mm: thp: kill __transhuge_page_enabled()
[linux-2.6-microblaze.git] / mm / hugetlb.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Generic hugetlb support.
4  * (C) Nadia Yvette Chambers, April 2004
5  */
6 #include <linux/list.h>
7 #include <linux/init.h>
8 #include <linux/mm.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/compiler.h>
17 #include <linux/cpuset.h>
18 #include <linux/mutex.h>
19 #include <linux/memblock.h>
20 #include <linux/sysfs.h>
21 #include <linux/slab.h>
22 #include <linux/sched/mm.h>
23 #include <linux/mmdebug.h>
24 #include <linux/sched/signal.h>
25 #include <linux/rmap.h>
26 #include <linux/string_helpers.h>
27 #include <linux/swap.h>
28 #include <linux/swapops.h>
29 #include <linux/jhash.h>
30 #include <linux/numa.h>
31 #include <linux/llist.h>
32 #include <linux/cma.h>
33 #include <linux/migrate.h>
34 #include <linux/nospec.h>
35 #include <linux/delayacct.h>
36
37 #include <asm/page.h>
38 #include <asm/pgalloc.h>
39 #include <asm/tlb.h>
40
41 #include <linux/io.h>
42 #include <linux/hugetlb.h>
43 #include <linux/hugetlb_cgroup.h>
44 #include <linux/node.h>
45 #include <linux/page_owner.h>
46 #include "internal.h"
47 #include "hugetlb_vmemmap.h"
48
49 int hugetlb_max_hstate __read_mostly;
50 unsigned int default_hstate_idx;
51 struct hstate hstates[HUGE_MAX_HSTATE];
52
53 #ifdef CONFIG_CMA
54 static struct cma *hugetlb_cma[MAX_NUMNODES];
55 static unsigned long hugetlb_cma_size_in_node[MAX_NUMNODES] __initdata;
56 static bool hugetlb_cma_page(struct page *page, unsigned int order)
57 {
58         return cma_pages_valid(hugetlb_cma[page_to_nid(page)], page,
59                                 1 << order);
60 }
61 #else
62 static bool hugetlb_cma_page(struct page *page, unsigned int order)
63 {
64         return false;
65 }
66 #endif
67 static unsigned long hugetlb_cma_size __initdata;
68
69 __initdata LIST_HEAD(huge_boot_pages);
70
71 /* for command line parsing */
72 static struct hstate * __initdata parsed_hstate;
73 static unsigned long __initdata default_hstate_max_huge_pages;
74 static bool __initdata parsed_valid_hugepagesz = true;
75 static bool __initdata parsed_default_hugepagesz;
76 static unsigned int default_hugepages_in_node[MAX_NUMNODES] __initdata;
77
78 /*
79  * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
80  * free_huge_pages, and surplus_huge_pages.
81  */
82 DEFINE_SPINLOCK(hugetlb_lock);
83
84 /*
85  * Serializes faults on the same logical page.  This is used to
86  * prevent spurious OOMs when the hugepage pool is fully utilized.
87  */
88 static int num_fault_mutexes;
89 struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
90
91 /* Forward declaration */
92 static int hugetlb_acct_memory(struct hstate *h, long delta);
93
94 static inline bool subpool_is_free(struct hugepage_subpool *spool)
95 {
96         if (spool->count)
97                 return false;
98         if (spool->max_hpages != -1)
99                 return spool->used_hpages == 0;
100         if (spool->min_hpages != -1)
101                 return spool->rsv_hpages == spool->min_hpages;
102
103         return true;
104 }
105
106 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool,
107                                                 unsigned long irq_flags)
108 {
109         spin_unlock_irqrestore(&spool->lock, irq_flags);
110
111         /* If no pages are used, and no other handles to the subpool
112          * remain, give up any reservations based on minimum size and
113          * free the subpool */
114         if (subpool_is_free(spool)) {
115                 if (spool->min_hpages != -1)
116                         hugetlb_acct_memory(spool->hstate,
117                                                 -spool->min_hpages);
118                 kfree(spool);
119         }
120 }
121
122 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
123                                                 long min_hpages)
124 {
125         struct hugepage_subpool *spool;
126
127         spool = kzalloc(sizeof(*spool), GFP_KERNEL);
128         if (!spool)
129                 return NULL;
130
131         spin_lock_init(&spool->lock);
132         spool->count = 1;
133         spool->max_hpages = max_hpages;
134         spool->hstate = h;
135         spool->min_hpages = min_hpages;
136
137         if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
138                 kfree(spool);
139                 return NULL;
140         }
141         spool->rsv_hpages = min_hpages;
142
143         return spool;
144 }
145
146 void hugepage_put_subpool(struct hugepage_subpool *spool)
147 {
148         unsigned long flags;
149
150         spin_lock_irqsave(&spool->lock, flags);
151         BUG_ON(!spool->count);
152         spool->count--;
153         unlock_or_release_subpool(spool, flags);
154 }
155
156 /*
157  * Subpool accounting for allocating and reserving pages.
158  * Return -ENOMEM if there are not enough resources to satisfy the
159  * request.  Otherwise, return the number of pages by which the
160  * global pools must be adjusted (upward).  The returned value may
161  * only be different than the passed value (delta) in the case where
162  * a subpool minimum size must be maintained.
163  */
164 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
165                                       long delta)
166 {
167         long ret = delta;
168
169         if (!spool)
170                 return ret;
171
172         spin_lock_irq(&spool->lock);
173
174         if (spool->max_hpages != -1) {          /* maximum size accounting */
175                 if ((spool->used_hpages + delta) <= spool->max_hpages)
176                         spool->used_hpages += delta;
177                 else {
178                         ret = -ENOMEM;
179                         goto unlock_ret;
180                 }
181         }
182
183         /* minimum size accounting */
184         if (spool->min_hpages != -1 && spool->rsv_hpages) {
185                 if (delta > spool->rsv_hpages) {
186                         /*
187                          * Asking for more reserves than those already taken on
188                          * behalf of subpool.  Return difference.
189                          */
190                         ret = delta - spool->rsv_hpages;
191                         spool->rsv_hpages = 0;
192                 } else {
193                         ret = 0;        /* reserves already accounted for */
194                         spool->rsv_hpages -= delta;
195                 }
196         }
197
198 unlock_ret:
199         spin_unlock_irq(&spool->lock);
200         return ret;
201 }
202
203 /*
204  * Subpool accounting for freeing and unreserving pages.
205  * Return the number of global page reservations that must be dropped.
206  * The return value may only be different than the passed value (delta)
207  * in the case where a subpool minimum size must be maintained.
208  */
209 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
210                                        long delta)
211 {
212         long ret = delta;
213         unsigned long flags;
214
215         if (!spool)
216                 return delta;
217
218         spin_lock_irqsave(&spool->lock, flags);
219
220         if (spool->max_hpages != -1)            /* maximum size accounting */
221                 spool->used_hpages -= delta;
222
223          /* minimum size accounting */
224         if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
225                 if (spool->rsv_hpages + delta <= spool->min_hpages)
226                         ret = 0;
227                 else
228                         ret = spool->rsv_hpages + delta - spool->min_hpages;
229
230                 spool->rsv_hpages += delta;
231                 if (spool->rsv_hpages > spool->min_hpages)
232                         spool->rsv_hpages = spool->min_hpages;
233         }
234
235         /*
236          * If hugetlbfs_put_super couldn't free spool due to an outstanding
237          * quota reference, free it now.
238          */
239         unlock_or_release_subpool(spool, flags);
240
241         return ret;
242 }
243
244 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
245 {
246         return HUGETLBFS_SB(inode->i_sb)->spool;
247 }
248
249 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
250 {
251         return subpool_inode(file_inode(vma->vm_file));
252 }
253
254 /* Helper that removes a struct file_region from the resv_map cache and returns
255  * it for use.
256  */
257 static struct file_region *
258 get_file_region_entry_from_cache(struct resv_map *resv, long from, long to)
259 {
260         struct file_region *nrg = NULL;
261
262         VM_BUG_ON(resv->region_cache_count <= 0);
263
264         resv->region_cache_count--;
265         nrg = list_first_entry(&resv->region_cache, struct file_region, link);
266         list_del(&nrg->link);
267
268         nrg->from = from;
269         nrg->to = to;
270
271         return nrg;
272 }
273
274 static void copy_hugetlb_cgroup_uncharge_info(struct file_region *nrg,
275                                               struct file_region *rg)
276 {
277 #ifdef CONFIG_CGROUP_HUGETLB
278         nrg->reservation_counter = rg->reservation_counter;
279         nrg->css = rg->css;
280         if (rg->css)
281                 css_get(rg->css);
282 #endif
283 }
284
285 /* Helper that records hugetlb_cgroup uncharge info. */
286 static void record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup *h_cg,
287                                                 struct hstate *h,
288                                                 struct resv_map *resv,
289                                                 struct file_region *nrg)
290 {
291 #ifdef CONFIG_CGROUP_HUGETLB
292         if (h_cg) {
293                 nrg->reservation_counter =
294                         &h_cg->rsvd_hugepage[hstate_index(h)];
295                 nrg->css = &h_cg->css;
296                 /*
297                  * The caller will hold exactly one h_cg->css reference for the
298                  * whole contiguous reservation region. But this area might be
299                  * scattered when there are already some file_regions reside in
300                  * it. As a result, many file_regions may share only one css
301                  * reference. In order to ensure that one file_region must hold
302                  * exactly one h_cg->css reference, we should do css_get for
303                  * each file_region and leave the reference held by caller
304                  * untouched.
305                  */
306                 css_get(&h_cg->css);
307                 if (!resv->pages_per_hpage)
308                         resv->pages_per_hpage = pages_per_huge_page(h);
309                 /* pages_per_hpage should be the same for all entries in
310                  * a resv_map.
311                  */
312                 VM_BUG_ON(resv->pages_per_hpage != pages_per_huge_page(h));
313         } else {
314                 nrg->reservation_counter = NULL;
315                 nrg->css = NULL;
316         }
317 #endif
318 }
319
320 static void put_uncharge_info(struct file_region *rg)
321 {
322 #ifdef CONFIG_CGROUP_HUGETLB
323         if (rg->css)
324                 css_put(rg->css);
325 #endif
326 }
327
328 static bool has_same_uncharge_info(struct file_region *rg,
329                                    struct file_region *org)
330 {
331 #ifdef CONFIG_CGROUP_HUGETLB
332         return rg->reservation_counter == org->reservation_counter &&
333                rg->css == org->css;
334
335 #else
336         return true;
337 #endif
338 }
339
340 static void coalesce_file_region(struct resv_map *resv, struct file_region *rg)
341 {
342         struct file_region *nrg = NULL, *prg = NULL;
343
344         prg = list_prev_entry(rg, link);
345         if (&prg->link != &resv->regions && prg->to == rg->from &&
346             has_same_uncharge_info(prg, rg)) {
347                 prg->to = rg->to;
348
349                 list_del(&rg->link);
350                 put_uncharge_info(rg);
351                 kfree(rg);
352
353                 rg = prg;
354         }
355
356         nrg = list_next_entry(rg, link);
357         if (&nrg->link != &resv->regions && nrg->from == rg->to &&
358             has_same_uncharge_info(nrg, rg)) {
359                 nrg->from = rg->from;
360
361                 list_del(&rg->link);
362                 put_uncharge_info(rg);
363                 kfree(rg);
364         }
365 }
366
367 static inline long
368 hugetlb_resv_map_add(struct resv_map *map, struct list_head *rg, long from,
369                      long to, struct hstate *h, struct hugetlb_cgroup *cg,
370                      long *regions_needed)
371 {
372         struct file_region *nrg;
373
374         if (!regions_needed) {
375                 nrg = get_file_region_entry_from_cache(map, from, to);
376                 record_hugetlb_cgroup_uncharge_info(cg, h, map, nrg);
377                 list_add(&nrg->link, rg);
378                 coalesce_file_region(map, nrg);
379         } else
380                 *regions_needed += 1;
381
382         return to - from;
383 }
384
385 /*
386  * Must be called with resv->lock held.
387  *
388  * Calling this with regions_needed != NULL will count the number of pages
389  * to be added but will not modify the linked list. And regions_needed will
390  * indicate the number of file_regions needed in the cache to carry out to add
391  * the regions for this range.
392  */
393 static long add_reservation_in_range(struct resv_map *resv, long f, long t,
394                                      struct hugetlb_cgroup *h_cg,
395                                      struct hstate *h, long *regions_needed)
396 {
397         long add = 0;
398         struct list_head *head = &resv->regions;
399         long last_accounted_offset = f;
400         struct file_region *iter, *trg = NULL;
401         struct list_head *rg = NULL;
402
403         if (regions_needed)
404                 *regions_needed = 0;
405
406         /* In this loop, we essentially handle an entry for the range
407          * [last_accounted_offset, iter->from), at every iteration, with some
408          * bounds checking.
409          */
410         list_for_each_entry_safe(iter, trg, head, link) {
411                 /* Skip irrelevant regions that start before our range. */
412                 if (iter->from < f) {
413                         /* If this region ends after the last accounted offset,
414                          * then we need to update last_accounted_offset.
415                          */
416                         if (iter->to > last_accounted_offset)
417                                 last_accounted_offset = iter->to;
418                         continue;
419                 }
420
421                 /* When we find a region that starts beyond our range, we've
422                  * finished.
423                  */
424                 if (iter->from >= t) {
425                         rg = iter->link.prev;
426                         break;
427                 }
428
429                 /* Add an entry for last_accounted_offset -> iter->from, and
430                  * update last_accounted_offset.
431                  */
432                 if (iter->from > last_accounted_offset)
433                         add += hugetlb_resv_map_add(resv, iter->link.prev,
434                                                     last_accounted_offset,
435                                                     iter->from, h, h_cg,
436                                                     regions_needed);
437
438                 last_accounted_offset = iter->to;
439         }
440
441         /* Handle the case where our range extends beyond
442          * last_accounted_offset.
443          */
444         if (!rg)
445                 rg = head->prev;
446         if (last_accounted_offset < t)
447                 add += hugetlb_resv_map_add(resv, rg, last_accounted_offset,
448                                             t, h, h_cg, regions_needed);
449
450         return add;
451 }
452
453 /* Must be called with resv->lock acquired. Will drop lock to allocate entries.
454  */
455 static int allocate_file_region_entries(struct resv_map *resv,
456                                         int regions_needed)
457         __must_hold(&resv->lock)
458 {
459         struct list_head allocated_regions;
460         int to_allocate = 0, i = 0;
461         struct file_region *trg = NULL, *rg = NULL;
462
463         VM_BUG_ON(regions_needed < 0);
464
465         INIT_LIST_HEAD(&allocated_regions);
466
467         /*
468          * Check for sufficient descriptors in the cache to accommodate
469          * the number of in progress add operations plus regions_needed.
470          *
471          * This is a while loop because when we drop the lock, some other call
472          * to region_add or region_del may have consumed some region_entries,
473          * so we keep looping here until we finally have enough entries for
474          * (adds_in_progress + regions_needed).
475          */
476         while (resv->region_cache_count <
477                (resv->adds_in_progress + regions_needed)) {
478                 to_allocate = resv->adds_in_progress + regions_needed -
479                               resv->region_cache_count;
480
481                 /* At this point, we should have enough entries in the cache
482                  * for all the existing adds_in_progress. We should only be
483                  * needing to allocate for regions_needed.
484                  */
485                 VM_BUG_ON(resv->region_cache_count < resv->adds_in_progress);
486
487                 spin_unlock(&resv->lock);
488                 for (i = 0; i < to_allocate; i++) {
489                         trg = kmalloc(sizeof(*trg), GFP_KERNEL);
490                         if (!trg)
491                                 goto out_of_memory;
492                         list_add(&trg->link, &allocated_regions);
493                 }
494
495                 spin_lock(&resv->lock);
496
497                 list_splice(&allocated_regions, &resv->region_cache);
498                 resv->region_cache_count += to_allocate;
499         }
500
501         return 0;
502
503 out_of_memory:
504         list_for_each_entry_safe(rg, trg, &allocated_regions, link) {
505                 list_del(&rg->link);
506                 kfree(rg);
507         }
508         return -ENOMEM;
509 }
510
511 /*
512  * Add the huge page range represented by [f, t) to the reserve
513  * map.  Regions will be taken from the cache to fill in this range.
514  * Sufficient regions should exist in the cache due to the previous
515  * call to region_chg with the same range, but in some cases the cache will not
516  * have sufficient entries due to races with other code doing region_add or
517  * region_del.  The extra needed entries will be allocated.
518  *
519  * regions_needed is the out value provided by a previous call to region_chg.
520  *
521  * Return the number of new huge pages added to the map.  This number is greater
522  * than or equal to zero.  If file_region entries needed to be allocated for
523  * this operation and we were not able to allocate, it returns -ENOMEM.
524  * region_add of regions of length 1 never allocate file_regions and cannot
525  * fail; region_chg will always allocate at least 1 entry and a region_add for
526  * 1 page will only require at most 1 entry.
527  */
528 static long region_add(struct resv_map *resv, long f, long t,
529                        long in_regions_needed, struct hstate *h,
530                        struct hugetlb_cgroup *h_cg)
531 {
532         long add = 0, actual_regions_needed = 0;
533
534         spin_lock(&resv->lock);
535 retry:
536
537         /* Count how many regions are actually needed to execute this add. */
538         add_reservation_in_range(resv, f, t, NULL, NULL,
539                                  &actual_regions_needed);
540
541         /*
542          * Check for sufficient descriptors in the cache to accommodate
543          * this add operation. Note that actual_regions_needed may be greater
544          * than in_regions_needed, as the resv_map may have been modified since
545          * the region_chg call. In this case, we need to make sure that we
546          * allocate extra entries, such that we have enough for all the
547          * existing adds_in_progress, plus the excess needed for this
548          * operation.
549          */
550         if (actual_regions_needed > in_regions_needed &&
551             resv->region_cache_count <
552                     resv->adds_in_progress +
553                             (actual_regions_needed - in_regions_needed)) {
554                 /* region_add operation of range 1 should never need to
555                  * allocate file_region entries.
556                  */
557                 VM_BUG_ON(t - f <= 1);
558
559                 if (allocate_file_region_entries(
560                             resv, actual_regions_needed - in_regions_needed)) {
561                         return -ENOMEM;
562                 }
563
564                 goto retry;
565         }
566
567         add = add_reservation_in_range(resv, f, t, h_cg, h, NULL);
568
569         resv->adds_in_progress -= in_regions_needed;
570
571         spin_unlock(&resv->lock);
572         return add;
573 }
574
575 /*
576  * Examine the existing reserve map and determine how many
577  * huge pages in the specified range [f, t) are NOT currently
578  * represented.  This routine is called before a subsequent
579  * call to region_add that will actually modify the reserve
580  * map to add the specified range [f, t).  region_chg does
581  * not change the number of huge pages represented by the
582  * map.  A number of new file_region structures is added to the cache as a
583  * placeholder, for the subsequent region_add call to use. At least 1
584  * file_region structure is added.
585  *
586  * out_regions_needed is the number of regions added to the
587  * resv->adds_in_progress.  This value needs to be provided to a follow up call
588  * to region_add or region_abort for proper accounting.
589  *
590  * Returns the number of huge pages that need to be added to the existing
591  * reservation map for the range [f, t).  This number is greater or equal to
592  * zero.  -ENOMEM is returned if a new file_region structure or cache entry
593  * is needed and can not be allocated.
594  */
595 static long region_chg(struct resv_map *resv, long f, long t,
596                        long *out_regions_needed)
597 {
598         long chg = 0;
599
600         spin_lock(&resv->lock);
601
602         /* Count how many hugepages in this range are NOT represented. */
603         chg = add_reservation_in_range(resv, f, t, NULL, NULL,
604                                        out_regions_needed);
605
606         if (*out_regions_needed == 0)
607                 *out_regions_needed = 1;
608
609         if (allocate_file_region_entries(resv, *out_regions_needed))
610                 return -ENOMEM;
611
612         resv->adds_in_progress += *out_regions_needed;
613
614         spin_unlock(&resv->lock);
615         return chg;
616 }
617
618 /*
619  * Abort the in progress add operation.  The adds_in_progress field
620  * of the resv_map keeps track of the operations in progress between
621  * calls to region_chg and region_add.  Operations are sometimes
622  * aborted after the call to region_chg.  In such cases, region_abort
623  * is called to decrement the adds_in_progress counter. regions_needed
624  * is the value returned by the region_chg call, it is used to decrement
625  * the adds_in_progress counter.
626  *
627  * NOTE: The range arguments [f, t) are not needed or used in this
628  * routine.  They are kept to make reading the calling code easier as
629  * arguments will match the associated region_chg call.
630  */
631 static void region_abort(struct resv_map *resv, long f, long t,
632                          long regions_needed)
633 {
634         spin_lock(&resv->lock);
635         VM_BUG_ON(!resv->region_cache_count);
636         resv->adds_in_progress -= regions_needed;
637         spin_unlock(&resv->lock);
638 }
639
640 /*
641  * Delete the specified range [f, t) from the reserve map.  If the
642  * t parameter is LONG_MAX, this indicates that ALL regions after f
643  * should be deleted.  Locate the regions which intersect [f, t)
644  * and either trim, delete or split the existing regions.
645  *
646  * Returns the number of huge pages deleted from the reserve map.
647  * In the normal case, the return value is zero or more.  In the
648  * case where a region must be split, a new region descriptor must
649  * be allocated.  If the allocation fails, -ENOMEM will be returned.
650  * NOTE: If the parameter t == LONG_MAX, then we will never split
651  * a region and possibly return -ENOMEM.  Callers specifying
652  * t == LONG_MAX do not need to check for -ENOMEM error.
653  */
654 static long region_del(struct resv_map *resv, long f, long t)
655 {
656         struct list_head *head = &resv->regions;
657         struct file_region *rg, *trg;
658         struct file_region *nrg = NULL;
659         long del = 0;
660
661 retry:
662         spin_lock(&resv->lock);
663         list_for_each_entry_safe(rg, trg, head, link) {
664                 /*
665                  * Skip regions before the range to be deleted.  file_region
666                  * ranges are normally of the form [from, to).  However, there
667                  * may be a "placeholder" entry in the map which is of the form
668                  * (from, to) with from == to.  Check for placeholder entries
669                  * at the beginning of the range to be deleted.
670                  */
671                 if (rg->to <= f && (rg->to != rg->from || rg->to != f))
672                         continue;
673
674                 if (rg->from >= t)
675                         break;
676
677                 if (f > rg->from && t < rg->to) { /* Must split region */
678                         /*
679                          * Check for an entry in the cache before dropping
680                          * lock and attempting allocation.
681                          */
682                         if (!nrg &&
683                             resv->region_cache_count > resv->adds_in_progress) {
684                                 nrg = list_first_entry(&resv->region_cache,
685                                                         struct file_region,
686                                                         link);
687                                 list_del(&nrg->link);
688                                 resv->region_cache_count--;
689                         }
690
691                         if (!nrg) {
692                                 spin_unlock(&resv->lock);
693                                 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
694                                 if (!nrg)
695                                         return -ENOMEM;
696                                 goto retry;
697                         }
698
699                         del += t - f;
700                         hugetlb_cgroup_uncharge_file_region(
701                                 resv, rg, t - f, false);
702
703                         /* New entry for end of split region */
704                         nrg->from = t;
705                         nrg->to = rg->to;
706
707                         copy_hugetlb_cgroup_uncharge_info(nrg, rg);
708
709                         INIT_LIST_HEAD(&nrg->link);
710
711                         /* Original entry is trimmed */
712                         rg->to = f;
713
714                         list_add(&nrg->link, &rg->link);
715                         nrg = NULL;
716                         break;
717                 }
718
719                 if (f <= rg->from && t >= rg->to) { /* Remove entire region */
720                         del += rg->to - rg->from;
721                         hugetlb_cgroup_uncharge_file_region(resv, rg,
722                                                             rg->to - rg->from, true);
723                         list_del(&rg->link);
724                         kfree(rg);
725                         continue;
726                 }
727
728                 if (f <= rg->from) {    /* Trim beginning of region */
729                         hugetlb_cgroup_uncharge_file_region(resv, rg,
730                                                             t - rg->from, false);
731
732                         del += t - rg->from;
733                         rg->from = t;
734                 } else {                /* Trim end of region */
735                         hugetlb_cgroup_uncharge_file_region(resv, rg,
736                                                             rg->to - f, false);
737
738                         del += rg->to - f;
739                         rg->to = f;
740                 }
741         }
742
743         spin_unlock(&resv->lock);
744         kfree(nrg);
745         return del;
746 }
747
748 /*
749  * A rare out of memory error was encountered which prevented removal of
750  * the reserve map region for a page.  The huge page itself was free'ed
751  * and removed from the page cache.  This routine will adjust the subpool
752  * usage count, and the global reserve count if needed.  By incrementing
753  * these counts, the reserve map entry which could not be deleted will
754  * appear as a "reserved" entry instead of simply dangling with incorrect
755  * counts.
756  */
757 void hugetlb_fix_reserve_counts(struct inode *inode)
758 {
759         struct hugepage_subpool *spool = subpool_inode(inode);
760         long rsv_adjust;
761         bool reserved = false;
762
763         rsv_adjust = hugepage_subpool_get_pages(spool, 1);
764         if (rsv_adjust > 0) {
765                 struct hstate *h = hstate_inode(inode);
766
767                 if (!hugetlb_acct_memory(h, 1))
768                         reserved = true;
769         } else if (!rsv_adjust) {
770                 reserved = true;
771         }
772
773         if (!reserved)
774                 pr_warn("hugetlb: Huge Page Reserved count may go negative.\n");
775 }
776
777 /*
778  * Count and return the number of huge pages in the reserve map
779  * that intersect with the range [f, t).
780  */
781 static long region_count(struct resv_map *resv, long f, long t)
782 {
783         struct list_head *head = &resv->regions;
784         struct file_region *rg;
785         long chg = 0;
786
787         spin_lock(&resv->lock);
788         /* Locate each segment we overlap with, and count that overlap. */
789         list_for_each_entry(rg, head, link) {
790                 long seg_from;
791                 long seg_to;
792
793                 if (rg->to <= f)
794                         continue;
795                 if (rg->from >= t)
796                         break;
797
798                 seg_from = max(rg->from, f);
799                 seg_to = min(rg->to, t);
800
801                 chg += seg_to - seg_from;
802         }
803         spin_unlock(&resv->lock);
804
805         return chg;
806 }
807
808 /*
809  * Convert the address within this vma to the page offset within
810  * the mapping, in pagecache page units; huge pages here.
811  */
812 static pgoff_t vma_hugecache_offset(struct hstate *h,
813                         struct vm_area_struct *vma, unsigned long address)
814 {
815         return ((address - vma->vm_start) >> huge_page_shift(h)) +
816                         (vma->vm_pgoff >> huge_page_order(h));
817 }
818
819 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
820                                      unsigned long address)
821 {
822         return vma_hugecache_offset(hstate_vma(vma), vma, address);
823 }
824 EXPORT_SYMBOL_GPL(linear_hugepage_index);
825
826 /*
827  * Return the size of the pages allocated when backing a VMA. In the majority
828  * cases this will be same size as used by the page table entries.
829  */
830 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
831 {
832         if (vma->vm_ops && vma->vm_ops->pagesize)
833                 return vma->vm_ops->pagesize(vma);
834         return PAGE_SIZE;
835 }
836 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
837
838 /*
839  * Return the page size being used by the MMU to back a VMA. In the majority
840  * of cases, the page size used by the kernel matches the MMU size. On
841  * architectures where it differs, an architecture-specific 'strong'
842  * version of this symbol is required.
843  */
844 __weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
845 {
846         return vma_kernel_pagesize(vma);
847 }
848
849 /*
850  * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
851  * bits of the reservation map pointer, which are always clear due to
852  * alignment.
853  */
854 #define HPAGE_RESV_OWNER    (1UL << 0)
855 #define HPAGE_RESV_UNMAPPED (1UL << 1)
856 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
857
858 /*
859  * These helpers are used to track how many pages are reserved for
860  * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
861  * is guaranteed to have their future faults succeed.
862  *
863  * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
864  * the reserve counters are updated with the hugetlb_lock held. It is safe
865  * to reset the VMA at fork() time as it is not in use yet and there is no
866  * chance of the global counters getting corrupted as a result of the values.
867  *
868  * The private mapping reservation is represented in a subtly different
869  * manner to a shared mapping.  A shared mapping has a region map associated
870  * with the underlying file, this region map represents the backing file
871  * pages which have ever had a reservation assigned which this persists even
872  * after the page is instantiated.  A private mapping has a region map
873  * associated with the original mmap which is attached to all VMAs which
874  * reference it, this region map represents those offsets which have consumed
875  * reservation ie. where pages have been instantiated.
876  */
877 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
878 {
879         return (unsigned long)vma->vm_private_data;
880 }
881
882 static void set_vma_private_data(struct vm_area_struct *vma,
883                                                         unsigned long value)
884 {
885         vma->vm_private_data = (void *)value;
886 }
887
888 static void
889 resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map *resv_map,
890                                           struct hugetlb_cgroup *h_cg,
891                                           struct hstate *h)
892 {
893 #ifdef CONFIG_CGROUP_HUGETLB
894         if (!h_cg || !h) {
895                 resv_map->reservation_counter = NULL;
896                 resv_map->pages_per_hpage = 0;
897                 resv_map->css = NULL;
898         } else {
899                 resv_map->reservation_counter =
900                         &h_cg->rsvd_hugepage[hstate_index(h)];
901                 resv_map->pages_per_hpage = pages_per_huge_page(h);
902                 resv_map->css = &h_cg->css;
903         }
904 #endif
905 }
906
907 struct resv_map *resv_map_alloc(void)
908 {
909         struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
910         struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
911
912         if (!resv_map || !rg) {
913                 kfree(resv_map);
914                 kfree(rg);
915                 return NULL;
916         }
917
918         kref_init(&resv_map->refs);
919         spin_lock_init(&resv_map->lock);
920         INIT_LIST_HEAD(&resv_map->regions);
921
922         resv_map->adds_in_progress = 0;
923         /*
924          * Initialize these to 0. On shared mappings, 0's here indicate these
925          * fields don't do cgroup accounting. On private mappings, these will be
926          * re-initialized to the proper values, to indicate that hugetlb cgroup
927          * reservations are to be un-charged from here.
928          */
929         resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, NULL, NULL);
930
931         INIT_LIST_HEAD(&resv_map->region_cache);
932         list_add(&rg->link, &resv_map->region_cache);
933         resv_map->region_cache_count = 1;
934
935         return resv_map;
936 }
937
938 void resv_map_release(struct kref *ref)
939 {
940         struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
941         struct list_head *head = &resv_map->region_cache;
942         struct file_region *rg, *trg;
943
944         /* Clear out any active regions before we release the map. */
945         region_del(resv_map, 0, LONG_MAX);
946
947         /* ... and any entries left in the cache */
948         list_for_each_entry_safe(rg, trg, head, link) {
949                 list_del(&rg->link);
950                 kfree(rg);
951         }
952
953         VM_BUG_ON(resv_map->adds_in_progress);
954
955         kfree(resv_map);
956 }
957
958 static inline struct resv_map *inode_resv_map(struct inode *inode)
959 {
960         /*
961          * At inode evict time, i_mapping may not point to the original
962          * address space within the inode.  This original address space
963          * contains the pointer to the resv_map.  So, always use the
964          * address space embedded within the inode.
965          * The VERY common case is inode->mapping == &inode->i_data but,
966          * this may not be true for device special inodes.
967          */
968         return (struct resv_map *)(&inode->i_data)->private_data;
969 }
970
971 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
972 {
973         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
974         if (vma->vm_flags & VM_MAYSHARE) {
975                 struct address_space *mapping = vma->vm_file->f_mapping;
976                 struct inode *inode = mapping->host;
977
978                 return inode_resv_map(inode);
979
980         } else {
981                 return (struct resv_map *)(get_vma_private_data(vma) &
982                                                         ~HPAGE_RESV_MASK);
983         }
984 }
985
986 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
987 {
988         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
989         VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
990
991         set_vma_private_data(vma, (get_vma_private_data(vma) &
992                                 HPAGE_RESV_MASK) | (unsigned long)map);
993 }
994
995 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
996 {
997         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
998         VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
999
1000         set_vma_private_data(vma, get_vma_private_data(vma) | flags);
1001 }
1002
1003 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
1004 {
1005         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1006
1007         return (get_vma_private_data(vma) & flag) != 0;
1008 }
1009
1010 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
1011 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
1012 {
1013         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1014         if (!(vma->vm_flags & VM_MAYSHARE))
1015                 vma->vm_private_data = (void *)0;
1016 }
1017
1018 /*
1019  * Reset and decrement one ref on hugepage private reservation.
1020  * Called with mm->mmap_sem writer semaphore held.
1021  * This function should be only used by move_vma() and operate on
1022  * same sized vma. It should never come here with last ref on the
1023  * reservation.
1024  */
1025 void clear_vma_resv_huge_pages(struct vm_area_struct *vma)
1026 {
1027         /*
1028          * Clear the old hugetlb private page reservation.
1029          * It has already been transferred to new_vma.
1030          *
1031          * During a mremap() operation of a hugetlb vma we call move_vma()
1032          * which copies vma into new_vma and unmaps vma. After the copy
1033          * operation both new_vma and vma share a reference to the resv_map
1034          * struct, and at that point vma is about to be unmapped. We don't
1035          * want to return the reservation to the pool at unmap of vma because
1036          * the reservation still lives on in new_vma, so simply decrement the
1037          * ref here and remove the resv_map reference from this vma.
1038          */
1039         struct resv_map *reservations = vma_resv_map(vma);
1040
1041         if (reservations && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1042                 resv_map_put_hugetlb_cgroup_uncharge_info(reservations);
1043                 kref_put(&reservations->refs, resv_map_release);
1044         }
1045
1046         reset_vma_resv_huge_pages(vma);
1047 }
1048
1049 /* Returns true if the VMA has associated reserve pages */
1050 static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
1051 {
1052         if (vma->vm_flags & VM_NORESERVE) {
1053                 /*
1054                  * This address is already reserved by other process(chg == 0),
1055                  * so, we should decrement reserved count. Without decrementing,
1056                  * reserve count remains after releasing inode, because this
1057                  * allocated page will go into page cache and is regarded as
1058                  * coming from reserved pool in releasing step.  Currently, we
1059                  * don't have any other solution to deal with this situation
1060                  * properly, so add work-around here.
1061                  */
1062                 if (vma->vm_flags & VM_MAYSHARE && chg == 0)
1063                         return true;
1064                 else
1065                         return false;
1066         }
1067
1068         /* Shared mappings always use reserves */
1069         if (vma->vm_flags & VM_MAYSHARE) {
1070                 /*
1071                  * We know VM_NORESERVE is not set.  Therefore, there SHOULD
1072                  * be a region map for all pages.  The only situation where
1073                  * there is no region map is if a hole was punched via
1074                  * fallocate.  In this case, there really are no reserves to
1075                  * use.  This situation is indicated if chg != 0.
1076                  */
1077                 if (chg)
1078                         return false;
1079                 else
1080                         return true;
1081         }
1082
1083         /*
1084          * Only the process that called mmap() has reserves for
1085          * private mappings.
1086          */
1087         if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1088                 /*
1089                  * Like the shared case above, a hole punch or truncate
1090                  * could have been performed on the private mapping.
1091                  * Examine the value of chg to determine if reserves
1092                  * actually exist or were previously consumed.
1093                  * Very Subtle - The value of chg comes from a previous
1094                  * call to vma_needs_reserves().  The reserve map for
1095                  * private mappings has different (opposite) semantics
1096                  * than that of shared mappings.  vma_needs_reserves()
1097                  * has already taken this difference in semantics into
1098                  * account.  Therefore, the meaning of chg is the same
1099                  * as in the shared case above.  Code could easily be
1100                  * combined, but keeping it separate draws attention to
1101                  * subtle differences.
1102                  */
1103                 if (chg)
1104                         return false;
1105                 else
1106                         return true;
1107         }
1108
1109         return false;
1110 }
1111
1112 static void enqueue_huge_page(struct hstate *h, struct page *page)
1113 {
1114         int nid = page_to_nid(page);
1115
1116         lockdep_assert_held(&hugetlb_lock);
1117         VM_BUG_ON_PAGE(page_count(page), page);
1118
1119         list_move(&page->lru, &h->hugepage_freelists[nid]);
1120         h->free_huge_pages++;
1121         h->free_huge_pages_node[nid]++;
1122         SetHPageFreed(page);
1123 }
1124
1125 static struct page *dequeue_huge_page_node_exact(struct hstate *h, int nid)
1126 {
1127         struct page *page;
1128         bool pin = !!(current->flags & PF_MEMALLOC_PIN);
1129
1130         lockdep_assert_held(&hugetlb_lock);
1131         list_for_each_entry(page, &h->hugepage_freelists[nid], lru) {
1132                 if (pin && !is_longterm_pinnable_page(page))
1133                         continue;
1134
1135                 if (PageHWPoison(page))
1136                         continue;
1137
1138                 list_move(&page->lru, &h->hugepage_activelist);
1139                 set_page_refcounted(page);
1140                 ClearHPageFreed(page);
1141                 h->free_huge_pages--;
1142                 h->free_huge_pages_node[nid]--;
1143                 return page;
1144         }
1145
1146         return NULL;
1147 }
1148
1149 static struct page *dequeue_huge_page_nodemask(struct hstate *h, gfp_t gfp_mask, int nid,
1150                 nodemask_t *nmask)
1151 {
1152         unsigned int cpuset_mems_cookie;
1153         struct zonelist *zonelist;
1154         struct zone *zone;
1155         struct zoneref *z;
1156         int node = NUMA_NO_NODE;
1157
1158         zonelist = node_zonelist(nid, gfp_mask);
1159
1160 retry_cpuset:
1161         cpuset_mems_cookie = read_mems_allowed_begin();
1162         for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
1163                 struct page *page;
1164
1165                 if (!cpuset_zone_allowed(zone, gfp_mask))
1166                         continue;
1167                 /*
1168                  * no need to ask again on the same node. Pool is node rather than
1169                  * zone aware
1170                  */
1171                 if (zone_to_nid(zone) == node)
1172                         continue;
1173                 node = zone_to_nid(zone);
1174
1175                 page = dequeue_huge_page_node_exact(h, node);
1176                 if (page)
1177                         return page;
1178         }
1179         if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
1180                 goto retry_cpuset;
1181
1182         return NULL;
1183 }
1184
1185 static struct page *dequeue_huge_page_vma(struct hstate *h,
1186                                 struct vm_area_struct *vma,
1187                                 unsigned long address, int avoid_reserve,
1188                                 long chg)
1189 {
1190         struct page *page = NULL;
1191         struct mempolicy *mpol;
1192         gfp_t gfp_mask;
1193         nodemask_t *nodemask;
1194         int nid;
1195
1196         /*
1197          * A child process with MAP_PRIVATE mappings created by their parent
1198          * have no page reserves. This check ensures that reservations are
1199          * not "stolen". The child may still get SIGKILLed
1200          */
1201         if (!vma_has_reserves(vma, chg) &&
1202                         h->free_huge_pages - h->resv_huge_pages == 0)
1203                 goto err;
1204
1205         /* If reserves cannot be used, ensure enough pages are in the pool */
1206         if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
1207                 goto err;
1208
1209         gfp_mask = htlb_alloc_mask(h);
1210         nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
1211
1212         if (mpol_is_preferred_many(mpol)) {
1213                 page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
1214
1215                 /* Fallback to all nodes if page==NULL */
1216                 nodemask = NULL;
1217         }
1218
1219         if (!page)
1220                 page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
1221
1222         if (page && !avoid_reserve && vma_has_reserves(vma, chg)) {
1223                 SetHPageRestoreReserve(page);
1224                 h->resv_huge_pages--;
1225         }
1226
1227         mpol_cond_put(mpol);
1228         return page;
1229
1230 err:
1231         return NULL;
1232 }
1233
1234 /*
1235  * common helper functions for hstate_next_node_to_{alloc|free}.
1236  * We may have allocated or freed a huge page based on a different
1237  * nodes_allowed previously, so h->next_node_to_{alloc|free} might
1238  * be outside of *nodes_allowed.  Ensure that we use an allowed
1239  * node for alloc or free.
1240  */
1241 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
1242 {
1243         nid = next_node_in(nid, *nodes_allowed);
1244         VM_BUG_ON(nid >= MAX_NUMNODES);
1245
1246         return nid;
1247 }
1248
1249 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
1250 {
1251         if (!node_isset(nid, *nodes_allowed))
1252                 nid = next_node_allowed(nid, nodes_allowed);
1253         return nid;
1254 }
1255
1256 /*
1257  * returns the previously saved node ["this node"] from which to
1258  * allocate a persistent huge page for the pool and advance the
1259  * next node from which to allocate, handling wrap at end of node
1260  * mask.
1261  */
1262 static int hstate_next_node_to_alloc(struct hstate *h,
1263                                         nodemask_t *nodes_allowed)
1264 {
1265         int nid;
1266
1267         VM_BUG_ON(!nodes_allowed);
1268
1269         nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
1270         h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
1271
1272         return nid;
1273 }
1274
1275 /*
1276  * helper for remove_pool_huge_page() - return the previously saved
1277  * node ["this node"] from which to free a huge page.  Advance the
1278  * next node id whether or not we find a free huge page to free so
1279  * that the next attempt to free addresses the next node.
1280  */
1281 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1282 {
1283         int nid;
1284
1285         VM_BUG_ON(!nodes_allowed);
1286
1287         nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1288         h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1289
1290         return nid;
1291 }
1292
1293 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask)           \
1294         for (nr_nodes = nodes_weight(*mask);                            \
1295                 nr_nodes > 0 &&                                         \
1296                 ((node = hstate_next_node_to_alloc(hs, mask)) || 1);    \
1297                 nr_nodes--)
1298
1299 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask)            \
1300         for (nr_nodes = nodes_weight(*mask);                            \
1301                 nr_nodes > 0 &&                                         \
1302                 ((node = hstate_next_node_to_free(hs, mask)) || 1);     \
1303                 nr_nodes--)
1304
1305 /* used to demote non-gigantic_huge pages as well */
1306 static void __destroy_compound_gigantic_page(struct page *page,
1307                                         unsigned int order, bool demote)
1308 {
1309         int i;
1310         int nr_pages = 1 << order;
1311         struct page *p = page + 1;
1312
1313         atomic_set(compound_mapcount_ptr(page), 0);
1314         atomic_set(compound_pincount_ptr(page), 0);
1315
1316         for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1317                 p->mapping = NULL;
1318                 clear_compound_head(p);
1319                 if (!demote)
1320                         set_page_refcounted(p);
1321         }
1322
1323         set_compound_order(page, 0);
1324 #ifdef CONFIG_64BIT
1325         page[1].compound_nr = 0;
1326 #endif
1327         __ClearPageHead(page);
1328 }
1329
1330 static void destroy_compound_hugetlb_page_for_demote(struct page *page,
1331                                         unsigned int order)
1332 {
1333         __destroy_compound_gigantic_page(page, order, true);
1334 }
1335
1336 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
1337 static void destroy_compound_gigantic_page(struct page *page,
1338                                         unsigned int order)
1339 {
1340         __destroy_compound_gigantic_page(page, order, false);
1341 }
1342
1343 static void free_gigantic_page(struct page *page, unsigned int order)
1344 {
1345         /*
1346          * If the page isn't allocated using the cma allocator,
1347          * cma_release() returns false.
1348          */
1349 #ifdef CONFIG_CMA
1350         if (cma_release(hugetlb_cma[page_to_nid(page)], page, 1 << order))
1351                 return;
1352 #endif
1353
1354         free_contig_range(page_to_pfn(page), 1 << order);
1355 }
1356
1357 #ifdef CONFIG_CONTIG_ALLOC
1358 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1359                 int nid, nodemask_t *nodemask)
1360 {
1361         unsigned long nr_pages = pages_per_huge_page(h);
1362         if (nid == NUMA_NO_NODE)
1363                 nid = numa_mem_id();
1364
1365 #ifdef CONFIG_CMA
1366         {
1367                 struct page *page;
1368                 int node;
1369
1370                 if (hugetlb_cma[nid]) {
1371                         page = cma_alloc(hugetlb_cma[nid], nr_pages,
1372                                         huge_page_order(h), true);
1373                         if (page)
1374                                 return page;
1375                 }
1376
1377                 if (!(gfp_mask & __GFP_THISNODE)) {
1378                         for_each_node_mask(node, *nodemask) {
1379                                 if (node == nid || !hugetlb_cma[node])
1380                                         continue;
1381
1382                                 page = cma_alloc(hugetlb_cma[node], nr_pages,
1383                                                 huge_page_order(h), true);
1384                                 if (page)
1385                                         return page;
1386                         }
1387                 }
1388         }
1389 #endif
1390
1391         return alloc_contig_pages(nr_pages, gfp_mask, nid, nodemask);
1392 }
1393
1394 #else /* !CONFIG_CONTIG_ALLOC */
1395 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1396                                         int nid, nodemask_t *nodemask)
1397 {
1398         return NULL;
1399 }
1400 #endif /* CONFIG_CONTIG_ALLOC */
1401
1402 #else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
1403 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1404                                         int nid, nodemask_t *nodemask)
1405 {
1406         return NULL;
1407 }
1408 static inline void free_gigantic_page(struct page *page, unsigned int order) { }
1409 static inline void destroy_compound_gigantic_page(struct page *page,
1410                                                 unsigned int order) { }
1411 #endif
1412
1413 /*
1414  * Remove hugetlb page from lists, and update dtor so that page appears
1415  * as just a compound page.
1416  *
1417  * A reference is held on the page, except in the case of demote.
1418  *
1419  * Must be called with hugetlb lock held.
1420  */
1421 static void __remove_hugetlb_page(struct hstate *h, struct page *page,
1422                                                         bool adjust_surplus,
1423                                                         bool demote)
1424 {
1425         int nid = page_to_nid(page);
1426
1427         VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
1428         VM_BUG_ON_PAGE(hugetlb_cgroup_from_page_rsvd(page), page);
1429
1430         lockdep_assert_held(&hugetlb_lock);
1431         if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1432                 return;
1433
1434         list_del(&page->lru);
1435
1436         if (HPageFreed(page)) {
1437                 h->free_huge_pages--;
1438                 h->free_huge_pages_node[nid]--;
1439         }
1440         if (adjust_surplus) {
1441                 h->surplus_huge_pages--;
1442                 h->surplus_huge_pages_node[nid]--;
1443         }
1444
1445         /*
1446          * Very subtle
1447          *
1448          * For non-gigantic pages set the destructor to the normal compound
1449          * page dtor.  This is needed in case someone takes an additional
1450          * temporary ref to the page, and freeing is delayed until they drop
1451          * their reference.
1452          *
1453          * For gigantic pages set the destructor to the null dtor.  This
1454          * destructor will never be called.  Before freeing the gigantic
1455          * page destroy_compound_gigantic_page will turn the compound page
1456          * into a simple group of pages.  After this the destructor does not
1457          * apply.
1458          *
1459          * This handles the case where more than one ref is held when and
1460          * after update_and_free_page is called.
1461          *
1462          * In the case of demote we do not ref count the page as it will soon
1463          * be turned into a page of smaller size.
1464          */
1465         if (!demote)
1466                 set_page_refcounted(page);
1467         if (hstate_is_gigantic(h))
1468                 set_compound_page_dtor(page, NULL_COMPOUND_DTOR);
1469         else
1470                 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
1471
1472         h->nr_huge_pages--;
1473         h->nr_huge_pages_node[nid]--;
1474 }
1475
1476 static void remove_hugetlb_page(struct hstate *h, struct page *page,
1477                                                         bool adjust_surplus)
1478 {
1479         __remove_hugetlb_page(h, page, adjust_surplus, false);
1480 }
1481
1482 static void remove_hugetlb_page_for_demote(struct hstate *h, struct page *page,
1483                                                         bool adjust_surplus)
1484 {
1485         __remove_hugetlb_page(h, page, adjust_surplus, true);
1486 }
1487
1488 static void add_hugetlb_page(struct hstate *h, struct page *page,
1489                              bool adjust_surplus)
1490 {
1491         int zeroed;
1492         int nid = page_to_nid(page);
1493
1494         VM_BUG_ON_PAGE(!HPageVmemmapOptimized(page), page);
1495
1496         lockdep_assert_held(&hugetlb_lock);
1497
1498         INIT_LIST_HEAD(&page->lru);
1499         h->nr_huge_pages++;
1500         h->nr_huge_pages_node[nid]++;
1501
1502         if (adjust_surplus) {
1503                 h->surplus_huge_pages++;
1504                 h->surplus_huge_pages_node[nid]++;
1505         }
1506
1507         set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1508         set_page_private(page, 0);
1509         SetHPageVmemmapOptimized(page);
1510
1511         /*
1512          * This page is about to be managed by the hugetlb allocator and
1513          * should have no users.  Drop our reference, and check for others
1514          * just in case.
1515          */
1516         zeroed = put_page_testzero(page);
1517         if (!zeroed)
1518                 /*
1519                  * It is VERY unlikely soneone else has taken a ref on
1520                  * the page.  In this case, we simply return as the
1521                  * hugetlb destructor (free_huge_page) will be called
1522                  * when this other ref is dropped.
1523                  */
1524                 return;
1525
1526         arch_clear_hugepage_flags(page);
1527         enqueue_huge_page(h, page);
1528 }
1529
1530 static void __update_and_free_page(struct hstate *h, struct page *page)
1531 {
1532         int i;
1533         struct page *subpage = page;
1534
1535         if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1536                 return;
1537
1538         if (hugetlb_vmemmap_alloc(h, page)) {
1539                 spin_lock_irq(&hugetlb_lock);
1540                 /*
1541                  * If we cannot allocate vmemmap pages, just refuse to free the
1542                  * page and put the page back on the hugetlb free list and treat
1543                  * as a surplus page.
1544                  */
1545                 add_hugetlb_page(h, page, true);
1546                 spin_unlock_irq(&hugetlb_lock);
1547                 return;
1548         }
1549
1550         for (i = 0; i < pages_per_huge_page(h);
1551              i++, subpage = mem_map_next(subpage, page, i)) {
1552                 subpage->flags &= ~(1 << PG_locked | 1 << PG_error |
1553                                 1 << PG_referenced | 1 << PG_dirty |
1554                                 1 << PG_active | 1 << PG_private |
1555                                 1 << PG_writeback);
1556         }
1557
1558         /*
1559          * Non-gigantic pages demoted from CMA allocated gigantic pages
1560          * need to be given back to CMA in free_gigantic_page.
1561          */
1562         if (hstate_is_gigantic(h) ||
1563             hugetlb_cma_page(page, huge_page_order(h))) {
1564                 destroy_compound_gigantic_page(page, huge_page_order(h));
1565                 free_gigantic_page(page, huge_page_order(h));
1566         } else {
1567                 __free_pages(page, huge_page_order(h));
1568         }
1569 }
1570
1571 /*
1572  * As update_and_free_page() can be called under any context, so we cannot
1573  * use GFP_KERNEL to allocate vmemmap pages. However, we can defer the
1574  * actual freeing in a workqueue to prevent from using GFP_ATOMIC to allocate
1575  * the vmemmap pages.
1576  *
1577  * free_hpage_workfn() locklessly retrieves the linked list of pages to be
1578  * freed and frees them one-by-one. As the page->mapping pointer is going
1579  * to be cleared in free_hpage_workfn() anyway, it is reused as the llist_node
1580  * structure of a lockless linked list of huge pages to be freed.
1581  */
1582 static LLIST_HEAD(hpage_freelist);
1583
1584 static void free_hpage_workfn(struct work_struct *work)
1585 {
1586         struct llist_node *node;
1587
1588         node = llist_del_all(&hpage_freelist);
1589
1590         while (node) {
1591                 struct page *page;
1592                 struct hstate *h;
1593
1594                 page = container_of((struct address_space **)node,
1595                                      struct page, mapping);
1596                 node = node->next;
1597                 page->mapping = NULL;
1598                 /*
1599                  * The VM_BUG_ON_PAGE(!PageHuge(page), page) in page_hstate()
1600                  * is going to trigger because a previous call to
1601                  * remove_hugetlb_page() will set_compound_page_dtor(page,
1602                  * NULL_COMPOUND_DTOR), so do not use page_hstate() directly.
1603                  */
1604                 h = size_to_hstate(page_size(page));
1605
1606                 __update_and_free_page(h, page);
1607
1608                 cond_resched();
1609         }
1610 }
1611 static DECLARE_WORK(free_hpage_work, free_hpage_workfn);
1612
1613 static inline void flush_free_hpage_work(struct hstate *h)
1614 {
1615         if (hugetlb_optimize_vmemmap_pages(h))
1616                 flush_work(&free_hpage_work);
1617 }
1618
1619 static void update_and_free_page(struct hstate *h, struct page *page,
1620                                  bool atomic)
1621 {
1622         if (!HPageVmemmapOptimized(page) || !atomic) {
1623                 __update_and_free_page(h, page);
1624                 return;
1625         }
1626
1627         /*
1628          * Defer freeing to avoid using GFP_ATOMIC to allocate vmemmap pages.
1629          *
1630          * Only call schedule_work() if hpage_freelist is previously
1631          * empty. Otherwise, schedule_work() had been called but the workfn
1632          * hasn't retrieved the list yet.
1633          */
1634         if (llist_add((struct llist_node *)&page->mapping, &hpage_freelist))
1635                 schedule_work(&free_hpage_work);
1636 }
1637
1638 static void update_and_free_pages_bulk(struct hstate *h, struct list_head *list)
1639 {
1640         struct page *page, *t_page;
1641
1642         list_for_each_entry_safe(page, t_page, list, lru) {
1643                 update_and_free_page(h, page, false);
1644                 cond_resched();
1645         }
1646 }
1647
1648 struct hstate *size_to_hstate(unsigned long size)
1649 {
1650         struct hstate *h;
1651
1652         for_each_hstate(h) {
1653                 if (huge_page_size(h) == size)
1654                         return h;
1655         }
1656         return NULL;
1657 }
1658
1659 void free_huge_page(struct page *page)
1660 {
1661         /*
1662          * Can't pass hstate in here because it is called from the
1663          * compound page destructor.
1664          */
1665         struct hstate *h = page_hstate(page);
1666         int nid = page_to_nid(page);
1667         struct hugepage_subpool *spool = hugetlb_page_subpool(page);
1668         bool restore_reserve;
1669         unsigned long flags;
1670
1671         VM_BUG_ON_PAGE(page_count(page), page);
1672         VM_BUG_ON_PAGE(page_mapcount(page), page);
1673
1674         hugetlb_set_page_subpool(page, NULL);
1675         if (PageAnon(page))
1676                 __ClearPageAnonExclusive(page);
1677         page->mapping = NULL;
1678         restore_reserve = HPageRestoreReserve(page);
1679         ClearHPageRestoreReserve(page);
1680
1681         /*
1682          * If HPageRestoreReserve was set on page, page allocation consumed a
1683          * reservation.  If the page was associated with a subpool, there
1684          * would have been a page reserved in the subpool before allocation
1685          * via hugepage_subpool_get_pages().  Since we are 'restoring' the
1686          * reservation, do not call hugepage_subpool_put_pages() as this will
1687          * remove the reserved page from the subpool.
1688          */
1689         if (!restore_reserve) {
1690                 /*
1691                  * A return code of zero implies that the subpool will be
1692                  * under its minimum size if the reservation is not restored
1693                  * after page is free.  Therefore, force restore_reserve
1694                  * operation.
1695                  */
1696                 if (hugepage_subpool_put_pages(spool, 1) == 0)
1697                         restore_reserve = true;
1698         }
1699
1700         spin_lock_irqsave(&hugetlb_lock, flags);
1701         ClearHPageMigratable(page);
1702         hugetlb_cgroup_uncharge_page(hstate_index(h),
1703                                      pages_per_huge_page(h), page);
1704         hugetlb_cgroup_uncharge_page_rsvd(hstate_index(h),
1705                                           pages_per_huge_page(h), page);
1706         if (restore_reserve)
1707                 h->resv_huge_pages++;
1708
1709         if (HPageTemporary(page)) {
1710                 remove_hugetlb_page(h, page, false);
1711                 spin_unlock_irqrestore(&hugetlb_lock, flags);
1712                 update_and_free_page(h, page, true);
1713         } else if (h->surplus_huge_pages_node[nid]) {
1714                 /* remove the page from active list */
1715                 remove_hugetlb_page(h, page, true);
1716                 spin_unlock_irqrestore(&hugetlb_lock, flags);
1717                 update_and_free_page(h, page, true);
1718         } else {
1719                 arch_clear_hugepage_flags(page);
1720                 enqueue_huge_page(h, page);
1721                 spin_unlock_irqrestore(&hugetlb_lock, flags);
1722         }
1723 }
1724
1725 /*
1726  * Must be called with the hugetlb lock held
1727  */
1728 static void __prep_account_new_huge_page(struct hstate *h, int nid)
1729 {
1730         lockdep_assert_held(&hugetlb_lock);
1731         h->nr_huge_pages++;
1732         h->nr_huge_pages_node[nid]++;
1733 }
1734
1735 static void __prep_new_huge_page(struct hstate *h, struct page *page)
1736 {
1737         hugetlb_vmemmap_free(h, page);
1738         INIT_LIST_HEAD(&page->lru);
1739         set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1740         hugetlb_set_page_subpool(page, NULL);
1741         set_hugetlb_cgroup(page, NULL);
1742         set_hugetlb_cgroup_rsvd(page, NULL);
1743 }
1744
1745 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
1746 {
1747         __prep_new_huge_page(h, page);
1748         spin_lock_irq(&hugetlb_lock);
1749         __prep_account_new_huge_page(h, nid);
1750         spin_unlock_irq(&hugetlb_lock);
1751 }
1752
1753 static bool __prep_compound_gigantic_page(struct page *page, unsigned int order,
1754                                                                 bool demote)
1755 {
1756         int i, j;
1757         int nr_pages = 1 << order;
1758         struct page *p = page + 1;
1759
1760         /* we rely on prep_new_huge_page to set the destructor */
1761         set_compound_order(page, order);
1762         __ClearPageReserved(page);
1763         __SetPageHead(page);
1764         for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1765                 /*
1766                  * For gigantic hugepages allocated through bootmem at
1767                  * boot, it's safer to be consistent with the not-gigantic
1768                  * hugepages and clear the PG_reserved bit from all tail pages
1769                  * too.  Otherwise drivers using get_user_pages() to access tail
1770                  * pages may get the reference counting wrong if they see
1771                  * PG_reserved set on a tail page (despite the head page not
1772                  * having PG_reserved set).  Enforcing this consistency between
1773                  * head and tail pages allows drivers to optimize away a check
1774                  * on the head page when they need know if put_page() is needed
1775                  * after get_user_pages().
1776                  */
1777                 __ClearPageReserved(p);
1778                 /*
1779                  * Subtle and very unlikely
1780                  *
1781                  * Gigantic 'page allocators' such as memblock or cma will
1782                  * return a set of pages with each page ref counted.  We need
1783                  * to turn this set of pages into a compound page with tail
1784                  * page ref counts set to zero.  Code such as speculative page
1785                  * cache adding could take a ref on a 'to be' tail page.
1786                  * We need to respect any increased ref count, and only set
1787                  * the ref count to zero if count is currently 1.  If count
1788                  * is not 1, we return an error.  An error return indicates
1789                  * the set of pages can not be converted to a gigantic page.
1790                  * The caller who allocated the pages should then discard the
1791                  * pages using the appropriate free interface.
1792                  *
1793                  * In the case of demote, the ref count will be zero.
1794                  */
1795                 if (!demote) {
1796                         if (!page_ref_freeze(p, 1)) {
1797                                 pr_warn("HugeTLB page can not be used due to unexpected inflated ref count\n");
1798                                 goto out_error;
1799                         }
1800                 } else {
1801                         VM_BUG_ON_PAGE(page_count(p), p);
1802                 }
1803                 set_compound_head(p, page);
1804         }
1805         atomic_set(compound_mapcount_ptr(page), -1);
1806         atomic_set(compound_pincount_ptr(page), 0);
1807         return true;
1808
1809 out_error:
1810         /* undo tail page modifications made above */
1811         p = page + 1;
1812         for (j = 1; j < i; j++, p = mem_map_next(p, page, j)) {
1813                 clear_compound_head(p);
1814                 set_page_refcounted(p);
1815         }
1816         /* need to clear PG_reserved on remaining tail pages  */
1817         for (; j < nr_pages; j++, p = mem_map_next(p, page, j))
1818                 __ClearPageReserved(p);
1819         set_compound_order(page, 0);
1820 #ifdef CONFIG_64BIT
1821         page[1].compound_nr = 0;
1822 #endif
1823         __ClearPageHead(page);
1824         return false;
1825 }
1826
1827 static bool prep_compound_gigantic_page(struct page *page, unsigned int order)
1828 {
1829         return __prep_compound_gigantic_page(page, order, false);
1830 }
1831
1832 static bool prep_compound_gigantic_page_for_demote(struct page *page,
1833                                                         unsigned int order)
1834 {
1835         return __prep_compound_gigantic_page(page, order, true);
1836 }
1837
1838 /*
1839  * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1840  * transparent huge pages.  See the PageTransHuge() documentation for more
1841  * details.
1842  */
1843 int PageHuge(struct page *page)
1844 {
1845         if (!PageCompound(page))
1846                 return 0;
1847
1848         page = compound_head(page);
1849         return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
1850 }
1851 EXPORT_SYMBOL_GPL(PageHuge);
1852
1853 /*
1854  * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1855  * normal or transparent huge pages.
1856  */
1857 int PageHeadHuge(struct page *page_head)
1858 {
1859         if (!PageHead(page_head))
1860                 return 0;
1861
1862         return page_head[1].compound_dtor == HUGETLB_PAGE_DTOR;
1863 }
1864 EXPORT_SYMBOL_GPL(PageHeadHuge);
1865
1866 /*
1867  * Find and lock address space (mapping) in write mode.
1868  *
1869  * Upon entry, the page is locked which means that page_mapping() is
1870  * stable.  Due to locking order, we can only trylock_write.  If we can
1871  * not get the lock, simply return NULL to caller.
1872  */
1873 struct address_space *hugetlb_page_mapping_lock_write(struct page *hpage)
1874 {
1875         struct address_space *mapping = page_mapping(hpage);
1876
1877         if (!mapping)
1878                 return mapping;
1879
1880         if (i_mmap_trylock_write(mapping))
1881                 return mapping;
1882
1883         return NULL;
1884 }
1885
1886 pgoff_t hugetlb_basepage_index(struct page *page)
1887 {
1888         struct page *page_head = compound_head(page);
1889         pgoff_t index = page_index(page_head);
1890         unsigned long compound_idx;
1891
1892         if (compound_order(page_head) >= MAX_ORDER)
1893                 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
1894         else
1895                 compound_idx = page - page_head;
1896
1897         return (index << compound_order(page_head)) + compound_idx;
1898 }
1899
1900 static struct page *alloc_buddy_huge_page(struct hstate *h,
1901                 gfp_t gfp_mask, int nid, nodemask_t *nmask,
1902                 nodemask_t *node_alloc_noretry)
1903 {
1904         int order = huge_page_order(h);
1905         struct page *page;
1906         bool alloc_try_hard = true;
1907
1908         /*
1909          * By default we always try hard to allocate the page with
1910          * __GFP_RETRY_MAYFAIL flag.  However, if we are allocating pages in
1911          * a loop (to adjust global huge page counts) and previous allocation
1912          * failed, do not continue to try hard on the same node.  Use the
1913          * node_alloc_noretry bitmap to manage this state information.
1914          */
1915         if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry))
1916                 alloc_try_hard = false;
1917         gfp_mask |= __GFP_COMP|__GFP_NOWARN;
1918         if (alloc_try_hard)
1919                 gfp_mask |= __GFP_RETRY_MAYFAIL;
1920         if (nid == NUMA_NO_NODE)
1921                 nid = numa_mem_id();
1922         page = __alloc_pages(gfp_mask, order, nid, nmask);
1923         if (page)
1924                 __count_vm_event(HTLB_BUDDY_PGALLOC);
1925         else
1926                 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1927
1928         /*
1929          * If we did not specify __GFP_RETRY_MAYFAIL, but still got a page this
1930          * indicates an overall state change.  Clear bit so that we resume
1931          * normal 'try hard' allocations.
1932          */
1933         if (node_alloc_noretry && page && !alloc_try_hard)
1934                 node_clear(nid, *node_alloc_noretry);
1935
1936         /*
1937          * If we tried hard to get a page but failed, set bit so that
1938          * subsequent attempts will not try as hard until there is an
1939          * overall state change.
1940          */
1941         if (node_alloc_noretry && !page && alloc_try_hard)
1942                 node_set(nid, *node_alloc_noretry);
1943
1944         return page;
1945 }
1946
1947 /*
1948  * Common helper to allocate a fresh hugetlb page. All specific allocators
1949  * should use this function to get new hugetlb pages
1950  */
1951 static struct page *alloc_fresh_huge_page(struct hstate *h,
1952                 gfp_t gfp_mask, int nid, nodemask_t *nmask,
1953                 nodemask_t *node_alloc_noretry)
1954 {
1955         struct page *page;
1956         bool retry = false;
1957
1958 retry:
1959         if (hstate_is_gigantic(h))
1960                 page = alloc_gigantic_page(h, gfp_mask, nid, nmask);
1961         else
1962                 page = alloc_buddy_huge_page(h, gfp_mask,
1963                                 nid, nmask, node_alloc_noretry);
1964         if (!page)
1965                 return NULL;
1966
1967         if (hstate_is_gigantic(h)) {
1968                 if (!prep_compound_gigantic_page(page, huge_page_order(h))) {
1969                         /*
1970                          * Rare failure to convert pages to compound page.
1971                          * Free pages and try again - ONCE!
1972                          */
1973                         free_gigantic_page(page, huge_page_order(h));
1974                         if (!retry) {
1975                                 retry = true;
1976                                 goto retry;
1977                         }
1978                         return NULL;
1979                 }
1980         }
1981         prep_new_huge_page(h, page, page_to_nid(page));
1982
1983         return page;
1984 }
1985
1986 /*
1987  * Allocates a fresh page to the hugetlb allocator pool in the node interleaved
1988  * manner.
1989  */
1990 static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1991                                 nodemask_t *node_alloc_noretry)
1992 {
1993         struct page *page;
1994         int nr_nodes, node;
1995         gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
1996
1997         for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1998                 page = alloc_fresh_huge_page(h, gfp_mask, node, nodes_allowed,
1999                                                 node_alloc_noretry);
2000                 if (page)
2001                         break;
2002         }
2003
2004         if (!page)
2005                 return 0;
2006
2007         put_page(page); /* free it into the hugepage allocator */
2008
2009         return 1;
2010 }
2011
2012 /*
2013  * Remove huge page from pool from next node to free.  Attempt to keep
2014  * persistent huge pages more or less balanced over allowed nodes.
2015  * This routine only 'removes' the hugetlb page.  The caller must make
2016  * an additional call to free the page to low level allocators.
2017  * Called with hugetlb_lock locked.
2018  */
2019 static struct page *remove_pool_huge_page(struct hstate *h,
2020                                                 nodemask_t *nodes_allowed,
2021                                                  bool acct_surplus)
2022 {
2023         int nr_nodes, node;
2024         struct page *page = NULL;
2025
2026         lockdep_assert_held(&hugetlb_lock);
2027         for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2028                 /*
2029                  * If we're returning unused surplus pages, only examine
2030                  * nodes with surplus pages.
2031                  */
2032                 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
2033                     !list_empty(&h->hugepage_freelists[node])) {
2034                         page = list_entry(h->hugepage_freelists[node].next,
2035                                           struct page, lru);
2036                         remove_hugetlb_page(h, page, acct_surplus);
2037                         break;
2038                 }
2039         }
2040
2041         return page;
2042 }
2043
2044 /*
2045  * Dissolve a given free hugepage into free buddy pages. This function does
2046  * nothing for in-use hugepages and non-hugepages.
2047  * This function returns values like below:
2048  *
2049  *  -ENOMEM: failed to allocate vmemmap pages to free the freed hugepages
2050  *           when the system is under memory pressure and the feature of
2051  *           freeing unused vmemmap pages associated with each hugetlb page
2052  *           is enabled.
2053  *  -EBUSY:  failed to dissolved free hugepages or the hugepage is in-use
2054  *           (allocated or reserved.)
2055  *       0:  successfully dissolved free hugepages or the page is not a
2056  *           hugepage (considered as already dissolved)
2057  */
2058 int dissolve_free_huge_page(struct page *page)
2059 {
2060         int rc = -EBUSY;
2061
2062 retry:
2063         /* Not to disrupt normal path by vainly holding hugetlb_lock */
2064         if (!PageHuge(page))
2065                 return 0;
2066
2067         spin_lock_irq(&hugetlb_lock);
2068         if (!PageHuge(page)) {
2069                 rc = 0;
2070                 goto out;
2071         }
2072
2073         if (!page_count(page)) {
2074                 struct page *head = compound_head(page);
2075                 struct hstate *h = page_hstate(head);
2076                 if (h->free_huge_pages - h->resv_huge_pages == 0)
2077                         goto out;
2078
2079                 /*
2080                  * We should make sure that the page is already on the free list
2081                  * when it is dissolved.
2082                  */
2083                 if (unlikely(!HPageFreed(head))) {
2084                         spin_unlock_irq(&hugetlb_lock);
2085                         cond_resched();
2086
2087                         /*
2088                          * Theoretically, we should return -EBUSY when we
2089                          * encounter this race. In fact, we have a chance
2090                          * to successfully dissolve the page if we do a
2091                          * retry. Because the race window is quite small.
2092                          * If we seize this opportunity, it is an optimization
2093                          * for increasing the success rate of dissolving page.
2094                          */
2095                         goto retry;
2096                 }
2097
2098                 remove_hugetlb_page(h, head, false);
2099                 h->max_huge_pages--;
2100                 spin_unlock_irq(&hugetlb_lock);
2101
2102                 /*
2103                  * Normally update_and_free_page will allocate required vmemmmap
2104                  * before freeing the page.  update_and_free_page will fail to
2105                  * free the page if it can not allocate required vmemmap.  We
2106                  * need to adjust max_huge_pages if the page is not freed.
2107                  * Attempt to allocate vmemmmap here so that we can take
2108                  * appropriate action on failure.
2109                  */
2110                 rc = hugetlb_vmemmap_alloc(h, head);
2111                 if (!rc) {
2112                         /*
2113                          * Move PageHWPoison flag from head page to the raw
2114                          * error page, which makes any subpages rather than
2115                          * the error page reusable.
2116                          */
2117                         if (PageHWPoison(head) && page != head) {
2118                                 SetPageHWPoison(page);
2119                                 ClearPageHWPoison(head);
2120                         }
2121                         update_and_free_page(h, head, false);
2122                 } else {
2123                         spin_lock_irq(&hugetlb_lock);
2124                         add_hugetlb_page(h, head, false);
2125                         h->max_huge_pages++;
2126                         spin_unlock_irq(&hugetlb_lock);
2127                 }
2128
2129                 return rc;
2130         }
2131 out:
2132         spin_unlock_irq(&hugetlb_lock);
2133         return rc;
2134 }
2135
2136 /*
2137  * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
2138  * make specified memory blocks removable from the system.
2139  * Note that this will dissolve a free gigantic hugepage completely, if any
2140  * part of it lies within the given range.
2141  * Also note that if dissolve_free_huge_page() returns with an error, all
2142  * free hugepages that were dissolved before that error are lost.
2143  */
2144 int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
2145 {
2146         unsigned long pfn;
2147         struct page *page;
2148         int rc = 0;
2149         unsigned int order;
2150         struct hstate *h;
2151
2152         if (!hugepages_supported())
2153                 return rc;
2154
2155         order = huge_page_order(&default_hstate);
2156         for_each_hstate(h)
2157                 order = min(order, huge_page_order(h));
2158
2159         for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << order) {
2160                 page = pfn_to_page(pfn);
2161                 rc = dissolve_free_huge_page(page);
2162                 if (rc)
2163                         break;
2164         }
2165
2166         return rc;
2167 }
2168
2169 /*
2170  * Allocates a fresh surplus page from the page allocator.
2171  */
2172 static struct page *alloc_surplus_huge_page(struct hstate *h, gfp_t gfp_mask,
2173                 int nid, nodemask_t *nmask, bool zero_ref)
2174 {
2175         struct page *page = NULL;
2176         bool retry = false;
2177
2178         if (hstate_is_gigantic(h))
2179                 return NULL;
2180
2181         spin_lock_irq(&hugetlb_lock);
2182         if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages)
2183                 goto out_unlock;
2184         spin_unlock_irq(&hugetlb_lock);
2185
2186 retry:
2187         page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
2188         if (!page)
2189                 return NULL;
2190
2191         spin_lock_irq(&hugetlb_lock);
2192         /*
2193          * We could have raced with the pool size change.
2194          * Double check that and simply deallocate the new page
2195          * if we would end up overcommiting the surpluses. Abuse
2196          * temporary page to workaround the nasty free_huge_page
2197          * codeflow
2198          */
2199         if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
2200                 SetHPageTemporary(page);
2201                 spin_unlock_irq(&hugetlb_lock);
2202                 put_page(page);
2203                 return NULL;
2204         }
2205
2206         if (zero_ref) {
2207                 /*
2208                  * Caller requires a page with zero ref count.
2209                  * We will drop ref count here.  If someone else is holding
2210                  * a ref, the page will be freed when they drop it.  Abuse
2211                  * temporary page flag to accomplish this.
2212                  */
2213                 SetHPageTemporary(page);
2214                 if (!put_page_testzero(page)) {
2215                         /*
2216                          * Unexpected inflated ref count on freshly allocated
2217                          * huge.  Retry once.
2218                          */
2219                         pr_info("HugeTLB unexpected inflated ref count on freshly allocated page\n");
2220                         spin_unlock_irq(&hugetlb_lock);
2221                         if (retry)
2222                                 return NULL;
2223
2224                         retry = true;
2225                         goto retry;
2226                 }
2227                 ClearHPageTemporary(page);
2228         }
2229
2230         h->surplus_huge_pages++;
2231         h->surplus_huge_pages_node[page_to_nid(page)]++;
2232
2233 out_unlock:
2234         spin_unlock_irq(&hugetlb_lock);
2235
2236         return page;
2237 }
2238
2239 static struct page *alloc_migrate_huge_page(struct hstate *h, gfp_t gfp_mask,
2240                                      int nid, nodemask_t *nmask)
2241 {
2242         struct page *page;
2243
2244         if (hstate_is_gigantic(h))
2245                 return NULL;
2246
2247         page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
2248         if (!page)
2249                 return NULL;
2250
2251         /*
2252          * We do not account these pages as surplus because they are only
2253          * temporary and will be released properly on the last reference
2254          */
2255         SetHPageTemporary(page);
2256
2257         return page;
2258 }
2259
2260 /*
2261  * Use the VMA's mpolicy to allocate a huge page from the buddy.
2262  */
2263 static
2264 struct page *alloc_buddy_huge_page_with_mpol(struct hstate *h,
2265                 struct vm_area_struct *vma, unsigned long addr)
2266 {
2267         struct page *page = NULL;
2268         struct mempolicy *mpol;
2269         gfp_t gfp_mask = htlb_alloc_mask(h);
2270         int nid;
2271         nodemask_t *nodemask;
2272
2273         nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
2274         if (mpol_is_preferred_many(mpol)) {
2275                 gfp_t gfp = gfp_mask | __GFP_NOWARN;
2276
2277                 gfp &=  ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL);
2278                 page = alloc_surplus_huge_page(h, gfp, nid, nodemask, false);
2279
2280                 /* Fallback to all nodes if page==NULL */
2281                 nodemask = NULL;
2282         }
2283
2284         if (!page)
2285                 page = alloc_surplus_huge_page(h, gfp_mask, nid, nodemask, false);
2286         mpol_cond_put(mpol);
2287         return page;
2288 }
2289
2290 /* page migration callback function */
2291 struct page *alloc_huge_page_nodemask(struct hstate *h, int preferred_nid,
2292                 nodemask_t *nmask, gfp_t gfp_mask)
2293 {
2294         spin_lock_irq(&hugetlb_lock);
2295         if (h->free_huge_pages - h->resv_huge_pages > 0) {
2296                 struct page *page;
2297
2298                 page = dequeue_huge_page_nodemask(h, gfp_mask, preferred_nid, nmask);
2299                 if (page) {
2300                         spin_unlock_irq(&hugetlb_lock);
2301                         return page;
2302                 }
2303         }
2304         spin_unlock_irq(&hugetlb_lock);
2305
2306         return alloc_migrate_huge_page(h, gfp_mask, preferred_nid, nmask);
2307 }
2308
2309 /* mempolicy aware migration callback */
2310 struct page *alloc_huge_page_vma(struct hstate *h, struct vm_area_struct *vma,
2311                 unsigned long address)
2312 {
2313         struct mempolicy *mpol;
2314         nodemask_t *nodemask;
2315         struct page *page;
2316         gfp_t gfp_mask;
2317         int node;
2318
2319         gfp_mask = htlb_alloc_mask(h);
2320         node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
2321         page = alloc_huge_page_nodemask(h, node, nodemask, gfp_mask);
2322         mpol_cond_put(mpol);
2323
2324         return page;
2325 }
2326
2327 /*
2328  * Increase the hugetlb pool such that it can accommodate a reservation
2329  * of size 'delta'.
2330  */
2331 static int gather_surplus_pages(struct hstate *h, long delta)
2332         __must_hold(&hugetlb_lock)
2333 {
2334         struct list_head surplus_list;
2335         struct page *page, *tmp;
2336         int ret;
2337         long i;
2338         long needed, allocated;
2339         bool alloc_ok = true;
2340
2341         lockdep_assert_held(&hugetlb_lock);
2342         needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
2343         if (needed <= 0) {
2344                 h->resv_huge_pages += delta;
2345                 return 0;
2346         }
2347
2348         allocated = 0;
2349         INIT_LIST_HEAD(&surplus_list);
2350
2351         ret = -ENOMEM;
2352 retry:
2353         spin_unlock_irq(&hugetlb_lock);
2354         for (i = 0; i < needed; i++) {
2355                 page = alloc_surplus_huge_page(h, htlb_alloc_mask(h),
2356                                 NUMA_NO_NODE, NULL, true);
2357                 if (!page) {
2358                         alloc_ok = false;
2359                         break;
2360                 }
2361                 list_add(&page->lru, &surplus_list);
2362                 cond_resched();
2363         }
2364         allocated += i;
2365
2366         /*
2367          * After retaking hugetlb_lock, we need to recalculate 'needed'
2368          * because either resv_huge_pages or free_huge_pages may have changed.
2369          */
2370         spin_lock_irq(&hugetlb_lock);
2371         needed = (h->resv_huge_pages + delta) -
2372                         (h->free_huge_pages + allocated);
2373         if (needed > 0) {
2374                 if (alloc_ok)
2375                         goto retry;
2376                 /*
2377                  * We were not able to allocate enough pages to
2378                  * satisfy the entire reservation so we free what
2379                  * we've allocated so far.
2380                  */
2381                 goto free;
2382         }
2383         /*
2384          * The surplus_list now contains _at_least_ the number of extra pages
2385          * needed to accommodate the reservation.  Add the appropriate number
2386          * of pages to the hugetlb pool and free the extras back to the buddy
2387          * allocator.  Commit the entire reservation here to prevent another
2388          * process from stealing the pages as they are added to the pool but
2389          * before they are reserved.
2390          */
2391         needed += allocated;
2392         h->resv_huge_pages += delta;
2393         ret = 0;
2394
2395         /* Free the needed pages to the hugetlb pool */
2396         list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
2397                 if ((--needed) < 0)
2398                         break;
2399                 /* Add the page to the hugetlb allocator */
2400                 enqueue_huge_page(h, page);
2401         }
2402 free:
2403         spin_unlock_irq(&hugetlb_lock);
2404
2405         /*
2406          * Free unnecessary surplus pages to the buddy allocator.
2407          * Pages have no ref count, call free_huge_page directly.
2408          */
2409         list_for_each_entry_safe(page, tmp, &surplus_list, lru)
2410                 free_huge_page(page);
2411         spin_lock_irq(&hugetlb_lock);
2412
2413         return ret;
2414 }
2415
2416 /*
2417  * This routine has two main purposes:
2418  * 1) Decrement the reservation count (resv_huge_pages) by the value passed
2419  *    in unused_resv_pages.  This corresponds to the prior adjustments made
2420  *    to the associated reservation map.
2421  * 2) Free any unused surplus pages that may have been allocated to satisfy
2422  *    the reservation.  As many as unused_resv_pages may be freed.
2423  */
2424 static void return_unused_surplus_pages(struct hstate *h,
2425                                         unsigned long unused_resv_pages)
2426 {
2427         unsigned long nr_pages;
2428         struct page *page;
2429         LIST_HEAD(page_list);
2430
2431         lockdep_assert_held(&hugetlb_lock);
2432         /* Uncommit the reservation */
2433         h->resv_huge_pages -= unused_resv_pages;
2434
2435         /* Cannot return gigantic pages currently */
2436         if (hstate_is_gigantic(h))
2437                 goto out;
2438
2439         /*
2440          * Part (or even all) of the reservation could have been backed
2441          * by pre-allocated pages. Only free surplus pages.
2442          */
2443         nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
2444
2445         /*
2446          * We want to release as many surplus pages as possible, spread
2447          * evenly across all nodes with memory. Iterate across these nodes
2448          * until we can no longer free unreserved surplus pages. This occurs
2449          * when the nodes with surplus pages have no free pages.
2450          * remove_pool_huge_page() will balance the freed pages across the
2451          * on-line nodes with memory and will handle the hstate accounting.
2452          */
2453         while (nr_pages--) {
2454                 page = remove_pool_huge_page(h, &node_states[N_MEMORY], 1);
2455                 if (!page)
2456                         goto out;
2457
2458                 list_add(&page->lru, &page_list);
2459         }
2460
2461 out:
2462         spin_unlock_irq(&hugetlb_lock);
2463         update_and_free_pages_bulk(h, &page_list);
2464         spin_lock_irq(&hugetlb_lock);
2465 }
2466
2467
2468 /*
2469  * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
2470  * are used by the huge page allocation routines to manage reservations.
2471  *
2472  * vma_needs_reservation is called to determine if the huge page at addr
2473  * within the vma has an associated reservation.  If a reservation is
2474  * needed, the value 1 is returned.  The caller is then responsible for
2475  * managing the global reservation and subpool usage counts.  After
2476  * the huge page has been allocated, vma_commit_reservation is called
2477  * to add the page to the reservation map.  If the page allocation fails,
2478  * the reservation must be ended instead of committed.  vma_end_reservation
2479  * is called in such cases.
2480  *
2481  * In the normal case, vma_commit_reservation returns the same value
2482  * as the preceding vma_needs_reservation call.  The only time this
2483  * is not the case is if a reserve map was changed between calls.  It
2484  * is the responsibility of the caller to notice the difference and
2485  * take appropriate action.
2486  *
2487  * vma_add_reservation is used in error paths where a reservation must
2488  * be restored when a newly allocated huge page must be freed.  It is
2489  * to be called after calling vma_needs_reservation to determine if a
2490  * reservation exists.
2491  *
2492  * vma_del_reservation is used in error paths where an entry in the reserve
2493  * map was created during huge page allocation and must be removed.  It is to
2494  * be called after calling vma_needs_reservation to determine if a reservation
2495  * exists.
2496  */
2497 enum vma_resv_mode {
2498         VMA_NEEDS_RESV,
2499         VMA_COMMIT_RESV,
2500         VMA_END_RESV,
2501         VMA_ADD_RESV,
2502         VMA_DEL_RESV,
2503 };
2504 static long __vma_reservation_common(struct hstate *h,
2505                                 struct vm_area_struct *vma, unsigned long addr,
2506                                 enum vma_resv_mode mode)
2507 {
2508         struct resv_map *resv;
2509         pgoff_t idx;
2510         long ret;
2511         long dummy_out_regions_needed;
2512
2513         resv = vma_resv_map(vma);
2514         if (!resv)
2515                 return 1;
2516
2517         idx = vma_hugecache_offset(h, vma, addr);
2518         switch (mode) {
2519         case VMA_NEEDS_RESV:
2520                 ret = region_chg(resv, idx, idx + 1, &dummy_out_regions_needed);
2521                 /* We assume that vma_reservation_* routines always operate on
2522                  * 1 page, and that adding to resv map a 1 page entry can only
2523                  * ever require 1 region.
2524                  */
2525                 VM_BUG_ON(dummy_out_regions_needed != 1);
2526                 break;
2527         case VMA_COMMIT_RESV:
2528                 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2529                 /* region_add calls of range 1 should never fail. */
2530                 VM_BUG_ON(ret < 0);
2531                 break;
2532         case VMA_END_RESV:
2533                 region_abort(resv, idx, idx + 1, 1);
2534                 ret = 0;
2535                 break;
2536         case VMA_ADD_RESV:
2537                 if (vma->vm_flags & VM_MAYSHARE) {
2538                         ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2539                         /* region_add calls of range 1 should never fail. */
2540                         VM_BUG_ON(ret < 0);
2541                 } else {
2542                         region_abort(resv, idx, idx + 1, 1);
2543                         ret = region_del(resv, idx, idx + 1);
2544                 }
2545                 break;
2546         case VMA_DEL_RESV:
2547                 if (vma->vm_flags & VM_MAYSHARE) {
2548                         region_abort(resv, idx, idx + 1, 1);
2549                         ret = region_del(resv, idx, idx + 1);
2550                 } else {
2551                         ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2552                         /* region_add calls of range 1 should never fail. */
2553                         VM_BUG_ON(ret < 0);
2554                 }
2555                 break;
2556         default:
2557                 BUG();
2558         }
2559
2560         if (vma->vm_flags & VM_MAYSHARE || mode == VMA_DEL_RESV)
2561                 return ret;
2562         /*
2563          * We know private mapping must have HPAGE_RESV_OWNER set.
2564          *
2565          * In most cases, reserves always exist for private mappings.
2566          * However, a file associated with mapping could have been
2567          * hole punched or truncated after reserves were consumed.
2568          * As subsequent fault on such a range will not use reserves.
2569          * Subtle - The reserve map for private mappings has the
2570          * opposite meaning than that of shared mappings.  If NO
2571          * entry is in the reserve map, it means a reservation exists.
2572          * If an entry exists in the reserve map, it means the
2573          * reservation has already been consumed.  As a result, the
2574          * return value of this routine is the opposite of the
2575          * value returned from reserve map manipulation routines above.
2576          */
2577         if (ret > 0)
2578                 return 0;
2579         if (ret == 0)
2580                 return 1;
2581         return ret;
2582 }
2583
2584 static long vma_needs_reservation(struct hstate *h,
2585                         struct vm_area_struct *vma, unsigned long addr)
2586 {
2587         return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
2588 }
2589
2590 static long vma_commit_reservation(struct hstate *h,
2591                         struct vm_area_struct *vma, unsigned long addr)
2592 {
2593         return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
2594 }
2595
2596 static void vma_end_reservation(struct hstate *h,
2597                         struct vm_area_struct *vma, unsigned long addr)
2598 {
2599         (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
2600 }
2601
2602 static long vma_add_reservation(struct hstate *h,
2603                         struct vm_area_struct *vma, unsigned long addr)
2604 {
2605         return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
2606 }
2607
2608 static long vma_del_reservation(struct hstate *h,
2609                         struct vm_area_struct *vma, unsigned long addr)
2610 {
2611         return __vma_reservation_common(h, vma, addr, VMA_DEL_RESV);
2612 }
2613
2614 /*
2615  * This routine is called to restore reservation information on error paths.
2616  * It should ONLY be called for pages allocated via alloc_huge_page(), and
2617  * the hugetlb mutex should remain held when calling this routine.
2618  *
2619  * It handles two specific cases:
2620  * 1) A reservation was in place and the page consumed the reservation.
2621  *    HPageRestoreReserve is set in the page.
2622  * 2) No reservation was in place for the page, so HPageRestoreReserve is
2623  *    not set.  However, alloc_huge_page always updates the reserve map.
2624  *
2625  * In case 1, free_huge_page later in the error path will increment the
2626  * global reserve count.  But, free_huge_page does not have enough context
2627  * to adjust the reservation map.  This case deals primarily with private
2628  * mappings.  Adjust the reserve map here to be consistent with global
2629  * reserve count adjustments to be made by free_huge_page.  Make sure the
2630  * reserve map indicates there is a reservation present.
2631  *
2632  * In case 2, simply undo reserve map modifications done by alloc_huge_page.
2633  */
2634 void restore_reserve_on_error(struct hstate *h, struct vm_area_struct *vma,
2635                         unsigned long address, struct page *page)
2636 {
2637         long rc = vma_needs_reservation(h, vma, address);
2638
2639         if (HPageRestoreReserve(page)) {
2640                 if (unlikely(rc < 0))
2641                         /*
2642                          * Rare out of memory condition in reserve map
2643                          * manipulation.  Clear HPageRestoreReserve so that
2644                          * global reserve count will not be incremented
2645                          * by free_huge_page.  This will make it appear
2646                          * as though the reservation for this page was
2647                          * consumed.  This may prevent the task from
2648                          * faulting in the page at a later time.  This
2649                          * is better than inconsistent global huge page
2650                          * accounting of reserve counts.
2651                          */
2652                         ClearHPageRestoreReserve(page);
2653                 else if (rc)
2654                         (void)vma_add_reservation(h, vma, address);
2655                 else
2656                         vma_end_reservation(h, vma, address);
2657         } else {
2658                 if (!rc) {
2659                         /*
2660                          * This indicates there is an entry in the reserve map
2661                          * not added by alloc_huge_page.  We know it was added
2662                          * before the alloc_huge_page call, otherwise
2663                          * HPageRestoreReserve would be set on the page.
2664                          * Remove the entry so that a subsequent allocation
2665                          * does not consume a reservation.
2666                          */
2667                         rc = vma_del_reservation(h, vma, address);
2668                         if (rc < 0)
2669                                 /*
2670                                  * VERY rare out of memory condition.  Since
2671                                  * we can not delete the entry, set
2672                                  * HPageRestoreReserve so that the reserve
2673                                  * count will be incremented when the page
2674                                  * is freed.  This reserve will be consumed
2675                                  * on a subsequent allocation.
2676                                  */
2677                                 SetHPageRestoreReserve(page);
2678                 } else if (rc < 0) {
2679                         /*
2680                          * Rare out of memory condition from
2681                          * vma_needs_reservation call.  Memory allocation is
2682                          * only attempted if a new entry is needed.  Therefore,
2683                          * this implies there is not an entry in the
2684                          * reserve map.
2685                          *
2686                          * For shared mappings, no entry in the map indicates
2687                          * no reservation.  We are done.
2688                          */
2689                         if (!(vma->vm_flags & VM_MAYSHARE))
2690                                 /*
2691                                  * For private mappings, no entry indicates
2692                                  * a reservation is present.  Since we can
2693                                  * not add an entry, set SetHPageRestoreReserve
2694                                  * on the page so reserve count will be
2695                                  * incremented when freed.  This reserve will
2696                                  * be consumed on a subsequent allocation.
2697                                  */
2698                                 SetHPageRestoreReserve(page);
2699                 } else
2700                         /*
2701                          * No reservation present, do nothing
2702                          */
2703                          vma_end_reservation(h, vma, address);
2704         }
2705 }
2706
2707 /*
2708  * alloc_and_dissolve_huge_page - Allocate a new page and dissolve the old one
2709  * @h: struct hstate old page belongs to
2710  * @old_page: Old page to dissolve
2711  * @list: List to isolate the page in case we need to
2712  * Returns 0 on success, otherwise negated error.
2713  */
2714 static int alloc_and_dissolve_huge_page(struct hstate *h, struct page *old_page,
2715                                         struct list_head *list)
2716 {
2717         gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
2718         int nid = page_to_nid(old_page);
2719         bool alloc_retry = false;
2720         struct page *new_page;
2721         int ret = 0;
2722
2723         /*
2724          * Before dissolving the page, we need to allocate a new one for the
2725          * pool to remain stable.  Here, we allocate the page and 'prep' it
2726          * by doing everything but actually updating counters and adding to
2727          * the pool.  This simplifies and let us do most of the processing
2728          * under the lock.
2729          */
2730 alloc_retry:
2731         new_page = alloc_buddy_huge_page(h, gfp_mask, nid, NULL, NULL);
2732         if (!new_page)
2733                 return -ENOMEM;
2734         /*
2735          * If all goes well, this page will be directly added to the free
2736          * list in the pool.  For this the ref count needs to be zero.
2737          * Attempt to drop now, and retry once if needed.  It is VERY
2738          * unlikely there is another ref on the page.
2739          *
2740          * If someone else has a reference to the page, it will be freed
2741          * when they drop their ref.  Abuse temporary page flag to accomplish
2742          * this.  Retry once if there is an inflated ref count.
2743          */
2744         SetHPageTemporary(new_page);
2745         if (!put_page_testzero(new_page)) {
2746                 if (alloc_retry)
2747                         return -EBUSY;
2748
2749                 alloc_retry = true;
2750                 goto alloc_retry;
2751         }
2752         ClearHPageTemporary(new_page);
2753
2754         __prep_new_huge_page(h, new_page);
2755
2756 retry:
2757         spin_lock_irq(&hugetlb_lock);
2758         if (!PageHuge(old_page)) {
2759                 /*
2760                  * Freed from under us. Drop new_page too.
2761                  */
2762                 goto free_new;
2763         } else if (page_count(old_page)) {
2764                 /*
2765                  * Someone has grabbed the page, try to isolate it here.
2766                  * Fail with -EBUSY if not possible.
2767                  */
2768                 spin_unlock_irq(&hugetlb_lock);
2769                 ret = isolate_hugetlb(old_page, list);
2770                 spin_lock_irq(&hugetlb_lock);
2771                 goto free_new;
2772         } else if (!HPageFreed(old_page)) {
2773                 /*
2774                  * Page's refcount is 0 but it has not been enqueued in the
2775                  * freelist yet. Race window is small, so we can succeed here if
2776                  * we retry.
2777                  */
2778                 spin_unlock_irq(&hugetlb_lock);
2779                 cond_resched();
2780                 goto retry;
2781         } else {
2782                 /*
2783                  * Ok, old_page is still a genuine free hugepage. Remove it from
2784                  * the freelist and decrease the counters. These will be
2785                  * incremented again when calling __prep_account_new_huge_page()
2786                  * and enqueue_huge_page() for new_page. The counters will remain
2787                  * stable since this happens under the lock.
2788                  */
2789                 remove_hugetlb_page(h, old_page, false);
2790
2791                 /*
2792                  * Ref count on new page is already zero as it was dropped
2793                  * earlier.  It can be directly added to the pool free list.
2794                  */
2795                 __prep_account_new_huge_page(h, nid);
2796                 enqueue_huge_page(h, new_page);
2797
2798                 /*
2799                  * Pages have been replaced, we can safely free the old one.
2800                  */
2801                 spin_unlock_irq(&hugetlb_lock);
2802                 update_and_free_page(h, old_page, false);
2803         }
2804
2805         return ret;
2806
2807 free_new:
2808         spin_unlock_irq(&hugetlb_lock);
2809         /* Page has a zero ref count, but needs a ref to be freed */
2810         set_page_refcounted(new_page);
2811         update_and_free_page(h, new_page, false);
2812
2813         return ret;
2814 }
2815
2816 int isolate_or_dissolve_huge_page(struct page *page, struct list_head *list)
2817 {
2818         struct hstate *h;
2819         struct page *head;
2820         int ret = -EBUSY;
2821
2822         /*
2823          * The page might have been dissolved from under our feet, so make sure
2824          * to carefully check the state under the lock.
2825          * Return success when racing as if we dissolved the page ourselves.
2826          */
2827         spin_lock_irq(&hugetlb_lock);
2828         if (PageHuge(page)) {
2829                 head = compound_head(page);
2830                 h = page_hstate(head);
2831         } else {
2832                 spin_unlock_irq(&hugetlb_lock);
2833                 return 0;
2834         }
2835         spin_unlock_irq(&hugetlb_lock);
2836
2837         /*
2838          * Fence off gigantic pages as there is a cyclic dependency between
2839          * alloc_contig_range and them. Return -ENOMEM as this has the effect
2840          * of bailing out right away without further retrying.
2841          */
2842         if (hstate_is_gigantic(h))
2843                 return -ENOMEM;
2844
2845         if (page_count(head) && !isolate_hugetlb(head, list))
2846                 ret = 0;
2847         else if (!page_count(head))
2848                 ret = alloc_and_dissolve_huge_page(h, head, list);
2849
2850         return ret;
2851 }
2852
2853 struct page *alloc_huge_page(struct vm_area_struct *vma,
2854                                     unsigned long addr, int avoid_reserve)
2855 {
2856         struct hugepage_subpool *spool = subpool_vma(vma);
2857         struct hstate *h = hstate_vma(vma);
2858         struct page *page;
2859         long map_chg, map_commit;
2860         long gbl_chg;
2861         int ret, idx;
2862         struct hugetlb_cgroup *h_cg;
2863         bool deferred_reserve;
2864
2865         idx = hstate_index(h);
2866         /*
2867          * Examine the region/reserve map to determine if the process
2868          * has a reservation for the page to be allocated.  A return
2869          * code of zero indicates a reservation exists (no change).
2870          */
2871         map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
2872         if (map_chg < 0)
2873                 return ERR_PTR(-ENOMEM);
2874
2875         /*
2876          * Processes that did not create the mapping will have no
2877          * reserves as indicated by the region/reserve map. Check
2878          * that the allocation will not exceed the subpool limit.
2879          * Allocations for MAP_NORESERVE mappings also need to be
2880          * checked against any subpool limit.
2881          */
2882         if (map_chg || avoid_reserve) {
2883                 gbl_chg = hugepage_subpool_get_pages(spool, 1);
2884                 if (gbl_chg < 0) {
2885                         vma_end_reservation(h, vma, addr);
2886                         return ERR_PTR(-ENOSPC);
2887                 }
2888
2889                 /*
2890                  * Even though there was no reservation in the region/reserve
2891                  * map, there could be reservations associated with the
2892                  * subpool that can be used.  This would be indicated if the
2893                  * return value of hugepage_subpool_get_pages() is zero.
2894                  * However, if avoid_reserve is specified we still avoid even
2895                  * the subpool reservations.
2896                  */
2897                 if (avoid_reserve)
2898                         gbl_chg = 1;
2899         }
2900
2901         /* If this allocation is not consuming a reservation, charge it now.
2902          */
2903         deferred_reserve = map_chg || avoid_reserve;
2904         if (deferred_reserve) {
2905                 ret = hugetlb_cgroup_charge_cgroup_rsvd(
2906                         idx, pages_per_huge_page(h), &h_cg);
2907                 if (ret)
2908                         goto out_subpool_put;
2909         }
2910
2911         ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
2912         if (ret)
2913                 goto out_uncharge_cgroup_reservation;
2914
2915         spin_lock_irq(&hugetlb_lock);
2916         /*
2917          * glb_chg is passed to indicate whether or not a page must be taken
2918          * from the global free pool (global change).  gbl_chg == 0 indicates
2919          * a reservation exists for the allocation.
2920          */
2921         page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
2922         if (!page) {
2923                 spin_unlock_irq(&hugetlb_lock);
2924                 page = alloc_buddy_huge_page_with_mpol(h, vma, addr);
2925                 if (!page)
2926                         goto out_uncharge_cgroup;
2927                 if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
2928                         SetHPageRestoreReserve(page);
2929                         h->resv_huge_pages--;
2930                 }
2931                 spin_lock_irq(&hugetlb_lock);
2932                 list_add(&page->lru, &h->hugepage_activelist);
2933                 /* Fall through */
2934         }
2935         hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
2936         /* If allocation is not consuming a reservation, also store the
2937          * hugetlb_cgroup pointer on the page.
2938          */
2939         if (deferred_reserve) {
2940                 hugetlb_cgroup_commit_charge_rsvd(idx, pages_per_huge_page(h),
2941                                                   h_cg, page);
2942         }
2943
2944         spin_unlock_irq(&hugetlb_lock);
2945
2946         hugetlb_set_page_subpool(page, spool);
2947
2948         map_commit = vma_commit_reservation(h, vma, addr);
2949         if (unlikely(map_chg > map_commit)) {
2950                 /*
2951                  * The page was added to the reservation map between
2952                  * vma_needs_reservation and vma_commit_reservation.
2953                  * This indicates a race with hugetlb_reserve_pages.
2954                  * Adjust for the subpool count incremented above AND
2955                  * in hugetlb_reserve_pages for the same page.  Also,
2956                  * the reservation count added in hugetlb_reserve_pages
2957                  * no longer applies.
2958                  */
2959                 long rsv_adjust;
2960
2961                 rsv_adjust = hugepage_subpool_put_pages(spool, 1);
2962                 hugetlb_acct_memory(h, -rsv_adjust);
2963                 if (deferred_reserve)
2964                         hugetlb_cgroup_uncharge_page_rsvd(hstate_index(h),
2965                                         pages_per_huge_page(h), page);
2966         }
2967         return page;
2968
2969 out_uncharge_cgroup:
2970         hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
2971 out_uncharge_cgroup_reservation:
2972         if (deferred_reserve)
2973                 hugetlb_cgroup_uncharge_cgroup_rsvd(idx, pages_per_huge_page(h),
2974                                                     h_cg);
2975 out_subpool_put:
2976         if (map_chg || avoid_reserve)
2977                 hugepage_subpool_put_pages(spool, 1);
2978         vma_end_reservation(h, vma, addr);
2979         return ERR_PTR(-ENOSPC);
2980 }
2981
2982 int alloc_bootmem_huge_page(struct hstate *h, int nid)
2983         __attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
2984 int __alloc_bootmem_huge_page(struct hstate *h, int nid)
2985 {
2986         struct huge_bootmem_page *m = NULL; /* initialize for clang */
2987         int nr_nodes, node;
2988
2989         /* do node specific alloc */
2990         if (nid != NUMA_NO_NODE) {
2991                 m = memblock_alloc_try_nid_raw(huge_page_size(h), huge_page_size(h),
2992                                 0, MEMBLOCK_ALLOC_ACCESSIBLE, nid);
2993                 if (!m)
2994                         return 0;
2995                 goto found;
2996         }
2997         /* allocate from next node when distributing huge pages */
2998         for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
2999                 m = memblock_alloc_try_nid_raw(
3000                                 huge_page_size(h), huge_page_size(h),
3001                                 0, MEMBLOCK_ALLOC_ACCESSIBLE, node);
3002                 /*
3003                  * Use the beginning of the huge page to store the
3004                  * huge_bootmem_page struct (until gather_bootmem
3005                  * puts them into the mem_map).
3006                  */
3007                 if (!m)
3008                         return 0;
3009                 goto found;
3010         }
3011
3012 found:
3013         /* Put them into a private list first because mem_map is not up yet */
3014         INIT_LIST_HEAD(&m->list);
3015         list_add(&m->list, &huge_boot_pages);
3016         m->hstate = h;
3017         return 1;
3018 }
3019
3020 /*
3021  * Put bootmem huge pages into the standard lists after mem_map is up.
3022  * Note: This only applies to gigantic (order > MAX_ORDER) pages.
3023  */
3024 static void __init gather_bootmem_prealloc(void)
3025 {
3026         struct huge_bootmem_page *m;
3027
3028         list_for_each_entry(m, &huge_boot_pages, list) {
3029                 struct page *page = virt_to_page(m);
3030                 struct hstate *h = m->hstate;
3031
3032                 VM_BUG_ON(!hstate_is_gigantic(h));
3033                 WARN_ON(page_count(page) != 1);
3034                 if (prep_compound_gigantic_page(page, huge_page_order(h))) {
3035                         WARN_ON(PageReserved(page));
3036                         prep_new_huge_page(h, page, page_to_nid(page));
3037                         put_page(page); /* add to the hugepage allocator */
3038                 } else {
3039                         /* VERY unlikely inflated ref count on a tail page */
3040                         free_gigantic_page(page, huge_page_order(h));
3041                 }
3042
3043                 /*
3044                  * We need to restore the 'stolen' pages to totalram_pages
3045                  * in order to fix confusing memory reports from free(1) and
3046                  * other side-effects, like CommitLimit going negative.
3047                  */
3048                 adjust_managed_page_count(page, pages_per_huge_page(h));
3049                 cond_resched();
3050         }
3051 }
3052 static void __init hugetlb_hstate_alloc_pages_onenode(struct hstate *h, int nid)
3053 {
3054         unsigned long i;
3055         char buf[32];
3056
3057         for (i = 0; i < h->max_huge_pages_node[nid]; ++i) {
3058                 if (hstate_is_gigantic(h)) {
3059                         if (!alloc_bootmem_huge_page(h, nid))
3060                                 break;
3061                 } else {
3062                         struct page *page;
3063                         gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
3064
3065                         page = alloc_fresh_huge_page(h, gfp_mask, nid,
3066                                         &node_states[N_MEMORY], NULL);
3067                         if (!page)
3068                                 break;
3069                         put_page(page); /* free it into the hugepage allocator */
3070                 }
3071                 cond_resched();
3072         }
3073         if (i == h->max_huge_pages_node[nid])
3074                 return;
3075
3076         string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3077         pr_warn("HugeTLB: allocating %u of page size %s failed node%d.  Only allocated %lu hugepages.\n",
3078                 h->max_huge_pages_node[nid], buf, nid, i);
3079         h->max_huge_pages -= (h->max_huge_pages_node[nid] - i);
3080         h->max_huge_pages_node[nid] = i;
3081 }
3082
3083 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
3084 {
3085         unsigned long i;
3086         nodemask_t *node_alloc_noretry;
3087         bool node_specific_alloc = false;
3088
3089         /* skip gigantic hugepages allocation if hugetlb_cma enabled */
3090         if (hstate_is_gigantic(h) && hugetlb_cma_size) {
3091                 pr_warn_once("HugeTLB: hugetlb_cma is enabled, skip boot time allocation\n");
3092                 return;
3093         }
3094
3095         /* do node specific alloc */
3096         for_each_online_node(i) {
3097                 if (h->max_huge_pages_node[i] > 0) {
3098                         hugetlb_hstate_alloc_pages_onenode(h, i);
3099                         node_specific_alloc = true;
3100                 }
3101         }
3102
3103         if (node_specific_alloc)
3104                 return;
3105
3106         /* below will do all node balanced alloc */
3107         if (!hstate_is_gigantic(h)) {
3108                 /*
3109                  * Bit mask controlling how hard we retry per-node allocations.
3110                  * Ignore errors as lower level routines can deal with
3111                  * node_alloc_noretry == NULL.  If this kmalloc fails at boot
3112                  * time, we are likely in bigger trouble.
3113                  */
3114                 node_alloc_noretry = kmalloc(sizeof(*node_alloc_noretry),
3115                                                 GFP_KERNEL);
3116         } else {
3117                 /* allocations done at boot time */
3118                 node_alloc_noretry = NULL;
3119         }
3120
3121         /* bit mask controlling how hard we retry per-node allocations */
3122         if (node_alloc_noretry)
3123                 nodes_clear(*node_alloc_noretry);
3124
3125         for (i = 0; i < h->max_huge_pages; ++i) {
3126                 if (hstate_is_gigantic(h)) {
3127                         if (!alloc_bootmem_huge_page(h, NUMA_NO_NODE))
3128                                 break;
3129                 } else if (!alloc_pool_huge_page(h,
3130                                          &node_states[N_MEMORY],
3131                                          node_alloc_noretry))
3132                         break;
3133                 cond_resched();
3134         }
3135         if (i < h->max_huge_pages) {
3136                 char buf[32];
3137
3138                 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3139                 pr_warn("HugeTLB: allocating %lu of page size %s failed.  Only allocated %lu hugepages.\n",
3140                         h->max_huge_pages, buf, i);
3141                 h->max_huge_pages = i;
3142         }
3143         kfree(node_alloc_noretry);
3144 }
3145
3146 static void __init hugetlb_init_hstates(void)
3147 {
3148         struct hstate *h, *h2;
3149
3150         for_each_hstate(h) {
3151                 /* oversize hugepages were init'ed in early boot */
3152                 if (!hstate_is_gigantic(h))
3153                         hugetlb_hstate_alloc_pages(h);
3154
3155                 /*
3156                  * Set demote order for each hstate.  Note that
3157                  * h->demote_order is initially 0.
3158                  * - We can not demote gigantic pages if runtime freeing
3159                  *   is not supported, so skip this.
3160                  * - If CMA allocation is possible, we can not demote
3161                  *   HUGETLB_PAGE_ORDER or smaller size pages.
3162                  */
3163                 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
3164                         continue;
3165                 if (hugetlb_cma_size && h->order <= HUGETLB_PAGE_ORDER)
3166                         continue;
3167                 for_each_hstate(h2) {
3168                         if (h2 == h)
3169                                 continue;
3170                         if (h2->order < h->order &&
3171                             h2->order > h->demote_order)
3172                                 h->demote_order = h2->order;
3173                 }
3174         }
3175 }
3176
3177 static void __init report_hugepages(void)
3178 {
3179         struct hstate *h;
3180
3181         for_each_hstate(h) {
3182                 char buf[32];
3183
3184                 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3185                 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
3186                         buf, h->free_huge_pages);
3187         }
3188 }
3189
3190 #ifdef CONFIG_HIGHMEM
3191 static void try_to_free_low(struct hstate *h, unsigned long count,
3192                                                 nodemask_t *nodes_allowed)
3193 {
3194         int i;
3195         LIST_HEAD(page_list);
3196
3197         lockdep_assert_held(&hugetlb_lock);
3198         if (hstate_is_gigantic(h))
3199                 return;
3200
3201         /*
3202          * Collect pages to be freed on a list, and free after dropping lock
3203          */
3204         for_each_node_mask(i, *nodes_allowed) {
3205                 struct page *page, *next;
3206                 struct list_head *freel = &h->hugepage_freelists[i];
3207                 list_for_each_entry_safe(page, next, freel, lru) {
3208                         if (count >= h->nr_huge_pages)
3209                                 goto out;
3210                         if (PageHighMem(page))
3211                                 continue;
3212                         remove_hugetlb_page(h, page, false);
3213                         list_add(&page->lru, &page_list);
3214                 }
3215         }
3216
3217 out:
3218         spin_unlock_irq(&hugetlb_lock);
3219         update_and_free_pages_bulk(h, &page_list);
3220         spin_lock_irq(&hugetlb_lock);
3221 }
3222 #else
3223 static inline void try_to_free_low(struct hstate *h, unsigned long count,
3224                                                 nodemask_t *nodes_allowed)
3225 {
3226 }
3227 #endif
3228
3229 /*
3230  * Increment or decrement surplus_huge_pages.  Keep node-specific counters
3231  * balanced by operating on them in a round-robin fashion.
3232  * Returns 1 if an adjustment was made.
3233  */
3234 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
3235                                 int delta)
3236 {
3237         int nr_nodes, node;
3238
3239         lockdep_assert_held(&hugetlb_lock);
3240         VM_BUG_ON(delta != -1 && delta != 1);
3241
3242         if (delta < 0) {
3243                 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
3244                         if (h->surplus_huge_pages_node[node])
3245                                 goto found;
3246                 }
3247         } else {
3248                 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
3249                         if (h->surplus_huge_pages_node[node] <
3250                                         h->nr_huge_pages_node[node])
3251                                 goto found;
3252                 }
3253         }
3254         return 0;
3255
3256 found:
3257         h->surplus_huge_pages += delta;
3258         h->surplus_huge_pages_node[node] += delta;
3259         return 1;
3260 }
3261
3262 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
3263 static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid,
3264                               nodemask_t *nodes_allowed)
3265 {
3266         unsigned long min_count, ret;
3267         struct page *page;
3268         LIST_HEAD(page_list);
3269         NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL);
3270
3271         /*
3272          * Bit mask controlling how hard we retry per-node allocations.
3273          * If we can not allocate the bit mask, do not attempt to allocate
3274          * the requested huge pages.
3275          */
3276         if (node_alloc_noretry)
3277                 nodes_clear(*node_alloc_noretry);
3278         else
3279                 return -ENOMEM;
3280
3281         /*
3282          * resize_lock mutex prevents concurrent adjustments to number of
3283          * pages in hstate via the proc/sysfs interfaces.
3284          */
3285         mutex_lock(&h->resize_lock);
3286         flush_free_hpage_work(h);
3287         spin_lock_irq(&hugetlb_lock);
3288
3289         /*
3290          * Check for a node specific request.
3291          * Changing node specific huge page count may require a corresponding
3292          * change to the global count.  In any case, the passed node mask
3293          * (nodes_allowed) will restrict alloc/free to the specified node.
3294          */
3295         if (nid != NUMA_NO_NODE) {
3296                 unsigned long old_count = count;
3297
3298                 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
3299                 /*
3300                  * User may have specified a large count value which caused the
3301                  * above calculation to overflow.  In this case, they wanted
3302                  * to allocate as many huge pages as possible.  Set count to
3303                  * largest possible value to align with their intention.
3304                  */
3305                 if (count < old_count)
3306                         count = ULONG_MAX;
3307         }
3308
3309         /*
3310          * Gigantic pages runtime allocation depend on the capability for large
3311          * page range allocation.
3312          * If the system does not provide this feature, return an error when
3313          * the user tries to allocate gigantic pages but let the user free the
3314          * boottime allocated gigantic pages.
3315          */
3316         if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) {
3317                 if (count > persistent_huge_pages(h)) {
3318                         spin_unlock_irq(&hugetlb_lock);
3319                         mutex_unlock(&h->resize_lock);
3320                         NODEMASK_FREE(node_alloc_noretry);
3321                         return -EINVAL;
3322                 }
3323                 /* Fall through to decrease pool */
3324         }
3325
3326         /*
3327          * Increase the pool size
3328          * First take pages out of surplus state.  Then make up the
3329          * remaining difference by allocating fresh huge pages.
3330          *
3331          * We might race with alloc_surplus_huge_page() here and be unable
3332          * to convert a surplus huge page to a normal huge page. That is
3333          * not critical, though, it just means the overall size of the
3334          * pool might be one hugepage larger than it needs to be, but
3335          * within all the constraints specified by the sysctls.
3336          */
3337         while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
3338                 if (!adjust_pool_surplus(h, nodes_allowed, -1))
3339                         break;
3340         }
3341
3342         while (count > persistent_huge_pages(h)) {
3343                 /*
3344                  * If this allocation races such that we no longer need the
3345                  * page, free_huge_page will handle it by freeing the page
3346                  * and reducing the surplus.
3347                  */
3348                 spin_unlock_irq(&hugetlb_lock);
3349
3350                 /* yield cpu to avoid soft lockup */
3351                 cond_resched();
3352
3353                 ret = alloc_pool_huge_page(h, nodes_allowed,
3354                                                 node_alloc_noretry);
3355                 spin_lock_irq(&hugetlb_lock);
3356                 if (!ret)
3357                         goto out;
3358
3359                 /* Bail for signals. Probably ctrl-c from user */
3360                 if (signal_pending(current))
3361                         goto out;
3362         }
3363
3364         /*
3365          * Decrease the pool size
3366          * First return free pages to the buddy allocator (being careful
3367          * to keep enough around to satisfy reservations).  Then place
3368          * pages into surplus state as needed so the pool will shrink
3369          * to the desired size as pages become free.
3370          *
3371          * By placing pages into the surplus state independent of the
3372          * overcommit value, we are allowing the surplus pool size to
3373          * exceed overcommit. There are few sane options here. Since
3374          * alloc_surplus_huge_page() is checking the global counter,
3375          * though, we'll note that we're not allowed to exceed surplus
3376          * and won't grow the pool anywhere else. Not until one of the
3377          * sysctls are changed, or the surplus pages go out of use.
3378          */
3379         min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
3380         min_count = max(count, min_count);
3381         try_to_free_low(h, min_count, nodes_allowed);
3382
3383         /*
3384          * Collect pages to be removed on list without dropping lock
3385          */
3386         while (min_count < persistent_huge_pages(h)) {
3387                 page = remove_pool_huge_page(h, nodes_allowed, 0);
3388                 if (!page)
3389                         break;
3390
3391                 list_add(&page->lru, &page_list);
3392         }
3393         /* free the pages after dropping lock */
3394         spin_unlock_irq(&hugetlb_lock);
3395         update_and_free_pages_bulk(h, &page_list);
3396         flush_free_hpage_work(h);
3397         spin_lock_irq(&hugetlb_lock);
3398
3399         while (count < persistent_huge_pages(h)) {
3400                 if (!adjust_pool_surplus(h, nodes_allowed, 1))
3401                         break;
3402         }
3403 out:
3404         h->max_huge_pages = persistent_huge_pages(h);
3405         spin_unlock_irq(&hugetlb_lock);
3406         mutex_unlock(&h->resize_lock);
3407
3408         NODEMASK_FREE(node_alloc_noretry);
3409
3410         return 0;
3411 }
3412
3413 static int demote_free_huge_page(struct hstate *h, struct page *page)
3414 {
3415         int i, nid = page_to_nid(page);
3416         struct hstate *target_hstate;
3417         int rc = 0;
3418
3419         target_hstate = size_to_hstate(PAGE_SIZE << h->demote_order);
3420
3421         remove_hugetlb_page_for_demote(h, page, false);
3422         spin_unlock_irq(&hugetlb_lock);
3423
3424         rc = hugetlb_vmemmap_alloc(h, page);
3425         if (rc) {
3426                 /* Allocation of vmemmmap failed, we can not demote page */
3427                 spin_lock_irq(&hugetlb_lock);
3428                 set_page_refcounted(page);
3429                 add_hugetlb_page(h, page, false);
3430                 return rc;
3431         }
3432
3433         /*
3434          * Use destroy_compound_hugetlb_page_for_demote for all huge page
3435          * sizes as it will not ref count pages.
3436          */
3437         destroy_compound_hugetlb_page_for_demote(page, huge_page_order(h));
3438
3439         /*
3440          * Taking target hstate mutex synchronizes with set_max_huge_pages.
3441          * Without the mutex, pages added to target hstate could be marked
3442          * as surplus.
3443          *
3444          * Note that we already hold h->resize_lock.  To prevent deadlock,
3445          * use the convention of always taking larger size hstate mutex first.
3446          */
3447         mutex_lock(&target_hstate->resize_lock);
3448         for (i = 0; i < pages_per_huge_page(h);
3449                                 i += pages_per_huge_page(target_hstate)) {
3450                 if (hstate_is_gigantic(target_hstate))
3451                         prep_compound_gigantic_page_for_demote(page + i,
3452                                                         target_hstate->order);
3453                 else
3454                         prep_compound_page(page + i, target_hstate->order);
3455                 set_page_private(page + i, 0);
3456                 set_page_refcounted(page + i);
3457                 prep_new_huge_page(target_hstate, page + i, nid);
3458                 put_page(page + i);
3459         }
3460         mutex_unlock(&target_hstate->resize_lock);
3461
3462         spin_lock_irq(&hugetlb_lock);
3463
3464         /*
3465          * Not absolutely necessary, but for consistency update max_huge_pages
3466          * based on pool changes for the demoted page.
3467          */
3468         h->max_huge_pages--;
3469         target_hstate->max_huge_pages += pages_per_huge_page(h);
3470
3471         return rc;
3472 }
3473
3474 static int demote_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
3475         __must_hold(&hugetlb_lock)
3476 {
3477         int nr_nodes, node;
3478         struct page *page;
3479
3480         lockdep_assert_held(&hugetlb_lock);
3481
3482         /* We should never get here if no demote order */
3483         if (!h->demote_order) {
3484                 pr_warn("HugeTLB: NULL demote order passed to demote_pool_huge_page.\n");
3485                 return -EINVAL;         /* internal error */
3486         }
3487
3488         for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
3489                 list_for_each_entry(page, &h->hugepage_freelists[node], lru) {
3490                         if (PageHWPoison(page))
3491                                 continue;
3492
3493                         return demote_free_huge_page(h, page);
3494                 }
3495         }
3496
3497         /*
3498          * Only way to get here is if all pages on free lists are poisoned.
3499          * Return -EBUSY so that caller will not retry.
3500          */
3501         return -EBUSY;
3502 }
3503
3504 #define HSTATE_ATTR_RO(_name) \
3505         static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
3506
3507 #define HSTATE_ATTR_WO(_name) \
3508         static struct kobj_attribute _name##_attr = __ATTR_WO(_name)
3509
3510 #define HSTATE_ATTR(_name) \
3511         static struct kobj_attribute _name##_attr = __ATTR_RW(_name)
3512
3513 static struct kobject *hugepages_kobj;
3514 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
3515
3516 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
3517
3518 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
3519 {
3520         int i;
3521
3522         for (i = 0; i < HUGE_MAX_HSTATE; i++)
3523                 if (hstate_kobjs[i] == kobj) {
3524                         if (nidp)
3525                                 *nidp = NUMA_NO_NODE;
3526                         return &hstates[i];
3527                 }
3528
3529         return kobj_to_node_hstate(kobj, nidp);
3530 }
3531
3532 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
3533                                         struct kobj_attribute *attr, char *buf)
3534 {
3535         struct hstate *h;
3536         unsigned long nr_huge_pages;
3537         int nid;
3538
3539         h = kobj_to_hstate(kobj, &nid);
3540         if (nid == NUMA_NO_NODE)
3541                 nr_huge_pages = h->nr_huge_pages;
3542         else
3543                 nr_huge_pages = h->nr_huge_pages_node[nid];
3544
3545         return sysfs_emit(buf, "%lu\n", nr_huge_pages);
3546 }
3547
3548 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
3549                                            struct hstate *h, int nid,
3550                                            unsigned long count, size_t len)
3551 {
3552         int err;
3553         nodemask_t nodes_allowed, *n_mask;
3554
3555         if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
3556                 return -EINVAL;
3557
3558         if (nid == NUMA_NO_NODE) {
3559                 /*
3560                  * global hstate attribute
3561                  */
3562                 if (!(obey_mempolicy &&
3563                                 init_nodemask_of_mempolicy(&nodes_allowed)))
3564                         n_mask = &node_states[N_MEMORY];
3565                 else
3566                         n_mask = &nodes_allowed;
3567         } else {
3568                 /*
3569                  * Node specific request.  count adjustment happens in
3570                  * set_max_huge_pages() after acquiring hugetlb_lock.
3571                  */
3572                 init_nodemask_of_node(&nodes_allowed, nid);
3573                 n_mask = &nodes_allowed;
3574         }
3575
3576         err = set_max_huge_pages(h, count, nid, n_mask);
3577
3578         return err ? err : len;
3579 }
3580
3581 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
3582                                          struct kobject *kobj, const char *buf,
3583                                          size_t len)
3584 {
3585         struct hstate *h;
3586         unsigned long count;
3587         int nid;
3588         int err;
3589
3590         err = kstrtoul(buf, 10, &count);
3591         if (err)
3592                 return err;
3593
3594         h = kobj_to_hstate(kobj, &nid);
3595         return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
3596 }
3597
3598 static ssize_t nr_hugepages_show(struct kobject *kobj,
3599                                        struct kobj_attribute *attr, char *buf)
3600 {
3601         return nr_hugepages_show_common(kobj, attr, buf);
3602 }
3603
3604 static ssize_t nr_hugepages_store(struct kobject *kobj,
3605                struct kobj_attribute *attr, const char *buf, size_t len)
3606 {
3607         return nr_hugepages_store_common(false, kobj, buf, len);
3608 }
3609 HSTATE_ATTR(nr_hugepages);
3610
3611 #ifdef CONFIG_NUMA
3612
3613 /*
3614  * hstate attribute for optionally mempolicy-based constraint on persistent
3615  * huge page alloc/free.
3616  */
3617 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
3618                                            struct kobj_attribute *attr,
3619                                            char *buf)
3620 {
3621         return nr_hugepages_show_common(kobj, attr, buf);
3622 }
3623
3624 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
3625                struct kobj_attribute *attr, const char *buf, size_t len)
3626 {
3627         return nr_hugepages_store_common(true, kobj, buf, len);
3628 }
3629 HSTATE_ATTR(nr_hugepages_mempolicy);
3630 #endif
3631
3632
3633 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
3634                                         struct kobj_attribute *attr, char *buf)
3635 {
3636         struct hstate *h = kobj_to_hstate(kobj, NULL);
3637         return sysfs_emit(buf, "%lu\n", h->nr_overcommit_huge_pages);
3638 }
3639
3640 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
3641                 struct kobj_attribute *attr, const char *buf, size_t count)
3642 {
3643         int err;
3644         unsigned long input;
3645         struct hstate *h = kobj_to_hstate(kobj, NULL);
3646
3647         if (hstate_is_gigantic(h))
3648                 return -EINVAL;
3649
3650         err = kstrtoul(buf, 10, &input);
3651         if (err)
3652                 return err;
3653
3654         spin_lock_irq(&hugetlb_lock);
3655         h->nr_overcommit_huge_pages = input;
3656         spin_unlock_irq(&hugetlb_lock);
3657
3658         return count;
3659 }
3660 HSTATE_ATTR(nr_overcommit_hugepages);
3661
3662 static ssize_t free_hugepages_show(struct kobject *kobj,
3663                                         struct kobj_attribute *attr, char *buf)
3664 {
3665         struct hstate *h;
3666         unsigned long free_huge_pages;
3667         int nid;
3668
3669         h = kobj_to_hstate(kobj, &nid);
3670         if (nid == NUMA_NO_NODE)
3671                 free_huge_pages = h->free_huge_pages;
3672         else
3673                 free_huge_pages = h->free_huge_pages_node[nid];
3674
3675         return sysfs_emit(buf, "%lu\n", free_huge_pages);
3676 }
3677 HSTATE_ATTR_RO(free_hugepages);
3678
3679 static ssize_t resv_hugepages_show(struct kobject *kobj,
3680                                         struct kobj_attribute *attr, char *buf)
3681 {
3682         struct hstate *h = kobj_to_hstate(kobj, NULL);
3683         return sysfs_emit(buf, "%lu\n", h->resv_huge_pages);
3684 }
3685 HSTATE_ATTR_RO(resv_hugepages);
3686
3687 static ssize_t surplus_hugepages_show(struct kobject *kobj,
3688                                         struct kobj_attribute *attr, char *buf)
3689 {
3690         struct hstate *h;
3691         unsigned long surplus_huge_pages;
3692         int nid;
3693
3694         h = kobj_to_hstate(kobj, &nid);
3695         if (nid == NUMA_NO_NODE)
3696                 surplus_huge_pages = h->surplus_huge_pages;
3697         else
3698                 surplus_huge_pages = h->surplus_huge_pages_node[nid];
3699
3700         return sysfs_emit(buf, "%lu\n", surplus_huge_pages);
3701 }
3702 HSTATE_ATTR_RO(surplus_hugepages);
3703
3704 static ssize_t demote_store(struct kobject *kobj,
3705                struct kobj_attribute *attr, const char *buf, size_t len)
3706 {
3707         unsigned long nr_demote;
3708         unsigned long nr_available;
3709         nodemask_t nodes_allowed, *n_mask;
3710         struct hstate *h;
3711         int err = 0;
3712         int nid;
3713
3714         err = kstrtoul(buf, 10, &nr_demote);
3715         if (err)
3716                 return err;
3717         h = kobj_to_hstate(kobj, &nid);
3718
3719         if (nid != NUMA_NO_NODE) {
3720                 init_nodemask_of_node(&nodes_allowed, nid);
3721                 n_mask = &nodes_allowed;
3722         } else {
3723                 n_mask = &node_states[N_MEMORY];
3724         }
3725
3726         /* Synchronize with other sysfs operations modifying huge pages */
3727         mutex_lock(&h->resize_lock);
3728         spin_lock_irq(&hugetlb_lock);
3729
3730         while (nr_demote) {
3731                 /*
3732                  * Check for available pages to demote each time thorough the
3733                  * loop as demote_pool_huge_page will drop hugetlb_lock.
3734                  */
3735                 if (nid != NUMA_NO_NODE)
3736                         nr_available = h->free_huge_pages_node[nid];
3737                 else
3738                         nr_available = h->free_huge_pages;
3739                 nr_available -= h->resv_huge_pages;
3740                 if (!nr_available)
3741                         break;
3742
3743                 err = demote_pool_huge_page(h, n_mask);
3744                 if (err)
3745                         break;
3746
3747                 nr_demote--;
3748         }
3749
3750         spin_unlock_irq(&hugetlb_lock);
3751         mutex_unlock(&h->resize_lock);
3752
3753         if (err)
3754                 return err;
3755         return len;
3756 }
3757 HSTATE_ATTR_WO(demote);
3758
3759 static ssize_t demote_size_show(struct kobject *kobj,
3760                                         struct kobj_attribute *attr, char *buf)
3761 {
3762         int nid;
3763         struct hstate *h = kobj_to_hstate(kobj, &nid);
3764         unsigned long demote_size = (PAGE_SIZE << h->demote_order) / SZ_1K;
3765
3766         return sysfs_emit(buf, "%lukB\n", demote_size);
3767 }
3768
3769 static ssize_t demote_size_store(struct kobject *kobj,
3770                                         struct kobj_attribute *attr,
3771                                         const char *buf, size_t count)
3772 {
3773         struct hstate *h, *demote_hstate;
3774         unsigned long demote_size;
3775         unsigned int demote_order;
3776         int nid;
3777
3778         demote_size = (unsigned long)memparse(buf, NULL);
3779
3780         demote_hstate = size_to_hstate(demote_size);
3781         if (!demote_hstate)
3782                 return -EINVAL;
3783         demote_order = demote_hstate->order;
3784         if (demote_order < HUGETLB_PAGE_ORDER)
3785                 return -EINVAL;
3786
3787         /* demote order must be smaller than hstate order */
3788         h = kobj_to_hstate(kobj, &nid);
3789         if (demote_order >= h->order)
3790                 return -EINVAL;
3791
3792         /* resize_lock synchronizes access to demote size and writes */
3793         mutex_lock(&h->resize_lock);
3794         h->demote_order = demote_order;
3795         mutex_unlock(&h->resize_lock);
3796
3797         return count;
3798 }
3799 HSTATE_ATTR(demote_size);
3800
3801 static struct attribute *hstate_attrs[] = {
3802         &nr_hugepages_attr.attr,
3803         &nr_overcommit_hugepages_attr.attr,
3804         &free_hugepages_attr.attr,
3805         &resv_hugepages_attr.attr,
3806         &surplus_hugepages_attr.attr,
3807 #ifdef CONFIG_NUMA
3808         &nr_hugepages_mempolicy_attr.attr,
3809 #endif
3810         NULL,
3811 };
3812
3813 static const struct attribute_group hstate_attr_group = {
3814         .attrs = hstate_attrs,
3815 };
3816
3817 static struct attribute *hstate_demote_attrs[] = {
3818         &demote_size_attr.attr,
3819         &demote_attr.attr,
3820         NULL,
3821 };
3822
3823 static const struct attribute_group hstate_demote_attr_group = {
3824         .attrs = hstate_demote_attrs,
3825 };
3826
3827 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
3828                                     struct kobject **hstate_kobjs,
3829                                     const struct attribute_group *hstate_attr_group)
3830 {
3831         int retval;
3832         int hi = hstate_index(h);
3833
3834         hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
3835         if (!hstate_kobjs[hi])
3836                 return -ENOMEM;
3837
3838         retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
3839         if (retval) {
3840                 kobject_put(hstate_kobjs[hi]);
3841                 hstate_kobjs[hi] = NULL;
3842         }
3843
3844         if (h->demote_order) {
3845                 if (sysfs_create_group(hstate_kobjs[hi],
3846                                         &hstate_demote_attr_group))
3847                         pr_warn("HugeTLB unable to create demote interfaces for %s\n", h->name);
3848         }
3849
3850         return retval;
3851 }
3852
3853 static void __init hugetlb_sysfs_init(void)
3854 {
3855         struct hstate *h;
3856         int err;
3857
3858         hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
3859         if (!hugepages_kobj)
3860                 return;
3861
3862         for_each_hstate(h) {
3863                 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
3864                                          hstate_kobjs, &hstate_attr_group);
3865                 if (err)
3866                         pr_err("HugeTLB: Unable to add hstate %s", h->name);
3867         }
3868 }
3869
3870 #ifdef CONFIG_NUMA
3871
3872 /*
3873  * node_hstate/s - associate per node hstate attributes, via their kobjects,
3874  * with node devices in node_devices[] using a parallel array.  The array
3875  * index of a node device or _hstate == node id.
3876  * This is here to avoid any static dependency of the node device driver, in
3877  * the base kernel, on the hugetlb module.
3878  */
3879 struct node_hstate {
3880         struct kobject          *hugepages_kobj;
3881         struct kobject          *hstate_kobjs[HUGE_MAX_HSTATE];
3882 };
3883 static struct node_hstate node_hstates[MAX_NUMNODES];
3884
3885 /*
3886  * A subset of global hstate attributes for node devices
3887  */
3888 static struct attribute *per_node_hstate_attrs[] = {
3889         &nr_hugepages_attr.attr,
3890         &free_hugepages_attr.attr,
3891         &surplus_hugepages_attr.attr,
3892         NULL,
3893 };
3894
3895 static const struct attribute_group per_node_hstate_attr_group = {
3896         .attrs = per_node_hstate_attrs,
3897 };
3898
3899 /*
3900  * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
3901  * Returns node id via non-NULL nidp.
3902  */
3903 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
3904 {
3905         int nid;
3906
3907         for (nid = 0; nid < nr_node_ids; nid++) {
3908                 struct node_hstate *nhs = &node_hstates[nid];
3909                 int i;
3910                 for (i = 0; i < HUGE_MAX_HSTATE; i++)
3911                         if (nhs->hstate_kobjs[i] == kobj) {
3912                                 if (nidp)
3913                                         *nidp = nid;
3914                                 return &hstates[i];
3915                         }
3916         }
3917
3918         BUG();
3919         return NULL;
3920 }
3921
3922 /*
3923  * Unregister hstate attributes from a single node device.
3924  * No-op if no hstate attributes attached.
3925  */
3926 static void hugetlb_unregister_node(struct node *node)
3927 {
3928         struct hstate *h;
3929         struct node_hstate *nhs = &node_hstates[node->dev.id];
3930
3931         if (!nhs->hugepages_kobj)
3932                 return;         /* no hstate attributes */
3933
3934         for_each_hstate(h) {
3935                 int idx = hstate_index(h);
3936                 if (nhs->hstate_kobjs[idx]) {
3937                         kobject_put(nhs->hstate_kobjs[idx]);
3938                         nhs->hstate_kobjs[idx] = NULL;
3939                 }
3940         }
3941
3942         kobject_put(nhs->hugepages_kobj);
3943         nhs->hugepages_kobj = NULL;
3944 }
3945
3946
3947 /*
3948  * Register hstate attributes for a single node device.
3949  * No-op if attributes already registered.
3950  */
3951 static void hugetlb_register_node(struct node *node)
3952 {
3953         struct hstate *h;
3954         struct node_hstate *nhs = &node_hstates[node->dev.id];
3955         int err;
3956
3957         if (nhs->hugepages_kobj)
3958                 return;         /* already allocated */
3959
3960         nhs->hugepages_kobj = kobject_create_and_add("hugepages",
3961                                                         &node->dev.kobj);
3962         if (!nhs->hugepages_kobj)
3963                 return;
3964
3965         for_each_hstate(h) {
3966                 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
3967                                                 nhs->hstate_kobjs,
3968                                                 &per_node_hstate_attr_group);
3969                 if (err) {
3970                         pr_err("HugeTLB: Unable to add hstate %s for node %d\n",
3971                                 h->name, node->dev.id);
3972                         hugetlb_unregister_node(node);
3973                         break;
3974                 }
3975         }
3976 }
3977
3978 /*
3979  * hugetlb init time:  register hstate attributes for all registered node
3980  * devices of nodes that have memory.  All on-line nodes should have
3981  * registered their associated device by this time.
3982  */
3983 static void __init hugetlb_register_all_nodes(void)
3984 {
3985         int nid;
3986
3987         for_each_node_state(nid, N_MEMORY) {
3988                 struct node *node = node_devices[nid];
3989                 if (node->dev.id == nid)
3990                         hugetlb_register_node(node);
3991         }
3992
3993         /*
3994          * Let the node device driver know we're here so it can
3995          * [un]register hstate attributes on node hotplug.
3996          */
3997         register_hugetlbfs_with_node(hugetlb_register_node,
3998                                      hugetlb_unregister_node);
3999 }
4000 #else   /* !CONFIG_NUMA */
4001
4002 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
4003 {
4004         BUG();
4005         if (nidp)
4006                 *nidp = -1;
4007         return NULL;
4008 }
4009
4010 static void hugetlb_register_all_nodes(void) { }
4011
4012 #endif
4013
4014 static int __init hugetlb_init(void)
4015 {
4016         int i;
4017
4018         BUILD_BUG_ON(sizeof_field(struct page, private) * BITS_PER_BYTE <
4019                         __NR_HPAGEFLAGS);
4020
4021         if (!hugepages_supported()) {
4022                 if (hugetlb_max_hstate || default_hstate_max_huge_pages)
4023                         pr_warn("HugeTLB: huge pages not supported, ignoring associated command-line parameters\n");
4024                 return 0;
4025         }
4026
4027         /*
4028          * Make sure HPAGE_SIZE (HUGETLB_PAGE_ORDER) hstate exists.  Some
4029          * architectures depend on setup being done here.
4030          */
4031         hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
4032         if (!parsed_default_hugepagesz) {
4033                 /*
4034                  * If we did not parse a default huge page size, set
4035                  * default_hstate_idx to HPAGE_SIZE hstate. And, if the
4036                  * number of huge pages for this default size was implicitly
4037                  * specified, set that here as well.
4038                  * Note that the implicit setting will overwrite an explicit
4039                  * setting.  A warning will be printed in this case.
4040                  */
4041                 default_hstate_idx = hstate_index(size_to_hstate(HPAGE_SIZE));
4042                 if (default_hstate_max_huge_pages) {
4043                         if (default_hstate.max_huge_pages) {
4044                                 char buf[32];
4045
4046                                 string_get_size(huge_page_size(&default_hstate),
4047                                         1, STRING_UNITS_2, buf, 32);
4048                                 pr_warn("HugeTLB: Ignoring hugepages=%lu associated with %s page size\n",
4049                                         default_hstate.max_huge_pages, buf);
4050                                 pr_warn("HugeTLB: Using hugepages=%lu for number of default huge pages\n",
4051                                         default_hstate_max_huge_pages);
4052                         }
4053                         default_hstate.max_huge_pages =
4054                                 default_hstate_max_huge_pages;
4055
4056                         for_each_online_node(i)
4057                                 default_hstate.max_huge_pages_node[i] =
4058                                         default_hugepages_in_node[i];
4059                 }
4060         }
4061
4062         hugetlb_cma_check();
4063         hugetlb_init_hstates();
4064         gather_bootmem_prealloc();
4065         report_hugepages();
4066
4067         hugetlb_sysfs_init();
4068         hugetlb_register_all_nodes();
4069         hugetlb_cgroup_file_init();
4070
4071 #ifdef CONFIG_SMP
4072         num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
4073 #else
4074         num_fault_mutexes = 1;
4075 #endif
4076         hugetlb_fault_mutex_table =
4077                 kmalloc_array(num_fault_mutexes, sizeof(struct mutex),
4078                               GFP_KERNEL);
4079         BUG_ON(!hugetlb_fault_mutex_table);
4080
4081         for (i = 0; i < num_fault_mutexes; i++)
4082                 mutex_init(&hugetlb_fault_mutex_table[i]);
4083         return 0;
4084 }
4085 subsys_initcall(hugetlb_init);
4086
4087 /* Overwritten by architectures with more huge page sizes */
4088 bool __init __attribute((weak)) arch_hugetlb_valid_size(unsigned long size)
4089 {
4090         return size == HPAGE_SIZE;
4091 }
4092
4093 void __init hugetlb_add_hstate(unsigned int order)
4094 {
4095         struct hstate *h;
4096         unsigned long i;
4097
4098         if (size_to_hstate(PAGE_SIZE << order)) {
4099                 return;
4100         }
4101         BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
4102         BUG_ON(order == 0);
4103         h = &hstates[hugetlb_max_hstate++];
4104         mutex_init(&h->resize_lock);
4105         h->order = order;
4106         h->mask = ~(huge_page_size(h) - 1);
4107         for (i = 0; i < MAX_NUMNODES; ++i)
4108                 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
4109         INIT_LIST_HEAD(&h->hugepage_activelist);
4110         h->next_nid_to_alloc = first_memory_node;
4111         h->next_nid_to_free = first_memory_node;
4112         snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
4113                                         huge_page_size(h)/1024);
4114         hugetlb_vmemmap_init(h);
4115
4116         parsed_hstate = h;
4117 }
4118
4119 bool __init __weak hugetlb_node_alloc_supported(void)
4120 {
4121         return true;
4122 }
4123
4124 static void __init hugepages_clear_pages_in_node(void)
4125 {
4126         if (!hugetlb_max_hstate) {
4127                 default_hstate_max_huge_pages = 0;
4128                 memset(default_hugepages_in_node, 0,
4129                         MAX_NUMNODES * sizeof(unsigned int));
4130         } else {
4131                 parsed_hstate->max_huge_pages = 0;
4132                 memset(parsed_hstate->max_huge_pages_node, 0,
4133                         MAX_NUMNODES * sizeof(unsigned int));
4134         }
4135 }
4136
4137 /*
4138  * hugepages command line processing
4139  * hugepages normally follows a valid hugepagsz or default_hugepagsz
4140  * specification.  If not, ignore the hugepages value.  hugepages can also
4141  * be the first huge page command line  option in which case it implicitly
4142  * specifies the number of huge pages for the default size.
4143  */
4144 static int __init hugepages_setup(char *s)
4145 {
4146         unsigned long *mhp;
4147         static unsigned long *last_mhp;
4148         int node = NUMA_NO_NODE;
4149         int count;
4150         unsigned long tmp;
4151         char *p = s;
4152
4153         if (!parsed_valid_hugepagesz) {
4154                 pr_warn("HugeTLB: hugepages=%s does not follow a valid hugepagesz, ignoring\n", s);
4155                 parsed_valid_hugepagesz = true;
4156                 return 1;
4157         }
4158
4159         /*
4160          * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter
4161          * yet, so this hugepages= parameter goes to the "default hstate".
4162          * Otherwise, it goes with the previously parsed hugepagesz or
4163          * default_hugepagesz.
4164          */
4165         else if (!hugetlb_max_hstate)
4166                 mhp = &default_hstate_max_huge_pages;
4167         else
4168                 mhp = &parsed_hstate->max_huge_pages;
4169
4170         if (mhp == last_mhp) {
4171                 pr_warn("HugeTLB: hugepages= specified twice without interleaving hugepagesz=, ignoring hugepages=%s\n", s);
4172                 return 1;
4173         }
4174
4175         while (*p) {
4176                 count = 0;
4177                 if (sscanf(p, "%lu%n", &tmp, &count) != 1)
4178                         goto invalid;
4179                 /* Parameter is node format */
4180                 if (p[count] == ':') {
4181                         if (!hugetlb_node_alloc_supported()) {
4182                                 pr_warn("HugeTLB: architecture can't support node specific alloc, ignoring!\n");
4183                                 return 1;
4184                         }
4185                         if (tmp >= MAX_NUMNODES || !node_online(tmp))
4186                                 goto invalid;
4187                         node = array_index_nospec(tmp, MAX_NUMNODES);
4188                         p += count + 1;
4189                         /* Parse hugepages */
4190                         if (sscanf(p, "%lu%n", &tmp, &count) != 1)
4191                                 goto invalid;
4192                         if (!hugetlb_max_hstate)
4193                                 default_hugepages_in_node[node] = tmp;
4194                         else
4195                                 parsed_hstate->max_huge_pages_node[node] = tmp;
4196                         *mhp += tmp;
4197                         /* Go to parse next node*/
4198                         if (p[count] == ',')
4199                                 p += count + 1;
4200                         else
4201                                 break;
4202                 } else {
4203                         if (p != s)
4204                                 goto invalid;
4205                         *mhp = tmp;
4206                         break;
4207                 }
4208         }
4209
4210         /*
4211          * Global state is always initialized later in hugetlb_init.
4212          * But we need to allocate gigantic hstates here early to still
4213          * use the bootmem allocator.
4214          */
4215         if (hugetlb_max_hstate && hstate_is_gigantic(parsed_hstate))
4216                 hugetlb_hstate_alloc_pages(parsed_hstate);
4217
4218         last_mhp = mhp;
4219
4220         return 1;
4221
4222 invalid:
4223         pr_warn("HugeTLB: Invalid hugepages parameter %s\n", p);
4224         hugepages_clear_pages_in_node();
4225         return 1;
4226 }
4227 __setup("hugepages=", hugepages_setup);
4228
4229 /*
4230  * hugepagesz command line processing
4231  * A specific huge page size can only be specified once with hugepagesz.
4232  * hugepagesz is followed by hugepages on the command line.  The global
4233  * variable 'parsed_valid_hugepagesz' is used to determine if prior
4234  * hugepagesz argument was valid.
4235  */
4236 static int __init hugepagesz_setup(char *s)
4237 {
4238         unsigned long size;
4239         struct hstate *h;
4240
4241         parsed_valid_hugepagesz = false;
4242         size = (unsigned long)memparse(s, NULL);
4243
4244         if (!arch_hugetlb_valid_size(size)) {
4245                 pr_err("HugeTLB: unsupported hugepagesz=%s\n", s);
4246                 return 1;
4247         }
4248
4249         h = size_to_hstate(size);
4250         if (h) {
4251                 /*
4252                  * hstate for this size already exists.  This is normally
4253                  * an error, but is allowed if the existing hstate is the
4254                  * default hstate.  More specifically, it is only allowed if
4255                  * the number of huge pages for the default hstate was not
4256                  * previously specified.
4257                  */
4258                 if (!parsed_default_hugepagesz ||  h != &default_hstate ||
4259                     default_hstate.max_huge_pages) {
4260                         pr_warn("HugeTLB: hugepagesz=%s specified twice, ignoring\n", s);
4261                         return 1;
4262                 }
4263
4264                 /*
4265                  * No need to call hugetlb_add_hstate() as hstate already
4266                  * exists.  But, do set parsed_hstate so that a following
4267                  * hugepages= parameter will be applied to this hstate.
4268                  */
4269                 parsed_hstate = h;
4270                 parsed_valid_hugepagesz = true;
4271                 return 1;
4272         }
4273
4274         hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
4275         parsed_valid_hugepagesz = true;
4276         return 1;
4277 }
4278 __setup("hugepagesz=", hugepagesz_setup);
4279
4280 /*
4281  * default_hugepagesz command line input
4282  * Only one instance of default_hugepagesz allowed on command line.
4283  */
4284 static int __init default_hugepagesz_setup(char *s)
4285 {
4286         unsigned long size;
4287         int i;
4288
4289         parsed_valid_hugepagesz = false;
4290         if (parsed_default_hugepagesz) {
4291                 pr_err("HugeTLB: default_hugepagesz previously specified, ignoring %s\n", s);
4292                 return 1;
4293         }
4294
4295         size = (unsigned long)memparse(s, NULL);
4296
4297         if (!arch_hugetlb_valid_size(size)) {
4298                 pr_err("HugeTLB: unsupported default_hugepagesz=%s\n", s);
4299                 return 1;
4300         }
4301
4302         hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
4303         parsed_valid_hugepagesz = true;
4304         parsed_default_hugepagesz = true;
4305         default_hstate_idx = hstate_index(size_to_hstate(size));
4306
4307         /*
4308          * The number of default huge pages (for this size) could have been
4309          * specified as the first hugetlb parameter: hugepages=X.  If so,
4310          * then default_hstate_max_huge_pages is set.  If the default huge
4311          * page size is gigantic (>= MAX_ORDER), then the pages must be
4312          * allocated here from bootmem allocator.
4313          */
4314         if (default_hstate_max_huge_pages) {
4315                 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
4316                 for_each_online_node(i)
4317                         default_hstate.max_huge_pages_node[i] =
4318                                 default_hugepages_in_node[i];
4319                 if (hstate_is_gigantic(&default_hstate))
4320                         hugetlb_hstate_alloc_pages(&default_hstate);
4321                 default_hstate_max_huge_pages = 0;
4322         }
4323
4324         return 1;
4325 }
4326 __setup("default_hugepagesz=", default_hugepagesz_setup);
4327
4328 static unsigned int allowed_mems_nr(struct hstate *h)
4329 {
4330         int node;
4331         unsigned int nr = 0;
4332         nodemask_t *mpol_allowed;
4333         unsigned int *array = h->free_huge_pages_node;
4334         gfp_t gfp_mask = htlb_alloc_mask(h);
4335
4336         mpol_allowed = policy_nodemask_current(gfp_mask);
4337
4338         for_each_node_mask(node, cpuset_current_mems_allowed) {
4339                 if (!mpol_allowed || node_isset(node, *mpol_allowed))
4340                         nr += array[node];
4341         }
4342
4343         return nr;
4344 }
4345
4346 #ifdef CONFIG_SYSCTL
4347 static int proc_hugetlb_doulongvec_minmax(struct ctl_table *table, int write,
4348                                           void *buffer, size_t *length,
4349                                           loff_t *ppos, unsigned long *out)
4350 {
4351         struct ctl_table dup_table;
4352
4353         /*
4354          * In order to avoid races with __do_proc_doulongvec_minmax(), we
4355          * can duplicate the @table and alter the duplicate of it.
4356          */
4357         dup_table = *table;
4358         dup_table.data = out;
4359
4360         return proc_doulongvec_minmax(&dup_table, write, buffer, length, ppos);
4361 }
4362
4363 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
4364                          struct ctl_table *table, int write,
4365                          void *buffer, size_t *length, loff_t *ppos)
4366 {
4367         struct hstate *h = &default_hstate;
4368         unsigned long tmp = h->max_huge_pages;
4369         int ret;
4370
4371         if (!hugepages_supported())
4372                 return -EOPNOTSUPP;
4373
4374         ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
4375                                              &tmp);
4376         if (ret)
4377                 goto out;
4378
4379         if (write)
4380                 ret = __nr_hugepages_store_common(obey_mempolicy, h,
4381                                                   NUMA_NO_NODE, tmp, *length);
4382 out:
4383         return ret;
4384 }
4385
4386 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
4387                           void *buffer, size_t *length, loff_t *ppos)
4388 {
4389
4390         return hugetlb_sysctl_handler_common(false, table, write,
4391                                                         buffer, length, ppos);
4392 }
4393
4394 #ifdef CONFIG_NUMA
4395 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
4396                           void *buffer, size_t *length, loff_t *ppos)
4397 {
4398         return hugetlb_sysctl_handler_common(true, table, write,
4399                                                         buffer, length, ppos);
4400 }
4401 #endif /* CONFIG_NUMA */
4402
4403 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
4404                 void *buffer, size_t *length, loff_t *ppos)
4405 {
4406         struct hstate *h = &default_hstate;
4407         unsigned long tmp;
4408         int ret;
4409
4410         if (!hugepages_supported())
4411                 return -EOPNOTSUPP;
4412
4413         tmp = h->nr_overcommit_huge_pages;
4414
4415         if (write && hstate_is_gigantic(h))
4416                 return -EINVAL;
4417
4418         ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
4419                                              &tmp);
4420         if (ret)
4421                 goto out;
4422
4423         if (write) {
4424                 spin_lock_irq(&hugetlb_lock);
4425                 h->nr_overcommit_huge_pages = tmp;
4426                 spin_unlock_irq(&hugetlb_lock);
4427         }
4428 out:
4429         return ret;
4430 }
4431
4432 #endif /* CONFIG_SYSCTL */
4433
4434 void hugetlb_report_meminfo(struct seq_file *m)
4435 {
4436         struct hstate *h;
4437         unsigned long total = 0;
4438
4439         if (!hugepages_supported())
4440                 return;
4441
4442         for_each_hstate(h) {
4443                 unsigned long count = h->nr_huge_pages;
4444
4445                 total += huge_page_size(h) * count;
4446
4447                 if (h == &default_hstate)
4448                         seq_printf(m,
4449                                    "HugePages_Total:   %5lu\n"
4450                                    "HugePages_Free:    %5lu\n"
4451                                    "HugePages_Rsvd:    %5lu\n"
4452                                    "HugePages_Surp:    %5lu\n"
4453                                    "Hugepagesize:   %8lu kB\n",
4454                                    count,
4455                                    h->free_huge_pages,
4456                                    h->resv_huge_pages,
4457                                    h->surplus_huge_pages,
4458                                    huge_page_size(h) / SZ_1K);
4459         }
4460
4461         seq_printf(m, "Hugetlb:        %8lu kB\n", total / SZ_1K);
4462 }
4463
4464 int hugetlb_report_node_meminfo(char *buf, int len, int nid)
4465 {
4466         struct hstate *h = &default_hstate;
4467
4468         if (!hugepages_supported())
4469                 return 0;
4470
4471         return sysfs_emit_at(buf, len,
4472                              "Node %d HugePages_Total: %5u\n"
4473                              "Node %d HugePages_Free:  %5u\n"
4474                              "Node %d HugePages_Surp:  %5u\n",
4475                              nid, h->nr_huge_pages_node[nid],
4476                              nid, h->free_huge_pages_node[nid],
4477                              nid, h->surplus_huge_pages_node[nid]);
4478 }
4479
4480 void hugetlb_show_meminfo(void)
4481 {
4482         struct hstate *h;
4483         int nid;
4484
4485         if (!hugepages_supported())
4486                 return;
4487
4488         for_each_node_state(nid, N_MEMORY)
4489                 for_each_hstate(h)
4490                         pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
4491                                 nid,
4492                                 h->nr_huge_pages_node[nid],
4493                                 h->free_huge_pages_node[nid],
4494                                 h->surplus_huge_pages_node[nid],
4495                                 huge_page_size(h) / SZ_1K);
4496 }
4497
4498 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
4499 {
4500         seq_printf(m, "HugetlbPages:\t%8lu kB\n",
4501                    atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
4502 }
4503
4504 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
4505 unsigned long hugetlb_total_pages(void)
4506 {
4507         struct hstate *h;
4508         unsigned long nr_total_pages = 0;
4509
4510         for_each_hstate(h)
4511                 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
4512         return nr_total_pages;
4513 }
4514
4515 static int hugetlb_acct_memory(struct hstate *h, long delta)
4516 {
4517         int ret = -ENOMEM;
4518
4519         if (!delta)
4520                 return 0;
4521
4522         spin_lock_irq(&hugetlb_lock);
4523         /*
4524          * When cpuset is configured, it breaks the strict hugetlb page
4525          * reservation as the accounting is done on a global variable. Such
4526          * reservation is completely rubbish in the presence of cpuset because
4527          * the reservation is not checked against page availability for the
4528          * current cpuset. Application can still potentially OOM'ed by kernel
4529          * with lack of free htlb page in cpuset that the task is in.
4530          * Attempt to enforce strict accounting with cpuset is almost
4531          * impossible (or too ugly) because cpuset is too fluid that
4532          * task or memory node can be dynamically moved between cpusets.
4533          *
4534          * The change of semantics for shared hugetlb mapping with cpuset is
4535          * undesirable. However, in order to preserve some of the semantics,
4536          * we fall back to check against current free page availability as
4537          * a best attempt and hopefully to minimize the impact of changing
4538          * semantics that cpuset has.
4539          *
4540          * Apart from cpuset, we also have memory policy mechanism that
4541          * also determines from which node the kernel will allocate memory
4542          * in a NUMA system. So similar to cpuset, we also should consider
4543          * the memory policy of the current task. Similar to the description
4544          * above.
4545          */
4546         if (delta > 0) {
4547                 if (gather_surplus_pages(h, delta) < 0)
4548                         goto out;
4549
4550                 if (delta > allowed_mems_nr(h)) {
4551                         return_unused_surplus_pages(h, delta);
4552                         goto out;
4553                 }
4554         }
4555
4556         ret = 0;
4557         if (delta < 0)
4558                 return_unused_surplus_pages(h, (unsigned long) -delta);
4559
4560 out:
4561         spin_unlock_irq(&hugetlb_lock);
4562         return ret;
4563 }
4564
4565 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
4566 {
4567         struct resv_map *resv = vma_resv_map(vma);
4568
4569         /*
4570          * This new VMA should share its siblings reservation map if present.
4571          * The VMA will only ever have a valid reservation map pointer where
4572          * it is being copied for another still existing VMA.  As that VMA
4573          * has a reference to the reservation map it cannot disappear until
4574          * after this open call completes.  It is therefore safe to take a
4575          * new reference here without additional locking.
4576          */
4577         if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
4578                 resv_map_dup_hugetlb_cgroup_uncharge_info(resv);
4579                 kref_get(&resv->refs);
4580         }
4581 }
4582
4583 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
4584 {
4585         struct hstate *h = hstate_vma(vma);
4586         struct resv_map *resv = vma_resv_map(vma);
4587         struct hugepage_subpool *spool = subpool_vma(vma);
4588         unsigned long reserve, start, end;
4589         long gbl_reserve;
4590
4591         if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
4592                 return;
4593
4594         start = vma_hugecache_offset(h, vma, vma->vm_start);
4595         end = vma_hugecache_offset(h, vma, vma->vm_end);
4596
4597         reserve = (end - start) - region_count(resv, start, end);
4598         hugetlb_cgroup_uncharge_counter(resv, start, end);
4599         if (reserve) {
4600                 /*
4601                  * Decrement reserve counts.  The global reserve count may be
4602                  * adjusted if the subpool has a minimum size.
4603                  */
4604                 gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
4605                 hugetlb_acct_memory(h, -gbl_reserve);
4606         }
4607
4608         kref_put(&resv->refs, resv_map_release);
4609 }
4610
4611 static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
4612 {
4613         if (addr & ~(huge_page_mask(hstate_vma(vma))))
4614                 return -EINVAL;
4615         return 0;
4616 }
4617
4618 static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma)
4619 {
4620         return huge_page_size(hstate_vma(vma));
4621 }
4622
4623 /*
4624  * We cannot handle pagefaults against hugetlb pages at all.  They cause
4625  * handle_mm_fault() to try to instantiate regular-sized pages in the
4626  * hugepage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
4627  * this far.
4628  */
4629 static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf)
4630 {
4631         BUG();
4632         return 0;
4633 }
4634
4635 /*
4636  * When a new function is introduced to vm_operations_struct and added
4637  * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops.
4638  * This is because under System V memory model, mappings created via
4639  * shmget/shmat with "huge page" specified are backed by hugetlbfs files,
4640  * their original vm_ops are overwritten with shm_vm_ops.
4641  */
4642 const struct vm_operations_struct hugetlb_vm_ops = {
4643         .fault = hugetlb_vm_op_fault,
4644         .open = hugetlb_vm_op_open,
4645         .close = hugetlb_vm_op_close,
4646         .may_split = hugetlb_vm_op_split,
4647         .pagesize = hugetlb_vm_op_pagesize,
4648 };
4649
4650 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
4651                                 int writable)
4652 {
4653         pte_t entry;
4654         unsigned int shift = huge_page_shift(hstate_vma(vma));
4655
4656         if (writable) {
4657                 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
4658                                          vma->vm_page_prot)));
4659         } else {
4660                 entry = huge_pte_wrprotect(mk_huge_pte(page,
4661                                            vma->vm_page_prot));
4662         }
4663         entry = pte_mkyoung(entry);
4664         entry = arch_make_huge_pte(entry, shift, vma->vm_flags);
4665
4666         return entry;
4667 }
4668
4669 static void set_huge_ptep_writable(struct vm_area_struct *vma,
4670                                    unsigned long address, pte_t *ptep)
4671 {
4672         pte_t entry;
4673
4674         entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
4675         if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
4676                 update_mmu_cache(vma, address, ptep);
4677 }
4678
4679 bool is_hugetlb_entry_migration(pte_t pte)
4680 {
4681         swp_entry_t swp;
4682
4683         if (huge_pte_none(pte) || pte_present(pte))
4684                 return false;
4685         swp = pte_to_swp_entry(pte);
4686         if (is_migration_entry(swp))
4687                 return true;
4688         else
4689                 return false;
4690 }
4691
4692 static bool is_hugetlb_entry_hwpoisoned(pte_t pte)
4693 {
4694         swp_entry_t swp;
4695
4696         if (huge_pte_none(pte) || pte_present(pte))
4697                 return false;
4698         swp = pte_to_swp_entry(pte);
4699         if (is_hwpoison_entry(swp))
4700                 return true;
4701         else
4702                 return false;
4703 }
4704
4705 static void
4706 hugetlb_install_page(struct vm_area_struct *vma, pte_t *ptep, unsigned long addr,
4707                      struct page *new_page)
4708 {
4709         __SetPageUptodate(new_page);
4710         hugepage_add_new_anon_rmap(new_page, vma, addr);
4711         set_huge_pte_at(vma->vm_mm, addr, ptep, make_huge_pte(vma, new_page, 1));
4712         hugetlb_count_add(pages_per_huge_page(hstate_vma(vma)), vma->vm_mm);
4713         ClearHPageRestoreReserve(new_page);
4714         SetHPageMigratable(new_page);
4715 }
4716
4717 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
4718                             struct vm_area_struct *dst_vma,
4719                             struct vm_area_struct *src_vma)
4720 {
4721         pte_t *src_pte, *dst_pte, entry, dst_entry;
4722         struct page *ptepage;
4723         unsigned long addr;
4724         bool cow = is_cow_mapping(src_vma->vm_flags);
4725         struct hstate *h = hstate_vma(src_vma);
4726         unsigned long sz = huge_page_size(h);
4727         unsigned long npages = pages_per_huge_page(h);
4728         struct address_space *mapping = src_vma->vm_file->f_mapping;
4729         struct mmu_notifier_range range;
4730         int ret = 0;
4731
4732         if (cow) {
4733                 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, src_vma, src,
4734                                         src_vma->vm_start,
4735                                         src_vma->vm_end);
4736                 mmu_notifier_invalidate_range_start(&range);
4737                 mmap_assert_write_locked(src);
4738                 raw_write_seqcount_begin(&src->write_protect_seq);
4739         } else {
4740                 /*
4741                  * For shared mappings i_mmap_rwsem must be held to call
4742                  * huge_pte_alloc, otherwise the returned ptep could go
4743                  * away if part of a shared pmd and another thread calls
4744                  * huge_pmd_unshare.
4745                  */
4746                 i_mmap_lock_read(mapping);
4747         }
4748
4749         for (addr = src_vma->vm_start; addr < src_vma->vm_end; addr += sz) {
4750                 spinlock_t *src_ptl, *dst_ptl;
4751                 src_pte = huge_pte_offset(src, addr, sz);
4752                 if (!src_pte)
4753                         continue;
4754                 dst_pte = huge_pte_alloc(dst, dst_vma, addr, sz);
4755                 if (!dst_pte) {
4756                         ret = -ENOMEM;
4757                         break;
4758                 }
4759
4760                 /*
4761                  * If the pagetables are shared don't copy or take references.
4762                  * dst_pte == src_pte is the common case of src/dest sharing.
4763                  *
4764                  * However, src could have 'unshared' and dst shares with
4765                  * another vma.  If dst_pte !none, this implies sharing.
4766                  * Check here before taking page table lock, and once again
4767                  * after taking the lock below.
4768                  */
4769                 dst_entry = huge_ptep_get(dst_pte);
4770                 if ((dst_pte == src_pte) || !huge_pte_none(dst_entry))
4771                         continue;
4772
4773                 dst_ptl = huge_pte_lock(h, dst, dst_pte);
4774                 src_ptl = huge_pte_lockptr(h, src, src_pte);
4775                 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
4776                 entry = huge_ptep_get(src_pte);
4777                 dst_entry = huge_ptep_get(dst_pte);
4778 again:
4779                 if (huge_pte_none(entry) || !huge_pte_none(dst_entry)) {
4780                         /*
4781                          * Skip if src entry none.  Also, skip in the
4782                          * unlikely case dst entry !none as this implies
4783                          * sharing with another vma.
4784                          */
4785                         ;
4786                 } else if (unlikely(is_hugetlb_entry_migration(entry) ||
4787                                     is_hugetlb_entry_hwpoisoned(entry))) {
4788                         swp_entry_t swp_entry = pte_to_swp_entry(entry);
4789                         bool uffd_wp = huge_pte_uffd_wp(entry);
4790
4791                         if (!is_readable_migration_entry(swp_entry) && cow) {
4792                                 /*
4793                                  * COW mappings require pages in both
4794                                  * parent and child to be set to read.
4795                                  */
4796                                 swp_entry = make_readable_migration_entry(
4797                                                         swp_offset(swp_entry));
4798                                 entry = swp_entry_to_pte(swp_entry);
4799                                 if (userfaultfd_wp(src_vma) && uffd_wp)
4800                                         entry = huge_pte_mkuffd_wp(entry);
4801                                 set_huge_pte_at(src, addr, src_pte, entry);
4802                         }
4803                         if (!userfaultfd_wp(dst_vma) && uffd_wp)
4804                                 entry = huge_pte_clear_uffd_wp(entry);
4805                         set_huge_pte_at(dst, addr, dst_pte, entry);
4806                 } else if (unlikely(is_pte_marker(entry))) {
4807                         /*
4808                          * We copy the pte marker only if the dst vma has
4809                          * uffd-wp enabled.
4810                          */
4811                         if (userfaultfd_wp(dst_vma))
4812                                 set_huge_pte_at(dst, addr, dst_pte, entry);
4813                 } else {
4814                         entry = huge_ptep_get(src_pte);
4815                         ptepage = pte_page(entry);
4816                         get_page(ptepage);
4817
4818                         /*
4819                          * Failing to duplicate the anon rmap is a rare case
4820                          * where we see pinned hugetlb pages while they're
4821                          * prone to COW. We need to do the COW earlier during
4822                          * fork.
4823                          *
4824                          * When pre-allocating the page or copying data, we
4825                          * need to be without the pgtable locks since we could
4826                          * sleep during the process.
4827                          */
4828                         if (!PageAnon(ptepage)) {
4829                                 page_dup_file_rmap(ptepage, true);
4830                         } else if (page_try_dup_anon_rmap(ptepage, true,
4831                                                           src_vma)) {
4832                                 pte_t src_pte_old = entry;
4833                                 struct page *new;
4834
4835                                 spin_unlock(src_ptl);
4836                                 spin_unlock(dst_ptl);
4837                                 /* Do not use reserve as it's private owned */
4838                                 new = alloc_huge_page(dst_vma, addr, 1);
4839                                 if (IS_ERR(new)) {
4840                                         put_page(ptepage);
4841                                         ret = PTR_ERR(new);
4842                                         break;
4843                                 }
4844                                 copy_user_huge_page(new, ptepage, addr, dst_vma,
4845                                                     npages);
4846                                 put_page(ptepage);
4847
4848                                 /* Install the new huge page if src pte stable */
4849                                 dst_ptl = huge_pte_lock(h, dst, dst_pte);
4850                                 src_ptl = huge_pte_lockptr(h, src, src_pte);
4851                                 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
4852                                 entry = huge_ptep_get(src_pte);
4853                                 if (!pte_same(src_pte_old, entry)) {
4854                                         restore_reserve_on_error(h, dst_vma, addr,
4855                                                                 new);
4856                                         put_page(new);
4857                                         /* dst_entry won't change as in child */
4858                                         goto again;
4859                                 }
4860                                 hugetlb_install_page(dst_vma, dst_pte, addr, new);
4861                                 spin_unlock(src_ptl);
4862                                 spin_unlock(dst_ptl);
4863                                 continue;
4864                         }
4865
4866                         if (cow) {
4867                                 /*
4868                                  * No need to notify as we are downgrading page
4869                                  * table protection not changing it to point
4870                                  * to a new page.
4871                                  *
4872                                  * See Documentation/mm/mmu_notifier.rst
4873                                  */
4874                                 huge_ptep_set_wrprotect(src, addr, src_pte);
4875                                 entry = huge_pte_wrprotect(entry);
4876                         }
4877
4878                         set_huge_pte_at(dst, addr, dst_pte, entry);
4879                         hugetlb_count_add(npages, dst);
4880                 }
4881                 spin_unlock(src_ptl);
4882                 spin_unlock(dst_ptl);
4883         }
4884
4885         if (cow) {
4886                 raw_write_seqcount_end(&src->write_protect_seq);
4887                 mmu_notifier_invalidate_range_end(&range);
4888         } else {
4889                 i_mmap_unlock_read(mapping);
4890         }
4891
4892         return ret;
4893 }
4894
4895 static void move_huge_pte(struct vm_area_struct *vma, unsigned long old_addr,
4896                           unsigned long new_addr, pte_t *src_pte, pte_t *dst_pte)
4897 {
4898         struct hstate *h = hstate_vma(vma);
4899         struct mm_struct *mm = vma->vm_mm;
4900         spinlock_t *src_ptl, *dst_ptl;
4901         pte_t pte;
4902
4903         dst_ptl = huge_pte_lock(h, mm, dst_pte);
4904         src_ptl = huge_pte_lockptr(h, mm, src_pte);
4905
4906         /*
4907          * We don't have to worry about the ordering of src and dst ptlocks
4908          * because exclusive mmap_sem (or the i_mmap_lock) prevents deadlock.
4909          */
4910         if (src_ptl != dst_ptl)
4911                 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
4912
4913         pte = huge_ptep_get_and_clear(mm, old_addr, src_pte);
4914         set_huge_pte_at(mm, new_addr, dst_pte, pte);
4915
4916         if (src_ptl != dst_ptl)
4917                 spin_unlock(src_ptl);
4918         spin_unlock(dst_ptl);
4919 }
4920
4921 int move_hugetlb_page_tables(struct vm_area_struct *vma,
4922                              struct vm_area_struct *new_vma,
4923                              unsigned long old_addr, unsigned long new_addr,
4924                              unsigned long len)
4925 {
4926         struct hstate *h = hstate_vma(vma);
4927         struct address_space *mapping = vma->vm_file->f_mapping;
4928         unsigned long sz = huge_page_size(h);
4929         struct mm_struct *mm = vma->vm_mm;
4930         unsigned long old_end = old_addr + len;
4931         unsigned long old_addr_copy;
4932         pte_t *src_pte, *dst_pte;
4933         struct mmu_notifier_range range;
4934         bool shared_pmd = false;
4935
4936         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, old_addr,
4937                                 old_end);
4938         adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
4939         /*
4940          * In case of shared PMDs, we should cover the maximum possible
4941          * range.
4942          */
4943         flush_cache_range(vma, range.start, range.end);
4944
4945         mmu_notifier_invalidate_range_start(&range);
4946         /* Prevent race with file truncation */
4947         i_mmap_lock_write(mapping);
4948         for (; old_addr < old_end; old_addr += sz, new_addr += sz) {
4949                 src_pte = huge_pte_offset(mm, old_addr, sz);
4950                 if (!src_pte)
4951                         continue;
4952                 if (huge_pte_none(huge_ptep_get(src_pte)))
4953                         continue;
4954
4955                 /* old_addr arg to huge_pmd_unshare() is a pointer and so the
4956                  * arg may be modified. Pass a copy instead to preserve the
4957                  * value in old_addr.
4958                  */
4959                 old_addr_copy = old_addr;
4960
4961                 if (huge_pmd_unshare(mm, vma, &old_addr_copy, src_pte)) {
4962                         shared_pmd = true;
4963                         continue;
4964                 }
4965
4966                 dst_pte = huge_pte_alloc(mm, new_vma, new_addr, sz);
4967                 if (!dst_pte)
4968                         break;
4969
4970                 move_huge_pte(vma, old_addr, new_addr, src_pte, dst_pte);
4971         }
4972
4973         if (shared_pmd)
4974                 flush_tlb_range(vma, range.start, range.end);
4975         else
4976                 flush_tlb_range(vma, old_end - len, old_end);
4977         mmu_notifier_invalidate_range_end(&range);
4978         i_mmap_unlock_write(mapping);
4979
4980         return len + old_addr - old_end;
4981 }
4982
4983 static void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
4984                                    unsigned long start, unsigned long end,
4985                                    struct page *ref_page, zap_flags_t zap_flags)
4986 {
4987         struct mm_struct *mm = vma->vm_mm;
4988         unsigned long address;
4989         pte_t *ptep;
4990         pte_t pte;
4991         spinlock_t *ptl;
4992         struct page *page;
4993         struct hstate *h = hstate_vma(vma);
4994         unsigned long sz = huge_page_size(h);
4995         struct mmu_notifier_range range;
4996         bool force_flush = false;
4997
4998         WARN_ON(!is_vm_hugetlb_page(vma));
4999         BUG_ON(start & ~huge_page_mask(h));
5000         BUG_ON(end & ~huge_page_mask(h));
5001
5002         /*
5003          * This is a hugetlb vma, all the pte entries should point
5004          * to huge page.
5005          */
5006         tlb_change_page_size(tlb, sz);
5007         tlb_start_vma(tlb, vma);
5008
5009         /*
5010          * If sharing possible, alert mmu notifiers of worst case.
5011          */
5012         mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, mm, start,
5013                                 end);
5014         adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
5015         mmu_notifier_invalidate_range_start(&range);
5016         address = start;
5017         for (; address < end; address += sz) {
5018                 ptep = huge_pte_offset(mm, address, sz);
5019                 if (!ptep)
5020                         continue;
5021
5022                 ptl = huge_pte_lock(h, mm, ptep);
5023                 if (huge_pmd_unshare(mm, vma, &address, ptep)) {
5024                         spin_unlock(ptl);
5025                         tlb_flush_pmd_range(tlb, address & PUD_MASK, PUD_SIZE);
5026                         force_flush = true;
5027                         continue;
5028                 }
5029
5030                 pte = huge_ptep_get(ptep);
5031                 if (huge_pte_none(pte)) {
5032                         spin_unlock(ptl);
5033                         continue;
5034                 }
5035
5036                 /*
5037                  * Migrating hugepage or HWPoisoned hugepage is already
5038                  * unmapped and its refcount is dropped, so just clear pte here.
5039                  */
5040                 if (unlikely(!pte_present(pte))) {
5041                         /*
5042                          * If the pte was wr-protected by uffd-wp in any of the
5043                          * swap forms, meanwhile the caller does not want to
5044                          * drop the uffd-wp bit in this zap, then replace the
5045                          * pte with a marker.
5046                          */
5047                         if (pte_swp_uffd_wp_any(pte) &&
5048                             !(zap_flags & ZAP_FLAG_DROP_MARKER))
5049                                 set_huge_pte_at(mm, address, ptep,
5050                                                 make_pte_marker(PTE_MARKER_UFFD_WP));
5051                         else
5052                                 huge_pte_clear(mm, address, ptep, sz);
5053                         spin_unlock(ptl);
5054                         continue;
5055                 }
5056
5057                 page = pte_page(pte);
5058                 /*
5059                  * If a reference page is supplied, it is because a specific
5060                  * page is being unmapped, not a range. Ensure the page we
5061                  * are about to unmap is the actual page of interest.
5062                  */
5063                 if (ref_page) {
5064                         if (page != ref_page) {
5065                                 spin_unlock(ptl);
5066                                 continue;
5067                         }
5068                         /*
5069                          * Mark the VMA as having unmapped its page so that
5070                          * future faults in this VMA will fail rather than
5071                          * looking like data was lost
5072                          */
5073                         set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
5074                 }
5075
5076                 pte = huge_ptep_get_and_clear(mm, address, ptep);
5077                 tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
5078                 if (huge_pte_dirty(pte))
5079                         set_page_dirty(page);
5080                 /* Leave a uffd-wp pte marker if needed */
5081                 if (huge_pte_uffd_wp(pte) &&
5082                     !(zap_flags & ZAP_FLAG_DROP_MARKER))
5083                         set_huge_pte_at(mm, address, ptep,
5084                                         make_pte_marker(PTE_MARKER_UFFD_WP));
5085                 hugetlb_count_sub(pages_per_huge_page(h), mm);
5086                 page_remove_rmap(page, vma, true);
5087
5088                 spin_unlock(ptl);
5089                 tlb_remove_page_size(tlb, page, huge_page_size(h));
5090                 /*
5091                  * Bail out after unmapping reference page if supplied
5092                  */
5093                 if (ref_page)
5094                         break;
5095         }
5096         mmu_notifier_invalidate_range_end(&range);
5097         tlb_end_vma(tlb, vma);
5098
5099         /*
5100          * If we unshared PMDs, the TLB flush was not recorded in mmu_gather. We
5101          * could defer the flush until now, since by holding i_mmap_rwsem we
5102          * guaranteed that the last refernece would not be dropped. But we must
5103          * do the flushing before we return, as otherwise i_mmap_rwsem will be
5104          * dropped and the last reference to the shared PMDs page might be
5105          * dropped as well.
5106          *
5107          * In theory we could defer the freeing of the PMD pages as well, but
5108          * huge_pmd_unshare() relies on the exact page_count for the PMD page to
5109          * detect sharing, so we cannot defer the release of the page either.
5110          * Instead, do flush now.
5111          */
5112         if (force_flush)
5113                 tlb_flush_mmu_tlbonly(tlb);
5114 }
5115
5116 void __unmap_hugepage_range_final(struct mmu_gather *tlb,
5117                           struct vm_area_struct *vma, unsigned long start,
5118                           unsigned long end, struct page *ref_page,
5119                           zap_flags_t zap_flags)
5120 {
5121         __unmap_hugepage_range(tlb, vma, start, end, ref_page, zap_flags);
5122
5123         /*
5124          * Clear this flag so that x86's huge_pmd_share page_table_shareable
5125          * test will fail on a vma being torn down, and not grab a page table
5126          * on its way out.  We're lucky that the flag has such an appropriate
5127          * name, and can in fact be safely cleared here. We could clear it
5128          * before the __unmap_hugepage_range above, but all that's necessary
5129          * is to clear it before releasing the i_mmap_rwsem. This works
5130          * because in the context this is called, the VMA is about to be
5131          * destroyed and the i_mmap_rwsem is held.
5132          */
5133         vma->vm_flags &= ~VM_MAYSHARE;
5134 }
5135
5136 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
5137                           unsigned long end, struct page *ref_page,
5138                           zap_flags_t zap_flags)
5139 {
5140         struct mmu_gather tlb;
5141
5142         tlb_gather_mmu(&tlb, vma->vm_mm);
5143         __unmap_hugepage_range(&tlb, vma, start, end, ref_page, zap_flags);
5144         tlb_finish_mmu(&tlb);
5145 }
5146
5147 /*
5148  * This is called when the original mapper is failing to COW a MAP_PRIVATE
5149  * mapping it owns the reserve page for. The intention is to unmap the page
5150  * from other VMAs and let the children be SIGKILLed if they are faulting the
5151  * same region.
5152  */
5153 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
5154                               struct page *page, unsigned long address)
5155 {
5156         struct hstate *h = hstate_vma(vma);
5157         struct vm_area_struct *iter_vma;
5158         struct address_space *mapping;
5159         pgoff_t pgoff;
5160
5161         /*
5162          * vm_pgoff is in PAGE_SIZE units, hence the different calculation
5163          * from page cache lookup which is in HPAGE_SIZE units.
5164          */
5165         address = address & huge_page_mask(h);
5166         pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
5167                         vma->vm_pgoff;
5168         mapping = vma->vm_file->f_mapping;
5169
5170         /*
5171          * Take the mapping lock for the duration of the table walk. As
5172          * this mapping should be shared between all the VMAs,
5173          * __unmap_hugepage_range() is called as the lock is already held
5174          */
5175         i_mmap_lock_write(mapping);
5176         vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
5177                 /* Do not unmap the current VMA */
5178                 if (iter_vma == vma)
5179                         continue;
5180
5181                 /*
5182                  * Shared VMAs have their own reserves and do not affect
5183                  * MAP_PRIVATE accounting but it is possible that a shared
5184                  * VMA is using the same page so check and skip such VMAs.
5185                  */
5186                 if (iter_vma->vm_flags & VM_MAYSHARE)
5187                         continue;
5188
5189                 /*
5190                  * Unmap the page from other VMAs without their own reserves.
5191                  * They get marked to be SIGKILLed if they fault in these
5192                  * areas. This is because a future no-page fault on this VMA
5193                  * could insert a zeroed page instead of the data existing
5194                  * from the time of fork. This would look like data corruption
5195                  */
5196                 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
5197                         unmap_hugepage_range(iter_vma, address,
5198                                              address + huge_page_size(h), page, 0);
5199         }
5200         i_mmap_unlock_write(mapping);
5201 }
5202
5203 /*
5204  * hugetlb_wp() should be called with page lock of the original hugepage held.
5205  * Called with hugetlb_fault_mutex_table held and pte_page locked so we
5206  * cannot race with other handlers or page migration.
5207  * Keep the pte_same checks anyway to make transition from the mutex easier.
5208  */
5209 static vm_fault_t hugetlb_wp(struct mm_struct *mm, struct vm_area_struct *vma,
5210                        unsigned long address, pte_t *ptep, unsigned int flags,
5211                        struct page *pagecache_page, spinlock_t *ptl)
5212 {
5213         const bool unshare = flags & FAULT_FLAG_UNSHARE;
5214         pte_t pte;
5215         struct hstate *h = hstate_vma(vma);
5216         struct page *old_page, *new_page;
5217         int outside_reserve = 0;
5218         vm_fault_t ret = 0;
5219         unsigned long haddr = address & huge_page_mask(h);
5220         struct mmu_notifier_range range;
5221
5222         VM_BUG_ON(unshare && (flags & FOLL_WRITE));
5223         VM_BUG_ON(!unshare && !(flags & FOLL_WRITE));
5224
5225         pte = huge_ptep_get(ptep);
5226         old_page = pte_page(pte);
5227
5228         delayacct_wpcopy_start();
5229
5230 retry_avoidcopy:
5231         /*
5232          * If no-one else is actually using this page, we're the exclusive
5233          * owner and can reuse this page.
5234          */
5235         if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
5236                 if (!PageAnonExclusive(old_page))
5237                         page_move_anon_rmap(old_page, vma);
5238                 if (likely(!unshare))
5239                         set_huge_ptep_writable(vma, haddr, ptep);
5240
5241                 delayacct_wpcopy_end();
5242                 return 0;
5243         }
5244         VM_BUG_ON_PAGE(PageAnon(old_page) && PageAnonExclusive(old_page),
5245                        old_page);
5246
5247         /*
5248          * If the process that created a MAP_PRIVATE mapping is about to
5249          * perform a COW due to a shared page count, attempt to satisfy
5250          * the allocation without using the existing reserves. The pagecache
5251          * page is used to determine if the reserve at this address was
5252          * consumed or not. If reserves were used, a partial faulted mapping
5253          * at the time of fork() could consume its reserves on COW instead
5254          * of the full address range.
5255          */
5256         if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
5257                         old_page != pagecache_page)
5258                 outside_reserve = 1;
5259
5260         get_page(old_page);
5261
5262         /*
5263          * Drop page table lock as buddy allocator may be called. It will
5264          * be acquired again before returning to the caller, as expected.
5265          */
5266         spin_unlock(ptl);
5267         new_page = alloc_huge_page(vma, haddr, outside_reserve);
5268
5269         if (IS_ERR(new_page)) {
5270                 /*
5271                  * If a process owning a MAP_PRIVATE mapping fails to COW,
5272                  * it is due to references held by a child and an insufficient
5273                  * huge page pool. To guarantee the original mappers
5274                  * reliability, unmap the page from child processes. The child
5275                  * may get SIGKILLed if it later faults.
5276                  */
5277                 if (outside_reserve) {
5278                         struct address_space *mapping = vma->vm_file->f_mapping;
5279                         pgoff_t idx;
5280                         u32 hash;
5281
5282                         put_page(old_page);
5283                         BUG_ON(huge_pte_none(pte));
5284                         /*
5285                          * Drop hugetlb_fault_mutex and i_mmap_rwsem before
5286                          * unmapping.  unmapping needs to hold i_mmap_rwsem
5287                          * in write mode.  Dropping i_mmap_rwsem in read mode
5288                          * here is OK as COW mappings do not interact with
5289                          * PMD sharing.
5290                          *
5291                          * Reacquire both after unmap operation.
5292                          */
5293                         idx = vma_hugecache_offset(h, vma, haddr);
5294                         hash = hugetlb_fault_mutex_hash(mapping, idx);
5295                         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5296                         i_mmap_unlock_read(mapping);
5297
5298                         unmap_ref_private(mm, vma, old_page, haddr);
5299
5300                         i_mmap_lock_read(mapping);
5301                         mutex_lock(&hugetlb_fault_mutex_table[hash]);
5302                         spin_lock(ptl);
5303                         ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
5304                         if (likely(ptep &&
5305                                    pte_same(huge_ptep_get(ptep), pte)))
5306                                 goto retry_avoidcopy;
5307                         /*
5308                          * race occurs while re-acquiring page table
5309                          * lock, and our job is done.
5310                          */
5311                         delayacct_wpcopy_end();
5312                         return 0;
5313                 }
5314
5315                 ret = vmf_error(PTR_ERR(new_page));
5316                 goto out_release_old;
5317         }
5318
5319         /*
5320          * When the original hugepage is shared one, it does not have
5321          * anon_vma prepared.
5322          */
5323         if (unlikely(anon_vma_prepare(vma))) {
5324                 ret = VM_FAULT_OOM;
5325                 goto out_release_all;
5326         }
5327
5328         copy_user_huge_page(new_page, old_page, address, vma,
5329                             pages_per_huge_page(h));
5330         __SetPageUptodate(new_page);
5331
5332         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, haddr,
5333                                 haddr + huge_page_size(h));
5334         mmu_notifier_invalidate_range_start(&range);
5335
5336         /*
5337          * Retake the page table lock to check for racing updates
5338          * before the page tables are altered
5339          */
5340         spin_lock(ptl);
5341         ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
5342         if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
5343                 ClearHPageRestoreReserve(new_page);
5344
5345                 /* Break COW or unshare */
5346                 huge_ptep_clear_flush(vma, haddr, ptep);
5347                 mmu_notifier_invalidate_range(mm, range.start, range.end);
5348                 page_remove_rmap(old_page, vma, true);
5349                 hugepage_add_new_anon_rmap(new_page, vma, haddr);
5350                 set_huge_pte_at(mm, haddr, ptep,
5351                                 make_huge_pte(vma, new_page, !unshare));
5352                 SetHPageMigratable(new_page);
5353                 /* Make the old page be freed below */
5354                 new_page = old_page;
5355         }
5356         spin_unlock(ptl);
5357         mmu_notifier_invalidate_range_end(&range);
5358 out_release_all:
5359         /*
5360          * No restore in case of successful pagetable update (Break COW or
5361          * unshare)
5362          */
5363         if (new_page != old_page)
5364                 restore_reserve_on_error(h, vma, haddr, new_page);
5365         put_page(new_page);
5366 out_release_old:
5367         put_page(old_page);
5368
5369         spin_lock(ptl); /* Caller expects lock to be held */
5370
5371         delayacct_wpcopy_end();
5372         return ret;
5373 }
5374
5375 /* Return the pagecache page at a given address within a VMA */
5376 static struct page *hugetlbfs_pagecache_page(struct hstate *h,
5377                         struct vm_area_struct *vma, unsigned long address)
5378 {
5379         struct address_space *mapping;
5380         pgoff_t idx;
5381
5382         mapping = vma->vm_file->f_mapping;
5383         idx = vma_hugecache_offset(h, vma, address);
5384
5385         return find_lock_page(mapping, idx);
5386 }
5387
5388 /*
5389  * Return whether there is a pagecache page to back given address within VMA.
5390  * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
5391  */
5392 static bool hugetlbfs_pagecache_present(struct hstate *h,
5393                         struct vm_area_struct *vma, unsigned long address)
5394 {
5395         struct address_space *mapping;
5396         pgoff_t idx;
5397         struct page *page;
5398
5399         mapping = vma->vm_file->f_mapping;
5400         idx = vma_hugecache_offset(h, vma, address);
5401
5402         page = find_get_page(mapping, idx);
5403         if (page)
5404                 put_page(page);
5405         return page != NULL;
5406 }
5407
5408 int huge_add_to_page_cache(struct page *page, struct address_space *mapping,
5409                            pgoff_t idx)
5410 {
5411         struct inode *inode = mapping->host;
5412         struct hstate *h = hstate_inode(inode);
5413         int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
5414
5415         if (err)
5416                 return err;
5417         ClearHPageRestoreReserve(page);
5418
5419         /*
5420          * set page dirty so that it will not be removed from cache/file
5421          * by non-hugetlbfs specific code paths.
5422          */
5423         set_page_dirty(page);
5424
5425         spin_lock(&inode->i_lock);
5426         inode->i_blocks += blocks_per_huge_page(h);
5427         spin_unlock(&inode->i_lock);
5428         return 0;
5429 }
5430
5431 static inline vm_fault_t hugetlb_handle_userfault(struct vm_area_struct *vma,
5432                                                   struct address_space *mapping,
5433                                                   pgoff_t idx,
5434                                                   unsigned int flags,
5435                                                   unsigned long haddr,
5436                                                   unsigned long addr,
5437                                                   unsigned long reason)
5438 {
5439         vm_fault_t ret;
5440         u32 hash;
5441         struct vm_fault vmf = {
5442                 .vma = vma,
5443                 .address = haddr,
5444                 .real_address = addr,
5445                 .flags = flags,
5446
5447                 /*
5448                  * Hard to debug if it ends up being
5449                  * used by a callee that assumes
5450                  * something about the other
5451                  * uninitialized fields... same as in
5452                  * memory.c
5453                  */
5454         };
5455
5456         /*
5457          * hugetlb_fault_mutex and i_mmap_rwsem must be
5458          * dropped before handling userfault.  Reacquire
5459          * after handling fault to make calling code simpler.
5460          */
5461         hash = hugetlb_fault_mutex_hash(mapping, idx);
5462         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5463         i_mmap_unlock_read(mapping);
5464         ret = handle_userfault(&vmf, reason);
5465         i_mmap_lock_read(mapping);
5466         mutex_lock(&hugetlb_fault_mutex_table[hash]);
5467
5468         return ret;
5469 }
5470
5471 static vm_fault_t hugetlb_no_page(struct mm_struct *mm,
5472                         struct vm_area_struct *vma,
5473                         struct address_space *mapping, pgoff_t idx,
5474                         unsigned long address, pte_t *ptep,
5475                         pte_t old_pte, unsigned int flags)
5476 {
5477         struct hstate *h = hstate_vma(vma);
5478         vm_fault_t ret = VM_FAULT_SIGBUS;
5479         int anon_rmap = 0;
5480         unsigned long size;
5481         struct page *page;
5482         pte_t new_pte;
5483         spinlock_t *ptl;
5484         unsigned long haddr = address & huge_page_mask(h);
5485         bool new_page, new_pagecache_page = false;
5486
5487         /*
5488          * Currently, we are forced to kill the process in the event the
5489          * original mapper has unmapped pages from the child due to a failed
5490          * COW/unsharing. Warn that such a situation has occurred as it may not
5491          * be obvious.
5492          */
5493         if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
5494                 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
5495                            current->pid);
5496                 return ret;
5497         }
5498
5499         /*
5500          * We can not race with truncation due to holding i_mmap_rwsem.
5501          * i_size is modified when holding i_mmap_rwsem, so check here
5502          * once for faults beyond end of file.
5503          */
5504         size = i_size_read(mapping->host) >> huge_page_shift(h);
5505         if (idx >= size)
5506                 goto out;
5507
5508 retry:
5509         new_page = false;
5510         page = find_lock_page(mapping, idx);
5511         if (!page) {
5512                 /* Check for page in userfault range */
5513                 if (userfaultfd_missing(vma)) {
5514                         ret = hugetlb_handle_userfault(vma, mapping, idx,
5515                                                        flags, haddr, address,
5516                                                        VM_UFFD_MISSING);
5517                         goto out;
5518                 }
5519
5520                 page = alloc_huge_page(vma, haddr, 0);
5521                 if (IS_ERR(page)) {
5522                         /*
5523                          * Returning error will result in faulting task being
5524                          * sent SIGBUS.  The hugetlb fault mutex prevents two
5525                          * tasks from racing to fault in the same page which
5526                          * could result in false unable to allocate errors.
5527                          * Page migration does not take the fault mutex, but
5528                          * does a clear then write of pte's under page table
5529                          * lock.  Page fault code could race with migration,
5530                          * notice the clear pte and try to allocate a page
5531                          * here.  Before returning error, get ptl and make
5532                          * sure there really is no pte entry.
5533                          */
5534                         ptl = huge_pte_lock(h, mm, ptep);
5535                         ret = 0;
5536                         if (huge_pte_none(huge_ptep_get(ptep)))
5537                                 ret = vmf_error(PTR_ERR(page));
5538                         spin_unlock(ptl);
5539                         goto out;
5540                 }
5541                 clear_huge_page(page, address, pages_per_huge_page(h));
5542                 __SetPageUptodate(page);
5543                 new_page = true;
5544
5545                 if (vma->vm_flags & VM_MAYSHARE) {
5546                         int err = huge_add_to_page_cache(page, mapping, idx);
5547                         if (err) {
5548                                 put_page(page);
5549                                 if (err == -EEXIST)
5550                                         goto retry;
5551                                 goto out;
5552                         }
5553                         new_pagecache_page = true;
5554                 } else {
5555                         lock_page(page);
5556                         if (unlikely(anon_vma_prepare(vma))) {
5557                                 ret = VM_FAULT_OOM;
5558                                 goto backout_unlocked;
5559                         }
5560                         anon_rmap = 1;
5561                 }
5562         } else {
5563                 /*
5564                  * If memory error occurs between mmap() and fault, some process
5565                  * don't have hwpoisoned swap entry for errored virtual address.
5566                  * So we need to block hugepage fault by PG_hwpoison bit check.
5567                  */
5568                 if (unlikely(PageHWPoison(page))) {
5569                         ret = VM_FAULT_HWPOISON_LARGE |
5570                                 VM_FAULT_SET_HINDEX(hstate_index(h));
5571                         goto backout_unlocked;
5572                 }
5573
5574                 /* Check for page in userfault range. */
5575                 if (userfaultfd_minor(vma)) {
5576                         unlock_page(page);
5577                         put_page(page);
5578                         ret = hugetlb_handle_userfault(vma, mapping, idx,
5579                                                        flags, haddr, address,
5580                                                        VM_UFFD_MINOR);
5581                         goto out;
5582                 }
5583         }
5584
5585         /*
5586          * If we are going to COW a private mapping later, we examine the
5587          * pending reservations for this page now. This will ensure that
5588          * any allocations necessary to record that reservation occur outside
5589          * the spinlock.
5590          */
5591         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
5592                 if (vma_needs_reservation(h, vma, haddr) < 0) {
5593                         ret = VM_FAULT_OOM;
5594                         goto backout_unlocked;
5595                 }
5596                 /* Just decrements count, does not deallocate */
5597                 vma_end_reservation(h, vma, haddr);
5598         }
5599
5600         ptl = huge_pte_lock(h, mm, ptep);
5601         ret = 0;
5602         /* If pte changed from under us, retry */
5603         if (!pte_same(huge_ptep_get(ptep), old_pte))
5604                 goto backout;
5605
5606         if (anon_rmap) {
5607                 ClearHPageRestoreReserve(page);
5608                 hugepage_add_new_anon_rmap(page, vma, haddr);
5609         } else
5610                 page_dup_file_rmap(page, true);
5611         new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
5612                                 && (vma->vm_flags & VM_SHARED)));
5613         /*
5614          * If this pte was previously wr-protected, keep it wr-protected even
5615          * if populated.
5616          */
5617         if (unlikely(pte_marker_uffd_wp(old_pte)))
5618                 new_pte = huge_pte_wrprotect(huge_pte_mkuffd_wp(new_pte));
5619         set_huge_pte_at(mm, haddr, ptep, new_pte);
5620
5621         hugetlb_count_add(pages_per_huge_page(h), mm);
5622         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
5623                 /* Optimization, do the COW without a second fault */
5624                 ret = hugetlb_wp(mm, vma, address, ptep, flags, page, ptl);
5625         }
5626
5627         spin_unlock(ptl);
5628
5629         /*
5630          * Only set HPageMigratable in newly allocated pages.  Existing pages
5631          * found in the pagecache may not have HPageMigratableset if they have
5632          * been isolated for migration.
5633          */
5634         if (new_page)
5635                 SetHPageMigratable(page);
5636
5637         unlock_page(page);
5638 out:
5639         return ret;
5640
5641 backout:
5642         spin_unlock(ptl);
5643 backout_unlocked:
5644         unlock_page(page);
5645         /* restore reserve for newly allocated pages not in page cache */
5646         if (new_page && !new_pagecache_page)
5647                 restore_reserve_on_error(h, vma, haddr, page);
5648         put_page(page);
5649         goto out;
5650 }
5651
5652 #ifdef CONFIG_SMP
5653 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
5654 {
5655         unsigned long key[2];
5656         u32 hash;
5657
5658         key[0] = (unsigned long) mapping;
5659         key[1] = idx;
5660
5661         hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0);
5662
5663         return hash & (num_fault_mutexes - 1);
5664 }
5665 #else
5666 /*
5667  * For uniprocessor systems we always use a single mutex, so just
5668  * return 0 and avoid the hashing overhead.
5669  */
5670 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
5671 {
5672         return 0;
5673 }
5674 #endif
5675
5676 vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
5677                         unsigned long address, unsigned int flags)
5678 {
5679         pte_t *ptep, entry;
5680         spinlock_t *ptl;
5681         vm_fault_t ret;
5682         u32 hash;
5683         pgoff_t idx;
5684         struct page *page = NULL;
5685         struct page *pagecache_page = NULL;
5686         struct hstate *h = hstate_vma(vma);
5687         struct address_space *mapping;
5688         int need_wait_lock = 0;
5689         unsigned long haddr = address & huge_page_mask(h);
5690
5691         ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
5692         if (ptep) {
5693                 /*
5694                  * Since we hold no locks, ptep could be stale.  That is
5695                  * OK as we are only making decisions based on content and
5696                  * not actually modifying content here.
5697                  */
5698                 entry = huge_ptep_get(ptep);
5699                 if (unlikely(is_hugetlb_entry_migration(entry))) {
5700                         migration_entry_wait_huge(vma, ptep);
5701                         return 0;
5702                 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
5703                         return VM_FAULT_HWPOISON_LARGE |
5704                                 VM_FAULT_SET_HINDEX(hstate_index(h));
5705         }
5706
5707         /*
5708          * Acquire i_mmap_rwsem before calling huge_pte_alloc and hold
5709          * until finished with ptep.  This serves two purposes:
5710          * 1) It prevents huge_pmd_unshare from being called elsewhere
5711          *    and making the ptep no longer valid.
5712          * 2) It synchronizes us with i_size modifications during truncation.
5713          *
5714          * ptep could have already be assigned via huge_pte_offset.  That
5715          * is OK, as huge_pte_alloc will return the same value unless
5716          * something has changed.
5717          */
5718         mapping = vma->vm_file->f_mapping;
5719         i_mmap_lock_read(mapping);
5720         ptep = huge_pte_alloc(mm, vma, haddr, huge_page_size(h));
5721         if (!ptep) {
5722                 i_mmap_unlock_read(mapping);
5723                 return VM_FAULT_OOM;
5724         }
5725
5726         /*
5727          * Serialize hugepage allocation and instantiation, so that we don't
5728          * get spurious allocation failures if two CPUs race to instantiate
5729          * the same page in the page cache.
5730          */
5731         idx = vma_hugecache_offset(h, vma, haddr);
5732         hash = hugetlb_fault_mutex_hash(mapping, idx);
5733         mutex_lock(&hugetlb_fault_mutex_table[hash]);
5734
5735         entry = huge_ptep_get(ptep);
5736         /* PTE markers should be handled the same way as none pte */
5737         if (huge_pte_none_mostly(entry)) {
5738                 ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep,
5739                                       entry, flags);
5740                 goto out_mutex;
5741         }
5742
5743         ret = 0;
5744
5745         /*
5746          * entry could be a migration/hwpoison entry at this point, so this
5747          * check prevents the kernel from going below assuming that we have
5748          * an active hugepage in pagecache. This goto expects the 2nd page
5749          * fault, and is_hugetlb_entry_(migration|hwpoisoned) check will
5750          * properly handle it.
5751          */
5752         if (!pte_present(entry))
5753                 goto out_mutex;
5754
5755         /*
5756          * If we are going to COW/unshare the mapping later, we examine the
5757          * pending reservations for this page now. This will ensure that any
5758          * allocations necessary to record that reservation occur outside the
5759          * spinlock. For private mappings, we also lookup the pagecache
5760          * page now as it is used to determine if a reservation has been
5761          * consumed.
5762          */
5763         if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) &&
5764             !huge_pte_write(entry)) {
5765                 if (vma_needs_reservation(h, vma, haddr) < 0) {
5766                         ret = VM_FAULT_OOM;
5767                         goto out_mutex;
5768                 }
5769                 /* Just decrements count, does not deallocate */
5770                 vma_end_reservation(h, vma, haddr);
5771
5772                 if (!(vma->vm_flags & VM_MAYSHARE))
5773                         pagecache_page = hugetlbfs_pagecache_page(h,
5774                                                                 vma, haddr);
5775         }
5776
5777         ptl = huge_pte_lock(h, mm, ptep);
5778
5779         /* Check for a racing update before calling hugetlb_wp() */
5780         if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
5781                 goto out_ptl;
5782
5783         /* Handle userfault-wp first, before trying to lock more pages */
5784         if (userfaultfd_wp(vma) && huge_pte_uffd_wp(huge_ptep_get(ptep)) &&
5785             (flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
5786                 struct vm_fault vmf = {
5787                         .vma = vma,
5788                         .address = haddr,
5789                         .real_address = address,
5790                         .flags = flags,
5791                 };
5792
5793                 spin_unlock(ptl);
5794                 if (pagecache_page) {
5795                         unlock_page(pagecache_page);
5796                         put_page(pagecache_page);
5797                 }
5798                 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5799                 i_mmap_unlock_read(mapping);
5800                 return handle_userfault(&vmf, VM_UFFD_WP);
5801         }
5802
5803         /*
5804          * hugetlb_wp() requires page locks of pte_page(entry) and
5805          * pagecache_page, so here we need take the former one
5806          * when page != pagecache_page or !pagecache_page.
5807          */
5808         page = pte_page(entry);
5809         if (page != pagecache_page)
5810                 if (!trylock_page(page)) {
5811                         need_wait_lock = 1;
5812                         goto out_ptl;
5813                 }
5814
5815         get_page(page);
5816
5817         if (flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) {
5818                 if (!huge_pte_write(entry)) {
5819                         ret = hugetlb_wp(mm, vma, address, ptep, flags,
5820                                          pagecache_page, ptl);
5821                         goto out_put_page;
5822                 } else if (likely(flags & FAULT_FLAG_WRITE)) {
5823                         entry = huge_pte_mkdirty(entry);
5824                 }
5825         }
5826         entry = pte_mkyoung(entry);
5827         if (huge_ptep_set_access_flags(vma, haddr, ptep, entry,
5828                                                 flags & FAULT_FLAG_WRITE))
5829                 update_mmu_cache(vma, haddr, ptep);
5830 out_put_page:
5831         if (page != pagecache_page)
5832                 unlock_page(page);
5833         put_page(page);
5834 out_ptl:
5835         spin_unlock(ptl);
5836
5837         if (pagecache_page) {
5838                 unlock_page(pagecache_page);
5839                 put_page(pagecache_page);
5840         }
5841 out_mutex:
5842         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5843         i_mmap_unlock_read(mapping);
5844         /*
5845          * Generally it's safe to hold refcount during waiting page lock. But
5846          * here we just wait to defer the next page fault to avoid busy loop and
5847          * the page is not used after unlocked before returning from the current
5848          * page fault. So we are safe from accessing freed page, even if we wait
5849          * here without taking refcount.
5850          */
5851         if (need_wait_lock)
5852                 wait_on_page_locked(page);
5853         return ret;
5854 }
5855
5856 #ifdef CONFIG_USERFAULTFD
5857 /*
5858  * Used by userfaultfd UFFDIO_COPY.  Based on mcopy_atomic_pte with
5859  * modifications for huge pages.
5860  */
5861 int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm,
5862                             pte_t *dst_pte,
5863                             struct vm_area_struct *dst_vma,
5864                             unsigned long dst_addr,
5865                             unsigned long src_addr,
5866                             enum mcopy_atomic_mode mode,
5867                             struct page **pagep,
5868                             bool wp_copy)
5869 {
5870         bool is_continue = (mode == MCOPY_ATOMIC_CONTINUE);
5871         struct hstate *h = hstate_vma(dst_vma);
5872         struct address_space *mapping = dst_vma->vm_file->f_mapping;
5873         pgoff_t idx = vma_hugecache_offset(h, dst_vma, dst_addr);
5874         unsigned long size;
5875         int vm_shared = dst_vma->vm_flags & VM_SHARED;
5876         pte_t _dst_pte;
5877         spinlock_t *ptl;
5878         int ret = -ENOMEM;
5879         struct page *page;
5880         int writable;
5881         bool page_in_pagecache = false;
5882
5883         if (is_continue) {
5884                 ret = -EFAULT;
5885                 page = find_lock_page(mapping, idx);
5886                 if (!page)
5887                         goto out;
5888                 page_in_pagecache = true;
5889         } else if (!*pagep) {
5890                 /* If a page already exists, then it's UFFDIO_COPY for
5891                  * a non-missing case. Return -EEXIST.
5892                  */
5893                 if (vm_shared &&
5894                     hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
5895                         ret = -EEXIST;
5896                         goto out;
5897                 }
5898
5899                 page = alloc_huge_page(dst_vma, dst_addr, 0);
5900                 if (IS_ERR(page)) {
5901                         ret = -ENOMEM;
5902                         goto out;
5903                 }
5904
5905                 ret = copy_huge_page_from_user(page,
5906                                                 (const void __user *) src_addr,
5907                                                 pages_per_huge_page(h), false);
5908
5909                 /* fallback to copy_from_user outside mmap_lock */
5910                 if (unlikely(ret)) {
5911                         ret = -ENOENT;
5912                         /* Free the allocated page which may have
5913                          * consumed a reservation.
5914                          */
5915                         restore_reserve_on_error(h, dst_vma, dst_addr, page);
5916                         put_page(page);
5917
5918                         /* Allocate a temporary page to hold the copied
5919                          * contents.
5920                          */
5921                         page = alloc_huge_page_vma(h, dst_vma, dst_addr);
5922                         if (!page) {
5923                                 ret = -ENOMEM;
5924                                 goto out;
5925                         }
5926                         *pagep = page;
5927                         /* Set the outparam pagep and return to the caller to
5928                          * copy the contents outside the lock. Don't free the
5929                          * page.
5930                          */
5931                         goto out;
5932                 }
5933         } else {
5934                 if (vm_shared &&
5935                     hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
5936                         put_page(*pagep);
5937                         ret = -EEXIST;
5938                         *pagep = NULL;
5939                         goto out;
5940                 }
5941
5942                 page = alloc_huge_page(dst_vma, dst_addr, 0);
5943                 if (IS_ERR(page)) {
5944                         ret = -ENOMEM;
5945                         *pagep = NULL;
5946                         goto out;
5947                 }
5948                 copy_user_huge_page(page, *pagep, dst_addr, dst_vma,
5949                                     pages_per_huge_page(h));
5950                 put_page(*pagep);
5951                 *pagep = NULL;
5952         }
5953
5954         /*
5955          * The memory barrier inside __SetPageUptodate makes sure that
5956          * preceding stores to the page contents become visible before
5957          * the set_pte_at() write.
5958          */
5959         __SetPageUptodate(page);
5960
5961         /* Add shared, newly allocated pages to the page cache. */
5962         if (vm_shared && !is_continue) {
5963                 size = i_size_read(mapping->host) >> huge_page_shift(h);
5964                 ret = -EFAULT;
5965                 if (idx >= size)
5966                         goto out_release_nounlock;
5967
5968                 /*
5969                  * Serialization between remove_inode_hugepages() and
5970                  * huge_add_to_page_cache() below happens through the
5971                  * hugetlb_fault_mutex_table that here must be hold by
5972                  * the caller.
5973                  */
5974                 ret = huge_add_to_page_cache(page, mapping, idx);
5975                 if (ret)
5976                         goto out_release_nounlock;
5977                 page_in_pagecache = true;
5978         }
5979
5980         ptl = huge_pte_lockptr(h, dst_mm, dst_pte);
5981         spin_lock(ptl);
5982
5983         /*
5984          * Recheck the i_size after holding PT lock to make sure not
5985          * to leave any page mapped (as page_mapped()) beyond the end
5986          * of the i_size (remove_inode_hugepages() is strict about
5987          * enforcing that). If we bail out here, we'll also leave a
5988          * page in the radix tree in the vm_shared case beyond the end
5989          * of the i_size, but remove_inode_hugepages() will take care
5990          * of it as soon as we drop the hugetlb_fault_mutex_table.
5991          */
5992         size = i_size_read(mapping->host) >> huge_page_shift(h);
5993         ret = -EFAULT;
5994         if (idx >= size)
5995                 goto out_release_unlock;
5996
5997         ret = -EEXIST;
5998         /*
5999          * We allow to overwrite a pte marker: consider when both MISSING|WP
6000          * registered, we firstly wr-protect a none pte which has no page cache
6001          * page backing it, then access the page.
6002          */
6003         if (!huge_pte_none_mostly(huge_ptep_get(dst_pte)))
6004                 goto out_release_unlock;
6005
6006         if (vm_shared) {
6007                 page_dup_file_rmap(page, true);
6008         } else {
6009                 ClearHPageRestoreReserve(page);
6010                 hugepage_add_new_anon_rmap(page, dst_vma, dst_addr);
6011         }
6012
6013         /*
6014          * For either: (1) CONTINUE on a non-shared VMA, or (2) UFFDIO_COPY
6015          * with wp flag set, don't set pte write bit.
6016          */
6017         if (wp_copy || (is_continue && !vm_shared))
6018                 writable = 0;
6019         else
6020                 writable = dst_vma->vm_flags & VM_WRITE;
6021
6022         _dst_pte = make_huge_pte(dst_vma, page, writable);
6023         /*
6024          * Always mark UFFDIO_COPY page dirty; note that this may not be
6025          * extremely important for hugetlbfs for now since swapping is not
6026          * supported, but we should still be clear in that this page cannot be
6027          * thrown away at will, even if write bit not set.
6028          */
6029         _dst_pte = huge_pte_mkdirty(_dst_pte);
6030         _dst_pte = pte_mkyoung(_dst_pte);
6031
6032         if (wp_copy)
6033                 _dst_pte = huge_pte_mkuffd_wp(_dst_pte);
6034
6035         set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
6036
6037         hugetlb_count_add(pages_per_huge_page(h), dst_mm);
6038
6039         /* No need to invalidate - it was non-present before */
6040         update_mmu_cache(dst_vma, dst_addr, dst_pte);
6041
6042         spin_unlock(ptl);
6043         if (!is_continue)
6044                 SetHPageMigratable(page);
6045         if (vm_shared || is_continue)
6046                 unlock_page(page);
6047         ret = 0;
6048 out:
6049         return ret;
6050 out_release_unlock:
6051         spin_unlock(ptl);
6052         if (vm_shared || is_continue)
6053                 unlock_page(page);
6054 out_release_nounlock:
6055         if (!page_in_pagecache)
6056                 restore_reserve_on_error(h, dst_vma, dst_addr, page);
6057         put_page(page);
6058         goto out;
6059 }
6060 #endif /* CONFIG_USERFAULTFD */
6061
6062 static void record_subpages_vmas(struct page *page, struct vm_area_struct *vma,
6063                                  int refs, struct page **pages,
6064                                  struct vm_area_struct **vmas)
6065 {
6066         int nr;
6067
6068         for (nr = 0; nr < refs; nr++) {
6069                 if (likely(pages))
6070                         pages[nr] = mem_map_offset(page, nr);
6071                 if (vmas)
6072                         vmas[nr] = vma;
6073         }
6074 }
6075
6076 static inline bool __follow_hugetlb_must_fault(unsigned int flags, pte_t *pte,
6077                                                bool *unshare)
6078 {
6079         pte_t pteval = huge_ptep_get(pte);
6080
6081         *unshare = false;
6082         if (is_swap_pte(pteval))
6083                 return true;
6084         if (huge_pte_write(pteval))
6085                 return false;
6086         if (flags & FOLL_WRITE)
6087                 return true;
6088         if (gup_must_unshare(flags, pte_page(pteval))) {
6089                 *unshare = true;
6090                 return true;
6091         }
6092         return false;
6093 }
6094
6095 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
6096                          struct page **pages, struct vm_area_struct **vmas,
6097                          unsigned long *position, unsigned long *nr_pages,
6098                          long i, unsigned int flags, int *locked)
6099 {
6100         unsigned long pfn_offset;
6101         unsigned long vaddr = *position;
6102         unsigned long remainder = *nr_pages;
6103         struct hstate *h = hstate_vma(vma);
6104         int err = -EFAULT, refs;
6105
6106         while (vaddr < vma->vm_end && remainder) {
6107                 pte_t *pte;
6108                 spinlock_t *ptl = NULL;
6109                 bool unshare = false;
6110                 int absent;
6111                 struct page *page;
6112
6113                 /*
6114                  * If we have a pending SIGKILL, don't keep faulting pages and
6115                  * potentially allocating memory.
6116                  */
6117                 if (fatal_signal_pending(current)) {
6118                         remainder = 0;
6119                         break;
6120                 }
6121
6122                 /*
6123                  * Some archs (sparc64, sh*) have multiple pte_ts to
6124                  * each hugepage.  We have to make sure we get the
6125                  * first, for the page indexing below to work.
6126                  *
6127                  * Note that page table lock is not held when pte is null.
6128                  */
6129                 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h),
6130                                       huge_page_size(h));
6131                 if (pte)
6132                         ptl = huge_pte_lock(h, mm, pte);
6133                 absent = !pte || huge_pte_none(huge_ptep_get(pte));
6134
6135                 /*
6136                  * When coredumping, it suits get_dump_page if we just return
6137                  * an error where there's an empty slot with no huge pagecache
6138                  * to back it.  This way, we avoid allocating a hugepage, and
6139                  * the sparse dumpfile avoids allocating disk blocks, but its
6140                  * huge holes still show up with zeroes where they need to be.
6141                  */
6142                 if (absent && (flags & FOLL_DUMP) &&
6143                     !hugetlbfs_pagecache_present(h, vma, vaddr)) {
6144                         if (pte)
6145                                 spin_unlock(ptl);
6146                         remainder = 0;
6147                         break;
6148                 }
6149
6150                 /*
6151                  * We need call hugetlb_fault for both hugepages under migration
6152                  * (in which case hugetlb_fault waits for the migration,) and
6153                  * hwpoisoned hugepages (in which case we need to prevent the
6154                  * caller from accessing to them.) In order to do this, we use
6155                  * here is_swap_pte instead of is_hugetlb_entry_migration and
6156                  * is_hugetlb_entry_hwpoisoned. This is because it simply covers
6157                  * both cases, and because we can't follow correct pages
6158                  * directly from any kind of swap entries.
6159                  */
6160                 if (absent ||
6161                     __follow_hugetlb_must_fault(flags, pte, &unshare)) {
6162                         vm_fault_t ret;
6163                         unsigned int fault_flags = 0;
6164
6165                         if (pte)
6166                                 spin_unlock(ptl);
6167                         if (flags & FOLL_WRITE)
6168                                 fault_flags |= FAULT_FLAG_WRITE;
6169                         else if (unshare)
6170                                 fault_flags |= FAULT_FLAG_UNSHARE;
6171                         if (locked)
6172                                 fault_flags |= FAULT_FLAG_ALLOW_RETRY |
6173                                         FAULT_FLAG_KILLABLE;
6174                         if (flags & FOLL_NOWAIT)
6175                                 fault_flags |= FAULT_FLAG_ALLOW_RETRY |
6176                                         FAULT_FLAG_RETRY_NOWAIT;
6177                         if (flags & FOLL_TRIED) {
6178                                 /*
6179                                  * Note: FAULT_FLAG_ALLOW_RETRY and
6180                                  * FAULT_FLAG_TRIED can co-exist
6181                                  */
6182                                 fault_flags |= FAULT_FLAG_TRIED;
6183                         }
6184                         ret = hugetlb_fault(mm, vma, vaddr, fault_flags);
6185                         if (ret & VM_FAULT_ERROR) {
6186                                 err = vm_fault_to_errno(ret, flags);
6187                                 remainder = 0;
6188                                 break;
6189                         }
6190                         if (ret & VM_FAULT_RETRY) {
6191                                 if (locked &&
6192                                     !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
6193                                         *locked = 0;
6194                                 *nr_pages = 0;
6195                                 /*
6196                                  * VM_FAULT_RETRY must not return an
6197                                  * error, it will return zero
6198                                  * instead.
6199                                  *
6200                                  * No need to update "position" as the
6201                                  * caller will not check it after
6202                                  * *nr_pages is set to 0.
6203                                  */
6204                                 return i;
6205                         }
6206                         continue;
6207                 }
6208
6209                 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
6210                 page = pte_page(huge_ptep_get(pte));
6211
6212                 VM_BUG_ON_PAGE((flags & FOLL_PIN) && PageAnon(page) &&
6213                                !PageAnonExclusive(page), page);
6214
6215                 /*
6216                  * If subpage information not requested, update counters
6217                  * and skip the same_page loop below.
6218                  */
6219                 if (!pages && !vmas && !pfn_offset &&
6220                     (vaddr + huge_page_size(h) < vma->vm_end) &&
6221                     (remainder >= pages_per_huge_page(h))) {
6222                         vaddr += huge_page_size(h);
6223                         remainder -= pages_per_huge_page(h);
6224                         i += pages_per_huge_page(h);
6225                         spin_unlock(ptl);
6226                         continue;
6227                 }
6228
6229                 /* vaddr may not be aligned to PAGE_SIZE */
6230                 refs = min3(pages_per_huge_page(h) - pfn_offset, remainder,
6231                     (vma->vm_end - ALIGN_DOWN(vaddr, PAGE_SIZE)) >> PAGE_SHIFT);
6232
6233                 if (pages || vmas)
6234                         record_subpages_vmas(mem_map_offset(page, pfn_offset),
6235                                              vma, refs,
6236                                              likely(pages) ? pages + i : NULL,
6237                                              vmas ? vmas + i : NULL);
6238
6239                 if (pages) {
6240                         /*
6241                          * try_grab_folio() should always succeed here,
6242                          * because: a) we hold the ptl lock, and b) we've just
6243                          * checked that the huge page is present in the page
6244                          * tables. If the huge page is present, then the tail
6245                          * pages must also be present. The ptl prevents the
6246                          * head page and tail pages from being rearranged in
6247                          * any way. So this page must be available at this
6248                          * point, unless the page refcount overflowed:
6249                          */
6250                         if (WARN_ON_ONCE(!try_grab_folio(pages[i], refs,
6251                                                          flags))) {
6252                                 spin_unlock(ptl);
6253                                 remainder = 0;
6254                                 err = -ENOMEM;
6255                                 break;
6256                         }
6257                 }
6258
6259                 vaddr += (refs << PAGE_SHIFT);
6260                 remainder -= refs;
6261                 i += refs;
6262
6263                 spin_unlock(ptl);
6264         }
6265         *nr_pages = remainder;
6266         /*
6267          * setting position is actually required only if remainder is
6268          * not zero but it's faster not to add a "if (remainder)"
6269          * branch.
6270          */
6271         *position = vaddr;
6272
6273         return i ? i : err;
6274 }
6275
6276 unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
6277                 unsigned long address, unsigned long end,
6278                 pgprot_t newprot, unsigned long cp_flags)
6279 {
6280         struct mm_struct *mm = vma->vm_mm;
6281         unsigned long start = address;
6282         pte_t *ptep;
6283         pte_t pte;
6284         struct hstate *h = hstate_vma(vma);
6285         unsigned long pages = 0, psize = huge_page_size(h);
6286         bool shared_pmd = false;
6287         struct mmu_notifier_range range;
6288         bool uffd_wp = cp_flags & MM_CP_UFFD_WP;
6289         bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE;
6290
6291         /*
6292          * In the case of shared PMDs, the area to flush could be beyond
6293          * start/end.  Set range.start/range.end to cover the maximum possible
6294          * range if PMD sharing is possible.
6295          */
6296         mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA,
6297                                 0, vma, mm, start, end);
6298         adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
6299
6300         BUG_ON(address >= end);
6301         flush_cache_range(vma, range.start, range.end);
6302
6303         mmu_notifier_invalidate_range_start(&range);
6304         i_mmap_lock_write(vma->vm_file->f_mapping);
6305         for (; address < end; address += psize) {
6306                 spinlock_t *ptl;
6307                 ptep = huge_pte_offset(mm, address, psize);
6308                 if (!ptep)
6309                         continue;
6310                 ptl = huge_pte_lock(h, mm, ptep);
6311                 if (huge_pmd_unshare(mm, vma, &address, ptep)) {
6312                         /*
6313                          * When uffd-wp is enabled on the vma, unshare
6314                          * shouldn't happen at all.  Warn about it if it
6315                          * happened due to some reason.
6316                          */
6317                         WARN_ON_ONCE(uffd_wp || uffd_wp_resolve);
6318                         pages++;
6319                         spin_unlock(ptl);
6320                         shared_pmd = true;
6321                         continue;
6322                 }
6323                 pte = huge_ptep_get(ptep);
6324                 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
6325                         spin_unlock(ptl);
6326                         continue;
6327                 }
6328                 if (unlikely(is_hugetlb_entry_migration(pte))) {
6329                         swp_entry_t entry = pte_to_swp_entry(pte);
6330                         struct page *page = pfn_swap_entry_to_page(entry);
6331
6332                         if (!is_readable_migration_entry(entry)) {
6333                                 pte_t newpte;
6334
6335                                 if (PageAnon(page))
6336                                         entry = make_readable_exclusive_migration_entry(
6337                                                                 swp_offset(entry));
6338                                 else
6339                                         entry = make_readable_migration_entry(
6340                                                                 swp_offset(entry));
6341                                 newpte = swp_entry_to_pte(entry);
6342                                 if (uffd_wp)
6343                                         newpte = pte_swp_mkuffd_wp(newpte);
6344                                 else if (uffd_wp_resolve)
6345                                         newpte = pte_swp_clear_uffd_wp(newpte);
6346                                 set_huge_pte_at(mm, address, ptep, newpte);
6347                                 pages++;
6348                         }
6349                         spin_unlock(ptl);
6350                         continue;
6351                 }
6352                 if (unlikely(pte_marker_uffd_wp(pte))) {
6353                         /*
6354                          * This is changing a non-present pte into a none pte,
6355                          * no need for huge_ptep_modify_prot_start/commit().
6356                          */
6357                         if (uffd_wp_resolve)
6358                                 huge_pte_clear(mm, address, ptep, psize);
6359                 }
6360                 if (!huge_pte_none(pte)) {
6361                         pte_t old_pte;
6362                         unsigned int shift = huge_page_shift(hstate_vma(vma));
6363
6364                         old_pte = huge_ptep_modify_prot_start(vma, address, ptep);
6365                         pte = huge_pte_modify(old_pte, newprot);
6366                         pte = arch_make_huge_pte(pte, shift, vma->vm_flags);
6367                         if (uffd_wp)
6368                                 pte = huge_pte_mkuffd_wp(huge_pte_wrprotect(pte));
6369                         else if (uffd_wp_resolve)
6370                                 pte = huge_pte_clear_uffd_wp(pte);
6371                         huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte);
6372                         pages++;
6373                 } else {
6374                         /* None pte */
6375                         if (unlikely(uffd_wp))
6376                                 /* Safe to modify directly (none->non-present). */
6377                                 set_huge_pte_at(mm, address, ptep,
6378                                                 make_pte_marker(PTE_MARKER_UFFD_WP));
6379                 }
6380                 spin_unlock(ptl);
6381         }
6382         /*
6383          * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
6384          * may have cleared our pud entry and done put_page on the page table:
6385          * once we release i_mmap_rwsem, another task can do the final put_page
6386          * and that page table be reused and filled with junk.  If we actually
6387          * did unshare a page of pmds, flush the range corresponding to the pud.
6388          */
6389         if (shared_pmd)
6390                 flush_hugetlb_tlb_range(vma, range.start, range.end);
6391         else
6392                 flush_hugetlb_tlb_range(vma, start, end);
6393         /*
6394          * No need to call mmu_notifier_invalidate_range() we are downgrading
6395          * page table protection not changing it to point to a new page.
6396          *
6397          * See Documentation/mm/mmu_notifier.rst
6398          */
6399         i_mmap_unlock_write(vma->vm_file->f_mapping);
6400         mmu_notifier_invalidate_range_end(&range);
6401
6402         return pages << h->order;
6403 }
6404
6405 /* Return true if reservation was successful, false otherwise.  */
6406 bool hugetlb_reserve_pages(struct inode *inode,
6407                                         long from, long to,
6408                                         struct vm_area_struct *vma,
6409                                         vm_flags_t vm_flags)
6410 {
6411         long chg, add = -1;
6412         struct hstate *h = hstate_inode(inode);
6413         struct hugepage_subpool *spool = subpool_inode(inode);
6414         struct resv_map *resv_map;
6415         struct hugetlb_cgroup *h_cg = NULL;
6416         long gbl_reserve, regions_needed = 0;
6417
6418         /* This should never happen */
6419         if (from > to) {
6420                 VM_WARN(1, "%s called with a negative range\n", __func__);
6421                 return false;
6422         }
6423
6424         /*
6425          * Only apply hugepage reservation if asked. At fault time, an
6426          * attempt will be made for VM_NORESERVE to allocate a page
6427          * without using reserves
6428          */
6429         if (vm_flags & VM_NORESERVE)
6430                 return true;
6431
6432         /*
6433          * Shared mappings base their reservation on the number of pages that
6434          * are already allocated on behalf of the file. Private mappings need
6435          * to reserve the full area even if read-only as mprotect() may be
6436          * called to make the mapping read-write. Assume !vma is a shm mapping
6437          */
6438         if (!vma || vma->vm_flags & VM_MAYSHARE) {
6439                 /*
6440                  * resv_map can not be NULL as hugetlb_reserve_pages is only
6441                  * called for inodes for which resv_maps were created (see
6442                  * hugetlbfs_get_inode).
6443                  */
6444                 resv_map = inode_resv_map(inode);
6445
6446                 chg = region_chg(resv_map, from, to, &regions_needed);
6447
6448         } else {
6449                 /* Private mapping. */
6450                 resv_map = resv_map_alloc();
6451                 if (!resv_map)
6452                         return false;
6453
6454                 chg = to - from;
6455
6456                 set_vma_resv_map(vma, resv_map);
6457                 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
6458         }
6459
6460         if (chg < 0)
6461                 goto out_err;
6462
6463         if (hugetlb_cgroup_charge_cgroup_rsvd(hstate_index(h),
6464                                 chg * pages_per_huge_page(h), &h_cg) < 0)
6465                 goto out_err;
6466
6467         if (vma && !(vma->vm_flags & VM_MAYSHARE) && h_cg) {
6468                 /* For private mappings, the hugetlb_cgroup uncharge info hangs
6469                  * of the resv_map.
6470                  */
6471                 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, h_cg, h);
6472         }
6473
6474         /*
6475          * There must be enough pages in the subpool for the mapping. If
6476          * the subpool has a minimum size, there may be some global
6477          * reservations already in place (gbl_reserve).
6478          */
6479         gbl_reserve = hugepage_subpool_get_pages(spool, chg);
6480         if (gbl_reserve < 0)
6481                 goto out_uncharge_cgroup;
6482
6483         /*
6484          * Check enough hugepages are available for the reservation.
6485          * Hand the pages back to the subpool if there are not
6486          */
6487         if (hugetlb_acct_memory(h, gbl_reserve) < 0)
6488                 goto out_put_pages;
6489
6490         /*
6491          * Account for the reservations made. Shared mappings record regions
6492          * that have reservations as they are shared by multiple VMAs.
6493          * When the last VMA disappears, the region map says how much
6494          * the reservation was and the page cache tells how much of
6495          * the reservation was consumed. Private mappings are per-VMA and
6496          * only the consumed reservations are tracked. When the VMA
6497          * disappears, the original reservation is the VMA size and the
6498          * consumed reservations are stored in the map. Hence, nothing
6499          * else has to be done for private mappings here
6500          */
6501         if (!vma || vma->vm_flags & VM_MAYSHARE) {
6502                 add = region_add(resv_map, from, to, regions_needed, h, h_cg);
6503
6504                 if (unlikely(add < 0)) {
6505                         hugetlb_acct_memory(h, -gbl_reserve);
6506                         goto out_put_pages;
6507                 } else if (unlikely(chg > add)) {
6508                         /*
6509                          * pages in this range were added to the reserve
6510                          * map between region_chg and region_add.  This
6511                          * indicates a race with alloc_huge_page.  Adjust
6512                          * the subpool and reserve counts modified above
6513                          * based on the difference.
6514                          */
6515                         long rsv_adjust;
6516
6517                         /*
6518                          * hugetlb_cgroup_uncharge_cgroup_rsvd() will put the
6519                          * reference to h_cg->css. See comment below for detail.
6520                          */
6521                         hugetlb_cgroup_uncharge_cgroup_rsvd(
6522                                 hstate_index(h),
6523                                 (chg - add) * pages_per_huge_page(h), h_cg);
6524
6525                         rsv_adjust = hugepage_subpool_put_pages(spool,
6526                                                                 chg - add);
6527                         hugetlb_acct_memory(h, -rsv_adjust);
6528                 } else if (h_cg) {
6529                         /*
6530                          * The file_regions will hold their own reference to
6531                          * h_cg->css. So we should release the reference held
6532                          * via hugetlb_cgroup_charge_cgroup_rsvd() when we are
6533                          * done.
6534                          */
6535                         hugetlb_cgroup_put_rsvd_cgroup(h_cg);
6536                 }
6537         }
6538         return true;
6539
6540 out_put_pages:
6541         /* put back original number of pages, chg */
6542         (void)hugepage_subpool_put_pages(spool, chg);
6543 out_uncharge_cgroup:
6544         hugetlb_cgroup_uncharge_cgroup_rsvd(hstate_index(h),
6545                                             chg * pages_per_huge_page(h), h_cg);
6546 out_err:
6547         if (!vma || vma->vm_flags & VM_MAYSHARE)
6548                 /* Only call region_abort if the region_chg succeeded but the
6549                  * region_add failed or didn't run.
6550                  */
6551                 if (chg >= 0 && add < 0)
6552                         region_abort(resv_map, from, to, regions_needed);
6553         if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
6554                 kref_put(&resv_map->refs, resv_map_release);
6555         return false;
6556 }
6557
6558 long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
6559                                                                 long freed)
6560 {
6561         struct hstate *h = hstate_inode(inode);
6562         struct resv_map *resv_map = inode_resv_map(inode);
6563         long chg = 0;
6564         struct hugepage_subpool *spool = subpool_inode(inode);
6565         long gbl_reserve;
6566
6567         /*
6568          * Since this routine can be called in the evict inode path for all
6569          * hugetlbfs inodes, resv_map could be NULL.
6570          */
6571         if (resv_map) {
6572                 chg = region_del(resv_map, start, end);
6573                 /*
6574                  * region_del() can fail in the rare case where a region
6575                  * must be split and another region descriptor can not be
6576                  * allocated.  If end == LONG_MAX, it will not fail.
6577                  */
6578                 if (chg < 0)
6579                         return chg;
6580         }
6581
6582         spin_lock(&inode->i_lock);
6583         inode->i_blocks -= (blocks_per_huge_page(h) * freed);
6584         spin_unlock(&inode->i_lock);
6585
6586         /*
6587          * If the subpool has a minimum size, the number of global
6588          * reservations to be released may be adjusted.
6589          *
6590          * Note that !resv_map implies freed == 0. So (chg - freed)
6591          * won't go negative.
6592          */
6593         gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
6594         hugetlb_acct_memory(h, -gbl_reserve);
6595
6596         return 0;
6597 }
6598
6599 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
6600 static unsigned long page_table_shareable(struct vm_area_struct *svma,
6601                                 struct vm_area_struct *vma,
6602                                 unsigned long addr, pgoff_t idx)
6603 {
6604         unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
6605                                 svma->vm_start;
6606         unsigned long sbase = saddr & PUD_MASK;
6607         unsigned long s_end = sbase + PUD_SIZE;
6608
6609         /* Allow segments to share if only one is marked locked */
6610         unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
6611         unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
6612
6613         /*
6614          * match the virtual addresses, permission and the alignment of the
6615          * page table page.
6616          */
6617         if (pmd_index(addr) != pmd_index(saddr) ||
6618             vm_flags != svm_flags ||
6619             !range_in_vma(svma, sbase, s_end))
6620                 return 0;
6621
6622         return saddr;
6623 }
6624
6625 static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr)
6626 {
6627         unsigned long base = addr & PUD_MASK;
6628         unsigned long end = base + PUD_SIZE;
6629
6630         /*
6631          * check on proper vm_flags and page table alignment
6632          */
6633         if (vma->vm_flags & VM_MAYSHARE && range_in_vma(vma, base, end))
6634                 return true;
6635         return false;
6636 }
6637
6638 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
6639 {
6640 #ifdef CONFIG_USERFAULTFD
6641         if (uffd_disable_huge_pmd_share(vma))
6642                 return false;
6643 #endif
6644         return vma_shareable(vma, addr);
6645 }
6646
6647 /*
6648  * Determine if start,end range within vma could be mapped by shared pmd.
6649  * If yes, adjust start and end to cover range associated with possible
6650  * shared pmd mappings.
6651  */
6652 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
6653                                 unsigned long *start, unsigned long *end)
6654 {
6655         unsigned long v_start = ALIGN(vma->vm_start, PUD_SIZE),
6656                 v_end = ALIGN_DOWN(vma->vm_end, PUD_SIZE);
6657
6658         /*
6659          * vma needs to span at least one aligned PUD size, and the range
6660          * must be at least partially within in.
6661          */
6662         if (!(vma->vm_flags & VM_MAYSHARE) || !(v_end > v_start) ||
6663                 (*end <= v_start) || (*start >= v_end))
6664                 return;
6665
6666         /* Extend the range to be PUD aligned for a worst case scenario */
6667         if (*start > v_start)
6668                 *start = ALIGN_DOWN(*start, PUD_SIZE);
6669
6670         if (*end < v_end)
6671                 *end = ALIGN(*end, PUD_SIZE);
6672 }
6673
6674 /*
6675  * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
6676  * and returns the corresponding pte. While this is not necessary for the
6677  * !shared pmd case because we can allocate the pmd later as well, it makes the
6678  * code much cleaner.
6679  *
6680  * This routine must be called with i_mmap_rwsem held in at least read mode if
6681  * sharing is possible.  For hugetlbfs, this prevents removal of any page
6682  * table entries associated with the address space.  This is important as we
6683  * are setting up sharing based on existing page table entries (mappings).
6684  */
6685 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
6686                       unsigned long addr, pud_t *pud)
6687 {
6688         struct address_space *mapping = vma->vm_file->f_mapping;
6689         pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
6690                         vma->vm_pgoff;
6691         struct vm_area_struct *svma;
6692         unsigned long saddr;
6693         pte_t *spte = NULL;
6694         pte_t *pte;
6695         spinlock_t *ptl;
6696
6697         i_mmap_assert_locked(mapping);
6698         vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
6699                 if (svma == vma)
6700                         continue;
6701
6702                 saddr = page_table_shareable(svma, vma, addr, idx);
6703                 if (saddr) {
6704                         spte = huge_pte_offset(svma->vm_mm, saddr,
6705                                                vma_mmu_pagesize(svma));
6706                         if (spte) {
6707                                 get_page(virt_to_page(spte));
6708                                 break;
6709                         }
6710                 }
6711         }
6712
6713         if (!spte)
6714                 goto out;
6715
6716         ptl = huge_pte_lock(hstate_vma(vma), mm, spte);
6717         if (pud_none(*pud)) {
6718                 pud_populate(mm, pud,
6719                                 (pmd_t *)((unsigned long)spte & PAGE_MASK));
6720                 mm_inc_nr_pmds(mm);
6721         } else {
6722                 put_page(virt_to_page(spte));
6723         }
6724         spin_unlock(ptl);
6725 out:
6726         pte = (pte_t *)pmd_alloc(mm, pud, addr);
6727         return pte;
6728 }
6729
6730 /*
6731  * unmap huge page backed by shared pte.
6732  *
6733  * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
6734  * indicated by page_count > 1, unmap is achieved by clearing pud and
6735  * decrementing the ref count. If count == 1, the pte page is not shared.
6736  *
6737  * Called with page table lock held and i_mmap_rwsem held in write mode.
6738  *
6739  * returns: 1 successfully unmapped a shared pte page
6740  *          0 the underlying pte page is not shared, or it is the last user
6741  */
6742 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
6743                                         unsigned long *addr, pte_t *ptep)
6744 {
6745         pgd_t *pgd = pgd_offset(mm, *addr);
6746         p4d_t *p4d = p4d_offset(pgd, *addr);
6747         pud_t *pud = pud_offset(p4d, *addr);
6748
6749         i_mmap_assert_write_locked(vma->vm_file->f_mapping);
6750         BUG_ON(page_count(virt_to_page(ptep)) == 0);
6751         if (page_count(virt_to_page(ptep)) == 1)
6752                 return 0;
6753
6754         pud_clear(pud);
6755         put_page(virt_to_page(ptep));
6756         mm_dec_nr_pmds(mm);
6757         /*
6758          * This update of passed address optimizes loops sequentially
6759          * processing addresses in increments of huge page size (PMD_SIZE
6760          * in this case).  By clearing the pud, a PUD_SIZE area is unmapped.
6761          * Update address to the 'last page' in the cleared area so that
6762          * calling loop can move to first page past this area.
6763          */
6764         *addr |= PUD_SIZE - PMD_SIZE;
6765         return 1;
6766 }
6767
6768 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
6769 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
6770                       unsigned long addr, pud_t *pud)
6771 {
6772         return NULL;
6773 }
6774
6775 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
6776                                 unsigned long *addr, pte_t *ptep)
6777 {
6778         return 0;
6779 }
6780
6781 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
6782                                 unsigned long *start, unsigned long *end)
6783 {
6784 }
6785
6786 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
6787 {
6788         return false;
6789 }
6790 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
6791
6792 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
6793 pte_t *huge_pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
6794                         unsigned long addr, unsigned long sz)
6795 {
6796         pgd_t *pgd;
6797         p4d_t *p4d;
6798         pud_t *pud;
6799         pte_t *pte = NULL;
6800
6801         pgd = pgd_offset(mm, addr);
6802         p4d = p4d_alloc(mm, pgd, addr);
6803         if (!p4d)
6804                 return NULL;
6805         pud = pud_alloc(mm, p4d, addr);
6806         if (pud) {
6807                 if (sz == PUD_SIZE) {
6808                         pte = (pte_t *)pud;
6809                 } else {
6810                         BUG_ON(sz != PMD_SIZE);
6811                         if (want_pmd_share(vma, addr) && pud_none(*pud))
6812                                 pte = huge_pmd_share(mm, vma, addr, pud);
6813                         else
6814                                 pte = (pte_t *)pmd_alloc(mm, pud, addr);
6815                 }
6816         }
6817         BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte));
6818
6819         return pte;
6820 }
6821
6822 /*
6823  * huge_pte_offset() - Walk the page table to resolve the hugepage
6824  * entry at address @addr
6825  *
6826  * Return: Pointer to page table entry (PUD or PMD) for
6827  * address @addr, or NULL if a !p*d_present() entry is encountered and the
6828  * size @sz doesn't match the hugepage size at this level of the page
6829  * table.
6830  */
6831 pte_t *huge_pte_offset(struct mm_struct *mm,
6832                        unsigned long addr, unsigned long sz)
6833 {
6834         pgd_t *pgd;
6835         p4d_t *p4d;
6836         pud_t *pud;
6837         pmd_t *pmd;
6838
6839         pgd = pgd_offset(mm, addr);
6840         if (!pgd_present(*pgd))
6841                 return NULL;
6842         p4d = p4d_offset(pgd, addr);
6843         if (!p4d_present(*p4d))
6844                 return NULL;
6845
6846         pud = pud_offset(p4d, addr);
6847         if (sz == PUD_SIZE)
6848                 /* must be pud huge, non-present or none */
6849                 return (pte_t *)pud;
6850         if (!pud_present(*pud))
6851                 return NULL;
6852         /* must have a valid entry and size to go further */
6853
6854         pmd = pmd_offset(pud, addr);
6855         /* must be pmd huge, non-present or none */
6856         return (pte_t *)pmd;
6857 }
6858
6859 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
6860
6861 /*
6862  * These functions are overwritable if your architecture needs its own
6863  * behavior.
6864  */
6865 struct page * __weak
6866 follow_huge_addr(struct mm_struct *mm, unsigned long address,
6867                               int write)
6868 {
6869         return ERR_PTR(-EINVAL);
6870 }
6871
6872 struct page * __weak
6873 follow_huge_pd(struct vm_area_struct *vma,
6874                unsigned long address, hugepd_t hpd, int flags, int pdshift)
6875 {
6876         WARN(1, "hugepd follow called with no support for hugepage directory format\n");
6877         return NULL;
6878 }
6879
6880 struct page * __weak
6881 follow_huge_pmd(struct mm_struct *mm, unsigned long address,
6882                 pmd_t *pmd, int flags)
6883 {
6884         struct page *page = NULL;
6885         spinlock_t *ptl;
6886         pte_t pte;
6887
6888         /*
6889          * FOLL_PIN is not supported for follow_page(). Ordinary GUP goes via
6890          * follow_hugetlb_page().
6891          */
6892         if (WARN_ON_ONCE(flags & FOLL_PIN))
6893                 return NULL;
6894
6895 retry:
6896         ptl = pmd_lockptr(mm, pmd);
6897         spin_lock(ptl);
6898         /*
6899          * make sure that the address range covered by this pmd is not
6900          * unmapped from other threads.
6901          */
6902         if (!pmd_huge(*pmd))
6903                 goto out;
6904         pte = huge_ptep_get((pte_t *)pmd);
6905         if (pte_present(pte)) {
6906                 page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
6907                 /*
6908                  * try_grab_page() should always succeed here, because: a) we
6909                  * hold the pmd (ptl) lock, and b) we've just checked that the
6910                  * huge pmd (head) page is present in the page tables. The ptl
6911                  * prevents the head page and tail pages from being rearranged
6912                  * in any way. So this page must be available at this point,
6913                  * unless the page refcount overflowed:
6914                  */
6915                 if (WARN_ON_ONCE(!try_grab_page(page, flags))) {
6916                         page = NULL;
6917                         goto out;
6918                 }
6919         } else {
6920                 if (is_hugetlb_entry_migration(pte)) {
6921                         spin_unlock(ptl);
6922                         __migration_entry_wait_huge((pte_t *)pmd, ptl);
6923                         goto retry;
6924                 }
6925                 /*
6926                  * hwpoisoned entry is treated as no_page_table in
6927                  * follow_page_mask().
6928                  */
6929         }
6930 out:
6931         spin_unlock(ptl);
6932         return page;
6933 }
6934
6935 struct page * __weak
6936 follow_huge_pud(struct mm_struct *mm, unsigned long address,
6937                 pud_t *pud, int flags)
6938 {
6939         if (flags & (FOLL_GET | FOLL_PIN))
6940                 return NULL;
6941
6942         return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
6943 }
6944
6945 struct page * __weak
6946 follow_huge_pgd(struct mm_struct *mm, unsigned long address, pgd_t *pgd, int flags)
6947 {
6948         if (flags & (FOLL_GET | FOLL_PIN))
6949                 return NULL;
6950
6951         return pte_page(*(pte_t *)pgd) + ((address & ~PGDIR_MASK) >> PAGE_SHIFT);
6952 }
6953
6954 int isolate_hugetlb(struct page *page, struct list_head *list)
6955 {
6956         int ret = 0;
6957
6958         spin_lock_irq(&hugetlb_lock);
6959         if (!PageHeadHuge(page) ||
6960             !HPageMigratable(page) ||
6961             !get_page_unless_zero(page)) {
6962                 ret = -EBUSY;
6963                 goto unlock;
6964         }
6965         ClearHPageMigratable(page);
6966         list_move_tail(&page->lru, list);
6967 unlock:
6968         spin_unlock_irq(&hugetlb_lock);
6969         return ret;
6970 }
6971
6972 int get_hwpoison_huge_page(struct page *page, bool *hugetlb)
6973 {
6974         int ret = 0;
6975
6976         *hugetlb = false;
6977         spin_lock_irq(&hugetlb_lock);
6978         if (PageHeadHuge(page)) {
6979                 *hugetlb = true;
6980                 if (HPageFreed(page))
6981                         ret = 0;
6982                 else if (HPageMigratable(page))
6983                         ret = get_page_unless_zero(page);
6984                 else
6985                         ret = -EBUSY;
6986         }
6987         spin_unlock_irq(&hugetlb_lock);
6988         return ret;
6989 }
6990
6991 int get_huge_page_for_hwpoison(unsigned long pfn, int flags)
6992 {
6993         int ret;
6994
6995         spin_lock_irq(&hugetlb_lock);
6996         ret = __get_huge_page_for_hwpoison(pfn, flags);
6997         spin_unlock_irq(&hugetlb_lock);
6998         return ret;
6999 }
7000
7001 void putback_active_hugepage(struct page *page)
7002 {
7003         spin_lock_irq(&hugetlb_lock);
7004         SetHPageMigratable(page);
7005         list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
7006         spin_unlock_irq(&hugetlb_lock);
7007         put_page(page);
7008 }
7009
7010 void move_hugetlb_state(struct page *oldpage, struct page *newpage, int reason)
7011 {
7012         struct hstate *h = page_hstate(oldpage);
7013
7014         hugetlb_cgroup_migrate(oldpage, newpage);
7015         set_page_owner_migrate_reason(newpage, reason);
7016
7017         /*
7018          * transfer temporary state of the new huge page. This is
7019          * reverse to other transitions because the newpage is going to
7020          * be final while the old one will be freed so it takes over
7021          * the temporary status.
7022          *
7023          * Also note that we have to transfer the per-node surplus state
7024          * here as well otherwise the global surplus count will not match
7025          * the per-node's.
7026          */
7027         if (HPageTemporary(newpage)) {
7028                 int old_nid = page_to_nid(oldpage);
7029                 int new_nid = page_to_nid(newpage);
7030
7031                 SetHPageTemporary(oldpage);
7032                 ClearHPageTemporary(newpage);
7033
7034                 /*
7035                  * There is no need to transfer the per-node surplus state
7036                  * when we do not cross the node.
7037                  */
7038                 if (new_nid == old_nid)
7039                         return;
7040                 spin_lock_irq(&hugetlb_lock);
7041                 if (h->surplus_huge_pages_node[old_nid]) {
7042                         h->surplus_huge_pages_node[old_nid]--;
7043                         h->surplus_huge_pages_node[new_nid]++;
7044                 }
7045                 spin_unlock_irq(&hugetlb_lock);
7046         }
7047 }
7048
7049 /*
7050  * This function will unconditionally remove all the shared pmd pgtable entries
7051  * within the specific vma for a hugetlbfs memory range.
7052  */
7053 void hugetlb_unshare_all_pmds(struct vm_area_struct *vma)
7054 {
7055         struct hstate *h = hstate_vma(vma);
7056         unsigned long sz = huge_page_size(h);
7057         struct mm_struct *mm = vma->vm_mm;
7058         struct mmu_notifier_range range;
7059         unsigned long address, start, end;
7060         spinlock_t *ptl;
7061         pte_t *ptep;
7062
7063         if (!(vma->vm_flags & VM_MAYSHARE))
7064                 return;
7065
7066         start = ALIGN(vma->vm_start, PUD_SIZE);
7067         end = ALIGN_DOWN(vma->vm_end, PUD_SIZE);
7068
7069         if (start >= end)
7070                 return;
7071
7072         flush_cache_range(vma, start, end);
7073         /*
7074          * No need to call adjust_range_if_pmd_sharing_possible(), because
7075          * we have already done the PUD_SIZE alignment.
7076          */
7077         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
7078                                 start, end);
7079         mmu_notifier_invalidate_range_start(&range);
7080         i_mmap_lock_write(vma->vm_file->f_mapping);
7081         for (address = start; address < end; address += PUD_SIZE) {
7082                 unsigned long tmp = address;
7083
7084                 ptep = huge_pte_offset(mm, address, sz);
7085                 if (!ptep)
7086                         continue;
7087                 ptl = huge_pte_lock(h, mm, ptep);
7088                 /* We don't want 'address' to be changed */
7089                 huge_pmd_unshare(mm, vma, &tmp, ptep);
7090                 spin_unlock(ptl);
7091         }
7092         flush_hugetlb_tlb_range(vma, start, end);
7093         i_mmap_unlock_write(vma->vm_file->f_mapping);
7094         /*
7095          * No need to call mmu_notifier_invalidate_range(), see
7096          * Documentation/mm/mmu_notifier.rst.
7097          */
7098         mmu_notifier_invalidate_range_end(&range);
7099 }
7100
7101 #ifdef CONFIG_CMA
7102 static bool cma_reserve_called __initdata;
7103
7104 static int __init cmdline_parse_hugetlb_cma(char *p)
7105 {
7106         int nid, count = 0;
7107         unsigned long tmp;
7108         char *s = p;
7109
7110         while (*s) {
7111                 if (sscanf(s, "%lu%n", &tmp, &count) != 1)
7112                         break;
7113
7114                 if (s[count] == ':') {
7115                         if (tmp >= MAX_NUMNODES)
7116                                 break;
7117                         nid = array_index_nospec(tmp, MAX_NUMNODES);
7118
7119                         s += count + 1;
7120                         tmp = memparse(s, &s);
7121                         hugetlb_cma_size_in_node[nid] = tmp;
7122                         hugetlb_cma_size += tmp;
7123
7124                         /*
7125                          * Skip the separator if have one, otherwise
7126                          * break the parsing.
7127                          */
7128                         if (*s == ',')
7129                                 s++;
7130                         else
7131                                 break;
7132                 } else {
7133                         hugetlb_cma_size = memparse(p, &p);
7134                         break;
7135                 }
7136         }
7137
7138         return 0;
7139 }
7140
7141 early_param("hugetlb_cma", cmdline_parse_hugetlb_cma);
7142
7143 void __init hugetlb_cma_reserve(int order)
7144 {
7145         unsigned long size, reserved, per_node;
7146         bool node_specific_cma_alloc = false;
7147         int nid;
7148
7149         cma_reserve_called = true;
7150
7151         if (!hugetlb_cma_size)
7152                 return;
7153
7154         for (nid = 0; nid < MAX_NUMNODES; nid++) {
7155                 if (hugetlb_cma_size_in_node[nid] == 0)
7156                         continue;
7157
7158                 if (!node_online(nid)) {
7159                         pr_warn("hugetlb_cma: invalid node %d specified\n", nid);
7160                         hugetlb_cma_size -= hugetlb_cma_size_in_node[nid];
7161                         hugetlb_cma_size_in_node[nid] = 0;
7162                         continue;
7163                 }
7164
7165                 if (hugetlb_cma_size_in_node[nid] < (PAGE_SIZE << order)) {
7166                         pr_warn("hugetlb_cma: cma area of node %d should be at least %lu MiB\n",
7167                                 nid, (PAGE_SIZE << order) / SZ_1M);
7168                         hugetlb_cma_size -= hugetlb_cma_size_in_node[nid];
7169                         hugetlb_cma_size_in_node[nid] = 0;
7170                 } else {
7171                         node_specific_cma_alloc = true;
7172                 }
7173         }
7174
7175         /* Validate the CMA size again in case some invalid nodes specified. */
7176         if (!hugetlb_cma_size)
7177                 return;
7178
7179         if (hugetlb_cma_size < (PAGE_SIZE << order)) {
7180                 pr_warn("hugetlb_cma: cma area should be at least %lu MiB\n",
7181                         (PAGE_SIZE << order) / SZ_1M);
7182                 hugetlb_cma_size = 0;
7183                 return;
7184         }
7185
7186         if (!node_specific_cma_alloc) {
7187                 /*
7188                  * If 3 GB area is requested on a machine with 4 numa nodes,
7189                  * let's allocate 1 GB on first three nodes and ignore the last one.
7190                  */
7191                 per_node = DIV_ROUND_UP(hugetlb_cma_size, nr_online_nodes);
7192                 pr_info("hugetlb_cma: reserve %lu MiB, up to %lu MiB per node\n",
7193                         hugetlb_cma_size / SZ_1M, per_node / SZ_1M);
7194         }
7195
7196         reserved = 0;
7197         for_each_online_node(nid) {
7198                 int res;
7199                 char name[CMA_MAX_NAME];
7200
7201                 if (node_specific_cma_alloc) {
7202                         if (hugetlb_cma_size_in_node[nid] == 0)
7203                                 continue;
7204
7205                         size = hugetlb_cma_size_in_node[nid];
7206                 } else {
7207                         size = min(per_node, hugetlb_cma_size - reserved);
7208                 }
7209
7210                 size = round_up(size, PAGE_SIZE << order);
7211
7212                 snprintf(name, sizeof(name), "hugetlb%d", nid);
7213                 /*
7214                  * Note that 'order per bit' is based on smallest size that
7215                  * may be returned to CMA allocator in the case of
7216                  * huge page demotion.
7217                  */
7218                 res = cma_declare_contiguous_nid(0, size, 0,
7219                                                 PAGE_SIZE << HUGETLB_PAGE_ORDER,
7220                                                  0, false, name,
7221                                                  &hugetlb_cma[nid], nid);
7222                 if (res) {
7223                         pr_warn("hugetlb_cma: reservation failed: err %d, node %d",
7224                                 res, nid);
7225                         continue;
7226                 }
7227
7228                 reserved += size;
7229                 pr_info("hugetlb_cma: reserved %lu MiB on node %d\n",
7230                         size / SZ_1M, nid);
7231
7232                 if (reserved >= hugetlb_cma_size)
7233                         break;
7234         }
7235
7236         if (!reserved)
7237                 /*
7238                  * hugetlb_cma_size is used to determine if allocations from
7239                  * cma are possible.  Set to zero if no cma regions are set up.
7240                  */
7241                 hugetlb_cma_size = 0;
7242 }
7243
7244 void __init hugetlb_cma_check(void)
7245 {
7246         if (!hugetlb_cma_size || cma_reserve_called)
7247                 return;
7248
7249         pr_warn("hugetlb_cma: the option isn't supported by current arch\n");
7250 }
7251
7252 #endif /* CONFIG_CMA */