h, h_cg, regions_needed);
432
433         VM_BUG_ON(add < 0);
434         return add;
435 }
436
437 /* Must be called with resv->lock acquired. Will drop lock to allocate entries.
438  */
439 static int allocate_file_region_entries(struct resv_map *resv,
440                                         int regions_needed)
441         __must_hold(&resv->lock)
442 {
443         struct list_head allocated_regions;
444         int to_allocate = 0, i = 0;
445         struct file_region *trg = NULL, *rg = NULL;
446
447         VM_BUG_ON(regions_needed < 0);
448
449         INIT_LIST_HEAD(&allocated_regions);
450
451         /*
452          * Check for sufficient descriptors in the cache to accommodate
453          * the number of in progress add operations plus regions_needed.
454          *
455          * This is a while loop because when we drop the lock, some other call
456          * to region_add or region_del may have consumed some region_entries,
457          * so we keep looping here until we finally have enough entries for
458          * (adds_in_progress + regions_needed).
459          */
460         while (resv->region_cache_count <
461                (resv->adds_in_progress + regions_needed)) {
462                 to_allocate = resv->adds_in_progress + regions_needed -
463                               resv->region_cache_count;
464
465                 /* At this point, we should have enough entries in the cache
466                  * for all the existings adds_in_progress. We should only be
467                  * needing to allocate for regions_needed.
468                  */
469                 VM_BUG_ON(resv->region_cache_count < resv->adds_in_progress);
470
471                 spin_unlock(&resv->lock);
472                 for (i = 0; i < to_allocate; i++) {
473                         trg = kmalloc(sizeof(*trg), GFP_KERNEL);
474                         if (!trg)
475                                 goto out_of_memory;
476                         list_add(&trg->link, &allocated_regions);
477                 }
478
479                 spin_lock(&resv->lock);
480
481                 list_splice(&allocated_regions, &resv->region_cache);
482                 resv->region_cache_count += to_allocate;
483         }
484
485         return 0;
486
487 out_of_memory:
488         list_for_each_entry_safe(rg, trg, &allocated_regions, link) {
489                 list_del(&rg->link);
490                 kfree(rg);
491         }
492         return -ENOMEM;
493 }
494
495 /*
496  * Add the huge page range represented by [f, t) to the reserve
497  * map.  Regions will be taken from the cache to fill in this range.
498  * Sufficient regions should exist in the cache due to the previous
499  * call to region_chg with the same range, but in some cases the cache will not
500  * have sufficient entries due to races with other code doing region_add or
501  * region_del.  The extra needed entries will be allocated.
502  *
503  * regions_needed is the out value provided by a previous call to region_chg.
504  *
505  * Return the number of new huge pages added to the map.  This number is greater
506  * than or equal to zero.  If file_region entries needed to be allocated for
507  * this operation and we were not able to allocate, it returns -ENOMEM.
508  * region_add of regions of length 1 never allocate file_regions and cannot
509  * fail; region_chg will always allocate at least 1 entry and a region_add for
510  * 1 page will only require at most 1 entry.
511  */
512 static long region_add(struct resv_map *resv, long f, long t,
513                        long in_regions_needed, struct hstate *h,
514                        struct hugetlb_cgroup *h_cg)
515 {
516         long add = 0, actual_regions_needed = 0;
517
518         spin_lock(&resv->lock);
519 retry:
520
521         /* Count how many regions are actually needed to execute this add. */
522         add_reservation_in_range(resv, f, t, NULL, NULL,
523                                  &actual_regions_needed);
524
525         /*
526          * Check for sufficient descriptors in the cache to accommodate
527          * this add operation. Note that actual_regions_needed may be greater
528          * than in_regions_needed, as the resv_map may have been modified since
529          * the region_chg call. In this case, we need to make sure that we
530          * allocate extra entries, such that we have enough for all the
531          * existing adds_in_progress, plus the excess needed for this
532          * operation.
533          */
534         if (actual_regions_needed > in_regions_needed &&
535             resv->region_cache_count <
536                     resv->adds_in_progress +
537                             (actual_regions_needed - in_regions_needed)) {
538                 /* region_add operation of range 1 should never need to
539                  * allocate file_region entries.
540                  */
541                 VM_BUG_ON(t - f <= 1);
542
543                 if (allocate_file_region_entries(
544                             resv, actual_regions_needed - in_regions_needed)) {
545                         return -ENOMEM;
546                 }
547
548                 goto retry;
549         }
550
551         add = add_reservation_in_range(resv, f, t, h_cg, h, NULL);
552
553         resv->adds_in_progress -= in_regions_needed;
554
555         spin_unlock(&resv->lock);
556         return add;
557 }
558
559 /*
560  * Examine the existing reserve map and determine how many
561  * huge pages in the specified range [f, t) are NOT currently
562  * represented.  This routine is called before a subsequent
563  * call to region_add that will actually modify the reserve
564  * map to add the specified range [f, t).  region_chg does
565  * not change the number of huge pages represented by the
566  * map.  A number of new file_region structures is added to the cache as a
567  * placeholder, for the subsequent region_add call to use. At least 1
568  * file_region structure is added.
569  *
570  * out_regions_needed is the number of regions added to the
571  * resv->adds_in_progress.  This value needs to be provided to a follow up call
572  * to region_add or region_abort for proper accounting.
573  *
574  * Returns the number of huge pages that need to be added to the existing
575  * reservation map for the range [f, t).  This number is greater or equal to
576  * zero.  -ENOMEM is returned if a new file_region structure or cache entry
577  * is needed and can not be allocated.
578  */
579 static long region_chg(struct resv_map *resv, long f, long t,
580                        long *out_regions_needed)
581 {
582         long chg = 0;
583
584         spin_lock(&resv->lock);
585
586         /* Count how many hugepages in this range are NOT represented. */
587         chg = add_reservation_in_range(resv, f, t, NULL, NULL,
588                                        out_regions_needed);
589
590         if (*out_regions_needed == 0)
591                 *out_regions_needed = 1;
592
593         if (allocate_file_region_entries(resv, *out_regions_needed))
594                 return -ENOMEM;
595
596         resv->adds_in_progress += *out_regions_needed;
597
598         spin_unlock(&resv->lock);
599         return chg;
600 }
601
602 /*
603  * Abort the in progress add operation.  The adds_in_progress field
604  * of the resv_map keeps track of the operations in progress between
605  * calls to region_chg and region_add.  Operations are sometimes
606  * aborted after the call to region_chg.  In such cases, region_abort
607  * is called to decrement the adds_in_progress counter. regions_needed
608  * is the value returned by the region_chg call, it is used to decrement
609  * the adds_in_progress counter.
610  *
611  * NOTE: The range arguments [f, t) are not needed or used in this
612  * routine.  They are kept to make reading the calling code easier as
613  * arguments will match the associated region_chg call.
614  */
615 static void region_abort(struct resv_map *resv, long f, long t,
616                          long regions_needed)
617 {
618         spin_lock(&resv->lock);
619         VM_BUG_ON(!resv->region_cache_count);
620         resv->adds_in_progress -= regions_needed;
621         spin_unlock(&resv->lock);
622 }
623
624 /*
625  * Delete the specified range [f, t) from the reserve map.  If the
626  * t parameter is LONG_MAX, this indicates that ALL regions after f
627  * should be deleted.  Locate the regions which intersect [f, t)
628  * and either trim, delete or split the existing regions.
629  *
630  * Returns the number of huge pages deleted from the reserve map.
631  * In the normal case, the return value is zero or more.  In the
632  * case where a region must be split, a new region descriptor must
633  * be allocated.  If the allocation fails, -ENOMEM will be returned.
634  * NOTE: If the parameter t == LONG_MAX, then we will never split
635  * a region and possibly return -ENOMEM.  Callers specifying
636  * t == LONG_MAX do not need to check for -ENOMEM error.
637  */
638 static long region_del(struct resv_map *resv, long f, long t)
639 {
640         struct list_head *head = &resv->regions;
641         struct file_region *rg, *trg;
642         struct file_region *nrg = NULL;
643         long del = 0;
644
645 retry:
646         spin_lock(&resv->lock);
647         list_for_each_entry_safe(rg, trg, head, link) {
648                 /*
649                  * Skip regions before the range to be deleted.  file_region
650                  * ranges are normally of the form [from, to).  However, there
651                  * may be a "placeholder" entry in the map which is of the form
652                  * (from, to) with from == to.  Check for placeholder entries
653                  * at the beginning of the range to be deleted.
654                  */
655                 if (rg->to <= f && (rg->to != rg->from || rg->to != f))
656                         continue;
657
658                 if (rg->from >= t)
659                         break;
660
661                 if (f > rg->from && t < rg->to) { /* Must split region */
662                         /*
663                          * Check for an entry in the cache before dropping
664                          * lock and attempting allocation.
665                          */
666                         if (!nrg &&
667                             resv->region_cache_count > resv->adds_in_progress) {
668                                 nrg = list_first_entry(&resv->region_cache,
669                                                         struct file_region,
670                                                         link);
671                                 list_del(&nrg->link);
672                                 resv->region_cache_count--;
673                         }
674
675                         if (!nrg) {
676                                 spin_unlock(&resv->lock);
677                                 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
678                                 if (!nrg)
679                                         return -ENOMEM;
680                                 goto retry;
681                         }
682
683                         del += t - f;
684                         hugetlb_cgroup_uncharge_file_region(
685                                 resv, rg, t - f, false);
686
687                         /* New entry for end of split region */
688                         nrg->from = t;
689                         nrg->to = rg->to;
690
691                         copy_hugetlb_cgroup_uncharge_info(nrg, rg);
692
693                         INIT_LIST_HEAD(&nrg->link);
694
695                         /* Original entry is trimmed */
696                         rg->to = f;
697
698                         list_add(&nrg->link, &rg->link);
699                         nrg = NULL;
700                         break;
701                 }
702
703                 if (f <= rg->from && t >= rg->to) { /* Remove entire region */
704                         del += rg->to - rg->from;
705                         hugetlb_cgroup_uncharge_file_region(resv, rg,
706                                                             rg->to - rg->from, true);
707                         list_del(&rg->link);
708                         kfree(rg);
709                         continue;
710                 }
711
712                 if (f <= rg->from) {    /* Trim beginning of region */
713                         hugetlb_cgroup_uncharge_file_region(resv, rg,
714                                                             t - rg->from, false);
715
716                         del += t - rg->from;
717                         rg->from = t;
718                 } else {                /* Trim end of region */
719                         hugetlb_cgroup_uncharge_file_region(resv, rg,
720                                                             rg->to - f, false);
721
722                         del += rg->to - f;
723                         rg->to = f;
724                 }
725         }
726
727         spin_unlock(&resv->lock);
728         kfree(nrg);
729         return del;
730 }
731
732 /*
733  * A rare out of memory error was encountered which prevented removal of
734  * the reserve map region for a page.  The huge page itself was free'ed
735  * and removed from the page cache.  This routine will adjust the subpool
736  * usage count, and the global reserve count if needed.  By incrementing
737  * these counts, the reserve map entry which could not be deleted will
738  * appear as a "reserved" entry instead of simply dangling with incorrect
739  * counts.
740  */
741 void hugetlb_fix_reserve_counts(struct inode *inode)
742 {
743         struct hugepage_subpool *spool = subpool_inode(inode);
744         long rsv_adjust;
745         bool reserved = false;
746
747         rsv_adjust = hugepage_subpool_get_pages(spool, 1);
748         if (rsv_adjust > 0) {
749                 struct hstate *h = hstate_inode(inode);
750
751                 if (!hugetlb_acct_memory(h, 1))
752                         reserved = true;
753         } else if (!rsv_adjust) {
754                 reserved = true;
755         }
756
757         if (!reserved)
758                 pr_warn("hugetlb: Huge Page Reserved count may go negative.\n");
759 }
760
761 /*
762  * Count and return the number of huge pages in the reserve map
763  * that intersect with the range [f, t).
764  */
765 static long region_count(struct resv_map *resv, long f, long t)
766 {
767         struct list_head *head = &resv->regions;
768         struct file_region *rg;
769         long chg = 0;
770
771         spin_lock(&resv->lock);
772         /* Locate each segment we overlap with, and count that overlap. */
773         list_for_each_entry(rg, head, link) {
774                 long seg_from;
775                 long seg_to;
776
777                 if (rg->to <= f)
778                         continue;
779                 if (rg->from >= t)
780                         break;
781
782                 seg_from = max(rg->from, f);
783                 seg_to = min(rg->to, t);
784
785                 chg += seg_to - seg_from;
786         }
787         spin_unlock(&resv->lock);
788
789         return chg;
790 }
791
792 /*
793  * Convert the address within this vma to the page offset within
794  * the mapping, in pagecache page units; huge pages here.
795  */
796 static pgoff_t vma_hugecache_offset(struct hstate *h,
797                         struct vm_area_struct *vma, unsigned long address)
798 {
799         return ((address - vma->vm_start) >> huge_page_shift(h)) +
800                         (vma->vm_pgoff >> huge_page_order(h));
801 }
802
803 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
804                                      unsigned long address)
805 {
806         return vma_hugecache_offset(hstate_vma(vma), vma, address);
807 }
808 EXPORT_SYMBOL_GPL(linear_hugepage_index);
809
810 /*
811  * Return the size of the pages allocated when backing a VMA. In the majority
812  * cases this will be same size as used by the page table entries.
813  */
814 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
815 {
816         if (vma->vm_ops && vma->vm_ops->pagesize)
817                 return vma->vm_ops->pagesize(vma);
818         return PAGE_SIZE;
819 }
820 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
821
822 /*
823  * Return the page size being used by the MMU to back a VMA. In the majority
824  * of cases, the page size used by the kernel matches the MMU size. On
825  * architectures where it differs, an architecture-specific 'strong'
826  * version of this symbol is required.
827  */
828 __weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
829 {
830         return vma_kernel_pagesize(vma);
831 }
832
833 /*
834  * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
835  * bits of the reservation map pointer, which are always clear due to
836  * alignment.
837  */
838 #define HPAGE_RESV_OWNER    (1UL << 0)
839 #define HPAGE_RESV_UNMAPPED (1UL << 1)
840 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
841
842 /*
843  * These helpers are used to track how many pages are reserved for
844  * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
845  * is guaranteed to have their future faults succeed.
846  *
847  * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
848  * the reserve counters are updated with the hugetlb_lock held. It is safe
849  * to reset the VMA at fork() time as it is not in use yet and there is no
850  * chance of the global counters getting corrupted as a result of the values.
851  *
852  * The private mapping reservation is represented in a subtly different
853  * manner to a shared mapping.  A shared mapping has a region map associated
854  * with the underlying file, this region map represents the backing file
855  * pages which have ever had a reservation assigned which this persists even
856  * after the page is instantiated.  A private mapping has a region map
857  * associated with the original mmap which is attached to all VMAs which
858  * reference it, this region map represents those offsets which have consumed
859  * reservation ie. where pages have been instantiated.
860  */
861 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
862 {
863         return (unsigned long)vma->vm_private_data;
864 }
865
866 static void set_vma_private_data(struct vm_area_struct *vma,
867                                                         unsigned long value)
868 {
869         vma->vm_private_data = (void *)value;
870 }
871
872 static void
873 resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map *resv_map,
874                                           struct hugetlb_cgroup *h_cg,
875                                           struct hstate *h)
876 {
877 #ifdef CONFIG_CGROUP_HUGETLB
878         if (!h_cg || !h) {
879                 resv_map->reservation_counter = NULL;
880                 resv_map->pages_per_hpage = 0;
881                 resv_map->css = NULL;
882         } else {
883                 resv_map->reservation_counter =
884                         &h_cg->rsvd_hugepage[hstate_index(h)];
885                 resv_map->pages_per_hpage = pages_per_huge_page(h);
886                 resv_map->css = &h_cg->css;
887         }
888 #endif
889 }
890
891 struct resv_map *resv_map_alloc(void)
892 {
893         struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
894         struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
895
896         if (!resv_map || !rg) {
897                 kfree(resv_map);
898                 kfree(rg);
899                 return NULL;
900         }
901
902         kref_init(&resv_map->refs);
903         spin_lock_init(&resv_map->lock);
904         INIT_LIST_HEAD(&resv_map->regions);
905
906         resv_map->adds_in_progress = 0;
907         /*
908          * Initialize these to 0. On shared mappings, 0's here indicate these
909          * fields don't do cgroup accounting. On private mappings, these will be
910          * re-initialized to the proper values, to indicate that hugetlb cgroup
911          * reservations are to be un-charged from here.
912          */
913         resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, NULL, NULL);
914
915         INIT_LIST_HEAD(&resv_map->region_cache);
916         list_add(&rg->link, &resv_map->region_cache);
917         resv_map->region_cache_count = 1;
918
919         return resv_map;
920 }
921
922 void resv_map_release(struct kref *ref)
923 {
924         struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
925         struct list_head *head = &resv_map->region_cache;
926         struct file_region *rg, *trg;
927
928         /* Clear out any active regions before we release the map. */
929         region_del(resv_map, 0, LONG_MAX);
930
931         /* ... and any entries left in the cache */
932         list_for_each_entry_safe(rg, trg, head, link) {
933                 list_del(&rg->link);
934                 kfree(rg);
935         }
936
937         VM_BUG_ON(resv_map->adds_in_progress);
938
939         kfree(resv_map);
940 }
941
942 static inline struct resv_map *inode_resv_map(struct inode *inode)
943 {
944         /*
945          * At inode evict time, i_mapping may not point to the original
946          * address space within the inode.  This original address space
947          * contains the pointer to the resv_map.  So, always use the
948          * address space embedded within the inode.
949          * The VERY common case is inode->mapping == &inode->i_data but,
950          * this may not be true for device special inodes.
951          */
952         return (struct resv_map *)(&inode->i_data)->private_data;
953 }
954
955 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
956 {
957         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
958         if (vma->vm_flags & VM_MAYSHARE) {
959                 struct address_space *mapping = vma->vm_file->f_mapping;
960                 struct inode *inode = mapping->host;
961
962                 return inode_resv_map(inode);
963
964         } else {
965                 return (struct resv_map *)(get_vma_private_data(vma) &
966                                                         ~HPAGE_RESV_MASK);
967         }
968 }
969
970 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
971 {
972         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
973         VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
974
975         set_vma_private_data(vma, (get_vma_private_data(vma) &
976                                 HPAGE_RESV_MASK) | (unsigned long)map);
977 }
978
979 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
980 {
981         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
982         VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
983
984         set_vma_private_data(vma, get_vma_private_data(vma) | flags);
985 }
986
987 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
988 {
989         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
990
991         return (get_vma_private_data(vma) & flag) != 0;
992 }
993
994 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
995 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
996 {
997         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
998         if (!(vma->vm_flags & VM_MAYSHARE))
999                 vma->vm_private_data = (void *)0;
1000 }
1001
1002 /* Returns true if the VMA has associated reserve pages */
1003 static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
1004 {
1005         if (vma->vm_flags & VM_NORESERVE) {
1006                 /*
1007                  * This address is already reserved by other process(chg == 0),
1008                  * so, we should decrement reserved count. Without decrementing,
1009                  * reserve count remains after releasing inode, because this
1010                  * allocated page will go into page cache and is regarded as
1011                  * coming from reserved pool in releasing step.  Currently, we
1012                  * don't have any other solution to deal with this situation
1013                  * properly, so add work-around here.
1014                  */
1015                 if (vma->vm_flags & VM_MAYSHARE && chg == 0)
1016                         return true;
1017                 else
1018                         return false;
1019         }
1020
1021         /* Shared mappings always use reserves */
1022         if (vma->vm_flags & VM_MAYSHARE) {
1023                 /*
1024                  * We know VM_NORESERVE is not set.  Therefore, there SHOULD
1025                  * be a region map for all pages.  The only situation where
1026                  * there is no region map is if a hole was punched via
1027                  * fallocate.  In this case, there really are no reserves to
1028                  * use.  This situation is indicated if chg != 0.
1029                  */
1030                 if (chg)
1031                         return false;
1032                 else
1033                         return true;
1034         }
1035
1036         /*
1037          * Only the process that called mmap() has reserves for
1038          * private mappings.
1039          */
1040         if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1041                 /*
1042                  * Like the shared case above, a hole punch or truncate
1043                  * could have been performed on the private mapping.
1044                  * Examine the value of chg to determine if reserves
1045                  * actually exist or were previously consumed.
1046                  * Very Subtle - The value of chg comes from a previous
1047                  * call to vma_needs_reserves().  The reserve map for
1048                  * private mappings has different (opposite) semantics
1049                  * than that of shared mappings.  vma_needs_reserves()
1050                  * has already taken this difference in semantics into
1051                  * account.  Therefore, the meaning of chg is the same
1052                  * as in the shared case above.  Code could easily be
1053                  * combined, but keeping it separate draws attention to
1054                  * subtle differences.
1055                  */
1056                 if (chg)
1057                         return false;
1058                 else
1059                         return true;
1060         }
1061
1062         return false;
1063 }
1064
1065 static void enqueue_huge_page(struct hstate *h, struct page *page)
1066 {
1067         int nid = page_to_nid(page);
1068         list_move(&page->lru, &h->hugepage_freelists[nid]);
1069         h->free_huge_pages++;
1070         h->free_huge_pages_node[nid]++;
1071         SetHPageFreed(page);
1072 }
1073
1074 static struct page *dequeue_huge_page_node_exact(struct hstate *h, int nid)
1075 {
1076         struct page *page;
1077         bool nocma = !!(current->flags & PF_MEMALLOC_NOCMA);
1078
1079         list_for_each_entry(page, &h->hugepage_freelists[nid], lru) {
1080                 if (nocma && is_migrate_cma_page(page))
1081                         continue;
1082
1083                 if (PageHWPoison(page))
1084                         continue;
1085
1086                 list_move(&page->lru, &h->hugepage_activelist);
1087                 set_page_refcounted(page);
1088                 ClearHPageFreed(page);
1089                 h->free_huge_pages--;
1090                 h->free_huge_pages_node[nid]--;
1091                 return page;
1092         }
1093
1094         return NULL;
1095 }
1096
1097 static struct page *dequeue_huge_page_nodemask(struct hstate *h, gfp_t gfp_mask, int nid,
1098                 nodemask_t *nmask)
1099 {
1100         unsigned int cpuset_mems_cookie;
1101         struct zonelist *zonelist;
1102         struct zone *zone;
1103         struct zoneref *z;
1104         int node = NUMA_NO_NODE;
1105
1106         zonelist = node_zonelist(nid, gfp_mask);
1107
1108 retry_cpuset:
1109         cpuset_mems_cookie = read_mems_allowed_begin();
1110         for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
1111                 struct page *page;
1112
1113                 if (!cpuset_zone_allowed(zone, gfp_mask))
1114                         continue;
1115                 /*
1116                  * no need to ask again on the same node. Pool is node rather than
1117                  * zone aware
1118                  */
1119                 if (zone_to_nid(zone) == node)
1120                         continue;
1121                 node = zone_to_nid(zone);
1122
1123                 page = dequeue_huge_page_node_exact(h, node);
1124                 if (page)
1125                         return page;
1126         }
1127         if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
1128                 goto retry_cpuset;
1129
1130         return NULL;
1131 }
1132
1133 static struct page *dequeue_huge_page_vma(struct hstate *h,
1134                                 struct vm_area_struct *vma,
1135                                 unsigned long address, int avoid_reserve,
1136                                 long chg)
1137 {
1138         struct page *page;
1139         struct mempolicy *mpol;
1140         gfp_t gfp_mask;
1141         nodemask_t *nodemask;
1142         int nid;
1143
1144         /*
1145          * A child process with MAP_PRIVATE mappings created by their parent
1146          * have no page reserves. This check ensures that reservations are
1147          * not "stolen". The child may still get SIGKILLed
1148          */
1149         if (!vma_has_reserves(vma, chg) &&
1150                         h->free_huge_pages - h->resv_huge_pages == 0)
1151                 goto err;
1152
1153         /* If reserves cannot be used, ensure enough pages are in the pool */
1154         if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
1155                 goto err;
1156
1157         gfp_mask = htlb_alloc_mask(h);
1158         nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
1159         page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
1160         if (page && !avoid_reserve && vma_has_reserves(vma, chg)) {
1161                 SetHPageRestoreReserve(page);
1162                 h->resv_huge_pages--;
1163         }
1164
1165         mpol_cond_put(mpol);
1166         return page;
1167
1168 err:
1169         return NULL;
1170 }
1171
1172 /*
1173  * common helper functions for hstate_next_node_to_{alloc|free}.
1174  * We may have allocated or freed a huge page based on a different
1175  * nodes_allowed previously, so h->next_node_to_{alloc|free} might
1176  * be outside of *nodes_allowed.  Ensure that we use an allowed
1177  * node for alloc or free.
1178  */
1179 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
1180 {
1181         nid = next_node_in(nid, *nodes_allowed);
1182         VM_BUG_ON(nid >= MAX_NUMNODES);
1183
1184         return nid;
1185 }
1186
1187 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
1188 {
1189         if (!node_isset(nid, *nodes_allowed))
1190                 nid = next_node_allowed(nid, nodes_allowed);
1191         return nid;
1192 }
1193
1194 /*
1195  * returns the previously saved node ["this node"] from which to
1196  * allocate a persistent huge page for the pool and advance the
1197  * next node from which to allocate, handling wrap at end of node
1198  * mask.
1199  */
1200 static int hstate_next_node_to_alloc(struct hstate *h,
1201                                         nodemask_t *nodes_allowed)
1202 {
1203         int nid;
1204
1205         VM_BUG_ON(!nodes_allowed);
1206
1207         nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
1208         h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
1209
1210         return nid;
1211 }
1212
1213 /*
1214  * helper for free_pool_huge_page() - return the previously saved
1215  * node ["this node"] from which to free a huge page.  Advance the
1216  * next node id whether or not we find a free huge page to free so
1217  * that the next attempt to free addresses the next node.
1218  */
1219 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1220 {
1221         int nid;
1222
1223         VM_BUG_ON(!nodes_allowed);
1224
1225         nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1226         h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1227
1228         return nid;
1229 }
1230
1231 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask)           \
1232         for (nr_nodes = nodes_weight(*mask);                            \
1233                 nr_nodes > 0 &&                                         \
1234                 ((node = hstate_next_node_to_alloc(hs, mask)) || 1);    \
1235                 nr_nodes--)
1236
1237 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask)            \
1238         for (nr_nodes = nodes_weight(*mask);                            \
1239                 nr_nodes > 0 &&                                         \
1240                 ((node = hstate_next_node_to_free(hs, mask)) || 1);     \
1241                 nr_nodes--)
1242
1243 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
1244 static void destroy_compound_gigantic_page(struct page *page,
1245                                         unsigned int order)
1246 {
1247         int i;
1248         int nr_pages = 1 << order;
1249         struct page *p = page + 1;
1250
1251         atomic_set(compound_mapcount_ptr(page), 0);
1252         atomic_set(compound_pincount_ptr(page), 0);
1253
1254         for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1255                 clear_compound_head(p);
1256                 set_page_refcounted(p);
1257         }
1258
1259         set_compound_order(page, 0);
1260         page[1].compound_nr = 0;
1261         __ClearPageHead(page);
1262 }
1263
1264 static void free_gigantic_page(struct page *page, unsigned int order)
1265 {
1266         /*
1267          * If the page isn't allocated using the cma allocator,
1268          * cma_release() returns false.
1269          */
1270 #ifdef CONFIG_CMA
1271         if (cma_release(hugetlb_cma[page_to_nid(page)], page, 1 << order))
1272                 return;
1273 #endif
1274
1275         free_contig_range(page_to_pfn(page), 1 << order);
1276 }
1277
1278 #ifdef CONFIG_CONTIG_ALLOC
1279 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1280                 int nid, nodemask_t *nodemask)
1281 {
1282         unsigned long nr_pages = pages_per_huge_page(h);
1283         if (nid == NUMA_NO_NODE)
1284                 nid = numa_mem_id();
1285
1286 #ifdef CONFIG_CMA
1287         {
1288                 struct page *page;
1289                 int node;
1290
1291                 if (hugetlb_cma[nid]) {
1292                         page = cma_alloc(hugetlb_cma[nid], nr_pages,
1293                                         huge_page_order(h), true);
1294                         if (page)
1295                                 return page;
1296                 }
1297
1298                 if (!(gfp_mask & __GFP_THISNODE)) {
1299                         for_each_node_mask(node, *nodemask) {
1300                                 if (node == nid || !hugetlb_cma[node])
1301                                         continue;
1302
1303                                 page = cma_alloc(hugetlb_cma[node], nr_pages,
1304                                                 huge_page_order(h), true);
1305                                 if (page)
1306                                         return page;
1307                         }
1308                 }
1309         }
1310 #endif
1311
1312         return alloc_contig_pages(nr_pages, gfp_mask, nid, nodemask);
1313 }
1314
1315 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid);
1316 static void prep_compound_gigantic_page(struct page *page, unsigned int order);
1317 #else /* !CONFIG_CONTIG_ALLOC */
1318 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1319                                         int nid, nodemask_t *nodemask)
1320 {
1321         return NULL;
1322 }
1323 #endif /* CONFIG_CONTIG_ALLOC */
1324
1325 #else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
1326 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1327                                         int nid, nodemask_t *nodemask)
1328 {
1329         return NULL;
1330 }
1331 static inline void free_gigantic_page(struct page *page, unsigned int order) { }
1332 static inline void destroy_compound_gigantic_page(struct page *page,
1333                                                 unsigned int order) { }
1334 #endif
1335
1336 /*
1337  * Remove hugetlb page from lists, and update dtor so that page appears
1338  * as just a compound page.  A reference is held on the page.
1339  *
1340  * Must be called with hugetlb lock held.
1341  */
1342 static void remove_hugetlb_page(struct hstate *h, struct page *page,
1343                                                         bool adjust_surplus)
1344 {
1345         int nid = page_to_nid(page);
1346
1347         VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
1348         VM_BUG_ON_PAGE(hugetlb_cgroup_from_page_rsvd(page), page);
1349
1350         if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1351                 return;
1352
1353         list_del(&page->lru);
1354
1355         if (HPageFreed(page)) {
1356                 h->free_huge_pages--;
1357                 h->free_huge_pages_node[nid]--;
1358         }
1359         if (adjust_surplus) {
1360                 h->surplus_huge_pages--;
1361                 h->surplus_huge_pages_node[nid]--;
1362         }
1363
1364         set_page_refcounted(page);
1365         set_compound_page_dtor(page, NULL_COMPOUND_DTOR);
1366
1367         h->nr_huge_pages--;
1368         h->nr_huge_pages_node[nid]--;
1369 }
1370
1371 static void update_and_free_page(struct hstate *h, struct page *page)
1372 {
1373         int i;
1374         struct page *subpage = page;
1375
1376         if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1377                 return;
1378
1379         for (i = 0; i < pages_per_huge_page(h);
1380              i++, subpage = mem_map_next(subpage, page, i)) {
1381                 subpage->flags &= ~(1 << PG_locked | 1 << PG_error |
1382                                 1 << PG_referenced | 1 << PG_dirty |
1383                                 1 << PG_active | 1 << PG_private |
1384                                 1 << PG_writeback);
1385         }
1386         if (hstate_is_gigantic(h)) {
1387                 destroy_compound_gigantic_page(page, huge_page_order(h));
1388                 free_gigantic_page(page, huge_page_order(h));
1389         } else {
1390                 __free_pages(page, huge_page_order(h));
1391         }
1392 }
1393
1394 struct hstate *size_to_hstate(unsigned long size)
1395 {
1396         struct hstate *h;
1397
1398         for_each_hstate(h) {
1399                 if (huge_page_size(h) == size)
1400                         return h;
1401         }
1402         return NULL;
1403 }
1404
1405 static void __free_huge_page(struct page *page)
1406 {
1407         /*
1408          * Can't pass hstate in here because it is called from the
1409          * compound page destructor.
1410          */
1411         struct hstate *h = page_hstate(page);
1412         int nid = page_to_nid(page);
1413         struct hugepage_subpool *spool = hugetlb_page_subpool(page);
1414         bool restore_reserve;
1415
1416         VM_BUG_ON_PAGE(page_count(page), page);
1417         VM_BUG_ON_PAGE(page_mapcount(page), page);
1418
1419         hugetlb_set_page_subpool(page, NULL);
1420         page->mapping = NULL;
1421         restore_reserve = HPageRestoreReserve(page);
1422         ClearHPageRestoreReserve(page);
1423
1424         /*
1425          * If HPageRestoreReserve was set on page, page allocation consumed a
1426          * reservation.  If the page was associated with a subpool, there
1427          * would have been a page reserved in the subpool before allocation
1428          * via hugepage_subpool_get_pages().  Since we are 'restoring' the
1429          * reservation, do not call hugepage_subpool_put_pages() as this will
1430          * remove the reserved page from the subpool.
1431          */
1432         if (!restore_reserve) {
1433                 /*
1434                  * A return code of zero implies that the subpool will be
1435                  * under its minimum size if the reservation is not restored
1436                  * after page is free.  Therefore, force restore_reserve
1437                  * operation.
1438                  */
1439                 if (hugepage_subpool_put_pages(spool, 1) == 0)
1440                         restore_reserve = true;
1441         }
1442
1443         spin_lock(&hugetlb_lock);
1444         ClearHPageMigratable(page);
1445         hugetlb_cgroup_uncharge_page(hstate_index(h),
1446                                      pages_per_huge_page(h), page);
1447         hugetlb_cgroup_uncharge_page_rsvd(hstate_index(h),
1448                                           pages_per_huge_page(h), page);
1449         if (restore_reserve)
1450                 h->resv_huge_pages++;
1451
1452         if (HPageTemporary(page)) {
1453                 remove_hugetlb_page(h, page, false);
1454                 spin_unlock(&hugetlb_lock);
1455                 update_and_free_page(h, page);
1456         } else if (h->surplus_huge_pages_node[nid]) {
1457                 /* remove the page from active list */
1458                 remove_hugetlb_page(h, page, true);
1459                 spin_unlock(&hugetlb_lock);
1460                 update_and_free_page(h, page);
1461         } else {
1462                 arch_clear_hugepage_flags(page);
1463                 enqueue_huge_page(h, page);
1464                 spin_unlock(&hugetlb_lock);
1465         }
1466 }
1467
1468 /*
1469  * As free_huge_page() can be called from a non-task context, we have
1470  * to defer the actual freeing in a workqueue to prevent potential
1471  * hugetlb_lock deadlock.
1472  *
1473  * free_hpage_workfn() locklessly retrieves the linked list of pages to
1474  * be freed and frees them one-by-one. As the page->mapping pointer is
1475  * going to be cleared in __free_huge_page() anyway, it is reused as the
1476  * llist_node structure of a lockless linked list of huge pages to be freed.
1477  */
1478 static LLIST_HEAD(hpage_freelist);
1479
1480 static void free_hpage_workfn(struct work_struct *work)
1481 {
1482         struct llist_node *node;
1483         struct page *page;
1484
1485         node = llist_del_all(&hpage_freelist);
1486
1487         while (node) {
1488                 page = container_of((struct address_space **)node,
1489                                      struct page, mapping);
1490                 node = node->next;
1491                 __free_huge_page(page);
1492         }
1493 }
1494 static DECLARE_WORK(free_hpage_work, free_hpage_workfn);
1495
1496 void free_huge_page(struct page *page)
1497 {
1498         /*
1499          * Defer freeing if in non-task context to avoid hugetlb_lock deadlock.
1500          */
1501         if (!in_task()) {
1502                 /*
1503                  * Only call schedule_work() if hpage_freelist is previously
1504                  * empty. Otherwise, schedule_work() had been called but the
1505                  * workfn hasn't retrieved the list yet.
1506                  */
1507                 if (llist_add((struct llist_node *)&page->mapping,
1508                               &hpage_freelist))
1509                         schedule_work(&free_hpage_work);
1510                 return;
1511         }
1512
1513         __free_huge_page(page);
1514 }
1515
1516 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
1517 {
1518         INIT_LIST_HEAD(&page->lru);
1519         set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1520         hugetlb_set_page_subpool(page, NULL);
1521         set_hugetlb_cgroup(page, NULL);
1522         set_hugetlb_cgroup_rsvd(page, NULL);
1523         spin_lock(&hugetlb_lock);
1524         h->nr_huge_pages++;
1525         h->nr_huge_pages_node[nid]++;
1526         ClearHPageFreed(page);
1527         spin_unlock(&hugetlb_lock);
1528 }
1529
1530 static void prep_compound_gigantic_page(struct page *page, unsigned int order)
1531 {
1532         int i;
1533         int nr_pages = 1 << order;
1534         struct page *p = page + 1;
1535
1536         /* we rely on prep_new_huge_page to set the destructor */
1537         set_compound_order(page, order);
1538         __ClearPageReserved(page);
1539         __SetPageHead(page);
1540         for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1541                 /*
1542                  * For gigantic hugepages allocated through bootmem at
1543                  * boot, it's safer to be consistent with the not-gigantic
1544                  * hugepages and clear the PG_reserved bit from all tail pages
1545                  * too.  Otherwise drivers using get_user_pages() to access tail
1546                  * pages may get the reference counting wrong if they see
1547                  * PG_reserved set on a tail page (despite the head page not
1548                  * having PG_reserved set).  Enforcing this consistency between
1549                  * head and tail pages allows drivers to optimize away a check
1550                  * on the head page when they need know if put_page() is needed
1551                  * after get_user_pages().
1552                  */
1553                 __ClearPageReserved(p);
1554                 set_page_count(p, 0);
1555                 set_compound_head(p, page);
1556         }
1557         atomic_set(compound_mapcount_ptr(page), -1);
1558         atomic_set(compound_pincount_ptr(page), 0);
1559 }
1560
1561 /*
1562  * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1563  * transparent huge pages.  See the PageTransHuge() documentation for more
1564  * details.
1565  */
1566 int PageHuge(struct page *page)
1567 {
1568         if (!PageCompound(page))
1569                 return 0;
1570
1571         page = compound_head(page);
1572         return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
1573 }
1574 EXPORT_SYMBOL_GPL(PageHuge);
1575
1576 /*
1577  * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1578  * normal or transparent huge pages.
1579  */
1580 int PageHeadHuge(struct page *page_head)
1581 {
1582         if (!PageHead(page_head))
1583                 return 0;
1584
1585         return page_head[1].compound_dtor == HUGETLB_PAGE_DTOR;
1586 }
1587
1588 /*
1589  * Find and lock address space (mapping) in write mode.
1590  *
1591  * Upon entry, the page is locked which means that page_mapping() is
1592  * stable.  Due to locking order, we can only trylock_write.  If we can
1593  * not get the lock, simply return NULL to caller.
1594  */
1595 struct address_space *hugetlb_page_mapping_lock_write(struct page *hpage)
1596 {
1597         struct address_space *mapping = page_mapping(hpage);
1598
1599         if (!mapping)
1600                 return mapping;
1601
1602         if (i_mmap_trylock_write(mapping))
1603                 return mapping;
1604
1605         return NULL;
1606 }
1607
1608 pgoff_t __basepage_index(struct page *page)
1609 {
1610         struct page *page_head = compound_head(page);
1611         pgoff_t index = page_index(page_head);
1612         unsigned long compound_idx;
1613
1614         if (!PageHuge(page_head))
1615                 return page_index(page);
1616
1617         if (compound_order(page_head) >= MAX_ORDER)
1618                 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
1619         else
1620                 compound_idx = page - page_head;
1621
1622         return (index << compound_order(page_head)) + compound_idx;
1623 }
1624
1625 static struct page *alloc_buddy_huge_page(struct hstate *h,
1626                 gfp_t gfp_mask, int nid, nodemask_t *nmask,
1627                 nodemask_t *node_alloc_noretry)
1628 {
1629         int order = huge_page_order(h);
1630         struct page *page;
1631         bool alloc_try_hard = true;
1632
1633         /*
1634          * By default we always try hard to allocate the page with
1635          * __GFP_RETRY_MAYFAIL flag.  However, if we are allocating pages in
1636          * a loop (to adjust global huge page counts) and previous allocation
1637          * failed, do not continue to try hard on the same node.  Use the
1638          * node_alloc_noretry bitmap to manage this state information.
1639          */
1640         if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry))
1641                 alloc_try_hard = false;
1642         gfp_mask |= __GFP_COMP|__GFP_NOWARN;
1643         if (alloc_try_hard)
1644                 gfp_mask |= __GFP_RETRY_MAYFAIL;
1645         if (nid == NUMA_NO_NODE)
1646                 nid = numa_mem_id();
1647         page = __alloc_pages(gfp_mask, order, nid, nmask);
1648         if (page)
1649                 __count_vm_event(HTLB_BUDDY_PGALLOC);
1650         else
1651                 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1652
1653         /*
1654          * If we did not specify __GFP_RETRY_MAYFAIL, but still got a page this
1655          * indicates an overall state change.  Clear bit so that we resume
1656          * normal 'try hard' allocations.
1657          */
1658         if (node_alloc_noretry && page && !alloc_try_hard)
1659                 node_clear(nid, *node_alloc_noretry);
1660
1661         /*
1662          * If we tried hard to get a page but failed, set bit so that
1663          * subsequent attempts will not try as hard until there is an
1664          * overall state change.
1665          */
1666         if (node_alloc_noretry && !page && alloc_try_hard)
1667                 node_set(nid, *node_alloc_noretry);
1668
1669         return page;
1670 }
1671
1672 /*
1673  * Common helper to allocate a fresh hugetlb page. All specific allocators
1674  * should use this function to get new hugetlb pages
1675  */
1676 static struct page *alloc_fresh_huge_page(struct hstate *h,
1677                 gfp_t gfp_mask, int nid, nodemask_t *nmask,
1678                 nodemask_t *node_alloc_noretry)
1679 {
1680         struct page *page;
1681
1682         if (hstate_is_gigantic(h))
1683                 page = alloc_gigantic_page(h, gfp_mask, nid, nmask);
1684         else
1685                 page = alloc_buddy_huge_page(h, gfp_mask,
1686                                 nid, nmask, node_alloc_noretry);
1687         if (!page)
1688                 return NULL;
1689
1690         if (hstate_is_gigantic(h))
1691                 prep_compound_gigantic_page(page, huge_page_order(h));
1692         prep_new_huge_page(h, page, page_to_nid(page));
1693
1694         return page;
1695 }
1696
1697 /*
1698  * Allocates a fresh page to the hugetlb allocator pool in the node interleaved
1699  * manner.
1700  */
1701 static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1702                                 nodemask_t *node_alloc_noretry)
1703 {
1704         struct page *page;
1705         int nr_nodes, node;
1706         gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
1707
1708         for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1709                 page = alloc_fresh_huge_page(h, gfp_mask, node, nodes_allowed,
1710                                                 node_alloc_noretry);
1711                 if (page)
1712                         break;
1713         }
1714
1715         if (!page)
1716                 return 0;
1717
1718         put_page(page); /* free it into the hugepage allocator */
1719
1720         return 1;
1721 }
1722
1723 /*
1724  * Free huge page from pool from next node to free.
1725  * Attempt to keep persistent huge pages more or less
1726  * balanced over allowed nodes.
1727  * Called with hugetlb_lock locked.
1728  */
1729 static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1730                                                          bool acct_surplus)
1731 {
1732         int nr_nodes, node;
1733         int ret = 0;
1734
1735         for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1736                 /*
1737                  * If we're returning unused surplus pages, only examine
1738                  * nodes with surplus pages.
1739                  */
1740                 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
1741                     !list_empty(&h->hugepage_freelists[node])) {
1742                         struct page *page =
1743                                 list_entry(h->hugepage_freelists[node].next,
1744                                           struct page, lru);
1745                         remove_hugetlb_page(h, page, acct_surplus);
1746                         /*
1747                          * unlock/lock around update_and_free_page is temporary
1748                          * and will be removed with subsequent patch.
1749                          */
1750                         spin_unlock(&hugetlb_lock);
1751                         update_and_free_page(h, page);
1752                         spin_lock(&hugetlb_lock);
1753                         ret = 1;
1754                         break;
1755                 }
1756         }
1757
1758         return ret;
1759 }
1760
1761 /*
1762  * Dissolve a given free hugepage into free buddy pages. This function does
1763  * nothing for in-use hugepages and non-hugepages.
1764  * This function returns values like below:
1765  *
1766  *  -EBUSY: failed to dissolved free hugepages or the hugepage is in-use
1767  *          (allocated or reserved.)
1768  *       0: successfully dissolved free hugepages or the page is not a
1769  *          hugepage (considered as already dissolved)
1770  */
1771 int dissolve_free_huge_page(struct page *page)
1772 {
1773         int rc = -EBUSY;
1774
1775 retry:
1776         /* Not to disrupt normal path by vainly holding hugetlb_lock */
1777         if (!PageHuge(page))
1778                 return 0;
1779
1780         spin_lock(&hugetlb_lock);
1781         if (!PageHuge(page)) {
1782                 rc = 0;
1783                 goto out;
1784         }
1785
1786         if (!page_count(page)) {
1787                 struct page *head = compound_head(page);
1788                 struct hstate *h = page_hstate(head);
1789                 if (h->free_huge_pages - h->resv_huge_pages == 0)
1790                         goto out;
1791
1792                 /*
1793                  * We should make sure that the page is already on the free list
1794                  * when it is dissolved.
1795                  */
1796                 if (unlikely(!HPageFreed(head))) {
1797                         spin_unlock(&hugetlb_lock);
1798                         cond_resched();
1799
1800                         /*
1801                          * Theoretically, we should return -EBUSY when we
1802                          * encounter this race. In fact, we have a chance
1803                          * to successfully dissolve the page if we do a
1804                          * retry. Because the race window is quite small.
1805                          * If we seize this opportunity, it is an optimization
1806                          * for increasing the success rate of dissolving page.
1807                          */
1808                         goto retry;
1809                 }
1810
1811                 /*
1812                  * Move PageHWPoison flag from head page to the raw error page,
1813                  * which makes any subpages rather than the error page reusable.
1814                  */
1815                 if (PageHWPoison(head) && page != head) {
1816                         SetPageHWPoison(page);
1817                         ClearPageHWPoison(head);
1818                 }
1819                 remove_hugetlb_page(h, page, false);
1820                 h->max_huge_pages--;
1821                 spin_unlock(&hugetlb_lock);
1822                 update_and_free_page(h, head);
1823                 return 0;
1824         }
1825 out:
1826         spin_unlock(&hugetlb_lock);
1827         return rc;
1828 }
1829
1830 /*
1831  * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
1832  * make specified memory blocks removable from the system.
1833  * Note that this will dissolve a free gigantic hugepage completely, if any
1834  * part of it lies within the given range.
1835  * Also note that if dissolve_free_huge_page() returns with an error, all
1836  * free hugepages that were dissolved before that error are lost.
1837  */
1838 int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
1839 {
1840         unsigned long pfn;
1841         struct page *page;
1842         int rc = 0;
1843
1844         if (!hugepages_supported())
1845                 return rc;
1846
1847         for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order) {
1848                 page = pfn_to_page(pfn);
1849                 rc = dissolve_free_huge_page(page);
1850                 if (rc)
1851                         break;
1852         }
1853
1854         return rc;
1855 }
1856
1857 /*
1858  * Allocates a fresh surplus page from the page allocator.
1859  */
1860 static struct page *alloc_surplus_huge_page(struct hstate *h, gfp_t gfp_mask,
1861                 int nid, nodemask_t *nmask)
1862 {
1863         struct page *page = NULL;
1864
1865         if (hstate_is_gigantic(h))
1866                 return NULL;
1867
1868         spin_lock(&hugetlb_lock);
1869         if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages)
1870                 goto out_unlock;
1871         spin_unlock(&hugetlb_lock);
1872
1873         page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
1874         if (!page)
1875                 return NULL;
1876
1877         spin_lock(&hugetlb_lock);
1878         /*
1879          * We could have raced with the pool size change.
1880          * Double check that and simply deallocate the new page
1881          * if we would end up overcommiting the surpluses. Abuse
1882          * temporary page to workaround the nasty free_huge_page
1883          * codeflow
1884          */
1885         if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
1886                 SetHPageTemporary(page);
1887                 spin_unlock(&hugetlb_lock);
1888                 put_page(page);
1889                 return NULL;
1890         } else {
1891                 h->surplus_huge_pages++;
1892                 h->surplus_huge_pages_node[page_to_nid(page)]++;
1893         }
1894
1895 out_unlock:
1896         spin_unlock(&hugetlb_lock);
1897
1898         return page;
1899 }
1900
1901 static struct page *alloc_migrate_huge_page(struct hstate *h, gfp_t gfp_mask,
1902                                      int nid, nodemask_t *nmask)
1903 {
1904         struct page *page;
1905
1906         if (hstate_is_gigantic(h))
1907                 return NULL;
1908
1909         page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
1910         if (!page)
1911                 return NULL;
1912
1913         /*
1914          * We do not account these pages as surplus because they are only
1915          * temporary and will be released properly on the last reference
1916          */
1917         SetHPageTemporary(page);
1918
1919         return page;
1920 }
1921
1922 /*
1923  * Use the VMA's mpolicy to allocate a huge page from the buddy.
1924  */
1925 static
1926 struct page *alloc_buddy_huge_page_with_mpol(struct hstate *h,
1927                 struct vm_area_struct *vma, unsigned long addr)
1928 {
1929         struct page *page;
1930         struct mempolicy *mpol;
1931         gfp_t gfp_mask = htlb_alloc_mask(h);
1932         int nid;
1933         nodemask_t *nodemask;
1934
1935         nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
1936         page = alloc_surplus_huge_page(h, gfp_mask, nid, nodemask);
1937         mpol_cond_put(mpol);
1938
1939         return page;
1940 }
1941
1942 /* page migration callback function */
1943 struct page *alloc_huge_page_nodemask(struct hstate *h, int preferred_nid,
1944                 nodemask_t *nmask, gfp_t gfp_mask)
1945 {
1946         spin_lock(&hugetlb_lock);
1947         if (h->free_huge_pages - h->resv_huge_pages > 0) {
1948                 struct page *page;
1949
1950                 page = dequeue_huge_page_nodemask(h, gfp_mask, preferred_nid, nmask);
1951                 if (page) {
1952                         spin_unlock(&hugetlb_lock);
1953                         return page;
1954                 }
1955         }
1956         spin_unlock(&hugetlb_lock);
1957
1958         return alloc_migrate_huge_page(h, gfp_mask, preferred_nid, nmask);
1959 }
1960
1961 /* mempolicy aware migration callback */
1962 struct page *alloc_huge_page_vma(struct hstate *h, struct vm_area_struct *vma,
1963                 unsigned long address)
1964 {
1965         struct mempolicy *mpol;
1966         nodemask_t *nodemask;
1967         struct page *page;
1968         gfp_t gfp_mask;
1969         int node;
1970
1971         gfp_mask = htlb_alloc_mask(h);
1972         node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
1973         page = alloc_huge_page_nodemask(h, node, nodemask, gfp_mask);
1974         mpol_cond_put(mpol);
1975
1976         return page;
1977 }
1978
1979 /*
1980  * Increase the hugetlb pool such that it can accommodate a reservation
1981  * of size 'delta'.
1982  */
1983 static int gather_surplus_pages(struct hstate *h, long delta)
1984         __must_hold(&hugetlb_lock)
1985 {
1986         struct list_head surplus_list;
1987         struct page *page, *tmp;
1988         int ret;
1989         long i;
1990         long needed, allocated;
1991         bool alloc_ok = true;
1992
1993         needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
1994         if (needed <= 0) {
1995                 h->resv_huge_pages += delta;
1996                 return 0;
1997         }
1998
1999         allocated = 0;
2000         INIT_LIST_HEAD(&surplus_list);
2001
2002         ret = -ENOMEM;
2003 retry:
2004         spin_unlock(&hugetlb_lock);
2005         for (i = 0; i < needed; i++) {
2006                 page = alloc_surplus_huge_page(h, htlb_alloc_mask(h),
2007                                 NUMA_NO_NODE, NULL);
2008                 if (!page) {
2009                         alloc_ok = false;
2010                         break;
2011                 }
2012                 list_add(&page->lru, &surplus_list);
2013                 cond_resched();
2014         }
2015         allocated += i;
2016
2017         /*
2018          * After retaking hugetlb_lock, we need to recalculate 'needed'
2019          * because either resv_huge_pages or free_huge_pages may have changed.
2020          */
2021         spin_lock(&hugetlb_lock);
2022         needed = (h->resv_huge_pages + delta) -
2023                         (h->free_huge_pages + allocated);
2024         if (needed > 0) {
2025                 if (alloc_ok)
2026                         goto retry;
2027                 /*
2028                  * We were not able to allocate enough pages to
2029                  * satisfy the entire reservation so we free what
2030                  * we've allocated so far.
2031                  */
2032                 goto free;
2033         }
2034         /*
2035          * The surplus_list now contains _at_least_ the number of extra pages
2036          * needed to accommodate the reservation.  Add the appropriate number
2037          * of pages to the hugetlb pool and free the extras back to the buddy
2038          * allocator.  Commit the entire reservation here to prevent another
2039          * process from stealing the pages as they are added to the pool but
2040          * before they are reserved.
2041          */
2042         needed += allocated;
2043         h->resv_huge_pages += delta;
2044         ret = 0;
2045
2046         /* Free the needed pages to the hugetlb pool */
2047         list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
2048                 int zeroed;
2049
2050                 if ((--needed) < 0)
2051                         break;
2052                 /*
2053                  * This page is now managed by the hugetlb allocator and has
2054                  * no users -- drop the buddy allocator's reference.
2055                  */
2056                 zeroed = put_page_testzero(page);
2057                 VM_BUG_ON_PAGE(!zeroed, page);
2058                 enqueue_huge_page(h, page);
2059         }
2060 free:
2061         spin_unlock(&hugetlb_lock);
2062
2063         /* Free unnecessary surplus pages to the buddy allocator */
2064         list_for_each_entry_safe(page, tmp, &surplus_list, lru)
2065                 put_page(page);
2066         spin_lock(&hugetlb_lock);
2067
2068         return ret;
2069 }
2070
2071 /*
2072  * This routine has two main purposes:
2073  * 1) Decrement the reservation count (resv_huge_pages) by the value passed
2074  *    in unused_resv_pages.  This corresponds to the prior adjustments made
2075  *    to the associated reservation map.
2076  * 2) Free any unused surplus pages that may have been allocated to satisfy
2077  *    the reservation.  As many as unused_resv_pages may be freed.
2078  *
2079  * Called with hugetlb_lock held.  However, the lock could be dropped (and
2080  * reacquired) during calls to cond_resched_lock.  Whenever dropping the lock,
2081  * we must make sure nobody else can claim pages we are in the process of
2082  * freeing.  Do this by ensuring resv_huge_page always is greater than the
2083  * number of huge pages we plan to free when dropping the lock.
2084  */
2085 static void return_unused_surplus_pages(struct hstate *h,
2086                                         unsigned long unused_resv_pages)
2087 {
2088         unsigned long nr_pages;
2089
2090         /* Cannot return gigantic pages currently */
2091         if (hstate_is_gigantic(h))
2092                 goto out;
2093
2094         /*
2095          * Part (or even all) of the reservation could have been backed
2096          * by pre-allocated pages. Only free surplus pages.
2097          */
2098         nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
2099
2100         /*
2101          * We want to release as many surplus pages as possible, spread
2102          * evenly across all nodes with memory. Iterate across these nodes
2103          * until we can no longer free unreserved surplus pages. This occurs
2104          * when the nodes with surplus pages have no free pages.
2105          * free_pool_huge_page() will balance the freed pages across the
2106          * on-line nodes with memory and will handle the hstate accounting.
2107          *
2108          * Note that we decrement resv_huge_pages as we free the pages.  If
2109          * we drop the lock, resv_huge_pages will still be sufficiently large
2110          * to cover subsequent pages we may free.
2111          */
2112         while (nr_pages--) {
2113                 h->resv_huge_pages--;
2114                 unused_resv_pages--;
2115                 if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
2116                         goto out;
2117                 cond_resched_lock(&hugetlb_lock);
2118         }
2119
2120 out:
2121         /* Fully uncommit the reservation */
2122         h->resv_huge_pages -= unused_resv_pages;
2123 }
2124
2125
2126 /*
2127  * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
2128  * are used by the huge page allocation routines to manage reservations.
2129  *
2130  * vma_needs_reservation is called to determine if the huge page at addr
2131  * within the vma has an associated reservation.  If a reservation is
2132  * needed, the value 1 is returned.  The caller is then responsible for
2133  * managing the global reservation and subpool usage counts.  After
2134  * the huge page has been allocated, vma_commit_reservation is called
2135  * to add the page to the reservation map.  If the page allocation fails,
2136  * the reservation must be ended instead of committed.  vma_end_reservation
2137  * is called in such cases.
2138  *
2139  * In the normal case, vma_commit_reservation returns the same value
2140  * as the preceding vma_needs_reservation call.  The only time this
2141  * is not the case is if a reserve map was changed between calls.  It
2142  * is the responsibility of the caller to notice the difference and
2143  * take appropriate action.
2144  *
2145  * vma_add_reservation is used in error paths where a reservation must
2146  * be restored when a newly allocated huge page must be freed.  It is
2147  * to be called after calling vma_needs_reservation to determine if a
2148  * reservation exists.
2149  */
2150 enum vma_resv_mode {
2151         VMA_NEEDS_RESV,
2152         VMA_COMMIT_RESV,
2153         VMA_END_RESV,
2154         VMA_ADD_RESV,
2155 };
2156 static long __vma_reservation_common(struct hstate *h,
2157                                 struct vm_area_struct *vma, unsigned long addr,
2158                                 enum vma_resv_mode mode)
2159 {
2160         struct resv_map *resv;
2161         pgoff_t idx;
2162         long ret;
2163         long dummy_out_regions_needed;
2164
2165         resv = vma_resv_map(vma);
2166         if (!resv)
2167                 return 1;
2168
2169         idx = vma_hugecache_offset(h, vma, addr);
2170         switch (mode) {
2171         case VMA_NEEDS_RESV:
2172                 ret = region_chg(resv, idx, idx + 1, &dummy_out_regions_needed);
2173                 /* We assume that vma_reservation_* routines always operate on
2174                  * 1 page, and that adding to resv map a 1 page entry can only
2175                  * ever require 1 region.
2176                  */
2177                 VM_BUG_ON(dummy_out_regions_needed != 1);
2178                 break;
2179         case VMA_COMMIT_RESV:
2180                 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2181                 /* region_add calls of range 1 should never fail. */
2182                 VM_BUG_ON(ret < 0);
2183                 break;
2184         case VMA_END_RESV:
2185                 region_abort(resv, idx, idx + 1, 1);
2186                 ret = 0;
2187                 break;
2188         case VMA_ADD_RESV:
2189                 if (vma->vm_flags & VM_MAYSHARE) {
2190                         ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2191                         /* region_add calls of range 1 should never fail. */
2192                         VM_BUG_ON(ret < 0);
2193                 } else {
2194                         region_abort(resv, idx, idx + 1, 1);
2195                         ret = region_del(resv, idx, idx + 1);
2196                 }
2197                 break;
2198         default:
2199                 BUG();
2200         }
2201
2202         if (vma->vm_flags & VM_MAYSHARE)
2203                 return ret;
2204         /*
2205          * We know private mapping must have HPAGE_RESV_OWNER set.
2206          *
2207          * In most cases, reserves always exist for private mappings.
2208          * However, a file associated with mapping could have been
2209          * hole punched or truncated after reserves were consumed.
2210          * As subsequent fault on such a range will not use reserves.
2211          * Subtle - The reserve map for private mappings has the
2212          * opposite meaning than that of shared mappings.  If NO
2213          * entry is in the reserve map, it means a reservation exists.
2214          * If an entry exists in the reserve map, it means the
2215          * reservation has already been consumed.  As a result, the
2216          * return value of this routine is the opposite of the
2217          * value returned from reserve map manipulation routines above.
2218          */
2219         if (ret > 0)
2220                 return 0;
2221         if (ret == 0)
2222                 return 1;
2223         return ret;
2224 }
2225
2226 static long vma_needs_reservation(struct hstate *h,
2227                         struct vm_area_struct *vma, unsigned long addr)
2228 {
2229         return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
2230 }
2231
2232 static long vma_commit_reservation(struct hstate *h,
2233                         struct vm_area_struct *vma, unsigned long addr)
2234 {
2235         return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
2236 }
2237
2238 static void vma_end_reservation(struct hstate *h,
2239                         struct vm_area_struct *vma, unsigned long addr)
2240 {
2241         (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
2242 }
2243
2244 static long vma_add_reservation(struct hstate *h,
2245                         struct vm_area_struct *vma, unsigned long addr)
2246 {
2247         return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
2248 }
2249
2250 /*
2251  * This routine is called to restore a reservation on error paths.  In the
2252  * specific error paths, a huge page was allocated (via alloc_huge_page)
2253  * and is about to be freed.  If a reservation for the page existed,
2254  * alloc_huge_page would have consumed the reservation and set
2255  * HPageRestoreReserve in the newly allocated page.  When the page is freed
2256  * via free_huge_page, the global reservation count will be incremented if
2257  * HPageRestoreReserve is set.  However, free_huge_page can not adjust the
2258  * reserve map.  Adjust the reserve map here to be consistent with global
2259  * reserve count adjustments to be made by free_huge_page.
2260  */
2261 static void restore_reserve_on_error(struct hstate *h,
2262                         struct vm_area_struct *vma, unsigned long address,
2263                         struct page *page)
2264 {
2265         if (unlikely(HPageRestoreReserve(page))) {
2266                 long rc = vma_needs_reservation(h, vma, address);
2267
2268                 if (unlikely(rc < 0)) {
2269                         /*
2270                          * Rare out of memory condition in reserve map
2271                          * manipulation.  Clear HPageRestoreReserve so that
2272                          * global reserve count will not be incremented
2273                          * by free_huge_page.  This will make it appear
2274                          * as though the reservation for this page was
2275                          * consumed.  This may prevent the task from
2276                          * faulting in the page at a later time.  This
2277                          * is better than inconsistent global huge page
2278                          * accounting of reserve counts.
2279                          */
2280                         ClearHPageRestoreReserve(page);
2281                 } else if (rc) {
2282                         rc = vma_add_reservation(h, vma, address);
2283                         if (unlikely(rc < 0))
2284                                 /*
2285                                  * See above comment about rare out of
2286                                  * memory condition.
2287                                  */
2288                                 ClearHPageRestoreReserve(page);
2289                 } else
2290                         vma_end_reservation(h, vma, address);
2291         }
2292 }
2293
2294 struct page *alloc_huge_page(struct vm_area_struct *vma,
2295                                     unsigned long addr, int avoid_reserve)
2296 {
2297         struct hugepage_subpool *spool = subpool_vma(vma);
2298         struct hstate *h = hstate_vma(vma);
2299         struct page *page;
2300         long map_chg, map_commit;
2301         long gbl_chg;
2302         int ret, idx;
2303         struct hugetlb_cgroup *h_cg;
2304         bool deferred_reserve;
2305
2306         idx = hstate_index(h);
2307         /*
2308          * Examine the region/reserve map to determine if the process
2309          * has a reservation for the page to be allocated.  A return
2310          * code of zero indicates a reservation exists (no change).
2311          */
2312         map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
2313         if (map_chg < 0)
2314                 return ERR_PTR(-ENOMEM);
2315
2316         /*
2317          * Processes that did not create the mapping will have no
2318          * reserves as indicated by the region/reserve map. Check
2319          * that the allocation will not exceed the subpool limit.
2320          * Allocations for MAP_NORESERVE mappings also need to be
2321          * checked against any subpool limit.
2322          */
2323         if (map_chg || avoid_reserve) {
2324                 gbl_chg = hugepage_subpool_get_pages(spool, 1);
2325                 if (gbl_chg < 0) {
2326                         vma_end_reservation(h, vma, addr);
2327                         return ERR_PTR(-ENOSPC);
2328                 }
2329
2330                 /*
2331                  * Even though there was no reservation in the region/reserve
2332                  * map, there could be reservations associated with the
2333                  * subpool that can be used.  This would be indicated if the
2334                  * return value of hugepage_subpool_get_pages() is zero.
2335                  * However, if avoid_reserve is specified we still avoid even
2336                  * the subpool reservations.
2337                  */
2338                 if (avoid_reserve)
2339                         gbl_chg = 1;
2340         }
2341
2342         /* If this allocation is not consuming a reservation, charge it now.
2343          */
2344         deferred_reserve = map_chg || avoid_reserve;
2345         if (deferred_reserve) {
2346                 ret = hugetlb_cgroup_charge_cgroup_rsvd(
2347                         idx, pages_per_huge_page(h), &h_cg);
2348                 if (ret)
2349                         goto out_subpool_put;
2350         }
2351
2352         ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
2353         if (ret)
2354                 goto out_uncharge_cgroup_reservation;
2355
2356         spin_lock(&hugetlb_lock);
2357         /*
2358          * glb_chg is passed to indicate whether or not a page must be taken
2359          * from the global free pool (global change).  gbl_chg == 0 indicates
2360          * a reservation exists for the allocation.
2361          */
2362         page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
2363         if (!page) {
2364                 spin_unlock(&hugetlb_lock);
2365                 page = alloc_buddy_huge_page_with_mpol(h, vma, addr);
2366                 if (!page)
2367                         goto out_uncharge_cgroup;
2368                 if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
2369                         SetHPageRestoreReserve(page);
2370                         h->resv_huge_pages--;
2371                 }
2372                 spin_lock(&hugetlb_lock);
2373                 list_add(&page->lru, &h->hugepage_activelist);
2374                 /* Fall through */
2375         }
2376         hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
2377         /* If allocation is not consuming a reservation, also store the
2378          * hugetlb_cgroup pointer on the page.
2379          */
2380         if (deferred_reserve) {
2381                 hugetlb_cgroup_commit_charge_rsvd(idx, pages_per_huge_page(h),
2382                                                   h_cg, page);
2383         }
2384
2385         spin_unlock(&hugetlb_lock);
2386
2387         hugetlb_set_page_subpool(page, spool);
2388
2389         map_commit = vma_commit_reservation(h, vma, addr);
2390         if (unlikely(map_chg > map_commit)) {
2391                 /*
2392                  * The page was added to the reservation map between
2393                  * vma_needs_reservation and vma_commit_reservation.
2394                  * This indicates a race with hugetlb_reserve_pages.
2395                  * Adjust for the subpool count incremented above AND
2396                  * in hugetlb_reserve_pages for the same page.  Also,
2397                  * the reservation count added in hugetlb_reserve_pages
2398                  * no longer applies.
2399                  */
2400                 long rsv_adjust;
2401
2402                 rsv_adjust = hugepage_subpool_put_pages(spool, 1);
2403                 hugetlb_acct_memory(h, -rsv_adjust);
2404                 if (deferred_reserve)
2405                         hugetlb_cgroup_uncharge_page_rsvd(hstate_index(h),
2406                                         pages_per_huge_page(h), page);
2407         }
2408         return page;
2409
2410 out_uncharge_cgroup:
2411         hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
2412 out_uncharge_cgroup_reservation:
2413         if (deferred_reserve)
2414                 hugetlb_cgroup_uncharge_cgroup_rsvd(idx, pages_per_huge_page(h),
2415                                                     h_cg);
2416 out_subpool_put:
2417         if (map_chg || avoid_reserve)
2418                 hugepage_subpool_put_pages(spool, 1);
2419         vma_end_reservation(h, vma, addr);
2420         return ERR_PTR(-ENOSPC);
2421 }
2422
2423 int alloc_bootmem_huge_page(struct hstate *h)
2424         __attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
2425 int __alloc_bootmem_huge_page(struct hstate *h)
2426 {
2427         struct huge_bootmem_page *m;
2428         int nr_nodes, node;
2429
2430         for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
2431                 void *addr;
2432
2433                 addr = memblock_alloc_try_nid_raw(
2434                                 huge_page_size(h), huge_page_size(h),
2435                                 0, MEMBLOCK_ALLOC_ACCESSIBLE, node);
2436                 if (addr) {
2437                         /*
2438                          * Use the beginning of the huge page to store the
2439                          * huge_bootmem_page struct (until gather_bootmem
2440                          * puts them into the mem_map).
2441                          */
2442                         m = addr;
2443                         goto found;
2444                 }
2445         }
2446         return 0;
2447
2448 found:
2449         BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h)));
2450         /* Put them into a private list first because mem_map is not up yet */
2451         INIT_LIST_HEAD(&m->list);
2452         list_add(&m->list, &huge_boot_pages);
2453         m->hstate = h;
2454         return 1;
2455 }
2456
2457 static void __init prep_compound_huge_page(struct page *page,
2458                 unsigned int order)
2459 {
2460         if (unlikely(order > (MAX_ORDER - 1)))
2461                 prep_compound_gigantic_page(page, order);
2462         else
2463                 prep_compound_page(page, order);
2464 }
2465
2466 /* Put bootmem huge pages into the standard lists after mem_map is up */
2467 static void __init gather_bootmem_prealloc(void)
2468 {
2469         struct huge_bootmem_page *m;
2470
2471         list_for_each_entry(m, &huge_boot_pages, list) {
2472                 struct page *page = virt_to_page(m);
2473                 struct hstate *h = m->hstate;
2474
2475                 WARN_ON(page_count(page) != 1);
2476                 prep_compound_huge_page(page, huge_page_order(h));
2477                 WARN_ON(PageReserved(page));
2478                 prep_new_huge_page(h, page, page_to_nid(page));
2479                 put_page(page); /* free it into the hugepage allocator */
2480
2481                 /*
2482                  * If we had gigantic hugepages allocated at boot time, we need
2483                  * to restore the 'stolen' pages to totalram_pages in order to
2484                  * fix confusing memory reports from free(1) and another
2485                  * side-effects, like CommitLimit going negative.
2486                  */
2487                 if (hstate_is_gigantic(h))
2488                         adjust_managed_page_count(page, pages_per_huge_page(h));
2489                 cond_resched();
2490         }
2491 }
2492
2493 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
2494 {
2495         unsigned long i;
2496         nodemask_t *node_alloc_noretry;
2497
2498         if (!hstate_is_gigantic(h)) {
2499                 /*
2500                  * Bit mask controlling how hard we retry per-node allocations.
2501                  * Ignore errors as lower level routines can deal with
2502                  * node_alloc_noretry == NULL.  If this kmalloc fails at boot
2503                  * time, we are likely in bigger trouble.
2504                  */
2505                 node_alloc_noretry = kmalloc(sizeof(*node_alloc_noretry),
2506                                                 GFP_KERNEL);
2507         } else {
2508                 /* allocations done at boot time */
2509                 node_alloc_noretry = NULL;
2510         }
2511
2512         /* bit mask controlling how hard we retry per-node allocations */
2513         if (node_alloc_noretry)
2514                 nodes_clear(*node_alloc_noretry);
2515
2516         for (i = 0; i < h->max_huge_pages; ++i) {
2517                 if (hstate_is_gigantic(h)) {
2518                         if (hugetlb_cma_size) {
2519                                 pr_warn_once("HugeTLB: hugetlb_cma is enabled, skip boot time allocation\n");
2520                                 goto free;
2521                         }
2522                         if (!alloc_bootmem_huge_page(h))
2523                                 break;
2524                 } else if (!alloc_pool_huge_page(h,
2525                                          &node_states[N_MEMORY],
2526                                          node_alloc_noretry))
2527                         break;
2528                 cond_resched();
2529         }
2530         if (i < h->max_huge_pages) {
2531                 char buf[32];
2532
2533                 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
2534                 pr_warn("HugeTLB: allocating %lu of page size %s failed.  Only allocated %lu hugepages.\n",
2535                         h->max_huge_pages, buf, i);
2536                 h->max_huge_pages = i;
2537         }
2538 free:
2539         kfree(node_alloc_noretry);
2540 }
2541
2542 static void __init hugetlb_init_hstates(void)
2543 {
2544         struct hstate *h;
2545
2546         for_each_hstate(h) {
2547                 if (minimum_order > huge_page_order(h))
2548                         minimum_order = huge_page_order(h);
2549
2550                 /* oversize hugepages were init'ed in early boot */
2551                 if (!hstate_is_gigantic(h))
2552                         hugetlb_hstate_alloc_pages(h);
2553         }
2554         VM_BUG_ON(minimum_order == UINT_MAX);
2555 }
2556
2557 static void __init report_hugepages(void)
2558 {
2559         struct hstate *h;
2560
2561         for_each_hstate(h) {
2562                 char buf[32];
2563
2564                 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
2565                 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
2566                         buf, h->free_huge_pages);
2567         }
2568 }
2569
2570 #ifdef CONFIG_HIGHMEM
2571 static void try_to_free_low(struct hstate *h, unsigned long count,
2572                                                 nodemask_t *nodes_allowed)
2573 {
2574         int i;
2575         struct page *page, *next;
2576         LIST_HEAD(page_list);
2577
2578         if (hstate_is_gigantic(h))
2579                 return;
2580
2581         /*
2582          * Collect pages to be freed on a list, and free after dropping lock
2583          */
2584         for_each_node_mask(i, *nodes_allowed) {
2585                 struct list_head *freel = &h->hugepage_freelists[i];
2586                 list_for_each_entry_safe(page, next, freel, lru) {
2587                         if (count >= h->nr_huge_pages)
2588                                 goto out;
2589                         if (PageHighMem(page))
2590                                 continue;
2591                         remove_hugetlb_page(h, page, false);
2592                         list_add(&page->lru, &page_list);
2593                 }
2594         }
2595
2596 out:
2597         spin_unlock(&hugetlb_lock);
2598         list_for_each_entry_safe(page, next, &page_list, lru) {
2599                 update_and_free_page(h, page);
2600                 cond_resched();
2601         }
2602         spin_lock(&hugetlb_lock);
2603 }
2604 #else
2605 static inline void try_to_free_low(struct hstate *h, unsigned long count,
2606                                                 nodemask_t *nodes_allowed)
2607 {
2608 }
2609 #endif
2610
2611 /*
2612  * Increment or decrement surplus_huge_pages.  Keep node-specific counters
2613  * balanced by operating on them in a round-robin fashion.
2614  * Returns 1 if an adjustment was made.
2615  */
2616 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
2617                                 int delta)
2618 {
2619         int nr_nodes, node;
2620
2621         VM_BUG_ON(delta != -1 && delta != 1);
2622
2623         if (delta < 0) {
2624                 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
2625                         if (h->surplus_huge_pages_node[node])
2626                                 goto found;
2627                 }
2628         } else {
2629                 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2630                         if (h->surplus_huge_pages_node[node] <
2631                                         h->nr_huge_pages_node[node])
2632                                 goto found;
2633                 }
2634         }
2635         return 0;
2636
2637 found:
2638         h->surplus_huge_pages += delta;
2639         h->surplus_huge_pages_node[node] += delta;
2640         return 1;
2641 }
2642
2643 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
2644 static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid,
2645                               nodemask_t *nodes_allowed)
2646 {
2647         unsigned long min_count, ret;
2648         NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL);
2649
2650         /*
2651          * Bit mask controlling how hard we retry per-node allocations.
2652          * If we can not allocate the bit mask, do not attempt to allocate
2653          * the requested huge pages.
2654          */
2655         if (node_alloc_noretry)
2656                 nodes_clear(*node_alloc_noretry);
2657         else
2658                 return -ENOMEM;
2659
2660         /*
2661          * resize_lock mutex prevents concurrent adjustments to number of
2662          * pages in hstate via the proc/sysfs interfaces.
2663          */
2664         mutex_lock(&h->resize_lock);
2665         spin_lock(&hugetlb_lock);
2666
2667         /*
2668          * Check for a node specific request.
2669          * Changing node specific huge page count may require a corresponding
2670          * change to the global count.  In any case, the passed node mask
2671          * (nodes_allowed) will restrict alloc/free to the specified node.
2672          */
2673         if (nid != NUMA_NO_NODE) {
2674                 unsigned long old_count = count;
2675
2676                 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
2677                 /*
2678                  * User may have specified a large count value which caused the
2679                  * above calculation to overflow.  In this case, they wanted
2680                  * to allocate as many huge pages as possible.  Set count to
2681                  * largest possible value to align with their intention.
2682                  */
2683                 if (count < old_count)
2684                         count = ULONG_MAX;
2685         }
2686
2687         /*
2688          * Gigantic pages runtime allocation depend on the capability for large
2689          * page range allocation.
2690          * If the system does not provide this feature, return an error when
2691          * the user tries to allocate gigantic pages but let the user free the
2692          * boottime allocated gigantic pages.
2693          */
2694         if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) {
2695                 if (count > persistent_huge_pages(h)) {
2696                         spin_unlock(&hugetlb_lock);
2697                         mutex_unlock(&h->resize_lock);
2698                         NODEMASK_FREE(node_alloc_noretry);
2699                         return -EINVAL;
2700                 }
2701                 /* Fall through to decrease pool */
2702         }
2703
2704         /*
2705          * Increase the pool size
2706          * First take pages out of surplus state.  Then make up the
2707          * remaining difference by allocating fresh huge pages.
2708          *
2709          * We might race with alloc_surplus_huge_page() here and be unable
2710          * to convert a surplus huge page to a normal huge page. That is
2711          * not critical, though, it just means the overall size of the
2712          * pool might be one hugepage larger than it needs to be, but
2713          * within all the constraints specified by the sysctls.
2714          */
2715         while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
2716                 if (!adjust_pool_surplus(h, nodes_allowed, -1))
2717                         break;
2718         }
2719
2720         while (count > persistent_huge_pages(h)) {
2721                 /*
2722                  * If this allocation races such that we no longer need the
2723                  * page, free_huge_page will handle it by freeing the page
2724                  * and reducing the surplus.
2725                  */
2726                 spin_unlock(&hugetlb_lock);
2727
2728                 /* yield cpu to avoid soft lockup */
2729                 cond_resched();
2730
2731                 ret = alloc_pool_huge_page(h, nodes_allowed,
2732                                                 node_alloc_noretry);
2733                 spin_lock(&hugetlb_lock);
2734                 if (!ret)
2735                         goto out;
2736
2737                 /* Bail for signals. Probably ctrl-c from user */
2738                 if (signal_pending(current))
2739                         goto out;
2740         }
2741
2742         /*
2743          * Decrease the pool size
2744          * First return free pages to the buddy allocator (being careful
2745          * to keep enough around to satisfy reservations).  Then place
2746          * pages into surplus state as needed so the pool will shrink
2747          * to the desired size as pages become free.
2748          *
2749          * By placing pages into the surplus state independent of the
2750          * overcommit value, we are allowing the surplus pool size to
2751          * exceed overcommit. There are few sane options here. Since
2752          * alloc_surplus_huge_page() is checking the global counter,
2753          * though, we'll note that we're not allowed to exceed surplus
2754          * and won't grow the pool anywhere else. Not until one of the
2755          * sysctls are changed, or the surplus pages go out of use.
2756          */
2757         min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
2758         min_count = max(count, min_count);
2759         try_to_free_low(h, min_count, nodes_allowed);
2760         while (min_count < persistent_huge_pages(h)) {
2761                 if (!free_pool_huge_page(h, nodes_allowed, 0))
2762                         break;
2763                 cond_resched_lock(&hugetlb_lock);
2764         }
2765         while (count < persistent_huge_pages(h)) {
2766                 if (!adjust_pool_surplus(h, nodes_allowed, 1))
2767                         break;
2768         }
2769 out:
2770         h->max_huge_pages = persistent_huge_pages(h);
2771         spin_unlock(&hugetlb_lock);
2772         mutex_unlock(&h->resize_lock);
2773
2774         NODEMASK_FREE(node_alloc_noretry);
2775
2776         return 0;
2777 }
2778
2779 #define HSTATE_ATTR_RO(_name) \
2780         static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2781
2782 #define HSTATE_ATTR(_name) \
2783         static struct kobj_attribute _name##_attr = \
2784                 __ATTR(_name, 0644, _name##_show, _name##_store)
2785
2786 static struct kobject *hugepages_kobj;
2787 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2788
2789 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
2790
2791 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
2792 {
2793         int i;
2794
2795         for (i = 0; i < HUGE_MAX_HSTATE; i++)
2796                 if (hstate_kobjs[i] == kobj) {
2797                         if (nidp)
2798                                 *nidp = NUMA_NO_NODE;
2799                         return &hstates[i];
2800                 }
2801
2802         return kobj_to_node_hstate(kobj, nidp);
2803 }
2804
2805 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
2806                                         struct kobj_attribute *attr, char *buf)
2807 {
2808         struct hstate *h;
2809         unsigned long nr_huge_pages;
2810         int nid;
2811
2812         h = kobj_to_hstate(kobj, &nid);
2813         if (nid == NUMA_NO_NODE)
2814                 nr_huge_pages = h->nr_huge_pages;
2815         else
2816                 nr_huge_pages = h->nr_huge_pages_node[nid];
2817
2818         return sysfs_emit(buf, "%lu\n", nr_huge_pages);
2819 }
2820
2821 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
2822                                            struct hstate *h, int nid,
2823                                            unsigned long count, size_t len)
2824 {
2825         int err;
2826         nodemask_t nodes_allowed, *n_mask;
2827
2828         if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
2829                 return -EINVAL;
2830
2831         if (nid == NUMA_NO_NODE) {
2832                 /*
2833                  * global hstate attribute
2834                  */
2835                 if (!(obey_mempolicy &&
2836                                 init_nodemask_of_mempolicy(&nodes_allowed)))
2837                         n_mask = &node_states[N_MEMORY];
2838                 else
2839                         n_mask = &nodes_allowed;
2840         } else {
2841                 /*
2842                  * Node specific request.  count adjustment happens in
2843                  * set_max_huge_pages() after acquiring hugetlb_lock.
2844                  */
2845                 init_nodemask_of_node(&nodes_allowed, nid);
2846                 n_mask = &nodes_allowed;
2847         }
2848
2849         err = set_max_huge_pages(h, count, nid, n_mask);
2850
2851         return err ? err : len;
2852 }
2853
2854 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
2855                                          struct kobject *kobj, const char *buf,
2856                                          size_t len)
2857 {
2858         struct hstate *h;
2859         unsigned long count;
2860         int nid;
2861         int err;
2862
2863         err = kstrtoul(buf, 10, &count);
2864         if (err)
2865                 return err;
2866
2867         h = kobj_to_hstate(kobj, &nid);
2868         return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
2869 }
2870
2871 static ssize_t nr_hugepages_show(struct kobject *kobj,
2872                                        struct kobj_attribute *attr, char *buf)
2873 {
2874         return nr_hugepages_show_common(kobj, attr, buf);
2875 }
2876
2877 static ssize_t nr_hugepages_store(struct kobject *kobj,
2878                struct kobj_attribute *attr, const char *buf, size_t len)
2879 {
2880         return nr_hugepages_store_common(false, kobj, buf, len);
2881 }
2882 HSTATE_ATTR(nr_hugepages);
2883
2884 #ifdef CONFIG_NUMA
2885
2886 /*
2887  * hstate attribute for optionally mempolicy-based constraint on persistent
2888  * huge page alloc/free.
2889  */
2890 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
2891                                            struct kobj_attribute *attr,
2892                                            char *buf)
2893 {
2894         return nr_hugepages_show_common(kobj, attr, buf);
2895 }
2896
2897 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
2898                struct kobj_attribute *attr, const char *buf, size_t len)
2899 {
2900         return nr_hugepages_store_common(true, kobj, buf, len);
2901 }
2902 HSTATE_ATTR(nr_hugepages_mempolicy);
2903 #endif
2904
2905
2906 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
2907                                         struct kobj_attribute *attr, char *buf)
2908 {
2909         struct hstate *h = kobj_to_hstate(kobj, NULL);
2910         return sysfs_emit(buf, "%lu\n", h->nr_overcommit_huge_pages);
2911 }
2912
2913 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
2914                 struct kobj_attribute *attr, const char *buf, size_t count)
2915 {
2916         int err;
2917         unsigned long input;
2918         struct hstate *h = kobj_to_hstate(kobj, NULL);
2919
2920         if (hstate_is_gigantic(h))
2921                 return -EINVAL;
2922
2923         err = kstrtoul(buf, 10, &input);
2924         if (err)
2925                 return err;
2926
2927         spin_lock(&hugetlb_lock);
2928         h->nr_overcommit_huge_pages = input;
2929         spin_unlock(&hugetlb_lock);
2930
2931         return count;
2932 }
2933 HSTATE_ATTR(nr_overcommit_hugepages);
2934
2935 static ssize_t free_hugepages_show(struct kobject *kobj,
2936                                         struct kobj_attribute *attr, char *buf)
2937 {
2938         struct hstate *h;
2939         unsigned long free_huge_pages;
2940         int nid;
2941
2942         h = kobj_to_hstate(kobj, &nid);
2943         if (nid == NUMA_NO_NODE)
2944                 free_huge_pages = h->free_huge_pages;
2945         else
2946                 free_huge_pages = h->free_huge_pages_node[nid];
2947
2948         return sysfs_emit(buf, "%lu\n", free_huge_pages);
2949 }
2950 HSTATE_ATTR_RO(free_hugepages);
2951
2952 static ssize_t resv_hugepages_show(struct kobject *kobj,
2953                                         struct kobj_attribute *attr, char *buf)
2954 {
2955         struct hstate *h = kobj_to_hstate(kobj, NULL);
2956         return sysfs_emit(buf, "%lu\n", h->resv_huge_pages);
2957 }
2958 HSTATE_ATTR_RO(resv_hugepages);
2959
2960 static ssize_t surplus_hugepages_show(struct kobject *kobj,
2961                                         struct kobj_attribute *attr, char *buf)
2962 {
2963         struct hstate *h;
2964         unsigned long surplus_huge_pages;
2965         int nid;
2966
2967         h = kobj_to_hstate(kobj, &nid);
2968         if (nid == NUMA_NO_NODE)
2969                 surplus_huge_pages = h->surplus_huge_pages;
2970         else
2971                 surplus_huge_pages = h->surplus_huge_pages_node[nid];
2972
2973         return sysfs_emit(buf, "%lu\n", surplus_huge_pages);
2974 }
2975 HSTATE_ATTR_RO(surplus_hugepages);
2976
2977 static struct attribute *hstate_attrs[] = {
2978         &nr_hugepages_attr.attr,
2979         &nr_overcommit_hugepages_attr.attr,
2980         &free_hugepages_attr.attr,
2981         &resv_hugepages_attr.attr,
2982         &surplus_hugepages_attr.attr,
2983 #ifdef CONFIG_NUMA
2984         &nr_hugepages_mempolicy_attr.attr,
2985 #endif
2986         NULL,
2987 };
2988
2989 static const struct attribute_group hstate_attr_group = {
2990         .attrs = hstate_attrs,
2991 };
2992
2993 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
2994                                     struct kobject **hstate_kobjs,
2995                                     const struct attribute_group *hstate_attr_group)
2996 {
2997         int retval;
2998         int hi = hstate_index(h);
2999
3000         hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
3001         if (!hstate_kobjs[hi])
3002                 return -ENOMEM;
3003
3004         retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
3005         if (retval) {
3006                 kobject_put(hstate_kobjs[hi]);
3007                 hstate_kobjs[hi] = NULL;
3008         }
3009
3010         return retval;
3011 }
3012
3013 static void __init hugetlb_sysfs_init(void)
3014 {
3015         struct hstate *h;
3016         int err;
3017
3018         hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
3019         if (!hugepages_kobj)
3020                 return;
3021
3022         for_each_hstate(h) {
3023                 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
3024                                          hstate_kobjs, &hstate_attr_group);
3025                 if (err)
3026                         pr_err("HugeTLB: Unable to add hstate %s", h->name);
3027         }
3028 }
3029
3030 #ifdef CONFIG_NUMA
3031
3032 /*
3033  * node_hstate/s - associate per node hstate attributes, via their kobjects,
3034  * with node devices in node_devices[] using a parallel array.  The array
3035  * index of a node device or _hstate == node id.
3036  * This is here to avoid any static dependency of the node device driver, in
3037  * the base kernel, on the hugetlb module.
3038  */
3039 struct node_hstate {
3040         struct kobject          *hugepages_kobj;
3041         struct kobject          *hstate_kobjs[HUGE_MAX_HSTATE];
3042 };
3043 static struct node_hstate node_hstates[MAX_NUMNODES];
3044
3045 /*
3046  * A subset of global hstate attributes for node devices
3047  */
3048 static struct attribute *per_node_hstate_attrs[] = {
3049         &nr_hugepages_attr.attr,
3050         &free_hugepages_attr.attr,
3051         &surplus_hugepages_attr.attr,
3052         NULL,
3053 };
3054
3055 static const struct attribute_group per_node_hstate_attr_group = {
3056         .attrs = per_node_hstate_attrs,
3057 };
3058
3059 /*
3060  * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
3061  * Returns node id via non-NULL nidp.
3062  */
3063 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
3064 {
3065         int nid;
3066
3067         for (nid = 0; nid < nr_node_ids; nid++) {
3068                 struct node_hstate *nhs = &node_hstates[nid];
3069                 int i;
3070                 for (i = 0; i < HUGE_MAX_HSTATE; i++)
3071                         if (nhs->hstate_kobjs[i] == kobj) {
3072                                 if (nidp)
3073                                         *nidp = nid;
3074                                 return &hstates[i];
3075                         }
3076         }
3077
3078         BUG();
3079         return NULL;
3080 }
3081
3082 /*
3083  * Unregister hstate attributes from a single node device.
3084  * No-op if no hstate attributes attached.
3085  */
3086 static void hugetlb_unregister_node(struct node *node)
3087 {
3088         struct hstate *h;
3089         struct node_hstate *nhs = &node_hstates[node->dev.id];
3090
3091         if (!nhs->hugepages_kobj)
3092                 return;         /* no hstate attributes */
3093
3094         for_each_hstate(h) {
3095                 int idx = hstate_index(h);
3096                 if (nhs->hstate_kobjs[idx]) {
3097                         kobject_put(nhs->hstate_kobjs[idx]);
3098                         nhs->hstate_kobjs[idx] = NULL;
3099                 }
3100         }
3101
3102         kobject_put(nhs->hugepages_kobj);
3103         nhs->hugepages_kobj = NULL;
3104 }
3105
3106
3107 /*
3108  * Register hstate attributes for a single node device.
3109  * No-op if attributes already registered.
3110  */
3111 static void hugetlb_register_node(struct node *node)
3112 {
3113         struct hstate *h;
3114         struct node_hstate *nhs = &node_hstates[node->dev.id];
3115         int err;
3116
3117         if (nhs->hugepages_kobj)
3118                 return;         /* already allocated */
3119
3120         nhs->hugepages_kobj = kobject_create_and_add("hugepages",
3121                                                         &node->dev.kobj);
3122         if (!nhs->hugepages_kobj)
3123                 return;
3124
3125         for_each_hstate(h) {
3126                 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
3127                                                 nhs->hstate_kobjs,
3128                                                 &per_node_hstate_attr_group);
3129                 if (err) {
3130                         pr_err("HugeTLB: Unable to add hstate %s for node %d\n",
3131                                 h->name, node->dev.id);
3132                         hugetlb_unregister_node(node);
3133                         break;
3134                 }
3135         }
3136 }
3137
3138 /*
3139  * hugetlb init time:  register hstate attributes for all registered node
3140  * devices of nodes that have memory.  All on-line nodes should have
3141  * registered their associated device by this time.
3142  */
3143 static void __init hugetlb_register_all_nodes(void)
3144 {
3145         int nid;
3146
3147         for_each_node_state(nid, N_MEMORY) {
3148                 struct node *node = node_devices[nid];
3149                 if (node->dev.id == nid)
3150                         hugetlb_register_node(node);
3151         }
3152
3153         /*
3154          * Let the node device driver know we're here so it can
3155          * [un]register hstate attributes on node hotplug.
3156          */
3157         register_hugetlbfs_with_node(hugetlb_register_node,
3158                                      hugetlb_unregister_node);
3159 }
3160 #else   /* !CONFIG_NUMA */
3161
3162 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
3163 {
3164         BUG();
3165         if (nidp)
3166                 *nidp = -1;
3167         return NULL;
3168 }
3169
3170 static void hugetlb_register_all_nodes(void) { }
3171
3172 #endif
3173
3174 static int __init hugetlb_init(void)
3175 {
3176         int i;
3177
3178         BUILD_BUG_ON(sizeof_field(struct page, private) * BITS_PER_BYTE <
3179                         __NR_HPAGEFLAGS);
3180
3181         if (!hugepages_supported()) {
3182                 if (hugetlb_max_hstate || default_hstate_max_huge_pages)
3183                         pr_warn("HugeTLB: huge pages not supported, ignoring associated command-line parameters\n");
3184                 return 0;
3185         }
3186
3187         /*
3188          * Make sure HPAGE_SIZE (HUGETLB_PAGE_ORDER) hstate exists.  Some
3189          * architectures depend on setup being done here.
3190          */
3191         hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
3192         if (!parsed_default_hugepagesz) {
3193                 /*
3194                  * If we did not parse a default huge page size, set
3195                  * default_hstate_idx to HPAGE_SIZE hstate. And, if the
3196                  * number of huge pages for this default size was implicitly
3197                  * specified, set that here as well.
3198                  * Note that the implicit setting will overwrite an explicit
3199                  * setting.  A warning will be printed in this case.
3200                  */
3201                 default_hstate_idx = hstate_index(size_to_hstate(HPAGE_SIZE));
3202                 if (default_hstate_max_huge_pages) {
3203                         if (default_hstate.max_huge_pages) {
3204                                 char buf[32];
3205
3206                                 string_get_size(huge_page_size(&default_hstate),
3207                                         1, STRING_UNITS_2, buf, 32);
3208                                 pr_warn("HugeTLB: Ignoring hugepages=%lu associated with %s page size\n",
3209                                         default_hstate.max_huge_pages, buf);
3210                                 pr_warn("HugeTLB: Using hugepages=%lu for number of default huge pages\n",
3211                                         default_hstate_max_huge_pages);
3212                         }
3213                         default_hstate.max_huge_pages =
3214                                 default_hstate_max_huge_pages;
3215                 }
3216         }
3217
3218         hugetlb_cma_check();
3219         hugetlb_init_hstates();
3220         gather_bootmem_prealloc();
3221         report_hugepages();
3222
3223         hugetlb_sysfs_init();
3224         hugetlb_register_all_nodes();
3225         hugetlb_cgroup_file_init();
3226
3227 #ifdef CONFIG_SMP
3228         num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
3229 #else
3230         num_fault_mutexes = 1;
3231 #endif
3232         hugetlb_fault_mutex_table =
3233                 kmalloc_array(num_fault_mutexes, sizeof(struct mutex),
3234                               GFP_KERNEL);
3235         BUG_ON(!hugetlb_fault_mutex_table);
3236
3237         for (i = 0; i < num_fault_mutexes; i++)
3238                 mutex_init(&hugetlb_fault_mutex_table[i]);
3239         return 0;
3240 }
3241 subsys_initcall(hugetlb_init);
3242
3243 /* Overwritten by architectures with more huge page sizes */
3244 bool __init __attribute((weak)) arch_hugetlb_valid_size(unsigned long size)
3245 {
3246         return size == HPAGE_SIZE;
3247 }
3248
3249 void __init hugetlb_add_hstate(unsigned int order)
3250 {
3251         struct hstate *h;
3252         unsigned long i;
3253
3254         if (size_to_hstate(PAGE_SIZE << order)) {
3255                 return;
3256         }
3257         BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
3258         BUG_ON(order == 0);
3259         h = &hstates[hugetlb_max_hstate++];
3260         mutex_init(&h->resize_lock);
3261         h->order = order;
3262         h->mask = ~(huge_page_size(h) - 1);
3263         for (i = 0; i < MAX_NUMNODES; ++i)
3264                 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
3265         INIT_LIST_HEAD(&h->hugepage_activelist);
3266         h->next_nid_to_alloc = first_memory_node;
3267         h->next_nid_to_free = first_memory_node;
3268         snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
3269                                         huge_page_size(h)/1024);
3270
3271         parsed_hstate = h;
3272 }
3273
3274 /*
3275  * hugepages command line processing
3276  * hugepages normally follows a valid hugepagsz or default_hugepagsz
3277  * specification.  If not, ignore the hugepages value.  hugepages can also
3278  * be the first huge page command line  option in which case it implicitly
3279  * specifies the number of huge pages for the default size.
3280  */
3281 static int __init hugepages_setup(char *s)
3282 {
3283         unsigned long *mhp;
3284         static unsigned long *last_mhp;
3285
3286         if (!parsed_valid_hugepagesz) {
3287                 pr_warn("HugeTLB: hugepages=%s does not follow a valid hugepagesz, ignoring\n", s);
3288                 parsed_valid_hugepagesz = true;
3289                 return 0;
3290         }
3291
3292         /*
3293          * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter
3294          * yet, so this hugepages= parameter goes to the "default hstate".
3295          * Otherwise, it goes with the previously parsed hugepagesz or
3296          * default_hugepagesz.
3297          */
3298         else if (!hugetlb_max_hstate)
3299                 mhp = &default_hstate_max_huge_pages;
3300         else
3301                 mhp = &parsed_hstate->max_huge_pages;
3302
3303         if (mhp == last_mhp) {
3304                 pr_warn("HugeTLB: hugepages= specified twice without interleaving hugepagesz=, ignoring hugepages=%s\n", s);
3305                 return 0;
3306         }
3307
3308         if (sscanf(s, "%lu", mhp) <= 0)
3309                 *mhp = 0;
3310
3311         /*
3312          * Global state is always initialized later in hugetlb_init.
3313          * But we need to allocate gigantic hstates here early to still
3314          * use the bootmem allocator.
3315          */
3316         if (hugetlb_max_hstate && hstate_is_gigantic(parsed_hstate))
3317                 hugetlb_hstate_alloc_pages(parsed_hstate);
3318
3319         last_mhp = mhp;
3320
3321         return 1;
3322 }
3323 __setup("hugepages=", hugepages_setup);
3324
3325 /*
3326  * hugepagesz command line processing
3327  * A specific huge page size can only be specified once with hugepagesz.
3328  * hugepagesz is followed by hugepages on the command line.  The global
3329  * variable 'parsed_valid_hugepagesz' is used to determine if prior
3330  * hugepagesz argument was valid.
3331  */
3332 static int __init hugepagesz_setup(char *s)
3333 {
3334         unsigned long size;
3335         struct hstate *h;
3336
3337         parsed_valid_hugepagesz = false;
3338         size = (unsigned long)memparse(s, NULL);
3339
3340         if (!arch_hugetlb_valid_size(size)) {
3341                 pr_err("HugeTLB: unsupported hugepagesz=%s\n", s);
3342                 return 0;
3343         }
3344
3345         h = size_to_hstate(size);
3346         if (h) {
3347                 /*
3348                  * hstate for this size already exists.  This is normally
3349                  * an error, but is allowed if the existing hstate is the
3350                  * default hstate.  More specifically, it is only allowed if
3351                  * the number of huge pages for the default hstate was not
3352                  * previously specified.
3353                  */
3354                 if (!parsed_default_hugepagesz ||  h != &default_hstate ||
3355                     default_hstate.max_huge_pages) {
3356                         pr_warn("HugeTLB: hugepagesz=%s specified twice, ignoring\n", s);
3357                         return 0;
3358                 }
3359
3360                 /*
3361                  * No need to call hugetlb_add_hstate() as hstate already
3362                  * exists.  But, do set parsed_hstate so that a following
3363                  * hugepages= parameter will be applied to this hstate.
3364                  */
3365                 parsed_hstate = h;
3366                 parsed_valid_hugepagesz = true;
3367                 return 1;
3368         }
3369
3370         hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
3371         parsed_valid_hugepagesz = true;
3372         return 1;
3373 }
3374 __setup("hugepagesz=", hugepagesz_setup);
3375
3376 /*
3377  * default_hugepagesz command line input
3378  * Only one instance of default_hugepagesz allowed on command line.
3379  */
3380 static int __init default_hugepagesz_setup(char *s)
3381 {
3382         unsigned long size;
3383
3384         parsed_valid_hugepagesz = false;
3385         if (parsed_default_hugepagesz) {
3386                 pr_err("HugeTLB: default_hugepagesz previously specified, ignoring %s\n", s);
3387                 return 0;
3388         }
3389
3390         size = (unsigned long)memparse(s, NULL);
3391
3392         if (!arch_hugetlb_valid_size(size)) {
3393                 pr_err("HugeTLB: unsupported default_hugepagesz=%s\n", s);
3394                 return 0;
3395         }
3396
3397         hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
3398         parsed_valid_hugepagesz = true;
3399         parsed_default_hugepagesz = true;
3400         default_hstate_idx = hstate_index(size_to_hstate(size));
3401
3402         /*
3403          * The number of default huge pages (for this size) could have been
3404          * specified as the first hugetlb parameter: hugepages=X.  If so,
3405          * then default_hstate_max_huge_pages is set.  If the default huge
3406          * page size is gigantic (>= MAX_ORDER), then the pages must be
3407          * allocated here from bootmem allocator.
3408          */
3409         if (default_hstate_max_huge_pages) {
3410                 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
3411                 if (hstate_is_gigantic(&default_hstate))
3412                         hugetlb_hstate_alloc_pages(&default_hstate);
3413                 default_hstate_max_huge_pages = 0;
3414         }
3415
3416         return 1;
3417 }
3418 __setup("default_hugepagesz=", default_hugepagesz_setup);
3419
3420 static unsigned int allowed_mems_nr(struct hstate *h)
3421 {
3422         int node;
3423         unsigned int nr = 0;
3424         nodemask_t *mpol_allowed;
3425         unsigned int *array = h->free_huge_pages_node;
3426         gfp_t gfp_mask = htlb_alloc_mask(h);
3427
3428         mpol_allowed = policy_nodemask_current(gfp_mask);
3429
3430         for_each_node_mask(node, cpuset_current_mems_allowed) {
3431                 if (!mpol_allowed || node_isset(node, *mpol_allowed))
3432                         nr += array[node];
3433         }
3434
3435         return nr;
3436 }
3437
3438 #ifdef CONFIG_SYSCTL
3439 static int proc_hugetlb_doulongvec_minmax(struct ctl_table *table, int write,
3440                                           void *buffer, size_t *length,
3441                                           loff_t *ppos, unsigned long *out)
3442 {
3443         struct ctl_table dup_table;
3444
3445         /*
3446          * In order to avoid races with __do_proc_doulongvec_minmax(), we
3447          * can duplicate the @table and alter the duplicate of it.
3448          */
3449         dup_table = *table;
3450         dup_table.data = out;
3451
3452         return proc_doulongvec_minmax(&dup_table, write, buffer, length, ppos);
3453 }
3454
3455 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
3456                          struct ctl_table *table, int write,
3457                          void *buffer, size_t *length, loff_t *ppos)
3458 {
3459         struct hstate *h = &default_hstate;
3460         unsigned long tmp = h->max_huge_pages;
3461         int ret;
3462
3463         if (!hugepages_supported())
3464                 return -EOPNOTSUPP;
3465
3466         ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
3467                                              &tmp);
3468         if (ret)
3469                 goto out;
3470
3471         if (write)
3472                 ret = __nr_hugepages_store_common(obey_mempolicy, h,
3473                                                   NUMA_NO_NODE, tmp, *length);
3474 out:
3475         return ret;
3476 }
3477
3478 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
3479                           void *buffer, size_t *length, loff_t *ppos)
3480 {
3481
3482         return hugetlb_sysctl_handler_common(false, table, write,
3483                                                         buffer, length, ppos);
3484 }
3485
3486 #ifdef CONFIG_NUMA
3487 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
3488                           void *buffer, size_t *length, loff_t *ppos)
3489 {
3490         return hugetlb_sysctl_handler_common(true, table, write,
3491                                                         buffer, length, ppos);
3492 }
3493 #endif /* CONFIG_NUMA */
3494
3495 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
3496                 void *buffer, size_t *length, loff_t *ppos)
3497 {
3498         struct hstate *h = &default_hstate;
3499         unsigned long tmp;
3500         int ret;
3501
3502         if (!hugepages_supported())
3503                 return -EOPNOTSUPP;
3504
3505         tmp = h->nr_overcommit_huge_pages;
3506
3507         if (write && hstate_is_gigantic(h))
3508                 return -EINVAL;
3509
3510         ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
3511                                              &tmp);
3512         if (ret)
3513                 goto out;
3514
3515         if (write) {
3516                 spin_lock(&hugetlb_lock);
3517                 h->nr_overcommit_huge_pages = tmp;
3518                 spin_unlock(&hugetlb_lock);
3519         }
3520 out:
3521         return ret;
3522 }
3523
3524 #endif /* CONFIG_SYSCTL */
3525
3526 void hugetlb_report_meminfo(struct seq_file *m)
3527 {
3528         struct hstate *h;
3529         unsigned long total = 0;
3530
3531         if (!hugepages_supported())
3532                 return;
3533
3534         for_each_hstate(h) {
3535                 unsigned long count = h->nr_huge_pages;
3536
3537                 total += huge_page_size(h) * count;
3538
3539                 if (h == &default_hstate)
3540                         seq_printf(m,
3541                                    "HugePages_Total:   %5lu\n"
3542                                    "HugePages_Free:    %5lu\n"
3543                                    "HugePages_Rsvd:    %5lu\n"
3544                                    "HugePages_Surp:    %5lu\n"
3545                                    "Hugepagesize:   %8lu kB\n",
3546                                    count,
3547                                    h->free_huge_pages,
3548                                    h->resv_huge_pages,
3549                                    h->surplus_huge_pages,
3550                                    huge_page_size(h) / SZ_1K);
3551         }
3552
3553         seq_printf(m, "Hugetlb:        %8lu kB\n", total / SZ_1K);
3554 }
3555
3556 int hugetlb_report_node_meminfo(char *buf, int len, int nid)
3557 {
3558         struct hstate *h = &default_hstate;
3559
3560         if (!hugepages_supported())
3561                 return 0;
3562
3563         return sysfs_emit_at(buf, len,
3564                              "Node %d HugePages_Total: %5u\n"
3565                              "Node %d HugePages_Free:  %5u\n"
3566                              "Node %d HugePages_Surp:  %5u\n",
3567                              nid, h->nr_huge_pages_node[nid],
3568                              nid, h->free_huge_pages_node[nid],
3569                              nid, h->surplus_huge_pages_node[nid]);
3570 }
3571
3572 void hugetlb_show_meminfo(void)
3573 {
3574         struct hstate *h;
3575         int nid;
3576
3577         if (!hugepages_supported())
3578                 return;
3579
3580         for_each_node_state(nid, N_MEMORY)
3581                 for_each_hstate(h)
3582                         pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
3583                                 nid,
3584                                 h->nr_huge_pages_node[nid],
3585                                 h->free_huge_pages_node[nid],
3586                                 h->surplus_huge_pages_node[nid],
3587                                 huge_page_size(h) / SZ_1K);
3588 }
3589
3590 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
3591 {
3592         seq_printf(m, "HugetlbPages:\t%8lu kB\n",
3593                    atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
3594 }
3595
3596 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
3597 unsigned long hugetlb_total_pages(void)
3598 {
3599         struct hstate *h;
3600         unsigned long nr_total_pages = 0;
3601
3602         for_each_hstate(h)
3603                 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
3604         return nr_total_pages;
3605 }
3606
3607 static int hugetlb_acct_memory(struct hstate *h, long delta)
3608 {
3609         int ret = -ENOMEM;
3610
3611         if (!delta)
3612                 return 0;
3613
3614         spin_lock(&hugetlb_lock);
3615         /*
3616          * When cpuset is configured, it breaks the strict hugetlb page
3617          * reservation as the accounting is done on a global variable. Such
3618          * reservation is completely rubbish in the presence of cpuset because
3619          * the reservation is not checked against page availability for the
3620          * current cpuset. Application can still potentially OOM'ed by kernel
3621          * with lack of free htlb page in cpuset that the task is in.
3622          * Attempt to enforce strict accounting with cpuset is almost
3623          * impossible (or too ugly) because cpuset is too fluid that
3624          * task or memory node can be dynamically moved between cpusets.
3625          *
3626          * The change of semantics for shared hugetlb mapping with cpuset is
3627          * undesirable. However, in order to preserve some of the semantics,
3628          * we fall back to check against current free page availability as
3629          * a best attempt and hopefully to minimize the impact of changing
3630          * semantics that cpuset has.
3631          *
3632          * Apart from cpuset, we also have memory policy mechanism that
3633          * also determines from which node the kernel will allocate memory
3634          * in a NUMA system. So similar to cpuset, we also should consider
3635          * the memory policy of the current task. Similar to the description
3636          * above.
3637          */
3638         if (delta > 0) {
3639                 if (gather_surplus_pages(h, delta) < 0)
3640                         goto out;
3641
3642                 if (delta > allowed_mems_nr(h)) {
3643                         return_unused_surplus_pages(h, delta);
3644                         goto out;
3645                 }
3646         }
3647
3648         ret = 0;
3649         if (delta < 0)
3650                 return_unused_surplus_pages(h, (unsigned long) -delta);
3651
3652 out:
3653         spin_unlock(&hugetlb_lock);
3654         return ret;
3655 }
3656
3657 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
3658 {
3659         struct resv_map *resv = vma_resv_map(vma);
3660
3661         /*
3662          * This new VMA should share its siblings reservation map if present.
3663          * The VMA will only ever have a valid reservation map pointer where
3664          * it is being copied for another still existing VMA.  As that VMA
3665          * has a reference to the reservation map it cannot disappear until
3666          * after this open call completes.  It is therefore safe to take a
3667          * new reference here without additional locking.
3668          */
3669         if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3670                 kref_get(&resv->refs);
3671 }
3672
3673 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
3674 {
3675         struct hstate *h = hstate_vma(vma);
3676         struct resv_map *resv = vma_resv_map(vma);
3677         struct hugepage_subpool *spool = subpool_vma(vma);
3678         unsigned long reserve, start, end;
3679         long gbl_reserve;
3680
3681         if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3682                 return;
3683
3684         start = vma_hugecache_offset(h, vma, vma->vm_start);
3685         end = vma_hugecache_offset(h, vma, vma->vm_end);
3686
3687         reserve = (end - start) - region_count(resv, start, end);
3688         hugetlb_cgroup_uncharge_counter(resv, start, end);
3689         if (reserve) {
3690                 /*
3691                  * Decrement reserve counts.  The global reserve count may be
3692                  * adjusted if the subpool has a minimum size.
3693                  */
3694                 gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
3695                 hugetlb_acct_memory(h, -gbl_reserve);
3696         }
3697
3698         kref_put(&resv->refs, resv_map_release);
3699 }
3700
3701 static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
3702 {
3703         if (addr & ~(huge_page_mask(hstate_vma(vma))))
3704                 return -EINVAL;
3705         return 0;
3706 }
3707
3708 static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma)
3709 {
3710         return huge_page_size(hstate_vma(vma));
3711 }
3712
3713 /*
3714  * We cannot handle pagefaults against hugetlb pages at all.  They cause
3715  * handle_mm_fault() to try to instantiate regular-sized pages in the
3716  * hugepage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
3717  * this far.
3718  */
3719 static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf)
3720 {
3721         BUG();
3722         return 0;
3723 }
3724
3725 /*
3726  * When a new function is introduced to vm_operations_struct and added
3727  * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops.
3728  * This is because under System V memory model, mappings created via
3729  * shmget/shmat with "huge page" specified are backed by hugetlbfs files,
3730  * their original vm_ops are overwritten with shm_vm_ops.
3731  */
3732 const struct vm_operations_struct hugetlb_vm_ops = {
3733         .fault = hugetlb_vm_op_fault,
3734         .open = hugetlb_vm_op_open,
3735         .close = hugetlb_vm_op_close,
3736         .may_split = hugetlb_vm_op_split,
3737         .pagesize = hugetlb_vm_op_pagesize,
3738 };
3739
3740 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
3741                                 int writable)
3742 {
3743         pte_t entry;
3744
3745         if (writable) {
3746                 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
3747                                          vma->vm_page_prot)));
3748         } else {
3749                 entry = huge_pte_wrprotect(mk_huge_pte(page,
3750                                            vma->vm_page_prot));
3751         }
3752         entry = pte_mkyoung(entry);
3753         entry = pte_mkhuge(entry);
3754         entry = arch_make_huge_pte(entry, vma, page, writable);
3755
3756         return entry;
3757 }
3758
3759 static void set_huge_ptep_writable(struct vm_area_struct *vma,
3760                                    unsigned long address, pte_t *ptep)
3761 {
3762         pte_t entry;
3763
3764         entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
3765         if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
3766                 update_mmu_cache(vma, address, ptep);
3767 }
3768
3769 bool is_hugetlb_entry_migration(pte_t pte)
3770 {
3771         swp_entry_t swp;
3772
3773         if (huge_pte_none(pte) || pte_present(pte))
3774                 return false;
3775         swp = pte_to_swp_entry(pte);
3776         if (is_migration_entry(swp))
3777                 return true;
3778         else
3779                 return false;
3780 }
3781
3782 static bool is_hugetlb_entry_hwpoisoned(pte_t pte)
3783 {
3784         swp_entry_t swp;
3785
3786         if (huge_pte_none(pte) || pte_present(pte))
3787                 return false;
3788         swp = pte_to_swp_entry(pte);
3789         if (is_hwpoison_entry(swp))
3790                 return true;
3791         else
3792                 return false;
3793 }
3794
3795 static void
3796 hugetlb_install_page(struct vm_area_struct *vma, pte_t *ptep, unsigned long addr,
3797                      struct page *new_page)
3798 {
3799         __SetPageUptodate(new_page);
3800         set_huge_pte_at(vma->vm_mm, addr, ptep, make_huge_pte(vma, new_page, 1));
3801         hugepage_add_new_anon_rmap(new_page, vma, addr);
3802         hugetlb_count_add(pages_per_huge_page(hstate_vma(vma)), vma->vm_mm);
3803         ClearHPageRestoreReserve(new_page);
3804         SetHPageMigratable(new_page);
3805 }
3806
3807 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
3808                             struct vm_area_struct *vma)
3809 {
3810         pte_t *src_pte, *dst_pte, entry, dst_entry;
3811         struct page *ptepage;
3812         unsigned long addr;
3813         bool cow = is_cow_mapping(vma->vm_flags);
3814         struct hstate *h = hstate_vma(vma);
3815         unsigned long sz = huge_page_size(h);
3816         unsigned long npages = pages_per_huge_page(h);
3817         struct address_space *mapping = vma->vm_file->f_mapping;
3818         struct mmu_notifier_range range;
3819         int ret = 0;
3820
3821         if (cow) {
3822                 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, src,
3823                                         vma->vm_start,
3824                                         vma->vm_end);
3825                 mmu_notifier_invalidate_range_start(&range);
3826         } else {
3827                 /*
3828                  * For shared mappings i_mmap_rwsem must be held to call
3829                  * huge_pte_alloc, otherwise the returned ptep could go
3830                  * away if part of a shared pmd and another thread calls
3831                  * huge_pmd_unshare.
3832                  */
3833                 i_mmap_lock_read(mapping);
3834         }
3835
3836         for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
3837                 spinlock_t *src_ptl, *dst_ptl;
3838                 src_pte = huge_pte_offset(src, addr, sz);
3839                 if (!src_pte)
3840                         continue;
3841                 dst_pte = huge_pte_alloc(dst, vma, addr, sz);
3842                 if (!dst_pte) {
3843                         ret = -ENOMEM;
3844                         break;
3845                 }
3846
3847                 /*
3848                  * If the pagetables are shared don't copy or take references.
3849                  * dst_pte == src_pte is the common case of src/dest sharing.
3850                  *
3851                  * However, src could have 'unshared' and dst shares with
3852                  * another vma.  If dst_pte !none, this implies sharing.
3853                  * Check here before taking page table lock, and once again
3854                  * after taking the lock below.
3855                  */
3856                 dst_entry = huge_ptep_get(dst_pte);
3857                 if ((dst_pte == src_pte) || !huge_pte_none(dst_entry))
3858                         continue;
3859
3860                 dst_ptl = huge_pte_lock(h, dst, dst_pte);
3861                 src_ptl = huge_pte_lockptr(h, src, src_pte);
3862                 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
3863                 entry = huge_ptep_get(src_pte);
3864                 dst_entry = huge_ptep_get(dst_pte);
3865 again:
3866                 if (huge_pte_none(entry) || !huge_pte_none(dst_entry)) {
3867                         /*
3868                          * Skip if src entry none.  Also, skip in the
3869                          * unlikely case dst entry !none as this implies
3870                          * sharing with another vma.
3871                          */
3872                         ;
3873                 } else if (unlikely(is_hugetlb_entry_migration(entry) ||
3874                                     is_hugetlb_entry_hwpoisoned(entry))) {
3875                         swp_entry_t swp_entry = pte_to_swp_entry(entry);
3876
3877                         if (is_write_migration_entry(swp_entry) && cow) {
3878                                 /*
3879                                  * COW mappings require pages in both
3880                                  * parent and child to be set to read.
3881                                  */
3882                                 make_migration_entry_read(&swp_entry);
3883                                 entry = swp_entry_to_pte(swp_entry);
3884                                 set_huge_swap_pte_at(src, addr, src_pte,
3885                                                      entry, sz);
3886                         }
3887                         set_huge_swap_pte_at(dst, addr, dst_pte, entry, sz);
3888                 } else {
3889                         entry = huge_ptep_get(src_pte);
3890                         ptepage = pte_page(entry);
3891                         get_page(ptepage);
3892
3893                         /*
3894                          * This is a rare case where we see pinned hugetlb
3895                          * pages while they're prone to COW.  We need to do the
3896                          * COW earlier during fork.
3897                          *
3898                          * When pre-allocating the page or copying data, we
3899                          * need to be without the pgtable locks since we could
3900                          * sleep during the process.
3901                          */
3902                         if (unlikely(page_needs_cow_for_dma(vma, ptepage))) {
3903                                 pte_t src_pte_old = entry;
3904                                 struct page *new;
3905
3906                                 spin_unlock(src_ptl);
3907                                 spin_unlock(dst_ptl);
3908                                 /* Do not use reserve as it's private owned */
3909                                 new = alloc_huge_page(vma, addr, 1);
3910                                 if (IS_ERR(new)) {
3911                                         put_page(ptepage);
3912                                         ret = PTR_ERR(new);
3913                                         break;
3914                                 }
3915                                 copy_user_huge_page(new, ptepage, addr, vma,
3916                                                     npages);
3917                                 put_page(ptepage);
3918
3919                                 /* Install the new huge page if src pte stable */
3920                                 dst_ptl = huge_pte_lock(h, dst, dst_pte);
3921                                 src_ptl = huge_pte_lockptr(h, src, src_pte);
3922                                 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
3923                                 entry = huge_ptep_get(src_pte);
3924                                 if (!pte_same(src_pte_old, entry)) {
3925                                         put_page(new);
3926                                         /* dst_entry won't change as in child */
3927                                         goto again;
3928                                 }
3929                                 hugetlb_install_page(vma, dst_pte, addr, new);
3930                                 spin_unlock(src_ptl);
3931                                 spin_unlock(dst_ptl);
3932                                 continue;
3933                         }
3934
3935                         if (cow) {
3936                                 /*
3937                                  * No need to notify as we are downgrading page
3938                                  * table protection not changing it to point
3939                                  * to a new page.
3940                                  *
3941                                  * See Documentation/vm/mmu_notifier.rst
3942                                  */
3943                                 huge_ptep_set_wrprotect(src, addr, src_pte);
3944                         }
3945
3946                         page_dup_rmap(ptepage, true);
3947                         set_huge_pte_at(dst, addr, dst_pte, entry);
3948                         hugetlb_count_add(npages, dst);
3949                 }
3950                 spin_unlock(src_ptl);
3951                 spin_unlock(dst_ptl);
3952         }
3953
3954         if (cow)
3955                 mmu_notifier_invalidate_range_end(&range);
3956         else
3957                 i_mmap_unlock_read(mapping);
3958
3959         return ret;
3960 }
3961
3962 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
3963                             unsigned long start, unsigned long end,
3964                             struct page *ref_page)
3965 {
3966         struct mm_struct *mm = vma->vm_mm;
3967         unsigned long address;
3968         pte_t *ptep;
3969         pte_t pte;
3970         spinlock_t *ptl;
3971         struct page *page;
3972         struct hstate *h = hstate_vma(vma);
3973         unsigned long sz = huge_page_size(h);
3974         struct mmu_notifier_range range;
3975
3976         WARN_ON(!is_vm_hugetlb_page(vma));
3977         BUG_ON(start & ~huge_page_mask(h));
3978         BUG_ON(end & ~huge_page_mask(h));
3979
3980         /*
3981          * This is a hugetlb vma, all the pte entries should point
3982          * to huge page.
3983          */
3984         tlb_change_page_size(tlb, sz);
3985         tlb_start_vma(tlb, vma);
3986
3987         /*
3988          * If sharing possible, alert mmu notifiers of worst case.
3989          */
3990         mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, mm, start,
3991                                 end);
3992         adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
3993         mmu_notifier_invalidate_range_start(&range);
3994         address = start;
3995         for (; address < end; address += sz) {
3996                 ptep = huge_pte_offset(mm, address, sz);
3997                 if (!ptep)
3998                         continue;
3999
4000                 ptl = huge_pte_lock(h, mm, ptep);
4001                 if (huge_pmd_unshare(mm, vma, &address, ptep)) {
4002                         spin_unlock(ptl);
4003                         /*
4004                          * We just unmapped a page of PMDs by clearing a PUD.
4005                          * The caller's TLB flush range should cover this area.
4006                          */
4007                         continue;
4008                 }
4009
4010                 pte = huge_ptep_get(ptep);
4011                 if (huge_pte_none(pte)) {
4012                         spin_unlock(ptl);
4013                         continue;
4014                 }
4015
4016                 /*
4017                  * Migrating hugepage or HWPoisoned hugepage is already
4018                  * unmapped and its refcount is dropped, so just clear pte here.
4019                  */
4020                 if (unlikely(!pte_present(pte))) {
4021                         huge_pte_clear(mm, address, ptep, sz);
4022                         spin_unlock(ptl);
4023                         continue;
4024                 }
4025
4026                 page = pte_page(pte);
4027                 /*
4028                  * If a reference page is supplied, it is because a specific
4029                  * page is being unmapped, not a range. Ensure the page we
4030                  * are about to unmap is the actual page of interest.
4031                  */
4032                 if (ref_page) {
4033                         if (page != ref_page) {
4034                                 spin_unlock(ptl);
4035                                 continue;
4036                         }
4037                         /*
4038                          * Mark the VMA as having unmapped its page so that
4039                          * future faults in this VMA will fail rather than
4040                          * looking like data was lost
4041                          */
4042                         set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
4043                 }
4044
4045                 pte = huge_ptep_get_and_clear(mm, address, ptep);
4046                 tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
4047                 if (huge_pte_dirty(pte))
4048                         set_page_dirty(page);
4049
4050                 hugetlb_count_sub(pages_per_huge_page(h), mm);
4051                 page_remove_rmap(page, true);
4052
4053                 spin_unlock(ptl);
4054                 tlb_remove_page_size(tlb, page, huge_page_size(h));
4055                 /*
4056                  * Bail out after unmapping reference page if supplied
4057                  */
4058                 if (ref_page)
4059                         break;
4060         }
4061         mmu_notifier_invalidate_range_end(&range);
4062         tlb_end_vma(tlb, vma);
4063 }
4064
4065 void __unmap_hugepage_range_final(struct mmu_gather *tlb,
4066                           struct vm_area_struct *vma, unsigned long start,
4067                           unsigned long end, struct page *ref_page)
4068 {
4069         __unmap_hugepage_range(tlb, vma, start, end, ref_page);
4070
4071         /*
4072          * Clear this flag so that x86's huge_pmd_share page_table_shareable
4073          * test will fail on a vma being torn down, and not grab a page table
4074          * on its way out.  We're lucky that the flag has such an appropriate
4075          * name, and can in fact be safely cleared here. We could clear it
4076          * before the __unmap_hugepage_range above, but all that's necessary
4077          * is to clear it before releasing the i_mmap_rwsem. This works
4078          * because in the context this is called, the VMA is about to be
4079          * destroyed and the i_mmap_rwsem is held.
4080          */
4081         vma->vm_flags &= ~VM_MAYSHARE;
4082 }
4083
4084 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
4085                           unsigned long end, struct page *ref_page)
4086 {
4087         struct mmu_gather tlb;
4088
4089         tlb_gather_mmu(&tlb, vma->vm_mm);
4090         __unmap_hugepage_range(&tlb, vma, start, end, ref_page);
4091         tlb_finish_mmu(&tlb);
4092 }
4093
4094 /*
4095  * This is called when the original mapper is failing to COW a MAP_PRIVATE
4096  * mapping it owns the reserve page for. The intention is to unmap the page
4097  * from other VMAs and let the children be SIGKILLed if they are faulting the
4098  * same region.
4099  */
4100 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
4101                               struct page *page, unsigned long address)
4102 {
4103         struct hstate *h = hstate_vma(vma);
4104         struct vm_area_struct *iter_vma;
4105         struct address_space *mapping;
4106         pgoff_t pgoff;
4107
4108         /*
4109          * vm_pgoff is in PAGE_SIZE units, hence the different calculation
4110          * from page cache lookup which is in HPAGE_SIZE units.
4111          */
4112         address = address & huge_page_mask(h);
4113         pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
4114                         vma->vm_pgoff;
4115         mapping = vma->vm_file->f_mapping;
4116
4117         /*
4118          * Take the mapping lock for the duration of the table walk. As
4119          * this mapping should be shared between all the VMAs,
4120          * __unmap_hugepage_range() is called as the lock is already held
4121          */
4122         i_mmap_lock_write(mapping);
4123         vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
4124                 /* Do not unmap the current VMA */
4125                 if (iter_vma == vma)
4126                         continue;
4127
4128                 /*
4129                  * Shared VMAs have their own reserves and do not affect
4130                  * MAP_PRIVATE accounting but it is possible that a shared
4131                  * VMA is using the same page so check and skip such VMAs.
4132                  */
4133                 if (iter_vma->vm_flags & VM_MAYSHARE)
4134                         continue;
4135
4136                 /*
4137                  * Unmap the page from other VMAs without their own reserves.
4138                  * They get marked to be SIGKILLed if they fault in these
4139                  * areas. This is because a future no-page fault on this VMA
4140                  * could insert a zeroed page instead of the data existing
4141                  * from the time of fork. This would look like data corruption
4142                  */
4143                 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
4144                         unmap_hugepage_range(iter_vma, address,
4145                                              address + huge_page_size(h), page);
4146         }
4147         i_mmap_unlock_write(mapping);
4148 }
4149
4150 /*
4151  * Hugetlb_cow() should be called with page lock of the original hugepage held.
4152  * Called with hugetlb_instantiation_mutex held and pte_page locked so we
4153  * cannot race with other handlers or page migration.
4154  * Keep the pte_same checks anyway to make transition from the mutex easier.
4155  */
4156 static vm_fault_t hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
4157                        unsigned long address, pte_t *ptep,
4158                        struct page *pagecache_page, spinlock_t *ptl)
4159 {
4160         pte_t pte;
4161         struct hstate *h = hstate_vma(vma);
4162         struct page *old_page, *new_page;
4163         int outside_reserve = 0;
4164         vm_fault_t ret = 0;
4165         unsigned long haddr = address & huge_page_mask(h);
4166         struct mmu_notifier_range range;
4167
4168         pte = huge_ptep_get(ptep);
4169         old_page = pte_page(pte);
4170
4171 retry_avoidcopy:
4172         /* If no-one else is actually using this page, avoid the copy
4173          * and just make the page writable */
4174         if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
4175                 page_move_anon_rmap(old_page, vma);
4176                 set_huge_ptep_writable(vma, haddr, ptep);
4177                 return 0;
4178         }
4179
4180         /*
4181          * If the process that created a MAP_PRIVATE mapping is about to
4182          * perform a COW due to a shared page count, attempt to satisfy
4183          * the allocation without using the existing reserves. The pagecache
4184          * page is used to determine if the reserve at this address was
4185          * consumed or not. If reserves were used, a partial faulted mapping
4186          * at the time of fork() could consume its reserves on COW instead
4187          * of the full address range.
4188          */
4189         if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
4190                         old_page != pagecache_page)
4191                 outside_reserve = 1;
4192
4193         get_page(old_page);
4194
4195         /*
4196          * Drop page table lock as buddy allocator may be called. It will
4197          * be acquired again before returning to the caller, as expected.
4198          */
4199         spin_unlock(ptl);
4200         new_page = alloc_huge_page(vma, haddr, outside_reserve);
4201
4202         if (IS_ERR(new_page)) {
4203                 /*
4204                  * If a process owning a MAP_PRIVATE mapping fails to COW,
4205                  * it is due to references held by a child and an insufficient
4206                  * huge page pool. To guarantee the original mappers
4207                  * reliability, unmap the page from child processes. The child
4208                  * may get SIGKILLed if it later faults.
4209                  */
4210                 if (outside_reserve) {
4211                         struct address_space *mapping = vma->vm_file->f_mapping;
4212                         pgoff_t idx;
4213                         u32 hash;
4214
4215                         put_page(old_page);
4216                         BUG_ON(huge_pte_none(pte));
4217                         /*
4218                          * Drop hugetlb_fault_mutex and i_mmap_rwsem before
4219                          * unmapping.  unmapping needs to hold i_mmap_rwsem
4220                          * in write mode.  Dropping i_mmap_rwsem in read mode
4221                          * here is OK as COW mappings do not interact with
4222                          * PMD sharing.
4223                          *
4224                          * Reacquire both after unmap operation.
4225                          */
4226                         idx = vma_hugecache_offset(h, vma, haddr);
4227                         hash = hugetlb_fault_mutex_hash(mapping, idx);
4228                         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
4229                         i_mmap_unlock_read(mapping);
4230
4231                         unmap_ref_private(mm, vma, old_page, haddr);
4232
4233                         i_mmap_lock_read(mapping);
4234                         mutex_lock(&hugetlb_fault_mutex_table[hash]);
4235                         spin_lock(ptl);
4236                         ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
4237                         if (likely(ptep &&
4238                                    pte_same(huge_ptep_get(ptep), pte)))
4239                                 goto retry_avoidcopy;
4240                         /*
4241                          * race occurs while re-acquiring page table
4242                          * lock, and our job is done.
4243                          */
4244                         return 0;
4245                 }
4246
4247                 ret = vmf_error(PTR_ERR(new_page));
4248                 goto out_release_old;
4249         }
4250
4251         /*
4252          * When the original hugepage is shared one, it does not have
4253          * anon_vma prepared.
4254          */
4255         if (unlikely(anon_vma_prepare(vma))) {
4256                 ret = VM_FAULT_OOM;
4257                 goto out_release_all;
4258         }
4259
4260         copy_user_huge_page(new_page, old_page, address, vma,
4261                             pages_per_huge_page(h));
4262         __SetPageUptodate(new_page);
4263
4264         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, haddr,
4265                                 haddr + huge_page_size(h));
4266         mmu_notifier_invalidate_range_start(&range);
4267
4268         /*
4269          * Retake the page table lock to check for racing updates
4270          * before the page tables are altered
4271          */
4272         spin_lock(ptl);
4273         ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
4274         if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
4275                 ClearHPageRestoreReserve(new_page);
4276
4277                 /* Break COW */
4278                 huge_ptep_clear_flush(vma, haddr, ptep);
4279                 mmu_notifier_invalidate_range(mm, range.start, range.end);
4280                 set_huge_pte_at(mm, haddr, ptep,
4281                                 make_huge_pte(vma, new_page, 1));
4282                 page_remove_rmap(old_page, true);
4283                 hugepage_add_new_anon_rmap(new_page, vma, haddr);
4284                 SetHPageMigratable(new_page);
4285                 /* Make the old page be freed below */
4286                 new_page = old_page;
4287         }
4288         spin_unlock(ptl);
4289         mmu_notifier_invalidate_range_end(&range);
4290 out_release_all:
4291         restore_reserve_on_error(h, vma, haddr, new_page);
4292         put_page(new_page);
4293 out_release_old:
4294         put_page(old_page);
4295
4296         spin_lock(ptl); /* Caller expects lock to be held */
4297         return ret;
4298 }
4299
4300 /* Return the pagecache page at a given address within a VMA */
4301 static struct page *hugetlbfs_pagecache_page(struct hstate *h,
4302                         struct vm_area_struct *vma, unsigned long address)
4303 {
4304         struct address_space *mapping;
4305         pgoff_t idx;
4306
4307         mapping = vma->vm_file->f_mapping;
4308         idx = vma_hugecache_offset(h, vma, address);
4309
4310         return find_lock_page(mapping, idx);
4311 }
4312
4313 /*
4314  * Return whether there is a pagecache page to back given address within VMA.
4315  * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
4316  */
4317 static bool hugetlbfs_pagecache_present(struct hstate *h,
4318                         struct vm_area_struct *vma, unsigned long address)
4319 {
4320         struct address_space *mapping;
4321         pgoff_t idx;
4322         struct page *page;
4323
4324         mapping = vma->vm_file->f_mapping;
4325         idx = vma_hugecache_offset(h, vma, address);
4326
4327         page = find_get_page(mapping, idx);
4328         if (page)
4329                 put_page(page);
4330         return page != NULL;
4331 }
4332
4333 int huge_add_to_page_cache(struct page *page, struct address_space *mapping,
4334                            pgoff_t idx)
4335 {
4336         struct inode *inode = mapping->host;
4337         struct hstate *h = hstate_inode(inode);
4338         int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
4339
4340         if (err)
4341                 return err;
4342         ClearHPageRestoreReserve(page);
4343
4344         /*
4345          * set page dirty so that it will not be removed from cache/file
4346          * by non-hugetlbfs specific code paths.
4347          */
4348         set_page_dirty(page);
4349
4350         spin_lock(&inode->i_lock);
4351         inode->i_blocks += blocks_per_huge_page(h);
4352         spin_unlock(&inode->i_lock);
4353         return 0;
4354 }
4355
4356 static vm_fault_t hugetlb_no_page(struct mm_struct *mm,
4357                         struct vm_area_struct *vma,
4358                         struct address_space *mapping, pgoff_t idx,
4359                         unsigned long address, pte_t *ptep, unsigned int flags)
4360 {
4361         struct hstate *h = hstate_vma(vma);
4362         vm_fault_t ret = VM_FAULT_SIGBUS;
4363         int anon_rmap = 0;
4364         unsigned long size;
4365         struct page *page;
4366         pte_t new_pte;
4367         spinlock_t *ptl;
4368         unsigned long haddr = address & huge_page_mask(h);
4369         bool new_page = false;
4370
4371         /*
4372          * Currently, we are forced to kill the process in the event the
4373          * original mapper has unmapped pages from the child due to a failed
4374          * COW. Warn that such a situation has occurred as it may not be obvious
4375          */
4376         if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
4377                 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
4378                            current->pid);
4379                 return ret;
4380         }
4381
4382         /*
4383          * We can not race with truncation due to holding i_mmap_rwsem.
4384          * i_size is modified when holding i_mmap_rwsem, so check here
4385          * once for faults beyond end of file.
4386          */
4387         size = i_size_read(mapping->host) >> huge_page_shift(h);
4388         if (idx >= size)
4389                 goto out;
4390
4391 retry:
4392         page = find_lock_page(mapping, idx);
4393         if (!page) {
4394                 /*
4395                  * Check for page in userfault range
4396                  */
4397                 if (userfaultfd_missing(vma)) {
4398                         u32 hash;
4399                         struct vm_fault vmf = {
4400                                 .vma = vma,
4401                                 .address = haddr,
4402                                 .flags = flags,
4403                                 /*
4404                                  * Hard to debug if it ends up being
4405                                  * used by a callee that assumes
4406                                  * something about the other
4407                                  * uninitialized fields... same as in
4408                                  * memory.c
4409                                  */
4410                         };
4411
4412                         /*
4413                          * hugetlb_fault_mutex and i_mmap_rwsem must be
4414                          * dropped before handling userfault.  Reacquire
4415                          * after handling fault to make calling code simpler.
4416                          */
4417                         hash = hugetlb_fault_mutex_hash(mapping, idx);
4418                         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
4419                         i_mmap_unlock_read(mapping);
4420                         ret = handle_userfault(&vmf, VM_UFFD_MISSING);
4421                         i_mmap_lock_read(mapping);
4422                         mutex_lock(&hugetlb_fault_mutex_table[hash]);
4423                         goto out;
4424                 }
4425
4426                 page = alloc_huge_page(vma, haddr, 0);
4427                 if (IS_ERR(page)) {
4428                         /*
4429                          * Returning error will result in faulting task being
4430                          * sent SIGBUS.  The hugetlb fault mutex prevents two
4431                          * tasks from racing to fault in the same page which
4432                          * could result in false unable to allocate errors.
4433                          * Page migration does not take the fault mutex, but
4434                          * does a clear then write of pte's under page table
4435                          * lock.  Page fault code could race with migration,
4436                          * notice the clear pte and try to allocate a page
4437                          * here.  Before returning error, get ptl and make
4438                          * sure there really is no pte entry.
4439                          */
4440                         ptl = huge_pte_lock(h, mm, ptep);
4441                         ret = 0;
4442                         if (huge_pte_none(huge_ptep_get(ptep)))
4443                                 ret = vmf_error(PTR_ERR(page));
4444                         spin_unlock(ptl);
4445                         goto out;
4446                 }
4447                 clear_huge_page(page, address, pages_per_huge_page(h));
4448                 __SetPageUptodate(page);
4449                 new_page = true;
4450
4451                 if (vma->vm_flags & VM_MAYSHARE) {
4452                         int err = huge_add_to_page_cache(page, mapping, idx);
4453                         if (err) {
4454                                 put_page(page);
4455                                 if (err == -EEXIST)
4456                                         goto retry;
4457                                 goto out;
4458                         }
4459                 } else {
4460                         lock_page(page);
4461                         if (unlikely(anon_vma_prepare(vma))) {
4462                                 ret = VM_FAULT_OOM;
4463                                 goto backout_unlocked;
4464                         }
4465                         anon_rmap = 1;
4466                 }
4467         } else {
4468                 /*
4469                  * If memory error occurs between mmap() and fault, some process
4470                  * don't have hwpoisoned swap entry for errored virtual address.
4471                  * So we need to block hugepage fault by PG_hwpoison bit check.
4472                  */
4473                 if (unlikely(PageHWPoison(page))) {
4474                         ret = VM_FAULT_HWPOISON_LARGE |
4475                                 VM_FAULT_SET_HINDEX(hstate_index(h));
4476                         goto backout_unlocked;
4477                 }
4478         }
4479
4480         /*
4481          * If we are going to COW a private mapping later, we examine the
4482          * pending reservations for this page now. This will ensure that
4483          * any allocations necessary to record that reservation occur outside
4484          * the spinlock.
4485          */
4486         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
4487                 if (vma_needs_reservation(h, vma, haddr) < 0) {
4488                         ret = VM_FAULT_OOM;
4489                         goto backout_unlocked;
4490                 }
4491                 /* Just decrements count, does not deallocate */
4492                 vma_end_reservation(h, vma, haddr);
4493         }
4494
4495         ptl = huge_pte_lock(h, mm, ptep);
4496         ret = 0;
4497         if (!huge_pte_none(huge_ptep_get(ptep)))
4498                 goto backout;
4499
4500         if (anon_rmap) {
4501                 ClearHPageRestoreReserve(page);
4502                 hugepage_add_new_anon_rmap(page, vma, haddr);
4503         } else
4504                 page_dup_rmap(page, true);
4505         new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
4506                                 && (vma->vm_flags & VM_SHARED)));
4507         set_huge_pte_at(mm, haddr, ptep, new_pte);
4508
4509         hugetlb_count_add(pages_per_huge_page(h), mm);
4510         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
4511                 /* Optimization, do the COW without a second fault */
4512                 ret = hugetlb_cow(mm, vma, address, ptep, page, ptl);
4513         }
4514
4515         spin_unlock(ptl);
4516
4517         /*
4518          * Only set HPageMigratable in newly allocated pages.  Existing pages
4519          * found in the pagecache may not have HPageMigratableset if they have
4520          * been isolated for migration.
4521          */
4522         if (new_page)
4523                 SetHPageMigratable(page);
4524
4525         unlock_page(page);
4526 out:
4527         return ret;
4528
4529 backout:
4530         spin_unlock(ptl);
4531 backout_unlocked:
4532         unlock_page(page);
4533         restore_reserve_on_error(h, vma, haddr, page);
4534         put_page(page);
4535         goto out;
4536 }
4537
4538 #ifdef CONFIG_SMP
4539 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
4540 {
4541         unsigned long key[2];
4542         u32 hash;
4543
4544         key[0] = (unsigned long) mapping;
4545         key[1] = idx;
4546
4547         hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0);
4548
4549         return hash & (num_fault_mutexes - 1);
4550 }
4551 #else
4552 /*
4553  * For uniprocessor systems we always use a single mutex, so just
4554  * return 0 and avoid the hashing overhead.
4555  */
4556 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
4557 {
4558         return 0;
4559 }
4560 #endif
4561
4562 vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
4563                         unsigned long address, unsigned int flags)
4564 {
4565         pte_t *ptep, entry;
4566         spinlock_t *ptl;
4567         vm_fault_t ret;
4568         u32 hash;
4569         pgoff_t idx;
4570         struct page *page = NULL;
4571         struct page *pagecache_page = NULL;
4572         struct hstate *h = hstate_vma(vma);
4573         struct address_space *mapping;
4574         int need_wait_lock = 0;
4575         unsigned long haddr = address & huge_page_mask(h);
4576
4577         ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
4578         if (ptep) {
4579                 /*
4580                  * Since we hold no locks, ptep could be stale.  That is
4581                  * OK as we are only making decisions based on content and
4582                  * not actually modifying content here.
4583                  */
4584                 entry = huge_ptep_get(ptep);
4585                 if (unlikely(is_hugetlb_entry_migration(entry))) {
4586                         migration_entry_wait_huge(vma, mm, ptep);
4587                         return 0;
4588                 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
4589                         return VM_FAULT_HWPOISON_LARGE |
4590                                 VM_FAULT_SET_HINDEX(hstate_index(h));
4591         }
4592
4593         /*
4594          * Acquire i_mmap_rwsem before calling huge_pte_alloc and hold
4595          * until finished with ptep.  This serves two purposes:
4596          * 1) It prevents huge_pmd_unshare from being called elsewhere
4597          *    and making the ptep no longer valid.
4598          * 2) It synchronizes us with i_size modifications during truncation.
4599          *
4600          * ptep could have already be assigned via huge_pte_offset.  That
4601          * is OK, as huge_pte_alloc will return the same value unless
4602          * something has changed.
4603          */
4604         mapping = vma->vm_file->f_mapping;
4605         i_mmap_lock_read(mapping);
4606         ptep = huge_pte_alloc(mm, vma, haddr, huge_page_size(h));
4607         if (!ptep) {
4608                 i_mmap_unlock_read(mapping);
4609                 return VM_FAULT_OOM;
4610         }
4611
4612         /*
4613          * Serialize hugepage allocation and instantiation, so that we don't
4614          * get spurious allocation failures if two CPUs race to instantiate
4615          * the same page in the page cache.
4616          */
4617         idx = vma_hugecache_offset(h, vma, haddr);
4618         hash = hugetlb_fault_mutex_hash(mapping, idx);
4619         mutex_lock(&hugetlb_fault_mutex_table[hash]);
4620
4621         entry = huge_ptep_get(ptep);
4622         if (huge_pte_none(entry)) {
4623                 ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
4624                 goto out_mutex;
4625         }
4626
4627         ret = 0;
4628
4629         /*
4630          * entry could be a migration/hwpoison entry at this point, so this
4631          * check prevents the kernel from going below assuming that we have
4632          * an active hugepage in pagecache. This goto expects the 2nd page
4633          * fault, and is_hugetlb_entry_(migration|hwpoisoned) check will
4634          * properly handle it.
4635          */
4636         if (!pte_present(entry))
4637                 goto out_mutex;
4638
4639         /*
4640          * If we are going to COW the mapping later, we examine the pending
4641          * reservations for this page now. This will ensure that any
4642          * allocations necessary to record that reservation occur outside the
4643          * spinlock. For private mappings, we also lookup the pagecache
4644          * page now as it is used to determine if a reservation has been
4645          * consumed.
4646          */
4647         if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
4648                 if (vma_needs_reservation(h, vma, haddr) < 0) {
4649                         ret = VM_FAULT_OOM;
4650                         goto out_mutex;
4651                 }
4652                 /* Just decrements count, does not deallocate */
4653                 vma_end_reservation(h, vma, haddr);
4654
4655                 if (!(vma->vm_flags & VM_MAYSHARE))
4656                         pagecache_page = hugetlbfs_pagecache_page(h,
4657                                                                 vma, haddr);
4658         }
4659
4660         ptl = huge_pte_lock(h, mm, ptep);
4661
4662         /* Check for a racing update before calling hugetlb_cow */
4663         if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
4664                 goto out_ptl;
4665
4666         /*
4667          * hugetlb_cow() requires page locks of pte_page(entry) and
4668          * pagecache_page, so here we need take the former one
4669          * when page != pagecache_page or !pagecache_page.
4670          */
4671         page = pte_page(entry);
4672         if (page != pagecache_page)
4673                 if (!trylock_page(page)) {
4674                         need_wait_lock = 1;
4675                         goto out_ptl;
4676                 }
4677
4678         get_page(page);
4679
4680         if (flags & FAULT_FLAG_WRITE) {
4681                 if (!huge_pte_write(entry)) {
4682                         ret = hugetlb_cow(mm, vma, address, ptep,
4683                                           pagecache_page, ptl);
4684                         goto out_put_page;
4685                 }
4686                 entry = huge_pte_mkdirty(entry);
4687         }
4688         entry = pte_mkyoung(entry);
4689         if (huge_ptep_set_access_flags(vma, haddr, ptep, entry,
4690                                                 flags & FAULT_FLAG_WRITE))
4691                 update_mmu_cache(vma, haddr, ptep);
4692 out_put_page:
4693         if (page != pagecache_page)
4694                 unlock_page(page);
4695         put_page(page);
4696 out_ptl:
4697         spin_unlock(ptl);
4698
4699         if (pagecache_page) {
4700                 unlock_page(pagecache_page);
4701                 put_page(pagecache_page);
4702         }
4703 out_mutex:
4704         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
4705         i_mmap_unlock_read(mapping);
4706         /*
4707          * Generally it's safe to hold refcount during waiting page lock. But
4708          * here we just wait to defer the next page fault to avoid busy loop and
4709          * the page is not used after unlocked before returning from the current
4710          * page fault. So we are safe from accessing freed page, even if we wait
4711          * here without taking refcount.
4712          */
4713         if (need_wait_lock)
4714                 wait_on_page_locked(page);
4715         return ret;
4716 }
4717
4718 /*
4719  * Used by userfaultfd UFFDIO_COPY.  Based on mcopy_atomic_pte with
4720  * modifications for huge pages.
4721  */
4722 int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm,
4723                             pte_t *dst_pte,
4724                             struct vm_area_struct *dst_vma,
4725                             unsigned long dst_addr,
4726                             unsigned long src_addr,
4727                             struct page **pagep)
4728 {
4729         struct address_space *mapping;
4730         pgoff_t idx;
4731         unsigned long size;
4732         int vm_shared = dst_vma->vm_flags & VM_SHARED;
4733         struct hstate *h = hstate_vma(dst_vma);
4734         pte_t _dst_pte;
4735         spinlock_t *ptl;
4736         int ret;
4737         struct page *page;
4738
4739         if (!*pagep) {
4740                 ret = -ENOMEM;
4741                 page = alloc_huge_page(dst_vma, dst_addr, 0);
4742                 if (IS_ERR(page))
4743                         goto out;
4744
4745                 ret = copy_huge_page_from_user(page,
4746                                                 (const void __user *) src_addr,
4747                                                 pages_per_huge_page(h), false);
4748
4749                 /* fallback to copy_from_user outside mmap_lock */
4750                 if (unlikely(ret)) {
4751                         ret = -ENOENT;
4752                         *pagep = page;
4753                         /* don't free the page */
4754                         goto out;
4755                 }
4756         } else {
4757                 page = *pagep;
4758                 *pagep = NULL;
4759         }
4760
4761         /*
4762          * The memory barrier inside __SetPageUptodate makes sure that
4763          * preceding stores to the page contents become visible before
4764          * the set_pte_at() write.
4765          */
4766         __SetPageUptodate(page);
4767
4768         mapping = dst_vma->vm_file->f_mapping;
4769         idx = vma_hugecache_offset(h, dst_vma, dst_addr);
4770
4771         /*
4772          * If shared, add to page cache
4773          */
4774         if (vm_shared) {
4775                 size = i_size_read(mapping->host) >> huge_page_shift(h);
4776                 ret = -EFAULT;
4777                 if (idx >= size)
4778                         goto out_release_nounlock;
4779
4780                 /*
4781                  * Serialization between remove_inode_hugepages() and
4782                  * huge_add_to_page_cache() below happens through the
4783                  * hugetlb_fault_mutex_table that here must be hold by
4784                  * the caller.
4785                  */
4786                 ret = huge_add_to_page_cache(page, mapping, idx);
4787                 if (ret)
4788                         goto out_release_nounlock;
4789         }
4790
4791         ptl = huge_pte_lockptr(h, dst_mm, dst_pte);
4792         spin_lock(ptl);
4793
4794         /*
4795          * Recheck the i_size after holding PT lock to make sure not
4796          * to leave any page mapped (as page_mapped()) beyond the end
4797          * of the i_size (remove_inode_hugepages() is strict about
4798          * enforcing that). If we bail out here, we'll also leave a
4799          * page in the radix tree in the vm_shared case beyond the end
4800          * of the i_size, but remove_inode_hugepages() will take care
4801          * of it as soon as we drop the hugetlb_fault_mutex_table.
4802          */
4803         size = i_size_read(mapping->host) >> huge_page_shift(h);
4804         ret = -EFAULT;
4805         if (idx >= size)
4806                 goto out_release_unlock;
4807
4808         ret = -EEXIST;
4809         if (!huge_pte_none(huge_ptep_get(dst_pte)))
4810                 goto out_release_unlock;
4811
4812         if (vm_shared) {
4813                 page_dup_rmap(page, true);
4814         } else {
4815                 ClearHPageRestoreReserve(page);
4816                 hugepage_add_new_anon_rmap(page, dst_vma, dst_addr);
4817         }
4818
4819         _dst_pte = make_huge_pte(dst_vma, page, dst_vma->vm_flags & VM_WRITE);
4820         if (dst_vma->vm_flags & VM_WRITE)
4821                 _dst_pte = huge_pte_mkdirty(_dst_pte);
4822         _dst_pte = pte_mkyoung(_dst_pte);
4823
4824         set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
4825
4826         (void)huge_ptep_set_access_flags(dst_vma, dst_addr, dst_pte, _dst_pte,
4827                                         dst_vma->vm_flags & VM_WRITE);
4828         hugetlb_count_add(pages_per_huge_page(h), dst_mm);
4829
4830         /* No need to invalidate - it was non-present before */
4831         update_mmu_cache(dst_vma, dst_addr, dst_pte);
4832
4833         spin_unlock(ptl);
4834         SetHPageMigratable(page);
4835         if (vm_shared)
4836                 unlock_page(page);
4837         ret = 0;
4838 out:
4839         return ret;
4840 out_release_unlock:
4841         spin_unlock(ptl);
4842         if (vm_shared)
4843                 unlock_page(page);
4844 out_release_nounlock:
4845         put_page(page);
4846         goto out;
4847 }
4848
4849 static void record_subpages_vmas(struct page *page, struct vm_area_struct *vma,
4850                                  int refs, struct page **pages,
4851                                  struct vm_area_struct **vmas)
4852 {
4853         int nr;
4854
4855         for (nr = 0; nr < refs; nr++) {
4856                 if (likely(pages))
4857                         pages[nr] = mem_map_offset(page, nr);
4858                 if (vmas)
4859                         vmas[nr] = vma;
4860         }
4861 }
4862
4863 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
4864                          struct page **pages, struct vm_area_struct **vmas,
4865                          unsigned long *position, unsigned long *nr_pages,
4866                          long i, unsigned int flags, int *locked)
4867 {
4868         unsigned long pfn_offset;
4869         unsigned long vaddr = *position;
4870         unsigned long remainder = *nr_pages;
4871         struct hstate *h = hstate_vma(vma);
4872         int err = -EFAULT, refs;
4873
4874         while (vaddr < vma->vm_end && remainder) {
4875                 pte_t *pte;
4876                 spinlock_t *ptl = NULL;
4877                 int absent;
4878                 struct page *page;
4879
4880                 /*
4881                  * If we have a pending SIGKILL, don't keep faulting pages and
4882                  * potentially allocating memory.
4883                  */
4884                 if (fatal_signal_pending(current)) {
4885                         remainder = 0;
4886                         break;
4887                 }
4888
4889                 /*
4890                  * Some archs (sparc64, sh*) have multiple pte_ts to
4891                  * each hugepage.  We have to make sure we get the
4892                  * first, for the page indexing below to work.
4893                  *
4894                  * Note that page table lock is not held when pte is null.
4895                  */
4896                 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h),
4897                                       huge_page_size(h));
4898                 if (pte)
4899                         ptl = huge_pte_lock(h, mm, pte);
4900                 absent = !pte || huge_pte_none(huge_ptep_get(pte));
4901
4902                 /*
4903                  * When coredumping, it suits get_dump_page if we just return
4904                  * an error where there's an empty slot with no huge pagecache
4905                  * to back it.  This way, we avoid allocating a hugepage, and
4906                  * the sparse dumpfile avoids allocating disk blocks, but its
4907                  * huge holes still show up with zeroes where they need to be.
4908                  */
4909                 if (absent && (flags & FOLL_DUMP) &&
4910                     !hugetlbfs_pagecache_present(h, vma, vaddr)) {
4911                         if (pte)
4912                                 spin_unlock(ptl);
4913                         remainder = 0;
4914                         break;
4915                 }
4916
4917                 /*
4918                  * We need call hugetlb_fault for both hugepages under migration
4919                  * (in which case hugetlb_fault waits for the migration,) and
4920                  * hwpoisoned hugepages (in which case we need to prevent the
4921                  * caller from accessing to them.) In order to do this, we use
4922                  * here is_swap_pte instead of is_hugetlb_entry_migration and
4923                  * is_hugetlb_entry_hwpoisoned. This is because it simply covers
4924                  * both cases, and because we can't follow correct pages
4925                  * directly from any kind of swap entries.
4926                  */
4927                 if (absent || is_swap_pte(huge_ptep_get(pte)) ||
4928                     ((flags & FOLL_WRITE) &&
4929                       !huge_pte_write(huge_ptep_get(pte)))) {
4930                         vm_fault_t ret;
4931                         unsigned int fault_flags = 0;
4932
4933                         if (pte)
4934                                 spin_unlock(ptl);
4935                         if (flags & FOLL_WRITE)
4936                                 fault_flags |= FAULT_FLAG_WRITE;
4937                         if (locked)
4938                                 fault_flags |= FAULT_FLAG_ALLOW_RETRY |
4939                                         FAULT_FLAG_KILLABLE;
4940                         if (flags & FOLL_NOWAIT)
4941                                 fault_flags |= FAULT_FLAG_ALLOW_RETRY |
4942                                         FAULT_FLAG_RETRY_NOWAIT;
4943                         if (flags & FOLL_TRIED) {
4944                                 /*
4945                                  * Note: FAULT_FLAG_ALLOW_RETRY and
4946                                  * FAULT_FLAG_TRIED can co-exist
4947                                  */
4948                                 fault_flags |= FAULT_FLAG_TRIED;
4949                         }
4950                         ret = hugetlb_fault(mm, vma, vaddr, fault_flags);
4951                         if (ret & VM_FAULT_ERROR) {
4952                                 err = vm_fault_to_errno(ret, flags);
4953                                 remainder = 0;
4954                                 break;
4955                         }
4956                         if (ret & VM_FAULT_RETRY) {
4957                                 if (locked &&
4958                                     !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
4959                                         *locked = 0;
4960                                 *nr_pages = 0;
4961                                 /*
4962                                  * VM_FAULT_RETRY must not return an
4963                                  * error, it will return zero
4964                                  * instead.
4965                                  *
4966                                  * No need to update "position" as the
4967                                  * caller will not check it after
4968                                  * *nr_pages is set to 0.
4969                                  */
4970                                 return i;
4971                         }
4972                         continue;
4973                 }
4974
4975                 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
4976                 page = pte_page(huge_ptep_get(pte));
4977
4978                 /*
4979                  * If subpage information not requested, update counters
4980                  * and skip the same_page loop below.
4981                  */
4982                 if (!pages && !vmas && !pfn_offset &&
4983                     (vaddr + huge_page_size(h) < vma->vm_end) &&
4984                     (remainder >= pages_per_huge_page(h))) {
4985                         vaddr += huge_page_size(h);
4986                         remainder -= pages_per_huge_page(h);
4987                         i += pages_per_huge_page(h);
4988                         spin_unlock(ptl);
4989                         continue;
4990                 }
4991
4992                 refs = min3(pages_per_huge_page(h) - pfn_offset,
4993                             (vma->vm_end - vaddr) >> PAGE_SHIFT, remainder);
4994
4995                 if (pages || vmas)
4996                         record_subpages_vmas(mem_map_offset(page, pfn_offset),
4997                                              vma, refs,
4998                                              likely(pages) ? pages + i : NULL,
4999                                              vmas ? vmas + i : NULL);
5000
5001                 if (pages) {
5002                         /*
5003                          * try_grab_compound_head() should always succeed here,
5004                          * because: a) we hold the ptl lock, and b) we've just
5005                          * checked that the huge page is present in the page
5006                          * tables. If the huge page is present, then the tail
5007                          * pages must also be present. The ptl prevents the
5008                          * head page and tail pages from being rearranged in
5009                          * any way. So this page must be available at this
5010                          * point, unless the page refcount overflowed:
5011                          */
5012                         if (WARN_ON_ONCE(!try_grab_compound_head(pages[i],
5013                                                                  refs,
5014                                                                  flags))) {
5015                                 spin_unlock(ptl);
5016                                 remainder = 0;
5017                                 err = -ENOMEM;
5018                                 break;
5019                         }
5020                 }
5021
5022                 vaddr += (refs << PAGE_SHIFT);
5023                 remainder -= refs;
5024                 i += refs;
5025
5026                 spin_unlock(ptl);
5027         }
5028         *nr_pages = remainder;
5029         /*
5030          * setting position is actually required only if remainder is
5031          * not zero but it's faster not to add a "if (remainder)"
5032          * branch.
5033          */
5034         *position = vaddr;
5035
5036         return i ? i : err;
5037 }
5038
5039 unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
5040                 unsigned long address, unsigned long end, pgprot_t newprot)
5041 {
5042         struct mm_struct *mm = vma->vm_mm;
5043         unsigned long start = address;
5044         pte_t *ptep;
5045         pte_t pte;
5046         struct hstate *h = hstate_vma(vma);
5047         unsigned long pages = 0;
5048         bool shared_pmd = false;
5049         struct mmu_notifier_range range;
5050
5051         /*
5052          * In the case of shared PMDs, the area to flush could be beyond
5053          * start/end.  Set range.start/range.end to cover the maximum possible
5054          * range if PMD sharing is possible.
5055          */
5056         mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA,
5057                                 0, vma, mm, start, end);
5058         adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
5059
5060         BUG_ON(address >= end);
5061         flush_cache_range(vma, range.start, range.end);
5062
5063         mmu_notifier_invalidate_range_start(&range);
5064         i_mmap_lock_write(vma->vm_file->f_mapping);
5065         for (; address < end; address += huge_page_size(h)) {
5066                 spinlock_t *ptl;
5067                 ptep = huge_pte_offset(mm, address, huge_page_size(h));
5068                 if (!ptep)
5069                         continue;
5070                 ptl = huge_pte_lock(h, mm, ptep);
5071                 if (huge_pmd_unshare(mm, vma, &address, ptep)) {
5072                         pages++;
5073                         spin_unlock(ptl);
5074                         shared_pmd = true;
5075                         continue;
5076                 }
5077                 pte = huge_ptep_get(ptep);
5078                 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
5079                         spin_unlock(ptl);
5080                         continue;
5081                 }
5082                 if (unlikely(is_hugetlb_entry_migration(pte))) {
5083                         swp_entry_t entry = pte_to_swp_entry(pte);
5084
5085                         if (is_write_migration_entry(entry)) {
5086                                 pte_t newpte;
5087
5088                                 make_migration_entry_read(&entry);
5089                                 newpte = swp_entry_to_pte(entry);
5090                                 set_huge_swap_pte_at(mm, address, ptep,
5091                                                      newpte, huge_page_size(h));
5092                                 pages++;
5093                         }
5094                         spin_unlock(ptl);
5095                         continue;
5096                 }
5097                 if (!huge_pte_none(pte)) {
5098                         pte_t old_pte;
5099
5100                         old_pte = huge_ptep_modify_prot_start(vma, address, ptep);
5101                         pte = pte_mkhuge(huge_pte_modify(old_pte, newprot));
5102                         pte = arch_make_huge_pte(pte, vma, NULL, 0);
5103                         huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte);
5104                         pages++;
5105                 }
5106                 spin_unlock(ptl);
5107         }
5108         /*
5109          * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
5110          * may have cleared our pud entry and done put_page on the page table:
5111          * once we release i_mmap_rwsem, another task can do the final put_page
5112          * and that page table be reused and filled with junk.  If we actually
5113          * did unshare a page of pmds, flush the range corresponding to the pud.
5114          */
5115         if (shared_pmd)
5116                 flush_hugetlb_tlb_range(vma, range.start, range.end);
5117         else
5118                 flush_hugetlb_tlb_range(vma, start, end);
5119         /*
5120          * No need to call mmu_notifier_invalidate_range() we are downgrading
5121          * page table protection not changing it to point to a new page.
5122          *
5123          * See Documentation/vm/mmu_notifier.rst
5124          */
5125         i_mmap_unlock_write(vma->vm_file->f_mapping);
5126         mmu_notifier_invalidate_range_end(&range);
5127
5128         return pages << h->order;
5129 }
5130
5131 /* Return true if reservation was successful, false otherwise.  */
5132 bool hugetlb_reserve_pages(struct inode *inode,
5133                                         long from, long to,
5134                                         struct vm_area_struct *vma,
5135                                         vm_flags_t vm_flags)
5136 {
5137         long chg, add = -1;
5138         struct hstate *h = hstate_inode(inode);
5139         struct hugepage_subpool *spool = subpool_inode(inode);
5140         struct resv_map *resv_map;
5141         struct hugetlb_cgroup *h_cg = NULL;
5142         long gbl_reserve, regions_needed = 0;
5143
5144         /* This should never happen */
5145         if (from > to) {
5146                 VM_WARN(1, "%s called with a negative range\n", __func__);
5147                 return false;
5148         }
5149
5150         /*
5151          * Only apply hugepage reservation if asked. At fault time, an
5152          * attempt will be made for VM_NORESERVE to allocate a page
5153          * without using reserves
5154          */
5155         if (vm_flags & VM_NORESERVE)
5156                 return true;
5157
5158         /*
5159          * Shared mappings base their reservation on the number of pages that
5160          * are already allocated on behalf of the file. Private mappings need
5161          * to reserve the full area even if read-only as mprotect() may be
5162          * called to make the mapping read-write. Assume !vma is a shm mapping
5163          */
5164         if (!vma || vma->vm_flags & VM_MAYSHARE) {
5165                 /*
5166                  * resv_map can not be NULL as hugetlb_reserve_pages is only
5167                  * called for inodes for which resv_maps were created (see
5168                  * hugetlbfs_get_inode).
5169                  */
5170                 resv_map = inode_resv_map(inode);
5171
5172                 chg = region_chg(resv_map, from, to, &regions_needed);
5173
5174         } else {
5175                 /* Private mapping. */
5176                 resv_map = resv_map_alloc();
5177                 if (!resv_map)
5178                         return false;
5179
5180                 chg = to - from;
5181
5182                 set_vma_resv_map(vma, resv_map);
5183                 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
5184         }
5185
5186         if (chg < 0)
5187                 goto out_err;
5188
5189         if (hugetlb_cgroup_charge_cgroup_rsvd(hstate_index(h),
5190                                 chg * pages_per_huge_page(h), &h_cg) < 0)
5191                 goto out_err;
5192
5193         if (vma && !(vma->vm_flags & VM_MAYSHARE) && h_cg) {
5194                 /* For private mappings, the hugetlb_cgroup uncharge info hangs
5195                  * of the resv_map.
5196                  */
5197                 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, h_cg, h);
5198         }
5199
5200         /*
5201          * There must be enough pages in the subpool for the mapping. If
5202          * the subpool has a minimum size, there may be some global
5203          * reservations already in place (gbl_reserve).
5204          */
5205         gbl_reserve = hugepage_subpool_get_pages(spool, chg);
5206         if (gbl_reserve < 0)
5207                 goto out_uncharge_cgroup;
5208
5209         /*
5210          * Check enough hugepages are available for the reservation.
5211          * Hand the pages back to the subpool if there are not
5212          */
5213         if (hugetlb_acct_memory(h, gbl_reserve) < 0)
5214                 goto out_put_pages;
5215
5216         /*
5217          * Account for the reservations made. Shared mappings record regions
5218          * that have reservations as they are shared by multiple VMAs.
5219          * When the last VMA disappears, the region map says how much
5220          * the reservation was and the page cache tells how much of
5221          * the reservation was consumed. Private mappings are per-VMA and
5222          * only the consumed reservations are tracked. When the VMA
5223          * disappears, the original reservation is the VMA size and the
5224          * consumed reservations are stored in the map. Hence, nothing
5225          * else has to be done for private mappings here
5226          */
5227         if (!vma || vma->vm_flags & VM_MAYSHARE) {
5228                 add = region_add(resv_map, from, to, regions_needed, h, h_cg);
5229
5230                 if (unlikely(add < 0)) {
5231                         hugetlb_acct_memory(h, -gbl_reserve);
5232                         goto out_put_pages;
5233                 } else if (unlikely(chg > add)) {
5234                         /*
5235                          * pages in this range were added to the reserve
5236                          * map between region_chg and region_add.  This
5237                          * indicates a race with alloc_huge_page.  Adjust
5238                          * the subpool and reserve counts modified above
5239                          * based on the difference.
5240                          */
5241                         long rsv_adjust;
5242
5243                         /*
5244                          * hugetlb_cgroup_uncharge_cgroup_rsvd() will put the
5245                          * reference to h_cg->css. See comment below for detail.
5246                          */
5247                         hugetlb_cgroup_uncharge_cgroup_rsvd(
5248                                 hstate_index(h),
5249                                 (chg - add) * pages_per_huge_page(h), h_cg);
5250
5251                         rsv_adjust = hugepage_subpool_put_pages(spool,
5252                                                                 chg - add);
5253                         hugetlb_acct_memory(h, -rsv_adjust);
5254                 } else if (h_cg) {
5255                         /*
5256                          * The file_regions will hold their own reference to
5257                          * h_cg->css. So we should release the reference held
5258                          * via hugetlb_cgroup_charge_cgroup_rsvd() when we are
5259                          * done.
5260                          */
5261                         hugetlb_cgroup_put_rsvd_cgroup(h_cg);
5262                 }
5263         }
5264         return true;
5265
5266 out_put_pages:
5267         /* put back original number of pages, chg */
5268         (void)hugepage_subpool_put_pages(spool, chg);
5269 out_uncharge_cgroup:
5270         hugetlb_cgroup_uncharge_cgroup_rsvd(hstate_index(h),
5271                                             chg * pages_per_huge_page(h), h_cg);
5272 out_err:
5273         if (!vma || vma->vm_flags & VM_MAYSHARE)
5274                 /* Only call region_abort if the region_chg succeeded but the
5275                  * region_add failed or didn't run.
5276                  */
5277                 if (chg >= 0 && add < 0)
5278                         region_abort(resv_map, from, to, regions_needed);
5279         if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
5280                 kref_put(&resv_map->refs, resv_map_release);
5281         return false;
5282 }
5283
5284 long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
5285                                                                 long freed)
5286 {
5287         struct hstate *h = hstate_inode(inode);
5288         struct resv_map *resv_map = inode_resv_map(inode);
5289         long chg = 0;
5290         struct hugepage_subpool *spool = subpool_inode(inode);
5291         long gbl_reserve;
5292
5293         /*
5294          * Since this routine can be called in the evict inode path for all
5295          * hugetlbfs inodes, resv_map could be NULL.
5296          */
5297         if (resv_map) {
5298                 chg = region_del(resv_map, start, end);
5299                 /*
5300                  * region_del() can fail in the rare case where a region
5301                  * must be split and another region descriptor can not be
5302                  * allocated.  If end == LONG_MAX, it will not fail.
5303                  */
5304                 if (chg < 0)
5305                         return chg;
5306         }
5307
5308         spin_lock(&inode->i_lock);
5309         inode->i_blocks -= (blocks_per_huge_page(h) * freed);
5310         spin_unlock(&inode->i_lock);
5311
5312         /*
5313          * If the subpool has a minimum size, the number of global
5314          * reservations to be released may be adjusted.
5315          *
5316          * Note that !resv_map implies freed == 0. So (chg - freed)
5317          * won't go negative.
5318          */
5319         gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
5320         hugetlb_acct_memory(h, -gbl_reserve);
5321
5322         return 0;
5323 }
5324
5325 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
5326 static unsigned long page_table_shareable(struct vm_area_struct *svma,
5327                                 struct vm_area_struct *vma,
5328                                 unsigned long addr, pgoff_t idx)
5329 {
5330         unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
5331                                 svma->vm_start;
5332         unsigned long sbase = saddr & PUD_MASK;
5333         unsigned long s_end = sbase + PUD_SIZE;
5334
5335         /* Allow segments to share if only one is marked locked */
5336         unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
5337         unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
5338
5339         /*
5340          * match the virtual addresses, permission and the alignment of the
5341          * page table page.
5342          */
5343         if (pmd_index(addr) != pmd_index(saddr) ||
5344             vm_flags != svm_flags ||
5345             !range_in_vma(svma, sbase, s_end))
5346                 return 0;
5347
5348         return saddr;
5349 }
5350
5351 static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr)
5352 {
5353         unsigned long base = addr & PUD_MASK;
5354         unsigned long end = base + PUD_SIZE;
5355
5356         /*
5357          * check on proper vm_flags and page table alignment
5358          */
5359         if (vma->vm_flags & VM_MAYSHARE && range_in_vma(vma, base, end))
5360                 return true;
5361         return false;
5362 }
5363
5364 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
5365 {
5366 #ifdef CONFIG_USERFAULTFD
5367         if (uffd_disable_huge_pmd_share(vma))
5368                 return false;
5369 #endif
5370         return vma_shareable(vma, addr);
5371 }
5372
5373 /*
5374  * Determine if start,end range within vma could be mapped by shared pmd.
5375  * If yes, adjust start and end to cover range associated with possible
5376  * shared pmd mappings.
5377  */
5378 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
5379                                 unsigned long *start, unsigned long *end)
5380 {
5381         unsigned long v_start = ALIGN(vma->vm_start, PUD_SIZE),
5382                 v_end = ALIGN_DOWN(vma->vm_end, PUD_SIZE);
5383
5384         /*
5385          * vma need span at least one aligned PUD size and the start,end range
5386          * must at least partialy within it.
5387          */
5388         if (!(vma->vm_flags & VM_MAYSHARE) || !(v_end > v_start) ||
5389                 (*end <= v_start) || (*start >= v_end))
5390                 return;
5391
5392         /* Extend the range to be PUD aligned for a worst case scenario */
5393         if (*start > v_start)
5394                 *start = ALIGN_DOWN(*start, PUD_SIZE);
5395
5396         if (*end < v_end)
5397                 *end = ALIGN(*end, PUD_SIZE);
5398 }
5399
5400 /*
5401  * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
5402  * and returns the corresponding pte. While this is not necessary for the
5403  * !shared pmd case because we can allocate the pmd later as well, it makes the
5404  * code much cleaner.
5405  *
5406  * This routine must be called with i_mmap_rwsem held in at least read mode if
5407  * sharing is possible.  For hugetlbfs, this prevents removal of any page
5408  * table entries associated with the address space.  This is important as we
5409  * are setting up sharing based on existing page table entries (mappings).
5410  *
5411  * NOTE: This routine is only called from huge_pte_alloc.  Some callers of
5412  * huge_pte_alloc know that sharing is not possible and do not take
5413  * i_mmap_rwsem as a performance optimization.  This is handled by the
5414  * if !vma_shareable check at the beginning of the routine. i_mmap_rwsem is
5415  * only required for subsequent processing.
5416  */
5417 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
5418                       unsigned long addr, pud_t *pud)
5419 {
5420         struct address_space *mapping = vma->vm_file->f_mapping;
5421         pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
5422                         vma->vm_pgoff;
5423         struct vm_area_struct *svma;
5424         unsigned long saddr;
5425         pte_t *spte = NULL;
5426         pte_t *pte;
5427         spinlock_t *ptl;
5428
5429         i_mmap_assert_locked(mapping);
5430         vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
5431                 if (svma == vma)
5432                         continue;
5433
5434                 saddr = page_table_shareable(svma, vma, addr, idx);
5435                 if (saddr) {
5436                         spte = huge_pte_offset(svma->vm_mm, saddr,
5437                                                vma_mmu_pagesize(svma));
5438                         if (spte) {
5439                                 get_page(virt_to_page(spte));
5440                                 break;
5441                         }
5442                 }
5443         }
5444
5445         if (!spte)
5446                 goto out;
5447
5448         ptl = huge_pte_lock(hstate_vma(vma), mm, spte);
5449         if (pud_none(*pud)) {
5450                 pud_populate(mm, pud,
5451                                 (pmd_t *)((unsigned long)spte & PAGE_MASK));
5452                 mm_inc_nr_pmds(mm);
5453         } else {
5454                 put_page(virt_to_page(spte));
5455         }
5456         spin_unlock(ptl);
5457 out:
5458         pte = (pte_t *)pmd_alloc(mm, pud, addr);
5459         return pte;
5460 }
5461
5462 /*
5463  * unmap huge page backed by shared pte.
5464  *
5465  * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
5466  * indicated by page_count > 1, unmap is achieved by clearing pud and
5467  * decrementing the ref count. If count == 1, the pte page is not shared.
5468  *
5469  * Called with page table lock held and i_mmap_rwsem held in write mode.
5470  *
5471  * returns: 1 successfully unmapped a shared pte page
5472  *          0 the underlying pte page is not shared, or it is the last user
5473  */
5474 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
5475                                         unsigned long *addr, pte_t *ptep)
5476 {
5477         pgd_t *pgd = pgd_offset(mm, *addr);
5478         p4d_t *p4d = p4d_offset(pgd, *addr);
5479         pud_t *pud = pud_offset(p4d, *addr);
5480
5481         i_mmap_assert_write_locked(vma->vm_file->f_mapping);
5482         BUG_ON(page_count(virt_to_page(ptep)) == 0);
5483         if (page_count(virt_to_page(ptep)) == 1)
5484                 return 0;
5485
5486         pud_clear(pud);
5487         put_page(virt_to_page(ptep));
5488         mm_dec_nr_pmds(mm);
5489         *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
5490         return 1;
5491 }
5492
5493 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
5494 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
5495                       unsigned long addr, pud_t *pud)
5496 {
5497         return NULL;
5498 }
5499
5500 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
5501                                 unsigned long *addr, pte_t *ptep)
5502 {
5503         return 0;
5504 }
5505
5506 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
5507                                 unsigned long *start, unsigned long *end)
5508 {
5509 }
5510
5511 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
5512 {
5513         return false;
5514 }
5515 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
5516
5517 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
5518 pte_t *huge_pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
5519                         unsigned long addr, unsigned long sz)
5520 {
5521         pgd_t *pgd;
5522         p4d_t *p4d;
5523         pud_t *pud;
5524         pte_t *pte = NULL;
5525
5526         pgd = pgd_offset(mm, addr);
5527         p4d = p4d_alloc(mm, pgd, addr);
5528         if (!p4d)
5529                 return NULL;
5530         pud = pud_alloc(mm, p4d, addr);
5531         if (pud) {
5532                 if (sz == PUD_SIZE) {
5533                         pte = (pte_t *)pud;
5534                 } else {
5535                         BUG_ON(sz != PMD_SIZE);
5536                         if (want_pmd_share(vma, addr) && pud_none(*pud))
5537                                 pte = huge_pmd_share(mm, vma, addr, pud);
5538                         else
5539                                 pte = (pte_t *)pmd_alloc(mm, pud, addr);
5540                 }
5541         }
5542         BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte));
5543
5544         return pte;
5545 }
5546
5547 /*
5548  * huge_pte_offset() - Walk the page table to resolve the hugepage
5549  * entry at address @addr
5550  *
5551  * Return: Pointer to page table entry (PUD or PMD) for
5552  * address @addr, or NULL if a !p*d_present() entry is encountered and the
5553  * size @sz doesn't match the hugepage size at this level of the page
5554  * table.
5555  */
5556 pte_t *huge_pte_offset(struct mm_struct *mm,
5557                        unsigned long addr, unsigned long sz)
5558 {
5559         pgd_t *pgd;
5560         p4d_t *p4d;
5561         pud_t *pud;
5562         pmd_t *pmd;
5563
5564         pgd = pgd_offset(mm, addr);
5565         if (!pgd_present(*pgd))
5566                 return NULL;
5567         p4d = p4d_offset(pgd, addr);
5568         if (!p4d_present(*p4d))
5569                 return NULL;
5570
5571         pud = pud_offset(p4d, addr);
5572         if (sz == PUD_SIZE)
5573                 /* must be pud huge, non-present or none */
5574                 return (pte_t *)pud;
5575         if (!pud_present(*pud))
5576                 return NULL;
5577         /* must have a valid entry and size to go further */
5578
5579         pmd = pmd_offset(pud, addr);
5580         /* must be pmd huge, non-present or none */
5581         return (pte_t *)pmd;
5582 }
5583
5584 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
5585
5586 /*
5587  * These functions are overwritable if your architecture needs its own
5588  * behavior.
5589  */
5590 struct page * __weak
5591 follow_huge_addr(struct mm_struct *mm, unsigned long address,
5592                               int write)
5593 {
5594         return ERR_PTR(-EINVAL);
5595 }
5596
5597 struct page * __weak
5598 follow_huge_pd(struct vm_area_struct *vma,
5599                unsigned long address, hugepd_t hpd, int flags, int pdshift)
5600 {
5601         WARN(1, "hugepd follow called with no support for hugepage directory format\n");
5602         return NULL;
5603 }
5604
5605 struct page * __weak
5606 follow_huge_pmd(struct mm_struct *mm, unsigned long address,
5607                 pmd_t *pmd, int flags)
5608 {
5609         struct page *page = NULL;
5610         spinlock_t *ptl;
5611         pte_t pte;
5612
5613         /* FOLL_GET and FOLL_PIN are mutually exclusive. */
5614         if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
5615                          (FOLL_PIN | FOLL_GET)))
5616                 return NULL;
5617
5618 retry:
5619         ptl = pmd_lockptr(mm, pmd);
5620         spin_lock(ptl);
5621         /*
5622          * make sure that the address range covered by this pmd is not
5623          * unmapped from other threads.
5624          */
5625         if (!pmd_huge(*pmd))
5626                 goto out;
5627         pte = huge_ptep_get((pte_t *)pmd);
5628         if (pte_present(pte)) {
5629                 page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
5630                 /*
5631                  * try_grab_page() should always succeed here, because: a) we
5632                  * hold the pmd (ptl) lock, and b) we've just checked that the
5633                  * huge pmd (head) page is present in the page tables. The ptl
5634                  * prevents the head page and tail pages from being rearranged
5635                  * in any way. So this page must be available at this point,
5636                  * unless the page refcount overflowed:
5637                  */
5638                 if (WARN_ON_ONCE(!try_grab_page(page, flags))) {
5639                         page = NULL;
5640                         goto out;
5641                 }
5642         } else {
5643                 if (is_hugetlb_entry_migration(pte)) {
5644                         spin_unlock(ptl);
5645                         __migration_entry_wait(mm, (pte_t *)pmd, ptl);
5646                         goto retry;
5647                 }
5648                 /*
5649                  * hwpoisoned entry is treated as no_page_table in
5650                  * follow_page_mask().
5651                  */
5652         }
5653 out:
5654         spin_unlock(ptl);
5655         return page;
5656 }
5657
5658 struct page * __weak
5659 follow_huge_pud(struct mm_struct *mm, unsigned long address,
5660                 pud_t *pud, int flags)
5661 {
5662         if (flags & (FOLL_GET | FOLL_PIN))
5663                 return NULL;
5664
5665         return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
5666 }
5667
5668 struct page * __weak
5669 follow_huge_pgd(struct mm_struct *mm, unsigned long address, pgd_t *pgd, int flags)
5670 {
5671         if (flags & (FOLL_GET | FOLL_PIN))
5672                 return NULL;
5673
5674         return pte_page(*(pte_t *)pgd) + ((address & ~PGDIR_MASK) >> PAGE_SHIFT);
5675 }
5676
5677 bool isolate_huge_page(struct page *page, struct list_head *list)
5678 {
5679         bool ret = true;
5680
5681         spin_lock(&hugetlb_lock);
5682         if (!PageHeadHuge(page) ||
5683             !HPageMigratable(page) ||
5684             !get_page_unless_zero(page)) {
5685                 ret = false;
5686                 goto unlock;
5687         }
5688         ClearHPageMigratable(page);
5689         list_move_tail(&page->lru, list);
5690 unlock:
5691         spin_unlock(&hugetlb_lock);
5692         return ret;
5693 }
5694
5695 void putback_active_hugepage(struct page *page)
5696 {
5697         spin_lock(&hugetlb_lock);
5698         SetHPageMigratable(page);
5699         list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
5700         spin_unlock(&hugetlb_lock);
5701         put_page(page);
5702 }
5703
5704 void move_hugetlb_state(struct page *oldpage, struct page *newpage, int reason)
5705 {
5706         struct hstate *h = page_hstate(oldpage);
5707
5708         hugetlb_cgroup_migrate(oldpage, newpage);
5709         set_page_owner_migrate_reason(newpage, reason);
5710
5711         /*
5712          * transfer temporary state of the new huge page. This is
5713          * reverse to other transitions because the newpage is going to
5714          * be final while the old one will be freed so it takes over
5715          * the temporary status.
5716          *
5717          * Also note that we have to transfer the per-node surplus state
5718          * here as well otherwise the global surplus count will not match
5719          * the per-node's.
5720          */
5721         if (HPageTemporary(newpage)) {
5722                 int old_nid = page_to_nid(oldpage);
5723                 int new_nid = page_to_nid(newpage);
5724
5725                 SetHPageTemporary(oldpage);
5726                 ClearHPageTemporary(newpage);
5727
5728                 /*
5729                  * There is no need to transfer the per-node surplus state
5730                  * when we do not cross the node.
5731                  */
5732                 if (new_nid == old_nid)
5733                         return;
5734                 spin_lock(&hugetlb_lock);
5735                 if (h->surplus_huge_pages_node[old_nid]) {
5736                         h->surplus_huge_pages_node[old_nid]--;
5737                         h->surplus_huge_pages_node[new_nid]++;
5738                 }
5739                 spin_unlock(&hugetlb_lock);
5740         }
5741 }
5742
5743 /*
5744  * This function will unconditionally remove all the shared pmd pgtable entries
5745  * within the specific vma for a hugetlbfs memory range.
5746  */
5747 void hugetlb_unshare_all_pmds(struct vm_area_struct *vma)
5748 {
5749         struct hstate *h = hstate_vma(vma);
5750         unsigned long sz = huge_page_size(h);
5751         struct mm_struct *mm = vma->vm_mm;
5752         struct mmu_notifier_range range;
5753         unsigned long address, start, end;
5754         spinlock_t *ptl;
5755         pte_t *ptep;
5756
5757         if (!(vma->vm_flags & VM_MAYSHARE))
5758                 return;
5759
5760         start = ALIGN(vma->vm_start, PUD_SIZE);
5761         end = ALIGN_DOWN(vma->vm_end, PUD_SIZE);
5762
5763         if (start >= end)
5764                 return;
5765
5766         /*
5767          * No need to call adjust_range_if_pmd_sharing_possible(), because
5768          * we have already done the PUD_SIZE alignment.
5769          */
5770         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
5771                                 start, end);
5772         mmu_notifier_invalidate_range_start(&range);
5773         i_mmap_lock_write(vma->vm_file->f_mapping);
5774         for (address = start; address < end; address += PUD_SIZE) {
5775                 unsigned long tmp = address;
5776
5777                 ptep = huge_pte_offset(mm, address, sz);
5778                 if (!ptep)
5779                         continue;
5780                 ptl = huge_pte_lock(h, mm, ptep);
5781                 /* We don't want 'address' to be changed */
5782                 huge_pmd_unshare(mm, vma, &tmp, ptep);
5783                 spin_unlock(ptl);
5784         }
5785         flush_hugetlb_tlb_range(vma, start, end);
5786         i_mmap_unlock_write(vma->vm_file->f_mapping);
5787         /*
5788          * No need to call mmu_notifier_invalidate_range(), see
5789          * Documentation/vm/mmu_notifier.rst.
5790          */
5791         mmu_notifier_invalidate_range_end(&range);
5792 }
5793
5794 #ifdef CONFIG_CMA
5795 static bool cma_reserve_called __initdata;
5796
5797 static int __init cmdline_parse_hugetlb_cma(char *p)
5798 {
5799         hugetlb_cma_size = memparse(p, &p);
5800         return 0;
5801 }
5802
5803 early_param("hugetlb_cma", cmdline_parse_hugetlb_cma);
5804
5805 void __init hugetlb_cma_reserve(int order)
5806 {
5807         unsigned long size, reserved, per_node;
5808         int nid;
5809
5810         cma_reserve_called = true;
5811
5812         if (!hugetlb_cma_size)
5813                 return;
5814
5815         if (hugetlb_cma_size < (PAGE_SIZE << order)) {
5816                 pr_warn("hugetlb_cma: cma area should be at least %lu MiB\n",
5817                         (PAGE_SIZE << order) / SZ_1M);
5818                 return;
5819         }
5820
5821         /*
5822          * If 3 GB area is requested on a machine with 4 numa nodes,
5823          * let's allocate 1 GB on first three nodes and ignore the last one.
5824          */
5825         per_node = DIV_ROUND_UP(hugetlb_cma_size, nr_online_nodes);
5826         pr_info("hugetlb_cma: reserve %lu MiB, up to %lu MiB per node\n",
5827                 hugetlb_cma_size / SZ_1M, per_node / SZ_1M);
5828
5829         reserved = 0;
5830         for_each_node_state(nid, N_ONLINE) {
5831                 int res;
5832                 char name[CMA_MAX_NAME];
5833
5834                 size = min(per_node, hugetlb_cma_size - reserved);
5835                 size = round_up(size, PAGE_SIZE << order);
5836
5837                 snprintf(name, sizeof(name), "hugetlb%d", nid);
5838                 res = cma_declare_contiguous_nid(0, size, 0, PAGE_SIZE << order,
5839                                                  0, false, name,
5840                                                  &hugetlb_cma[nid], nid);
5841                 if (res) {
5842                         pr_warn("hugetlb_cma: reservation failed: err %d, node %d",
5843                                 res, nid);
5844                         continue;
5845                 }
5846
5847                 reserved += size;
5848                 pr_info("hugetlb_cma: reserved %lu MiB on node %d\n",
5849                         size / SZ_1M, nid);
5850
5851                 if (reserved >= hugetlb_cma_size)
5852                         break;
5853         }
5854 }
5855
5856 void __init hugetlb_cma_check(void)
5857 {
5858         if (!hugetlb_cma_size || cma_reserve_called)
5859                 return;
5860
5861         pr_warn("hugetlb_cma: the option isn't supported by current arch\n");
5862 }
5863
5864 #endif /* CONFIG_CMA */