ed202d29ca460f29d759aa977566d881b77e0c51
[linux-2.6-microblaze.git] / mm / hugetlb.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Generic hugetlb support.
4  * (C) Nadia Yvette Chambers, April 2004
5  */
6 #include <linux/list.h>
7 #include <linux/init.h>
8 #include <linux/mm.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/compiler.h>
17 #include <linux/cpuset.h>
18 #include <linux/mutex.h>
19 #include <linux/memblock.h>
20 #include <linux/sysfs.h>
21 #include <linux/slab.h>
22 #include <linux/sched/mm.h>
23 #include <linux/mmdebug.h>
24 #include <linux/sched/signal.h>
25 #include <linux/rmap.h>
26 #include <linux/string_helpers.h>
27 #include <linux/swap.h>
28 #include <linux/swapops.h>
29 #include <linux/jhash.h>
30 #include <linux/numa.h>
31 #include <linux/llist.h>
32 #include <linux/cma.h>
33 #include <linux/migrate.h>
34 #include <linux/nospec.h>
35 #include <linux/delayacct.h>
36
37 #include <asm/page.h>
38 #include <asm/pgalloc.h>
39 #include <asm/tlb.h>
40
41 #include <linux/io.h>
42 #include <linux/hugetlb.h>
43 #include <linux/hugetlb_cgroup.h>
44 #include <linux/node.h>
45 #include <linux/page_owner.h>
46 #include "internal.h"
47 #include "hugetlb_vmemmap.h"
48
49 int hugetlb_max_hstate __read_mostly;
50 unsigned int default_hstate_idx;
51 struct hstate hstates[HUGE_MAX_HSTATE];
52
53 #ifdef CONFIG_CMA
54 static struct cma *hugetlb_cma[MAX_NUMNODES];
55 static unsigned long hugetlb_cma_size_in_node[MAX_NUMNODES] __initdata;
56 static bool hugetlb_cma_page(struct page *page, unsigned int order)
57 {
58         return cma_pages_valid(hugetlb_cma[page_to_nid(page)], page,
59                                 1 << order);
60 }
61 #else
62 static bool hugetlb_cma_page(struct page *page, unsigned int order)
63 {
64         return false;
65 }
66 #endif
67 static unsigned long hugetlb_cma_size __initdata;
68
69 /*
70  * Minimum page order among possible hugepage sizes, set to a proper value
71  * at boot time.
72  */
73 static unsigned int minimum_order __read_mostly = UINT_MAX;
74
75 __initdata LIST_HEAD(huge_boot_pages);
76
77 /* for command line parsing */
78 static struct hstate * __initdata parsed_hstate;
79 static unsigned long __initdata default_hstate_max_huge_pages;
80 static bool __initdata parsed_valid_hugepagesz = true;
81 static bool __initdata parsed_default_hugepagesz;
82 static unsigned int default_hugepages_in_node[MAX_NUMNODES] __initdata;
83
84 /*
85  * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
86  * free_huge_pages, and surplus_huge_pages.
87  */
88 DEFINE_SPINLOCK(hugetlb_lock);
89
90 /*
91  * Serializes faults on the same logical page.  This is used to
92  * prevent spurious OOMs when the hugepage pool is fully utilized.
93  */
94 static int num_fault_mutexes;
95 struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
96
97 /* Forward declaration */
98 static int hugetlb_acct_memory(struct hstate *h, long delta);
99
100 static inline bool subpool_is_free(struct hugepage_subpool *spool)
101 {
102         if (spool->count)
103                 return false;
104         if (spool->max_hpages != -1)
105                 return spool->used_hpages == 0;
106         if (spool->min_hpages != -1)
107                 return spool->rsv_hpages == spool->min_hpages;
108
109         return true;
110 }
111
112 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool,
113                                                 unsigned long irq_flags)
114 {
115         spin_unlock_irqrestore(&spool->lock, irq_flags);
116
117         /* If no pages are used, and no other handles to the subpool
118          * remain, give up any reservations based on minimum size and
119          * free the subpool */
120         if (subpool_is_free(spool)) {
121                 if (spool->min_hpages != -1)
122                         hugetlb_acct_memory(spool->hstate,
123                                                 -spool->min_hpages);
124                 kfree(spool);
125         }
126 }
127
128 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
129                                                 long min_hpages)
130 {
131         struct hugepage_subpool *spool;
132
133         spool = kzalloc(sizeof(*spool), GFP_KERNEL);
134         if (!spool)
135                 return NULL;
136
137         spin_lock_init(&spool->lock);
138         spool->count = 1;
139         spool->max_hpages = max_hpages;
140         spool->hstate = h;
141         spool->min_hpages = min_hpages;
142
143         if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
144                 kfree(spool);
145                 return NULL;
146         }
147         spool->rsv_hpages = min_hpages;
148
149         return spool;
150 }
151
152 void hugepage_put_subpool(struct hugepage_subpool *spool)
153 {
154         unsigned long flags;
155
156         spin_lock_irqsave(&spool->lock, flags);
157         BUG_ON(!spool->count);
158         spool->count--;
159         unlock_or_release_subpool(spool, flags);
160 }
161
162 /*
163  * Subpool accounting for allocating and reserving pages.
164  * Return -ENOMEM if there are not enough resources to satisfy the
165  * request.  Otherwise, return the number of pages by which the
166  * global pools must be adjusted (upward).  The returned value may
167  * only be different than the passed value (delta) in the case where
168  * a subpool minimum size must be maintained.
169  */
170 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
171                                       long delta)
172 {
173         long ret = delta;
174
175         if (!spool)
176                 return ret;
177
178         spin_lock_irq(&spool->lock);
179
180         if (spool->max_hpages != -1) {          /* maximum size accounting */
181                 if ((spool->used_hpages + delta) <= spool->max_hpages)
182                         spool->used_hpages += delta;
183                 else {
184                         ret = -ENOMEM;
185                         goto unlock_ret;
186                 }
187         }
188
189         /* minimum size accounting */
190         if (spool->min_hpages != -1 && spool->rsv_hpages) {
191                 if (delta > spool->rsv_hpages) {
192                         /*
193                          * Asking for more reserves than those already taken on
194                          * behalf of subpool.  Return difference.
195                          */
196                         ret = delta - spool->rsv_hpages;
197                         spool->rsv_hpages = 0;
198                 } else {
199                         ret = 0;        /* reserves already accounted for */
200                         spool->rsv_hpages -= delta;
201                 }
202         }
203
204 unlock_ret:
205         spin_unlock_irq(&spool->lock);
206         return ret;
207 }
208
209 /*
210  * Subpool accounting for freeing and unreserving pages.
211  * Return the number of global page reservations that must be dropped.
212  * The return value may only be different than the passed value (delta)
213  * in the case where a subpool minimum size must be maintained.
214  */
215 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
216                                        long delta)
217 {
218         long ret = delta;
219         unsigned long flags;
220
221         if (!spool)
222                 return delta;
223
224         spin_lock_irqsave(&spool->lock, flags);
225
226         if (spool->max_hpages != -1)            /* maximum size accounting */
227                 spool->used_hpages -= delta;
228
229          /* minimum size accounting */
230         if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
231                 if (spool->rsv_hpages + delta <= spool->min_hpages)
232                         ret = 0;
233                 else
234                         ret = spool->rsv_hpages + delta - spool->min_hpages;
235
236                 spool->rsv_hpages += delta;
237                 if (spool->rsv_hpages > spool->min_hpages)
238                         spool->rsv_hpages = spool->min_hpages;
239         }
240
241         /*
242          * If hugetlbfs_put_super couldn't free spool due to an outstanding
243          * quota reference, free it now.
244          */
245         unlock_or_release_subpool(spool, flags);
246
247         return ret;
248 }
249
250 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
251 {
252         return HUGETLBFS_SB(inode->i_sb)->spool;
253 }
254
255 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
256 {
257         return subpool_inode(file_inode(vma->vm_file));
258 }
259
260 /* Helper that removes a struct file_region from the resv_map cache and returns
261  * it for use.
262  */
263 static struct file_region *
264 get_file_region_entry_from_cache(struct resv_map *resv, long from, long to)
265 {
266         struct file_region *nrg = NULL;
267
268         VM_BUG_ON(resv->region_cache_count <= 0);
269
270         resv->region_cache_count--;
271         nrg = list_first_entry(&resv->region_cache, struct file_region, link);
272         list_del(&nrg->link);
273
274         nrg->from = from;
275         nrg->to = to;
276
277         return nrg;
278 }
279
280 static void copy_hugetlb_cgroup_uncharge_info(struct file_region *nrg,
281                                               struct file_region *rg)
282 {
283 #ifdef CONFIG_CGROUP_HUGETLB
284         nrg->reservation_counter = rg->reservation_counter;
285         nrg->css = rg->css;
286         if (rg->css)
287                 css_get(rg->css);
288 #endif
289 }
290
291 /* Helper that records hugetlb_cgroup uncharge info. */
292 static void record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup *h_cg,
293                                                 struct hstate *h,
294                                                 struct resv_map *resv,
295                                                 struct file_region *nrg)
296 {
297 #ifdef CONFIG_CGROUP_HUGETLB
298         if (h_cg) {
299                 nrg->reservation_counter =
300                         &h_cg->rsvd_hugepage[hstate_index(h)];
301                 nrg->css = &h_cg->css;
302                 /*
303                  * The caller will hold exactly one h_cg->css reference for the
304                  * whole contiguous reservation region. But this area might be
305                  * scattered when there are already some file_regions reside in
306                  * it. As a result, many file_regions may share only one css
307                  * reference. In order to ensure that one file_region must hold
308                  * exactly one h_cg->css reference, we should do css_get for
309                  * each file_region and leave the reference held by caller
310                  * untouched.
311                  */
312                 css_get(&h_cg->css);
313                 if (!resv->pages_per_hpage)
314                         resv->pages_per_hpage = pages_per_huge_page(h);
315                 /* pages_per_hpage should be the same for all entries in
316                  * a resv_map.
317                  */
318                 VM_BUG_ON(resv->pages_per_hpage != pages_per_huge_page(h));
319         } else {
320                 nrg->reservation_counter = NULL;
321                 nrg->css = NULL;
322         }
323 #endif
324 }
325
326 static void put_uncharge_info(struct file_region *rg)
327 {
328 #ifdef CONFIG_CGROUP_HUGETLB
329         if (rg->css)
330                 css_put(rg->css);
331 #endif
332 }
333
334 static bool has_same_uncharge_info(struct file_region *rg,
335                                    struct file_region *org)
336 {
337 #ifdef CONFIG_CGROUP_HUGETLB
338         return rg->reservation_counter == org->reservation_counter &&
339                rg->css == org->css;
340
341 #else
342         return true;
343 #endif
344 }
345
346 static void coalesce_file_region(struct resv_map *resv, struct file_region *rg)
347 {
348         struct file_region *nrg = NULL, *prg = NULL;
349
350         prg = list_prev_entry(rg, link);
351         if (&prg->link != &resv->regions && prg->to == rg->from &&
352             has_same_uncharge_info(prg, rg)) {
353                 prg->to = rg->to;
354
355                 list_del(&rg->link);
356                 put_uncharge_info(rg);
357                 kfree(rg);
358
359                 rg = prg;
360         }
361
362         nrg = list_next_entry(rg, link);
363         if (&nrg->link != &resv->regions && nrg->from == rg->to &&
364             has_same_uncharge_info(nrg, rg)) {
365                 nrg->from = rg->from;
366
367                 list_del(&rg->link);
368                 put_uncharge_info(rg);
369                 kfree(rg);
370         }
371 }
372
373 static inline long
374 hugetlb_resv_map_add(struct resv_map *map, struct list_head *rg, long from,
375                      long to, struct hstate *h, struct hugetlb_cgroup *cg,
376                      long *regions_needed)
377 {
378         struct file_region *nrg;
379
380         if (!regions_needed) {
381                 nrg = get_file_region_entry_from_cache(map, from, to);
382                 record_hugetlb_cgroup_uncharge_info(cg, h, map, nrg);
383                 list_add(&nrg->link, rg);
384                 coalesce_file_region(map, nrg);
385         } else
386                 *regions_needed += 1;
387
388         return to - from;
389 }
390
391 /*
392  * Must be called with resv->lock held.
393  *
394  * Calling this with regions_needed != NULL will count the number of pages
395  * to be added but will not modify the linked list. And regions_needed will
396  * indicate the number of file_regions needed in the cache to carry out to add
397  * the regions for this range.
398  */
399 static long add_reservation_in_range(struct resv_map *resv, long f, long t,
400                                      struct hugetlb_cgroup *h_cg,
401                                      struct hstate *h, long *regions_needed)
402 {
403         long add = 0;
404         struct list_head *head = &resv->regions;
405         long last_accounted_offset = f;
406         struct file_region *iter, *trg = NULL;
407         struct list_head *rg = NULL;
408
409         if (regions_needed)
410                 *regions_needed = 0;
411
412         /* In this loop, we essentially handle an entry for the range
413          * [last_accounted_offset, iter->from), at every iteration, with some
414          * bounds checking.
415          */
416         list_for_each_entry_safe(iter, trg, head, link) {
417                 /* Skip irrelevant regions that start before our range. */
418                 if (iter->from < f) {
419                         /* If this region ends after the last accounted offset,
420                          * then we need to update last_accounted_offset.
421                          */
422                         if (iter->to > last_accounted_offset)
423                                 last_accounted_offset = iter->to;
424                         continue;
425                 }
426
427                 /* When we find a region that starts beyond our range, we've
428                  * finished.
429                  */
430                 if (iter->from >= t) {
431                         rg = iter->link.prev;
432                         break;
433                 }
434
435                 /* Add an entry for last_accounted_offset -> iter->from, and
436                  * update last_accounted_offset.
437                  */
438                 if (iter->from > last_accounted_offset)
439                         add += hugetlb_resv_map_add(resv, iter->link.prev,
440                                                     last_accounted_offset,
441                                                     iter->from, h, h_cg,
442                                                     regions_needed);
443
444                 last_accounted_offset = iter->to;
445         }
446
447         /* Handle the case where our range extends beyond
448          * last_accounted_offset.
449          */
450         if (!rg)
451                 rg = head->prev;
452         if (last_accounted_offset < t)
453                 add += hugetlb_resv_map_add(resv, rg, last_accounted_offset,
454                                             t, h, h_cg, regions_needed);
455
456         return add;
457 }
458
459 /* Must be called with resv->lock acquired. Will drop lock to allocate entries.
460  */
461 static int allocate_file_region_entries(struct resv_map *resv,
462                                         int regions_needed)
463         __must_hold(&resv->lock)
464 {
465         struct list_head allocated_regions;
466         int to_allocate = 0, i = 0;
467         struct file_region *trg = NULL, *rg = NULL;
468
469         VM_BUG_ON(regions_needed < 0);
470
471         INIT_LIST_HEAD(&allocated_regions);
472
473         /*
474          * Check for sufficient descriptors in the cache to accommodate
475          * the number of in progress add operations plus regions_needed.
476          *
477          * This is a while loop because when we drop the lock, some other call
478          * to region_add or region_del may have consumed some region_entries,
479          * so we keep looping here until we finally have enough entries for
480          * (adds_in_progress + regions_needed).
481          */
482         while (resv->region_cache_count <
483                (resv->adds_in_progress + regions_needed)) {
484                 to_allocate = resv->adds_in_progress + regions_needed -
485                               resv->region_cache_count;
486
487                 /* At this point, we should have enough entries in the cache
488                  * for all the existing adds_in_progress. We should only be
489                  * needing to allocate for regions_needed.
490                  */
491                 VM_BUG_ON(resv->region_cache_count < resv->adds_in_progress);
492
493                 spin_unlock(&resv->lock);
494                 for (i = 0; i < to_allocate; i++) {
495                         trg = kmalloc(sizeof(*trg), GFP_KERNEL);
496                         if (!trg)
497                                 goto out_of_memory;
498                         list_add(&trg->link, &allocated_regions);
499                 }
500
501                 spin_lock(&resv->lock);
502
503                 list_splice(&allocated_regions, &resv->region_cache);
504                 resv->region_cache_count += to_allocate;
505         }
506
507         return 0;
508
509 out_of_memory:
510         list_for_each_entry_safe(rg, trg, &allocated_regions, link) {
511                 list_del(&rg->link);
512                 kfree(rg);
513         }
514         return -ENOMEM;
515 }
516
517 /*
518  * Add the huge page range represented by [f, t) to the reserve
519  * map.  Regions will be taken from the cache to fill in this range.
520  * Sufficient regions should exist in the cache due to the previous
521  * call to region_chg with the same range, but in some cases the cache will not
522  * have sufficient entries due to races with other code doing region_add or
523  * region_del.  The extra needed entries will be allocated.
524  *
525  * regions_needed is the out value provided by a previous call to region_chg.
526  *
527  * Return the number of new huge pages added to the map.  This number is greater
528  * than or equal to zero.  If file_region entries needed to be allocated for
529  * this operation and we were not able to allocate, it returns -ENOMEM.
530  * region_add of regions of length 1 never allocate file_regions and cannot
531  * fail; region_chg will always allocate at least 1 entry and a region_add for
532  * 1 page will only require at most 1 entry.
533  */
534 static long region_add(struct resv_map *resv, long f, long t,
535                        long in_regions_needed, struct hstate *h,
536                        struct hugetlb_cgroup *h_cg)
537 {
538         long add = 0, actual_regions_needed = 0;
539
540         spin_lock(&resv->lock);
541 retry:
542
543         /* Count how many regions are actually needed to execute this add. */
544         add_reservation_in_range(resv, f, t, NULL, NULL,
545                                  &actual_regions_needed);
546
547         /*
548          * Check for sufficient descriptors in the cache to accommodate
549          * this add operation. Note that actual_regions_needed may be greater
550          * than in_regions_needed, as the resv_map may have been modified since
551          * the region_chg call. In this case, we need to make sure that we
552          * allocate extra entries, such that we have enough for all the
553          * existing adds_in_progress, plus the excess needed for this
554          * operation.
555          */
556         if (actual_regions_needed > in_regions_needed &&
557             resv->region_cache_count <
558                     resv->adds_in_progress +
559                             (actual_regions_needed - in_regions_needed)) {
560                 /* region_add operation of range 1 should never need to
561                  * allocate file_region entries.
562                  */
563                 VM_BUG_ON(t - f <= 1);
564
565                 if (allocate_file_region_entries(
566                             resv, actual_regions_needed - in_regions_needed)) {
567                         return -ENOMEM;
568                 }
569
570                 goto retry;
571         }
572
573         add = add_reservation_in_range(resv, f, t, h_cg, h, NULL);
574
575         resv->adds_in_progress -= in_regions_needed;
576
577         spin_unlock(&resv->lock);
578         return add;
579 }
580
581 /*
582  * Examine the existing reserve map and determine how many
583  * huge pages in the specified range [f, t) are NOT currently
584  * represented.  This routine is called before a subsequent
585  * call to region_add that will actually modify the reserve
586  * map to add the specified range [f, t).  region_chg does
587  * not change the number of huge pages represented by the
588  * map.  A number of new file_region structures is added to the cache as a
589  * placeholder, for the subsequent region_add call to use. At least 1
590  * file_region structure is added.
591  *
592  * out_regions_needed is the number of regions added to the
593  * resv->adds_in_progress.  This value needs to be provided to a follow up call
594  * to region_add or region_abort for proper accounting.
595  *
596  * Returns the number of huge pages that need to be added to the existing
597  * reservation map for the range [f, t).  This number is greater or equal to
598  * zero.  -ENOMEM is returned if a new file_region structure or cache entry
599  * is needed and can not be allocated.
600  */
601 static long region_chg(struct resv_map *resv, long f, long t,
602                        long *out_regions_needed)
603 {
604         long chg = 0;
605
606         spin_lock(&resv->lock);
607
608         /* Count how many hugepages in this range are NOT represented. */
609         chg = add_reservation_in_range(resv, f, t, NULL, NULL,
610                                        out_regions_needed);
611
612         if (*out_regions_needed == 0)
613                 *out_regions_needed = 1;
614
615         if (allocate_file_region_entries(resv, *out_regions_needed))
616                 return -ENOMEM;
617
618         resv->adds_in_progress += *out_regions_needed;
619
620         spin_unlock(&resv->lock);
621         return chg;
622 }
623
624 /*
625  * Abort the in progress add operation.  The adds_in_progress field
626  * of the resv_map keeps track of the operations in progress between
627  * calls to region_chg and region_add.  Operations are sometimes
628  * aborted after the call to region_chg.  In such cases, region_abort
629  * is called to decrement the adds_in_progress counter. regions_needed
630  * is the value returned by the region_chg call, it is used to decrement
631  * the adds_in_progress counter.
632  *
633  * NOTE: The range arguments [f, t) are not needed or used in this
634  * routine.  They are kept to make reading the calling code easier as
635  * arguments will match the associated region_chg call.
636  */
637 static void region_abort(struct resv_map *resv, long f, long t,
638                          long regions_needed)
639 {
640         spin_lock(&resv->lock);
641         VM_BUG_ON(!resv->region_cache_count);
642         resv->adds_in_progress -= regions_needed;
643         spin_unlock(&resv->lock);
644 }
645
646 /*
647  * Delete the specified range [f, t) from the reserve map.  If the
648  * t parameter is LONG_MAX, this indicates that ALL regions after f
649  * should be deleted.  Locate the regions which intersect [f, t)
650  * and either trim, delete or split the existing regions.
651  *
652  * Returns the number of huge pages deleted from the reserve map.
653  * In the normal case, the return value is zero or more.  In the
654  * case where a region must be split, a new region descriptor must
655  * be allocated.  If the allocation fails, -ENOMEM will be returned.
656  * NOTE: If the parameter t == LONG_MAX, then we will never split
657  * a region and possibly return -ENOMEM.  Callers specifying
658  * t == LONG_MAX do not need to check for -ENOMEM error.
659  */
660 static long region_del(struct resv_map *resv, long f, long t)
661 {
662         struct list_head *head = &resv->regions;
663         struct file_region *rg, *trg;
664         struct file_region *nrg = NULL;
665         long del = 0;
666
667 retry:
668         spin_lock(&resv->lock);
669         list_for_each_entry_safe(rg, trg, head, link) {
670                 /*
671                  * Skip regions before the range to be deleted.  file_region
672                  * ranges are normally of the form [from, to).  However, there
673                  * may be a "placeholder" entry in the map which is of the form
674                  * (from, to) with from == to.  Check for placeholder entries
675                  * at the beginning of the range to be deleted.
676                  */
677                 if (rg->to <= f && (rg->to != rg->from || rg->to != f))
678                         continue;
679
680                 if (rg->from >= t)
681                         break;
682
683                 if (f > rg->from && t < rg->to) { /* Must split region */
684                         /*
685                          * Check for an entry in the cache before dropping
686                          * lock and attempting allocation.
687                          */
688                         if (!nrg &&
689                             resv->region_cache_count > resv->adds_in_progress) {
690                                 nrg = list_first_entry(&resv->region_cache,
691                                                         struct file_region,
692                                                         link);
693                                 list_del(&nrg->link);
694                                 resv->region_cache_count--;
695                         }
696
697                         if (!nrg) {
698                                 spin_unlock(&resv->lock);
699                                 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
700                                 if (!nrg)
701                                         return -ENOMEM;
702                                 goto retry;
703                         }
704
705                         del += t - f;
706                         hugetlb_cgroup_uncharge_file_region(
707                                 resv, rg, t - f, false);
708
709                         /* New entry for end of split region */
710                         nrg->from = t;
711                         nrg->to = rg->to;
712
713                         copy_hugetlb_cgroup_uncharge_info(nrg, rg);
714
715                         INIT_LIST_HEAD(&nrg->link);
716
717                         /* Original entry is trimmed */
718                         rg->to = f;
719
720                         list_add(&nrg->link, &rg->link);
721                         nrg = NULL;
722                         break;
723                 }
724
725                 if (f <= rg->from && t >= rg->to) { /* Remove entire region */
726                         del += rg->to - rg->from;
727                         hugetlb_cgroup_uncharge_file_region(resv, rg,
728                                                             rg->to - rg->from, true);
729                         list_del(&rg->link);
730                         kfree(rg);
731                         continue;
732                 }
733
734                 if (f <= rg->from) {    /* Trim beginning of region */
735                         hugetlb_cgroup_uncharge_file_region(resv, rg,
736                                                             t - rg->from, false);
737
738                         del += t - rg->from;
739                         rg->from = t;
740                 } else {                /* Trim end of region */
741                         hugetlb_cgroup_uncharge_file_region(resv, rg,
742                                                             rg->to - f, false);
743
744                         del += rg->to - f;
745                         rg->to = f;
746                 }
747         }
748
749         spin_unlock(&resv->lock);
750         kfree(nrg);
751         return del;
752 }
753
754 /*
755  * A rare out of memory error was encountered which prevented removal of
756  * the reserve map region for a page.  The huge page itself was free'ed
757  * and removed from the page cache.  This routine will adjust the subpool
758  * usage count, and the global reserve count if needed.  By incrementing
759  * these counts, the reserve map entry which could not be deleted will
760  * appear as a "reserved" entry instead of simply dangling with incorrect
761  * counts.
762  */
763 void hugetlb_fix_reserve_counts(struct inode *inode)
764 {
765         struct hugepage_subpool *spool = subpool_inode(inode);
766         long rsv_adjust;
767         bool reserved = false;
768
769         rsv_adjust = hugepage_subpool_get_pages(spool, 1);
770         if (rsv_adjust > 0) {
771                 struct hstate *h = hstate_inode(inode);
772
773                 if (!hugetlb_acct_memory(h, 1))
774                         reserved = true;
775         } else if (!rsv_adjust) {
776                 reserved = true;
777         }
778
779         if (!reserved)
780                 pr_warn("hugetlb: Huge Page Reserved count may go negative.\n");
781 }
782
783 /*
784  * Count and return the number of huge pages in the reserve map
785  * that intersect with the range [f, t).
786  */
787 static long region_count(struct resv_map *resv, long f, long t)
788 {
789         struct list_head *head = &resv->regions;
790         struct file_region *rg;
791         long chg = 0;
792
793         spin_lock(&resv->lock);
794         /* Locate each segment we overlap with, and count that overlap. */
795         list_for_each_entry(rg, head, link) {
796                 long seg_from;
797                 long seg_to;
798
799                 if (rg->to <= f)
800                         continue;
801                 if (rg->from >= t)
802                         break;
803
804                 seg_from = max(rg->from, f);
805                 seg_to = min(rg->to, t);
806
807                 chg += seg_to - seg_from;
808         }
809         spin_unlock(&resv->lock);
810
811         return chg;
812 }
813
814 /*
815  * Convert the address within this vma to the page offset within
816  * the mapping, in pagecache page units; huge pages here.
817  */
818 static pgoff_t vma_hugecache_offset(struct hstate *h,
819                         struct vm_area_struct *vma, unsigned long address)
820 {
821         return ((address - vma->vm_start) >> huge_page_shift(h)) +
822                         (vma->vm_pgoff >> huge_page_order(h));
823 }
824
825 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
826                                      unsigned long address)
827 {
828         return vma_hugecache_offset(hstate_vma(vma), vma, address);
829 }
830 EXPORT_SYMBOL_GPL(linear_hugepage_index);
831
832 /*
833  * Return the size of the pages allocated when backing a VMA. In the majority
834  * cases this will be same size as used by the page table entries.
835  */
836 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
837 {
838         if (vma->vm_ops && vma->vm_ops->pagesize)
839                 return vma->vm_ops->pagesize(vma);
840         return PAGE_SIZE;
841 }
842 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
843
844 /*
845  * Return the page size being used by the MMU to back a VMA. In the majority
846  * of cases, the page size used by the kernel matches the MMU size. On
847  * architectures where it differs, an architecture-specific 'strong'
848  * version of this symbol is required.
849  */
850 __weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
851 {
852         return vma_kernel_pagesize(vma);
853 }
854
855 /*
856  * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
857  * bits of the reservation map pointer, which are always clear due to
858  * alignment.
859  */
860 #define HPAGE_RESV_OWNER    (1UL << 0)
861 #define HPAGE_RESV_UNMAPPED (1UL << 1)
862 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
863
864 /*
865  * These helpers are used to track how many pages are reserved for
866  * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
867  * is guaranteed to have their future faults succeed.
868  *
869  * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
870  * the reserve counters are updated with the hugetlb_lock held. It is safe
871  * to reset the VMA at fork() time as it is not in use yet and there is no
872  * chance of the global counters getting corrupted as a result of the values.
873  *
874  * The private mapping reservation is represented in a subtly different
875  * manner to a shared mapping.  A shared mapping has a region map associated
876  * with the underlying file, this region map represents the backing file
877  * pages which have ever had a reservation assigned which this persists even
878  * after the page is instantiated.  A private mapping has a region map
879  * associated with the original mmap which is attached to all VMAs which
880  * reference it, this region map represents those offsets which have consumed
881  * reservation ie. where pages have been instantiated.
882  */
883 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
884 {
885         return (unsigned long)vma->vm_private_data;
886 }
887
888 static void set_vma_private_data(struct vm_area_struct *vma,
889                                                         unsigned long value)
890 {
891         vma->vm_private_data = (void *)value;
892 }
893
894 static void
895 resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map *resv_map,
896                                           struct hugetlb_cgroup *h_cg,
897                                           struct hstate *h)
898 {
899 #ifdef CONFIG_CGROUP_HUGETLB
900         if (!h_cg || !h) {
901                 resv_map->reservation_counter = NULL;
902                 resv_map->pages_per_hpage = 0;
903                 resv_map->css = NULL;
904         } else {
905                 resv_map->reservation_counter =
906                         &h_cg->rsvd_hugepage[hstate_index(h)];
907                 resv_map->pages_per_hpage = pages_per_huge_page(h);
908                 resv_map->css = &h_cg->css;
909         }
910 #endif
911 }
912
913 struct resv_map *resv_map_alloc(void)
914 {
915         struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
916         struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
917
918         if (!resv_map || !rg) {
919                 kfree(resv_map);
920                 kfree(rg);
921                 return NULL;
922         }
923
924         kref_init(&resv_map->refs);
925         spin_lock_init(&resv_map->lock);
926         INIT_LIST_HEAD(&resv_map->regions);
927
928         resv_map->adds_in_progress = 0;
929         /*
930          * Initialize these to 0. On shared mappings, 0's here indicate these
931          * fields don't do cgroup accounting. On private mappings, these will be
932          * re-initialized to the proper values, to indicate that hugetlb cgroup
933          * reservations are to be un-charged from here.
934          */
935         resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, NULL, NULL);
936
937         INIT_LIST_HEAD(&resv_map->region_cache);
938         list_add(&rg->link, &resv_map->region_cache);
939         resv_map->region_cache_count = 1;
940
941         return resv_map;
942 }
943
944 void resv_map_release(struct kref *ref)
945 {
946         struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
947         struct list_head *head = &resv_map->region_cache;
948         struct file_region *rg, *trg;
949
950         /* Clear out any active regions before we release the map. */
951         region_del(resv_map, 0, LONG_MAX);
952
953         /* ... and any entries left in the cache */
954         list_for_each_entry_safe(rg, trg, head, link) {
955                 list_del(&rg->link);
956                 kfree(rg);
957         }
958
959         VM_BUG_ON(resv_map->adds_in_progress);
960
961         kfree(resv_map);
962 }
963
964 static inline struct resv_map *inode_resv_map(struct inode *inode)
965 {
966         /*
967          * At inode evict time, i_mapping may not point to the original
968          * address space within the inode.  This original address space
969          * contains the pointer to the resv_map.  So, always use the
970          * address space embedded within the inode.
971          * The VERY common case is inode->mapping == &inode->i_data but,
972          * this may not be true for device special inodes.
973          */
974         return (struct resv_map *)(&inode->i_data)->private_data;
975 }
976
977 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
978 {
979         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
980         if (vma->vm_flags & VM_MAYSHARE) {
981                 struct address_space *mapping = vma->vm_file->f_mapping;
982                 struct inode *inode = mapping->host;
983
984                 return inode_resv_map(inode);
985
986         } else {
987                 return (struct resv_map *)(get_vma_private_data(vma) &
988                                                         ~HPAGE_RESV_MASK);
989         }
990 }
991
992 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
993 {
994         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
995         VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
996
997         set_vma_private_data(vma, (get_vma_private_data(vma) &
998                                 HPAGE_RESV_MASK) | (unsigned long)map);
999 }
1000
1001 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
1002 {
1003         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1004         VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
1005
1006         set_vma_private_data(vma, get_vma_private_data(vma) | flags);
1007 }
1008
1009 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
1010 {
1011         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1012
1013         return (get_vma_private_data(vma) & flag) != 0;
1014 }
1015
1016 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
1017 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
1018 {
1019         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1020         if (!(vma->vm_flags & VM_MAYSHARE))
1021                 vma->vm_private_data = (void *)0;
1022 }
1023
1024 /*
1025  * Reset and decrement one ref on hugepage private reservation.
1026  * Called with mm->mmap_sem writer semaphore held.
1027  * This function should be only used by move_vma() and operate on
1028  * same sized vma. It should never come here with last ref on the
1029  * reservation.
1030  */
1031 void clear_vma_resv_huge_pages(struct vm_area_struct *vma)
1032 {
1033         /*
1034          * Clear the old hugetlb private page reservation.
1035          * It has already been transferred to new_vma.
1036          *
1037          * During a mremap() operation of a hugetlb vma we call move_vma()
1038          * which copies vma into new_vma and unmaps vma. After the copy
1039          * operation both new_vma and vma share a reference to the resv_map
1040          * struct, and at that point vma is about to be unmapped. We don't
1041          * want to return the reservation to the pool at unmap of vma because
1042          * the reservation still lives on in new_vma, so simply decrement the
1043          * ref here and remove the resv_map reference from this vma.
1044          */
1045         struct resv_map *reservations = vma_resv_map(vma);
1046
1047         if (reservations && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1048                 resv_map_put_hugetlb_cgroup_uncharge_info(reservations);
1049                 kref_put(&reservations->refs, resv_map_release);
1050         }
1051
1052         reset_vma_resv_huge_pages(vma);
1053 }
1054
1055 /* Returns true if the VMA has associated reserve pages */
1056 static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
1057 {
1058         if (vma->vm_flags & VM_NORESERVE) {
1059                 /*
1060                  * This address is already reserved by other process(chg == 0),
1061                  * so, we should decrement reserved count. Without decrementing,
1062                  * reserve count remains after releasing inode, because this
1063                  * allocated page will go into page cache and is regarded as
1064                  * coming from reserved pool in releasing step.  Currently, we
1065                  * don't have any other solution to deal with this situation
1066                  * properly, so add work-around here.
1067                  */
1068                 if (vma->vm_flags & VM_MAYSHARE && chg == 0)
1069                         return true;
1070                 else
1071                         return false;
1072         }
1073
1074         /* Shared mappings always use reserves */
1075         if (vma->vm_flags & VM_MAYSHARE) {
1076                 /*
1077                  * We know VM_NORESERVE is not set.  Therefore, there SHOULD
1078                  * be a region map for all pages.  The only situation where
1079                  * there is no region map is if a hole was punched via
1080                  * fallocate.  In this case, there really are no reserves to
1081                  * use.  This situation is indicated if chg != 0.
1082                  */
1083                 if (chg)
1084                         return false;
1085                 else
1086                         return true;
1087         }
1088
1089         /*
1090          * Only the process that called mmap() has reserves for
1091          * private mappings.
1092          */
1093         if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1094                 /*
1095                  * Like the shared case above, a hole punch or truncate
1096                  * could have been performed on the private mapping.
1097                  * Examine the value of chg to determine if reserves
1098                  * actually exist or were previously consumed.
1099                  * Very Subtle - The value of chg comes from a previous
1100                  * call to vma_needs_reserves().  The reserve map for
1101                  * private mappings has different (opposite) semantics
1102                  * than that of shared mappings.  vma_needs_reserves()
1103                  * has already taken this difference in semantics into
1104                  * account.  Therefore, the meaning of chg is the same
1105                  * as in the shared case above.  Code could easily be
1106                  * combined, but keeping it separate draws attention to
1107                  * subtle differences.
1108                  */
1109                 if (chg)
1110                         return false;
1111                 else
1112                         return true;
1113         }
1114
1115         return false;
1116 }
1117
1118 static void enqueue_huge_page(struct hstate *h, struct page *page)
1119 {
1120         int nid = page_to_nid(page);
1121
1122         lockdep_assert_held(&hugetlb_lock);
1123         VM_BUG_ON_PAGE(page_count(page), page);
1124
1125         list_move(&page->lru, &h->hugepage_freelists[nid]);
1126         h->free_huge_pages++;
1127         h->free_huge_pages_node[nid]++;
1128         SetHPageFreed(page);
1129 }
1130
1131 static struct page *dequeue_huge_page_node_exact(struct hstate *h, int nid)
1132 {
1133         struct page *page;
1134         bool pin = !!(current->flags & PF_MEMALLOC_PIN);
1135
1136         lockdep_assert_held(&hugetlb_lock);
1137         list_for_each_entry(page, &h->hugepage_freelists[nid], lru) {
1138                 if (pin && !is_pinnable_page(page))
1139                         continue;
1140
1141                 if (PageHWPoison(page))
1142                         continue;
1143
1144                 list_move(&page->lru, &h->hugepage_activelist);
1145                 set_page_refcounted(page);
1146                 ClearHPageFreed(page);
1147                 h->free_huge_pages--;
1148                 h->free_huge_pages_node[nid]--;
1149                 return page;
1150         }
1151
1152         return NULL;
1153 }
1154
1155 static struct page *dequeue_huge_page_nodemask(struct hstate *h, gfp_t gfp_mask, int nid,
1156                 nodemask_t *nmask)
1157 {
1158         unsigned int cpuset_mems_cookie;
1159         struct zonelist *zonelist;
1160         struct zone *zone;
1161         struct zoneref *z;
1162         int node = NUMA_NO_NODE;
1163
1164         zonelist = node_zonelist(nid, gfp_mask);
1165
1166 retry_cpuset:
1167         cpuset_mems_cookie = read_mems_allowed_begin();
1168         for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
1169                 struct page *page;
1170
1171                 if (!cpuset_zone_allowed(zone, gfp_mask))
1172                         continue;
1173                 /*
1174                  * no need to ask again on the same node. Pool is node rather than
1175                  * zone aware
1176                  */
1177                 if (zone_to_nid(zone) == node)
1178                         continue;
1179                 node = zone_to_nid(zone);
1180
1181                 page = dequeue_huge_page_node_exact(h, node);
1182                 if (page)
1183                         return page;
1184         }
1185         if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
1186                 goto retry_cpuset;
1187
1188         return NULL;
1189 }
1190
1191 static struct page *dequeue_huge_page_vma(struct hstate *h,
1192                                 struct vm_area_struct *vma,
1193                                 unsigned long address, int avoid_reserve,
1194                                 long chg)
1195 {
1196         struct page *page = NULL;
1197         struct mempolicy *mpol;
1198         gfp_t gfp_mask;
1199         nodemask_t *nodemask;
1200         int nid;
1201
1202         /*
1203          * A child process with MAP_PRIVATE mappings created by their parent
1204          * have no page reserves. This check ensures that reservations are
1205          * not "stolen". The child may still get SIGKILLed
1206          */
1207         if (!vma_has_reserves(vma, chg) &&
1208                         h->free_huge_pages - h->resv_huge_pages == 0)
1209                 goto err;
1210
1211         /* If reserves cannot be used, ensure enough pages are in the pool */
1212         if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
1213                 goto err;
1214
1215         gfp_mask = htlb_alloc_mask(h);
1216         nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
1217
1218         if (mpol_is_preferred_many(mpol)) {
1219                 page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
1220
1221                 /* Fallback to all nodes if page==NULL */
1222                 nodemask = NULL;
1223         }
1224
1225         if (!page)
1226                 page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
1227
1228         if (page && !avoid_reserve && vma_has_reserves(vma, chg)) {
1229                 SetHPageRestoreReserve(page);
1230                 h->resv_huge_pages--;
1231         }
1232
1233         mpol_cond_put(mpol);
1234         return page;
1235
1236 err:
1237         return NULL;
1238 }
1239
1240 /*
1241  * common helper functions for hstate_next_node_to_{alloc|free}.
1242  * We may have allocated or freed a huge page based on a different
1243  * nodes_allowed previously, so h->next_node_to_{alloc|free} might
1244  * be outside of *nodes_allowed.  Ensure that we use an allowed
1245  * node for alloc or free.
1246  */
1247 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
1248 {
1249         nid = next_node_in(nid, *nodes_allowed);
1250         VM_BUG_ON(nid >= MAX_NUMNODES);
1251
1252         return nid;
1253 }
1254
1255 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
1256 {
1257         if (!node_isset(nid, *nodes_allowed))
1258                 nid = next_node_allowed(nid, nodes_allowed);
1259         return nid;
1260 }
1261
1262 /*
1263  * returns the previously saved node ["this node"] from which to
1264  * allocate a persistent huge page for the pool and advance the
1265  * next node from which to allocate, handling wrap at end of node
1266  * mask.
1267  */
1268 static int hstate_next_node_to_alloc(struct hstate *h,
1269                                         nodemask_t *nodes_allowed)
1270 {
1271         int nid;
1272
1273         VM_BUG_ON(!nodes_allowed);
1274
1275         nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
1276         h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
1277
1278         return nid;
1279 }
1280
1281 /*
1282  * helper for remove_pool_huge_page() - return the previously saved
1283  * node ["this node"] from which to free a huge page.  Advance the
1284  * next node id whether or not we find a free huge page to free so
1285  * that the next attempt to free addresses the next node.
1286  */
1287 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1288 {
1289         int nid;
1290
1291         VM_BUG_ON(!nodes_allowed);
1292
1293         nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1294         h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1295
1296         return nid;
1297 }
1298
1299 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask)           \
1300         for (nr_nodes = nodes_weight(*mask);                            \
1301                 nr_nodes > 0 &&                                         \
1302                 ((node = hstate_next_node_to_alloc(hs, mask)) || 1);    \
1303                 nr_nodes--)
1304
1305 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask)            \
1306         for (nr_nodes = nodes_weight(*mask);                            \
1307                 nr_nodes > 0 &&                                         \
1308                 ((node = hstate_next_node_to_free(hs, mask)) || 1);     \
1309                 nr_nodes--)
1310
1311 /* used to demote non-gigantic_huge pages as well */
1312 static void __destroy_compound_gigantic_page(struct page *page,
1313                                         unsigned int order, bool demote)
1314 {
1315         int i;
1316         int nr_pages = 1 << order;
1317         struct page *p = page + 1;
1318
1319         atomic_set(compound_mapcount_ptr(page), 0);
1320         atomic_set(compound_pincount_ptr(page), 0);
1321
1322         for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1323                 p->mapping = NULL;
1324                 clear_compound_head(p);
1325                 if (!demote)
1326                         set_page_refcounted(p);
1327         }
1328
1329         set_compound_order(page, 0);
1330 #ifdef CONFIG_64BIT
1331         page[1].compound_nr = 0;
1332 #endif
1333         __ClearPageHead(page);
1334 }
1335
1336 static void destroy_compound_hugetlb_page_for_demote(struct page *page,
1337                                         unsigned int order)
1338 {
1339         __destroy_compound_gigantic_page(page, order, true);
1340 }
1341
1342 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
1343 static void destroy_compound_gigantic_page(struct page *page,
1344                                         unsigned int order)
1345 {
1346         __destroy_compound_gigantic_page(page, order, false);
1347 }
1348
1349 static void free_gigantic_page(struct page *page, unsigned int order)
1350 {
1351         /*
1352          * If the page isn't allocated using the cma allocator,
1353          * cma_release() returns false.
1354          */
1355 #ifdef CONFIG_CMA
1356         if (cma_release(hugetlb_cma[page_to_nid(page)], page, 1 << order))
1357                 return;
1358 #endif
1359
1360         free_contig_range(page_to_pfn(page), 1 << order);
1361 }
1362
1363 #ifdef CONFIG_CONTIG_ALLOC
1364 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1365                 int nid, nodemask_t *nodemask)
1366 {
1367         unsigned long nr_pages = pages_per_huge_page(h);
1368         if (nid == NUMA_NO_NODE)
1369                 nid = numa_mem_id();
1370
1371 #ifdef CONFIG_CMA
1372         {
1373                 struct page *page;
1374                 int node;
1375
1376                 if (hugetlb_cma[nid]) {
1377                         page = cma_alloc(hugetlb_cma[nid], nr_pages,
1378                                         huge_page_order(h), true);
1379                         if (page)
1380                                 return page;
1381                 }
1382
1383                 if (!(gfp_mask & __GFP_THISNODE)) {
1384                         for_each_node_mask(node, *nodemask) {
1385                                 if (node == nid || !hugetlb_cma[node])
1386                                         continue;
1387
1388                                 page = cma_alloc(hugetlb_cma[node], nr_pages,
1389                                                 huge_page_order(h), true);
1390                                 if (page)
1391                                         return page;
1392                         }
1393                 }
1394         }
1395 #endif
1396
1397         return alloc_contig_pages(nr_pages, gfp_mask, nid, nodemask);
1398 }
1399
1400 #else /* !CONFIG_CONTIG_ALLOC */
1401 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1402                                         int nid, nodemask_t *nodemask)
1403 {
1404         return NULL;
1405 }
1406 #endif /* CONFIG_CONTIG_ALLOC */
1407
1408 #else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
1409 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1410                                         int nid, nodemask_t *nodemask)
1411 {
1412         return NULL;
1413 }
1414 static inline void free_gigantic_page(struct page *page, unsigned int order) { }
1415 static inline void destroy_compound_gigantic_page(struct page *page,
1416                                                 unsigned int order) { }
1417 #endif
1418
1419 /*
1420  * Remove hugetlb page from lists, and update dtor so that page appears
1421  * as just a compound page.
1422  *
1423  * A reference is held on the page, except in the case of demote.
1424  *
1425  * Must be called with hugetlb lock held.
1426  */
1427 static void __remove_hugetlb_page(struct hstate *h, struct page *page,
1428                                                         bool adjust_surplus,
1429                                                         bool demote)
1430 {
1431         int nid = page_to_nid(page);
1432
1433         VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
1434         VM_BUG_ON_PAGE(hugetlb_cgroup_from_page_rsvd(page), page);
1435
1436         lockdep_assert_held(&hugetlb_lock);
1437         if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1438                 return;
1439
1440         list_del(&page->lru);
1441
1442         if (HPageFreed(page)) {
1443                 h->free_huge_pages--;
1444                 h->free_huge_pages_node[nid]--;
1445         }
1446         if (adjust_surplus) {
1447                 h->surplus_huge_pages--;
1448                 h->surplus_huge_pages_node[nid]--;
1449         }
1450
1451         /*
1452          * Very subtle
1453          *
1454          * For non-gigantic pages set the destructor to the normal compound
1455          * page dtor.  This is needed in case someone takes an additional
1456          * temporary ref to the page, and freeing is delayed until they drop
1457          * their reference.
1458          *
1459          * For gigantic pages set the destructor to the null dtor.  This
1460          * destructor will never be called.  Before freeing the gigantic
1461          * page destroy_compound_gigantic_page will turn the compound page
1462          * into a simple group of pages.  After this the destructor does not
1463          * apply.
1464          *
1465          * This handles the case where more than one ref is held when and
1466          * after update_and_free_page is called.
1467          *
1468          * In the case of demote we do not ref count the page as it will soon
1469          * be turned into a page of smaller size.
1470          */
1471         if (!demote)
1472                 set_page_refcounted(page);
1473         if (hstate_is_gigantic(h))
1474                 set_compound_page_dtor(page, NULL_COMPOUND_DTOR);
1475         else
1476                 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
1477
1478         h->nr_huge_pages--;
1479         h->nr_huge_pages_node[nid]--;
1480 }
1481
1482 static void remove_hugetlb_page(struct hstate *h, struct page *page,
1483                                                         bool adjust_surplus)
1484 {
1485         __remove_hugetlb_page(h, page, adjust_surplus, false);
1486 }
1487
1488 static void remove_hugetlb_page_for_demote(struct hstate *h, struct page *page,
1489                                                         bool adjust_surplus)
1490 {
1491         __remove_hugetlb_page(h, page, adjust_surplus, true);
1492 }
1493
1494 static void add_hugetlb_page(struct hstate *h, struct page *page,
1495                              bool adjust_surplus)
1496 {
1497         int zeroed;
1498         int nid = page_to_nid(page);
1499
1500         VM_BUG_ON_PAGE(!HPageVmemmapOptimized(page), page);
1501
1502         lockdep_assert_held(&hugetlb_lock);
1503
1504         INIT_LIST_HEAD(&page->lru);
1505         h->nr_huge_pages++;
1506         h->nr_huge_pages_node[nid]++;
1507
1508         if (adjust_surplus) {
1509                 h->surplus_huge_pages++;
1510                 h->surplus_huge_pages_node[nid]++;
1511         }
1512
1513         set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1514         set_page_private(page, 0);
1515         SetHPageVmemmapOptimized(page);
1516
1517         /*
1518          * This page is about to be managed by the hugetlb allocator and
1519          * should have no users.  Drop our reference, and check for others
1520          * just in case.
1521          */
1522         zeroed = put_page_testzero(page);
1523         if (!zeroed)
1524                 /*
1525                  * It is VERY unlikely soneone else has taken a ref on
1526                  * the page.  In this case, we simply return as the
1527                  * hugetlb destructor (free_huge_page) will be called
1528                  * when this other ref is dropped.
1529                  */
1530                 return;
1531
1532         arch_clear_hugepage_flags(page);
1533         enqueue_huge_page(h, page);
1534 }
1535
1536 static void __update_and_free_page(struct hstate *h, struct page *page)
1537 {
1538         int i;
1539         struct page *subpage = page;
1540
1541         if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1542                 return;
1543
1544         if (hugetlb_vmemmap_alloc(h, page)) {
1545                 spin_lock_irq(&hugetlb_lock);
1546                 /*
1547                  * If we cannot allocate vmemmap pages, just refuse to free the
1548                  * page and put the page back on the hugetlb free list and treat
1549                  * as a surplus page.
1550                  */
1551                 add_hugetlb_page(h, page, true);
1552                 spin_unlock_irq(&hugetlb_lock);
1553                 return;
1554         }
1555
1556         for (i = 0; i < pages_per_huge_page(h);
1557              i++, subpage = mem_map_next(subpage, page, i)) {
1558                 subpage->flags &= ~(1 << PG_locked | 1 << PG_error |
1559                                 1 << PG_referenced | 1 << PG_dirty |
1560                                 1 << PG_active | 1 << PG_private |
1561                                 1 << PG_writeback);
1562         }
1563
1564         /*
1565          * Non-gigantic pages demoted from CMA allocated gigantic pages
1566          * need to be given back to CMA in free_gigantic_page.
1567          */
1568         if (hstate_is_gigantic(h) ||
1569             hugetlb_cma_page(page, huge_page_order(h))) {
1570                 destroy_compound_gigantic_page(page, huge_page_order(h));
1571                 free_gigantic_page(page, huge_page_order(h));
1572         } else {
1573                 __free_pages(page, huge_page_order(h));
1574         }
1575 }
1576
1577 /*
1578  * As update_and_free_page() can be called under any context, so we cannot
1579  * use GFP_KERNEL to allocate vmemmap pages. However, we can defer the
1580  * actual freeing in a workqueue to prevent from using GFP_ATOMIC to allocate
1581  * the vmemmap pages.
1582  *
1583  * free_hpage_workfn() locklessly retrieves the linked list of pages to be
1584  * freed and frees them one-by-one. As the page->mapping pointer is going
1585  * to be cleared in free_hpage_workfn() anyway, it is reused as the llist_node
1586  * structure of a lockless linked list of huge pages to be freed.
1587  */
1588 static LLIST_HEAD(hpage_freelist);
1589
1590 static void free_hpage_workfn(struct work_struct *work)
1591 {
1592         struct llist_node *node;
1593
1594         node = llist_del_all(&hpage_freelist);
1595
1596         while (node) {
1597                 struct page *page;
1598                 struct hstate *h;
1599
1600                 page = container_of((struct address_space **)node,
1601                                      struct page, mapping);
1602                 node = node->next;
1603                 page->mapping = NULL;
1604                 /*
1605                  * The VM_BUG_ON_PAGE(!PageHuge(page), page) in page_hstate()
1606                  * is going to trigger because a previous call to
1607                  * remove_hugetlb_page() will set_compound_page_dtor(page,
1608                  * NULL_COMPOUND_DTOR), so do not use page_hstate() directly.
1609                  */
1610                 h = size_to_hstate(page_size(page));
1611
1612                 __update_and_free_page(h, page);
1613
1614                 cond_resched();
1615         }
1616 }
1617 static DECLARE_WORK(free_hpage_work, free_hpage_workfn);
1618
1619 static inline void flush_free_hpage_work(struct hstate *h)
1620 {
1621         if (hugetlb_optimize_vmemmap_pages(h))
1622                 flush_work(&free_hpage_work);
1623 }
1624
1625 static void update_and_free_page(struct hstate *h, struct page *page,
1626                                  bool atomic)
1627 {
1628         if (!HPageVmemmapOptimized(page) || !atomic) {
1629                 __update_and_free_page(h, page);
1630                 return;
1631         }
1632
1633         /*
1634          * Defer freeing to avoid using GFP_ATOMIC to allocate vmemmap pages.
1635          *
1636          * Only call schedule_work() if hpage_freelist is previously
1637          * empty. Otherwise, schedule_work() had been called but the workfn
1638          * hasn't retrieved the list yet.
1639          */
1640         if (llist_add((struct llist_node *)&page->mapping, &hpage_freelist))
1641                 schedule_work(&free_hpage_work);
1642 }
1643
1644 static void update_and_free_pages_bulk(struct hstate *h, struct list_head *list)
1645 {
1646         struct page *page, *t_page;
1647
1648         list_for_each_entry_safe(page, t_page, list, lru) {
1649                 update_and_free_page(h, page, false);
1650                 cond_resched();
1651         }
1652 }
1653
1654 struct hstate *size_to_hstate(unsigned long size)
1655 {
1656         struct hstate *h;
1657
1658         for_each_hstate(h) {
1659                 if (huge_page_size(h) == size)
1660                         return h;
1661         }
1662         return NULL;
1663 }
1664
1665 void free_huge_page(struct page *page)
1666 {
1667         /*
1668          * Can't pass hstate in here because it is called from the
1669          * compound page destructor.
1670          */
1671         struct hstate *h = page_hstate(page);
1672         int nid = page_to_nid(page);
1673         struct hugepage_subpool *spool = hugetlb_page_subpool(page);
1674         bool restore_reserve;
1675         unsigned long flags;
1676
1677         VM_BUG_ON_PAGE(page_count(page), page);
1678         VM_BUG_ON_PAGE(page_mapcount(page), page);
1679
1680         hugetlb_set_page_subpool(page, NULL);
1681         if (PageAnon(page))
1682                 __ClearPageAnonExclusive(page);
1683         page->mapping = NULL;
1684         restore_reserve = HPageRestoreReserve(page);
1685         ClearHPageRestoreReserve(page);
1686
1687         /*
1688          * If HPageRestoreReserve was set on page, page allocation consumed a
1689          * reservation.  If the page was associated with a subpool, there
1690          * would have been a page reserved in the subpool before allocation
1691          * via hugepage_subpool_get_pages().  Since we are 'restoring' the
1692          * reservation, do not call hugepage_subpool_put_pages() as this will
1693          * remove the reserved page from the subpool.
1694          */
1695         if (!restore_reserve) {
1696                 /*
1697                  * A return code of zero implies that the subpool will be
1698                  * under its minimum size if the reservation is not restored
1699                  * after page is free.  Therefore, force restore_reserve
1700                  * operation.
1701                  */
1702                 if (hugepage_subpool_put_pages(spool, 1) == 0)
1703                         restore_reserve = true;
1704         }
1705
1706         spin_lock_irqsave(&hugetlb_lock, flags);
1707         ClearHPageMigratable(page);
1708         hugetlb_cgroup_uncharge_page(hstate_index(h),
1709                                      pages_per_huge_page(h), page);
1710         hugetlb_cgroup_uncharge_page_rsvd(hstate_index(h),
1711                                           pages_per_huge_page(h), page);
1712         if (restore_reserve)
1713                 h->resv_huge_pages++;
1714
1715         if (HPageTemporary(page)) {
1716                 remove_hugetlb_page(h, page, false);
1717                 spin_unlock_irqrestore(&hugetlb_lock, flags);
1718                 update_and_free_page(h, page, true);
1719         } else if (h->surplus_huge_pages_node[nid]) {
1720                 /* remove the page from active list */
1721                 remove_hugetlb_page(h, page, true);
1722                 spin_unlock_irqrestore(&hugetlb_lock, flags);
1723                 update_and_free_page(h, page, true);
1724         } else {
1725                 arch_clear_hugepage_flags(page);
1726                 enqueue_huge_page(h, page);
1727                 spin_unlock_irqrestore(&hugetlb_lock, flags);
1728         }
1729 }
1730
1731 /*
1732  * Must be called with the hugetlb lock held
1733  */
1734 static void __prep_account_new_huge_page(struct hstate *h, int nid)
1735 {
1736         lockdep_assert_held(&hugetlb_lock);
1737         h->nr_huge_pages++;
1738         h->nr_huge_pages_node[nid]++;
1739 }
1740
1741 static void __prep_new_huge_page(struct hstate *h, struct page *page)
1742 {
1743         hugetlb_vmemmap_free(h, page);
1744         INIT_LIST_HEAD(&page->lru);
1745         set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1746         hugetlb_set_page_subpool(page, NULL);
1747         set_hugetlb_cgroup(page, NULL);
1748         set_hugetlb_cgroup_rsvd(page, NULL);
1749 }
1750
1751 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
1752 {
1753         __prep_new_huge_page(h, page);
1754         spin_lock_irq(&hugetlb_lock);
1755         __prep_account_new_huge_page(h, nid);
1756         spin_unlock_irq(&hugetlb_lock);
1757 }
1758
1759 static bool __prep_compound_gigantic_page(struct page *page, unsigned int order,
1760                                                                 bool demote)
1761 {
1762         int i, j;
1763         int nr_pages = 1 << order;
1764         struct page *p = page + 1;
1765
1766         /* we rely on prep_new_huge_page to set the destructor */
1767         set_compound_order(page, order);
1768         __ClearPageReserved(page);
1769         __SetPageHead(page);
1770         for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1771                 /*
1772                  * For gigantic hugepages allocated through bootmem at
1773                  * boot, it's safer to be consistent with the not-gigantic
1774                  * hugepages and clear the PG_reserved bit from all tail pages
1775                  * too.  Otherwise drivers using get_user_pages() to access tail
1776                  * pages may get the reference counting wrong if they see
1777                  * PG_reserved set on a tail page (despite the head page not
1778                  * having PG_reserved set).  Enforcing this consistency between
1779                  * head and tail pages allows drivers to optimize away a check
1780                  * on the head page when they need know if put_page() is needed
1781                  * after get_user_pages().
1782                  */
1783                 __ClearPageReserved(p);
1784                 /*
1785                  * Subtle and very unlikely
1786                  *
1787                  * Gigantic 'page allocators' such as memblock or cma will
1788                  * return a set of pages with each page ref counted.  We need
1789                  * to turn this set of pages into a compound page with tail
1790                  * page ref counts set to zero.  Code such as speculative page
1791                  * cache adding could take a ref on a 'to be' tail page.
1792                  * We need to respect any increased ref count, and only set
1793                  * the ref count to zero if count is currently 1.  If count
1794                  * is not 1, we return an error.  An error return indicates
1795                  * the set of pages can not be converted to a gigantic page.
1796                  * The caller who allocated the pages should then discard the
1797                  * pages using the appropriate free interface.
1798                  *
1799                  * In the case of demote, the ref count will be zero.
1800                  */
1801                 if (!demote) {
1802                         if (!page_ref_freeze(p, 1)) {
1803                                 pr_warn("HugeTLB page can not be used due to unexpected inflated ref count\n");
1804                                 goto out_error;
1805                         }
1806                 } else {
1807                         VM_BUG_ON_PAGE(page_count(p), p);
1808                 }
1809                 set_compound_head(p, page);
1810         }
1811         atomic_set(compound_mapcount_ptr(page), -1);
1812         atomic_set(compound_pincount_ptr(page), 0);
1813         return true;
1814
1815 out_error:
1816         /* undo tail page modifications made above */
1817         p = page + 1;
1818         for (j = 1; j < i; j++, p = mem_map_next(p, page, j)) {
1819                 clear_compound_head(p);
1820                 set_page_refcounted(p);
1821         }
1822         /* need to clear PG_reserved on remaining tail pages  */
1823         for (; j < nr_pages; j++, p = mem_map_next(p, page, j))
1824                 __ClearPageReserved(p);
1825         set_compound_order(page, 0);
1826 #ifdef CONFIG_64BIT
1827         page[1].compound_nr = 0;
1828 #endif
1829         __ClearPageHead(page);
1830         return false;
1831 }
1832
1833 static bool prep_compound_gigantic_page(struct page *page, unsigned int order)
1834 {
1835         return __prep_compound_gigantic_page(page, order, false);
1836 }
1837
1838 static bool prep_compound_gigantic_page_for_demote(struct page *page,
1839                                                         unsigned int order)
1840 {
1841         return __prep_compound_gigantic_page(page, order, true);
1842 }
1843
1844 /*
1845  * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1846  * transparent huge pages.  See the PageTransHuge() documentation for more
1847  * details.
1848  */
1849 int PageHuge(struct page *page)
1850 {
1851         if (!PageCompound(page))
1852                 return 0;
1853
1854         page = compound_head(page);
1855         return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
1856 }
1857 EXPORT_SYMBOL_GPL(PageHuge);
1858
1859 /*
1860  * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1861  * normal or transparent huge pages.
1862  */
1863 int PageHeadHuge(struct page *page_head)
1864 {
1865         if (!PageHead(page_head))
1866                 return 0;
1867
1868         return page_head[1].compound_dtor == HUGETLB_PAGE_DTOR;
1869 }
1870 EXPORT_SYMBOL_GPL(PageHeadHuge);
1871
1872 /*
1873  * Find and lock address space (mapping) in write mode.
1874  *
1875  * Upon entry, the page is locked which means that page_mapping() is
1876  * stable.  Due to locking order, we can only trylock_write.  If we can
1877  * not get the lock, simply return NULL to caller.
1878  */
1879 struct address_space *hugetlb_page_mapping_lock_write(struct page *hpage)
1880 {
1881         struct address_space *mapping = page_mapping(hpage);
1882
1883         if (!mapping)
1884                 return mapping;
1885
1886         if (i_mmap_trylock_write(mapping))
1887                 return mapping;
1888
1889         return NULL;
1890 }
1891
1892 pgoff_t hugetlb_basepage_index(struct page *page)
1893 {
1894         struct page *page_head = compound_head(page);
1895         pgoff_t index = page_index(page_head);
1896         unsigned long compound_idx;
1897
1898         if (compound_order(page_head) >= MAX_ORDER)
1899                 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
1900         else
1901                 compound_idx = page - page_head;
1902
1903         return (index << compound_order(page_head)) + compound_idx;
1904 }
1905
1906 static struct page *alloc_buddy_huge_page(struct hstate *h,
1907                 gfp_t gfp_mask, int nid, nodemask_t *nmask,
1908                 nodemask_t *node_alloc_noretry)
1909 {
1910         int order = huge_page_order(h);
1911         struct page *page;
1912         bool alloc_try_hard = true;
1913
1914         /*
1915          * By default we always try hard to allocate the page with
1916          * __GFP_RETRY_MAYFAIL flag.  However, if we are allocating pages in
1917          * a loop (to adjust global huge page counts) and previous allocation
1918          * failed, do not continue to try hard on the same node.  Use the
1919          * node_alloc_noretry bitmap to manage this state information.
1920          */
1921         if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry))
1922                 alloc_try_hard = false;
1923         gfp_mask |= __GFP_COMP|__GFP_NOWARN;
1924         if (alloc_try_hard)
1925                 gfp_mask |= __GFP_RETRY_MAYFAIL;
1926         if (nid == NUMA_NO_NODE)
1927                 nid = numa_mem_id();
1928         page = __alloc_pages(gfp_mask, order, nid, nmask);
1929         if (page)
1930                 __count_vm_event(HTLB_BUDDY_PGALLOC);
1931         else
1932                 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1933
1934         /*
1935          * If we did not specify __GFP_RETRY_MAYFAIL, but still got a page this
1936          * indicates an overall state change.  Clear bit so that we resume
1937          * normal 'try hard' allocations.
1938          */
1939         if (node_alloc_noretry && page && !alloc_try_hard)
1940                 node_clear(nid, *node_alloc_noretry);
1941
1942         /*
1943          * If we tried hard to get a page but failed, set bit so that
1944          * subsequent attempts will not try as hard until there is an
1945          * overall state change.
1946          */
1947         if (node_alloc_noretry && !page && alloc_try_hard)
1948                 node_set(nid, *node_alloc_noretry);
1949
1950         return page;
1951 }
1952
1953 /*
1954  * Common helper to allocate a fresh hugetlb page. All specific allocators
1955  * should use this function to get new hugetlb pages
1956  */
1957 static struct page *alloc_fresh_huge_page(struct hstate *h,
1958                 gfp_t gfp_mask, int nid, nodemask_t *nmask,
1959                 nodemask_t *node_alloc_noretry)
1960 {
1961         struct page *page;
1962         bool retry = false;
1963
1964 retry:
1965         if (hstate_is_gigantic(h))
1966                 page = alloc_gigantic_page(h, gfp_mask, nid, nmask);
1967         else
1968                 page = alloc_buddy_huge_page(h, gfp_mask,
1969                                 nid, nmask, node_alloc_noretry);
1970         if (!page)
1971                 return NULL;
1972
1973         if (hstate_is_gigantic(h)) {
1974                 if (!prep_compound_gigantic_page(page, huge_page_order(h))) {
1975                         /*
1976                          * Rare failure to convert pages to compound page.
1977                          * Free pages and try again - ONCE!
1978                          */
1979                         free_gigantic_page(page, huge_page_order(h));
1980                         if (!retry) {
1981                                 retry = true;
1982                                 goto retry;
1983                         }
1984                         return NULL;
1985                 }
1986         }
1987         prep_new_huge_page(h, page, page_to_nid(page));
1988
1989         return page;
1990 }
1991
1992 /*
1993  * Allocates a fresh page to the hugetlb allocator pool in the node interleaved
1994  * manner.
1995  */
1996 static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1997                                 nodemask_t *node_alloc_noretry)
1998 {
1999         struct page *page;
2000         int nr_nodes, node;
2001         gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
2002
2003         for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
2004                 page = alloc_fresh_huge_page(h, gfp_mask, node, nodes_allowed,
2005                                                 node_alloc_noretry);
2006                 if (page)
2007                         break;
2008         }
2009
2010         if (!page)
2011                 return 0;
2012
2013         put_page(page); /* free it into the hugepage allocator */
2014
2015         return 1;
2016 }
2017
2018 /*
2019  * Remove huge page from pool from next node to free.  Attempt to keep
2020  * persistent huge pages more or less balanced over allowed nodes.
2021  * This routine only 'removes' the hugetlb page.  The caller must make
2022  * an additional call to free the page to low level allocators.
2023  * Called with hugetlb_lock locked.
2024  */
2025 static struct page *remove_pool_huge_page(struct hstate *h,
2026                                                 nodemask_t *nodes_allowed,
2027                                                  bool acct_surplus)
2028 {
2029         int nr_nodes, node;
2030         struct page *page = NULL;
2031
2032         lockdep_assert_held(&hugetlb_lock);
2033         for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2034                 /*
2035                  * If we're returning unused surplus pages, only examine
2036                  * nodes with surplus pages.
2037                  */
2038                 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
2039                     !list_empty(&h->hugepage_freelists[node])) {
2040                         page = list_entry(h->hugepage_freelists[node].next,
2041                                           struct page, lru);
2042                         remove_hugetlb_page(h, page, acct_surplus);
2043                         break;
2044                 }
2045         }
2046
2047         return page;
2048 }
2049
2050 /*
2051  * Dissolve a given free hugepage into free buddy pages. This function does
2052  * nothing for in-use hugepages and non-hugepages.
2053  * This function returns values like below:
2054  *
2055  *  -ENOMEM: failed to allocate vmemmap pages to free the freed hugepages
2056  *           when the system is under memory pressure and the feature of
2057  *           freeing unused vmemmap pages associated with each hugetlb page
2058  *           is enabled.
2059  *  -EBUSY:  failed to dissolved free hugepages or the hugepage is in-use
2060  *           (allocated or reserved.)
2061  *       0:  successfully dissolved free hugepages or the page is not a
2062  *           hugepage (considered as already dissolved)
2063  */
2064 int dissolve_free_huge_page(struct page *page)
2065 {
2066         int rc = -EBUSY;
2067
2068 retry:
2069         /* Not to disrupt normal path by vainly holding hugetlb_lock */
2070         if (!PageHuge(page))
2071                 return 0;
2072
2073         spin_lock_irq(&hugetlb_lock);
2074         if (!PageHuge(page)) {
2075                 rc = 0;
2076                 goto out;
2077         }
2078
2079         if (!page_count(page)) {
2080                 struct page *head = compound_head(page);
2081                 struct hstate *h = page_hstate(head);
2082                 if (h->free_huge_pages - h->resv_huge_pages == 0)
2083                         goto out;
2084
2085                 /*
2086                  * We should make sure that the page is already on the free list
2087                  * when it is dissolved.
2088                  */
2089                 if (unlikely(!HPageFreed(head))) {
2090                         spin_unlock_irq(&hugetlb_lock);
2091                         cond_resched();
2092
2093                         /*
2094                          * Theoretically, we should return -EBUSY when we
2095                          * encounter this race. In fact, we have a chance
2096                          * to successfully dissolve the page if we do a
2097                          * retry. Because the race window is quite small.
2098                          * If we seize this opportunity, it is an optimization
2099                          * for increasing the success rate of dissolving page.
2100                          */
2101                         goto retry;
2102                 }
2103
2104                 remove_hugetlb_page(h, head, false);
2105                 h->max_huge_pages--;
2106                 spin_unlock_irq(&hugetlb_lock);
2107
2108                 /*
2109                  * Normally update_and_free_page will allocate required vmemmmap
2110                  * before freeing the page.  update_and_free_page will fail to
2111                  * free the page if it can not allocate required vmemmap.  We
2112                  * need to adjust max_huge_pages if the page is not freed.
2113                  * Attempt to allocate vmemmmap here so that we can take
2114                  * appropriate action on failure.
2115                  */
2116                 rc = hugetlb_vmemmap_alloc(h, head);
2117                 if (!rc) {
2118                         /*
2119                          * Move PageHWPoison flag from head page to the raw
2120                          * error page, which makes any subpages rather than
2121                          * the error page reusable.
2122                          */
2123                         if (PageHWPoison(head) && page != head) {
2124                                 SetPageHWPoison(page);
2125                                 ClearPageHWPoison(head);
2126                         }
2127                         update_and_free_page(h, head, false);
2128                 } else {
2129                         spin_lock_irq(&hugetlb_lock);
2130                         add_hugetlb_page(h, head, false);
2131                         h->max_huge_pages++;
2132                         spin_unlock_irq(&hugetlb_lock);
2133                 }
2134
2135                 return rc;
2136         }
2137 out:
2138         spin_unlock_irq(&hugetlb_lock);
2139         return rc;
2140 }
2141
2142 /*
2143  * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
2144  * make specified memory blocks removable from the system.
2145  * Note that this will dissolve a free gigantic hugepage completely, if any
2146  * part of it lies within the given range.
2147  * Also note that if dissolve_free_huge_page() returns with an error, all
2148  * free hugepages that were dissolved before that error are lost.
2149  */
2150 int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
2151 {
2152         unsigned long pfn;
2153         struct page *page;
2154         int rc = 0;
2155
2156         if (!hugepages_supported())
2157                 return rc;
2158
2159         for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order) {
2160                 page = pfn_to_page(pfn);
2161                 rc = dissolve_free_huge_page(page);
2162                 if (rc)
2163                         break;
2164         }
2165
2166         return rc;
2167 }
2168
2169 /*
2170  * Allocates a fresh surplus page from the page allocator.
2171  */
2172 static struct page *alloc_surplus_huge_page(struct hstate *h, gfp_t gfp_mask,
2173                 int nid, nodemask_t *nmask, bool zero_ref)
2174 {
2175         struct page *page = NULL;
2176         bool retry = false;
2177
2178         if (hstate_is_gigantic(h))
2179                 return NULL;
2180
2181         spin_lock_irq(&hugetlb_lock);
2182         if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages)
2183                 goto out_unlock;
2184         spin_unlock_irq(&hugetlb_lock);
2185
2186 retry:
2187         page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
2188         if (!page)
2189                 return NULL;
2190
2191         spin_lock_irq(&hugetlb_lock);
2192         /*
2193          * We could have raced with the pool size change.
2194          * Double check that and simply deallocate the new page
2195          * if we would end up overcommiting the surpluses. Abuse
2196          * temporary page to workaround the nasty free_huge_page
2197          * codeflow
2198          */
2199         if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
2200                 SetHPageTemporary(page);
2201                 spin_unlock_irq(&hugetlb_lock);
2202                 put_page(page);
2203                 return NULL;
2204         }
2205
2206         if (zero_ref) {
2207                 /*
2208                  * Caller requires a page with zero ref count.
2209                  * We will drop ref count here.  If someone else is holding
2210                  * a ref, the page will be freed when they drop it.  Abuse
2211                  * temporary page flag to accomplish this.
2212                  */
2213                 SetHPageTemporary(page);
2214                 if (!put_page_testzero(page)) {
2215                         /*
2216                          * Unexpected inflated ref count on freshly allocated
2217                          * huge.  Retry once.
2218                          */
2219                         pr_info("HugeTLB unexpected inflated ref count on freshly allocated page\n");
2220                         spin_unlock_irq(&hugetlb_lock);
2221                         if (retry)
2222                                 return NULL;
2223
2224                         retry = true;
2225                         goto retry;
2226                 }
2227                 ClearHPageTemporary(page);
2228         }
2229
2230         h->surplus_huge_pages++;
2231         h->surplus_huge_pages_node[page_to_nid(page)]++;
2232
2233 out_unlock:
2234         spin_unlock_irq(&hugetlb_lock);
2235
2236         return page;
2237 }
2238
2239 static struct page *alloc_migrate_huge_page(struct hstate *h, gfp_t gfp_mask,
2240                                      int nid, nodemask_t *nmask)
2241 {
2242         struct page *page;
2243
2244         if (hstate_is_gigantic(h))
2245                 return NULL;
2246
2247         page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
2248         if (!page)
2249                 return NULL;
2250
2251         /*
2252          * We do not account these pages as surplus because they are only
2253          * temporary and will be released properly on the last reference
2254          */
2255         SetHPageTemporary(page);
2256
2257         return page;
2258 }
2259
2260 /*
2261  * Use the VMA's mpolicy to allocate a huge page from the buddy.
2262  */
2263 static
2264 struct page *alloc_buddy_huge_page_with_mpol(struct hstate *h,
2265                 struct vm_area_struct *vma, unsigned long addr)
2266 {
2267         struct page *page = NULL;
2268         struct mempolicy *mpol;
2269         gfp_t gfp_mask = htlb_alloc_mask(h);
2270         int nid;
2271         nodemask_t *nodemask;
2272
2273         nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
2274         if (mpol_is_preferred_many(mpol)) {
2275                 gfp_t gfp = gfp_mask | __GFP_NOWARN;
2276
2277                 gfp &=  ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL);
2278                 page = alloc_surplus_huge_page(h, gfp, nid, nodemask, false);
2279
2280                 /* Fallback to all nodes if page==NULL */
2281                 nodemask = NULL;
2282         }
2283
2284         if (!page)
2285                 page = alloc_surplus_huge_page(h, gfp_mask, nid, nodemask, false);
2286         mpol_cond_put(mpol);
2287         return page;
2288 }
2289
2290 /* page migration callback function */
2291 struct page *alloc_huge_page_nodemask(struct hstate *h, int preferred_nid,
2292                 nodemask_t *nmask, gfp_t gfp_mask)
2293 {
2294         spin_lock_irq(&hugetlb_lock);
2295         if (h->free_huge_pages - h->resv_huge_pages > 0) {
2296                 struct page *page;
2297
2298                 page = dequeue_huge_page_nodemask(h, gfp_mask, preferred_nid, nmask);
2299                 if (page) {
2300                         spin_unlock_irq(&hugetlb_lock);
2301                         return page;
2302                 }
2303         }
2304         spin_unlock_irq(&hugetlb_lock);
2305
2306         return alloc_migrate_huge_page(h, gfp_mask, preferred_nid, nmask);
2307 }
2308
2309 /* mempolicy aware migration callback */
2310 struct page *alloc_huge_page_vma(struct hstate *h, struct vm_area_struct *vma,
2311                 unsigned long address)
2312 {
2313         struct mempolicy *mpol;
2314         nodemask_t *nodemask;
2315         struct page *page;
2316         gfp_t gfp_mask;
2317         int node;
2318
2319         gfp_mask = htlb_alloc_mask(h);
2320         node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
2321         page = alloc_huge_page_nodemask(h, node, nodemask, gfp_mask);
2322         mpol_cond_put(mpol);
2323
2324         return page;
2325 }
2326
2327 /*
2328  * Increase the hugetlb pool such that it can accommodate a reservation
2329  * of size 'delta'.
2330  */
2331 static int gather_surplus_pages(struct hstate *h, long delta)
2332         __must_hold(&hugetlb_lock)
2333 {
2334         struct list_head surplus_list;
2335         struct page *page, *tmp;
2336         int ret;
2337         long i;
2338         long needed, allocated;
2339         bool alloc_ok = true;
2340
2341         lockdep_assert_held(&hugetlb_lock);
2342         needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
2343         if (needed <= 0) {
2344                 h->resv_huge_pages += delta;
2345                 return 0;
2346         }
2347
2348         allocated = 0;
2349         INIT_LIST_HEAD(&surplus_list);
2350
2351         ret = -ENOMEM;
2352 retry:
2353         spin_unlock_irq(&hugetlb_lock);
2354         for (i = 0; i < needed; i++) {
2355                 page = alloc_surplus_huge_page(h, htlb_alloc_mask(h),
2356                                 NUMA_NO_NODE, NULL, true);
2357                 if (!page) {
2358                         alloc_ok = false;
2359                         break;
2360                 }
2361                 list_add(&page->lru, &surplus_list);
2362                 cond_resched();
2363         }
2364         allocated += i;
2365
2366         /*
2367          * After retaking hugetlb_lock, we need to recalculate 'needed'
2368          * because either resv_huge_pages or free_huge_pages may have changed.
2369          */
2370         spin_lock_irq(&hugetlb_lock);
2371         needed = (h->resv_huge_pages + delta) -
2372                         (h->free_huge_pages + allocated);
2373         if (needed > 0) {
2374                 if (alloc_ok)
2375                         goto retry;
2376                 /*
2377                  * We were not able to allocate enough pages to
2378                  * satisfy the entire reservation so we free what
2379                  * we've allocated so far.
2380                  */
2381                 goto free;
2382         }
2383         /*
2384          * The surplus_list now contains _at_least_ the number of extra pages
2385          * needed to accommodate the reservation.  Add the appropriate number
2386          * of pages to the hugetlb pool and free the extras back to the buddy
2387          * allocator.  Commit the entire reservation here to prevent another
2388          * process from stealing the pages as they are added to the pool but
2389          * before they are reserved.
2390          */
2391         needed += allocated;
2392         h->resv_huge_pages += delta;
2393         ret = 0;
2394
2395         /* Free the needed pages to the hugetlb pool */
2396         list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
2397                 if ((--needed) < 0)
2398                         break;
2399                 /* Add the page to the hugetlb allocator */
2400                 enqueue_huge_page(h, page);
2401         }
2402 free:
2403         spin_unlock_irq(&hugetlb_lock);
2404
2405         /*
2406          * Free unnecessary surplus pages to the buddy allocator.
2407          * Pages have no ref count, call free_huge_page directly.
2408          */
2409         list_for_each_entry_safe(page, tmp, &surplus_list, lru)
2410                 free_huge_page(page);
2411         spin_lock_irq(&hugetlb_lock);
2412
2413         return ret;
2414 }
2415
2416 /*
2417  * This routine has two main purposes:
2418  * 1) Decrement the reservation count (resv_huge_pages) by the value passed
2419  *    in unused_resv_pages.  This corresponds to the prior adjustments made
2420  *    to the associated reservation map.
2421  * 2) Free any unused surplus pages that may have been allocated to satisfy
2422  *    the reservation.  As many as unused_resv_pages may be freed.
2423  */
2424 static void return_unused_surplus_pages(struct hstate *h,
2425                                         unsigned long unused_resv_pages)
2426 {
2427         unsigned long nr_pages;
2428         struct page *page;
2429         LIST_HEAD(page_list);
2430
2431         lockdep_assert_held(&hugetlb_lock);
2432         /* Uncommit the reservation */
2433         h->resv_huge_pages -= unused_resv_pages;
2434
2435         /* Cannot return gigantic pages currently */
2436         if (hstate_is_gigantic(h))
2437                 goto out;
2438
2439         /*
2440          * Part (or even all) of the reservation could have been backed
2441          * by pre-allocated pages. Only free surplus pages.
2442          */
2443         nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
2444
2445         /*
2446          * We want to release as many surplus pages as possible, spread
2447          * evenly across all nodes with memory. Iterate across these nodes
2448          * until we can no longer free unreserved surplus pages. This occurs
2449          * when the nodes with surplus pages have no free pages.
2450          * remove_pool_huge_page() will balance the freed pages across the
2451          * on-line nodes with memory and will handle the hstate accounting.
2452          */
2453         while (nr_pages--) {
2454                 page = remove_pool_huge_page(h, &node_states[N_MEMORY], 1);
2455                 if (!page)
2456                         goto out;
2457
2458                 list_add(&page->lru, &page_list);
2459         }
2460
2461 out:
2462         spin_unlock_irq(&hugetlb_lock);
2463         update_and_free_pages_bulk(h, &page_list);
2464         spin_lock_irq(&hugetlb_lock);
2465 }
2466
2467
2468 /*
2469  * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
2470  * are used by the huge page allocation routines to manage reservations.
2471  *
2472  * vma_needs_reservation is called to determine if the huge page at addr
2473  * within the vma has an associated reservation.  If a reservation is
2474  * needed, the value 1 is returned.  The caller is then responsible for
2475  * managing the global reservation and subpool usage counts.  After
2476  * the huge page has been allocated, vma_commit_reservation is called
2477  * to add the page to the reservation map.  If the page allocation fails,
2478  * the reservation must be ended instead of committed.  vma_end_reservation
2479  * is called in such cases.
2480  *
2481  * In the normal case, vma_commit_reservation returns the same value
2482  * as the preceding vma_needs_reservation call.  The only time this
2483  * is not the case is if a reserve map was changed between calls.  It
2484  * is the responsibility of the caller to notice the difference and
2485  * take appropriate action.
2486  *
2487  * vma_add_reservation is used in error paths where a reservation must
2488  * be restored when a newly allocated huge page must be freed.  It is
2489  * to be called after calling vma_needs_reservation to determine if a
2490  * reservation exists.
2491  *
2492  * vma_del_reservation is used in error paths where an entry in the reserve
2493  * map was created during huge page allocation and must be removed.  It is to
2494  * be called after calling vma_needs_reservation to determine if a reservation
2495  * exists.
2496  */
2497 enum vma_resv_mode {
2498         VMA_NEEDS_RESV,
2499         VMA_COMMIT_RESV,
2500         VMA_END_RESV,
2501         VMA_ADD_RESV,
2502         VMA_DEL_RESV,
2503 };
2504 static long __vma_reservation_common(struct hstate *h,
2505                                 struct vm_area_struct *vma, unsigned long addr,
2506                                 enum vma_resv_mode mode)
2507 {
2508         struct resv_map *resv;
2509         pgoff_t idx;
2510         long ret;
2511         long dummy_out_regions_needed;
2512
2513         resv = vma_resv_map(vma);
2514         if (!resv)
2515                 return 1;
2516
2517         idx = vma_hugecache_offset(h, vma, addr);
2518         switch (mode) {
2519         case VMA_NEEDS_RESV:
2520                 ret = region_chg(resv, idx, idx + 1, &dummy_out_regions_needed);
2521                 /* We assume that vma_reservation_* routines always operate on
2522                  * 1 page, and that adding to resv map a 1 page entry can only
2523                  * ever require 1 region.
2524                  */
2525                 VM_BUG_ON(dummy_out_regions_needed != 1);
2526                 break;
2527         case VMA_COMMIT_RESV:
2528                 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2529                 /* region_add calls of range 1 should never fail. */
2530                 VM_BUG_ON(ret < 0);
2531                 break;
2532         case VMA_END_RESV:
2533                 region_abort(resv, idx, idx + 1, 1);
2534                 ret = 0;
2535                 break;
2536         case VMA_ADD_RESV:
2537                 if (vma->vm_flags & VM_MAYSHARE) {
2538                         ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2539                         /* region_add calls of range 1 should never fail. */
2540                         VM_BUG_ON(ret < 0);
2541                 } else {
2542                         region_abort(resv, idx, idx + 1, 1);
2543                         ret = region_del(resv, idx, idx + 1);
2544                 }
2545                 break;
2546         case VMA_DEL_RESV:
2547                 if (vma->vm_flags & VM_MAYSHARE) {
2548                         region_abort(resv, idx, idx + 1, 1);
2549                         ret = region_del(resv, idx, idx + 1);
2550                 } else {
2551                         ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2552                         /* region_add calls of range 1 should never fail. */
2553                         VM_BUG_ON(ret < 0);
2554                 }
2555                 break;
2556         default:
2557                 BUG();
2558         }
2559
2560         if (vma->vm_flags & VM_MAYSHARE || mode == VMA_DEL_RESV)
2561                 return ret;
2562         /*
2563          * We know private mapping must have HPAGE_RESV_OWNER set.
2564          *
2565          * In most cases, reserves always exist for private mappings.
2566          * However, a file associated with mapping could have been
2567          * hole punched or truncated after reserves were consumed.
2568          * As subsequent fault on such a range will not use reserves.
2569          * Subtle - The reserve map for private mappings has the
2570          * opposite meaning than that of shared mappings.  If NO
2571          * entry is in the reserve map, it means a reservation exists.
2572          * If an entry exists in the reserve map, it means the
2573          * reservation has already been consumed.  As a result, the
2574          * return value of this routine is the opposite of the
2575          * value returned from reserve map manipulation routines above.
2576          */
2577         if (ret > 0)
2578                 return 0;
2579         if (ret == 0)
2580                 return 1;
2581         return ret;
2582 }
2583
2584 static long vma_needs_reservation(struct hstate *h,
2585                         struct vm_area_struct *vma, unsigned long addr)
2586 {
2587         return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
2588 }
2589
2590 static long vma_commit_reservation(struct hstate *h,
2591                         struct vm_area_struct *vma, unsigned long addr)
2592 {
2593         return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
2594 }
2595
2596 static void vma_end_reservation(struct hstate *h,
2597                         struct vm_area_struct *vma, unsigned long addr)
2598 {
2599         (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
2600 }
2601
2602 static long vma_add_reservation(struct hstate *h,
2603                         struct vm_area_struct *vma, unsigned long addr)
2604 {
2605         return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
2606 }
2607
2608 static long vma_del_reservation(struct hstate *h,
2609                         struct vm_area_struct *vma, unsigned long addr)
2610 {
2611         return __vma_reservation_common(h, vma, addr, VMA_DEL_RESV);
2612 }
2613
2614 /*
2615  * This routine is called to restore reservation information on error paths.
2616  * It should ONLY be called for pages allocated via alloc_huge_page(), and
2617  * the hugetlb mutex should remain held when calling this routine.
2618  *
2619  * It handles two specific cases:
2620  * 1) A reservation was in place and the page consumed the reservation.
2621  *    HPageRestoreReserve is set in the page.
2622  * 2) No reservation was in place for the page, so HPageRestoreReserve is
2623  *    not set.  However, alloc_huge_page always updates the reserve map.
2624  *
2625  * In case 1, free_huge_page later in the error path will increment the
2626  * global reserve count.  But, free_huge_page does not have enough context
2627  * to adjust the reservation map.  This case deals primarily with private
2628  * mappings.  Adjust the reserve map here to be consistent with global
2629  * reserve count adjustments to be made by free_huge_page.  Make sure the
2630  * reserve map indicates there is a reservation present.
2631  *
2632  * In case 2, simply undo reserve map modifications done by alloc_huge_page.
2633  */
2634 void restore_reserve_on_error(struct hstate *h, struct vm_area_struct *vma,
2635                         unsigned long address, struct page *page)
2636 {
2637         long rc = vma_needs_reservation(h, vma, address);
2638
2639         if (HPageRestoreReserve(page)) {
2640                 if (unlikely(rc < 0))
2641                         /*
2642                          * Rare out of memory condition in reserve map
2643                          * manipulation.  Clear HPageRestoreReserve so that
2644                          * global reserve count will not be incremented
2645                          * by free_huge_page.  This will make it appear
2646                          * as though the reservation for this page was
2647                          * consumed.  This may prevent the task from
2648                          * faulting in the page at a later time.  This
2649                          * is better than inconsistent global huge page
2650                          * accounting of reserve counts.
2651                          */
2652                         ClearHPageRestoreReserve(page);
2653                 else if (rc)
2654                         (void)vma_add_reservation(h, vma, address);
2655                 else
2656                         vma_end_reservation(h, vma, address);
2657         } else {
2658                 if (!rc) {
2659                         /*
2660                          * This indicates there is an entry in the reserve map
2661                          * not added by alloc_huge_page.  We know it was added
2662                          * before the alloc_huge_page call, otherwise
2663                          * HPageRestoreReserve would be set on the page.
2664                          * Remove the entry so that a subsequent allocation
2665                          * does not consume a reservation.
2666                          */
2667                         rc = vma_del_reservation(h, vma, address);
2668                         if (rc < 0)
2669                                 /*
2670                                  * VERY rare out of memory condition.  Since
2671                                  * we can not delete the entry, set
2672                                  * HPageRestoreReserve so that the reserve
2673                                  * count will be incremented when the page
2674                                  * is freed.  This reserve will be consumed
2675                                  * on a subsequent allocation.
2676                                  */
2677                                 SetHPageRestoreReserve(page);
2678                 } else if (rc < 0) {
2679                         /*
2680                          * Rare out of memory condition from
2681                          * vma_needs_reservation call.  Memory allocation is
2682                          * only attempted if a new entry is needed.  Therefore,
2683                          * this implies there is not an entry in the
2684                          * reserve map.
2685                          *
2686                          * For shared mappings, no entry in the map indicates
2687                          * no reservation.  We are done.
2688                          */
2689                         if (!(vma->vm_flags & VM_MAYSHARE))
2690                                 /*
2691                                  * For private mappings, no entry indicates
2692                                  * a reservation is present.  Since we can
2693                                  * not add an entry, set SetHPageRestoreReserve
2694                                  * on the page so reserve count will be
2695                                  * incremented when freed.  This reserve will
2696                                  * be consumed on a subsequent allocation.
2697                                  */
2698                                 SetHPageRestoreReserve(page);
2699                 } else
2700                         /*
2701                          * No reservation present, do nothing
2702                          */
2703                          vma_end_reservation(h, vma, address);
2704         }
2705 }
2706
2707 /*
2708  * alloc_and_dissolve_huge_page - Allocate a new page and dissolve the old one
2709  * @h: struct hstate old page belongs to
2710  * @old_page: Old page to dissolve
2711  * @list: List to isolate the page in case we need to
2712  * Returns 0 on success, otherwise negated error.
2713  */
2714 static int alloc_and_dissolve_huge_page(struct hstate *h, struct page *old_page,
2715                                         struct list_head *list)
2716 {
2717         gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
2718         int nid = page_to_nid(old_page);
2719         bool alloc_retry = false;
2720         struct page *new_page;
2721         int ret = 0;
2722
2723         /*
2724          * Before dissolving the page, we need to allocate a new one for the
2725          * pool to remain stable.  Here, we allocate the page and 'prep' it
2726          * by doing everything but actually updating counters and adding to
2727          * the pool.  This simplifies and let us do most of the processing
2728          * under the lock.
2729          */
2730 alloc_retry:
2731         new_page = alloc_buddy_huge_page(h, gfp_mask, nid, NULL, NULL);
2732         if (!new_page)
2733                 return -ENOMEM;
2734         /*
2735          * If all goes well, this page will be directly added to the free
2736          * list in the pool.  For this the ref count needs to be zero.
2737          * Attempt to drop now, and retry once if needed.  It is VERY
2738          * unlikely there is another ref on the page.
2739          *
2740          * If someone else has a reference to the page, it will be freed
2741          * when they drop their ref.  Abuse temporary page flag to accomplish
2742          * this.  Retry once if there is an inflated ref count.
2743          */
2744         SetHPageTemporary(new_page);
2745         if (!put_page_testzero(new_page)) {
2746                 if (alloc_retry)
2747                         return -EBUSY;
2748
2749                 alloc_retry = true;
2750                 goto alloc_retry;
2751         }
2752         ClearHPageTemporary(new_page);
2753
2754         __prep_new_huge_page(h, new_page);
2755
2756 retry:
2757         spin_lock_irq(&hugetlb_lock);
2758         if (!PageHuge(old_page)) {
2759                 /*
2760                  * Freed from under us. Drop new_page too.
2761                  */
2762                 goto free_new;
2763         } else if (page_count(old_page)) {
2764                 /*
2765                  * Someone has grabbed the page, try to isolate it here.
2766                  * Fail with -EBUSY if not possible.
2767                  */
2768                 spin_unlock_irq(&hugetlb_lock);
2769                 ret = isolate_hugetlb(old_page, list);
2770                 spin_lock_irq(&hugetlb_lock);
2771                 goto free_new;
2772         } else if (!HPageFreed(old_page)) {
2773                 /*
2774                  * Page's refcount is 0 but it has not been enqueued in the
2775                  * freelist yet. Race window is small, so we can succeed here if
2776                  * we retry.
2777                  */
2778                 spin_unlock_irq(&hugetlb_lock);
2779                 cond_resched();
2780                 goto retry;
2781         } else {
2782                 /*
2783                  * Ok, old_page is still a genuine free hugepage. Remove it from
2784                  * the freelist and decrease the counters. These will be
2785                  * incremented again when calling __prep_account_new_huge_page()
2786                  * and enqueue_huge_page() for new_page. The counters will remain
2787                  * stable since this happens under the lock.
2788                  */
2789                 remove_hugetlb_page(h, old_page, false);
2790
2791                 /*
2792                  * Ref count on new page is already zero as it was dropped
2793                  * earlier.  It can be directly added to the pool free list.
2794                  */
2795                 __prep_account_new_huge_page(h, nid);
2796                 enqueue_huge_page(h, new_page);
2797
2798                 /*
2799                  * Pages have been replaced, we can safely free the old one.
2800                  */
2801                 spin_unlock_irq(&hugetlb_lock);
2802                 update_and_free_page(h, old_page, false);
2803         }
2804
2805         return ret;
2806
2807 free_new:
2808         spin_unlock_irq(&hugetlb_lock);
2809         /* Page has a zero ref count, but needs a ref to be freed */
2810         set_page_refcounted(new_page);
2811         update_and_free_page(h, new_page, false);
2812
2813         return ret;
2814 }
2815
2816 int isolate_or_dissolve_huge_page(struct page *page, struct list_head *list)
2817 {
2818         struct hstate *h;
2819         struct page *head;
2820         int ret = -EBUSY;
2821
2822         /*
2823          * The page might have been dissolved from under our feet, so make sure
2824          * to carefully check the state under the lock.
2825          * Return success when racing as if we dissolved the page ourselves.
2826          */
2827         spin_lock_irq(&hugetlb_lock);
2828         if (PageHuge(page)) {
2829                 head = compound_head(page);
2830                 h = page_hstate(head);
2831         } else {
2832                 spin_unlock_irq(&hugetlb_lock);
2833                 return 0;
2834         }
2835         spin_unlock_irq(&hugetlb_lock);
2836
2837         /*
2838          * Fence off gigantic pages as there is a cyclic dependency between
2839          * alloc_contig_range and them. Return -ENOMEM as this has the effect
2840          * of bailing out right away without further retrying.
2841          */
2842         if (hstate_is_gigantic(h))
2843                 return -ENOMEM;
2844
2845         if (page_count(head) && !isolate_hugetlb(head, list))
2846                 ret = 0;
2847         else if (!page_count(head))
2848                 ret = alloc_and_dissolve_huge_page(h, head, list);
2849
2850         return ret;
2851 }
2852
2853 struct page *alloc_huge_page(struct vm_area_struct *vma,
2854                                     unsigned long addr, int avoid_reserve)
2855 {
2856         struct hugepage_subpool *spool = subpool_vma(vma);
2857         struct hstate *h = hstate_vma(vma);
2858         struct page *page;
2859         long map_chg, map_commit;
2860         long gbl_chg;
2861         int ret, idx;
2862         struct hugetlb_cgroup *h_cg;
2863         bool deferred_reserve;
2864
2865         idx = hstate_index(h);
2866         /*
2867          * Examine the region/reserve map to determine if the process
2868          * has a reservation for the page to be allocated.  A return
2869          * code of zero indicates a reservation exists (no change).
2870          */
2871         map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
2872         if (map_chg < 0)
2873                 return ERR_PTR(-ENOMEM);
2874
2875         /*
2876          * Processes that did not create the mapping will have no
2877          * reserves as indicated by the region/reserve map. Check
2878          * that the allocation will not exceed the subpool limit.
2879          * Allocations for MAP_NORESERVE mappings also need to be
2880          * checked against any subpool limit.
2881          */
2882         if (map_chg || avoid_reserve) {
2883                 gbl_chg = hugepage_subpool_get_pages(spool, 1);
2884                 if (gbl_chg < 0) {
2885                         vma_end_reservation(h, vma, addr);
2886                         return ERR_PTR(-ENOSPC);
2887                 }
2888
2889                 /*
2890                  * Even though there was no reservation in the region/reserve
2891                  * map, there could be reservations associated with the
2892                  * subpool that can be used.  This would be indicated if the
2893                  * return value of hugepage_subpool_get_pages() is zero.
2894                  * However, if avoid_reserve is specified we still avoid even
2895                  * the subpool reservations.
2896                  */
2897                 if (avoid_reserve)
2898                         gbl_chg = 1;
2899         }
2900
2901         /* If this allocation is not consuming a reservation, charge it now.
2902          */
2903         deferred_reserve = map_chg || avoid_reserve;
2904         if (deferred_reserve) {
2905                 ret = hugetlb_cgroup_charge_cgroup_rsvd(
2906                         idx, pages_per_huge_page(h), &h_cg);
2907                 if (ret)
2908                         goto out_subpool_put;
2909         }
2910
2911         ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
2912         if (ret)
2913                 goto out_uncharge_cgroup_reservation;
2914
2915         spin_lock_irq(&hugetlb_lock);
2916         /*
2917          * glb_chg is passed to indicate whether or not a page must be taken
2918          * from the global free pool (global change).  gbl_chg == 0 indicates
2919          * a reservation exists for the allocation.
2920          */
2921         page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
2922         if (!page) {
2923                 spin_unlock_irq(&hugetlb_lock);
2924                 page = alloc_buddy_huge_page_with_mpol(h, vma, addr);
2925                 if (!page)
2926                         goto out_uncharge_cgroup;
2927                 if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
2928                         SetHPageRestoreReserve(page);
2929                         h->resv_huge_pages--;
2930                 }
2931                 spin_lock_irq(&hugetlb_lock);
2932                 list_add(&page->lru, &h->hugepage_activelist);
2933                 /* Fall through */
2934         }
2935         hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
2936         /* If allocation is not consuming a reservation, also store the
2937          * hugetlb_cgroup pointer on the page.
2938          */
2939         if (deferred_reserve) {
2940                 hugetlb_cgroup_commit_charge_rsvd(idx, pages_per_huge_page(h),
2941                                                   h_cg, page);
2942         }
2943
2944         spin_unlock_irq(&hugetlb_lock);
2945
2946         hugetlb_set_page_subpool(page, spool);
2947
2948         map_commit = vma_commit_reservation(h, vma, addr);
2949         if (unlikely(map_chg > map_commit)) {
2950                 /*
2951                  * The page was added to the reservation map between
2952                  * vma_needs_reservation and vma_commit_reservation.
2953                  * This indicates a race with hugetlb_reserve_pages.
2954                  * Adjust for the subpool count incremented above AND
2955                  * in hugetlb_reserve_pages for the same page.  Also,
2956                  * the reservation count added in hugetlb_reserve_pages
2957                  * no longer applies.
2958                  */
2959                 long rsv_adjust;
2960
2961                 rsv_adjust = hugepage_subpool_put_pages(spool, 1);
2962                 hugetlb_acct_memory(h, -rsv_adjust);
2963                 if (deferred_reserve)
2964                         hugetlb_cgroup_uncharge_page_rsvd(hstate_index(h),
2965                                         pages_per_huge_page(h), page);
2966         }
2967         return page;
2968
2969 out_uncharge_cgroup:
2970         hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
2971 out_uncharge_cgroup_reservation:
2972         if (deferred_reserve)
2973                 hugetlb_cgroup_uncharge_cgroup_rsvd(idx, pages_per_huge_page(h),
2974                                                     h_cg);
2975 out_subpool_put:
2976         if (map_chg || avoid_reserve)
2977                 hugepage_subpool_put_pages(spool, 1);
2978         vma_end_reservation(h, vma, addr);
2979         return ERR_PTR(-ENOSPC);
2980 }
2981
2982 int alloc_bootmem_huge_page(struct hstate *h, int nid)
2983         __attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
2984 int __alloc_bootmem_huge_page(struct hstate *h, int nid)
2985 {
2986         struct huge_bootmem_page *m = NULL; /* initialize for clang */
2987         int nr_nodes, node;
2988
2989         /* do node specific alloc */
2990         if (nid != NUMA_NO_NODE) {
2991                 m = memblock_alloc_try_nid_raw(huge_page_size(h), huge_page_size(h),
2992                                 0, MEMBLOCK_ALLOC_ACCESSIBLE, nid);
2993                 if (!m)
2994                         return 0;
2995                 goto found;
2996         }
2997         /* allocate from next node when distributing huge pages */
2998         for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
2999                 m = memblock_alloc_try_nid_raw(
3000                                 huge_page_size(h), huge_page_size(h),
3001                                 0, MEMBLOCK_ALLOC_ACCESSIBLE, node);
3002                 /*
3003                  * Use the beginning of the huge page to store the
3004                  * huge_bootmem_page struct (until gather_bootmem
3005                  * puts them into the mem_map).
3006                  */
3007                 if (!m)
3008                         return 0;
3009                 goto found;
3010         }
3011
3012 found:
3013         /* Put them into a private list first because mem_map is not up yet */
3014         INIT_LIST_HEAD(&m->list);
3015         list_add(&m->list, &huge_boot_pages);
3016         m->hstate = h;
3017         return 1;
3018 }
3019
3020 /*
3021  * Put bootmem huge pages into the standard lists after mem_map is up.
3022  * Note: This only applies to gigantic (order > MAX_ORDER) pages.
3023  */
3024 static void __init gather_bootmem_prealloc(void)
3025 {
3026         struct huge_bootmem_page *m;
3027
3028         list_for_each_entry(m, &huge_boot_pages, list) {
3029                 struct page *page = virt_to_page(m);
3030                 struct hstate *h = m->hstate;
3031
3032                 VM_BUG_ON(!hstate_is_gigantic(h));
3033                 WARN_ON(page_count(page) != 1);
3034                 if (prep_compound_gigantic_page(page, huge_page_order(h))) {
3035                         WARN_ON(PageReserved(page));
3036                         prep_new_huge_page(h, page, page_to_nid(page));
3037                         put_page(page); /* add to the hugepage allocator */
3038                 } else {
3039                         /* VERY unlikely inflated ref count on a tail page */
3040                         free_gigantic_page(page, huge_page_order(h));
3041                 }
3042
3043                 /*
3044                  * We need to restore the 'stolen' pages to totalram_pages
3045                  * in order to fix confusing memory reports from free(1) and
3046                  * other side-effects, like CommitLimit going negative.
3047                  */
3048                 adjust_managed_page_count(page, pages_per_huge_page(h));
3049                 cond_resched();
3050         }
3051 }
3052 static void __init hugetlb_hstate_alloc_pages_onenode(struct hstate *h, int nid)
3053 {
3054         unsigned long i;
3055         char buf[32];
3056
3057         for (i = 0; i < h->max_huge_pages_node[nid]; ++i) {
3058                 if (hstate_is_gigantic(h)) {
3059                         if (!alloc_bootmem_huge_page(h, nid))
3060                                 break;
3061                 } else {
3062                         struct page *page;
3063                         gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
3064
3065                         page = alloc_fresh_huge_page(h, gfp_mask, nid,
3066                                         &node_states[N_MEMORY], NULL);
3067                         if (!page)
3068                                 break;
3069                         put_page(page); /* free it into the hugepage allocator */
3070                 }
3071                 cond_resched();
3072         }
3073         if (i == h->max_huge_pages_node[nid])
3074                 return;
3075
3076         string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3077         pr_warn("HugeTLB: allocating %u of page size %s failed node%d.  Only allocated %lu hugepages.\n",
3078                 h->max_huge_pages_node[nid], buf, nid, i);
3079         h->max_huge_pages -= (h->max_huge_pages_node[nid] - i);
3080         h->max_huge_pages_node[nid] = i;
3081 }
3082
3083 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
3084 {
3085         unsigned long i;
3086         nodemask_t *node_alloc_noretry;
3087         bool node_specific_alloc = false;
3088
3089         /* skip gigantic hugepages allocation if hugetlb_cma enabled */
3090         if (hstate_is_gigantic(h) && hugetlb_cma_size) {
3091                 pr_warn_once("HugeTLB: hugetlb_cma is enabled, skip boot time allocation\n");
3092                 return;
3093         }
3094
3095         /* do node specific alloc */
3096         for_each_online_node(i) {
3097                 if (h->max_huge_pages_node[i] > 0) {
3098                         hugetlb_hstate_alloc_pages_onenode(h, i);
3099                         node_specific_alloc = true;
3100                 }
3101         }
3102
3103         if (node_specific_alloc)
3104                 return;
3105
3106         /* below will do all node balanced alloc */
3107         if (!hstate_is_gigantic(h)) {
3108                 /*
3109                  * Bit mask controlling how hard we retry per-node allocations.
3110                  * Ignore errors as lower level routines can deal with
3111                  * node_alloc_noretry == NULL.  If this kmalloc fails at boot
3112                  * time, we are likely in bigger trouble.
3113                  */
3114                 node_alloc_noretry = kmalloc(sizeof(*node_alloc_noretry),
3115                                                 GFP_KERNEL);
3116         } else {
3117                 /* allocations done at boot time */
3118                 node_alloc_noretry = NULL;
3119         }
3120
3121         /* bit mask controlling how hard we retry per-node allocations */
3122         if (node_alloc_noretry)
3123                 nodes_clear(*node_alloc_noretry);
3124
3125         for (i = 0; i < h->max_huge_pages; ++i) {
3126                 if (hstate_is_gigantic(h)) {
3127                         if (!alloc_bootmem_huge_page(h, NUMA_NO_NODE))
3128                                 break;
3129                 } else if (!alloc_pool_huge_page(h,
3130                                          &node_states[N_MEMORY],
3131                                          node_alloc_noretry))
3132                         break;
3133                 cond_resched();
3134         }
3135         if (i < h->max_huge_pages) {
3136                 char buf[32];
3137
3138                 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3139                 pr_warn("HugeTLB: allocating %lu of page size %s failed.  Only allocated %lu hugepages.\n",
3140                         h->max_huge_pages, buf, i);
3141                 h->max_huge_pages = i;
3142         }
3143         kfree(node_alloc_noretry);
3144 }
3145
3146 static void __init hugetlb_init_hstates(void)
3147 {
3148         struct hstate *h, *h2;
3149
3150         for_each_hstate(h) {
3151                 if (minimum_order > huge_page_order(h))
3152                         minimum_order = huge_page_order(h);
3153
3154                 /* oversize hugepages were init'ed in early boot */
3155                 if (!hstate_is_gigantic(h))
3156                         hugetlb_hstate_alloc_pages(h);
3157
3158                 /*
3159                  * Set demote order for each hstate.  Note that
3160                  * h->demote_order is initially 0.
3161                  * - We can not demote gigantic pages if runtime freeing
3162                  *   is not supported, so skip this.
3163                  * - If CMA allocation is possible, we can not demote
3164                  *   HUGETLB_PAGE_ORDER or smaller size pages.
3165                  */
3166                 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
3167                         continue;
3168                 if (hugetlb_cma_size && h->order <= HUGETLB_PAGE_ORDER)
3169                         continue;
3170                 for_each_hstate(h2) {
3171                         if (h2 == h)
3172                                 continue;
3173                         if (h2->order < h->order &&
3174                             h2->order > h->demote_order)
3175                                 h->demote_order = h2->order;
3176                 }
3177         }
3178         VM_BUG_ON(minimum_order == UINT_MAX);
3179 }
3180
3181 static void __init report_hugepages(void)
3182 {
3183         struct hstate *h;
3184
3185         for_each_hstate(h) {
3186                 char buf[32];
3187
3188                 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3189                 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
3190                         buf, h->free_huge_pages);
3191         }
3192 }
3193
3194 #ifdef CONFIG_HIGHMEM
3195 static void try_to_free_low(struct hstate *h, unsigned long count,
3196                                                 nodemask_t *nodes_allowed)
3197 {
3198         int i;
3199         LIST_HEAD(page_list);
3200
3201         lockdep_assert_held(&hugetlb_lock);
3202         if (hstate_is_gigantic(h))
3203                 return;
3204
3205         /*
3206          * Collect pages to be freed on a list, and free after dropping lock
3207          */
3208         for_each_node_mask(i, *nodes_allowed) {
3209                 struct page *page, *next;
3210                 struct list_head *freel = &h->hugepage_freelists[i];
3211                 list_for_each_entry_safe(page, next, freel, lru) {
3212                         if (count >= h->nr_huge_pages)
3213                                 goto out;
3214                         if (PageHighMem(page))
3215                                 continue;
3216                         remove_hugetlb_page(h, page, false);
3217                         list_add(&page->lru, &page_list);
3218                 }
3219         }
3220
3221 out:
3222         spin_unlock_irq(&hugetlb_lock);
3223         update_and_free_pages_bulk(h, &page_list);
3224         spin_lock_irq(&hugetlb_lock);
3225 }
3226 #else
3227 static inline void try_to_free_low(struct hstate *h, unsigned long count,
3228                                                 nodemask_t *nodes_allowed)
3229 {
3230 }
3231 #endif
3232
3233 /*
3234  * Increment or decrement surplus_huge_pages.  Keep node-specific counters
3235  * balanced by operating on them in a round-robin fashion.
3236  * Returns 1 if an adjustment was made.
3237  */
3238 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
3239                                 int delta)
3240 {
3241         int nr_nodes, node;
3242
3243         lockdep_assert_held(&hugetlb_lock);
3244         VM_BUG_ON(delta != -1 && delta != 1);
3245
3246         if (delta < 0) {
3247                 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
3248                         if (h->surplus_huge_pages_node[node])
3249                                 goto found;
3250                 }
3251         } else {
3252                 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
3253                         if (h->surplus_huge_pages_node[node] <
3254                                         h->nr_huge_pages_node[node])
3255                                 goto found;
3256                 }
3257         }
3258         return 0;
3259
3260 found:
3261         h->surplus_huge_pages += delta;
3262         h->surplus_huge_pages_node[node] += delta;
3263         return 1;
3264 }
3265
3266 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
3267 static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid,
3268                               nodemask_t *nodes_allowed)
3269 {
3270         unsigned long min_count, ret;
3271         struct page *page;
3272         LIST_HEAD(page_list);
3273         NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL);
3274
3275         /*
3276          * Bit mask controlling how hard we retry per-node allocations.
3277          * If we can not allocate the bit mask, do not attempt to allocate
3278          * the requested huge pages.
3279          */
3280         if (node_alloc_noretry)
3281                 nodes_clear(*node_alloc_noretry);
3282         else
3283                 return -ENOMEM;
3284
3285         /*
3286          * resize_lock mutex prevents concurrent adjustments to number of
3287          * pages in hstate via the proc/sysfs interfaces.
3288          */
3289         mutex_lock(&h->resize_lock);
3290         flush_free_hpage_work(h);
3291         spin_lock_irq(&hugetlb_lock);
3292
3293         /*
3294          * Check for a node specific request.
3295          * Changing node specific huge page count may require a corresponding
3296          * change to the global count.  In any case, the passed node mask
3297          * (nodes_allowed) will restrict alloc/free to the specified node.
3298          */
3299         if (nid != NUMA_NO_NODE) {
3300                 unsigned long old_count = count;
3301
3302                 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
3303                 /*
3304                  * User may have specified a large count value which caused the
3305                  * above calculation to overflow.  In this case, they wanted
3306                  * to allocate as many huge pages as possible.  Set count to
3307                  * largest possible value to align with their intention.
3308                  */
3309                 if (count < old_count)
3310                         count = ULONG_MAX;
3311         }
3312
3313         /*
3314          * Gigantic pages runtime allocation depend on the capability for large
3315          * page range allocation.
3316          * If the system does not provide this feature, return an error when
3317          * the user tries to allocate gigantic pages but let the user free the
3318          * boottime allocated gigantic pages.
3319          */
3320         if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) {
3321                 if (count > persistent_huge_pages(h)) {
3322                         spin_unlock_irq(&hugetlb_lock);
3323                         mutex_unlock(&h->resize_lock);
3324                         NODEMASK_FREE(node_alloc_noretry);
3325                         return -EINVAL;
3326                 }
3327                 /* Fall through to decrease pool */
3328         }
3329
3330         /*
3331          * Increase the pool size
3332          * First take pages out of surplus state.  Then make up the
3333          * remaining difference by allocating fresh huge pages.
3334          *
3335          * We might race with alloc_surplus_huge_page() here and be unable
3336          * to convert a surplus huge page to a normal huge page. That is
3337          * not critical, though, it just means the overall size of the
3338          * pool might be one hugepage larger than it needs to be, but
3339          * within all the constraints specified by the sysctls.
3340          */
3341         while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
3342                 if (!adjust_pool_surplus(h, nodes_allowed, -1))
3343                         break;
3344         }
3345
3346         while (count > persistent_huge_pages(h)) {
3347                 /*
3348                  * If this allocation races such that we no longer need the
3349                  * page, free_huge_page will handle it by freeing the page
3350                  * and reducing the surplus.
3351                  */
3352                 spin_unlock_irq(&hugetlb_lock);
3353
3354                 /* yield cpu to avoid soft lockup */
3355                 cond_resched();
3356
3357                 ret = alloc_pool_huge_page(h, nodes_allowed,
3358                                                 node_alloc_noretry);
3359                 spin_lock_irq(&hugetlb_lock);
3360                 if (!ret)
3361                         goto out;
3362
3363                 /* Bail for signals. Probably ctrl-c from user */
3364                 if (signal_pending(current))
3365                         goto out;
3366         }
3367
3368         /*
3369          * Decrease the pool size
3370          * First return free pages to the buddy allocator (being careful
3371          * to keep enough around to satisfy reservations).  Then place
3372          * pages into surplus state as needed so the pool will shrink
3373          * to the desired size as pages become free.
3374          *
3375          * By placing pages into the surplus state independent of the
3376          * overcommit value, we are allowing the surplus pool size to
3377          * exceed overcommit. There are few sane options here. Since
3378          * alloc_surplus_huge_page() is checking the global counter,
3379          * though, we'll note that we're not allowed to exceed surplus
3380          * and won't grow the pool anywhere else. Not until one of the
3381          * sysctls are changed, or the surplus pages go out of use.
3382          */
3383         min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
3384         min_count = max(count, min_count);
3385         try_to_free_low(h, min_count, nodes_allowed);
3386
3387         /*
3388          * Collect pages to be removed on list without dropping lock
3389          */
3390         while (min_count < persistent_huge_pages(h)) {
3391                 page = remove_pool_huge_page(h, nodes_allowed, 0);
3392                 if (!page)
3393                         break;
3394
3395                 list_add(&page->lru, &page_list);
3396         }
3397         /* free the pages after dropping lock */
3398         spin_unlock_irq(&hugetlb_lock);
3399         update_and_free_pages_bulk(h, &page_list);
3400         flush_free_hpage_work(h);
3401         spin_lock_irq(&hugetlb_lock);
3402
3403         while (count < persistent_huge_pages(h)) {
3404                 if (!adjust_pool_surplus(h, nodes_allowed, 1))
3405                         break;
3406         }
3407 out:
3408         h->max_huge_pages = persistent_huge_pages(h);
3409         spin_unlock_irq(&hugetlb_lock);
3410         mutex_unlock(&h->resize_lock);
3411
3412         NODEMASK_FREE(node_alloc_noretry);
3413
3414         return 0;
3415 }
3416
3417 static int demote_free_huge_page(struct hstate *h, struct page *page)
3418 {
3419         int i, nid = page_to_nid(page);
3420         struct hstate *target_hstate;
3421         int rc = 0;
3422
3423         target_hstate = size_to_hstate(PAGE_SIZE << h->demote_order);
3424
3425         remove_hugetlb_page_for_demote(h, page, false);
3426         spin_unlock_irq(&hugetlb_lock);
3427
3428         rc = hugetlb_vmemmap_alloc(h, page);
3429         if (rc) {
3430                 /* Allocation of vmemmmap failed, we can not demote page */
3431                 spin_lock_irq(&hugetlb_lock);
3432                 set_page_refcounted(page);
3433                 add_hugetlb_page(h, page, false);
3434                 return rc;
3435         }
3436
3437         /*
3438          * Use destroy_compound_hugetlb_page_for_demote for all huge page
3439          * sizes as it will not ref count pages.
3440          */
3441         destroy_compound_hugetlb_page_for_demote(page, huge_page_order(h));
3442
3443         /*
3444          * Taking target hstate mutex synchronizes with set_max_huge_pages.
3445          * Without the mutex, pages added to target hstate could be marked
3446          * as surplus.
3447          *
3448          * Note that we already hold h->resize_lock.  To prevent deadlock,
3449          * use the convention of always taking larger size hstate mutex first.
3450          */
3451         mutex_lock(&target_hstate->resize_lock);
3452         for (i = 0; i < pages_per_huge_page(h);
3453                                 i += pages_per_huge_page(target_hstate)) {
3454                 if (hstate_is_gigantic(target_hstate))
3455                         prep_compound_gigantic_page_for_demote(page + i,
3456                                                         target_hstate->order);
3457                 else
3458                         prep_compound_page(page + i, target_hstate->order);
3459                 set_page_private(page + i, 0);
3460                 set_page_refcounted(page + i);
3461                 prep_new_huge_page(target_hstate, page + i, nid);
3462                 put_page(page + i);
3463         }
3464         mutex_unlock(&target_hstate->resize_lock);
3465
3466         spin_lock_irq(&hugetlb_lock);
3467
3468         /*
3469          * Not absolutely necessary, but for consistency update max_huge_pages
3470          * based on pool changes for the demoted page.
3471          */
3472         h->max_huge_pages--;
3473         target_hstate->max_huge_pages += pages_per_huge_page(h);
3474
3475         return rc;
3476 }
3477
3478 static int demote_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
3479         __must_hold(&hugetlb_lock)
3480 {
3481         int nr_nodes, node;
3482         struct page *page;
3483
3484         lockdep_assert_held(&hugetlb_lock);
3485
3486         /* We should never get here if no demote order */
3487         if (!h->demote_order) {
3488                 pr_warn("HugeTLB: NULL demote order passed to demote_pool_huge_page.\n");
3489                 return -EINVAL;         /* internal error */
3490         }
3491
3492         for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
3493                 list_for_each_entry(page, &h->hugepage_freelists[node], lru) {
3494                         if (PageHWPoison(page))
3495                                 continue;
3496
3497                         return demote_free_huge_page(h, page);
3498                 }
3499         }
3500
3501         /*
3502          * Only way to get here is if all pages on free lists are poisoned.
3503          * Return -EBUSY so that caller will not retry.
3504          */
3505         return -EBUSY;
3506 }
3507
3508 #define HSTATE_ATTR_RO(_name) \
3509         static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
3510
3511 #define HSTATE_ATTR_WO(_name) \
3512         static struct kobj_attribute _name##_attr = __ATTR_WO(_name)
3513
3514 #define HSTATE_ATTR(_name) \
3515         static struct kobj_attribute _name##_attr = __ATTR_RW(_name)
3516
3517 static struct kobject *hugepages_kobj;
3518 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
3519
3520 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
3521
3522 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
3523 {
3524         int i;
3525
3526         for (i = 0; i < HUGE_MAX_HSTATE; i++)
3527                 if (hstate_kobjs[i] == kobj) {
3528                         if (nidp)
3529                                 *nidp = NUMA_NO_NODE;
3530                         return &hstates[i];
3531                 }
3532
3533         return kobj_to_node_hstate(kobj, nidp);
3534 }
3535
3536 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
3537                                         struct kobj_attribute *attr, char *buf)
3538 {
3539         struct hstate *h;
3540         unsigned long nr_huge_pages;
3541         int nid;
3542
3543         h = kobj_to_hstate(kobj, &nid);
3544         if (nid == NUMA_NO_NODE)
3545                 nr_huge_pages = h->nr_huge_pages;
3546         else
3547                 nr_huge_pages = h->nr_huge_pages_node[nid];
3548
3549         return sysfs_emit(buf, "%lu\n", nr_huge_pages);
3550 }
3551
3552 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
3553                                            struct hstate *h, int nid,
3554                                            unsigned long count, size_t len)
3555 {
3556         int err;
3557         nodemask_t nodes_allowed, *n_mask;
3558
3559         if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
3560                 return -EINVAL;
3561
3562         if (nid == NUMA_NO_NODE) {
3563                 /*
3564                  * global hstate attribute
3565                  */
3566                 if (!(obey_mempolicy &&
3567                                 init_nodemask_of_mempolicy(&nodes_allowed)))
3568                         n_mask = &node_states[N_MEMORY];
3569                 else
3570                         n_mask = &nodes_allowed;
3571         } else {
3572                 /*
3573                  * Node specific request.  count adjustment happens in
3574                  * set_max_huge_pages() after acquiring hugetlb_lock.
3575                  */
3576                 init_nodemask_of_node(&nodes_allowed, nid);
3577                 n_mask = &nodes_allowed;
3578         }
3579
3580         err = set_max_huge_pages(h, count, nid, n_mask);
3581
3582         return err ? err : len;
3583 }
3584
3585 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
3586                                          struct kobject *kobj, const char *buf,
3587                                          size_t len)
3588 {
3589         struct hstate *h;
3590         unsigned long count;
3591         int nid;
3592         int err;
3593
3594         err = kstrtoul(buf, 10, &count);
3595         if (err)
3596                 return err;
3597
3598         h = kobj_to_hstate(kobj, &nid);
3599         return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
3600 }
3601
3602 static ssize_t nr_hugepages_show(struct kobject *kobj,
3603                                        struct kobj_attribute *attr, char *buf)
3604 {
3605         return nr_hugepages_show_common(kobj, attr, buf);
3606 }
3607
3608 static ssize_t nr_hugepages_store(struct kobject *kobj,
3609                struct kobj_attribute *attr, const char *buf, size_t len)
3610 {
3611         return nr_hugepages_store_common(false, kobj, buf, len);
3612 }
3613 HSTATE_ATTR(nr_hugepages);
3614
3615 #ifdef CONFIG_NUMA
3616
3617 /*
3618  * hstate attribute for optionally mempolicy-based constraint on persistent
3619  * huge page alloc/free.
3620  */
3621 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
3622                                            struct kobj_attribute *attr,
3623                                            char *buf)
3624 {
3625         return nr_hugepages_show_common(kobj, attr, buf);
3626 }
3627
3628 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
3629                struct kobj_attribute *attr, const char *buf, size_t len)
3630 {
3631         return nr_hugepages_store_common(true, kobj, buf, len);
3632 }
3633 HSTATE_ATTR(nr_hugepages_mempolicy);
3634 #endif
3635
3636
3637 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
3638                                         struct kobj_attribute *attr, char *buf)
3639 {
3640         struct hstate *h = kobj_to_hstate(kobj, NULL);
3641         return sysfs_emit(buf, "%lu\n", h->nr_overcommit_huge_pages);
3642 }
3643
3644 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
3645                 struct kobj_attribute *attr, const char *buf, size_t count)
3646 {
3647         int err;
3648         unsigned long input;
3649         struct hstate *h = kobj_to_hstate(kobj, NULL);
3650
3651         if (hstate_is_gigantic(h))
3652                 return -EINVAL;
3653
3654         err = kstrtoul(buf, 10, &input);
3655         if (err)
3656                 return err;
3657
3658         spin_lock_irq(&hugetlb_lock);
3659         h->nr_overcommit_huge_pages = input;
3660         spin_unlock_irq(&hugetlb_lock);
3661
3662         return count;
3663 }
3664 HSTATE_ATTR(nr_overcommit_hugepages);
3665
3666 static ssize_t free_hugepages_show(struct kobject *kobj,
3667                                         struct kobj_attribute *attr, char *buf)
3668 {
3669         struct hstate *h;
3670         unsigned long free_huge_pages;
3671         int nid;
3672
3673         h = kobj_to_hstate(kobj, &nid);
3674         if (nid == NUMA_NO_NODE)
3675                 free_huge_pages = h->free_huge_pages;
3676         else
3677                 free_huge_pages = h->free_huge_pages_node[nid];
3678
3679         return sysfs_emit(buf, "%lu\n", free_huge_pages);
3680 }
3681 HSTATE_ATTR_RO(free_hugepages);
3682
3683 static ssize_t resv_hugepages_show(struct kobject *kobj,
3684                                         struct kobj_attribute *attr, char *buf)
3685 {
3686         struct hstate *h = kobj_to_hstate(kobj, NULL);
3687         return sysfs_emit(buf, "%lu\n", h->resv_huge_pages);
3688 }
3689 HSTATE_ATTR_RO(resv_hugepages);
3690
3691 static ssize_t surplus_hugepages_show(struct kobject *kobj,
3692                                         struct kobj_attribute *attr, char *buf)
3693 {
3694         struct hstate *h;
3695         unsigned long surplus_huge_pages;
3696         int nid;
3697
3698         h = kobj_to_hstate(kobj, &nid);
3699         if (nid == NUMA_NO_NODE)
3700                 surplus_huge_pages = h->surplus_huge_pages;
3701         else
3702                 surplus_huge_pages = h->surplus_huge_pages_node[nid];
3703
3704         return sysfs_emit(buf, "%lu\n", surplus_huge_pages);
3705 }
3706 HSTATE_ATTR_RO(surplus_hugepages);
3707
3708 static ssize_t demote_store(struct kobject *kobj,
3709                struct kobj_attribute *attr, const char *buf, size_t len)
3710 {
3711         unsigned long nr_demote;
3712         unsigned long nr_available;
3713         nodemask_t nodes_allowed, *n_mask;
3714         struct hstate *h;
3715         int err = 0;
3716         int nid;
3717
3718         err = kstrtoul(buf, 10, &nr_demote);
3719         if (err)
3720                 return err;
3721         h = kobj_to_hstate(kobj, &nid);
3722
3723         if (nid != NUMA_NO_NODE) {
3724                 init_nodemask_of_node(&nodes_allowed, nid);
3725                 n_mask = &nodes_allowed;
3726         } else {
3727                 n_mask = &node_states[N_MEMORY];
3728         }
3729
3730         /* Synchronize with other sysfs operations modifying huge pages */
3731         mutex_lock(&h->resize_lock);
3732         spin_lock_irq(&hugetlb_lock);
3733
3734         while (nr_demote) {
3735                 /*
3736                  * Check for available pages to demote each time thorough the
3737                  * loop as demote_pool_huge_page will drop hugetlb_lock.
3738                  */
3739                 if (nid != NUMA_NO_NODE)
3740                         nr_available = h->free_huge_pages_node[nid];
3741                 else
3742                         nr_available = h->free_huge_pages;
3743                 nr_available -= h->resv_huge_pages;
3744                 if (!nr_available)
3745                         break;
3746
3747                 err = demote_pool_huge_page(h, n_mask);
3748                 if (err)
3749                         break;
3750
3751                 nr_demote--;
3752         }
3753
3754         spin_unlock_irq(&hugetlb_lock);
3755         mutex_unlock(&h->resize_lock);
3756
3757         if (err)
3758                 return err;
3759         return len;
3760 }
3761 HSTATE_ATTR_WO(demote);
3762
3763 static ssize_t demote_size_show(struct kobject *kobj,
3764                                         struct kobj_attribute *attr, char *buf)
3765 {
3766         int nid;
3767         struct hstate *h = kobj_to_hstate(kobj, &nid);
3768         unsigned long demote_size = (PAGE_SIZE << h->demote_order) / SZ_1K;
3769
3770         return sysfs_emit(buf, "%lukB\n", demote_size);
3771 }
3772
3773 static ssize_t demote_size_store(struct kobject *kobj,
3774                                         struct kobj_attribute *attr,
3775                                         const char *buf, size_t count)
3776 {
3777         struct hstate *h, *demote_hstate;
3778         unsigned long demote_size;
3779         unsigned int demote_order;
3780         int nid;
3781
3782         demote_size = (unsigned long)memparse(buf, NULL);
3783
3784         demote_hstate = size_to_hstate(demote_size);
3785         if (!demote_hstate)
3786                 return -EINVAL;
3787         demote_order = demote_hstate->order;
3788         if (demote_order < HUGETLB_PAGE_ORDER)
3789                 return -EINVAL;
3790
3791         /* demote order must be smaller than hstate order */
3792         h = kobj_to_hstate(kobj, &nid);
3793         if (demote_order >= h->order)
3794                 return -EINVAL;
3795
3796         /* resize_lock synchronizes access to demote size and writes */
3797         mutex_lock(&h->resize_lock);
3798         h->demote_order = demote_order;
3799         mutex_unlock(&h->resize_lock);
3800
3801         return count;
3802 }
3803 HSTATE_ATTR(demote_size);
3804
3805 static struct attribute *hstate_attrs[] = {
3806         &nr_hugepages_attr.attr,
3807         &nr_overcommit_hugepages_attr.attr,
3808         &free_hugepages_attr.attr,
3809         &resv_hugepages_attr.attr,
3810         &surplus_hugepages_attr.attr,
3811 #ifdef CONFIG_NUMA
3812         &nr_hugepages_mempolicy_attr.attr,
3813 #endif
3814         NULL,
3815 };
3816
3817 static const struct attribute_group hstate_attr_group = {
3818         .attrs = hstate_attrs,
3819 };
3820
3821 static struct attribute *hstate_demote_attrs[] = {
3822         &demote_size_attr.attr,
3823         &demote_attr.attr,
3824         NULL,
3825 };
3826
3827 static const struct attribute_group hstate_demote_attr_group = {
3828         .attrs = hstate_demote_attrs,
3829 };
3830
3831 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
3832                                     struct kobject **hstate_kobjs,
3833                                     const struct attribute_group *hstate_attr_group)
3834 {
3835         int retval;
3836         int hi = hstate_index(h);
3837
3838         hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
3839         if (!hstate_kobjs[hi])
3840                 return -ENOMEM;
3841
3842         retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
3843         if (retval) {
3844                 kobject_put(hstate_kobjs[hi]);
3845                 hstate_kobjs[hi] = NULL;
3846         }
3847
3848         if (h->demote_order) {
3849                 if (sysfs_create_group(hstate_kobjs[hi],
3850                                         &hstate_demote_attr_group))
3851                         pr_warn("HugeTLB unable to create demote interfaces for %s\n", h->name);
3852         }
3853
3854         return retval;
3855 }
3856
3857 static void __init hugetlb_sysfs_init(void)
3858 {
3859         struct hstate *h;
3860         int err;
3861
3862         hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
3863         if (!hugepages_kobj)
3864                 return;
3865
3866         for_each_hstate(h) {
3867                 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
3868                                          hstate_kobjs, &hstate_attr_group);
3869                 if (err)
3870                         pr_err("HugeTLB: Unable to add hstate %s", h->name);
3871         }
3872 }
3873
3874 #ifdef CONFIG_NUMA
3875
3876 /*
3877  * node_hstate/s - associate per node hstate attributes, via their kobjects,
3878  * with node devices in node_devices[] using a parallel array.  The array
3879  * index of a node device or _hstate == node id.
3880  * This is here to avoid any static dependency of the node device driver, in
3881  * the base kernel, on the hugetlb module.
3882  */
3883 struct node_hstate {
3884         struct kobject          *hugepages_kobj;
3885         struct kobject          *hstate_kobjs[HUGE_MAX_HSTATE];
3886 };
3887 static struct node_hstate node_hstates[MAX_NUMNODES];
3888
3889 /*
3890  * A subset of global hstate attributes for node devices
3891  */
3892 static struct attribute *per_node_hstate_attrs[] = {
3893         &nr_hugepages_attr.attr,
3894         &free_hugepages_attr.attr,
3895         &surplus_hugepages_attr.attr,
3896         NULL,
3897 };
3898
3899 static const struct attribute_group per_node_hstate_attr_group = {
3900         .attrs = per_node_hstate_attrs,
3901 };
3902
3903 /*
3904  * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
3905  * Returns node id via non-NULL nidp.
3906  */
3907 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
3908 {
3909         int nid;
3910
3911         for (nid = 0; nid < nr_node_ids; nid++) {
3912                 struct node_hstate *nhs = &node_hstates[nid];
3913                 int i;
3914                 for (i = 0; i < HUGE_MAX_HSTATE; i++)
3915                         if (nhs->hstate_kobjs[i] == kobj) {
3916                                 if (nidp)
3917                                         *nidp = nid;
3918                                 return &hstates[i];
3919                         }
3920         }
3921
3922         BUG();
3923         return NULL;
3924 }
3925
3926 /*
3927  * Unregister hstate attributes from a single node device.
3928  * No-op if no hstate attributes attached.
3929  */
3930 static void hugetlb_unregister_node(struct node *node)
3931 {
3932         struct hstate *h;
3933         struct node_hstate *nhs = &node_hstates[node->dev.id];
3934
3935         if (!nhs->hugepages_kobj)
3936                 return;         /* no hstate attributes */
3937
3938         for_each_hstate(h) {
3939                 int idx = hstate_index(h);
3940                 if (nhs->hstate_kobjs[idx]) {
3941                         kobject_put(nhs->hstate_kobjs[idx]);
3942                         nhs->hstate_kobjs[idx] = NULL;
3943                 }
3944         }
3945
3946         kobject_put(nhs->hugepages_kobj);
3947         nhs->hugepages_kobj = NULL;
3948 }
3949
3950
3951 /*
3952  * Register hstate attributes for a single node device.
3953  * No-op if attributes already registered.
3954  */
3955 static void hugetlb_register_node(struct node *node)
3956 {
3957         struct hstate *h;
3958         struct node_hstate *nhs = &node_hstates[node->dev.id];
3959         int err;
3960
3961         if (nhs->hugepages_kobj)
3962                 return;         /* already allocated */
3963
3964         nhs->hugepages_kobj = kobject_create_and_add("hugepages",
3965                                                         &node->dev.kobj);
3966         if (!nhs->hugepages_kobj)
3967                 return;
3968
3969         for_each_hstate(h) {
3970                 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
3971                                                 nhs->hstate_kobjs,
3972                                                 &per_node_hstate_attr_group);
3973                 if (err) {
3974                         pr_err("HugeTLB: Unable to add hstate %s for node %d\n",
3975                                 h->name, node->dev.id);
3976                         hugetlb_unregister_node(node);
3977                         break;
3978                 }
3979         }
3980 }
3981
3982 /*
3983  * hugetlb init time:  register hstate attributes for all registered node
3984  * devices of nodes that have memory.  All on-line nodes should have
3985  * registered their associated device by this time.
3986  */
3987 static void __init hugetlb_register_all_nodes(void)
3988 {
3989         int nid;
3990
3991         for_each_node_state(nid, N_MEMORY) {
3992                 struct node *node = node_devices[nid];
3993                 if (node->dev.id == nid)
3994                         hugetlb_register_node(node);
3995         }
3996
3997         /*
3998          * Let the node device driver know we're here so it can
3999          * [un]register hstate attributes on node hotplug.
4000          */
4001         register_hugetlbfs_with_node(hugetlb_register_node,
4002                                      hugetlb_unregister_node);
4003 }
4004 #else   /* !CONFIG_NUMA */
4005
4006 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
4007 {
4008         BUG();
4009         if (nidp)
4010                 *nidp = -1;
4011         return NULL;
4012 }
4013
4014 static void hugetlb_register_all_nodes(void) { }
4015
4016 #endif
4017
4018 static int __init hugetlb_init(void)
4019 {
4020         int i;
4021
4022         BUILD_BUG_ON(sizeof_field(struct page, private) * BITS_PER_BYTE <
4023                         __NR_HPAGEFLAGS);
4024
4025         if (!hugepages_supported()) {
4026                 if (hugetlb_max_hstate || default_hstate_max_huge_pages)
4027                         pr_warn("HugeTLB: huge pages not supported, ignoring associated command-line parameters\n");
4028                 return 0;
4029         }
4030
4031         /*
4032          * Make sure HPAGE_SIZE (HUGETLB_PAGE_ORDER) hstate exists.  Some
4033          * architectures depend on setup being done here.
4034          */
4035         hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
4036         if (!parsed_default_hugepagesz) {
4037                 /*
4038                  * If we did not parse a default huge page size, set
4039                  * default_hstate_idx to HPAGE_SIZE hstate. And, if the
4040                  * number of huge pages for this default size was implicitly
4041                  * specified, set that here as well.
4042                  * Note that the implicit setting will overwrite an explicit
4043                  * setting.  A warning will be printed in this case.
4044                  */
4045                 default_hstate_idx = hstate_index(size_to_hstate(HPAGE_SIZE));
4046                 if (default_hstate_max_huge_pages) {
4047                         if (default_hstate.max_huge_pages) {
4048                                 char buf[32];
4049
4050                                 string_get_size(huge_page_size(&default_hstate),
4051                                         1, STRING_UNITS_2, buf, 32);
4052                                 pr_warn("HugeTLB: Ignoring hugepages=%lu associated with %s page size\n",
4053                                         default_hstate.max_huge_pages, buf);
4054                                 pr_warn("HugeTLB: Using hugepages=%lu for number of default huge pages\n",
4055                                         default_hstate_max_huge_pages);
4056                         }
4057                         default_hstate.max_huge_pages =
4058                                 default_hstate_max_huge_pages;
4059
4060                         for_each_online_node(i)
4061                                 default_hstate.max_huge_pages_node[i] =
4062                                         default_hugepages_in_node[i];
4063                 }
4064         }
4065
4066         hugetlb_cma_check();
4067         hugetlb_init_hstates();
4068         gather_bootmem_prealloc();
4069         report_hugepages();
4070
4071         hugetlb_sysfs_init();
4072         hugetlb_register_all_nodes();
4073         hugetlb_cgroup_file_init();
4074
4075 #ifdef CONFIG_SMP
4076         num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
4077 #else
4078         num_fault_mutexes = 1;
4079 #endif
4080         hugetlb_fault_mutex_table =
4081                 kmalloc_array(num_fault_mutexes, sizeof(struct mutex),
4082                               GFP_KERNEL);
4083         BUG_ON(!hugetlb_fault_mutex_table);
4084
4085         for (i = 0; i < num_fault_mutexes; i++)
4086                 mutex_init(&hugetlb_fault_mutex_table[i]);
4087         return 0;
4088 }
4089 subsys_initcall(hugetlb_init);
4090
4091 /* Overwritten by architectures with more huge page sizes */
4092 bool __init __attribute((weak)) arch_hugetlb_valid_size(unsigned long size)
4093 {
4094         return size == HPAGE_SIZE;
4095 }
4096
4097 void __init hugetlb_add_hstate(unsigned int order)
4098 {
4099         struct hstate *h;
4100         unsigned long i;
4101
4102         if (size_to_hstate(PAGE_SIZE << order)) {
4103                 return;
4104         }
4105         BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
4106         BUG_ON(order == 0);
4107         h = &hstates[hugetlb_max_hstate++];
4108         mutex_init(&h->resize_lock);
4109         h->order = order;
4110         h->mask = ~(huge_page_size(h) - 1);
4111         for (i = 0; i < MAX_NUMNODES; ++i)
4112                 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
4113         INIT_LIST_HEAD(&h->hugepage_activelist);
4114         h->next_nid_to_alloc = first_memory_node;
4115         h->next_nid_to_free = first_memory_node;
4116         snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
4117                                         huge_page_size(h)/1024);
4118         hugetlb_vmemmap_init(h);
4119
4120         parsed_hstate = h;
4121 }
4122
4123 bool __init __weak hugetlb_node_alloc_supported(void)
4124 {
4125         return true;
4126 }
4127
4128 static void __init hugepages_clear_pages_in_node(void)
4129 {
4130         if (!hugetlb_max_hstate) {
4131                 default_hstate_max_huge_pages = 0;
4132                 memset(default_hugepages_in_node, 0,
4133                         MAX_NUMNODES * sizeof(unsigned int));
4134         } else {
4135                 parsed_hstate->max_huge_pages = 0;
4136                 memset(parsed_hstate->max_huge_pages_node, 0,
4137                         MAX_NUMNODES * sizeof(unsigned int));
4138         }
4139 }
4140
4141 /*
4142  * hugepages command line processing
4143  * hugepages normally follows a valid hugepagsz or default_hugepagsz
4144  * specification.  If not, ignore the hugepages value.  hugepages can also
4145  * be the first huge page command line  option in which case it implicitly
4146  * specifies the number of huge pages for the default size.
4147  */
4148 static int __init hugepages_setup(char *s)
4149 {
4150         unsigned long *mhp;
4151         static unsigned long *last_mhp;
4152         int node = NUMA_NO_NODE;
4153         int count;
4154         unsigned long tmp;
4155         char *p = s;
4156
4157         if (!parsed_valid_hugepagesz) {
4158                 pr_warn("HugeTLB: hugepages=%s does not follow a valid hugepagesz, ignoring\n", s);
4159                 parsed_valid_hugepagesz = true;
4160                 return 1;
4161         }
4162
4163         /*
4164          * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter
4165          * yet, so this hugepages= parameter goes to the "default hstate".
4166          * Otherwise, it goes with the previously parsed hugepagesz or
4167          * default_hugepagesz.
4168          */
4169         else if (!hugetlb_max_hstate)
4170                 mhp = &default_hstate_max_huge_pages;
4171         else
4172                 mhp = &parsed_hstate->max_huge_pages;
4173
4174         if (mhp == last_mhp) {
4175                 pr_warn("HugeTLB: hugepages= specified twice without interleaving hugepagesz=, ignoring hugepages=%s\n", s);
4176                 return 1;
4177         }
4178
4179         while (*p) {
4180                 count = 0;
4181                 if (sscanf(p, "%lu%n", &tmp, &count) != 1)
4182                         goto invalid;
4183                 /* Parameter is node format */
4184                 if (p[count] == ':') {
4185                         if (!hugetlb_node_alloc_supported()) {
4186                                 pr_warn("HugeTLB: architecture can't support node specific alloc, ignoring!\n");
4187                                 return 1;
4188                         }
4189                         if (tmp >= MAX_NUMNODES || !node_online(tmp))
4190                                 goto invalid;
4191                         node = array_index_nospec(tmp, MAX_NUMNODES);
4192                         p += count + 1;
4193                         /* Parse hugepages */
4194                         if (sscanf(p, "%lu%n", &tmp, &count) != 1)
4195                                 goto invalid;
4196                         if (!hugetlb_max_hstate)
4197                                 default_hugepages_in_node[node] = tmp;
4198                         else
4199                                 parsed_hstate->max_huge_pages_node[node] = tmp;
4200                         *mhp += tmp;
4201                         /* Go to parse next node*/
4202                         if (p[count] == ',')
4203                                 p += count + 1;
4204                         else
4205                                 break;
4206                 } else {
4207                         if (p != s)
4208                                 goto invalid;
4209                         *mhp = tmp;
4210                         break;
4211                 }
4212         }
4213
4214         /*
4215          * Global state is always initialized later in hugetlb_init.
4216          * But we need to allocate gigantic hstates here early to still
4217          * use the bootmem allocator.
4218          */
4219         if (hugetlb_max_hstate && hstate_is_gigantic(parsed_hstate))
4220                 hugetlb_hstate_alloc_pages(parsed_hstate);
4221
4222         last_mhp = mhp;
4223
4224         return 1;
4225
4226 invalid:
4227         pr_warn("HugeTLB: Invalid hugepages parameter %s\n", p);
4228         hugepages_clear_pages_in_node();
4229         return 1;
4230 }
4231 __setup("hugepages=", hugepages_setup);
4232
4233 /*
4234  * hugepagesz command line processing
4235  * A specific huge page size can only be specified once with hugepagesz.
4236  * hugepagesz is followed by hugepages on the command line.  The global
4237  * variable 'parsed_valid_hugepagesz' is used to determine if prior
4238  * hugepagesz argument was valid.
4239  */
4240 static int __init hugepagesz_setup(char *s)
4241 {
4242         unsigned long size;
4243         struct hstate *h;
4244
4245         parsed_valid_hugepagesz = false;
4246         size = (unsigned long)memparse(s, NULL);
4247
4248         if (!arch_hugetlb_valid_size(size)) {
4249                 pr_err("HugeTLB: unsupported hugepagesz=%s\n", s);
4250                 return 1;
4251         }
4252
4253         h = size_to_hstate(size);
4254         if (h) {
4255                 /*
4256                  * hstate for this size already exists.  This is normally
4257                  * an error, but is allowed if the existing hstate is the
4258                  * default hstate.  More specifically, it is only allowed if
4259                  * the number of huge pages for the default hstate was not
4260                  * previously specified.
4261                  */
4262                 if (!parsed_default_hugepagesz ||  h != &default_hstate ||
4263                     default_hstate.max_huge_pages) {
4264                         pr_warn("HugeTLB: hugepagesz=%s specified twice, ignoring\n", s);
4265                         return 1;
4266                 }
4267
4268                 /*
4269                  * No need to call hugetlb_add_hstate() as hstate already
4270                  * exists.  But, do set parsed_hstate so that a following
4271                  * hugepages= parameter will be applied to this hstate.
4272                  */
4273                 parsed_hstate = h;
4274                 parsed_valid_hugepagesz = true;
4275                 return 1;
4276         }
4277
4278         hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
4279         parsed_valid_hugepagesz = true;
4280         return 1;
4281 }
4282 __setup("hugepagesz=", hugepagesz_setup);
4283
4284 /*
4285  * default_hugepagesz command line input
4286  * Only one instance of default_hugepagesz allowed on command line.
4287  */
4288 static int __init default_hugepagesz_setup(char *s)
4289 {
4290         unsigned long size;
4291         int i;
4292
4293         parsed_valid_hugepagesz = false;
4294         if (parsed_default_hugepagesz) {
4295                 pr_err("HugeTLB: default_hugepagesz previously specified, ignoring %s\n", s);
4296                 return 1;
4297         }
4298
4299         size = (unsigned long)memparse(s, NULL);
4300
4301         if (!arch_hugetlb_valid_size(size)) {
4302                 pr_err("HugeTLB: unsupported default_hugepagesz=%s\n", s);
4303                 return 1;
4304         }
4305
4306         hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
4307         parsed_valid_hugepagesz = true;
4308         parsed_default_hugepagesz = true;
4309         default_hstate_idx = hstate_index(size_to_hstate(size));
4310
4311         /*
4312          * The number of default huge pages (for this size) could have been
4313          * specified as the first hugetlb parameter: hugepages=X.  If so,
4314          * then default_hstate_max_huge_pages is set.  If the default huge
4315          * page size is gigantic (>= MAX_ORDER), then the pages must be
4316          * allocated here from bootmem allocator.
4317          */
4318         if (default_hstate_max_huge_pages) {
4319                 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
4320                 for_each_online_node(i)
4321                         default_hstate.max_huge_pages_node[i] =
4322                                 default_hugepages_in_node[i];
4323                 if (hstate_is_gigantic(&default_hstate))
4324                         hugetlb_hstate_alloc_pages(&default_hstate);
4325                 default_hstate_max_huge_pages = 0;
4326         }
4327
4328         return 1;
4329 }
4330 __setup("default_hugepagesz=", default_hugepagesz_setup);
4331
4332 static unsigned int allowed_mems_nr(struct hstate *h)
4333 {
4334         int node;
4335         unsigned int nr = 0;
4336         nodemask_t *mpol_allowed;
4337         unsigned int *array = h->free_huge_pages_node;
4338         gfp_t gfp_mask = htlb_alloc_mask(h);
4339
4340         mpol_allowed = policy_nodemask_current(gfp_mask);
4341
4342         for_each_node_mask(node, cpuset_current_mems_allowed) {
4343                 if (!mpol_allowed || node_isset(node, *mpol_allowed))
4344                         nr += array[node];
4345         }
4346
4347         return nr;
4348 }
4349
4350 #ifdef CONFIG_SYSCTL
4351 static int proc_hugetlb_doulongvec_minmax(struct ctl_table *table, int write,
4352                                           void *buffer, size_t *length,
4353                                           loff_t *ppos, unsigned long *out)
4354 {
4355         struct ctl_table dup_table;
4356
4357         /*
4358          * In order to avoid races with __do_proc_doulongvec_minmax(), we
4359          * can duplicate the @table and alter the duplicate of it.
4360          */
4361         dup_table = *table;
4362         dup_table.data = out;
4363
4364         return proc_doulongvec_minmax(&dup_table, write, buffer, length, ppos);
4365 }
4366
4367 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
4368                          struct ctl_table *table, int write,
4369                          void *buffer, size_t *length, loff_t *ppos)
4370 {
4371         struct hstate *h = &default_hstate;
4372         unsigned long tmp = h->max_huge_pages;
4373         int ret;
4374
4375         if (!hugepages_supported())
4376                 return -EOPNOTSUPP;
4377
4378         ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
4379                                              &tmp);
4380         if (ret)
4381                 goto out;
4382
4383         if (write)
4384                 ret = __nr_hugepages_store_common(obey_mempolicy, h,
4385                                                   NUMA_NO_NODE, tmp, *length);
4386 out:
4387         return ret;
4388 }
4389
4390 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
4391                           void *buffer, size_t *length, loff_t *ppos)
4392 {
4393
4394         return hugetlb_sysctl_handler_common(false, table, write,
4395                                                         buffer, length, ppos);
4396 }
4397
4398 #ifdef CONFIG_NUMA
4399 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
4400                           void *buffer, size_t *length, loff_t *ppos)
4401 {
4402         return hugetlb_sysctl_handler_common(true, table, write,
4403                                                         buffer, length, ppos);
4404 }
4405 #endif /* CONFIG_NUMA */
4406
4407 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
4408                 void *buffer, size_t *length, loff_t *ppos)
4409 {
4410         struct hstate *h = &default_hstate;
4411         unsigned long tmp;
4412         int ret;
4413
4414         if (!hugepages_supported())
4415                 return -EOPNOTSUPP;
4416
4417         tmp = h->nr_overcommit_huge_pages;
4418
4419         if (write && hstate_is_gigantic(h))
4420                 return -EINVAL;
4421
4422         ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
4423                                              &tmp);
4424         if (ret)
4425                 goto out;
4426
4427         if (write) {
4428                 spin_lock_irq(&hugetlb_lock);
4429                 h->nr_overcommit_huge_pages = tmp;
4430                 spin_unlock_irq(&hugetlb_lock);
4431         }
4432 out:
4433         return ret;
4434 }
4435
4436 #endif /* CONFIG_SYSCTL */
4437
4438 void hugetlb_report_meminfo(struct seq_file *m)
4439 {
4440         struct hstate *h;
4441         unsigned long total = 0;
4442
4443         if (!hugepages_supported())
4444                 return;
4445
4446         for_each_hstate(h) {
4447                 unsigned long count = h->nr_huge_pages;
4448
4449                 total += huge_page_size(h) * count;
4450
4451                 if (h == &default_hstate)
4452                         seq_printf(m,
4453                                    "HugePages_Total:   %5lu\n"
4454                                    "HugePages_Free:    %5lu\n"
4455                                    "HugePages_Rsvd:    %5lu\n"
4456                                    "HugePages_Surp:    %5lu\n"
4457                                    "Hugepagesize:   %8lu kB\n",
4458                                    count,
4459                                    h->free_huge_pages,
4460                                    h->resv_huge_pages,
4461                                    h->surplus_huge_pages,
4462                                    huge_page_size(h) / SZ_1K);
4463         }
4464
4465         seq_printf(m, "Hugetlb:        %8lu kB\n", total / SZ_1K);
4466 }
4467
4468 int hugetlb_report_node_meminfo(char *buf, int len, int nid)
4469 {
4470         struct hstate *h = &default_hstate;
4471
4472         if (!hugepages_supported())
4473                 return 0;
4474
4475         return sysfs_emit_at(buf, len,
4476                              "Node %d HugePages_Total: %5u\n"
4477                              "Node %d HugePages_Free:  %5u\n"
4478                              "Node %d HugePages_Surp:  %5u\n",
4479                              nid, h->nr_huge_pages_node[nid],
4480                              nid, h->free_huge_pages_node[nid],
4481                              nid, h->surplus_huge_pages_node[nid]);
4482 }
4483
4484 void hugetlb_show_meminfo(void)
4485 {
4486         struct hstate *h;
4487         int nid;
4488
4489         if (!hugepages_supported())
4490                 return;
4491
4492         for_each_node_state(nid, N_MEMORY)
4493                 for_each_hstate(h)
4494                         pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
4495                                 nid,
4496                                 h->nr_huge_pages_node[nid],
4497                                 h->free_huge_pages_node[nid],
4498                                 h->surplus_huge_pages_node[nid],
4499                                 huge_page_size(h) / SZ_1K);
4500 }
4501
4502 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
4503 {
4504         seq_printf(m, "HugetlbPages:\t%8lu kB\n",
4505                    atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
4506 }
4507
4508 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
4509 unsigned long hugetlb_total_pages(void)
4510 {
4511         struct hstate *h;
4512         unsigned long nr_total_pages = 0;
4513
4514         for_each_hstate(h)
4515                 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
4516         return nr_total_pages;
4517 }
4518
4519 static int hugetlb_acct_memory(struct hstate *h, long delta)
4520 {
4521         int ret = -ENOMEM;
4522
4523         if (!delta)
4524                 return 0;
4525
4526         spin_lock_irq(&hugetlb_lock);
4527         /*
4528          * When cpuset is configured, it breaks the strict hugetlb page
4529          * reservation as the accounting is done on a global variable. Such
4530          * reservation is completely rubbish in the presence of cpuset because
4531          * the reservation is not checked against page availability for the
4532          * current cpuset. Application can still potentially OOM'ed by kernel
4533          * with lack of free htlb page in cpuset that the task is in.
4534          * Attempt to enforce strict accounting with cpuset is almost
4535          * impossible (or too ugly) because cpuset is too fluid that
4536          * task or memory node can be dynamically moved between cpusets.
4537          *
4538          * The change of semantics for shared hugetlb mapping with cpuset is
4539          * undesirable. However, in order to preserve some of the semantics,
4540          * we fall back to check against current free page availability as
4541          * a best attempt and hopefully to minimize the impact of changing
4542          * semantics that cpuset has.
4543          *
4544          * Apart from cpuset, we also have memory policy mechanism that
4545          * also determines from which node the kernel will allocate memory
4546          * in a NUMA system. So similar to cpuset, we also should consider
4547          * the memory policy of the current task. Similar to the description
4548          * above.
4549          */
4550         if (delta > 0) {
4551                 if (gather_surplus_pages(h, delta) < 0)
4552                         goto out;
4553
4554                 if (delta > allowed_mems_nr(h)) {
4555                         return_unused_surplus_pages(h, delta);
4556                         goto out;
4557                 }
4558         }
4559
4560         ret = 0;
4561         if (delta < 0)
4562                 return_unused_surplus_pages(h, (unsigned long) -delta);
4563
4564 out:
4565         spin_unlock_irq(&hugetlb_lock);
4566         return ret;
4567 }
4568
4569 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
4570 {
4571         struct resv_map *resv = vma_resv_map(vma);
4572
4573         /*
4574          * This new VMA should share its siblings reservation map if present.
4575          * The VMA will only ever have a valid reservation map pointer where
4576          * it is being copied for another still existing VMA.  As that VMA
4577          * has a reference to the reservation map it cannot disappear until
4578          * after this open call completes.  It is therefore safe to take a
4579          * new reference here without additional locking.
4580          */
4581         if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
4582                 resv_map_dup_hugetlb_cgroup_uncharge_info(resv);
4583                 kref_get(&resv->refs);
4584         }
4585 }
4586
4587 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
4588 {
4589         struct hstate *h = hstate_vma(vma);
4590         struct resv_map *resv = vma_resv_map(vma);
4591         struct hugepage_subpool *spool = subpool_vma(vma);
4592         unsigned long reserve, start, end;
4593         long gbl_reserve;
4594
4595         if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
4596                 return;
4597
4598         start = vma_hugecache_offset(h, vma, vma->vm_start);
4599         end = vma_hugecache_offset(h, vma, vma->vm_end);
4600
4601         reserve = (end - start) - region_count(resv, start, end);
4602         hugetlb_cgroup_uncharge_counter(resv, start, end);
4603         if (reserve) {
4604                 /*
4605                  * Decrement reserve counts.  The global reserve count may be
4606                  * adjusted if the subpool has a minimum size.
4607                  */
4608                 gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
4609                 hugetlb_acct_memory(h, -gbl_reserve);
4610         }
4611
4612         kref_put(&resv->refs, resv_map_release);
4613 }
4614
4615 static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
4616 {
4617         if (addr & ~(huge_page_mask(hstate_vma(vma))))
4618                 return -EINVAL;
4619         return 0;
4620 }
4621
4622 static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma)
4623 {
4624         return huge_page_size(hstate_vma(vma));
4625 }
4626
4627 /*
4628  * We cannot handle pagefaults against hugetlb pages at all.  They cause
4629  * handle_mm_fault() to try to instantiate regular-sized pages in the
4630  * hugepage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
4631  * this far.
4632  */
4633 static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf)
4634 {
4635         BUG();
4636         return 0;
4637 }
4638
4639 /*
4640  * When a new function is introduced to vm_operations_struct and added
4641  * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops.
4642  * This is because under System V memory model, mappings created via
4643  * shmget/shmat with "huge page" specified are backed by hugetlbfs files,
4644  * their original vm_ops are overwritten with shm_vm_ops.
4645  */
4646 const struct vm_operations_struct hugetlb_vm_ops = {
4647         .fault = hugetlb_vm_op_fault,
4648         .open = hugetlb_vm_op_open,
4649         .close = hugetlb_vm_op_close,
4650         .may_split = hugetlb_vm_op_split,
4651         .pagesize = hugetlb_vm_op_pagesize,
4652 };
4653
4654 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
4655                                 int writable)
4656 {
4657         pte_t entry;
4658         unsigned int shift = huge_page_shift(hstate_vma(vma));
4659
4660         if (writable) {
4661                 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
4662                                          vma->vm_page_prot)));
4663         } else {
4664                 entry = huge_pte_wrprotect(mk_huge_pte(page,
4665                                            vma->vm_page_prot));
4666         }
4667         entry = pte_mkyoung(entry);
4668         entry = arch_make_huge_pte(entry, shift, vma->vm_flags);
4669
4670         return entry;
4671 }
4672
4673 static void set_huge_ptep_writable(struct vm_area_struct *vma,
4674                                    unsigned long address, pte_t *ptep)
4675 {
4676         pte_t entry;
4677
4678         entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
4679         if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
4680                 update_mmu_cache(vma, address, ptep);
4681 }
4682
4683 bool is_hugetlb_entry_migration(pte_t pte)
4684 {
4685         swp_entry_t swp;
4686
4687         if (huge_pte_none(pte) || pte_present(pte))
4688                 return false;
4689         swp = pte_to_swp_entry(pte);
4690         if (is_migration_entry(swp))
4691                 return true;
4692         else
4693                 return false;
4694 }
4695
4696 static bool is_hugetlb_entry_hwpoisoned(pte_t pte)
4697 {
4698         swp_entry_t swp;
4699
4700         if (huge_pte_none(pte) || pte_present(pte))
4701                 return false;
4702         swp = pte_to_swp_entry(pte);
4703         if (is_hwpoison_entry(swp))
4704                 return true;
4705         else
4706                 return false;
4707 }
4708
4709 static void
4710 hugetlb_install_page(struct vm_area_struct *vma, pte_t *ptep, unsigned long addr,
4711                      struct page *new_page)
4712 {
4713         __SetPageUptodate(new_page);
4714         hugepage_add_new_anon_rmap(new_page, vma, addr);
4715         set_huge_pte_at(vma->vm_mm, addr, ptep, make_huge_pte(vma, new_page, 1));
4716         hugetlb_count_add(pages_per_huge_page(hstate_vma(vma)), vma->vm_mm);
4717         ClearHPageRestoreReserve(new_page);
4718         SetHPageMigratable(new_page);
4719 }
4720
4721 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
4722                             struct vm_area_struct *dst_vma,
4723                             struct vm_area_struct *src_vma)
4724 {
4725         pte_t *src_pte, *dst_pte, entry, dst_entry;
4726         struct page *ptepage;
4727         unsigned long addr;
4728         bool cow = is_cow_mapping(src_vma->vm_flags);
4729         struct hstate *h = hstate_vma(src_vma);
4730         unsigned long sz = huge_page_size(h);
4731         unsigned long npages = pages_per_huge_page(h);
4732         struct address_space *mapping = src_vma->vm_file->f_mapping;
4733         struct mmu_notifier_range range;
4734         int ret = 0;
4735
4736         if (cow) {
4737                 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, src_vma, src,
4738                                         src_vma->vm_start,
4739                                         src_vma->vm_end);
4740                 mmu_notifier_invalidate_range_start(&range);
4741                 mmap_assert_write_locked(src);
4742                 raw_write_seqcount_begin(&src->write_protect_seq);
4743         } else {
4744                 /*
4745                  * For shared mappings i_mmap_rwsem must be held to call
4746                  * huge_pte_alloc, otherwise the returned ptep could go
4747                  * away if part of a shared pmd and another thread calls
4748                  * huge_pmd_unshare.
4749                  */
4750                 i_mmap_lock_read(mapping);
4751         }
4752
4753         for (addr = src_vma->vm_start; addr < src_vma->vm_end; addr += sz) {
4754                 spinlock_t *src_ptl, *dst_ptl;
4755                 src_pte = huge_pte_offset(src, addr, sz);
4756                 if (!src_pte)
4757                         continue;
4758                 dst_pte = huge_pte_alloc(dst, dst_vma, addr, sz);
4759                 if (!dst_pte) {
4760                         ret = -ENOMEM;
4761                         break;
4762                 }
4763
4764                 /*
4765                  * If the pagetables are shared don't copy or take references.
4766                  * dst_pte == src_pte is the common case of src/dest sharing.
4767                  *
4768                  * However, src could have 'unshared' and dst shares with
4769                  * another vma.  If dst_pte !none, this implies sharing.
4770                  * Check here before taking page table lock, and once again
4771                  * after taking the lock below.
4772                  */
4773                 dst_entry = huge_ptep_get(dst_pte);
4774                 if ((dst_pte == src_pte) || !huge_pte_none(dst_entry))
4775                         continue;
4776
4777                 dst_ptl = huge_pte_lock(h, dst, dst_pte);
4778                 src_ptl = huge_pte_lockptr(h, src, src_pte);
4779                 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
4780                 entry = huge_ptep_get(src_pte);
4781                 dst_entry = huge_ptep_get(dst_pte);
4782 again:
4783                 if (huge_pte_none(entry) || !huge_pte_none(dst_entry)) {
4784                         /*
4785                          * Skip if src entry none.  Also, skip in the
4786                          * unlikely case dst entry !none as this implies
4787                          * sharing with another vma.
4788                          */
4789                         ;
4790                 } else if (unlikely(is_hugetlb_entry_migration(entry) ||
4791                                     is_hugetlb_entry_hwpoisoned(entry))) {
4792                         swp_entry_t swp_entry = pte_to_swp_entry(entry);
4793                         bool uffd_wp = huge_pte_uffd_wp(entry);
4794
4795                         if (!is_readable_migration_entry(swp_entry) && cow) {
4796                                 /*
4797                                  * COW mappings require pages in both
4798                                  * parent and child to be set to read.
4799                                  */
4800                                 swp_entry = make_readable_migration_entry(
4801                                                         swp_offset(swp_entry));
4802                                 entry = swp_entry_to_pte(swp_entry);
4803                                 if (userfaultfd_wp(src_vma) && uffd_wp)
4804                                         entry = huge_pte_mkuffd_wp(entry);
4805                                 set_huge_swap_pte_at(src, addr, src_pte,
4806                                                      entry, sz);
4807                         }
4808                         if (!userfaultfd_wp(dst_vma) && uffd_wp)
4809                                 entry = huge_pte_clear_uffd_wp(entry);
4810                         set_huge_swap_pte_at(dst, addr, dst_pte, entry, sz);
4811                 } else if (unlikely(is_pte_marker(entry))) {
4812                         /*
4813                          * We copy the pte marker only if the dst vma has
4814                          * uffd-wp enabled.
4815                          */
4816                         if (userfaultfd_wp(dst_vma))
4817                                 set_huge_pte_at(dst, addr, dst_pte, entry);
4818                 } else {
4819                         entry = huge_ptep_get(src_pte);
4820                         ptepage = pte_page(entry);
4821                         get_page(ptepage);
4822
4823                         /*
4824                          * Failing to duplicate the anon rmap is a rare case
4825                          * where we see pinned hugetlb pages while they're
4826                          * prone to COW. We need to do the COW earlier during
4827                          * fork.
4828                          *
4829                          * When pre-allocating the page or copying data, we
4830                          * need to be without the pgtable locks since we could
4831                          * sleep during the process.
4832                          */
4833                         if (!PageAnon(ptepage)) {
4834                                 page_dup_file_rmap(ptepage, true);
4835                         } else if (page_try_dup_anon_rmap(ptepage, true,
4836                                                           src_vma)) {
4837                                 pte_t src_pte_old = entry;
4838                                 struct page *new;
4839
4840                                 spin_unlock(src_ptl);
4841                                 spin_unlock(dst_ptl);
4842                                 /* Do not use reserve as it's private owned */
4843                                 new = alloc_huge_page(dst_vma, addr, 1);
4844                                 if (IS_ERR(new)) {
4845                                         put_page(ptepage);
4846                                         ret = PTR_ERR(new);
4847                                         break;
4848                                 }
4849                                 copy_user_huge_page(new, ptepage, addr, dst_vma,
4850                                                     npages);
4851                                 put_page(ptepage);
4852
4853                                 /* Install the new huge page if src pte stable */
4854                                 dst_ptl = huge_pte_lock(h, dst, dst_pte);
4855                                 src_ptl = huge_pte_lockptr(h, src, src_pte);
4856                                 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
4857                                 entry = huge_ptep_get(src_pte);
4858                                 if (!pte_same(src_pte_old, entry)) {
4859                                         restore_reserve_on_error(h, dst_vma, addr,
4860                                                                 new);
4861                                         put_page(new);
4862                                         /* dst_entry won't change as in child */
4863                                         goto again;
4864                                 }
4865                                 hugetlb_install_page(dst_vma, dst_pte, addr, new);
4866                                 spin_unlock(src_ptl);
4867                                 spin_unlock(dst_ptl);
4868                                 continue;
4869                         }
4870
4871                         if (cow) {
4872                                 /*
4873                                  * No need to notify as we are downgrading page
4874                                  * table protection not changing it to point
4875                                  * to a new page.
4876                                  *
4877                                  * See Documentation/mm/mmu_notifier.rst
4878                                  */
4879                                 huge_ptep_set_wrprotect(src, addr, src_pte);
4880                                 entry = huge_pte_wrprotect(entry);
4881                         }
4882
4883                         set_huge_pte_at(dst, addr, dst_pte, entry);
4884                         hugetlb_count_add(npages, dst);
4885                 }
4886                 spin_unlock(src_ptl);
4887                 spin_unlock(dst_ptl);
4888         }
4889
4890         if (cow) {
4891                 raw_write_seqcount_end(&src->write_protect_seq);
4892                 mmu_notifier_invalidate_range_end(&range);
4893         } else {
4894                 i_mmap_unlock_read(mapping);
4895         }
4896
4897         return ret;
4898 }
4899
4900 static void move_huge_pte(struct vm_area_struct *vma, unsigned long old_addr,
4901                           unsigned long new_addr, pte_t *src_pte, pte_t *dst_pte)
4902 {
4903         struct hstate *h = hstate_vma(vma);
4904         struct mm_struct *mm = vma->vm_mm;
4905         spinlock_t *src_ptl, *dst_ptl;
4906         pte_t pte;
4907
4908         dst_ptl = huge_pte_lock(h, mm, dst_pte);
4909         src_ptl = huge_pte_lockptr(h, mm, src_pte);
4910
4911         /*
4912          * We don't have to worry about the ordering of src and dst ptlocks
4913          * because exclusive mmap_sem (or the i_mmap_lock) prevents deadlock.
4914          */
4915         if (src_ptl != dst_ptl)
4916                 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
4917
4918         pte = huge_ptep_get_and_clear(mm, old_addr, src_pte);
4919         set_huge_pte_at(mm, new_addr, dst_pte, pte);
4920
4921         if (src_ptl != dst_ptl)
4922                 spin_unlock(src_ptl);
4923         spin_unlock(dst_ptl);
4924 }
4925
4926 int move_hugetlb_page_tables(struct vm_area_struct *vma,
4927                              struct vm_area_struct *new_vma,
4928                              unsigned long old_addr, unsigned long new_addr,
4929                              unsigned long len)
4930 {
4931         struct hstate *h = hstate_vma(vma);
4932         struct address_space *mapping = vma->vm_file->f_mapping;
4933         unsigned long sz = huge_page_size(h);
4934         struct mm_struct *mm = vma->vm_mm;
4935         unsigned long old_end = old_addr + len;
4936         unsigned long old_addr_copy;
4937         pte_t *src_pte, *dst_pte;
4938         struct mmu_notifier_range range;
4939         bool shared_pmd = false;
4940
4941         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, old_addr,
4942                                 old_end);
4943         adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
4944         /*
4945          * In case of shared PMDs, we should cover the maximum possible
4946          * range.
4947          */
4948         flush_cache_range(vma, range.start, range.end);
4949
4950         mmu_notifier_invalidate_range_start(&range);
4951         /* Prevent race with file truncation */
4952         i_mmap_lock_write(mapping);
4953         for (; old_addr < old_end; old_addr += sz, new_addr += sz) {
4954                 src_pte = huge_pte_offset(mm, old_addr, sz);
4955                 if (!src_pte)
4956                         continue;
4957                 if (huge_pte_none(huge_ptep_get(src_pte)))
4958                         continue;
4959
4960                 /* old_addr arg to huge_pmd_unshare() is a pointer and so the
4961                  * arg may be modified. Pass a copy instead to preserve the
4962                  * value in old_addr.
4963                  */
4964                 old_addr_copy = old_addr;
4965
4966                 if (huge_pmd_unshare(mm, vma, &old_addr_copy, src_pte)) {
4967                         shared_pmd = true;
4968                         continue;
4969                 }
4970
4971                 dst_pte = huge_pte_alloc(mm, new_vma, new_addr, sz);
4972                 if (!dst_pte)
4973                         break;
4974
4975                 move_huge_pte(vma, old_addr, new_addr, src_pte, dst_pte);
4976         }
4977
4978         if (shared_pmd)
4979                 flush_tlb_range(vma, range.start, range.end);
4980         else
4981                 flush_tlb_range(vma, old_end - len, old_end);
4982         mmu_notifier_invalidate_range_end(&range);
4983         i_mmap_unlock_write(mapping);
4984
4985         return len + old_addr - old_end;
4986 }
4987
4988 static void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
4989                                    unsigned long start, unsigned long end,
4990                                    struct page *ref_page, zap_flags_t zap_flags)
4991 {
4992         struct mm_struct *mm = vma->vm_mm;
4993         unsigned long address;
4994         pte_t *ptep;
4995         pte_t pte;
4996         spinlock_t *ptl;
4997         struct page *page;
4998         struct hstate *h = hstate_vma(vma);
4999         unsigned long sz = huge_page_size(h);
5000         struct mmu_notifier_range range;
5001         bool force_flush = false;
5002
5003         WARN_ON(!is_vm_hugetlb_page(vma));
5004         BUG_ON(start & ~huge_page_mask(h));
5005         BUG_ON(end & ~huge_page_mask(h));
5006
5007         /*
5008          * This is a hugetlb vma, all the pte entries should point
5009          * to huge page.
5010          */
5011         tlb_change_page_size(tlb, sz);
5012         tlb_start_vma(tlb, vma);
5013
5014         /*
5015          * If sharing possible, alert mmu notifiers of worst case.
5016          */
5017         mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, mm, start,
5018                                 end);
5019         adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
5020         mmu_notifier_invalidate_range_start(&range);
5021         address = start;
5022         for (; address < end; address += sz) {
5023                 ptep = huge_pte_offset(mm, address, sz);
5024                 if (!ptep)
5025                         continue;
5026
5027                 ptl = huge_pte_lock(h, mm, ptep);
5028                 if (huge_pmd_unshare(mm, vma, &address, ptep)) {
5029                         spin_unlock(ptl);
5030                         tlb_flush_pmd_range(tlb, address & PUD_MASK, PUD_SIZE);
5031                         force_flush = true;
5032                         continue;
5033                 }
5034
5035                 pte = huge_ptep_get(ptep);
5036                 if (huge_pte_none(pte)) {
5037                         spin_unlock(ptl);
5038                         continue;
5039                 }
5040
5041                 /*
5042                  * Migrating hugepage or HWPoisoned hugepage is already
5043                  * unmapped and its refcount is dropped, so just clear pte here.
5044                  */
5045                 if (unlikely(!pte_present(pte))) {
5046                         /*
5047                          * If the pte was wr-protected by uffd-wp in any of the
5048                          * swap forms, meanwhile the caller does not want to
5049                          * drop the uffd-wp bit in this zap, then replace the
5050                          * pte with a marker.
5051                          */
5052                         if (pte_swp_uffd_wp_any(pte) &&
5053                             !(zap_flags & ZAP_FLAG_DROP_MARKER))
5054                                 set_huge_pte_at(mm, address, ptep,
5055                                                 make_pte_marker(PTE_MARKER_UFFD_WP));
5056                         else
5057                                 huge_pte_clear(mm, address, ptep, sz);
5058                         spin_unlock(ptl);
5059                         continue;
5060                 }
5061
5062                 page = pte_page(pte);
5063                 /*
5064                  * If a reference page is supplied, it is because a specific
5065                  * page is being unmapped, not a range. Ensure the page we
5066                  * are about to unmap is the actual page of interest.
5067                  */
5068                 if (ref_page) {
5069                         if (page != ref_page) {
5070                                 spin_unlock(ptl);
5071                                 continue;
5072                         }
5073                         /*
5074                          * Mark the VMA as having unmapped its page so that
5075                          * future faults in this VMA will fail rather than
5076                          * looking like data was lost
5077                          */
5078                         set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
5079                 }
5080
5081                 pte = huge_ptep_get_and_clear(mm, address, ptep);
5082                 tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
5083                 if (huge_pte_dirty(pte))
5084                         set_page_dirty(page);
5085                 /* Leave a uffd-wp pte marker if needed */
5086                 if (huge_pte_uffd_wp(pte) &&
5087                     !(zap_flags & ZAP_FLAG_DROP_MARKER))
5088                         set_huge_pte_at(mm, address, ptep,
5089                                         make_pte_marker(PTE_MARKER_UFFD_WP));
5090                 hugetlb_count_sub(pages_per_huge_page(h), mm);
5091                 page_remove_rmap(page, vma, true);
5092
5093                 spin_unlock(ptl);
5094                 tlb_remove_page_size(tlb, page, huge_page_size(h));
5095                 /*
5096                  * Bail out after unmapping reference page if supplied
5097                  */
5098                 if (ref_page)
5099                         break;
5100         }
5101         mmu_notifier_invalidate_range_end(&range);
5102         tlb_end_vma(tlb, vma);
5103
5104         /*
5105          * If we unshared PMDs, the TLB flush was not recorded in mmu_gather. We
5106          * could defer the flush until now, since by holding i_mmap_rwsem we
5107          * guaranteed that the last refernece would not be dropped. But we must
5108          * do the flushing before we return, as otherwise i_mmap_rwsem will be
5109          * dropped and the last reference to the shared PMDs page might be
5110          * dropped as well.
5111          *
5112          * In theory we could defer the freeing of the PMD pages as well, but
5113          * huge_pmd_unshare() relies on the exact page_count for the PMD page to
5114          * detect sharing, so we cannot defer the release of the page either.
5115          * Instead, do flush now.
5116          */
5117         if (force_flush)
5118                 tlb_flush_mmu_tlbonly(tlb);
5119 }
5120
5121 void __unmap_hugepage_range_final(struct mmu_gather *tlb,
5122                           struct vm_area_struct *vma, unsigned long start,
5123                           unsigned long end, struct page *ref_page,
5124                           zap_flags_t zap_flags)
5125 {
5126         __unmap_hugepage_range(tlb, vma, start, end, ref_page, zap_flags);
5127
5128         /*
5129          * Clear this flag so that x86's huge_pmd_share page_table_shareable
5130          * test will fail on a vma being torn down, and not grab a page table
5131          * on its way out.  We're lucky that the flag has such an appropriate
5132          * name, and can in fact be safely cleared here. We could clear it
5133          * before the __unmap_hugepage_range above, but all that's necessary
5134          * is to clear it before releasing the i_mmap_rwsem. This works
5135          * because in the context this is called, the VMA is about to be
5136          * destroyed and the i_mmap_rwsem is held.
5137          */
5138         vma->vm_flags &= ~VM_MAYSHARE;
5139 }
5140
5141 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
5142                           unsigned long end, struct page *ref_page,
5143                           zap_flags_t zap_flags)
5144 {
5145         struct mmu_gather tlb;
5146
5147         tlb_gather_mmu(&tlb, vma->vm_mm);
5148         __unmap_hugepage_range(&tlb, vma, start, end, ref_page, zap_flags);
5149         tlb_finish_mmu(&tlb);
5150 }
5151
5152 /*
5153  * This is called when the original mapper is failing to COW a MAP_PRIVATE
5154  * mapping it owns the reserve page for. The intention is to unmap the page
5155  * from other VMAs and let the children be SIGKILLed if they are faulting the
5156  * same region.
5157  */
5158 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
5159                               struct page *page, unsigned long address)
5160 {
5161         struct hstate *h = hstate_vma(vma);
5162         struct vm_area_struct *iter_vma;
5163         struct address_space *mapping;
5164         pgoff_t pgoff;
5165
5166         /*
5167          * vm_pgoff is in PAGE_SIZE units, hence the different calculation
5168          * from page cache lookup which is in HPAGE_SIZE units.
5169          */
5170         address = address & huge_page_mask(h);
5171         pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
5172                         vma->vm_pgoff;
5173         mapping = vma->vm_file->f_mapping;
5174
5175         /*
5176          * Take the mapping lock for the duration of the table walk. As
5177          * this mapping should be shared between all the VMAs,
5178          * __unmap_hugepage_range() is called as the lock is already held
5179          */
5180         i_mmap_lock_write(mapping);
5181         vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
5182                 /* Do not unmap the current VMA */
5183                 if (iter_vma == vma)
5184                         continue;
5185
5186                 /*
5187                  * Shared VMAs have their own reserves and do not affect
5188                  * MAP_PRIVATE accounting but it is possible that a shared
5189                  * VMA is using the same page so check and skip such VMAs.
5190                  */
5191                 if (iter_vma->vm_flags & VM_MAYSHARE)
5192                         continue;
5193
5194                 /*
5195                  * Unmap the page from other VMAs without their own reserves.
5196                  * They get marked to be SIGKILLed if they fault in these
5197                  * areas. This is because a future no-page fault on this VMA
5198                  * could insert a zeroed page instead of the data existing
5199                  * from the time of fork. This would look like data corruption
5200                  */
5201                 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
5202                         unmap_hugepage_range(iter_vma, address,
5203                                              address + huge_page_size(h), page, 0);
5204         }
5205         i_mmap_unlock_write(mapping);
5206 }
5207
5208 /*
5209  * hugetlb_wp() should be called with page lock of the original hugepage held.
5210  * Called with hugetlb_fault_mutex_table held and pte_page locked so we
5211  * cannot race with other handlers or page migration.
5212  * Keep the pte_same checks anyway to make transition from the mutex easier.
5213  */
5214 static vm_fault_t hugetlb_wp(struct mm_struct *mm, struct vm_area_struct *vma,
5215                        unsigned long address, pte_t *ptep, unsigned int flags,
5216                        struct page *pagecache_page, spinlock_t *ptl)
5217 {
5218         const bool unshare = flags & FAULT_FLAG_UNSHARE;
5219         pte_t pte;
5220         struct hstate *h = hstate_vma(vma);
5221         struct page *old_page, *new_page;
5222         int outside_reserve = 0;
5223         vm_fault_t ret = 0;
5224         unsigned long haddr = address & huge_page_mask(h);
5225         struct mmu_notifier_range range;
5226
5227         VM_BUG_ON(unshare && (flags & FOLL_WRITE));
5228         VM_BUG_ON(!unshare && !(flags & FOLL_WRITE));
5229
5230         pte = huge_ptep_get(ptep);
5231         old_page = pte_page(pte);
5232
5233         delayacct_wpcopy_start();
5234
5235 retry_avoidcopy:
5236         /*
5237          * If no-one else is actually using this page, we're the exclusive
5238          * owner and can reuse this page.
5239          */
5240         if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
5241                 if (!PageAnonExclusive(old_page))
5242                         page_move_anon_rmap(old_page, vma);
5243                 if (likely(!unshare))
5244                         set_huge_ptep_writable(vma, haddr, ptep);
5245
5246                 delayacct_wpcopy_end();
5247                 return 0;
5248         }
5249         VM_BUG_ON_PAGE(PageAnon(old_page) && PageAnonExclusive(old_page),
5250                        old_page);
5251
5252         /*
5253          * If the process that created a MAP_PRIVATE mapping is about to
5254          * perform a COW due to a shared page count, attempt to satisfy
5255          * the allocation without using the existing reserves. The pagecache
5256          * page is used to determine if the reserve at this address was
5257          * consumed or not. If reserves were used, a partial faulted mapping
5258          * at the time of fork() could consume its reserves on COW instead
5259          * of the full address range.
5260          */
5261         if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
5262                         old_page != pagecache_page)
5263                 outside_reserve = 1;
5264
5265         get_page(old_page);
5266
5267         /*
5268          * Drop page table lock as buddy allocator may be called. It will
5269          * be acquired again before returning to the caller, as expected.
5270          */
5271         spin_unlock(ptl);
5272         new_page = alloc_huge_page(vma, haddr, outside_reserve);
5273
5274         if (IS_ERR(new_page)) {
5275                 /*
5276                  * If a process owning a MAP_PRIVATE mapping fails to COW,
5277                  * it is due to references held by a child and an insufficient
5278                  * huge page pool. To guarantee the original mappers
5279                  * reliability, unmap the page from child processes. The child
5280                  * may get SIGKILLed if it later faults.
5281                  */
5282                 if (outside_reserve) {
5283                         struct address_space *mapping = vma->vm_file->f_mapping;
5284                         pgoff_t idx;
5285                         u32 hash;
5286
5287                         put_page(old_page);
5288                         BUG_ON(huge_pte_none(pte));
5289                         /*
5290                          * Drop hugetlb_fault_mutex and i_mmap_rwsem before
5291                          * unmapping.  unmapping needs to hold i_mmap_rwsem
5292                          * in write mode.  Dropping i_mmap_rwsem in read mode
5293                          * here is OK as COW mappings do not interact with
5294                          * PMD sharing.
5295                          *
5296                          * Reacquire both after unmap operation.
5297                          */
5298                         idx = vma_hugecache_offset(h, vma, haddr);
5299                         hash = hugetlb_fault_mutex_hash(mapping, idx);
5300                         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5301                         i_mmap_unlock_read(mapping);
5302
5303                         unmap_ref_private(mm, vma, old_page, haddr);
5304
5305                         i_mmap_lock_read(mapping);
5306                         mutex_lock(&hugetlb_fault_mutex_table[hash]);
5307                         spin_lock(ptl);
5308                         ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
5309                         if (likely(ptep &&
5310                                    pte_same(huge_ptep_get(ptep), pte)))
5311                                 goto retry_avoidcopy;
5312                         /*
5313                          * race occurs while re-acquiring page table
5314                          * lock, and our job is done.
5315                          */
5316                         delayacct_wpcopy_end();
5317                         return 0;
5318                 }
5319
5320                 ret = vmf_error(PTR_ERR(new_page));
5321                 goto out_release_old;
5322         }
5323
5324         /*
5325          * When the original hugepage is shared one, it does not have
5326          * anon_vma prepared.
5327          */
5328         if (unlikely(anon_vma_prepare(vma))) {
5329                 ret = VM_FAULT_OOM;
5330                 goto out_release_all;
5331         }
5332
5333         copy_user_huge_page(new_page, old_page, address, vma,
5334                             pages_per_huge_page(h));
5335         __SetPageUptodate(new_page);
5336
5337         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, haddr,
5338                                 haddr + huge_page_size(h));
5339         mmu_notifier_invalidate_range_start(&range);
5340
5341         /*
5342          * Retake the page table lock to check for racing updates
5343          * before the page tables are altered
5344          */
5345         spin_lock(ptl);
5346         ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
5347         if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
5348                 ClearHPageRestoreReserve(new_page);
5349
5350                 /* Break COW or unshare */
5351                 huge_ptep_clear_flush(vma, haddr, ptep);
5352                 mmu_notifier_invalidate_range(mm, range.start, range.end);
5353                 page_remove_rmap(old_page, vma, true);
5354                 hugepage_add_new_anon_rmap(new_page, vma, haddr);
5355                 set_huge_pte_at(mm, haddr, ptep,
5356                                 make_huge_pte(vma, new_page, !unshare));
5357                 SetHPageMigratable(new_page);
5358                 /* Make the old page be freed below */
5359                 new_page = old_page;
5360         }
5361         spin_unlock(ptl);
5362         mmu_notifier_invalidate_range_end(&range);
5363 out_release_all:
5364         /*
5365          * No restore in case of successful pagetable update (Break COW or
5366          * unshare)
5367          */
5368         if (new_page != old_page)
5369                 restore_reserve_on_error(h, vma, haddr, new_page);
5370         put_page(new_page);
5371 out_release_old:
5372         put_page(old_page);
5373
5374         spin_lock(ptl); /* Caller expects lock to be held */
5375
5376         delayacct_wpcopy_end();
5377         return ret;
5378 }
5379
5380 /* Return the pagecache page at a given address within a VMA */
5381 static struct page *hugetlbfs_pagecache_page(struct hstate *h,
5382                         struct vm_area_struct *vma, unsigned long address)
5383 {
5384         struct address_space *mapping;
5385         pgoff_t idx;
5386
5387         mapping = vma->vm_file->f_mapping;
5388         idx = vma_hugecache_offset(h, vma, address);
5389
5390         return find_lock_page(mapping, idx);
5391 }
5392
5393 /*
5394  * Return whether there is a pagecache page to back given address within VMA.
5395  * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
5396  */
5397 static bool hugetlbfs_pagecache_present(struct hstate *h,
5398                         struct vm_area_struct *vma, unsigned long address)
5399 {
5400         struct address_space *mapping;
5401         pgoff_t idx;
5402         struct page *page;
5403
5404         mapping = vma->vm_file->f_mapping;
5405         idx = vma_hugecache_offset(h, vma, address);
5406
5407         page = find_get_page(mapping, idx);
5408         if (page)
5409                 put_page(page);
5410         return page != NULL;
5411 }
5412
5413 int huge_add_to_page_cache(struct page *page, struct address_space *mapping,
5414                            pgoff_t idx)
5415 {
5416         struct inode *inode = mapping->host;
5417         struct hstate *h = hstate_inode(inode);
5418         int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
5419
5420         if (err)
5421                 return err;
5422         ClearHPageRestoreReserve(page);
5423
5424         /*
5425          * set page dirty so that it will not be removed from cache/file
5426          * by non-hugetlbfs specific code paths.
5427          */
5428         set_page_dirty(page);
5429
5430         spin_lock(&inode->i_lock);
5431         inode->i_blocks += blocks_per_huge_page(h);
5432         spin_unlock(&inode->i_lock);
5433         return 0;
5434 }
5435
5436 static inline vm_fault_t hugetlb_handle_userfault(struct vm_area_struct *vma,
5437                                                   struct address_space *mapping,
5438                                                   pgoff_t idx,
5439                                                   unsigned int flags,
5440                                                   unsigned long haddr,
5441                                                   unsigned long addr,
5442                                                   unsigned long reason)
5443 {
5444         vm_fault_t ret;
5445         u32 hash;
5446         struct vm_fault vmf = {
5447                 .vma = vma,
5448                 .address = haddr,
5449                 .real_address = addr,
5450                 .flags = flags,
5451
5452                 /*
5453                  * Hard to debug if it ends up being
5454                  * used by a callee that assumes
5455                  * something about the other
5456                  * uninitialized fields... same as in
5457                  * memory.c
5458                  */
5459         };
5460
5461         /*
5462          * hugetlb_fault_mutex and i_mmap_rwsem must be
5463          * dropped before handling userfault.  Reacquire
5464          * after handling fault to make calling code simpler.
5465          */
5466         hash = hugetlb_fault_mutex_hash(mapping, idx);
5467         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5468         i_mmap_unlock_read(mapping);
5469         ret = handle_userfault(&vmf, reason);
5470         i_mmap_lock_read(mapping);
5471         mutex_lock(&hugetlb_fault_mutex_table[hash]);
5472
5473         return ret;
5474 }
5475
5476 static vm_fault_t hugetlb_no_page(struct mm_struct *mm,
5477                         struct vm_area_struct *vma,
5478                         struct address_space *mapping, pgoff_t idx,
5479                         unsigned long address, pte_t *ptep,
5480                         pte_t old_pte, unsigned int flags)
5481 {
5482         struct hstate *h = hstate_vma(vma);
5483         vm_fault_t ret = VM_FAULT_SIGBUS;
5484         int anon_rmap = 0;
5485         unsigned long size;
5486         struct page *page;
5487         pte_t new_pte;
5488         spinlock_t *ptl;
5489         unsigned long haddr = address & huge_page_mask(h);
5490         bool new_page, new_pagecache_page = false;
5491
5492         /*
5493          * Currently, we are forced to kill the process in the event the
5494          * original mapper has unmapped pages from the child due to a failed
5495          * COW/unsharing. Warn that such a situation has occurred as it may not
5496          * be obvious.
5497          */
5498         if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
5499                 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
5500                            current->pid);
5501                 return ret;
5502         }
5503
5504         /*
5505          * We can not race with truncation due to holding i_mmap_rwsem.
5506          * i_size is modified when holding i_mmap_rwsem, so check here
5507          * once for faults beyond end of file.
5508          */
5509         size = i_size_read(mapping->host) >> huge_page_shift(h);
5510         if (idx >= size)
5511                 goto out;
5512
5513 retry:
5514         new_page = false;
5515         page = find_lock_page(mapping, idx);
5516         if (!page) {
5517                 /* Check for page in userfault range */
5518                 if (userfaultfd_missing(vma)) {
5519                         ret = hugetlb_handle_userfault(vma, mapping, idx,
5520                                                        flags, haddr, address,
5521                                                        VM_UFFD_MISSING);
5522                         goto out;
5523                 }
5524
5525                 page = alloc_huge_page(vma, haddr, 0);
5526                 if (IS_ERR(page)) {
5527                         /*
5528                          * Returning error will result in faulting task being
5529                          * sent SIGBUS.  The hugetlb fault mutex prevents two
5530                          * tasks from racing to fault in the same page which
5531                          * could result in false unable to allocate errors.
5532                          * Page migration does not take the fault mutex, but
5533                          * does a clear then write of pte's under page table
5534                          * lock.  Page fault code could race with migration,
5535                          * notice the clear pte and try to allocate a page
5536                          * here.  Before returning error, get ptl and make
5537                          * sure there really is no pte entry.
5538                          */
5539                         ptl = huge_pte_lock(h, mm, ptep);
5540                         ret = 0;
5541                         if (huge_pte_none(huge_ptep_get(ptep)))
5542                                 ret = vmf_error(PTR_ERR(page));
5543                         spin_unlock(ptl);
5544                         goto out;
5545                 }
5546                 clear_huge_page(page, address, pages_per_huge_page(h));
5547                 __SetPageUptodate(page);
5548                 new_page = true;
5549
5550                 if (vma->vm_flags & VM_MAYSHARE) {
5551                         int err = huge_add_to_page_cache(page, mapping, idx);
5552                         if (err) {
5553                                 put_page(page);
5554                                 if (err == -EEXIST)
5555                                         goto retry;
5556                                 goto out;
5557                         }
5558                         new_pagecache_page = true;
5559                 } else {
5560                         lock_page(page);
5561                         if (unlikely(anon_vma_prepare(vma))) {
5562                                 ret = VM_FAULT_OOM;
5563                                 goto backout_unlocked;
5564                         }
5565                         anon_rmap = 1;
5566                 }
5567         } else {
5568                 /*
5569                  * If memory error occurs between mmap() and fault, some process
5570                  * don't have hwpoisoned swap entry for errored virtual address.
5571                  * So we need to block hugepage fault by PG_hwpoison bit check.
5572                  */
5573                 if (unlikely(PageHWPoison(page))) {
5574                         ret = VM_FAULT_HWPOISON_LARGE |
5575                                 VM_FAULT_SET_HINDEX(hstate_index(h));
5576                         goto backout_unlocked;
5577                 }
5578
5579                 /* Check for page in userfault range. */
5580                 if (userfaultfd_minor(vma)) {
5581                         unlock_page(page);
5582                         put_page(page);
5583                         ret = hugetlb_handle_userfault(vma, mapping, idx,
5584                                                        flags, haddr, address,
5585                                                        VM_UFFD_MINOR);
5586                         goto out;
5587                 }
5588         }
5589
5590         /*
5591          * If we are going to COW a private mapping later, we examine the
5592          * pending reservations for this page now. This will ensure that
5593          * any allocations necessary to record that reservation occur outside
5594          * the spinlock.
5595          */
5596         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
5597                 if (vma_needs_reservation(h, vma, haddr) < 0) {
5598                         ret = VM_FAULT_OOM;
5599                         goto backout_unlocked;
5600                 }
5601                 /* Just decrements count, does not deallocate */
5602                 vma_end_reservation(h, vma, haddr);
5603         }
5604
5605         ptl = huge_pte_lock(h, mm, ptep);
5606         ret = 0;
5607         /* If pte changed from under us, retry */
5608         if (!pte_same(huge_ptep_get(ptep), old_pte))
5609                 goto backout;
5610
5611         if (anon_rmap) {
5612                 ClearHPageRestoreReserve(page);
5613                 hugepage_add_new_anon_rmap(page, vma, haddr);
5614         } else
5615                 page_dup_file_rmap(page, true);
5616         new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
5617                                 && (vma->vm_flags & VM_SHARED)));
5618         /*
5619          * If this pte was previously wr-protected, keep it wr-protected even
5620          * if populated.
5621          */
5622         if (unlikely(pte_marker_uffd_wp(old_pte)))
5623                 new_pte = huge_pte_wrprotect(huge_pte_mkuffd_wp(new_pte));
5624         set_huge_pte_at(mm, haddr, ptep, new_pte);
5625
5626         hugetlb_count_add(pages_per_huge_page(h), mm);
5627         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
5628                 /* Optimization, do the COW without a second fault */
5629                 ret = hugetlb_wp(mm, vma, address, ptep, flags, page, ptl);
5630         }
5631
5632         spin_unlock(ptl);
5633
5634         /*
5635          * Only set HPageMigratable in newly allocated pages.  Existing pages
5636          * found in the pagecache may not have HPageMigratableset if they have
5637          * been isolated for migration.
5638          */
5639         if (new_page)
5640                 SetHPageMigratable(page);
5641
5642         unlock_page(page);
5643 out:
5644         return ret;
5645
5646 backout:
5647         spin_unlock(ptl);
5648 backout_unlocked:
5649         unlock_page(page);
5650         /* restore reserve for newly allocated pages not in page cache */
5651         if (new_page && !new_pagecache_page)
5652                 restore_reserve_on_error(h, vma, haddr, page);
5653         put_page(page);
5654         goto out;
5655 }
5656
5657 #ifdef CONFIG_SMP
5658 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
5659 {
5660         unsigned long key[2];
5661         u32 hash;
5662
5663         key[0] = (unsigned long) mapping;
5664         key[1] = idx;
5665
5666         hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0);
5667
5668         return hash & (num_fault_mutexes - 1);
5669 }
5670 #else
5671 /*
5672  * For uniprocessor systems we always use a single mutex, so just
5673  * return 0 and avoid the hashing overhead.
5674  */
5675 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
5676 {
5677         return 0;
5678 }
5679 #endif
5680
5681 vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
5682                         unsigned long address, unsigned int flags)
5683 {
5684         pte_t *ptep, entry;
5685         spinlock_t *ptl;
5686         vm_fault_t ret;
5687         u32 hash;
5688         pgoff_t idx;
5689         struct page *page = NULL;
5690         struct page *pagecache_page = NULL;
5691         struct hstate *h = hstate_vma(vma);
5692         struct address_space *mapping;
5693         int need_wait_lock = 0;
5694         unsigned long haddr = address & huge_page_mask(h);
5695
5696         ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
5697         if (ptep) {
5698                 /*
5699                  * Since we hold no locks, ptep could be stale.  That is
5700                  * OK as we are only making decisions based on content and
5701                  * not actually modifying content here.
5702                  */
5703                 entry = huge_ptep_get(ptep);
5704                 if (unlikely(is_hugetlb_entry_migration(entry))) {
5705                         migration_entry_wait_huge(vma, ptep);
5706                         return 0;
5707                 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
5708                         return VM_FAULT_HWPOISON_LARGE |
5709                                 VM_FAULT_SET_HINDEX(hstate_index(h));
5710         }
5711
5712         /*
5713          * Acquire i_mmap_rwsem before calling huge_pte_alloc and hold
5714          * until finished with ptep.  This serves two purposes:
5715          * 1) It prevents huge_pmd_unshare from being called elsewhere
5716          *    and making the ptep no longer valid.
5717          * 2) It synchronizes us with i_size modifications during truncation.
5718          *
5719          * ptep could have already be assigned via huge_pte_offset.  That
5720          * is OK, as huge_pte_alloc will return the same value unless
5721          * something has changed.
5722          */
5723         mapping = vma->vm_file->f_mapping;
5724         i_mmap_lock_read(mapping);
5725         ptep = huge_pte_alloc(mm, vma, haddr, huge_page_size(h));
5726         if (!ptep) {
5727                 i_mmap_unlock_read(mapping);
5728                 return VM_FAULT_OOM;
5729         }
5730
5731         /*
5732          * Serialize hugepage allocation and instantiation, so that we don't
5733          * get spurious allocation failures if two CPUs race to instantiate
5734          * the same page in the page cache.
5735          */
5736         idx = vma_hugecache_offset(h, vma, haddr);
5737         hash = hugetlb_fault_mutex_hash(mapping, idx);
5738         mutex_lock(&hugetlb_fault_mutex_table[hash]);
5739
5740         entry = huge_ptep_get(ptep);
5741         /* PTE markers should be handled the same way as none pte */
5742         if (huge_pte_none_mostly(entry)) {
5743                 ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep,
5744                                       entry, flags);
5745                 goto out_mutex;
5746         }
5747
5748         ret = 0;
5749
5750         /*
5751          * entry could be a migration/hwpoison entry at this point, so this
5752          * check prevents the kernel from going below assuming that we have
5753          * an active hugepage in pagecache. This goto expects the 2nd page
5754          * fault, and is_hugetlb_entry_(migration|hwpoisoned) check will
5755          * properly handle it.
5756          */
5757         if (!pte_present(entry))
5758                 goto out_mutex;
5759
5760         /*
5761          * If we are going to COW/unshare the mapping later, we examine the
5762          * pending reservations for this page now. This will ensure that any
5763          * allocations necessary to record that reservation occur outside the
5764          * spinlock. For private mappings, we also lookup the pagecache
5765          * page now as it is used to determine if a reservation has been
5766          * consumed.
5767          */
5768         if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) &&
5769             !huge_pte_write(entry)) {
5770                 if (vma_needs_reservation(h, vma, haddr) < 0) {
5771                         ret = VM_FAULT_OOM;
5772                         goto out_mutex;
5773                 }
5774                 /* Just decrements count, does not deallocate */
5775                 vma_end_reservation(h, vma, haddr);
5776
5777                 if (!(vma->vm_flags & VM_MAYSHARE))
5778                         pagecache_page = hugetlbfs_pagecache_page(h,
5779                                                                 vma, haddr);
5780         }
5781
5782         ptl = huge_pte_lock(h, mm, ptep);
5783
5784         /* Check for a racing update before calling hugetlb_wp() */
5785         if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
5786                 goto out_ptl;
5787
5788         /* Handle userfault-wp first, before trying to lock more pages */
5789         if (userfaultfd_wp(vma) && huge_pte_uffd_wp(huge_ptep_get(ptep)) &&
5790             (flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
5791                 struct vm_fault vmf = {
5792                         .vma = vma,
5793                         .address = haddr,
5794                         .real_address = address,
5795                         .flags = flags,
5796                 };
5797
5798                 spin_unlock(ptl);
5799                 if (pagecache_page) {
5800                         unlock_page(pagecache_page);
5801                         put_page(pagecache_page);
5802                 }
5803                 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5804                 i_mmap_unlock_read(mapping);
5805                 return handle_userfault(&vmf, VM_UFFD_WP);
5806         }
5807
5808         /*
5809          * hugetlb_wp() requires page locks of pte_page(entry) and
5810          * pagecache_page, so here we need take the former one
5811          * when page != pagecache_page or !pagecache_page.
5812          */
5813         page = pte_page(entry);
5814         if (page != pagecache_page)
5815                 if (!trylock_page(page)) {
5816                         need_wait_lock = 1;
5817                         goto out_ptl;
5818                 }
5819
5820         get_page(page);
5821
5822         if (flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) {
5823                 if (!huge_pte_write(entry)) {
5824                         ret = hugetlb_wp(mm, vma, address, ptep, flags,
5825                                          pagecache_page, ptl);
5826                         goto out_put_page;
5827                 } else if (likely(flags & FAULT_FLAG_WRITE)) {
5828                         entry = huge_pte_mkdirty(entry);
5829                 }
5830         }
5831         entry = pte_mkyoung(entry);
5832         if (huge_ptep_set_access_flags(vma, haddr, ptep, entry,
5833                                                 flags & FAULT_FLAG_WRITE))
5834                 update_mmu_cache(vma, haddr, ptep);
5835 out_put_page:
5836         if (page != pagecache_page)
5837                 unlock_page(page);
5838         put_page(page);
5839 out_ptl:
5840         spin_unlock(ptl);
5841
5842         if (pagecache_page) {
5843                 unlock_page(pagecache_page);
5844                 put_page(pagecache_page);
5845         }
5846 out_mutex:
5847         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5848         i_mmap_unlock_read(mapping);
5849         /*
5850          * Generally it's safe to hold refcount during waiting page lock. But
5851          * here we just wait to defer the next page fault to avoid busy loop and
5852          * the page is not used after unlocked before returning from the current
5853          * page fault. So we are safe from accessing freed page, even if we wait
5854          * here without taking refcount.
5855          */
5856         if (need_wait_lock)
5857                 wait_on_page_locked(page);
5858         return ret;
5859 }
5860
5861 #ifdef CONFIG_USERFAULTFD
5862 /*
5863  * Used by userfaultfd UFFDIO_COPY.  Based on mcopy_atomic_pte with
5864  * modifications for huge pages.
5865  */
5866 int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm,
5867                             pte_t *dst_pte,
5868                             struct vm_area_struct *dst_vma,
5869                             unsigned long dst_addr,
5870                             unsigned long src_addr,
5871                             enum mcopy_atomic_mode mode,
5872                             struct page **pagep,
5873                             bool wp_copy)
5874 {
5875         bool is_continue = (mode == MCOPY_ATOMIC_CONTINUE);
5876         struct hstate *h = hstate_vma(dst_vma);
5877         struct address_space *mapping = dst_vma->vm_file->f_mapping;
5878         pgoff_t idx = vma_hugecache_offset(h, dst_vma, dst_addr);
5879         unsigned long size;
5880         int vm_shared = dst_vma->vm_flags & VM_SHARED;
5881         pte_t _dst_pte;
5882         spinlock_t *ptl;
5883         int ret = -ENOMEM;
5884         struct page *page;
5885         int writable;
5886         bool page_in_pagecache = false;
5887
5888         if (is_continue) {
5889                 ret = -EFAULT;
5890                 page = find_lock_page(mapping, idx);
5891                 if (!page)
5892                         goto out;
5893                 page_in_pagecache = true;
5894         } else if (!*pagep) {
5895                 /* If a page already exists, then it's UFFDIO_COPY for
5896                  * a non-missing case. Return -EEXIST.
5897                  */
5898                 if (vm_shared &&
5899                     hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
5900                         ret = -EEXIST;
5901                         goto out;
5902                 }
5903
5904                 page = alloc_huge_page(dst_vma, dst_addr, 0);
5905                 if (IS_ERR(page)) {
5906                         ret = -ENOMEM;
5907                         goto out;
5908                 }
5909
5910                 ret = copy_huge_page_from_user(page,
5911                                                 (const void __user *) src_addr,
5912                                                 pages_per_huge_page(h), false);
5913
5914                 /* fallback to copy_from_user outside mmap_lock */
5915                 if (unlikely(ret)) {
5916                         ret = -ENOENT;
5917                         /* Free the allocated page which may have
5918                          * consumed a reservation.
5919                          */
5920                         restore_reserve_on_error(h, dst_vma, dst_addr, page);
5921                         put_page(page);
5922
5923                         /* Allocate a temporary page to hold the copied
5924                          * contents.
5925                          */
5926                         page = alloc_huge_page_vma(h, dst_vma, dst_addr);
5927                         if (!page) {
5928                                 ret = -ENOMEM;
5929                                 goto out;
5930                         }
5931                         *pagep = page;
5932                         /* Set the outparam pagep and return to the caller to
5933                          * copy the contents outside the lock. Don't free the
5934                          * page.
5935                          */
5936                         goto out;
5937                 }
5938         } else {
5939                 if (vm_shared &&
5940                     hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
5941                         put_page(*pagep);
5942                         ret = -EEXIST;
5943                         *pagep = NULL;
5944                         goto out;
5945                 }
5946
5947                 page = alloc_huge_page(dst_vma, dst_addr, 0);
5948                 if (IS_ERR(page)) {
5949                         ret = -ENOMEM;
5950                         *pagep = NULL;
5951                         goto out;
5952                 }
5953                 copy_user_huge_page(page, *pagep, dst_addr, dst_vma,
5954                                     pages_per_huge_page(h));
5955                 put_page(*pagep);
5956                 *pagep = NULL;
5957         }
5958
5959         /*
5960          * The memory barrier inside __SetPageUptodate makes sure that
5961          * preceding stores to the page contents become visible before
5962          * the set_pte_at() write.
5963          */
5964         __SetPageUptodate(page);
5965
5966         /* Add shared, newly allocated pages to the page cache. */
5967         if (vm_shared && !is_continue) {
5968                 size = i_size_read(mapping->host) >> huge_page_shift(h);
5969                 ret = -EFAULT;
5970                 if (idx >= size)
5971                         goto out_release_nounlock;
5972
5973                 /*
5974                  * Serialization between remove_inode_hugepages() and
5975                  * huge_add_to_page_cache() below happens through the
5976                  * hugetlb_fault_mutex_table that here must be hold by
5977                  * the caller.
5978                  */
5979                 ret = huge_add_to_page_cache(page, mapping, idx);
5980                 if (ret)
5981                         goto out_release_nounlock;
5982                 page_in_pagecache = true;
5983         }
5984
5985         ptl = huge_pte_lockptr(h, dst_mm, dst_pte);
5986         spin_lock(ptl);
5987
5988         /*
5989          * Recheck the i_size after holding PT lock to make sure not
5990          * to leave any page mapped (as page_mapped()) beyond the end
5991          * of the i_size (remove_inode_hugepages() is strict about
5992          * enforcing that). If we bail out here, we'll also leave a
5993          * page in the radix tree in the vm_shared case beyond the end
5994          * of the i_size, but remove_inode_hugepages() will take care
5995          * of it as soon as we drop the hugetlb_fault_mutex_table.
5996          */
5997         size = i_size_read(mapping->host) >> huge_page_shift(h);
5998         ret = -EFAULT;
5999         if (idx >= size)
6000                 goto out_release_unlock;
6001
6002         ret = -EEXIST;
6003         /*
6004          * We allow to overwrite a pte marker: consider when both MISSING|WP
6005          * registered, we firstly wr-protect a none pte which has no page cache
6006          * page backing it, then access the page.
6007          */
6008         if (!huge_pte_none_mostly(huge_ptep_get(dst_pte)))
6009                 goto out_release_unlock;
6010
6011         if (vm_shared) {
6012                 page_dup_file_rmap(page, true);
6013         } else {
6014                 ClearHPageRestoreReserve(page);
6015                 hugepage_add_new_anon_rmap(page, dst_vma, dst_addr);
6016         }
6017
6018         /*
6019          * For either: (1) CONTINUE on a non-shared VMA, or (2) UFFDIO_COPY
6020          * with wp flag set, don't set pte write bit.
6021          */
6022         if (wp_copy || (is_continue && !vm_shared))
6023                 writable = 0;
6024         else
6025                 writable = dst_vma->vm_flags & VM_WRITE;
6026
6027         _dst_pte = make_huge_pte(dst_vma, page, writable);
6028         /*
6029          * Always mark UFFDIO_COPY page dirty; note that this may not be
6030          * extremely important for hugetlbfs for now since swapping is not
6031          * supported, but we should still be clear in that this page cannot be
6032          * thrown away at will, even if write bit not set.
6033          */
6034         _dst_pte = huge_pte_mkdirty(_dst_pte);
6035         _dst_pte = pte_mkyoung(_dst_pte);
6036
6037         if (wp_copy)
6038                 _dst_pte = huge_pte_mkuffd_wp(_dst_pte);
6039
6040         set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
6041
6042         (void)huge_ptep_set_access_flags(dst_vma, dst_addr, dst_pte, _dst_pte,
6043                                         dst_vma->vm_flags & VM_WRITE);
6044         hugetlb_count_add(pages_per_huge_page(h), dst_mm);
6045
6046         /* No need to invalidate - it was non-present before */
6047         update_mmu_cache(dst_vma, dst_addr, dst_pte);
6048
6049         spin_unlock(ptl);
6050         if (!is_continue)
6051                 SetHPageMigratable(page);
6052         if (vm_shared || is_continue)
6053                 unlock_page(page);
6054         ret = 0;
6055 out:
6056         return ret;
6057 out_release_unlock:
6058         spin_unlock(ptl);
6059         if (vm_shared || is_continue)
6060                 unlock_page(page);
6061 out_release_nounlock:
6062         if (!page_in_pagecache)
6063                 restore_reserve_on_error(h, dst_vma, dst_addr, page);
6064         put_page(page);
6065         goto out;
6066 }
6067 #endif /* CONFIG_USERFAULTFD */
6068
6069 static void record_subpages_vmas(struct page *page, struct vm_area_struct *vma,
6070                                  int refs, struct page **pages,
6071                                  struct vm_area_struct **vmas)
6072 {
6073         int nr;
6074
6075         for (nr = 0; nr < refs; nr++) {
6076                 if (likely(pages))
6077                         pages[nr] = mem_map_offset(page, nr);
6078                 if (vmas)
6079                         vmas[nr] = vma;
6080         }
6081 }
6082
6083 static inline bool __follow_hugetlb_must_fault(unsigned int flags, pte_t *pte,
6084                                                bool *unshare)
6085 {
6086         pte_t pteval = huge_ptep_get(pte);
6087
6088         *unshare = false;
6089         if (is_swap_pte(pteval))
6090                 return true;
6091         if (huge_pte_write(pteval))
6092                 return false;
6093         if (flags & FOLL_WRITE)
6094                 return true;
6095         if (gup_must_unshare(flags, pte_page(pteval))) {
6096                 *unshare = true;
6097                 return true;
6098         }
6099         return false;
6100 }
6101
6102 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
6103                          struct page **pages, struct vm_area_struct **vmas,
6104                          unsigned long *position, unsigned long *nr_pages,
6105                          long i, unsigned int flags, int *locked)
6106 {
6107         unsigned long pfn_offset;
6108         unsigned long vaddr = *position;
6109         unsigned long remainder = *nr_pages;
6110         struct hstate *h = hstate_vma(vma);
6111         int err = -EFAULT, refs;
6112
6113         while (vaddr < vma->vm_end && remainder) {
6114                 pte_t *pte;
6115                 spinlock_t *ptl = NULL;
6116                 bool unshare = false;
6117                 int absent;
6118                 struct page *page;
6119
6120                 /*
6121                  * If we have a pending SIGKILL, don't keep faulting pages and
6122                  * potentially allocating memory.
6123                  */
6124                 if (fatal_signal_pending(current)) {
6125                         remainder = 0;
6126                         break;
6127                 }
6128
6129                 /*
6130                  * Some archs (sparc64, sh*) have multiple pte_ts to
6131                  * each hugepage.  We have to make sure we get the
6132                  * first, for the page indexing below to work.
6133                  *
6134                  * Note that page table lock is not held when pte is null.
6135                  */
6136                 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h),
6137                                       huge_page_size(h));
6138                 if (pte)
6139                         ptl = huge_pte_lock(h, mm, pte);
6140                 absent = !pte || huge_pte_none(huge_ptep_get(pte));
6141
6142                 /*
6143                  * When coredumping, it suits get_dump_page if we just return
6144                  * an error where there's an empty slot with no huge pagecache
6145                  * to back it.  This way, we avoid allocating a hugepage, and
6146                  * the sparse dumpfile avoids allocating disk blocks, but its
6147                  * huge holes still show up with zeroes where they need to be.
6148                  */
6149                 if (absent && (flags & FOLL_DUMP) &&
6150                     !hugetlbfs_pagecache_present(h, vma, vaddr)) {
6151                         if (pte)
6152                                 spin_unlock(ptl);
6153                         remainder = 0;
6154                         break;
6155                 }
6156
6157                 /*
6158                  * We need call hugetlb_fault for both hugepages under migration
6159                  * (in which case hugetlb_fault waits for the migration,) and
6160                  * hwpoisoned hugepages (in which case we need to prevent the
6161                  * caller from accessing to them.) In order to do this, we use
6162                  * here is_swap_pte instead of is_hugetlb_entry_migration and
6163                  * is_hugetlb_entry_hwpoisoned. This is because it simply covers
6164                  * both cases, and because we can't follow correct pages
6165                  * directly from any kind of swap entries.
6166                  */
6167                 if (absent ||
6168                     __follow_hugetlb_must_fault(flags, pte, &unshare)) {
6169                         vm_fault_t ret;
6170                         unsigned int fault_flags = 0;
6171
6172                         if (pte)
6173                                 spin_unlock(ptl);
6174                         if (flags & FOLL_WRITE)
6175                                 fault_flags |= FAULT_FLAG_WRITE;
6176                         else if (unshare)
6177                                 fault_flags |= FAULT_FLAG_UNSHARE;
6178                         if (locked)
6179                                 fault_flags |= FAULT_FLAG_ALLOW_RETRY |
6180                                         FAULT_FLAG_KILLABLE;
6181                         if (flags & FOLL_NOWAIT)
6182                                 fault_flags |= FAULT_FLAG_ALLOW_RETRY |
6183                                         FAULT_FLAG_RETRY_NOWAIT;
6184                         if (flags & FOLL_TRIED) {
6185                                 /*
6186                                  * Note: FAULT_FLAG_ALLOW_RETRY and
6187                                  * FAULT_FLAG_TRIED can co-exist
6188                                  */
6189                                 fault_flags |= FAULT_FLAG_TRIED;
6190                         }
6191                         ret = hugetlb_fault(mm, vma, vaddr, fault_flags);
6192                         if (ret & VM_FAULT_ERROR) {
6193                                 err = vm_fault_to_errno(ret, flags);
6194                                 remainder = 0;
6195                                 break;
6196                         }
6197                         if (ret & VM_FAULT_RETRY) {
6198                                 if (locked &&
6199                                     !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
6200                                         *locked = 0;
6201                                 *nr_pages = 0;
6202                                 /*
6203                                  * VM_FAULT_RETRY must not return an
6204                                  * error, it will return zero
6205                                  * instead.
6206                                  *
6207                                  * No need to update "position" as the
6208                                  * caller will not check it after
6209                                  * *nr_pages is set to 0.
6210                                  */
6211                                 return i;
6212                         }
6213                         continue;
6214                 }
6215
6216                 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
6217                 page = pte_page(huge_ptep_get(pte));
6218
6219                 VM_BUG_ON_PAGE((flags & FOLL_PIN) && PageAnon(page) &&
6220                                !PageAnonExclusive(page), page);
6221
6222                 /*
6223                  * If subpage information not requested, update counters
6224                  * and skip the same_page loop below.
6225                  */
6226                 if (!pages && !vmas && !pfn_offset &&
6227                     (vaddr + huge_page_size(h) < vma->vm_end) &&
6228                     (remainder >= pages_per_huge_page(h))) {
6229                         vaddr += huge_page_size(h);
6230                         remainder -= pages_per_huge_page(h);
6231                         i += pages_per_huge_page(h);
6232                         spin_unlock(ptl);
6233                         continue;
6234                 }
6235
6236                 /* vaddr may not be aligned to PAGE_SIZE */
6237                 refs = min3(pages_per_huge_page(h) - pfn_offset, remainder,
6238                     (vma->vm_end - ALIGN_DOWN(vaddr, PAGE_SIZE)) >> PAGE_SHIFT);
6239
6240                 if (pages || vmas)
6241                         record_subpages_vmas(mem_map_offset(page, pfn_offset),
6242                                              vma, refs,
6243                                              likely(pages) ? pages + i : NULL,
6244                                              vmas ? vmas + i : NULL);
6245
6246                 if (pages) {
6247                         /*
6248                          * try_grab_folio() should always succeed here,
6249                          * because: a) we hold the ptl lock, and b) we've just
6250                          * checked that the huge page is present in the page
6251                          * tables. If the huge page is present, then the tail
6252                          * pages must also be present. The ptl prevents the
6253                          * head page and tail pages from being rearranged in
6254                          * any way. So this page must be available at this
6255                          * point, unless the page refcount overflowed:
6256                          */
6257                         if (WARN_ON_ONCE(!try_grab_folio(pages[i], refs,
6258                                                          flags))) {
6259                                 spin_unlock(ptl);
6260                                 remainder = 0;
6261                                 err = -ENOMEM;
6262                                 break;
6263                         }
6264                 }
6265
6266                 vaddr += (refs << PAGE_SHIFT);
6267                 remainder -= refs;
6268                 i += refs;
6269
6270                 spin_unlock(ptl);
6271         }
6272         *nr_pages = remainder;
6273         /*
6274          * setting position is actually required only if remainder is
6275          * not zero but it's faster not to add a "if (remainder)"
6276          * branch.
6277          */
6278         *position = vaddr;
6279
6280         return i ? i : err;
6281 }
6282
6283 unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
6284                 unsigned long address, unsigned long end,
6285                 pgprot_t newprot, unsigned long cp_flags)
6286 {
6287         struct mm_struct *mm = vma->vm_mm;
6288         unsigned long start = address;
6289         pte_t *ptep;
6290         pte_t pte;
6291         struct hstate *h = hstate_vma(vma);
6292         unsigned long pages = 0, psize = huge_page_size(h);
6293         bool shared_pmd = false;
6294         struct mmu_notifier_range range;
6295         bool uffd_wp = cp_flags & MM_CP_UFFD_WP;
6296         bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE;
6297
6298         /*
6299          * In the case of shared PMDs, the area to flush could be beyond
6300          * start/end.  Set range.start/range.end to cover the maximum possible
6301          * range if PMD sharing is possible.
6302          */
6303         mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA,
6304                                 0, vma, mm, start, end);
6305         adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
6306
6307         BUG_ON(address >= end);
6308         flush_cache_range(vma, range.start, range.end);
6309
6310         mmu_notifier_invalidate_range_start(&range);
6311         i_mmap_lock_write(vma->vm_file->f_mapping);
6312         for (; address < end; address += psize) {
6313                 spinlock_t *ptl;
6314                 ptep = huge_pte_offset(mm, address, psize);
6315                 if (!ptep)
6316                         continue;
6317                 ptl = huge_pte_lock(h, mm, ptep);
6318                 if (huge_pmd_unshare(mm, vma, &address, ptep)) {
6319                         /*
6320                          * When uffd-wp is enabled on the vma, unshare
6321                          * shouldn't happen at all.  Warn about it if it
6322                          * happened due to some reason.
6323                          */
6324                         WARN_ON_ONCE(uffd_wp || uffd_wp_resolve);
6325                         pages++;
6326                         spin_unlock(ptl);
6327                         shared_pmd = true;
6328                         continue;
6329                 }
6330                 pte = huge_ptep_get(ptep);
6331                 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
6332                         spin_unlock(ptl);
6333                         continue;
6334                 }
6335                 if (unlikely(is_hugetlb_entry_migration(pte))) {
6336                         swp_entry_t entry = pte_to_swp_entry(pte);
6337                         struct page *page = pfn_swap_entry_to_page(entry);
6338
6339                         if (!is_readable_migration_entry(entry)) {
6340                                 pte_t newpte;
6341
6342                                 if (PageAnon(page))
6343                                         entry = make_readable_exclusive_migration_entry(
6344                                                                 swp_offset(entry));
6345                                 else
6346                                         entry = make_readable_migration_entry(
6347                                                                 swp_offset(entry));
6348                                 newpte = swp_entry_to_pte(entry);
6349                                 if (uffd_wp)
6350                                         newpte = pte_swp_mkuffd_wp(newpte);
6351                                 else if (uffd_wp_resolve)
6352                                         newpte = pte_swp_clear_uffd_wp(newpte);
6353                                 set_huge_swap_pte_at(mm, address, ptep,
6354                                                      newpte, psize);
6355                                 pages++;
6356                         }
6357                         spin_unlock(ptl);
6358                         continue;
6359                 }
6360                 if (unlikely(pte_marker_uffd_wp(pte))) {
6361                         /*
6362                          * This is changing a non-present pte into a none pte,
6363                          * no need for huge_ptep_modify_prot_start/commit().
6364                          */
6365                         if (uffd_wp_resolve)
6366                                 huge_pte_clear(mm, address, ptep, psize);
6367                 }
6368                 if (!huge_pte_none(pte)) {
6369                         pte_t old_pte;
6370                         unsigned int shift = huge_page_shift(hstate_vma(vma));
6371
6372                         old_pte = huge_ptep_modify_prot_start(vma, address, ptep);
6373                         pte = huge_pte_modify(old_pte, newprot);
6374                         pte = arch_make_huge_pte(pte, shift, vma->vm_flags);
6375                         if (uffd_wp)
6376                                 pte = huge_pte_mkuffd_wp(huge_pte_wrprotect(pte));
6377                         else if (uffd_wp_resolve)
6378                                 pte = huge_pte_clear_uffd_wp(pte);
6379                         huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte);
6380                         pages++;
6381                 } else {
6382                         /* None pte */
6383                         if (unlikely(uffd_wp))
6384                                 /* Safe to modify directly (none->non-present). */
6385                                 set_huge_pte_at(mm, address, ptep,
6386                                                 make_pte_marker(PTE_MARKER_UFFD_WP));
6387                 }
6388                 spin_unlock(ptl);
6389         }
6390         /*
6391          * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
6392          * may have cleared our pud entry and done put_page on the page table:
6393          * once we release i_mmap_rwsem, another task can do the final put_page
6394          * and that page table be reused and filled with junk.  If we actually
6395          * did unshare a page of pmds, flush the range corresponding to the pud.
6396          */
6397         if (shared_pmd)
6398                 flush_hugetlb_tlb_range(vma, range.start, range.end);
6399         else
6400                 flush_hugetlb_tlb_range(vma, start, end);
6401         /*
6402          * No need to call mmu_notifier_invalidate_range() we are downgrading
6403          * page table protection not changing it to point to a new page.
6404          *
6405          * See Documentation/mm/mmu_notifier.rst
6406          */
6407         i_mmap_unlock_write(vma->vm_file->f_mapping);
6408         mmu_notifier_invalidate_range_end(&range);
6409
6410         return pages << h->order;
6411 }
6412
6413 /* Return true if reservation was successful, false otherwise.  */
6414 bool hugetlb_reserve_pages(struct inode *inode,
6415                                         long from, long to,
6416                                         struct vm_area_struct *vma,
6417                                         vm_flags_t vm_flags)
6418 {
6419         long chg, add = -1;
6420         struct hstate *h = hstate_inode(inode);
6421         struct hugepage_subpool *spool = subpool_inode(inode);
6422         struct resv_map *resv_map;
6423         struct hugetlb_cgroup *h_cg = NULL;
6424         long gbl_reserve, regions_needed = 0;
6425
6426         /* This should never happen */
6427         if (from > to) {
6428                 VM_WARN(1, "%s called with a negative range\n", __func__);
6429                 return false;
6430         }
6431
6432         /*
6433          * Only apply hugepage reservation if asked. At fault time, an
6434          * attempt will be made for VM_NORESERVE to allocate a page
6435          * without using reserves
6436          */
6437         if (vm_flags & VM_NORESERVE)
6438                 return true;
6439
6440         /*
6441          * Shared mappings base their reservation on the number of pages that
6442          * are already allocated on behalf of the file. Private mappings need
6443          * to reserve the full area even if read-only as mprotect() may be
6444          * called to make the mapping read-write. Assume !vma is a shm mapping
6445          */
6446         if (!vma || vma->vm_flags & VM_MAYSHARE) {
6447                 /*
6448                  * resv_map can not be NULL as hugetlb_reserve_pages is only
6449                  * called for inodes for which resv_maps were created (see
6450                  * hugetlbfs_get_inode).
6451                  */
6452                 resv_map = inode_resv_map(inode);
6453
6454                 chg = region_chg(resv_map, from, to, &regions_needed);
6455
6456         } else {
6457                 /* Private mapping. */
6458                 resv_map = resv_map_alloc();
6459                 if (!resv_map)
6460                         return false;
6461
6462                 chg = to - from;
6463
6464                 set_vma_resv_map(vma, resv_map);
6465                 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
6466         }
6467
6468         if (chg < 0)
6469                 goto out_err;
6470
6471         if (hugetlb_cgroup_charge_cgroup_rsvd(hstate_index(h),
6472                                 chg * pages_per_huge_page(h), &h_cg) < 0)
6473                 goto out_err;
6474
6475         if (vma && !(vma->vm_flags & VM_MAYSHARE) && h_cg) {
6476                 /* For private mappings, the hugetlb_cgroup uncharge info hangs
6477                  * of the resv_map.
6478                  */
6479                 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, h_cg, h);
6480         }
6481
6482         /*
6483          * There must be enough pages in the subpool for the mapping. If
6484          * the subpool has a minimum size, there may be some global
6485          * reservations already in place (gbl_reserve).
6486          */
6487         gbl_reserve = hugepage_subpool_get_pages(spool, chg);
6488         if (gbl_reserve < 0)
6489                 goto out_uncharge_cgroup;
6490
6491         /*
6492          * Check enough hugepages are available for the reservation.
6493          * Hand the pages back to the subpool if there are not
6494          */
6495         if (hugetlb_acct_memory(h, gbl_reserve) < 0)
6496                 goto out_put_pages;
6497
6498         /*
6499          * Account for the reservations made. Shared mappings record regions
6500          * that have reservations as they are shared by multiple VMAs.
6501          * When the last VMA disappears, the region map says how much
6502          * the reservation was and the page cache tells how much of
6503          * the reservation was consumed. Private mappings are per-VMA and
6504          * only the consumed reservations are tracked. When the VMA
6505          * disappears, the original reservation is the VMA size and the
6506          * consumed reservations are stored in the map. Hence, nothing
6507          * else has to be done for private mappings here
6508          */
6509         if (!vma || vma->vm_flags & VM_MAYSHARE) {
6510                 add = region_add(resv_map, from, to, regions_needed, h, h_cg);
6511
6512                 if (unlikely(add < 0)) {
6513                         hugetlb_acct_memory(h, -gbl_reserve);
6514                         goto out_put_pages;
6515                 } else if (unlikely(chg > add)) {
6516                         /*
6517                          * pages in this range were added to the reserve
6518                          * map between region_chg and region_add.  This
6519                          * indicates a race with alloc_huge_page.  Adjust
6520                          * the subpool and reserve counts modified above
6521                          * based on the difference.
6522                          */
6523                         long rsv_adjust;
6524
6525                         /*
6526                          * hugetlb_cgroup_uncharge_cgroup_rsvd() will put the
6527                          * reference to h_cg->css. See comment below for detail.
6528                          */
6529                         hugetlb_cgroup_uncharge_cgroup_rsvd(
6530                                 hstate_index(h),
6531                                 (chg - add) * pages_per_huge_page(h), h_cg);
6532
6533                         rsv_adjust = hugepage_subpool_put_pages(spool,
6534                                                                 chg - add);
6535                         hugetlb_acct_memory(h, -rsv_adjust);
6536                 } else if (h_cg) {
6537                         /*
6538                          * The file_regions will hold their own reference to
6539                          * h_cg->css. So we should release the reference held
6540                          * via hugetlb_cgroup_charge_cgroup_rsvd() when we are
6541                          * done.
6542                          */
6543                         hugetlb_cgroup_put_rsvd_cgroup(h_cg);
6544                 }
6545         }
6546         return true;
6547
6548 out_put_pages:
6549         /* put back original number of pages, chg */
6550         (void)hugepage_subpool_put_pages(spool, chg);
6551 out_uncharge_cgroup:
6552         hugetlb_cgroup_uncharge_cgroup_rsvd(hstate_index(h),
6553                                             chg * pages_per_huge_page(h), h_cg);
6554 out_err:
6555         if (!vma || vma->vm_flags & VM_MAYSHARE)
6556                 /* Only call region_abort if the region_chg succeeded but the
6557                  * region_add failed or didn't run.
6558                  */
6559                 if (chg >= 0 && add < 0)
6560                         region_abort(resv_map, from, to, regions_needed);
6561         if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
6562                 kref_put(&resv_map->refs, resv_map_release);
6563         return false;
6564 }
6565
6566 long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
6567                                                                 long freed)
6568 {
6569         struct hstate *h = hstate_inode(inode);
6570         struct resv_map *resv_map = inode_resv_map(inode);
6571         long chg = 0;
6572         struct hugepage_subpool *spool = subpool_inode(inode);
6573         long gbl_reserve;
6574
6575         /*
6576          * Since this routine can be called in the evict inode path for all
6577          * hugetlbfs inodes, resv_map could be NULL.
6578          */
6579         if (resv_map) {
6580                 chg = region_del(resv_map, start, end);
6581                 /*
6582                  * region_del() can fail in the rare case where a region
6583                  * must be split and another region descriptor can not be
6584                  * allocated.  If end == LONG_MAX, it will not fail.
6585                  */
6586                 if (chg < 0)
6587                         return chg;
6588         }
6589
6590         spin_lock(&inode->i_lock);
6591         inode->i_blocks -= (blocks_per_huge_page(h) * freed);
6592         spin_unlock(&inode->i_lock);
6593
6594         /*
6595          * If the subpool has a minimum size, the number of global
6596          * reservations to be released may be adjusted.
6597          *
6598          * Note that !resv_map implies freed == 0. So (chg - freed)
6599          * won't go negative.
6600          */
6601         gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
6602         hugetlb_acct_memory(h, -gbl_reserve);
6603
6604         return 0;
6605 }
6606
6607 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
6608 static unsigned long page_table_shareable(struct vm_area_struct *svma,
6609                                 struct vm_area_struct *vma,
6610                                 unsigned long addr, pgoff_t idx)
6611 {
6612         unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
6613                                 svma->vm_start;
6614         unsigned long sbase = saddr & PUD_MASK;
6615         unsigned long s_end = sbase + PUD_SIZE;
6616
6617         /* Allow segments to share if only one is marked locked */
6618         unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
6619         unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
6620
6621         /*
6622          * match the virtual addresses, permission and the alignment of the
6623          * page table page.
6624          */
6625         if (pmd_index(addr) != pmd_index(saddr) ||
6626             vm_flags != svm_flags ||
6627             !range_in_vma(svma, sbase, s_end))
6628                 return 0;
6629
6630         return saddr;
6631 }
6632
6633 static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr)
6634 {
6635         unsigned long base = addr & PUD_MASK;
6636         unsigned long end = base + PUD_SIZE;
6637
6638         /*
6639          * check on proper vm_flags and page table alignment
6640          */
6641         if (vma->vm_flags & VM_MAYSHARE && range_in_vma(vma, base, end))
6642                 return true;
6643         return false;
6644 }
6645
6646 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
6647 {
6648 #ifdef CONFIG_USERFAULTFD
6649         if (uffd_disable_huge_pmd_share(vma))
6650                 return false;
6651 #endif
6652         return vma_shareable(vma, addr);
6653 }
6654
6655 /*
6656  * Determine if start,end range within vma could be mapped by shared pmd.
6657  * If yes, adjust start and end to cover range associated with possible
6658  * shared pmd mappings.
6659  */
6660 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
6661                                 unsigned long *start, unsigned long *end)
6662 {
6663         unsigned long v_start = ALIGN(vma->vm_start, PUD_SIZE),
6664                 v_end = ALIGN_DOWN(vma->vm_end, PUD_SIZE);
6665
6666         /*
6667          * vma needs to span at least one aligned PUD size, and the range
6668          * must be at least partially within in.
6669          */
6670         if (!(vma->vm_flags & VM_MAYSHARE) || !(v_end > v_start) ||
6671                 (*end <= v_start) || (*start >= v_end))
6672                 return;
6673
6674         /* Extend the range to be PUD aligned for a worst case scenario */
6675         if (*start > v_start)
6676                 *start = ALIGN_DOWN(*start, PUD_SIZE);
6677
6678         if (*end < v_end)
6679                 *end = ALIGN(*end, PUD_SIZE);
6680 }
6681
6682 /*
6683  * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
6684  * and returns the corresponding pte. While this is not necessary for the
6685  * !shared pmd case because we can allocate the pmd later as well, it makes the
6686  * code much cleaner.
6687  *
6688  * This routine must be called with i_mmap_rwsem held in at least read mode if
6689  * sharing is possible.  For hugetlbfs, this prevents removal of any page
6690  * table entries associated with the address space.  This is important as we
6691  * are setting up sharing based on existing page table entries (mappings).
6692  */
6693 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
6694                       unsigned long addr, pud_t *pud)
6695 {
6696         struct address_space *mapping = vma->vm_file->f_mapping;
6697         pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
6698                         vma->vm_pgoff;
6699         struct vm_area_struct *svma;
6700         unsigned long saddr;
6701         pte_t *spte = NULL;
6702         pte_t *pte;
6703         spinlock_t *ptl;
6704
6705         i_mmap_assert_locked(mapping);
6706         vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
6707                 if (svma == vma)
6708                         continue;
6709
6710                 saddr = page_table_shareable(svma, vma, addr, idx);
6711                 if (saddr) {
6712                         spte = huge_pte_offset(svma->vm_mm, saddr,
6713                                                vma_mmu_pagesize(svma));
6714                         if (spte) {
6715                                 get_page(virt_to_page(spte));
6716                                 break;
6717                         }
6718                 }
6719         }
6720
6721         if (!spte)
6722                 goto out;
6723
6724         ptl = huge_pte_lock(hstate_vma(vma), mm, spte);
6725         if (pud_none(*pud)) {
6726                 pud_populate(mm, pud,
6727                                 (pmd_t *)((unsigned long)spte & PAGE_MASK));
6728                 mm_inc_nr_pmds(mm);
6729         } else {
6730                 put_page(virt_to_page(spte));
6731         }
6732         spin_unlock(ptl);
6733 out:
6734         pte = (pte_t *)pmd_alloc(mm, pud, addr);
6735         return pte;
6736 }
6737
6738 /*
6739  * unmap huge page backed by shared pte.
6740  *
6741  * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
6742  * indicated by page_count > 1, unmap is achieved by clearing pud and
6743  * decrementing the ref count. If count == 1, the pte page is not shared.
6744  *
6745  * Called with page table lock held and i_mmap_rwsem held in write mode.
6746  *
6747  * returns: 1 successfully unmapped a shared pte page
6748  *          0 the underlying pte page is not shared, or it is the last user
6749  */
6750 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
6751                                         unsigned long *addr, pte_t *ptep)
6752 {
6753         pgd_t *pgd = pgd_offset(mm, *addr);
6754         p4d_t *p4d = p4d_offset(pgd, *addr);
6755         pud_t *pud = pud_offset(p4d, *addr);
6756
6757         i_mmap_assert_write_locked(vma->vm_file->f_mapping);
6758         BUG_ON(page_count(virt_to_page(ptep)) == 0);
6759         if (page_count(virt_to_page(ptep)) == 1)
6760                 return 0;
6761
6762         pud_clear(pud);
6763         put_page(virt_to_page(ptep));
6764         mm_dec_nr_pmds(mm);
6765         /*
6766          * This update of passed address optimizes loops sequentially
6767          * processing addresses in increments of huge page size (PMD_SIZE
6768          * in this case).  By clearing the pud, a PUD_SIZE area is unmapped.
6769          * Update address to the 'last page' in the cleared area so that
6770          * calling loop can move to first page past this area.
6771          */
6772         *addr |= PUD_SIZE - PMD_SIZE;
6773         return 1;
6774 }
6775
6776 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
6777 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
6778                       unsigned long addr, pud_t *pud)
6779 {
6780         return NULL;
6781 }
6782
6783 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
6784                                 unsigned long *addr, pte_t *ptep)
6785 {
6786         return 0;
6787 }
6788
6789 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
6790                                 unsigned long *start, unsigned long *end)
6791 {
6792 }
6793
6794 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
6795 {
6796         return false;
6797 }
6798 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
6799
6800 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
6801 pte_t *huge_pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
6802                         unsigned long addr, unsigned long sz)
6803 {
6804         pgd_t *pgd;
6805         p4d_t *p4d;
6806         pud_t *pud;
6807         pte_t *pte = NULL;
6808
6809         pgd = pgd_offset(mm, addr);
6810         p4d = p4d_alloc(mm, pgd, addr);
6811         if (!p4d)
6812                 return NULL;
6813         pud = pud_alloc(mm, p4d, addr);
6814         if (pud) {
6815                 if (sz == PUD_SIZE) {
6816                         pte = (pte_t *)pud;
6817                 } else {
6818                         BUG_ON(sz != PMD_SIZE);
6819                         if (want_pmd_share(vma, addr) && pud_none(*pud))
6820                                 pte = huge_pmd_share(mm, vma, addr, pud);
6821                         else
6822                                 pte = (pte_t *)pmd_alloc(mm, pud, addr);
6823                 }
6824         }
6825         BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte));
6826
6827         return pte;
6828 }
6829
6830 /*
6831  * huge_pte_offset() - Walk the page table to resolve the hugepage
6832  * entry at address @addr
6833  *
6834  * Return: Pointer to page table entry (PUD or PMD) for
6835  * address @addr, or NULL if a !p*d_present() entry is encountered and the
6836  * size @sz doesn't match the hugepage size at this level of the page
6837  * table.
6838  */
6839 pte_t *huge_pte_offset(struct mm_struct *mm,
6840                        unsigned long addr, unsigned long sz)
6841 {
6842         pgd_t *pgd;
6843         p4d_t *p4d;
6844         pud_t *pud;
6845         pmd_t *pmd;
6846
6847         pgd = pgd_offset(mm, addr);
6848         if (!pgd_present(*pgd))
6849                 return NULL;
6850         p4d = p4d_offset(pgd, addr);
6851         if (!p4d_present(*p4d))
6852                 return NULL;
6853
6854         pud = pud_offset(p4d, addr);
6855         if (sz == PUD_SIZE)
6856                 /* must be pud huge, non-present or none */
6857                 return (pte_t *)pud;
6858         if (!pud_present(*pud))
6859                 return NULL;
6860         /* must have a valid entry and size to go further */
6861
6862         pmd = pmd_offset(pud, addr);
6863         /* must be pmd huge, non-present or none */
6864         return (pte_t *)pmd;
6865 }
6866
6867 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
6868
6869 /*
6870  * These functions are overwritable if your architecture needs its own
6871  * behavior.
6872  */
6873 struct page * __weak
6874 follow_huge_addr(struct mm_struct *mm, unsigned long address,
6875                               int write)
6876 {
6877         return ERR_PTR(-EINVAL);
6878 }
6879
6880 struct page * __weak
6881 follow_huge_pd(struct vm_area_struct *vma,
6882                unsigned long address, hugepd_t hpd, int flags, int pdshift)
6883 {
6884         WARN(1, "hugepd follow called with no support for hugepage directory format\n");
6885         return NULL;
6886 }
6887
6888 struct page * __weak
6889 follow_huge_pmd(struct mm_struct *mm, unsigned long address,
6890                 pmd_t *pmd, int flags)
6891 {
6892         struct page *page = NULL;
6893         spinlock_t *ptl;
6894         pte_t pte;
6895
6896         /*
6897          * FOLL_PIN is not supported for follow_page(). Ordinary GUP goes via
6898          * follow_hugetlb_page().
6899          */
6900         if (WARN_ON_ONCE(flags & FOLL_PIN))
6901                 return NULL;
6902
6903 retry:
6904         ptl = pmd_lockptr(mm, pmd);
6905         spin_lock(ptl);
6906         /*
6907          * make sure that the address range covered by this pmd is not
6908          * unmapped from other threads.
6909          */
6910         if (!pmd_huge(*pmd))
6911                 goto out;
6912         pte = huge_ptep_get((pte_t *)pmd);
6913         if (pte_present(pte)) {
6914                 page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
6915                 /*
6916                  * try_grab_page() should always succeed here, because: a) we
6917                  * hold the pmd (ptl) lock, and b) we've just checked that the
6918                  * huge pmd (head) page is present in the page tables. The ptl
6919                  * prevents the head page and tail pages from being rearranged
6920                  * in any way. So this page must be available at this point,
6921                  * unless the page refcount overflowed:
6922                  */
6923                 if (WARN_ON_ONCE(!try_grab_page(page, flags))) {
6924                         page = NULL;
6925                         goto out;
6926                 }
6927         } else {
6928                 if (is_hugetlb_entry_migration(pte)) {
6929                         spin_unlock(ptl);
6930                         __migration_entry_wait_huge((pte_t *)pmd, ptl);
6931                         goto retry;
6932                 }
6933                 /*
6934                  * hwpoisoned entry is treated as no_page_table in
6935                  * follow_page_mask().
6936                  */
6937         }
6938 out:
6939         spin_unlock(ptl);
6940         return page;
6941 }
6942
6943 struct page * __weak
6944 follow_huge_pud(struct mm_struct *mm, unsigned long address,
6945                 pud_t *pud, int flags)
6946 {
6947         if (flags & (FOLL_GET | FOLL_PIN))
6948                 return NULL;
6949
6950         return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
6951 }
6952
6953 struct page * __weak
6954 follow_huge_pgd(struct mm_struct *mm, unsigned long address, pgd_t *pgd, int flags)
6955 {
6956         if (flags & (FOLL_GET | FOLL_PIN))
6957                 return NULL;
6958
6959         return pte_page(*(pte_t *)pgd) + ((address & ~PGDIR_MASK) >> PAGE_SHIFT);
6960 }
6961
6962 int isolate_hugetlb(struct page *page, struct list_head *list)
6963 {
6964         int ret = 0;
6965
6966         spin_lock_irq(&hugetlb_lock);
6967         if (!PageHeadHuge(page) ||
6968             !HPageMigratable(page) ||
6969             !get_page_unless_zero(page)) {
6970                 ret = -EBUSY;
6971                 goto unlock;
6972         }
6973         ClearHPageMigratable(page);
6974         list_move_tail(&page->lru, list);
6975 unlock:
6976         spin_unlock_irq(&hugetlb_lock);
6977         return ret;
6978 }
6979
6980 int get_hwpoison_huge_page(struct page *page, bool *hugetlb)
6981 {
6982         int ret = 0;
6983
6984         *hugetlb = false;
6985         spin_lock_irq(&hugetlb_lock);
6986         if (PageHeadHuge(page)) {
6987                 *hugetlb = true;
6988                 if (HPageFreed(page))
6989                         ret = 0;
6990                 else if (HPageMigratable(page))
6991                         ret = get_page_unless_zero(page);
6992                 else
6993                         ret = -EBUSY;
6994         }
6995         spin_unlock_irq(&hugetlb_lock);
6996         return ret;
6997 }
6998
6999 int get_huge_page_for_hwpoison(unsigned long pfn, int flags)
7000 {
7001         int ret;
7002
7003         spin_lock_irq(&hugetlb_lock);
7004         ret = __get_huge_page_for_hwpoison(pfn, flags);
7005         spin_unlock_irq(&hugetlb_lock);
7006         return ret;
7007 }
7008
7009 void putback_active_hugepage(struct page *page)
7010 {
7011         spin_lock_irq(&hugetlb_lock);
7012         SetHPageMigratable(page);
7013         list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
7014         spin_unlock_irq(&hugetlb_lock);
7015         put_page(page);
7016 }
7017
7018 void move_hugetlb_state(struct page *oldpage, struct page *newpage, int reason)
7019 {
7020         struct hstate *h = page_hstate(oldpage);
7021
7022         hugetlb_cgroup_migrate(oldpage, newpage);
7023         set_page_owner_migrate_reason(newpage, reason);
7024
7025         /*
7026          * transfer temporary state of the new huge page. This is
7027          * reverse to other transitions because the newpage is going to
7028          * be final while the old one will be freed so it takes over
7029          * the temporary status.
7030          *
7031          * Also note that we have to transfer the per-node surplus state
7032          * here as well otherwise the global surplus count will not match
7033          * the per-node's.
7034          */
7035         if (HPageTemporary(newpage)) {
7036                 int old_nid = page_to_nid(oldpage);
7037                 int new_nid = page_to_nid(newpage);
7038
7039                 SetHPageTemporary(oldpage);
7040                 ClearHPageTemporary(newpage);
7041
7042                 /*
7043                  * There is no need to transfer the per-node surplus state
7044                  * when we do not cross the node.
7045                  */
7046                 if (new_nid == old_nid)
7047                         return;
7048                 spin_lock_irq(&hugetlb_lock);
7049                 if (h->surplus_huge_pages_node[old_nid]) {
7050                         h->surplus_huge_pages_node[old_nid]--;
7051                         h->surplus_huge_pages_node[new_nid]++;
7052                 }
7053                 spin_unlock_irq(&hugetlb_lock);
7054         }
7055 }
7056
7057 /*
7058  * This function will unconditionally remove all the shared pmd pgtable entries
7059  * within the specific vma for a hugetlbfs memory range.
7060  */
7061 void hugetlb_unshare_all_pmds(struct vm_area_struct *vma)
7062 {
7063         struct hstate *h = hstate_vma(vma);
7064         unsigned long sz = huge_page_size(h);
7065         struct mm_struct *mm = vma->vm_mm;
7066         struct mmu_notifier_range range;
7067         unsigned long address, start, end;
7068         spinlock_t *ptl;
7069         pte_t *ptep;
7070
7071         if (!(vma->vm_flags & VM_MAYSHARE))
7072                 return;
7073
7074         start = ALIGN(vma->vm_start, PUD_SIZE);
7075         end = ALIGN_DOWN(vma->vm_end, PUD_SIZE);
7076
7077         if (start >= end)
7078                 return;
7079
7080         flush_cache_range(vma, start, end);
7081         /*
7082          * No need to call adjust_range_if_pmd_sharing_possible(), because
7083          * we have already done the PUD_SIZE alignment.
7084          */
7085         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
7086                                 start, end);
7087         mmu_notifier_invalidate_range_start(&range);
7088         i_mmap_lock_write(vma->vm_file->f_mapping);
7089         for (address = start; address < end; address += PUD_SIZE) {
7090                 unsigned long tmp = address;
7091
7092                 ptep = huge_pte_offset(mm, address, sz);
7093                 if (!ptep)
7094                         continue;
7095                 ptl = huge_pte_lock(h, mm, ptep);
7096                 /* We don't want 'address' to be changed */
7097                 huge_pmd_unshare(mm, vma, &tmp, ptep);
7098                 spin_unlock(ptl);
7099         }
7100         flush_hugetlb_tlb_range(vma, start, end);
7101         i_mmap_unlock_write(vma->vm_file->f_mapping);
7102         /*
7103          * No need to call mmu_notifier_invalidate_range(), see
7104          * Documentation/mm/mmu_notifier.rst.
7105          */
7106         mmu_notifier_invalidate_range_end(&range);
7107 }
7108
7109 #ifdef CONFIG_CMA
7110 static bool cma_reserve_called __initdata;
7111
7112 static int __init cmdline_parse_hugetlb_cma(char *p)
7113 {
7114         int nid, count = 0;
7115         unsigned long tmp;
7116         char *s = p;
7117
7118         while (*s) {
7119                 if (sscanf(s, "%lu%n", &tmp, &count) != 1)
7120                         break;
7121
7122                 if (s[count] == ':') {
7123                         if (tmp >= MAX_NUMNODES)
7124                                 break;
7125                         nid = array_index_nospec(tmp, MAX_NUMNODES);
7126
7127                         s += count + 1;
7128                         tmp = memparse(s, &s);
7129                         hugetlb_cma_size_in_node[nid] = tmp;
7130                         hugetlb_cma_size += tmp;
7131
7132                         /*
7133                          * Skip the separator if have one, otherwise
7134                          * break the parsing.
7135                          */
7136                         if (*s == ',')
7137                                 s++;
7138                         else
7139                                 break;
7140                 } else {
7141                         hugetlb_cma_size = memparse(p, &p);
7142                         break;
7143                 }
7144         }
7145
7146         return 0;
7147 }
7148
7149 early_param("hugetlb_cma", cmdline_parse_hugetlb_cma);
7150
7151 void __init hugetlb_cma_reserve(int order)
7152 {
7153         unsigned long size, reserved, per_node;
7154         bool node_specific_cma_alloc = false;
7155         int nid;
7156
7157         cma_reserve_called = true;
7158
7159         if (!hugetlb_cma_size)
7160                 return;
7161
7162         for (nid = 0; nid < MAX_NUMNODES; nid++) {
7163                 if (hugetlb_cma_size_in_node[nid] == 0)
7164                         continue;
7165
7166                 if (!node_online(nid)) {
7167                         pr_warn("hugetlb_cma: invalid node %d specified\n", nid);
7168                         hugetlb_cma_size -= hugetlb_cma_size_in_node[nid];
7169                         hugetlb_cma_size_in_node[nid] = 0;
7170                         continue;
7171                 }
7172
7173                 if (hugetlb_cma_size_in_node[nid] < (PAGE_SIZE << order)) {
7174                         pr_warn("hugetlb_cma: cma area of node %d should be at least %lu MiB\n",
7175                                 nid, (PAGE_SIZE << order) / SZ_1M);
7176                         hugetlb_cma_size -= hugetlb_cma_size_in_node[nid];
7177                         hugetlb_cma_size_in_node[nid] = 0;
7178                 } else {
7179                         node_specific_cma_alloc = true;
7180                 }
7181         }
7182
7183         /* Validate the CMA size again in case some invalid nodes specified. */
7184         if (!hugetlb_cma_size)
7185                 return;
7186
7187         if (hugetlb_cma_size < (PAGE_SIZE << order)) {
7188                 pr_warn("hugetlb_cma: cma area should be at least %lu MiB\n",
7189                         (PAGE_SIZE << order) / SZ_1M);
7190                 hugetlb_cma_size = 0;
7191                 return;
7192         }
7193
7194         if (!node_specific_cma_alloc) {
7195                 /*
7196                  * If 3 GB area is requested on a machine with 4 numa nodes,
7197                  * let's allocate 1 GB on first three nodes and ignore the last one.
7198                  */
7199                 per_node = DIV_ROUND_UP(hugetlb_cma_size, nr_online_nodes);
7200                 pr_info("hugetlb_cma: reserve %lu MiB, up to %lu MiB per node\n",
7201                         hugetlb_cma_size / SZ_1M, per_node / SZ_1M);
7202         }
7203
7204         reserved = 0;
7205         for_each_online_node(nid) {
7206                 int res;
7207                 char name[CMA_MAX_NAME];
7208
7209                 if (node_specific_cma_alloc) {
7210                         if (hugetlb_cma_size_in_node[nid] == 0)
7211                                 continue;
7212
7213                         size = hugetlb_cma_size_in_node[nid];
7214                 } else {
7215                         size = min(per_node, hugetlb_cma_size - reserved);
7216                 }
7217
7218                 size = round_up(size, PAGE_SIZE << order);
7219
7220                 snprintf(name, sizeof(name), "hugetlb%d", nid);
7221                 /*
7222                  * Note that 'order per bit' is based on smallest size that
7223                  * may be returned to CMA allocator in the case of
7224                  * huge page demotion.
7225                  */
7226                 res = cma_declare_contiguous_nid(0, size, 0,
7227                                                 PAGE_SIZE << HUGETLB_PAGE_ORDER,
7228                                                  0, false, name,
7229                                                  &hugetlb_cma[nid], nid);
7230                 if (res) {
7231                         pr_warn("hugetlb_cma: reservation failed: err %d, node %d",
7232                                 res, nid);
7233                         continue;
7234                 }
7235
7236                 reserved += size;
7237                 pr_info("hugetlb_cma: reserved %lu MiB on node %d\n",
7238                         size / SZ_1M, nid);
7239
7240                 if (reserved >= hugetlb_cma_size)
7241                         break;
7242         }
7243
7244         if (!reserved)
7245                 /*
7246                  * hugetlb_cma_size is used to determine if allocations from
7247                  * cma are possible.  Set to zero if no cma regions are set up.
7248                  */
7249                 hugetlb_cma_size = 0;
7250 }
7251
7252 void __init hugetlb_cma_check(void)
7253 {
7254         if (!hugetlb_cma_size || cma_reserve_called)
7255                 return;
7256
7257         pr_warn("hugetlb_cma: the option isn't supported by current arch\n");
7258 }
7259
7260 #endif /* CONFIG_CMA */