hugetlb: change free_pool_huge_page to remove_pool_huge_page
[linux-2.6-microblaze.git] / mm / hugetlb.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Generic hugetlb support.
4  * (C) Nadia Yvette Chambers, April 2004
5  */
6 #include <linux/list.h>
7 #include <linux/init.h>
8 #include <linux/mm.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/compiler.h>
17 #include <linux/cpuset.h>
18 #include <linux/mutex.h>
19 #include <linux/memblock.h>
20 #include <linux/sysfs.h>
21 #include <linux/slab.h>
22 #include <linux/sched/mm.h>
23 #include <linux/mmdebug.h>
24 #include <linux/sched/signal.h>
25 #include <linux/rmap.h>
26 #include <linux/string_helpers.h>
27 #include <linux/swap.h>
28 #include <linux/swapops.h>
29 #include <linux/jhash.h>
30 #include <linux/numa.h>
31 #include <linux/llist.h>
32 #include <linux/cma.h>
33
34 #include <asm/page.h>
35 #include <asm/pgalloc.h>
36 #include <asm/tlb.h>
37
38 #include <linux/io.h>
39 #include <linux/hugetlb.h>
40 #include <linux/hugetlb_cgroup.h>
41 #include <linux/node.h>
42 #include <linux/userfaultfd_k.h>
43 #include <linux/page_owner.h>
44 #include "internal.h"
45
46 int hugetlb_max_hstate __read_mostly;
47 unsigned int default_hstate_idx;
48 struct hstate hstates[HUGE_MAX_HSTATE];
49
50 #ifdef CONFIG_CMA
51 static struct cma *hugetlb_cma[MAX_NUMNODES];
52 #endif
53 static unsigned long hugetlb_cma_size __initdata;
54
55 /*
56  * Minimum page order among possible hugepage sizes, set to a proper value
57  * at boot time.
58  */
59 static unsigned int minimum_order __read_mostly = UINT_MAX;
60
61 __initdata LIST_HEAD(huge_boot_pages);
62
63 /* for command line parsing */
64 static struct hstate * __initdata parsed_hstate;
65 static unsigned long __initdata default_hstate_max_huge_pages;
66 static bool __initdata parsed_valid_hugepagesz = true;
67 static bool __initdata parsed_default_hugepagesz;
68
69 /*
70  * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
71  * free_huge_pages, and surplus_huge_pages.
72  */
73 DEFINE_SPINLOCK(hugetlb_lock);
74
75 /*
76  * Serializes faults on the same logical page.  This is used to
77  * prevent spurious OOMs when the hugepage pool is fully utilized.
78  */
79 static int num_fault_mutexes;
80 struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
81
82 /* Forward declaration */
83 static int hugetlb_acct_memory(struct hstate *h, long delta);
84
85 static inline bool subpool_is_free(struct hugepage_subpool *spool)
86 {
87         if (spool->count)
88                 return false;
89         if (spool->max_hpages != -1)
90                 return spool->used_hpages == 0;
91         if (spool->min_hpages != -1)
92                 return spool->rsv_hpages == spool->min_hpages;
93
94         return true;
95 }
96
97 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
98 {
99         spin_unlock(&spool->lock);
100
101         /* If no pages are used, and no other handles to the subpool
102          * remain, give up any reservations based on minimum size and
103          * free the subpool */
104         if (subpool_is_free(spool)) {
105                 if (spool->min_hpages != -1)
106                         hugetlb_acct_memory(spool->hstate,
107                                                 -spool->min_hpages);
108                 kfree(spool);
109         }
110 }
111
112 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
113                                                 long min_hpages)
114 {
115         struct hugepage_subpool *spool;
116
117         spool = kzalloc(sizeof(*spool), GFP_KERNEL);
118         if (!spool)
119                 return NULL;
120
121         spin_lock_init(&spool->lock);
122         spool->count = 1;
123         spool->max_hpages = max_hpages;
124         spool->hstate = h;
125         spool->min_hpages = min_hpages;
126
127         if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
128                 kfree(spool);
129                 return NULL;
130         }
131         spool->rsv_hpages = min_hpages;
132
133         return spool;
134 }
135
136 void hugepage_put_subpool(struct hugepage_subpool *spool)
137 {
138         spin_lock(&spool->lock);
139         BUG_ON(!spool->count);
140         spool->count--;
141         unlock_or_release_subpool(spool);
142 }
143
144 /*
145  * Subpool accounting for allocating and reserving pages.
146  * Return -ENOMEM if there are not enough resources to satisfy the
147  * request.  Otherwise, return the number of pages by which the
148  * global pools must be adjusted (upward).  The returned value may
149  * only be different than the passed value (delta) in the case where
150  * a subpool minimum size must be maintained.
151  */
152 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
153                                       long delta)
154 {
155         long ret = delta;
156
157         if (!spool)
158                 return ret;
159
160         spin_lock(&spool->lock);
161
162         if (spool->max_hpages != -1) {          /* maximum size accounting */
163                 if ((spool->used_hpages + delta) <= spool->max_hpages)
164                         spool->used_hpages += delta;
165                 else {
166                         ret = -ENOMEM;
167                         goto unlock_ret;
168                 }
169         }
170
171         /* minimum size accounting */
172         if (spool->min_hpages != -1 && spool->rsv_hpages) {
173                 if (delta > spool->rsv_hpages) {
174                         /*
175                          * Asking for more reserves than those already taken on
176                          * behalf of subpool.  Return difference.
177                          */
178                         ret = delta - spool->rsv_hpages;
179                         spool->rsv_hpages = 0;
180                 } else {
181                         ret = 0;        /* reserves already accounted for */
182                         spool->rsv_hpages -= delta;
183                 }
184         }
185
186 unlock_ret:
187         spin_unlock(&spool->lock);
188         return ret;
189 }
190
191 /*
192  * Subpool accounting for freeing and unreserving pages.
193  * Return the number of global page reservations that must be dropped.
194  * The return value may only be different than the passed value (delta)
195  * in the case where a subpool minimum size must be maintained.
196  */
197 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
198                                        long delta)
199 {
200         long ret = delta;
201
202         if (!spool)
203                 return delta;
204
205         spin_lock(&spool->lock);
206
207         if (spool->max_hpages != -1)            /* maximum size accounting */
208                 spool->used_hpages -= delta;
209
210          /* minimum size accounting */
211         if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
212                 if (spool->rsv_hpages + delta <= spool->min_hpages)
213                         ret = 0;
214                 else
215                         ret = spool->rsv_hpages + delta - spool->min_hpages;
216
217                 spool->rsv_hpages += delta;
218                 if (spool->rsv_hpages > spool->min_hpages)
219                         spool->rsv_hpages = spool->min_hpages;
220         }
221
222         /*
223          * If hugetlbfs_put_super couldn't free spool due to an outstanding
224          * quota reference, free it now.
225          */
226         unlock_or_release_subpool(spool);
227
228         return ret;
229 }
230
231 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
232 {
233         return HUGETLBFS_SB(inode->i_sb)->spool;
234 }
235
236 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
237 {
238         return subpool_inode(file_inode(vma->vm_file));
239 }
240
241 /* Helper that removes a struct file_region from the resv_map cache and returns
242  * it for use.
243  */
244 static struct file_region *
245 get_file_region_entry_from_cache(struct resv_map *resv, long from, long to)
246 {
247         struct file_region *nrg = NULL;
248
249         VM_BUG_ON(resv->region_cache_count <= 0);
250
251         resv->region_cache_count--;
252         nrg = list_first_entry(&resv->region_cache, struct file_region, link);
253         list_del(&nrg->link);
254
255         nrg->from = from;
256         nrg->to = to;
257
258         return nrg;
259 }
260
261 static void copy_hugetlb_cgroup_uncharge_info(struct file_region *nrg,
262                                               struct file_region *rg)
263 {
264 #ifdef CONFIG_CGROUP_HUGETLB
265         nrg->reservation_counter = rg->reservation_counter;
266         nrg->css = rg->css;
267         if (rg->css)
268                 css_get(rg->css);
269 #endif
270 }
271
272 /* Helper that records hugetlb_cgroup uncharge info. */
273 static void record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup *h_cg,
274                                                 struct hstate *h,
275                                                 struct resv_map *resv,
276                                                 struct file_region *nrg)
277 {
278 #ifdef CONFIG_CGROUP_HUGETLB
279         if (h_cg) {
280                 nrg->reservation_counter =
281                         &h_cg->rsvd_hugepage[hstate_index(h)];
282                 nrg->css = &h_cg->css;
283                 /*
284                  * The caller will hold exactly one h_cg->css reference for the
285                  * whole contiguous reservation region. But this area might be
286                  * scattered when there are already some file_regions reside in
287                  * it. As a result, many file_regions may share only one css
288                  * reference. In order to ensure that one file_region must hold
289                  * exactly one h_cg->css reference, we should do css_get for
290                  * each file_region and leave the reference held by caller
291                  * untouched.
292                  */
293                 css_get(&h_cg->css);
294                 if (!resv->pages_per_hpage)
295                         resv->pages_per_hpage = pages_per_huge_page(h);
296                 /* pages_per_hpage should be the same for all entries in
297                  * a resv_map.
298                  */
299                 VM_BUG_ON(resv->pages_per_hpage != pages_per_huge_page(h));
300         } else {
301                 nrg->reservation_counter = NULL;
302                 nrg->css = NULL;
303         }
304 #endif
305 }
306
307 static void put_uncharge_info(struct file_region *rg)
308 {
309 #ifdef CONFIG_CGROUP_HUGETLB
310         if (rg->css)
311                 css_put(rg->css);
312 #endif
313 }
314
315 static bool has_same_uncharge_info(struct file_region *rg,
316                                    struct file_region *org)
317 {
318 #ifdef CONFIG_CGROUP_HUGETLB
319         return rg && org &&
320                rg->reservation_counter == org->reservation_counter &&
321                rg->css == org->css;
322
323 #else
324         return true;
325 #endif
326 }
327
328 static void coalesce_file_region(struct resv_map *resv, struct file_region *rg)
329 {
330         struct file_region *nrg = NULL, *prg = NULL;
331
332         prg = list_prev_entry(rg, link);
333         if (&prg->link != &resv->regions && prg->to == rg->from &&
334             has_same_uncharge_info(prg, rg)) {
335                 prg->to = rg->to;
336
337                 list_del(&rg->link);
338                 put_uncharge_info(rg);
339                 kfree(rg);
340
341                 rg = prg;
342         }
343
344         nrg = list_next_entry(rg, link);
345         if (&nrg->link != &resv->regions && nrg->from == rg->to &&
346             has_same_uncharge_info(nrg, rg)) {
347                 nrg->from = rg->from;
348
349                 list_del(&rg->link);
350                 put_uncharge_info(rg);
351                 kfree(rg);
352         }
353 }
354
355 static inline long
356 hugetlb_resv_map_add(struct resv_map *map, struct file_region *rg, long from,
357                      long to, struct hstate *h, struct hugetlb_cgroup *cg,
358                      long *regions_needed)
359 {
360         struct file_region *nrg;
361
362         if (!regions_needed) {
363                 nrg = get_file_region_entry_from_cache(map, from, to);
364                 record_hugetlb_cgroup_uncharge_info(cg, h, map, nrg);
365                 list_add(&nrg->link, rg->link.prev);
366                 coalesce_file_region(map, nrg);
367         } else
368                 *regions_needed += 1;
369
370         return to - from;
371 }
372
373 /*
374  * Must be called with resv->lock held.
375  *
376  * Calling this with regions_needed != NULL will count the number of pages
377  * to be added but will not modify the linked list. And regions_needed will
378  * indicate the number of file_regions needed in the cache to carry out to add
379  * the regions for this range.
380  */
381 static long add_reservation_in_range(struct resv_map *resv, long f, long t,
382                                      struct hugetlb_cgroup *h_cg,
383                                      struct hstate *h, long *regions_needed)
384 {
385         long add = 0;
386         struct list_head *head = &resv->regions;
387         long last_accounted_offset = f;
388         struct file_region *rg = NULL, *trg = NULL;
389
390         if (regions_needed)
391                 *regions_needed = 0;
392
393         /* In this loop, we essentially handle an entry for the range
394          * [last_accounted_offset, rg->from), at every iteration, with some
395          * bounds checking.
396          */
397         list_for_each_entry_safe(rg, trg, head, link) {
398                 /* Skip irrelevant regions that start before our range. */
399                 if (rg->from < f) {
400                         /* If this region ends after the last accounted offset,
401                          * then we need to update last_accounted_offset.
402                          */
403                         if (rg->to > last_accounted_offset)
404                                 last_accounted_offset = rg->to;
405                         continue;
406                 }
407
408                 /* When we find a region that starts beyond our range, we've
409                  * finished.
410                  */
411                 if (rg->from >= t)
412                         break;
413
414                 /* Add an entry for last_accounted_offset -> rg->from, and
415                  * update last_accounted_offset.
416                  */
417                 if (rg->from > last_accounted_offset)
418                         add += hugetlb_resv_map_add(resv, rg,
419                                                     last_accounted_offset,
420                                                     rg->from, h, h_cg,
421                                                     regions_needed);
422
423                 last_accounted_offset = rg->to;
424         }
425
426         /* Handle the case where our range extends beyond
427          * last_accounted_offset.
428          */
429         if (last_accounted_offset < t)
430                 add += hugetlb_resv_map_add(resv, rg, last_accounted_offset,
431                                             t, h, h_cg, regions_needed);
432
433         VM_BUG_ON(add < 0);
434         return add;
435 }
436
437 /* Must be called with resv->lock acquired. Will drop lock to allocate entries.
438  */
439 static int allocate_file_region_entries(struct resv_map *resv,
440                                         int regions_needed)
441         __must_hold(&resv->lock)
442 {
443         struct list_head allocated_regions;
444         int to_allocate = 0, i = 0;
445         struct file_region *trg = NULL, *rg = NULL;
446
447         VM_BUG_ON(regions_needed < 0);
448
449         INIT_LIST_HEAD(&allocated_regions);
450
451         /*
452          * Check for sufficient descriptors in the cache to accommodate
453          * the number of in progress add operations plus regions_needed.
454          *
455          * This is a while loop because when we drop the lock, some other call
456          * to region_add or region_del may have consumed some region_entries,
457          * so we keep looping here until we finally have enough entries for
458          * (adds_in_progress + regions_needed).
459          */
460         while (resv->region_cache_count <
461                (resv->adds_in_progress + regions_needed)) {
462                 to_allocate = resv->adds_in_progress + regions_needed -
463                               resv->region_cache_count;
464
465                 /* At this point, we should have enough entries in the cache
466                  * for all the existings adds_in_progress. We should only be
467                  * needing to allocate for regions_needed.
468                  */
469                 VM_BUG_ON(resv->region_cache_count < resv->adds_in_progress);
470
471                 spin_unlock(&resv->lock);
472                 for (i = 0; i < to_allocate; i++) {
473                         trg = kmalloc(sizeof(*trg), GFP_KERNEL);
474                         if (!trg)
475                                 goto out_of_memory;
476                         list_add(&trg->link, &allocated_regions);
477                 }
478
479                 spin_lock(&resv->lock);
480
481                 list_splice(&allocated_regions, &resv->region_cache);
482                 resv->region_cache_count += to_allocate;
483         }
484
485         return 0;
486
487 out_of_memory:
488         list_for_each_entry_safe(rg, trg, &allocated_regions, link) {
489                 list_del(&rg->link);
490                 kfree(rg);
491         }
492         return -ENOMEM;
493 }
494
495 /*
496  * Add the huge page range represented by [f, t) to the reserve
497  * map.  Regions will be taken from the cache to fill in this range.
498  * Sufficient regions should exist in the cache due to the previous
499  * call to region_chg with the same range, but in some cases the cache will not
500  * have sufficient entries due to races with other code doing region_add or
501  * region_del.  The extra needed entries will be allocated.
502  *
503  * regions_needed is the out value provided by a previous call to region_chg.
504  *
505  * Return the number of new huge pages added to the map.  This number is greater
506  * than or equal to zero.  If file_region entries needed to be allocated for
507  * this operation and we were not able to allocate, it returns -ENOMEM.
508  * region_add of regions of length 1 never allocate file_regions and cannot
509  * fail; region_chg will always allocate at least 1 entry and a region_add for
510  * 1 page will only require at most 1 entry.
511  */
512 static long region_add(struct resv_map *resv, long f, long t,
513                        long in_regions_needed, struct hstate *h,
514                        struct hugetlb_cgroup *h_cg)
515 {
516         long add = 0, actual_regions_needed = 0;
517
518         spin_lock(&resv->lock);
519 retry:
520
521         /* Count how many regions are actually needed to execute this add. */
522         add_reservation_in_range(resv, f, t, NULL, NULL,
523                                  &actual_regions_needed);
524
525         /*
526          * Check for sufficient descriptors in the cache to accommodate
527          * this add operation. Note that actual_regions_needed may be greater
528          * than in_regions_needed, as the resv_map may have been modified since
529          * the region_chg call. In this case, we need to make sure that we
530          * allocate extra entries, such that we have enough for all the
531          * existing adds_in_progress, plus the excess needed for this
532          * operation.
533          */
534         if (actual_regions_needed > in_regions_needed &&
535             resv->region_cache_count <
536                     resv->adds_in_progress +
537                             (actual_regions_needed - in_regions_needed)) {
538                 /* region_add operation of range 1 should never need to
539                  * allocate file_region entries.
540                  */
541                 VM_BUG_ON(t - f <= 1);
542
543                 if (allocate_file_region_entries(
544                             resv, actual_regions_needed - in_regions_needed)) {
545                         return -ENOMEM;
546                 }
547
548                 goto retry;
549         }
550
551         add = add_reservation_in_range(resv, f, t, h_cg, h, NULL);
552
553         resv->adds_in_progress -= in_regions_needed;
554
555         spin_unlock(&resv->lock);
556         return add;
557 }
558
559 /*
560  * Examine the existing reserve map and determine how many
561  * huge pages in the specified range [f, t) are NOT currently
562  * represented.  This routine is called before a subsequent
563  * call to region_add that will actually modify the reserve
564  * map to add the specified range [f, t).  region_chg does
565  * not change the number of huge pages represented by the
566  * map.  A number of new file_region structures is added to the cache as a
567  * placeholder, for the subsequent region_add call to use. At least 1
568  * file_region structure is added.
569  *
570  * out_regions_needed is the number of regions added to the
571  * resv->adds_in_progress.  This value needs to be provided to a follow up call
572  * to region_add or region_abort for proper accounting.
573  *
574  * Returns the number of huge pages that need to be added to the existing
575  * reservation map for the range [f, t).  This number is greater or equal to
576  * zero.  -ENOMEM is returned if a new file_region structure or cache entry
577  * is needed and can not be allocated.
578  */
579 static long region_chg(struct resv_map *resv, long f, long t,
580                        long *out_regions_needed)
581 {
582         long chg = 0;
583
584         spin_lock(&resv->lock);
585
586         /* Count how many hugepages in this range are NOT represented. */
587         chg = add_reservation_in_range(resv, f, t, NULL, NULL,
588                                        out_regions_needed);
589
590         if (*out_regions_needed == 0)
591                 *out_regions_needed = 1;
592
593         if (allocate_file_region_entries(resv, *out_regions_needed))
594                 return -ENOMEM;
595
596         resv->adds_in_progress += *out_regions_needed;
597
598         spin_unlock(&resv->lock);
599         return chg;
600 }
601
602 /*
603  * Abort the in progress add operation.  The adds_in_progress field
604  * of the resv_map keeps track of the operations in progress between
605  * calls to region_chg and region_add.  Operations are sometimes
606  * aborted after the call to region_chg.  In such cases, region_abort
607  * is called to decrement the adds_in_progress counter. regions_needed
608  * is the value returned by the region_chg call, it is used to decrement
609  * the adds_in_progress counter.
610  *
611  * NOTE: The range arguments [f, t) are not needed or used in this
612  * routine.  They are kept to make reading the calling code easier as
613  * arguments will match the associated region_chg call.
614  */
615 static void region_abort(struct resv_map *resv, long f, long t,
616                          long regions_needed)
617 {
618         spin_lock(&resv->lock);
619         VM_BUG_ON(!resv->region_cache_count);
620         resv->adds_in_progress -= regions_needed;
621         spin_unlock(&resv->lock);
622 }
623
624 /*
625  * Delete the specified range [f, t) from the reserve map.  If the
626  * t parameter is LONG_MAX, this indicates that ALL regions after f
627  * should be deleted.  Locate the regions which intersect [f, t)
628  * and either trim, delete or split the existing regions.
629  *
630  * Returns the number of huge pages deleted from the reserve map.
631  * In the normal case, the return value is zero or more.  In the
632  * case where a region must be split, a new region descriptor must
633  * be allocated.  If the allocation fails, -ENOMEM will be returned.
634  * NOTE: If the parameter t == LONG_MAX, then we will never split
635  * a region and possibly return -ENOMEM.  Callers specifying
636  * t == LONG_MAX do not need to check for -ENOMEM error.
637  */
638 static long region_del(struct resv_map *resv, long f, long t)
639 {
640         struct list_head *head = &resv->regions;
641         struct file_region *rg, *trg;
642         struct file_region *nrg = NULL;
643         long del = 0;
644
645 retry:
646         spin_lock(&resv->lock);
647         list_for_each_entry_safe(rg, trg, head, link) {
648                 /*
649                  * Skip regions before the range to be deleted.  file_region
650                  * ranges are normally of the form [from, to).  However, there
651                  * may be a "placeholder" entry in the map which is of the form
652                  * (from, to) with from == to.  Check for placeholder entries
653                  * at the beginning of the range to be deleted.
654                  */
655                 if (rg->to <= f && (rg->to != rg->from || rg->to != f))
656                         continue;
657
658                 if (rg->from >= t)
659                         break;
660
661                 if (f > rg->from && t < rg->to) { /* Must split region */
662                         /*
663                          * Check for an entry in the cache before dropping
664                          * lock and attempting allocation.
665                          */
666                         if (!nrg &&
667                             resv->region_cache_count > resv->adds_in_progress) {
668                                 nrg = list_first_entry(&resv->region_cache,
669                                                         struct file_region,
670                                                         link);
671                                 list_del(&nrg->link);
672                                 resv->region_cache_count--;
673                         }
674
675                         if (!nrg) {
676                                 spin_unlock(&resv->lock);
677                                 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
678                                 if (!nrg)
679                                         return -ENOMEM;
680                                 goto retry;
681                         }
682
683                         del += t - f;
684                         hugetlb_cgroup_uncharge_file_region(
685                                 resv, rg, t - f, false);
686
687                         /* New entry for end of split region */
688                         nrg->from = t;
689                         nrg->to = rg->to;
690
691                         copy_hugetlb_cgroup_uncharge_info(nrg, rg);
692
693                         INIT_LIST_HEAD(&nrg->link);
694
695                         /* Original entry is trimmed */
696                         rg->to = f;
697
698                         list_add(&nrg->link, &rg->link);
699                         nrg = NULL;
700                         break;
701                 }
702
703                 if (f <= rg->from && t >= rg->to) { /* Remove entire region */
704                         del += rg->to - rg->from;
705                         hugetlb_cgroup_uncharge_file_region(resv, rg,
706                                                             rg->to - rg->from, true);
707                         list_del(&rg->link);
708                         kfree(rg);
709                         continue;
710                 }
711
712                 if (f <= rg->from) {    /* Trim beginning of region */
713                         hugetlb_cgroup_uncharge_file_region(resv, rg,
714                                                             t - rg->from, false);
715
716                         del += t - rg->from;
717                         rg->from = t;
718                 } else {                /* Trim end of region */
719                         hugetlb_cgroup_uncharge_file_region(resv, rg,
720                                                             rg->to - f, false);
721
722                         del += rg->to - f;
723                         rg->to = f;
724                 }
725         }
726
727         spin_unlock(&resv->lock);
728         kfree(nrg);
729         return del;
730 }
731
732 /*
733  * A rare out of memory error was encountered which prevented removal of
734  * the reserve map region for a page.  The huge page itself was free'ed
735  * and removed from the page cache.  This routine will adjust the subpool
736  * usage count, and the global reserve count if needed.  By incrementing
737  * these counts, the reserve map entry which could not be deleted will
738  * appear as a "reserved" entry instead of simply dangling with incorrect
739  * counts.
740  */
741 void hugetlb_fix_reserve_counts(struct inode *inode)
742 {
743         struct hugepage_subpool *spool = subpool_inode(inode);
744         long rsv_adjust;
745         bool reserved = false;
746
747         rsv_adjust = hugepage_subpool_get_pages(spool, 1);
748         if (rsv_adjust > 0) {
749                 struct hstate *h = hstate_inode(inode);
750
751                 if (!hugetlb_acct_memory(h, 1))
752                         reserved = true;
753         } else if (!rsv_adjust) {
754                 reserved = true;
755         }
756
757         if (!reserved)
758                 pr_warn("hugetlb: Huge Page Reserved count may go negative.\n");
759 }
760
761 /*
762  * Count and return the number of huge pages in the reserve map
763  * that intersect with the range [f, t).
764  */
765 static long region_count(struct resv_map *resv, long f, long t)
766 {
767         struct list_head *head = &resv->regions;
768         struct file_region *rg;
769         long chg = 0;
770
771         spin_lock(&resv->lock);
772         /* Locate each segment we overlap with, and count that overlap. */
773         list_for_each_entry(rg, head, link) {
774                 long seg_from;
775                 long seg_to;
776
777                 if (rg->to <= f)
778                         continue;
779                 if (rg->from >= t)
780                         break;
781
782                 seg_from = max(rg->from, f);
783                 seg_to = min(rg->to, t);
784
785                 chg += seg_to - seg_from;
786         }
787         spin_unlock(&resv->lock);
788
789         return chg;
790 }
791
792 /*
793  * Convert the address within this vma to the page offset within
794  * the mapping, in pagecache page units; huge pages here.
795  */
796 static pgoff_t vma_hugecache_offset(struct hstate *h,
797                         struct vm_area_struct *vma, unsigned long address)
798 {
799         return ((address - vma->vm_start) >> huge_page_shift(h)) +
800                         (vma->vm_pgoff >> huge_page_order(h));
801 }
802
803 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
804                                      unsigned long address)
805 {
806         return vma_hugecache_offset(hstate_vma(vma), vma, address);
807 }
808 EXPORT_SYMBOL_GPL(linear_hugepage_index);
809
810 /*
811  * Return the size of the pages allocated when backing a VMA. In the majority
812  * cases this will be same size as used by the page table entries.
813  */
814 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
815 {
816         if (vma->vm_ops && vma->vm_ops->pagesize)
817                 return vma->vm_ops->pagesize(vma);
818         return PAGE_SIZE;
819 }
820 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
821
822 /*
823  * Return the page size being used by the MMU to back a VMA. In the majority
824  * of cases, the page size used by the kernel matches the MMU size. On
825  * architectures where it differs, an architecture-specific 'strong'
826  * version of this symbol is required.
827  */
828 __weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
829 {
830         return vma_kernel_pagesize(vma);
831 }
832
833 /*
834  * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
835  * bits of the reservation map pointer, which are always clear due to
836  * alignment.
837  */
838 #define HPAGE_RESV_OWNER    (1UL << 0)
839 #define HPAGE_RESV_UNMAPPED (1UL << 1)
840 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
841
842 /*
843  * These helpers are used to track how many pages are reserved for
844  * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
845  * is guaranteed to have their future faults succeed.
846  *
847  * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
848  * the reserve counters are updated with the hugetlb_lock held. It is safe
849  * to reset the VMA at fork() time as it is not in use yet and there is no
850  * chance of the global counters getting corrupted as a result of the values.
851  *
852  * The private mapping reservation is represented in a subtly different
853  * manner to a shared mapping.  A shared mapping has a region map associated
854  * with the underlying file, this region map represents the backing file
855  * pages which have ever had a reservation assigned which this persists even
856  * after the page is instantiated.  A private mapping has a region map
857  * associated with the original mmap which is attached to all VMAs which
858  * reference it, this region map represents those offsets which have consumed
859  * reservation ie. where pages have been instantiated.
860  */
861 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
862 {
863         return (unsigned long)vma->vm_private_data;
864 }
865
866 static void set_vma_private_data(struct vm_area_struct *vma,
867                                                         unsigned long value)
868 {
869         vma->vm_private_data = (void *)value;
870 }
871
872 static void
873 resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map *resv_map,
874                                           struct hugetlb_cgroup *h_cg,
875                                           struct hstate *h)
876 {
877 #ifdef CONFIG_CGROUP_HUGETLB
878         if (!h_cg || !h) {
879                 resv_map->reservation_counter = NULL;
880                 resv_map->pages_per_hpage = 0;
881                 resv_map->css = NULL;
882         } else {
883                 resv_map->reservation_counter =
884                         &h_cg->rsvd_hugepage[hstate_index(h)];
885                 resv_map->pages_per_hpage = pages_per_huge_page(h);
886                 resv_map->css = &h_cg->css;
887         }
888 #endif
889 }
890
891 struct resv_map *resv_map_alloc(void)
892 {
893         struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
894         struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
895
896         if (!resv_map || !rg) {
897                 kfree(resv_map);
898                 kfree(rg);
899                 return NULL;
900         }
901
902         kref_init(&resv_map->refs);
903         spin_lock_init(&resv_map->lock);
904         INIT_LIST_HEAD(&resv_map->regions);
905
906         resv_map->adds_in_progress = 0;
907         /*
908          * Initialize these to 0. On shared mappings, 0's here indicate these
909          * fields don't do cgroup accounting. On private mappings, these will be
910          * re-initialized to the proper values, to indicate that hugetlb cgroup
911          * reservations are to be un-charged from here.
912          */
913         resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, NULL, NULL);
914
915         INIT_LIST_HEAD(&resv_map->region_cache);
916         list_add(&rg->link, &resv_map->region_cache);
917         resv_map->region_cache_count = 1;
918
919         return resv_map;
920 }
921
922 void resv_map_release(struct kref *ref)
923 {
924         struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
925         struct list_head *head = &resv_map->region_cache;
926         struct file_region *rg, *trg;
927
928         /* Clear out any active regions before we release the map. */
929         region_del(resv_map, 0, LONG_MAX);
930
931         /* ... and any entries left in the cache */
932         list_for_each_entry_safe(rg, trg, head, link) {
933                 list_del(&rg->link);
934                 kfree(rg);
935         }
936
937         VM_BUG_ON(resv_map->adds_in_progress);
938
939         kfree(resv_map);
940 }
941
942 static inline struct resv_map *inode_resv_map(struct inode *inode)
943 {
944         /*
945          * At inode evict time, i_mapping may not point to the original
946          * address space within the inode.  This original address space
947          * contains the pointer to the resv_map.  So, always use the
948          * address space embedded within the inode.
949          * The VERY common case is inode->mapping == &inode->i_data but,
950          * this may not be true for device special inodes.
951          */
952         return (struct resv_map *)(&inode->i_data)->private_data;
953 }
954
955 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
956 {
957         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
958         if (vma->vm_flags & VM_MAYSHARE) {
959                 struct address_space *mapping = vma->vm_file->f_mapping;
960                 struct inode *inode = mapping->host;
961
962                 return inode_resv_map(inode);
963
964         } else {
965                 return (struct resv_map *)(get_vma_private_data(vma) &
966                                                         ~HPAGE_RESV_MASK);
967         }
968 }
969
970 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
971 {
972         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
973         VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
974
975         set_vma_private_data(vma, (get_vma_private_data(vma) &
976                                 HPAGE_RESV_MASK) | (unsigned long)map);
977 }
978
979 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
980 {
981         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
982         VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
983
984         set_vma_private_data(vma, get_vma_private_data(vma) | flags);
985 }
986
987 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
988 {
989         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
990
991         return (get_vma_private_data(vma) & flag) != 0;
992 }
993
994 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
995 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
996 {
997         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
998         if (!(vma->vm_flags & VM_MAYSHARE))
999                 vma->vm_private_data = (void *)0;
1000 }
1001
1002 /* Returns true if the VMA has associated reserve pages */
1003 static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
1004 {
1005         if (vma->vm_flags & VM_NORESERVE) {
1006                 /*
1007                  * This address is already reserved by other process(chg == 0),
1008                  * so, we should decrement reserved count. Without decrementing,
1009                  * reserve count remains after releasing inode, because this
1010                  * allocated page will go into page cache and is regarded as
1011                  * coming from reserved pool in releasing step.  Currently, we
1012                  * don't have any other solution to deal with this situation
1013                  * properly, so add work-around here.
1014                  */
1015                 if (vma->vm_flags & VM_MAYSHARE && chg == 0)
1016                         return true;
1017                 else
1018                         return false;
1019         }
1020
1021         /* Shared mappings always use reserves */
1022         if (vma->vm_flags & VM_MAYSHARE) {
1023                 /*
1024                  * We know VM_NORESERVE is not set.  Therefore, there SHOULD
1025                  * be a region map for all pages.  The only situation where
1026                  * there is no region map is if a hole was punched via
1027                  * fallocate.  In this case, there really are no reserves to
1028                  * use.  This situation is indicated if chg != 0.
1029                  */
1030                 if (chg)
1031                         return false;
1032                 else
1033                         return true;
1034         }
1035
1036         /*
1037          * Only the process that called mmap() has reserves for
1038          * private mappings.
1039          */
1040         if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1041                 /*
1042                  * Like the shared case above, a hole punch or truncate
1043                  * could have been performed on the private mapping.
1044                  * Examine the value of chg to determine if reserves
1045                  * actually exist or were previously consumed.
1046                  * Very Subtle - The value of chg comes from a previous
1047                  * call to vma_needs_reserves().  The reserve map for
1048                  * private mappings has different (opposite) semantics
1049                  * than that of shared mappings.  vma_needs_reserves()
1050                  * has already taken this difference in semantics into
1051                  * account.  Therefore, the meaning of chg is the same
1052                  * as in the shared case above.  Code could easily be
1053                  * combined, but keeping it separate draws attention to
1054                  * subtle differences.
1055                  */
1056                 if (chg)
1057                         return false;
1058                 else
1059                         return true;
1060         }
1061
1062         return false;
1063 }
1064
1065 static void enqueue_huge_page(struct hstate *h, struct page *page)
1066 {
1067         int nid = page_to_nid(page);
1068         list_move(&page->lru, &h->hugepage_freelists[nid]);
1069         h->free_huge_pages++;
1070         h->free_huge_pages_node[nid]++;
1071         SetHPageFreed(page);
1072 }
1073
1074 static struct page *dequeue_huge_page_node_exact(struct hstate *h, int nid)
1075 {
1076         struct page *page;
1077         bool nocma = !!(current->flags & PF_MEMALLOC_NOCMA);
1078
1079         list_for_each_entry(page, &h->hugepage_freelists[nid], lru) {
1080                 if (nocma && is_migrate_cma_page(page))
1081                         continue;
1082
1083                 if (PageHWPoison(page))
1084                         continue;
1085
1086                 list_move(&page->lru, &h->hugepage_activelist);
1087                 set_page_refcounted(page);
1088                 ClearHPageFreed(page);
1089                 h->free_huge_pages--;
1090                 h->free_huge_pages_node[nid]--;
1091                 return page;
1092         }
1093
1094         return NULL;
1095 }
1096
1097 static struct page *dequeue_huge_page_nodemask(struct hstate *h, gfp_t gfp_mask, int nid,
1098                 nodemask_t *nmask)
1099 {
1100         unsigned int cpuset_mems_cookie;
1101         struct zonelist *zonelist;
1102         struct zone *zone;
1103         struct zoneref *z;
1104         int node = NUMA_NO_NODE;
1105
1106         zonelist = node_zonelist(nid, gfp_mask);
1107
1108 retry_cpuset:
1109         cpuset_mems_cookie = read_mems_allowed_begin();
1110         for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
1111                 struct page *page;
1112
1113                 if (!cpuset_zone_allowed(zone, gfp_mask))
1114                         continue;
1115                 /*
1116                  * no need to ask again on the same node. Pool is node rather than
1117                  * zone aware
1118                  */
1119                 if (zone_to_nid(zone) == node)
1120                         continue;
1121                 node = zone_to_nid(zone);
1122
1123                 page = dequeue_huge_page_node_exact(h, node);
1124                 if (page)
1125                         return page;
1126         }
1127         if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
1128                 goto retry_cpuset;
1129
1130         return NULL;
1131 }
1132
1133 static struct page *dequeue_huge_page_vma(struct hstate *h,
1134                                 struct vm_area_struct *vma,
1135                                 unsigned long address, int avoid_reserve,
1136                                 long chg)
1137 {
1138         struct page *page;
1139         struct mempolicy *mpol;
1140         gfp_t gfp_mask;
1141         nodemask_t *nodemask;
1142         int nid;
1143
1144         /*
1145          * A child process with MAP_PRIVATE mappings created by their parent
1146          * have no page reserves. This check ensures that reservations are
1147          * not "stolen". The child may still get SIGKILLed
1148          */
1149         if (!vma_has_reserves(vma, chg) &&
1150                         h->free_huge_pages - h->resv_huge_pages == 0)
1151                 goto err;
1152
1153         /* If reserves cannot be used, ensure enough pages are in the pool */
1154         if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
1155                 goto err;
1156
1157         gfp_mask = htlb_alloc_mask(h);
1158         nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
1159         page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
1160         if (page && !avoid_reserve && vma_has_reserves(vma, chg)) {
1161                 SetHPageRestoreReserve(page);
1162                 h->resv_huge_pages--;
1163         }
1164
1165         mpol_cond_put(mpol);
1166         return page;
1167
1168 err:
1169         return NULL;
1170 }
1171
1172 /*
1173  * common helper functions for hstate_next_node_to_{alloc|free}.
1174  * We may have allocated or freed a huge page based on a different
1175  * nodes_allowed previously, so h->next_node_to_{alloc|free} might
1176  * be outside of *nodes_allowed.  Ensure that we use an allowed
1177  * node for alloc or free.
1178  */
1179 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
1180 {
1181         nid = next_node_in(nid, *nodes_allowed);
1182         VM_BUG_ON(nid >= MAX_NUMNODES);
1183
1184         return nid;
1185 }
1186
1187 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
1188 {
1189         if (!node_isset(nid, *nodes_allowed))
1190                 nid = next_node_allowed(nid, nodes_allowed);
1191         return nid;
1192 }
1193
1194 /*
1195  * returns the previously saved node ["this node"] from which to
1196  * allocate a persistent huge page for the pool and advance the
1197  * next node from which to allocate, handling wrap at end of node
1198  * mask.
1199  */
1200 static int hstate_next_node_to_alloc(struct hstate *h,
1201                                         nodemask_t *nodes_allowed)
1202 {
1203         int nid;
1204
1205         VM_BUG_ON(!nodes_allowed);
1206
1207         nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
1208         h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
1209
1210         return nid;
1211 }
1212
1213 /*
1214  * helper for remove_pool_huge_page() - return the previously saved
1215  * node ["this node"] from which to free a huge page.  Advance the
1216  * next node id whether or not we find a free huge page to free so
1217  * that the next attempt to free addresses the next node.
1218  */
1219 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1220 {
1221         int nid;
1222
1223         VM_BUG_ON(!nodes_allowed);
1224
1225         nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1226         h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1227
1228         return nid;
1229 }
1230
1231 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask)           \
1232         for (nr_nodes = nodes_weight(*mask);                            \
1233                 nr_nodes > 0 &&                                         \
1234                 ((node = hstate_next_node_to_alloc(hs, mask)) || 1);    \
1235                 nr_nodes--)
1236
1237 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask)            \
1238         for (nr_nodes = nodes_weight(*mask);                            \
1239                 nr_nodes > 0 &&                                         \
1240                 ((node = hstate_next_node_to_free(hs, mask)) || 1);     \
1241                 nr_nodes--)
1242
1243 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
1244 static void destroy_compound_gigantic_page(struct page *page,
1245                                         unsigned int order)
1246 {
1247         int i;
1248         int nr_pages = 1 << order;
1249         struct page *p = page + 1;
1250
1251         atomic_set(compound_mapcount_ptr(page), 0);
1252         atomic_set(compound_pincount_ptr(page), 0);
1253
1254         for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1255                 clear_compound_head(p);
1256                 set_page_refcounted(p);
1257         }
1258
1259         set_compound_order(page, 0);
1260         page[1].compound_nr = 0;
1261         __ClearPageHead(page);
1262 }
1263
1264 static void free_gigantic_page(struct page *page, unsigned int order)
1265 {
1266         /*
1267          * If the page isn't allocated using the cma allocator,
1268          * cma_release() returns false.
1269          */
1270 #ifdef CONFIG_CMA
1271         if (cma_release(hugetlb_cma[page_to_nid(page)], page, 1 << order))
1272                 return;
1273 #endif
1274
1275         free_contig_range(page_to_pfn(page), 1 << order);
1276 }
1277
1278 #ifdef CONFIG_CONTIG_ALLOC
1279 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1280                 int nid, nodemask_t *nodemask)
1281 {
1282         unsigned long nr_pages = pages_per_huge_page(h);
1283         if (nid == NUMA_NO_NODE)
1284                 nid = numa_mem_id();
1285
1286 #ifdef CONFIG_CMA
1287         {
1288                 struct page *page;
1289                 int node;
1290
1291                 if (hugetlb_cma[nid]) {
1292                         page = cma_alloc(hugetlb_cma[nid], nr_pages,
1293                                         huge_page_order(h), true);
1294                         if (page)
1295                                 return page;
1296                 }
1297
1298                 if (!(gfp_mask & __GFP_THISNODE)) {
1299                         for_each_node_mask(node, *nodemask) {
1300                                 if (node == nid || !hugetlb_cma[node])
1301                                         continue;
1302
1303                                 page = cma_alloc(hugetlb_cma[node], nr_pages,
1304                                                 huge_page_order(h), true);
1305                                 if (page)
1306                                         return page;
1307                         }
1308                 }
1309         }
1310 #endif
1311
1312         return alloc_contig_pages(nr_pages, gfp_mask, nid, nodemask);
1313 }
1314
1315 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid);
1316 static void prep_compound_gigantic_page(struct page *page, unsigned int order);
1317 #else /* !CONFIG_CONTIG_ALLOC */
1318 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1319                                         int nid, nodemask_t *nodemask)
1320 {
1321         return NULL;
1322 }
1323 #endif /* CONFIG_CONTIG_ALLOC */
1324
1325 #else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
1326 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1327                                         int nid, nodemask_t *nodemask)
1328 {
1329         return NULL;
1330 }
1331 static inline void free_gigantic_page(struct page *page, unsigned int order) { }
1332 static inline void destroy_compound_gigantic_page(struct page *page,
1333                                                 unsigned int order) { }
1334 #endif
1335
1336 /*
1337  * Remove hugetlb page from lists, and update dtor so that page appears
1338  * as just a compound page.  A reference is held on the page.
1339  *
1340  * Must be called with hugetlb lock held.
1341  */
1342 static void remove_hugetlb_page(struct hstate *h, struct page *page,
1343                                                         bool adjust_surplus)
1344 {
1345         int nid = page_to_nid(page);
1346
1347         VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
1348         VM_BUG_ON_PAGE(hugetlb_cgroup_from_page_rsvd(page), page);
1349
1350         if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1351                 return;
1352
1353         list_del(&page->lru);
1354
1355         if (HPageFreed(page)) {
1356                 h->free_huge_pages--;
1357                 h->free_huge_pages_node[nid]--;
1358         }
1359         if (adjust_surplus) {
1360                 h->surplus_huge_pages--;
1361                 h->surplus_huge_pages_node[nid]--;
1362         }
1363
1364         set_page_refcounted(page);
1365         set_compound_page_dtor(page, NULL_COMPOUND_DTOR);
1366
1367         h->nr_huge_pages--;
1368         h->nr_huge_pages_node[nid]--;
1369 }
1370
1371 static void update_and_free_page(struct hstate *h, struct page *page)
1372 {
1373         int i;
1374         struct page *subpage = page;
1375
1376         if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1377                 return;
1378
1379         for (i = 0; i < pages_per_huge_page(h);
1380              i++, subpage = mem_map_next(subpage, page, i)) {
1381                 subpage->flags &= ~(1 << PG_locked | 1 << PG_error |
1382                                 1 << PG_referenced | 1 << PG_dirty |
1383                                 1 << PG_active | 1 << PG_private |
1384                                 1 << PG_writeback);
1385         }
1386         if (hstate_is_gigantic(h)) {
1387                 destroy_compound_gigantic_page(page, huge_page_order(h));
1388                 free_gigantic_page(page, huge_page_order(h));
1389         } else {
1390                 __free_pages(page, huge_page_order(h));
1391         }
1392 }
1393
1394 static void update_and_free_pages_bulk(struct hstate *h, struct list_head *list)
1395 {
1396         struct page *page, *t_page;
1397
1398         list_for_each_entry_safe(page, t_page, list, lru) {
1399                 update_and_free_page(h, page);
1400                 cond_resched();
1401         }
1402 }
1403
1404 struct hstate *size_to_hstate(unsigned long size)
1405 {
1406         struct hstate *h;
1407
1408         for_each_hstate(h) {
1409                 if (huge_page_size(h) == size)
1410                         return h;
1411         }
1412         return NULL;
1413 }
1414
1415 static void __free_huge_page(struct page *page)
1416 {
1417         /*
1418          * Can't pass hstate in here because it is called from the
1419          * compound page destructor.
1420          */
1421         struct hstate *h = page_hstate(page);
1422         int nid = page_to_nid(page);
1423         struct hugepage_subpool *spool = hugetlb_page_subpool(page);
1424         bool restore_reserve;
1425
1426         VM_BUG_ON_PAGE(page_count(page), page);
1427         VM_BUG_ON_PAGE(page_mapcount(page), page);
1428
1429         hugetlb_set_page_subpool(page, NULL);
1430         page->mapping = NULL;
1431         restore_reserve = HPageRestoreReserve(page);
1432         ClearHPageRestoreReserve(page);
1433
1434         /*
1435          * If HPageRestoreReserve was set on page, page allocation consumed a
1436          * reservation.  If the page was associated with a subpool, there
1437          * would have been a page reserved in the subpool before allocation
1438          * via hugepage_subpool_get_pages().  Since we are 'restoring' the
1439          * reservation, do not call hugepage_subpool_put_pages() as this will
1440          * remove the reserved page from the subpool.
1441          */
1442         if (!restore_reserve) {
1443                 /*
1444                  * A return code of zero implies that the subpool will be
1445                  * under its minimum size if the reservation is not restored
1446                  * after page is free.  Therefore, force restore_reserve
1447                  * operation.
1448                  */
1449                 if (hugepage_subpool_put_pages(spool, 1) == 0)
1450                         restore_reserve = true;
1451         }
1452
1453         spin_lock(&hugetlb_lock);
1454         ClearHPageMigratable(page);
1455         hugetlb_cgroup_uncharge_page(hstate_index(h),
1456                                      pages_per_huge_page(h), page);
1457         hugetlb_cgroup_uncharge_page_rsvd(hstate_index(h),
1458                                           pages_per_huge_page(h), page);
1459         if (restore_reserve)
1460                 h->resv_huge_pages++;
1461
1462         if (HPageTemporary(page)) {
1463                 remove_hugetlb_page(h, page, false);
1464                 spin_unlock(&hugetlb_lock);
1465                 update_and_free_page(h, page);
1466         } else if (h->surplus_huge_pages_node[nid]) {
1467                 /* remove the page from active list */
1468                 remove_hugetlb_page(h, page, true);
1469                 spin_unlock(&hugetlb_lock);
1470                 update_and_free_page(h, page);
1471         } else {
1472                 arch_clear_hugepage_flags(page);
1473                 enqueue_huge_page(h, page);
1474                 spin_unlock(&hugetlb_lock);
1475         }
1476 }
1477
1478 /*
1479  * As free_huge_page() can be called from a non-task context, we have
1480  * to defer the actual freeing in a workqueue to prevent potential
1481  * hugetlb_lock deadlock.
1482  *
1483  * free_hpage_workfn() locklessly retrieves the linked list of pages to
1484  * be freed and frees them one-by-one. As the page->mapping pointer is
1485  * going to be cleared in __free_huge_page() anyway, it is reused as the
1486  * llist_node structure of a lockless linked list of huge pages to be freed.
1487  */
1488 static LLIST_HEAD(hpage_freelist);
1489
1490 static void free_hpage_workfn(struct work_struct *work)
1491 {
1492         struct llist_node *node;
1493         struct page *page;
1494
1495         node = llist_del_all(&hpage_freelist);
1496
1497         while (node) {
1498                 page = container_of((struct address_space **)node,
1499                                      struct page, mapping);
1500                 node = node->next;
1501                 __free_huge_page(page);
1502         }
1503 }
1504 static DECLARE_WORK(free_hpage_work, free_hpage_workfn);
1505
1506 void free_huge_page(struct page *page)
1507 {
1508         /*
1509          * Defer freeing if in non-task context to avoid hugetlb_lock deadlock.
1510          */
1511         if (!in_task()) {
1512                 /*
1513                  * Only call schedule_work() if hpage_freelist is previously
1514                  * empty. Otherwise, schedule_work() had been called but the
1515                  * workfn hasn't retrieved the list yet.
1516                  */
1517                 if (llist_add((struct llist_node *)&page->mapping,
1518                               &hpage_freelist))
1519                         schedule_work(&free_hpage_work);
1520                 return;
1521         }
1522
1523         __free_huge_page(page);
1524 }
1525
1526 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
1527 {
1528         INIT_LIST_HEAD(&page->lru);
1529         set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1530         hugetlb_set_page_subpool(page, NULL);
1531         set_hugetlb_cgroup(page, NULL);
1532         set_hugetlb_cgroup_rsvd(page, NULL);
1533         spin_lock(&hugetlb_lock);
1534         h->nr_huge_pages++;
1535         h->nr_huge_pages_node[nid]++;
1536         ClearHPageFreed(page);
1537         spin_unlock(&hugetlb_lock);
1538 }
1539
1540 static void prep_compound_gigantic_page(struct page *page, unsigned int order)
1541 {
1542         int i;
1543         int nr_pages = 1 << order;
1544         struct page *p = page + 1;
1545
1546         /* we rely on prep_new_huge_page to set the destructor */
1547         set_compound_order(page, order);
1548         __ClearPageReserved(page);
1549         __SetPageHead(page);
1550         for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1551                 /*
1552                  * For gigantic hugepages allocated through bootmem at
1553                  * boot, it's safer to be consistent with the not-gigantic
1554                  * hugepages and clear the PG_reserved bit from all tail pages
1555                  * too.  Otherwise drivers using get_user_pages() to access tail
1556                  * pages may get the reference counting wrong if they see
1557                  * PG_reserved set on a tail page (despite the head page not
1558                  * having PG_reserved set).  Enforcing this consistency between
1559                  * head and tail pages allows drivers to optimize away a check
1560                  * on the head page when they need know if put_page() is needed
1561                  * after get_user_pages().
1562                  */
1563                 __ClearPageReserved(p);
1564                 set_page_count(p, 0);
1565                 set_compound_head(p, page);
1566         }
1567         atomic_set(compound_mapcount_ptr(page), -1);
1568         atomic_set(compound_pincount_ptr(page), 0);
1569 }
1570
1571 /*
1572  * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1573  * transparent huge pages.  See the PageTransHuge() documentation for more
1574  * details.
1575  */
1576 int PageHuge(struct page *page)
1577 {
1578         if (!PageCompound(page))
1579                 return 0;
1580
1581         page = compound_head(page);
1582         return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
1583 }
1584 EXPORT_SYMBOL_GPL(PageHuge);
1585
1586 /*
1587  * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1588  * normal or transparent huge pages.
1589  */
1590 int PageHeadHuge(struct page *page_head)
1591 {
1592         if (!PageHead(page_head))
1593                 return 0;
1594
1595         return page_head[1].compound_dtor == HUGETLB_PAGE_DTOR;
1596 }
1597
1598 /*
1599  * Find and lock address space (mapping) in write mode.
1600  *
1601  * Upon entry, the page is locked which means that page_mapping() is
1602  * stable.  Due to locking order, we can only trylock_write.  If we can
1603  * not get the lock, simply return NULL to caller.
1604  */
1605 struct address_space *hugetlb_page_mapping_lock_write(struct page *hpage)
1606 {
1607         struct address_space *mapping = page_mapping(hpage);
1608
1609         if (!mapping)
1610                 return mapping;
1611
1612         if (i_mmap_trylock_write(mapping))
1613                 return mapping;
1614
1615         return NULL;
1616 }
1617
1618 pgoff_t __basepage_index(struct page *page)
1619 {
1620         struct page *page_head = compound_head(page);
1621         pgoff_t index = page_index(page_head);
1622         unsigned long compound_idx;
1623
1624         if (!PageHuge(page_head))
1625                 return page_index(page);
1626
1627         if (compound_order(page_head) >= MAX_ORDER)
1628                 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
1629         else
1630                 compound_idx = page - page_head;
1631
1632         return (index << compound_order(page_head)) + compound_idx;
1633 }
1634
1635 static struct page *alloc_buddy_huge_page(struct hstate *h,
1636                 gfp_t gfp_mask, int nid, nodemask_t *nmask,
1637                 nodemask_t *node_alloc_noretry)
1638 {
1639         int order = huge_page_order(h);
1640         struct page *page;
1641         bool alloc_try_hard = true;
1642
1643         /*
1644          * By default we always try hard to allocate the page with
1645          * __GFP_RETRY_MAYFAIL flag.  However, if we are allocating pages in
1646          * a loop (to adjust global huge page counts) and previous allocation
1647          * failed, do not continue to try hard on the same node.  Use the
1648          * node_alloc_noretry bitmap to manage this state information.
1649          */
1650         if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry))
1651                 alloc_try_hard = false;
1652         gfp_mask |= __GFP_COMP|__GFP_NOWARN;
1653         if (alloc_try_hard)
1654                 gfp_mask |= __GFP_RETRY_MAYFAIL;
1655         if (nid == NUMA_NO_NODE)
1656                 nid = numa_mem_id();
1657         page = __alloc_pages(gfp_mask, order, nid, nmask);
1658         if (page)
1659                 __count_vm_event(HTLB_BUDDY_PGALLOC);
1660         else
1661                 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1662
1663         /*
1664          * If we did not specify __GFP_RETRY_MAYFAIL, but still got a page this
1665          * indicates an overall state change.  Clear bit so that we resume
1666          * normal 'try hard' allocations.
1667          */
1668         if (node_alloc_noretry && page && !alloc_try_hard)
1669                 node_clear(nid, *node_alloc_noretry);
1670
1671         /*
1672          * If we tried hard to get a page but failed, set bit so that
1673          * subsequent attempts will not try as hard until there is an
1674          * overall state change.
1675          */
1676         if (node_alloc_noretry && !page && alloc_try_hard)
1677                 node_set(nid, *node_alloc_noretry);
1678
1679         return page;
1680 }
1681
1682 /*
1683  * Common helper to allocate a fresh hugetlb page. All specific allocators
1684  * should use this function to get new hugetlb pages
1685  */
1686 static struct page *alloc_fresh_huge_page(struct hstate *h,
1687                 gfp_t gfp_mask, int nid, nodemask_t *nmask,
1688                 nodemask_t *node_alloc_noretry)
1689 {
1690         struct page *page;
1691
1692         if (hstate_is_gigantic(h))
1693                 page = alloc_gigantic_page(h, gfp_mask, nid, nmask);
1694         else
1695                 page = alloc_buddy_huge_page(h, gfp_mask,
1696                                 nid, nmask, node_alloc_noretry);
1697         if (!page)
1698                 return NULL;
1699
1700         if (hstate_is_gigantic(h))
1701                 prep_compound_gigantic_page(page, huge_page_order(h));
1702         prep_new_huge_page(h, page, page_to_nid(page));
1703
1704         return page;
1705 }
1706
1707 /*
1708  * Allocates a fresh page to the hugetlb allocator pool in the node interleaved
1709  * manner.
1710  */
1711 static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1712                                 nodemask_t *node_alloc_noretry)
1713 {
1714         struct page *page;
1715         int nr_nodes, node;
1716         gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
1717
1718         for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1719                 page = alloc_fresh_huge_page(h, gfp_mask, node, nodes_allowed,
1720                                                 node_alloc_noretry);
1721                 if (page)
1722                         break;
1723         }
1724
1725         if (!page)
1726                 return 0;
1727
1728         put_page(page); /* free it into the hugepage allocator */
1729
1730         return 1;
1731 }
1732
1733 /*
1734  * Remove huge page from pool from next node to free.  Attempt to keep
1735  * persistent huge pages more or less balanced over allowed nodes.
1736  * This routine only 'removes' the hugetlb page.  The caller must make
1737  * an additional call to free the page to low level allocators.
1738  * Called with hugetlb_lock locked.
1739  */
1740 static struct page *remove_pool_huge_page(struct hstate *h,
1741                                                 nodemask_t *nodes_allowed,
1742                                                  bool acct_surplus)
1743 {
1744         int nr_nodes, node;
1745         struct page *page = NULL;
1746
1747         for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1748                 /*
1749                  * If we're returning unused surplus pages, only examine
1750                  * nodes with surplus pages.
1751                  */
1752                 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
1753                     !list_empty(&h->hugepage_freelists[node])) {
1754                         page = list_entry(h->hugepage_freelists[node].next,
1755                                           struct page, lru);
1756                         remove_hugetlb_page(h, page, acct_surplus);
1757                         break;
1758                 }
1759         }
1760
1761         return page;
1762 }
1763
1764 /*
1765  * Dissolve a given free hugepage into free buddy pages. This function does
1766  * nothing for in-use hugepages and non-hugepages.
1767  * This function returns values like below:
1768  *
1769  *  -EBUSY: failed to dissolved free hugepages or the hugepage is in-use
1770  *          (allocated or reserved.)
1771  *       0: successfully dissolved free hugepages or the page is not a
1772  *          hugepage (considered as already dissolved)
1773  */
1774 int dissolve_free_huge_page(struct page *page)
1775 {
1776         int rc = -EBUSY;
1777
1778 retry:
1779         /* Not to disrupt normal path by vainly holding hugetlb_lock */
1780         if (!PageHuge(page))
1781                 return 0;
1782
1783         spin_lock(&hugetlb_lock);
1784         if (!PageHuge(page)) {
1785                 rc = 0;
1786                 goto out;
1787         }
1788
1789         if (!page_count(page)) {
1790                 struct page *head = compound_head(page);
1791                 struct hstate *h = page_hstate(head);
1792                 if (h->free_huge_pages - h->resv_huge_pages == 0)
1793                         goto out;
1794
1795                 /*
1796                  * We should make sure that the page is already on the free list
1797                  * when it is dissolved.
1798                  */
1799                 if (unlikely(!HPageFreed(head))) {
1800                         spin_unlock(&hugetlb_lock);
1801                         cond_resched();
1802
1803                         /*
1804                          * Theoretically, we should return -EBUSY when we
1805                          * encounter this race. In fact, we have a chance
1806                          * to successfully dissolve the page if we do a
1807                          * retry. Because the race window is quite small.
1808                          * If we seize this opportunity, it is an optimization
1809                          * for increasing the success rate of dissolving page.
1810                          */
1811                         goto retry;
1812                 }
1813
1814                 /*
1815                  * Move PageHWPoison flag from head page to the raw error page,
1816                  * which makes any subpages rather than the error page reusable.
1817                  */
1818                 if (PageHWPoison(head) && page != head) {
1819                         SetPageHWPoison(page);
1820                         ClearPageHWPoison(head);
1821                 }
1822                 remove_hugetlb_page(h, page, false);
1823                 h->max_huge_pages--;
1824                 spin_unlock(&hugetlb_lock);
1825                 update_and_free_page(h, head);
1826                 return 0;
1827         }
1828 out:
1829         spin_unlock(&hugetlb_lock);
1830         return rc;
1831 }
1832
1833 /*
1834  * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
1835  * make specified memory blocks removable from the system.
1836  * Note that this will dissolve a free gigantic hugepage completely, if any
1837  * part of it lies within the given range.
1838  * Also note that if dissolve_free_huge_page() returns with an error, all
1839  * free hugepages that were dissolved before that error are lost.
1840  */
1841 int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
1842 {
1843         unsigned long pfn;
1844         struct page *page;
1845         int rc = 0;
1846
1847         if (!hugepages_supported())
1848                 return rc;
1849
1850         for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order) {
1851                 page = pfn_to_page(pfn);
1852                 rc = dissolve_free_huge_page(page);
1853                 if (rc)
1854                         break;
1855         }
1856
1857         return rc;
1858 }
1859
1860 /*
1861  * Allocates a fresh surplus page from the page allocator.
1862  */
1863 static struct page *alloc_surplus_huge_page(struct hstate *h, gfp_t gfp_mask,
1864                 int nid, nodemask_t *nmask)
1865 {
1866         struct page *page = NULL;
1867
1868         if (hstate_is_gigantic(h))
1869                 return NULL;
1870
1871         spin_lock(&hugetlb_lock);
1872         if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages)
1873                 goto out_unlock;
1874         spin_unlock(&hugetlb_lock);
1875
1876         page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
1877         if (!page)
1878                 return NULL;
1879
1880         spin_lock(&hugetlb_lock);
1881         /*
1882          * We could have raced with the pool size change.
1883          * Double check that and simply deallocate the new page
1884          * if we would end up overcommiting the surpluses. Abuse
1885          * temporary page to workaround the nasty free_huge_page
1886          * codeflow
1887          */
1888         if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
1889                 SetHPageTemporary(page);
1890                 spin_unlock(&hugetlb_lock);
1891                 put_page(page);
1892                 return NULL;
1893         } else {
1894                 h->surplus_huge_pages++;
1895                 h->surplus_huge_pages_node[page_to_nid(page)]++;
1896         }
1897
1898 out_unlock:
1899         spin_unlock(&hugetlb_lock);
1900
1901         return page;
1902 }
1903
1904 static struct page *alloc_migrate_huge_page(struct hstate *h, gfp_t gfp_mask,
1905                                      int nid, nodemask_t *nmask)
1906 {
1907         struct page *page;
1908
1909         if (hstate_is_gigantic(h))
1910                 return NULL;
1911
1912         page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
1913         if (!page)
1914                 return NULL;
1915
1916         /*
1917          * We do not account these pages as surplus because they are only
1918          * temporary and will be released properly on the last reference
1919          */
1920         SetHPageTemporary(page);
1921
1922         return page;
1923 }
1924
1925 /*
1926  * Use the VMA's mpolicy to allocate a huge page from the buddy.
1927  */
1928 static
1929 struct page *alloc_buddy_huge_page_with_mpol(struct hstate *h,
1930                 struct vm_area_struct *vma, unsigned long addr)
1931 {
1932         struct page *page;
1933         struct mempolicy *mpol;
1934         gfp_t gfp_mask = htlb_alloc_mask(h);
1935         int nid;
1936         nodemask_t *nodemask;
1937
1938         nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
1939         page = alloc_surplus_huge_page(h, gfp_mask, nid, nodemask);
1940         mpol_cond_put(mpol);
1941
1942         return page;
1943 }
1944
1945 /* page migration callback function */
1946 struct page *alloc_huge_page_nodemask(struct hstate *h, int preferred_nid,
1947                 nodemask_t *nmask, gfp_t gfp_mask)
1948 {
1949         spin_lock(&hugetlb_lock);
1950         if (h->free_huge_pages - h->resv_huge_pages > 0) {
1951                 struct page *page;
1952
1953                 page = dequeue_huge_page_nodemask(h, gfp_mask, preferred_nid, nmask);
1954                 if (page) {
1955                         spin_unlock(&hugetlb_lock);
1956                         return page;
1957                 }
1958         }
1959         spin_unlock(&hugetlb_lock);
1960
1961         return alloc_migrate_huge_page(h, gfp_mask, preferred_nid, nmask);
1962 }
1963
1964 /* mempolicy aware migration callback */
1965 struct page *alloc_huge_page_vma(struct hstate *h, struct vm_area_struct *vma,
1966                 unsigned long address)
1967 {
1968         struct mempolicy *mpol;
1969         nodemask_t *nodemask;
1970         struct page *page;
1971         gfp_t gfp_mask;
1972         int node;
1973
1974         gfp_mask = htlb_alloc_mask(h);
1975         node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
1976         page = alloc_huge_page_nodemask(h, node, nodemask, gfp_mask);
1977         mpol_cond_put(mpol);
1978
1979         return page;
1980 }
1981
1982 /*
1983  * Increase the hugetlb pool such that it can accommodate a reservation
1984  * of size 'delta'.
1985  */
1986 static int gather_surplus_pages(struct hstate *h, long delta)
1987         __must_hold(&hugetlb_lock)
1988 {
1989         struct list_head surplus_list;
1990         struct page *page, *tmp;
1991         int ret;
1992         long i;
1993         long needed, allocated;
1994         bool alloc_ok = true;
1995
1996         needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
1997         if (needed <= 0) {
1998                 h->resv_huge_pages += delta;
1999                 return 0;
2000         }
2001
2002         allocated = 0;
2003         INIT_LIST_HEAD(&surplus_list);
2004
2005         ret = -ENOMEM;
2006 retry:
2007         spin_unlock(&hugetlb_lock);
2008         for (i = 0; i < needed; i++) {
2009                 page = alloc_surplus_huge_page(h, htlb_alloc_mask(h),
2010                                 NUMA_NO_NODE, NULL);
2011                 if (!page) {
2012                         alloc_ok = false;
2013                         break;
2014                 }
2015                 list_add(&page->lru, &surplus_list);
2016                 cond_resched();
2017         }
2018         allocated += i;
2019
2020         /*
2021          * After retaking hugetlb_lock, we need to recalculate 'needed'
2022          * because either resv_huge_pages or free_huge_pages may have changed.
2023          */
2024         spin_lock(&hugetlb_lock);
2025         needed = (h->resv_huge_pages + delta) -
2026                         (h->free_huge_pages + allocated);
2027         if (needed > 0) {
2028                 if (alloc_ok)
2029                         goto retry;
2030                 /*
2031                  * We were not able to allocate enough pages to
2032                  * satisfy the entire reservation so we free what
2033                  * we've allocated so far.
2034                  */
2035                 goto free;
2036         }
2037         /*
2038          * The surplus_list now contains _at_least_ the number of extra pages
2039          * needed to accommodate the reservation.  Add the appropriate number
2040          * of pages to the hugetlb pool and free the extras back to the buddy
2041          * allocator.  Commit the entire reservation here to prevent another
2042          * process from stealing the pages as they are added to the pool but
2043          * before they are reserved.
2044          */
2045         needed += allocated;
2046         h->resv_huge_pages += delta;
2047         ret = 0;
2048
2049         /* Free the needed pages to the hugetlb pool */
2050         list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
2051                 int zeroed;
2052
2053                 if ((--needed) < 0)
2054                         break;
2055                 /*
2056                  * This page is now managed by the hugetlb allocator and has
2057                  * no users -- drop the buddy allocator's reference.
2058                  */
2059                 zeroed = put_page_testzero(page);
2060                 VM_BUG_ON_PAGE(!zeroed, page);
2061                 enqueue_huge_page(h, page);
2062         }
2063 free:
2064         spin_unlock(&hugetlb_lock);
2065
2066         /* Free unnecessary surplus pages to the buddy allocator */
2067         list_for_each_entry_safe(page, tmp, &surplus_list, lru)
2068                 put_page(page);
2069         spin_lock(&hugetlb_lock);
2070
2071         return ret;
2072 }
2073
2074 /*
2075  * This routine has two main purposes:
2076  * 1) Decrement the reservation count (resv_huge_pages) by the value passed
2077  *    in unused_resv_pages.  This corresponds to the prior adjustments made
2078  *    to the associated reservation map.
2079  * 2) Free any unused surplus pages that may have been allocated to satisfy
2080  *    the reservation.  As many as unused_resv_pages may be freed.
2081  */
2082 static void return_unused_surplus_pages(struct hstate *h,
2083                                         unsigned long unused_resv_pages)
2084 {
2085         unsigned long nr_pages;
2086         struct page *page;
2087         LIST_HEAD(page_list);
2088
2089         /* Uncommit the reservation */
2090         h->resv_huge_pages -= unused_resv_pages;
2091
2092         /* Cannot return gigantic pages currently */
2093         if (hstate_is_gigantic(h))
2094                 goto out;
2095
2096         /*
2097          * Part (or even all) of the reservation could have been backed
2098          * by pre-allocated pages. Only free surplus pages.
2099          */
2100         nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
2101
2102         /*
2103          * We want to release as many surplus pages as possible, spread
2104          * evenly across all nodes with memory. Iterate across these nodes
2105          * until we can no longer free unreserved surplus pages. This occurs
2106          * when the nodes with surplus pages have no free pages.
2107          * remove_pool_huge_page() will balance the freed pages across the
2108          * on-line nodes with memory and will handle the hstate accounting.
2109          */
2110         while (nr_pages--) {
2111                 page = remove_pool_huge_page(h, &node_states[N_MEMORY], 1);
2112                 if (!page)
2113                         goto out;
2114
2115                 list_add(&page->lru, &page_list);
2116         }
2117
2118 out:
2119         spin_unlock(&hugetlb_lock);
2120         update_and_free_pages_bulk(h, &page_list);
2121         spin_lock(&hugetlb_lock);
2122 }
2123
2124
2125 /*
2126  * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
2127  * are used by the huge page allocation routines to manage reservations.
2128  *
2129  * vma_needs_reservation is called to determine if the huge page at addr
2130  * within the vma has an associated reservation.  If a reservation is
2131  * needed, the value 1 is returned.  The caller is then responsible for
2132  * managing the global reservation and subpool usage counts.  After
2133  * the huge page has been allocated, vma_commit_reservation is called
2134  * to add the page to the reservation map.  If the page allocation fails,
2135  * the reservation must be ended instead of committed.  vma_end_reservation
2136  * is called in such cases.
2137  *
2138  * In the normal case, vma_commit_reservation returns the same value
2139  * as the preceding vma_needs_reservation call.  The only time this
2140  * is not the case is if a reserve map was changed between calls.  It
2141  * is the responsibility of the caller to notice the difference and
2142  * take appropriate action.
2143  *
2144  * vma_add_reservation is used in error paths where a reservation must
2145  * be restored when a newly allocated huge page must be freed.  It is
2146  * to be called after calling vma_needs_reservation to determine if a
2147  * reservation exists.
2148  */
2149 enum vma_resv_mode {
2150         VMA_NEEDS_RESV,
2151         VMA_COMMIT_RESV,
2152         VMA_END_RESV,
2153         VMA_ADD_RESV,
2154 };
2155 static long __vma_reservation_common(struct hstate *h,
2156                                 struct vm_area_struct *vma, unsigned long addr,
2157                                 enum vma_resv_mode mode)
2158 {
2159         struct resv_map *resv;
2160         pgoff_t idx;
2161         long ret;
2162         long dummy_out_regions_needed;
2163
2164         resv = vma_resv_map(vma);
2165         if (!resv)
2166                 return 1;
2167
2168         idx = vma_hugecache_offset(h, vma, addr);
2169         switch (mode) {
2170         case VMA_NEEDS_RESV:
2171                 ret = region_chg(resv, idx, idx + 1, &dummy_out_regions_needed);
2172                 /* We assume that vma_reservation_* routines always operate on
2173                  * 1 page, and that adding to resv map a 1 page entry can only
2174                  * ever require 1 region.
2175                  */
2176                 VM_BUG_ON(dummy_out_regions_needed != 1);
2177                 break;
2178         case VMA_COMMIT_RESV:
2179                 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2180                 /* region_add calls of range 1 should never fail. */
2181                 VM_BUG_ON(ret < 0);
2182                 break;
2183         case VMA_END_RESV:
2184                 region_abort(resv, idx, idx + 1, 1);
2185                 ret = 0;
2186                 break;
2187         case VMA_ADD_RESV:
2188                 if (vma->vm_flags & VM_MAYSHARE) {
2189                         ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2190                         /* region_add calls of range 1 should never fail. */
2191                         VM_BUG_ON(ret < 0);
2192                 } else {
2193                         region_abort(resv, idx, idx + 1, 1);
2194                         ret = region_del(resv, idx, idx + 1);
2195                 }
2196                 break;
2197         default:
2198                 BUG();
2199         }
2200
2201         if (vma->vm_flags & VM_MAYSHARE)
2202                 return ret;
2203         /*
2204          * We know private mapping must have HPAGE_RESV_OWNER set.
2205          *
2206          * In most cases, reserves always exist for private mappings.
2207          * However, a file associated with mapping could have been
2208          * hole punched or truncated after reserves were consumed.
2209          * As subsequent fault on such a range will not use reserves.
2210          * Subtle - The reserve map for private mappings has the
2211          * opposite meaning than that of shared mappings.  If NO
2212          * entry is in the reserve map, it means a reservation exists.
2213          * If an entry exists in the reserve map, it means the
2214          * reservation has already been consumed.  As a result, the
2215          * return value of this routine is the opposite of the
2216          * value returned from reserve map manipulation routines above.
2217          */
2218         if (ret > 0)
2219                 return 0;
2220         if (ret == 0)
2221                 return 1;
2222         return ret;
2223 }
2224
2225 static long vma_needs_reservation(struct hstate *h,
2226                         struct vm_area_struct *vma, unsigned long addr)
2227 {
2228         return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
2229 }
2230
2231 static long vma_commit_reservation(struct hstate *h,
2232                         struct vm_area_struct *vma, unsigned long addr)
2233 {
2234         return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
2235 }
2236
2237 static void vma_end_reservation(struct hstate *h,
2238                         struct vm_area_struct *vma, unsigned long addr)
2239 {
2240         (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
2241 }
2242
2243 static long vma_add_reservation(struct hstate *h,
2244                         struct vm_area_struct *vma, unsigned long addr)
2245 {
2246         return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
2247 }
2248
2249 /*
2250  * This routine is called to restore a reservation on error paths.  In the
2251  * specific error paths, a huge page was allocated (via alloc_huge_page)
2252  * and is about to be freed.  If a reservation for the page existed,
2253  * alloc_huge_page would have consumed the reservation and set
2254  * HPageRestoreReserve in the newly allocated page.  When the page is freed
2255  * via free_huge_page, the global reservation count will be incremented if
2256  * HPageRestoreReserve is set.  However, free_huge_page can not adjust the
2257  * reserve map.  Adjust the reserve map here to be consistent with global
2258  * reserve count adjustments to be made by free_huge_page.
2259  */
2260 static void restore_reserve_on_error(struct hstate *h,
2261                         struct vm_area_struct *vma, unsigned long address,
2262                         struct page *page)
2263 {
2264         if (unlikely(HPageRestoreReserve(page))) {
2265                 long rc = vma_needs_reservation(h, vma, address);
2266
2267                 if (unlikely(rc < 0)) {
2268                         /*
2269                          * Rare out of memory condition in reserve map
2270                          * manipulation.  Clear HPageRestoreReserve so that
2271                          * global reserve count will not be incremented
2272                          * by free_huge_page.  This will make it appear
2273                          * as though the reservation for this page was
2274                          * consumed.  This may prevent the task from
2275                          * faulting in the page at a later time.  This
2276                          * is better than inconsistent global huge page
2277                          * accounting of reserve counts.
2278                          */
2279                         ClearHPageRestoreReserve(page);
2280                 } else if (rc) {
2281                         rc = vma_add_reservation(h, vma, address);
2282                         if (unlikely(rc < 0))
2283                                 /*
2284                                  * See above comment about rare out of
2285                                  * memory condition.
2286                                  */
2287                                 ClearHPageRestoreReserve(page);
2288                 } else
2289                         vma_end_reservation(h, vma, address);
2290         }
2291 }
2292
2293 struct page *alloc_huge_page(struct vm_area_struct *vma,
2294                                     unsigned long addr, int avoid_reserve)
2295 {
2296         struct hugepage_subpool *spool = subpool_vma(vma);
2297         struct hstate *h = hstate_vma(vma);
2298         struct page *page;
2299         long map_chg, map_commit;
2300         long gbl_chg;
2301         int ret, idx;
2302         struct hugetlb_cgroup *h_cg;
2303         bool deferred_reserve;
2304
2305         idx = hstate_index(h);
2306         /*
2307          * Examine the region/reserve map to determine if the process
2308          * has a reservation for the page to be allocated.  A return
2309          * code of zero indicates a reservation exists (no change).
2310          */
2311         map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
2312         if (map_chg < 0)
2313                 return ERR_PTR(-ENOMEM);
2314
2315         /*
2316          * Processes that did not create the mapping will have no
2317          * reserves as indicated by the region/reserve map. Check
2318          * that the allocation will not exceed the subpool limit.
2319          * Allocations for MAP_NORESERVE mappings also need to be
2320          * checked against any subpool limit.
2321          */
2322         if (map_chg || avoid_reserve) {
2323                 gbl_chg = hugepage_subpool_get_pages(spool, 1);
2324                 if (gbl_chg < 0) {
2325                         vma_end_reservation(h, vma, addr);
2326                         return ERR_PTR(-ENOSPC);
2327                 }
2328
2329                 /*
2330                  * Even though there was no reservation in the region/reserve
2331                  * map, there could be reservations associated with the
2332                  * subpool that can be used.  This would be indicated if the
2333                  * return value of hugepage_subpool_get_pages() is zero.
2334                  * However, if avoid_reserve is specified we still avoid even
2335                  * the subpool reservations.
2336                  */
2337                 if (avoid_reserve)
2338                         gbl_chg = 1;
2339         }
2340
2341         /* If this allocation is not consuming a reservation, charge it now.
2342          */
2343         deferred_reserve = map_chg || avoid_reserve;
2344         if (deferred_reserve) {
2345                 ret = hugetlb_cgroup_charge_cgroup_rsvd(
2346                         idx, pages_per_huge_page(h), &h_cg);
2347                 if (ret)
2348                         goto out_subpool_put;
2349         }
2350
2351         ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
2352         if (ret)
2353                 goto out_uncharge_cgroup_reservation;
2354
2355         spin_lock(&hugetlb_lock);
2356         /*
2357          * glb_chg is passed to indicate whether or not a page must be taken
2358          * from the global free pool (global change).  gbl_chg == 0 indicates
2359          * a reservation exists for the allocation.
2360          */
2361         page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
2362         if (!page) {
2363                 spin_unlock(&hugetlb_lock);
2364                 page = alloc_buddy_huge_page_with_mpol(h, vma, addr);
2365                 if (!page)
2366                         goto out_uncharge_cgroup;
2367                 if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
2368                         SetHPageRestoreReserve(page);
2369                         h->resv_huge_pages--;
2370                 }
2371                 spin_lock(&hugetlb_lock);
2372                 list_add(&page->lru, &h->hugepage_activelist);
2373                 /* Fall through */
2374         }
2375         hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
2376         /* If allocation is not consuming a reservation, also store the
2377          * hugetlb_cgroup pointer on the page.
2378          */
2379         if (deferred_reserve) {
2380                 hugetlb_cgroup_commit_charge_rsvd(idx, pages_per_huge_page(h),
2381                                                   h_cg, page);
2382         }
2383
2384         spin_unlock(&hugetlb_lock);
2385
2386         hugetlb_set_page_subpool(page, spool);
2387
2388         map_commit = vma_commit_reservation(h, vma, addr);
2389         if (unlikely(map_chg > map_commit)) {
2390                 /*
2391                  * The page was added to the reservation map between
2392                  * vma_needs_reservation and vma_commit_reservation.
2393                  * This indicates a race with hugetlb_reserve_pages.
2394                  * Adjust for the subpool count incremented above AND
2395                  * in hugetlb_reserve_pages for the same page.  Also,
2396                  * the reservation count added in hugetlb_reserve_pages
2397                  * no longer applies.
2398                  */
2399                 long rsv_adjust;
2400
2401                 rsv_adjust = hugepage_subpool_put_pages(spool, 1);
2402                 hugetlb_acct_memory(h, -rsv_adjust);
2403                 if (deferred_reserve)
2404                         hugetlb_cgroup_uncharge_page_rsvd(hstate_index(h),
2405                                         pages_per_huge_page(h), page);
2406         }
2407         return page;
2408
2409 out_uncharge_cgroup:
2410         hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
2411 out_uncharge_cgroup_reservation:
2412         if (deferred_reserve)
2413                 hugetlb_cgroup_uncharge_cgroup_rsvd(idx, pages_per_huge_page(h),
2414                                                     h_cg);
2415 out_subpool_put:
2416         if (map_chg || avoid_reserve)
2417                 hugepage_subpool_put_pages(spool, 1);
2418         vma_end_reservation(h, vma, addr);
2419         return ERR_PTR(-ENOSPC);
2420 }
2421
2422 int alloc_bootmem_huge_page(struct hstate *h)
2423         __attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
2424 int __alloc_bootmem_huge_page(struct hstate *h)
2425 {
2426         struct huge_bootmem_page *m;
2427         int nr_nodes, node;
2428
2429         for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
2430                 void *addr;
2431
2432                 addr = memblock_alloc_try_nid_raw(
2433                                 huge_page_size(h), huge_page_size(h),
2434                                 0, MEMBLOCK_ALLOC_ACCESSIBLE, node);
2435                 if (addr) {
2436                         /*
2437                          * Use the beginning of the huge page to store the
2438                          * huge_bootmem_page struct (until gather_bootmem
2439                          * puts them into the mem_map).
2440                          */
2441                         m = addr;
2442                         goto found;
2443                 }
2444         }
2445         return 0;
2446
2447 found:
2448         BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h)));
2449         /* Put them into a private list first because mem_map is not up yet */
2450         INIT_LIST_HEAD(&m->list);
2451         list_add(&m->list, &huge_boot_pages);
2452         m->hstate = h;
2453         return 1;
2454 }
2455
2456 static void __init prep_compound_huge_page(struct page *page,
2457                 unsigned int order)
2458 {
2459         if (unlikely(order > (MAX_ORDER - 1)))
2460                 prep_compound_gigantic_page(page, order);
2461         else
2462                 prep_compound_page(page, order);
2463 }
2464
2465 /* Put bootmem huge pages into the standard lists after mem_map is up */
2466 static void __init gather_bootmem_prealloc(void)
2467 {
2468         struct huge_bootmem_page *m;
2469
2470         list_for_each_entry(m, &huge_boot_pages, list) {
2471                 struct page *page = virt_to_page(m);
2472                 struct hstate *h = m->hstate;
2473
2474                 WARN_ON(page_count(page) != 1);
2475                 prep_compound_huge_page(page, huge_page_order(h));
2476                 WARN_ON(PageReserved(page));
2477                 prep_new_huge_page(h, page, page_to_nid(page));
2478                 put_page(page); /* free it into the hugepage allocator */
2479
2480                 /*
2481                  * If we had gigantic hugepages allocated at boot time, we need
2482                  * to restore the 'stolen' pages to totalram_pages in order to
2483                  * fix confusing memory reports from free(1) and another
2484                  * side-effects, like CommitLimit going negative.
2485                  */
2486                 if (hstate_is_gigantic(h))
2487                         adjust_managed_page_count(page, pages_per_huge_page(h));
2488                 cond_resched();
2489         }
2490 }
2491
2492 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
2493 {
2494         unsigned long i;
2495         nodemask_t *node_alloc_noretry;
2496
2497         if (!hstate_is_gigantic(h)) {
2498                 /*
2499                  * Bit mask controlling how hard we retry per-node allocations.
2500                  * Ignore errors as lower level routines can deal with
2501                  * node_alloc_noretry == NULL.  If this kmalloc fails at boot
2502                  * time, we are likely in bigger trouble.
2503                  */
2504                 node_alloc_noretry = kmalloc(sizeof(*node_alloc_noretry),
2505                                                 GFP_KERNEL);
2506         } else {
2507                 /* allocations done at boot time */
2508                 node_alloc_noretry = NULL;
2509         }
2510
2511         /* bit mask controlling how hard we retry per-node allocations */
2512         if (node_alloc_noretry)
2513                 nodes_clear(*node_alloc_noretry);
2514
2515         for (i = 0; i < h->max_huge_pages; ++i) {
2516                 if (hstate_is_gigantic(h)) {
2517                         if (hugetlb_cma_size) {
2518                                 pr_warn_once("HugeTLB: hugetlb_cma is enabled, skip boot time allocation\n");
2519                                 goto free;
2520                         }
2521                         if (!alloc_bootmem_huge_page(h))
2522                                 break;
2523                 } else if (!alloc_pool_huge_page(h,
2524                                          &node_states[N_MEMORY],
2525                                          node_alloc_noretry))
2526                         break;
2527                 cond_resched();
2528         }
2529         if (i < h->max_huge_pages) {
2530                 char buf[32];
2531
2532                 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
2533                 pr_warn("HugeTLB: allocating %lu of page size %s failed.  Only allocated %lu hugepages.\n",
2534                         h->max_huge_pages, buf, i);
2535                 h->max_huge_pages = i;
2536         }
2537 free:
2538         kfree(node_alloc_noretry);
2539 }
2540
2541 static void __init hugetlb_init_hstates(void)
2542 {
2543         struct hstate *h;
2544
2545         for_each_hstate(h) {
2546                 if (minimum_order > huge_page_order(h))
2547                         minimum_order = huge_page_order(h);
2548
2549                 /* oversize hugepages were init'ed in early boot */
2550                 if (!hstate_is_gigantic(h))
2551                         hugetlb_hstate_alloc_pages(h);
2552         }
2553         VM_BUG_ON(minimum_order == UINT_MAX);
2554 }
2555
2556 static void __init report_hugepages(void)
2557 {
2558         struct hstate *h;
2559
2560         for_each_hstate(h) {
2561                 char buf[32];
2562
2563                 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
2564                 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
2565                         buf, h->free_huge_pages);
2566         }
2567 }
2568
2569 #ifdef CONFIG_HIGHMEM
2570 static void try_to_free_low(struct hstate *h, unsigned long count,
2571                                                 nodemask_t *nodes_allowed)
2572 {
2573         int i;
2574         LIST_HEAD(page_list);
2575
2576         if (hstate_is_gigantic(h))
2577                 return;
2578
2579         /*
2580          * Collect pages to be freed on a list, and free after dropping lock
2581          */
2582         for_each_node_mask(i, *nodes_allowed) {
2583                 struct page *page, *next;
2584                 struct list_head *freel = &h->hugepage_freelists[i];
2585                 list_for_each_entry_safe(page, next, freel, lru) {
2586                         if (count >= h->nr_huge_pages)
2587                                 goto out;
2588                         if (PageHighMem(page))
2589                                 continue;
2590                         remove_hugetlb_page(h, page, false);
2591                         list_add(&page->lru, &page_list);
2592                 }
2593         }
2594
2595 out:
2596         spin_unlock(&hugetlb_lock);
2597         update_and_free_pages_bulk(h, &page_list);
2598         spin_lock(&hugetlb_lock);
2599 }
2600 #else
2601 static inline void try_to_free_low(struct hstate *h, unsigned long count,
2602                                                 nodemask_t *nodes_allowed)
2603 {
2604 }
2605 #endif
2606
2607 /*
2608  * Increment or decrement surplus_huge_pages.  Keep node-specific counters
2609  * balanced by operating on them in a round-robin fashion.
2610  * Returns 1 if an adjustment was made.
2611  */
2612 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
2613                                 int delta)
2614 {
2615         int nr_nodes, node;
2616
2617         VM_BUG_ON(delta != -1 && delta != 1);
2618
2619         if (delta < 0) {
2620                 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
2621                         if (h->surplus_huge_pages_node[node])
2622                                 goto found;
2623                 }
2624         } else {
2625                 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2626                         if (h->surplus_huge_pages_node[node] <
2627                                         h->nr_huge_pages_node[node])
2628                                 goto found;
2629                 }
2630         }
2631         return 0;
2632
2633 found:
2634         h->surplus_huge_pages += delta;
2635         h->surplus_huge_pages_node[node] += delta;
2636         return 1;
2637 }
2638
2639 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
2640 static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid,
2641                               nodemask_t *nodes_allowed)
2642 {
2643         unsigned long min_count, ret;
2644         struct page *page;
2645         LIST_HEAD(page_list);
2646         NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL);
2647
2648         /*
2649          * Bit mask controlling how hard we retry per-node allocations.
2650          * If we can not allocate the bit mask, do not attempt to allocate
2651          * the requested huge pages.
2652          */
2653         if (node_alloc_noretry)
2654                 nodes_clear(*node_alloc_noretry);
2655         else
2656                 return -ENOMEM;
2657
2658         /*
2659          * resize_lock mutex prevents concurrent adjustments to number of
2660          * pages in hstate via the proc/sysfs interfaces.
2661          */
2662         mutex_lock(&h->resize_lock);
2663         spin_lock(&hugetlb_lock);
2664
2665         /*
2666          * Check for a node specific request.
2667          * Changing node specific huge page count may require a corresponding
2668          * change to the global count.  In any case, the passed node mask
2669          * (nodes_allowed) will restrict alloc/free to the specified node.
2670          */
2671         if (nid != NUMA_NO_NODE) {
2672                 unsigned long old_count = count;
2673
2674                 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
2675                 /*
2676                  * User may have specified a large count value which caused the
2677                  * above calculation to overflow.  In this case, they wanted
2678                  * to allocate as many huge pages as possible.  Set count to
2679                  * largest possible value to align with their intention.
2680                  */
2681                 if (count < old_count)
2682                         count = ULONG_MAX;
2683         }
2684
2685         /*
2686          * Gigantic pages runtime allocation depend on the capability for large
2687          * page range allocation.
2688          * If the system does not provide this feature, return an error when
2689          * the user tries to allocate gigantic pages but let the user free the
2690          * boottime allocated gigantic pages.
2691          */
2692         if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) {
2693                 if (count > persistent_huge_pages(h)) {
2694                         spin_unlock(&hugetlb_lock);
2695                         mutex_unlock(&h->resize_lock);
2696                         NODEMASK_FREE(node_alloc_noretry);
2697                         return -EINVAL;
2698                 }
2699                 /* Fall through to decrease pool */
2700         }
2701
2702         /*
2703          * Increase the pool size
2704          * First take pages out of surplus state.  Then make up the
2705          * remaining difference by allocating fresh huge pages.
2706          *
2707          * We might race with alloc_surplus_huge_page() here and be unable
2708          * to convert a surplus huge page to a normal huge page. That is
2709          * not critical, though, it just means the overall size of the
2710          * pool might be one hugepage larger than it needs to be, but
2711          * within all the constraints specified by the sysctls.
2712          */
2713         while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
2714                 if (!adjust_pool_surplus(h, nodes_allowed, -1))
2715                         break;
2716         }
2717
2718         while (count > persistent_huge_pages(h)) {
2719                 /*
2720                  * If this allocation races such that we no longer need the
2721                  * page, free_huge_page will handle it by freeing the page
2722                  * and reducing the surplus.
2723                  */
2724                 spin_unlock(&hugetlb_lock);
2725
2726                 /* yield cpu to avoid soft lockup */
2727                 cond_resched();
2728
2729                 ret = alloc_pool_huge_page(h, nodes_allowed,
2730                                                 node_alloc_noretry);
2731                 spin_lock(&hugetlb_lock);
2732                 if (!ret)
2733                         goto out;
2734
2735                 /* Bail for signals. Probably ctrl-c from user */
2736                 if (signal_pending(current))
2737                         goto out;
2738         }
2739
2740         /*
2741          * Decrease the pool size
2742          * First return free pages to the buddy allocator (being careful
2743          * to keep enough around to satisfy reservations).  Then place
2744          * pages into surplus state as needed so the pool will shrink
2745          * to the desired size as pages become free.
2746          *
2747          * By placing pages into the surplus state independent of the
2748          * overcommit value, we are allowing the surplus pool size to
2749          * exceed overcommit. There are few sane options here. Since
2750          * alloc_surplus_huge_page() is checking the global counter,
2751          * though, we'll note that we're not allowed to exceed surplus
2752          * and won't grow the pool anywhere else. Not until one of the
2753          * sysctls are changed, or the surplus pages go out of use.
2754          */
2755         min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
2756         min_count = max(count, min_count);
2757         try_to_free_low(h, min_count, nodes_allowed);
2758
2759         /*
2760          * Collect pages to be removed on list without dropping lock
2761          */
2762         while (min_count < persistent_huge_pages(h)) {
2763                 page = remove_pool_huge_page(h, nodes_allowed, 0);
2764                 if (!page)
2765                         break;
2766
2767                 list_add(&page->lru, &page_list);
2768         }
2769         /* free the pages after dropping lock */
2770         spin_unlock(&hugetlb_lock);
2771         update_and_free_pages_bulk(h, &page_list);
2772         spin_lock(&hugetlb_lock);
2773
2774         while (count < persistent_huge_pages(h)) {
2775                 if (!adjust_pool_surplus(h, nodes_allowed, 1))
2776                         break;
2777         }
2778 out:
2779         h->max_huge_pages = persistent_huge_pages(h);
2780         spin_unlock(&hugetlb_lock);
2781         mutex_unlock(&h->resize_lock);
2782
2783         NODEMASK_FREE(node_alloc_noretry);
2784
2785         return 0;
2786 }
2787
2788 #define HSTATE_ATTR_RO(_name) \
2789         static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2790
2791 #define HSTATE_ATTR(_name) \
2792         static struct kobj_attribute _name##_attr = \
2793                 __ATTR(_name, 0644, _name##_show, _name##_store)
2794
2795 static struct kobject *hugepages_kobj;
2796 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2797
2798 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
2799
2800 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
2801 {
2802         int i;
2803
2804         for (i = 0; i < HUGE_MAX_HSTATE; i++)
2805                 if (hstate_kobjs[i] == kobj) {
2806                         if (nidp)
2807                                 *nidp = NUMA_NO_NODE;
2808                         return &hstates[i];
2809                 }
2810
2811         return kobj_to_node_hstate(kobj, nidp);
2812 }
2813
2814 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
2815                                         struct kobj_attribute *attr, char *buf)
2816 {
2817         struct hstate *h;
2818         unsigned long nr_huge_pages;
2819         int nid;
2820
2821         h = kobj_to_hstate(kobj, &nid);
2822         if (nid == NUMA_NO_NODE)
2823                 nr_huge_pages = h->nr_huge_pages;
2824         else
2825                 nr_huge_pages = h->nr_huge_pages_node[nid];
2826
2827         return sysfs_emit(buf, "%lu\n", nr_huge_pages);
2828 }
2829
2830 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
2831                                            struct hstate *h, int nid,
2832                                            unsigned long count, size_t len)
2833 {
2834         int err;
2835         nodemask_t nodes_allowed, *n_mask;
2836
2837         if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
2838                 return -EINVAL;
2839
2840         if (nid == NUMA_NO_NODE) {
2841                 /*
2842                  * global hstate attribute
2843                  */
2844                 if (!(obey_mempolicy &&
2845                                 init_nodemask_of_mempolicy(&nodes_allowed)))
2846                         n_mask = &node_states[N_MEMORY];
2847                 else
2848                         n_mask = &nodes_allowed;
2849         } else {
2850                 /*
2851                  * Node specific request.  count adjustment happens in
2852                  * set_max_huge_pages() after acquiring hugetlb_lock.
2853                  */
2854                 init_nodemask_of_node(&nodes_allowed, nid);
2855                 n_mask = &nodes_allowed;
2856         }
2857
2858         err = set_max_huge_pages(h, count, nid, n_mask);
2859
2860         return err ? err : len;
2861 }
2862
2863 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
2864                                          struct kobject *kobj, const char *buf,
2865                                          size_t len)
2866 {
2867         struct hstate *h;
2868         unsigned long count;
2869         int nid;
2870         int err;
2871
2872         err = kstrtoul(buf, 10, &count);
2873         if (err)
2874                 return err;
2875
2876         h = kobj_to_hstate(kobj, &nid);
2877         return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
2878 }
2879
2880 static ssize_t nr_hugepages_show(struct kobject *kobj,
2881                                        struct kobj_attribute *attr, char *buf)
2882 {
2883         return nr_hugepages_show_common(kobj, attr, buf);
2884 }
2885
2886 static ssize_t nr_hugepages_store(struct kobject *kobj,
2887                struct kobj_attribute *attr, const char *buf, size_t len)
2888 {
2889         return nr_hugepages_store_common(false, kobj, buf, len);
2890 }
2891 HSTATE_ATTR(nr_hugepages);
2892
2893 #ifdef CONFIG_NUMA
2894
2895 /*
2896  * hstate attribute for optionally mempolicy-based constraint on persistent
2897  * huge page alloc/free.
2898  */
2899 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
2900                                            struct kobj_attribute *attr,
2901                                            char *buf)
2902 {
2903         return nr_hugepages_show_common(kobj, attr, buf);
2904 }
2905
2906 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
2907                struct kobj_attribute *attr, const char *buf, size_t len)
2908 {
2909         return nr_hugepages_store_common(true, kobj, buf, len);
2910 }
2911 HSTATE_ATTR(nr_hugepages_mempolicy);
2912 #endif
2913
2914
2915 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
2916                                         struct kobj_attribute *attr, char *buf)
2917 {
2918         struct hstate *h = kobj_to_hstate(kobj, NULL);
2919         return sysfs_emit(buf, "%lu\n", h->nr_overcommit_huge_pages);
2920 }
2921
2922 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
2923                 struct kobj_attribute *attr, const char *buf, size_t count)
2924 {
2925         int err;
2926         unsigned long input;
2927         struct hstate *h = kobj_to_hstate(kobj, NULL);
2928
2929         if (hstate_is_gigantic(h))
2930                 return -EINVAL;
2931
2932         err = kstrtoul(buf, 10, &input);
2933         if (err)
2934                 return err;
2935
2936         spin_lock(&hugetlb_lock);
2937         h->nr_overcommit_huge_pages = input;
2938         spin_unlock(&hugetlb_lock);
2939
2940         return count;
2941 }
2942 HSTATE_ATTR(nr_overcommit_hugepages);
2943
2944 static ssize_t free_hugepages_show(struct kobject *kobj,
2945                                         struct kobj_attribute *attr, char *buf)
2946 {
2947         struct hstate *h;
2948         unsigned long free_huge_pages;
2949         int nid;
2950
2951         h = kobj_to_hstate(kobj, &nid);
2952         if (nid == NUMA_NO_NODE)
2953                 free_huge_pages = h->free_huge_pages;
2954         else
2955                 free_huge_pages = h->free_huge_pages_node[nid];
2956
2957         return sysfs_emit(buf, "%lu\n", free_huge_pages);
2958 }
2959 HSTATE_ATTR_RO(free_hugepages);
2960
2961 static ssize_t resv_hugepages_show(struct kobject *kobj,
2962                                         struct kobj_attribute *attr, char *buf)
2963 {
2964         struct hstate *h = kobj_to_hstate(kobj, NULL);
2965         return sysfs_emit(buf, "%lu\n", h->resv_huge_pages);
2966 }
2967 HSTATE_ATTR_RO(resv_hugepages);
2968
2969 static ssize_t surplus_hugepages_show(struct kobject *kobj,
2970                                         struct kobj_attribute *attr, char *buf)
2971 {
2972         struct hstate *h;
2973         unsigned long surplus_huge_pages;
2974         int nid;
2975
2976         h = kobj_to_hstate(kobj, &nid);
2977         if (nid == NUMA_NO_NODE)
2978                 surplus_huge_pages = h->surplus_huge_pages;
2979         else
2980                 surplus_huge_pages = h->surplus_huge_pages_node[nid];
2981
2982         return sysfs_emit(buf, "%lu\n", surplus_huge_pages);
2983 }
2984 HSTATE_ATTR_RO(surplus_hugepages);
2985
2986 static struct attribute *hstate_attrs[] = {
2987         &nr_hugepages_attr.attr,
2988         &nr_overcommit_hugepages_attr.attr,
2989         &free_hugepages_attr.attr,
2990         &resv_hugepages_attr.attr,
2991         &surplus_hugepages_attr.attr,
2992 #ifdef CONFIG_NUMA
2993         &nr_hugepages_mempolicy_attr.attr,
2994 #endif
2995         NULL,
2996 };
2997
2998 static const struct attribute_group hstate_attr_group = {
2999         .attrs = hstate_attrs,
3000 };
3001
3002 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
3003                                     struct kobject **hstate_kobjs,
3004                                     const struct attribute_group *hstate_attr_group)
3005 {
3006         int retval;
3007         int hi = hstate_index(h);
3008
3009         hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
3010         if (!hstate_kobjs[hi])
3011                 return -ENOMEM;
3012
3013         retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
3014         if (retval) {
3015                 kobject_put(hstate_kobjs[hi]);
3016                 hstate_kobjs[hi] = NULL;
3017         }
3018
3019         return retval;
3020 }
3021
3022 static void __init hugetlb_sysfs_init(void)
3023 {
3024         struct hstate *h;
3025         int err;
3026
3027         hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
3028         if (!hugepages_kobj)
3029                 return;
3030
3031         for_each_hstate(h) {
3032                 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
3033                                          hstate_kobjs, &hstate_attr_group);
3034                 if (err)
3035                         pr_err("HugeTLB: Unable to add hstate %s", h->name);
3036         }
3037 }
3038
3039 #ifdef CONFIG_NUMA
3040
3041 /*
3042  * node_hstate/s - associate per node hstate attributes, via their kobjects,
3043  * with node devices in node_devices[] using a parallel array.  The array
3044  * index of a node device or _hstate == node id.
3045  * This is here to avoid any static dependency of the node device driver, in
3046  * the base kernel, on the hugetlb module.
3047  */
3048 struct node_hstate {
3049         struct kobject          *hugepages_kobj;
3050         struct kobject          *hstate_kobjs[HUGE_MAX_HSTATE];
3051 };
3052 static struct node_hstate node_hstates[MAX_NUMNODES];
3053
3054 /*
3055  * A subset of global hstate attributes for node devices
3056  */
3057 static struct attribute *per_node_hstate_attrs[] = {
3058         &nr_hugepages_attr.attr,
3059         &free_hugepages_attr.attr,
3060         &surplus_hugepages_attr.attr,
3061         NULL,
3062 };
3063
3064 static const struct attribute_group per_node_hstate_attr_group = {
3065         .attrs = per_node_hstate_attrs,
3066 };
3067
3068 /*
3069  * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
3070  * Returns node id via non-NULL nidp.
3071  */
3072 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
3073 {
3074         int nid;
3075
3076         for (nid = 0; nid < nr_node_ids; nid++) {
3077                 struct node_hstate *nhs = &node_hstates[nid];
3078                 int i;
3079                 for (i = 0; i < HUGE_MAX_HSTATE; i++)
3080                         if (nhs->hstate_kobjs[i] == kobj) {
3081                                 if (nidp)
3082                                         *nidp = nid;
3083                                 return &hstates[i];
3084                         }
3085         }
3086
3087         BUG();
3088         return NULL;
3089 }
3090
3091 /*
3092  * Unregister hstate attributes from a single node device.
3093  * No-op if no hstate attributes attached.
3094  */
3095 static void hugetlb_unregister_node(struct node *node)
3096 {
3097         struct hstate *h;
3098         struct node_hstate *nhs = &node_hstates[node->dev.id];
3099
3100         if (!nhs->hugepages_kobj)
3101                 return;         /* no hstate attributes */
3102
3103         for_each_hstate(h) {
3104                 int idx = hstate_index(h);
3105                 if (nhs->hstate_kobjs[idx]) {
3106                         kobject_put(nhs->hstate_kobjs[idx]);
3107                         nhs->hstate_kobjs[idx] = NULL;
3108                 }
3109         }
3110
3111         kobject_put(nhs->hugepages_kobj);
3112         nhs->hugepages_kobj = NULL;
3113 }
3114
3115
3116 /*
3117  * Register hstate attributes for a single node device.
3118  * No-op if attributes already registered.
3119  */
3120 static void hugetlb_register_node(struct node *node)
3121 {
3122         struct hstate *h;
3123         struct node_hstate *nhs = &node_hstates[node->dev.id];
3124         int err;
3125
3126         if (nhs->hugepages_kobj)
3127                 return;         /* already allocated */
3128
3129         nhs->hugepages_kobj = kobject_create_and_add("hugepages",
3130                                                         &node->dev.kobj);
3131         if (!nhs->hugepages_kobj)
3132                 return;
3133
3134         for_each_hstate(h) {
3135                 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
3136                                                 nhs->hstate_kobjs,
3137                                                 &per_node_hstate_attr_group);
3138                 if (err) {
3139                         pr_err("HugeTLB: Unable to add hstate %s for node %d\n",
3140                                 h->name, node->dev.id);
3141                         hugetlb_unregister_node(node);
3142                         break;
3143                 }
3144         }
3145 }
3146
3147 /*
3148  * hugetlb init time:  register hstate attributes for all registered node
3149  * devices of nodes that have memory.  All on-line nodes should have
3150  * registered their associated device by this time.
3151  */
3152 static void __init hugetlb_register_all_nodes(void)
3153 {
3154         int nid;
3155
3156         for_each_node_state(nid, N_MEMORY) {
3157                 struct node *node = node_devices[nid];
3158                 if (node->dev.id == nid)
3159                         hugetlb_register_node(node);
3160         }
3161
3162         /*
3163          * Let the node device driver know we're here so it can
3164          * [un]register hstate attributes on node hotplug.
3165          */
3166         register_hugetlbfs_with_node(hugetlb_register_node,
3167                                      hugetlb_unregister_node);
3168 }
3169 #else   /* !CONFIG_NUMA */
3170
3171 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
3172 {
3173         BUG();
3174         if (nidp)
3175                 *nidp = -1;
3176         return NULL;
3177 }
3178
3179 static void hugetlb_register_all_nodes(void) { }
3180
3181 #endif
3182
3183 static int __init hugetlb_init(void)
3184 {
3185         int i;
3186
3187         BUILD_BUG_ON(sizeof_field(struct page, private) * BITS_PER_BYTE <
3188                         __NR_HPAGEFLAGS);
3189
3190         if (!hugepages_supported()) {
3191                 if (hugetlb_max_hstate || default_hstate_max_huge_pages)
3192                         pr_warn("HugeTLB: huge pages not supported, ignoring associated command-line parameters\n");
3193                 return 0;
3194         }
3195
3196         /*
3197          * Make sure HPAGE_SIZE (HUGETLB_PAGE_ORDER) hstate exists.  Some
3198          * architectures depend on setup being done here.
3199          */
3200         hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
3201         if (!parsed_default_hugepagesz) {
3202                 /*
3203                  * If we did not parse a default huge page size, set
3204                  * default_hstate_idx to HPAGE_SIZE hstate. And, if the
3205                  * number of huge pages for this default size was implicitly
3206                  * specified, set that here as well.
3207                  * Note that the implicit setting will overwrite an explicit
3208                  * setting.  A warning will be printed in this case.
3209                  */
3210                 default_hstate_idx = hstate_index(size_to_hstate(HPAGE_SIZE));
3211                 if (default_hstate_max_huge_pages) {
3212                         if (default_hstate.max_huge_pages) {
3213                                 char buf[32];
3214
3215                                 string_get_size(huge_page_size(&default_hstate),
3216                                         1, STRING_UNITS_2, buf, 32);
3217                                 pr_warn("HugeTLB: Ignoring hugepages=%lu associated with %s page size\n",
3218                                         default_hstate.max_huge_pages, buf);
3219                                 pr_warn("HugeTLB: Using hugepages=%lu for number of default huge pages\n",
3220                                         default_hstate_max_huge_pages);
3221                         }
3222                         default_hstate.max_huge_pages =
3223                                 default_hstate_max_huge_pages;
3224                 }
3225         }
3226
3227         hugetlb_cma_check();
3228         hugetlb_init_hstates();
3229         gather_bootmem_prealloc();
3230         report_hugepages();
3231
3232         hugetlb_sysfs_init();
3233         hugetlb_register_all_nodes();
3234         hugetlb_cgroup_file_init();
3235
3236 #ifdef CONFIG_SMP
3237         num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
3238 #else
3239         num_fault_mutexes = 1;
3240 #endif
3241         hugetlb_fault_mutex_table =
3242                 kmalloc_array(num_fault_mutexes, sizeof(struct mutex),
3243                               GFP_KERNEL);
3244         BUG_ON(!hugetlb_fault_mutex_table);
3245
3246         for (i = 0; i < num_fault_mutexes; i++)
3247                 mutex_init(&hugetlb_fault_mutex_table[i]);
3248         return 0;
3249 }
3250 subsys_initcall(hugetlb_init);
3251
3252 /* Overwritten by architectures with more huge page sizes */
3253 bool __init __attribute((weak)) arch_hugetlb_valid_size(unsigned long size)
3254 {
3255         return size == HPAGE_SIZE;
3256 }
3257
3258 void __init hugetlb_add_hstate(unsigned int order)
3259 {
3260         struct hstate *h;
3261         unsigned long i;
3262
3263         if (size_to_hstate(PAGE_SIZE << order)) {
3264                 return;
3265         }
3266         BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
3267         BUG_ON(order == 0);
3268         h = &hstates[hugetlb_max_hstate++];
3269         mutex_init(&h->resize_lock);
3270         h->order = order;
3271         h->mask = ~(huge_page_size(h) - 1);
3272         for (i = 0; i < MAX_NUMNODES; ++i)
3273                 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
3274         INIT_LIST_HEAD(&h->hugepage_activelist);
3275         h->next_nid_to_alloc = first_memory_node;
3276         h->next_nid_to_free = first_memory_node;
3277         snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
3278                                         huge_page_size(h)/1024);
3279
3280         parsed_hstate = h;
3281 }
3282
3283 /*
3284  * hugepages command line processing
3285  * hugepages normally follows a valid hugepagsz or default_hugepagsz
3286  * specification.  If not, ignore the hugepages value.  hugepages can also
3287  * be the first huge page command line  option in which case it implicitly
3288  * specifies the number of huge pages for the default size.
3289  */
3290 static int __init hugepages_setup(char *s)
3291 {
3292         unsigned long *mhp;
3293         static unsigned long *last_mhp;
3294
3295         if (!parsed_valid_hugepagesz) {
3296                 pr_warn("HugeTLB: hugepages=%s does not follow a valid hugepagesz, ignoring\n", s);
3297                 parsed_valid_hugepagesz = true;
3298                 return 0;
3299         }
3300
3301         /*
3302          * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter
3303          * yet, so this hugepages= parameter goes to the "default hstate".
3304          * Otherwise, it goes with the previously parsed hugepagesz or
3305          * default_hugepagesz.
3306          */
3307         else if (!hugetlb_max_hstate)
3308                 mhp = &default_hstate_max_huge_pages;
3309         else
3310                 mhp = &parsed_hstate->max_huge_pages;
3311
3312         if (mhp == last_mhp) {
3313                 pr_warn("HugeTLB: hugepages= specified twice without interleaving hugepagesz=, ignoring hugepages=%s\n", s);
3314                 return 0;
3315         }
3316
3317         if (sscanf(s, "%lu", mhp) <= 0)
3318                 *mhp = 0;
3319
3320         /*
3321          * Global state is always initialized later in hugetlb_init.
3322          * But we need to allocate gigantic hstates here early to still
3323          * use the bootmem allocator.
3324          */
3325         if (hugetlb_max_hstate && hstate_is_gigantic(parsed_hstate))
3326                 hugetlb_hstate_alloc_pages(parsed_hstate);
3327
3328         last_mhp = mhp;
3329
3330         return 1;
3331 }
3332 __setup("hugepages=", hugepages_setup);
3333
3334 /*
3335  * hugepagesz command line processing
3336  * A specific huge page size can only be specified once with hugepagesz.
3337  * hugepagesz is followed by hugepages on the command line.  The global
3338  * variable 'parsed_valid_hugepagesz' is used to determine if prior
3339  * hugepagesz argument was valid.
3340  */
3341 static int __init hugepagesz_setup(char *s)
3342 {
3343         unsigned long size;
3344         struct hstate *h;
3345
3346         parsed_valid_hugepagesz = false;
3347         size = (unsigned long)memparse(s, NULL);
3348
3349         if (!arch_hugetlb_valid_size(size)) {
3350                 pr_err("HugeTLB: unsupported hugepagesz=%s\n", s);
3351                 return 0;
3352         }
3353
3354         h = size_to_hstate(size);
3355         if (h) {
3356                 /*
3357                  * hstate for this size already exists.  This is normally
3358                  * an error, but is allowed if the existing hstate is the
3359                  * default hstate.  More specifically, it is only allowed if
3360                  * the number of huge pages for the default hstate was not
3361                  * previously specified.
3362                  */
3363                 if (!parsed_default_hugepagesz ||  h != &default_hstate ||
3364                     default_hstate.max_huge_pages) {
3365                         pr_warn("HugeTLB: hugepagesz=%s specified twice, ignoring\n", s);
3366                         return 0;
3367                 }
3368
3369                 /*
3370                  * No need to call hugetlb_add_hstate() as hstate already
3371                  * exists.  But, do set parsed_hstate so that a following
3372                  * hugepages= parameter will be applied to this hstate.
3373                  */
3374                 parsed_hstate = h;
3375                 parsed_valid_hugepagesz = true;
3376                 return 1;
3377         }
3378
3379         hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
3380         parsed_valid_hugepagesz = true;
3381         return 1;
3382 }
3383 __setup("hugepagesz=", hugepagesz_setup);
3384
3385 /*
3386  * default_hugepagesz command line input
3387  * Only one instance of default_hugepagesz allowed on command line.
3388  */
3389 static int __init default_hugepagesz_setup(char *s)
3390 {
3391         unsigned long size;
3392
3393         parsed_valid_hugepagesz = false;
3394         if (parsed_default_hugepagesz) {
3395                 pr_err("HugeTLB: default_hugepagesz previously specified, ignoring %s\n", s);
3396                 return 0;
3397         }
3398
3399         size = (unsigned long)memparse(s, NULL);
3400
3401         if (!arch_hugetlb_valid_size(size)) {
3402                 pr_err("HugeTLB: unsupported default_hugepagesz=%s\n", s);
3403                 return 0;
3404         }
3405
3406         hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
3407         parsed_valid_hugepagesz = true;
3408         parsed_default_hugepagesz = true;
3409         default_hstate_idx = hstate_index(size_to_hstate(size));
3410
3411         /*
3412          * The number of default huge pages (for this size) could have been
3413          * specified as the first hugetlb parameter: hugepages=X.  If so,
3414          * then default_hstate_max_huge_pages is set.  If the default huge
3415          * page size is gigantic (>= MAX_ORDER), then the pages must be
3416          * allocated here from bootmem allocator.
3417          */
3418         if (default_hstate_max_huge_pages) {
3419                 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
3420                 if (hstate_is_gigantic(&default_hstate))
3421                         hugetlb_hstate_alloc_pages(&default_hstate);
3422                 default_hstate_max_huge_pages = 0;
3423         }
3424
3425         return 1;
3426 }
3427 __setup("default_hugepagesz=", default_hugepagesz_setup);
3428
3429 static unsigned int allowed_mems_nr(struct hstate *h)
3430 {
3431         int node;
3432         unsigned int nr = 0;
3433         nodemask_t *mpol_allowed;
3434         unsigned int *array = h->free_huge_pages_node;
3435         gfp_t gfp_mask = htlb_alloc_mask(h);
3436
3437         mpol_allowed = policy_nodemask_current(gfp_mask);
3438
3439         for_each_node_mask(node, cpuset_current_mems_allowed) {
3440                 if (!mpol_allowed || node_isset(node, *mpol_allowed))
3441                         nr += array[node];
3442         }
3443
3444         return nr;
3445 }
3446
3447 #ifdef CONFIG_SYSCTL
3448 static int proc_hugetlb_doulongvec_minmax(struct ctl_table *table, int write,
3449                                           void *buffer, size_t *length,
3450                                           loff_t *ppos, unsigned long *out)
3451 {
3452         struct ctl_table dup_table;
3453
3454         /*
3455          * In order to avoid races with __do_proc_doulongvec_minmax(), we
3456          * can duplicate the @table and alter the duplicate of it.
3457          */
3458         dup_table = *table;
3459         dup_table.data = out;
3460
3461         return proc_doulongvec_minmax(&dup_table, write, buffer, length, ppos);
3462 }
3463
3464 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
3465                          struct ctl_table *table, int write,
3466                          void *buffer, size_t *length, loff_t *ppos)
3467 {
3468         struct hstate *h = &default_hstate;
3469         unsigned long tmp = h->max_huge_pages;
3470         int ret;
3471
3472         if (!hugepages_supported())
3473                 return -EOPNOTSUPP;
3474
3475         ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
3476                                              &tmp);
3477         if (ret)
3478                 goto out;
3479
3480         if (write)
3481                 ret = __nr_hugepages_store_common(obey_mempolicy, h,
3482                                                   NUMA_NO_NODE, tmp, *length);
3483 out:
3484         return ret;
3485 }
3486
3487 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
3488                           void *buffer, size_t *length, loff_t *ppos)
3489 {
3490
3491         return hugetlb_sysctl_handler_common(false, table, write,
3492                                                         buffer, length, ppos);
3493 }
3494
3495 #ifdef CONFIG_NUMA
3496 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
3497                           void *buffer, size_t *length, loff_t *ppos)
3498 {
3499         return hugetlb_sysctl_handler_common(true, table, write,
3500                                                         buffer, length, ppos);
3501 }
3502 #endif /* CONFIG_NUMA */
3503
3504 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
3505                 void *buffer, size_t *length, loff_t *ppos)
3506 {
3507         struct hstate *h = &default_hstate;
3508         unsigned long tmp;
3509         int ret;
3510
3511         if (!hugepages_supported())
3512                 return -EOPNOTSUPP;
3513
3514         tmp = h->nr_overcommit_huge_pages;
3515
3516         if (write && hstate_is_gigantic(h))
3517                 return -EINVAL;
3518
3519         ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
3520                                              &tmp);
3521         if (ret)
3522                 goto out;
3523
3524         if (write) {
3525                 spin_lock(&hugetlb_lock);
3526                 h->nr_overcommit_huge_pages = tmp;
3527                 spin_unlock(&hugetlb_lock);
3528         }
3529 out:
3530         return ret;
3531 }
3532
3533 #endif /* CONFIG_SYSCTL */
3534
3535 void hugetlb_report_meminfo(struct seq_file *m)
3536 {
3537         struct hstate *h;
3538         unsigned long total = 0;
3539
3540         if (!hugepages_supported())
3541                 return;
3542
3543         for_each_hstate(h) {
3544                 unsigned long count = h->nr_huge_pages;
3545
3546                 total += huge_page_size(h) * count;
3547
3548                 if (h == &default_hstate)
3549                         seq_printf(m,
3550                                    "HugePages_Total:   %5lu\n"
3551                                    "HugePages_Free:    %5lu\n"
3552                                    "HugePages_Rsvd:    %5lu\n"
3553                                    "HugePages_Surp:    %5lu\n"
3554                                    "Hugepagesize:   %8lu kB\n",
3555                                    count,
3556                                    h->free_huge_pages,
3557                                    h->resv_huge_pages,
3558                                    h->surplus_huge_pages,
3559                                    huge_page_size(h) / SZ_1K);
3560         }
3561
3562         seq_printf(m, "Hugetlb:        %8lu kB\n", total / SZ_1K);
3563 }
3564
3565 int hugetlb_report_node_meminfo(char *buf, int len, int nid)
3566 {
3567         struct hstate *h = &default_hstate;
3568
3569         if (!hugepages_supported())
3570                 return 0;
3571
3572         return sysfs_emit_at(buf, len,
3573                              "Node %d HugePages_Total: %5u\n"
3574                              "Node %d HugePages_Free:  %5u\n"
3575                              "Node %d HugePages_Surp:  %5u\n",
3576                              nid, h->nr_huge_pages_node[nid],
3577                              nid, h->free_huge_pages_node[nid],
3578                              nid, h->surplus_huge_pages_node[nid]);
3579 }
3580
3581 void hugetlb_show_meminfo(void)
3582 {
3583         struct hstate *h;
3584         int nid;
3585
3586         if (!hugepages_supported())
3587                 return;
3588
3589         for_each_node_state(nid, N_MEMORY)
3590                 for_each_hstate(h)
3591                         pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
3592                                 nid,
3593                                 h->nr_huge_pages_node[nid],
3594                                 h->free_huge_pages_node[nid],
3595                                 h->surplus_huge_pages_node[nid],
3596                                 huge_page_size(h) / SZ_1K);
3597 }
3598
3599 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
3600 {
3601         seq_printf(m, "HugetlbPages:\t%8lu kB\n",
3602                    atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
3603 }
3604
3605 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
3606 unsigned long hugetlb_total_pages(void)
3607 {
3608         struct hstate *h;
3609         unsigned long nr_total_pages = 0;
3610
3611         for_each_hstate(h)
3612                 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
3613         return nr_total_pages;
3614 }
3615
3616 static int hugetlb_acct_memory(struct hstate *h, long delta)
3617 {
3618         int ret = -ENOMEM;
3619
3620         if (!delta)
3621                 return 0;
3622
3623         spin_lock(&hugetlb_lock);
3624         /*
3625          * When cpuset is configured, it breaks the strict hugetlb page
3626          * reservation as the accounting is done on a global variable. Such
3627          * reservation is completely rubbish in the presence of cpuset because
3628          * the reservation is not checked against page availability for the
3629          * current cpuset. Application can still potentially OOM'ed by kernel
3630          * with lack of free htlb page in cpuset that the task is in.
3631          * Attempt to enforce strict accounting with cpuset is almost
3632          * impossible (or too ugly) because cpuset is too fluid that
3633          * task or memory node can be dynamically moved between cpusets.
3634          *
3635          * The change of semantics for shared hugetlb mapping with cpuset is
3636          * undesirable. However, in order to preserve some of the semantics,
3637          * we fall back to check against current free page availability as
3638          * a best attempt and hopefully to minimize the impact of changing
3639          * semantics that cpuset has.
3640          *
3641          * Apart from cpuset, we also have memory policy mechanism that
3642          * also determines from which node the kernel will allocate memory
3643          * in a NUMA system. So similar to cpuset, we also should consider
3644          * the memory policy of the current task. Similar to the description
3645          * above.
3646          */
3647         if (delta > 0) {
3648                 if (gather_surplus_pages(h, delta) < 0)
3649                         goto out;
3650
3651                 if (delta > allowed_mems_nr(h)) {
3652                         return_unused_surplus_pages(h, delta);
3653                         goto out;
3654                 }
3655         }
3656
3657         ret = 0;
3658         if (delta < 0)
3659                 return_unused_surplus_pages(h, (unsigned long) -delta);
3660
3661 out:
3662         spin_unlock(&hugetlb_lock);
3663         return ret;
3664 }
3665
3666 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
3667 {
3668         struct resv_map *resv = vma_resv_map(vma);
3669
3670         /*
3671          * This new VMA should share its siblings reservation map if present.
3672          * The VMA will only ever have a valid reservation map pointer where
3673          * it is being copied for another still existing VMA.  As that VMA
3674          * has a reference to the reservation map it cannot disappear until
3675          * after this open call completes.  It is therefore safe to take a
3676          * new reference here without additional locking.
3677          */
3678         if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3679                 kref_get(&resv->refs);
3680 }
3681
3682 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
3683 {
3684         struct hstate *h = hstate_vma(vma);
3685         struct resv_map *resv = vma_resv_map(vma);
3686         struct hugepage_subpool *spool = subpool_vma(vma);
3687         unsigned long reserve, start, end;
3688         long gbl_reserve;
3689
3690         if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3691                 return;
3692
3693         start = vma_hugecache_offset(h, vma, vma->vm_start);
3694         end = vma_hugecache_offset(h, vma, vma->vm_end);
3695
3696         reserve = (end - start) - region_count(resv, start, end);
3697         hugetlb_cgroup_uncharge_counter(resv, start, end);
3698         if (reserve) {
3699                 /*
3700                  * Decrement reserve counts.  The global reserve count may be
3701                  * adjusted if the subpool has a minimum size.
3702                  */
3703                 gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
3704                 hugetlb_acct_memory(h, -gbl_reserve);
3705         }
3706
3707         kref_put(&resv->refs, resv_map_release);
3708 }
3709
3710 static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
3711 {
3712         if (addr & ~(huge_page_mask(hstate_vma(vma))))
3713                 return -EINVAL;
3714         return 0;
3715 }
3716
3717 static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma)
3718 {
3719         return huge_page_size(hstate_vma(vma));
3720 }
3721
3722 /*
3723  * We cannot handle pagefaults against hugetlb pages at all.  They cause
3724  * handle_mm_fault() to try to instantiate regular-sized pages in the
3725  * hugepage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
3726  * this far.
3727  */
3728 static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf)
3729 {
3730         BUG();
3731         return 0;
3732 }
3733
3734 /*
3735  * When a new function is introduced to vm_operations_struct and added
3736  * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops.
3737  * This is because under System V memory model, mappings created via
3738  * shmget/shmat with "huge page" specified are backed by hugetlbfs files,
3739  * their original vm_ops are overwritten with shm_vm_ops.
3740  */
3741 const struct vm_operations_struct hugetlb_vm_ops = {
3742         .fault = hugetlb_vm_op_fault,
3743         .open = hugetlb_vm_op_open,
3744         .close = hugetlb_vm_op_close,
3745         .may_split = hugetlb_vm_op_split,
3746         .pagesize = hugetlb_vm_op_pagesize,
3747 };
3748
3749 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
3750                                 int writable)
3751 {
3752         pte_t entry;
3753
3754         if (writable) {
3755                 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
3756                                          vma->vm_page_prot)));
3757         } else {
3758                 entry = huge_pte_wrprotect(mk_huge_pte(page,
3759                                            vma->vm_page_prot));
3760         }
3761         entry = pte_mkyoung(entry);
3762         entry = pte_mkhuge(entry);
3763         entry = arch_make_huge_pte(entry, vma, page, writable);
3764
3765         return entry;
3766 }
3767
3768 static void set_huge_ptep_writable(struct vm_area_struct *vma,
3769                                    unsigned long address, pte_t *ptep)
3770 {
3771         pte_t entry;
3772
3773         entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
3774         if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
3775                 update_mmu_cache(vma, address, ptep);
3776 }
3777
3778 bool is_hugetlb_entry_migration(pte_t pte)
3779 {
3780         swp_entry_t swp;
3781
3782         if (huge_pte_none(pte) || pte_present(pte))
3783                 return false;
3784         swp = pte_to_swp_entry(pte);
3785         if (is_migration_entry(swp))
3786                 return true;
3787         else
3788                 return false;
3789 }
3790
3791 static bool is_hugetlb_entry_hwpoisoned(pte_t pte)
3792 {
3793         swp_entry_t swp;
3794
3795         if (huge_pte_none(pte) || pte_present(pte))
3796                 return false;
3797         swp = pte_to_swp_entry(pte);
3798         if (is_hwpoison_entry(swp))
3799                 return true;
3800         else
3801                 return false;
3802 }
3803
3804 static void
3805 hugetlb_install_page(struct vm_area_struct *vma, pte_t *ptep, unsigned long addr,
3806                      struct page *new_page)
3807 {
3808         __SetPageUptodate(new_page);
3809         set_huge_pte_at(vma->vm_mm, addr, ptep, make_huge_pte(vma, new_page, 1));
3810         hugepage_add_new_anon_rmap(new_page, vma, addr);
3811         hugetlb_count_add(pages_per_huge_page(hstate_vma(vma)), vma->vm_mm);
3812         ClearHPageRestoreReserve(new_page);
3813         SetHPageMigratable(new_page);
3814 }
3815
3816 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
3817                             struct vm_area_struct *vma)
3818 {
3819         pte_t *src_pte, *dst_pte, entry, dst_entry;
3820         struct page *ptepage;
3821         unsigned long addr;
3822         bool cow = is_cow_mapping(vma->vm_flags);
3823         struct hstate *h = hstate_vma(vma);
3824         unsigned long sz = huge_page_size(h);
3825         unsigned long npages = pages_per_huge_page(h);
3826         struct address_space *mapping = vma->vm_file->f_mapping;
3827         struct mmu_notifier_range range;
3828         int ret = 0;
3829
3830         if (cow) {
3831                 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, src,
3832                                         vma->vm_start,
3833                                         vma->vm_end);
3834                 mmu_notifier_invalidate_range_start(&range);
3835         } else {
3836                 /*
3837                  * For shared mappings i_mmap_rwsem must be held to call
3838                  * huge_pte_alloc, otherwise the returned ptep could go
3839                  * away if part of a shared pmd and another thread calls
3840                  * huge_pmd_unshare.
3841                  */
3842                 i_mmap_lock_read(mapping);
3843         }
3844
3845         for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
3846                 spinlock_t *src_ptl, *dst_ptl;
3847                 src_pte = huge_pte_offset(src, addr, sz);
3848                 if (!src_pte)
3849                         continue;
3850                 dst_pte = huge_pte_alloc(dst, vma, addr, sz);
3851                 if (!dst_pte) {
3852                         ret = -ENOMEM;
3853                         break;
3854                 }
3855
3856                 /*
3857                  * If the pagetables are shared don't copy or take references.
3858                  * dst_pte == src_pte is the common case of src/dest sharing.
3859                  *
3860                  * However, src could have 'unshared' and dst shares with
3861                  * another vma.  If dst_pte !none, this implies sharing.
3862                  * Check here before taking page table lock, and once again
3863                  * after taking the lock below.
3864                  */
3865                 dst_entry = huge_ptep_get(dst_pte);
3866                 if ((dst_pte == src_pte) || !huge_pte_none(dst_entry))
3867                         continue;
3868
3869                 dst_ptl = huge_pte_lock(h, dst, dst_pte);
3870                 src_ptl = huge_pte_lockptr(h, src, src_pte);
3871                 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
3872                 entry = huge_ptep_get(src_pte);
3873                 dst_entry = huge_ptep_get(dst_pte);
3874 again:
3875                 if (huge_pte_none(entry) || !huge_pte_none(dst_entry)) {
3876                         /*
3877                          * Skip if src entry none.  Also, skip in the
3878                          * unlikely case dst entry !none as this implies
3879                          * sharing with another vma.
3880                          */
3881                         ;
3882                 } else if (unlikely(is_hugetlb_entry_migration(entry) ||
3883                                     is_hugetlb_entry_hwpoisoned(entry))) {
3884                         swp_entry_t swp_entry = pte_to_swp_entry(entry);
3885
3886                         if (is_write_migration_entry(swp_entry) && cow) {
3887                                 /*
3888                                  * COW mappings require pages in both
3889                                  * parent and child to be set to read.
3890                                  */
3891                                 make_migration_entry_read(&swp_entry);
3892                                 entry = swp_entry_to_pte(swp_entry);
3893                                 set_huge_swap_pte_at(src, addr, src_pte,
3894                                                      entry, sz);
3895                         }
3896                         set_huge_swap_pte_at(dst, addr, dst_pte, entry, sz);
3897                 } else {
3898                         entry = huge_ptep_get(src_pte);
3899                         ptepage = pte_page(entry);
3900                         get_page(ptepage);
3901
3902                         /*
3903                          * This is a rare case where we see pinned hugetlb
3904                          * pages while they're prone to COW.  We need to do the
3905                          * COW earlier during fork.
3906                          *
3907                          * When pre-allocating the page or copying data, we
3908                          * need to be without the pgtable locks since we could
3909                          * sleep during the process.
3910                          */
3911                         if (unlikely(page_needs_cow_for_dma(vma, ptepage))) {
3912                                 pte_t src_pte_old = entry;
3913                                 struct page *new;
3914
3915                                 spin_unlock(src_ptl);
3916                                 spin_unlock(dst_ptl);
3917                                 /* Do not use reserve as it's private owned */
3918                                 new = alloc_huge_page(vma, addr, 1);
3919                                 if (IS_ERR(new)) {
3920                                         put_page(ptepage);
3921                                         ret = PTR_ERR(new);
3922                                         break;
3923                                 }
3924                                 copy_user_huge_page(new, ptepage, addr, vma,
3925                                                     npages);
3926                                 put_page(ptepage);
3927
3928                                 /* Install the new huge page if src pte stable */
3929                                 dst_ptl = huge_pte_lock(h, dst, dst_pte);
3930                                 src_ptl = huge_pte_lockptr(h, src, src_pte);
3931                                 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
3932                                 entry = huge_ptep_get(src_pte);
3933                                 if (!pte_same(src_pte_old, entry)) {
3934                                         put_page(new);
3935                                         /* dst_entry won't change as in child */
3936                                         goto again;
3937                                 }
3938                                 hugetlb_install_page(vma, dst_pte, addr, new);
3939                                 spin_unlock(src_ptl);
3940                                 spin_unlock(dst_ptl);
3941                                 continue;
3942                         }
3943
3944                         if (cow) {
3945                                 /*
3946                                  * No need to notify as we are downgrading page
3947                                  * table protection not changing it to point
3948                                  * to a new page.
3949                                  *
3950                                  * See Documentation/vm/mmu_notifier.rst
3951                                  */
3952                                 huge_ptep_set_wrprotect(src, addr, src_pte);
3953                         }
3954
3955                         page_dup_rmap(ptepage, true);
3956                         set_huge_pte_at(dst, addr, dst_pte, entry);
3957                         hugetlb_count_add(npages, dst);
3958                 }
3959                 spin_unlock(src_ptl);
3960                 spin_unlock(dst_ptl);
3961         }
3962
3963         if (cow)
3964                 mmu_notifier_invalidate_range_end(&range);
3965         else
3966                 i_mmap_unlock_read(mapping);
3967
3968         return ret;
3969 }
3970
3971 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
3972                             unsigned long start, unsigned long end,
3973                             struct page *ref_page)
3974 {
3975         struct mm_struct *mm = vma->vm_mm;
3976         unsigned long address;
3977         pte_t *ptep;
3978         pte_t pte;
3979         spinlock_t *ptl;
3980         struct page *page;
3981         struct hstate *h = hstate_vma(vma);
3982         unsigned long sz = huge_page_size(h);
3983         struct mmu_notifier_range range;
3984
3985         WARN_ON(!is_vm_hugetlb_page(vma));
3986         BUG_ON(start & ~huge_page_mask(h));
3987         BUG_ON(end & ~huge_page_mask(h));
3988
3989         /*
3990          * This is a hugetlb vma, all the pte entries should point
3991          * to huge page.
3992          */
3993         tlb_change_page_size(tlb, sz);
3994         tlb_start_vma(tlb, vma);
3995
3996         /*
3997          * If sharing possible, alert mmu notifiers of worst case.
3998          */
3999         mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, mm, start,
4000                                 end);
4001         adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
4002         mmu_notifier_invalidate_range_start(&range);
4003         address = start;
4004         for (; address < end; address += sz) {
4005                 ptep = huge_pte_offset(mm, address, sz);
4006                 if (!ptep)
4007                         continue;
4008
4009                 ptl = huge_pte_lock(h, mm, ptep);
4010                 if (huge_pmd_unshare(mm, vma, &address, ptep)) {
4011                         spin_unlock(ptl);
4012                         /*
4013                          * We just unmapped a page of PMDs by clearing a PUD.
4014                          * The caller's TLB flush range should cover this area.
4015                          */
4016                         continue;
4017                 }
4018
4019                 pte = huge_ptep_get(ptep);
4020                 if (huge_pte_none(pte)) {
4021                         spin_unlock(ptl);
4022                         continue;
4023                 }
4024
4025                 /*
4026                  * Migrating hugepage or HWPoisoned hugepage is already
4027                  * unmapped and its refcount is dropped, so just clear pte here.
4028                  */
4029                 if (unlikely(!pte_present(pte))) {
4030                         huge_pte_clear(mm, address, ptep, sz);
4031                         spin_unlock(ptl);
4032                         continue;
4033                 }
4034
4035                 page = pte_page(pte);
4036                 /*
4037                  * If a reference page is supplied, it is because a specific
4038                  * page is being unmapped, not a range. Ensure the page we
4039                  * are about to unmap is the actual page of interest.
4040                  */
4041                 if (ref_page) {
4042                         if (page != ref_page) {
4043                                 spin_unlock(ptl);
4044                                 continue;
4045                         }
4046                         /*
4047                          * Mark the VMA as having unmapped its page so that
4048                          * future faults in this VMA will fail rather than
4049                          * looking like data was lost
4050                          */
4051                         set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
4052                 }
4053
4054                 pte = huge_ptep_get_and_clear(mm, address, ptep);
4055                 tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
4056                 if (huge_pte_dirty(pte))
4057                         set_page_dirty(page);
4058
4059                 hugetlb_count_sub(pages_per_huge_page(h), mm);
4060                 page_remove_rmap(page, true);
4061
4062                 spin_unlock(ptl);
4063                 tlb_remove_page_size(tlb, page, huge_page_size(h));
4064                 /*
4065                  * Bail out after unmapping reference page if supplied
4066                  */
4067                 if (ref_page)
4068                         break;
4069         }
4070         mmu_notifier_invalidate_range_end(&range);
4071         tlb_end_vma(tlb, vma);
4072 }
4073
4074 void __unmap_hugepage_range_final(struct mmu_gather *tlb,
4075                           struct vm_area_struct *vma, unsigned long start,
4076                           unsigned long end, struct page *ref_page)
4077 {
4078         __unmap_hugepage_range(tlb, vma, start, end, ref_page);
4079
4080         /*
4081          * Clear this flag so that x86's huge_pmd_share page_table_shareable
4082          * test will fail on a vma being torn down, and not grab a page table
4083          * on its way out.  We're lucky that the flag has such an appropriate
4084          * name, and can in fact be safely cleared here. We could clear it
4085          * before the __unmap_hugepage_range above, but all that's necessary
4086          * is to clear it before releasing the i_mmap_rwsem. This works
4087          * because in the context this is called, the VMA is about to be
4088          * destroyed and the i_mmap_rwsem is held.
4089          */
4090         vma->vm_flags &= ~VM_MAYSHARE;
4091 }
4092
4093 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
4094                           unsigned long end, struct page *ref_page)
4095 {
4096         struct mmu_gather tlb;
4097
4098         tlb_gather_mmu(&tlb, vma->vm_mm);
4099         __unmap_hugepage_range(&tlb, vma, start, end, ref_page);
4100         tlb_finish_mmu(&tlb);
4101 }
4102
4103 /*
4104  * This is called when the original mapper is failing to COW a MAP_PRIVATE
4105  * mapping it owns the reserve page for. The intention is to unmap the page
4106  * from other VMAs and let the children be SIGKILLed if they are faulting the
4107  * same region.
4108  */
4109 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
4110                               struct page *page, unsigned long address)
4111 {
4112         struct hstate *h = hstate_vma(vma);
4113         struct vm_area_struct *iter_vma;
4114         struct address_space *mapping;
4115         pgoff_t pgoff;
4116
4117         /*
4118          * vm_pgoff is in PAGE_SIZE units, hence the different calculation
4119          * from page cache lookup which is in HPAGE_SIZE units.
4120          */
4121         address = address & huge_page_mask(h);
4122         pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
4123                         vma->vm_pgoff;
4124         mapping = vma->vm_file->f_mapping;
4125
4126         /*
4127          * Take the mapping lock for the duration of the table walk. As
4128          * this mapping should be shared between all the VMAs,
4129          * __unmap_hugepage_range() is called as the lock is already held
4130          */
4131         i_mmap_lock_write(mapping);
4132         vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
4133                 /* Do not unmap the current VMA */
4134                 if (iter_vma == vma)
4135                         continue;
4136
4137                 /*
4138                  * Shared VMAs have their own reserves and do not affect
4139                  * MAP_PRIVATE accounting but it is possible that a shared
4140                  * VMA is using the same page so check and skip such VMAs.
4141                  */
4142                 if (iter_vma->vm_flags & VM_MAYSHARE)
4143                         continue;
4144
4145                 /*
4146                  * Unmap the page from other VMAs without their own reserves.
4147                  * They get marked to be SIGKILLed if they fault in these
4148                  * areas. This is because a future no-page fault on this VMA
4149                  * could insert a zeroed page instead of the data existing
4150                  * from the time of fork. This would look like data corruption
4151                  */
4152                 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
4153                         unmap_hugepage_range(iter_vma, address,
4154                                              address + huge_page_size(h), page);
4155         }
4156         i_mmap_unlock_write(mapping);
4157 }
4158
4159 /*
4160  * Hugetlb_cow() should be called with page lock of the original hugepage held.
4161  * Called with hugetlb_instantiation_mutex held and pte_page locked so we
4162  * cannot race with other handlers or page migration.
4163  * Keep the pte_same checks anyway to make transition from the mutex easier.
4164  */
4165 static vm_fault_t hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
4166                        unsigned long address, pte_t *ptep,
4167                        struct page *pagecache_page, spinlock_t *ptl)
4168 {
4169         pte_t pte;
4170         struct hstate *h = hstate_vma(vma);
4171         struct page *old_page, *new_page;
4172         int outside_reserve = 0;
4173         vm_fault_t ret = 0;
4174         unsigned long haddr = address & huge_page_mask(h);
4175         struct mmu_notifier_range range;
4176
4177         pte = huge_ptep_get(ptep);
4178         old_page = pte_page(pte);
4179
4180 retry_avoidcopy:
4181         /* If no-one else is actually using this page, avoid the copy
4182          * and just make the page writable */
4183         if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
4184                 page_move_anon_rmap(old_page, vma);
4185                 set_huge_ptep_writable(vma, haddr, ptep);
4186                 return 0;
4187         }
4188
4189         /*
4190          * If the process that created a MAP_PRIVATE mapping is about to
4191          * perform a COW due to a shared page count, attempt to satisfy
4192          * the allocation without using the existing reserves. The pagecache
4193          * page is used to determine if the reserve at this address was
4194          * consumed or not. If reserves were used, a partial faulted mapping
4195          * at the time of fork() could consume its reserves on COW instead
4196          * of the full address range.
4197          */
4198         if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
4199                         old_page != pagecache_page)
4200                 outside_reserve = 1;
4201
4202         get_page(old_page);
4203
4204         /*
4205          * Drop page table lock as buddy allocator may be called. It will
4206          * be acquired again before returning to the caller, as expected.
4207          */
4208         spin_unlock(ptl);
4209         new_page = alloc_huge_page(vma, haddr, outside_reserve);
4210
4211         if (IS_ERR(new_page)) {
4212                 /*
4213                  * If a process owning a MAP_PRIVATE mapping fails to COW,
4214                  * it is due to references held by a child and an insufficient
4215                  * huge page pool. To guarantee the original mappers
4216                  * reliability, unmap the page from child processes. The child
4217                  * may get SIGKILLed if it later faults.
4218                  */
4219                 if (outside_reserve) {
4220                         struct address_space *mapping = vma->vm_file->f_mapping;
4221                         pgoff_t idx;
4222                         u32 hash;
4223
4224                         put_page(old_page);
4225                         BUG_ON(huge_pte_none(pte));
4226                         /*
4227                          * Drop hugetlb_fault_mutex and i_mmap_rwsem before
4228                          * unmapping.  unmapping needs to hold i_mmap_rwsem
4229                          * in write mode.  Dropping i_mmap_rwsem in read mode
4230                          * here is OK as COW mappings do not interact with
4231                          * PMD sharing.
4232                          *
4233                          * Reacquire both after unmap operation.
4234                          */
4235                         idx = vma_hugecache_offset(h, vma, haddr);
4236                         hash = hugetlb_fault_mutex_hash(mapping, idx);
4237                         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
4238                         i_mmap_unlock_read(mapping);
4239
4240                         unmap_ref_private(mm, vma, old_page, haddr);
4241
4242                         i_mmap_lock_read(mapping);
4243                         mutex_lock(&hugetlb_fault_mutex_table[hash]);
4244                         spin_lock(ptl);
4245                         ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
4246                         if (likely(ptep &&
4247                                    pte_same(huge_ptep_get(ptep), pte)))
4248                                 goto retry_avoidcopy;
4249                         /*
4250                          * race occurs while re-acquiring page table
4251                          * lock, and our job is done.
4252                          */
4253                         return 0;
4254                 }
4255
4256                 ret = vmf_error(PTR_ERR(new_page));
4257                 goto out_release_old;
4258         }
4259
4260         /*
4261          * When the original hugepage is shared one, it does not have
4262          * anon_vma prepared.
4263          */
4264         if (unlikely(anon_vma_prepare(vma))) {
4265                 ret = VM_FAULT_OOM;
4266                 goto out_release_all;
4267         }
4268
4269         copy_user_huge_page(new_page, old_page, address, vma,
4270                             pages_per_huge_page(h));
4271         __SetPageUptodate(new_page);
4272
4273         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, haddr,
4274                                 haddr + huge_page_size(h));
4275         mmu_notifier_invalidate_range_start(&range);
4276
4277         /*
4278          * Retake the page table lock to check for racing updates
4279          * before the page tables are altered
4280          */
4281         spin_lock(ptl);
4282         ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
4283         if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
4284                 ClearHPageRestoreReserve(new_page);
4285
4286                 /* Break COW */
4287                 huge_ptep_clear_flush(vma, haddr, ptep);
4288                 mmu_notifier_invalidate_range(mm, range.start, range.end);
4289                 set_huge_pte_at(mm, haddr, ptep,
4290                                 make_huge_pte(vma, new_page, 1));
4291                 page_remove_rmap(old_page, true);
4292                 hugepage_add_new_anon_rmap(new_page, vma, haddr);
4293                 SetHPageMigratable(new_page);
4294                 /* Make the old page be freed below */
4295                 new_page = old_page;
4296         }
4297         spin_unlock(ptl);
4298         mmu_notifier_invalidate_range_end(&range);
4299 out_release_all:
4300         restore_reserve_on_error(h, vma, haddr, new_page);
4301         put_page(new_page);
4302 out_release_old:
4303         put_page(old_page);
4304
4305         spin_lock(ptl); /* Caller expects lock to be held */
4306         return ret;
4307 }
4308
4309 /* Return the pagecache page at a given address within a VMA */
4310 static struct page *hugetlbfs_pagecache_page(struct hstate *h,
4311                         struct vm_area_struct *vma, unsigned long address)
4312 {
4313         struct address_space *mapping;
4314         pgoff_t idx;
4315
4316         mapping = vma->vm_file->f_mapping;
4317         idx = vma_hugecache_offset(h, vma, address);
4318
4319         return find_lock_page(mapping, idx);
4320 }
4321
4322 /*
4323  * Return whether there is a pagecache page to back given address within VMA.
4324  * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
4325  */
4326 static bool hugetlbfs_pagecache_present(struct hstate *h,
4327                         struct vm_area_struct *vma, unsigned long address)
4328 {
4329         struct address_space *mapping;
4330         pgoff_t idx;
4331         struct page *page;
4332
4333         mapping = vma->vm_file->f_mapping;
4334         idx = vma_hugecache_offset(h, vma, address);
4335
4336         page = find_get_page(mapping, idx);
4337         if (page)
4338                 put_page(page);
4339         return page != NULL;
4340 }
4341
4342 int huge_add_to_page_cache(struct page *page, struct address_space *mapping,
4343                            pgoff_t idx)
4344 {
4345         struct inode *inode = mapping->host;
4346         struct hstate *h = hstate_inode(inode);
4347         int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
4348
4349         if (err)
4350                 return err;
4351         ClearHPageRestoreReserve(page);
4352
4353         /*
4354          * set page dirty so that it will not be removed from cache/file
4355          * by non-hugetlbfs specific code paths.
4356          */
4357         set_page_dirty(page);
4358
4359         spin_lock(&inode->i_lock);
4360         inode->i_blocks += blocks_per_huge_page(h);
4361         spin_unlock(&inode->i_lock);
4362         return 0;
4363 }
4364
4365 static vm_fault_t hugetlb_no_page(struct mm_struct *mm,
4366                         struct vm_area_struct *vma,
4367                         struct address_space *mapping, pgoff_t idx,
4368                         unsigned long address, pte_t *ptep, unsigned int flags)
4369 {
4370         struct hstate *h = hstate_vma(vma);
4371         vm_fault_t ret = VM_FAULT_SIGBUS;
4372         int anon_rmap = 0;
4373         unsigned long size;
4374         struct page *page;
4375         pte_t new_pte;
4376         spinlock_t *ptl;
4377         unsigned long haddr = address & huge_page_mask(h);
4378         bool new_page = false;
4379
4380         /*
4381          * Currently, we are forced to kill the process in the event the
4382          * original mapper has unmapped pages from the child due to a failed
4383          * COW. Warn that such a situation has occurred as it may not be obvious
4384          */
4385         if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
4386                 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
4387                            current->pid);
4388                 return ret;
4389         }
4390
4391         /*
4392          * We can not race with truncation due to holding i_mmap_rwsem.
4393          * i_size is modified when holding i_mmap_rwsem, so check here
4394          * once for faults beyond end of file.
4395          */
4396         size = i_size_read(mapping->host) >> huge_page_shift(h);
4397         if (idx >= size)
4398                 goto out;
4399
4400 retry:
4401         page = find_lock_page(mapping, idx);
4402         if (!page) {
4403                 /*
4404                  * Check for page in userfault range
4405                  */
4406                 if (userfaultfd_missing(vma)) {
4407                         u32 hash;
4408                         struct vm_fault vmf = {
4409                                 .vma = vma,
4410                                 .address = haddr,
4411                                 .flags = flags,
4412                                 /*
4413                                  * Hard to debug if it ends up being
4414                                  * used by a callee that assumes
4415                                  * something about the other
4416                                  * uninitialized fields... same as in
4417                                  * memory.c
4418                                  */
4419                         };
4420
4421                         /*
4422                          * hugetlb_fault_mutex and i_mmap_rwsem must be
4423                          * dropped before handling userfault.  Reacquire
4424                          * after handling fault to make calling code simpler.
4425                          */
4426                         hash = hugetlb_fault_mutex_hash(mapping, idx);
4427                         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
4428                         i_mmap_unlock_read(mapping);
4429                         ret = handle_userfault(&vmf, VM_UFFD_MISSING);
4430                         i_mmap_lock_read(mapping);
4431                         mutex_lock(&hugetlb_fault_mutex_table[hash]);
4432                         goto out;
4433                 }
4434
4435                 page = alloc_huge_page(vma, haddr, 0);
4436                 if (IS_ERR(page)) {
4437                         /*
4438                          * Returning error will result in faulting task being
4439                          * sent SIGBUS.  The hugetlb fault mutex prevents two
4440                          * tasks from racing to fault in the same page which
4441                          * could result in false unable to allocate errors.
4442                          * Page migration does not take the fault mutex, but
4443                          * does a clear then write of pte's under page table
4444                          * lock.  Page fault code could race with migration,
4445                          * notice the clear pte and try to allocate a page
4446                          * here.  Before returning error, get ptl and make
4447                          * sure there really is no pte entry.
4448                          */
4449                         ptl = huge_pte_lock(h, mm, ptep);
4450                         ret = 0;
4451                         if (huge_pte_none(huge_ptep_get(ptep)))
4452                                 ret = vmf_error(PTR_ERR(page));
4453                         spin_unlock(ptl);
4454                         goto out;
4455                 }
4456                 clear_huge_page(page, address, pages_per_huge_page(h));
4457                 __SetPageUptodate(page);
4458                 new_page = true;
4459
4460                 if (vma->vm_flags & VM_MAYSHARE) {
4461                         int err = huge_add_to_page_cache(page, mapping, idx);
4462                         if (err) {
4463                                 put_page(page);
4464                                 if (err == -EEXIST)
4465                                         goto retry;
4466                                 goto out;
4467                         }
4468                 } else {
4469                         lock_page(page);
4470                         if (unlikely(anon_vma_prepare(vma))) {
4471                                 ret = VM_FAULT_OOM;
4472                                 goto backout_unlocked;
4473                         }
4474                         anon_rmap = 1;
4475                 }
4476         } else {
4477                 /*
4478                  * If memory error occurs between mmap() and fault, some process
4479                  * don't have hwpoisoned swap entry for errored virtual address.
4480                  * So we need to block hugepage fault by PG_hwpoison bit check.
4481                  */
4482                 if (unlikely(PageHWPoison(page))) {
4483                         ret = VM_FAULT_HWPOISON_LARGE |
4484                                 VM_FAULT_SET_HINDEX(hstate_index(h));
4485                         goto backout_unlocked;
4486                 }
4487         }
4488
4489         /*
4490          * If we are going to COW a private mapping later, we examine the
4491          * pending reservations for this page now. This will ensure that
4492          * any allocations necessary to record that reservation occur outside
4493          * the spinlock.
4494          */
4495         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
4496                 if (vma_needs_reservation(h, vma, haddr) < 0) {
4497                         ret = VM_FAULT_OOM;
4498                         goto backout_unlocked;
4499                 }
4500                 /* Just decrements count, does not deallocate */
4501                 vma_end_reservation(h, vma, haddr);
4502         }
4503
4504         ptl = huge_pte_lock(h, mm, ptep);
4505         ret = 0;
4506         if (!huge_pte_none(huge_ptep_get(ptep)))
4507                 goto backout;
4508
4509         if (anon_rmap) {
4510                 ClearHPageRestoreReserve(page);
4511                 hugepage_add_new_anon_rmap(page, vma, haddr);
4512         } else
4513                 page_dup_rmap(page, true);
4514         new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
4515                                 && (vma->vm_flags & VM_SHARED)));
4516         set_huge_pte_at(mm, haddr, ptep, new_pte);
4517
4518         hugetlb_count_add(pages_per_huge_page(h), mm);
4519         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
4520                 /* Optimization, do the COW without a second fault */
4521                 ret = hugetlb_cow(mm, vma, address, ptep, page, ptl);
4522         }
4523
4524         spin_unlock(ptl);
4525
4526         /*
4527          * Only set HPageMigratable in newly allocated pages.  Existing pages
4528          * found in the pagecache may not have HPageMigratableset if they have
4529          * been isolated for migration.
4530          */
4531         if (new_page)
4532                 SetHPageMigratable(page);
4533
4534         unlock_page(page);
4535 out:
4536         return ret;
4537
4538 backout:
4539         spin_unlock(ptl);
4540 backout_unlocked:
4541         unlock_page(page);
4542         restore_reserve_on_error(h, vma, haddr, page);
4543         put_page(page);
4544         goto out;
4545 }
4546
4547 #ifdef CONFIG_SMP
4548 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
4549 {
4550         unsigned long key[2];
4551         u32 hash;
4552
4553         key[0] = (unsigned long) mapping;
4554         key[1] = idx;
4555
4556         hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0);
4557
4558         return hash & (num_fault_mutexes - 1);
4559 }
4560 #else
4561 /*
4562  * For uniprocessor systems we always use a single mutex, so just
4563  * return 0 and avoid the hashing overhead.
4564  */
4565 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
4566 {
4567         return 0;
4568 }
4569 #endif
4570
4571 vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
4572                         unsigned long address, unsigned int flags)
4573 {
4574         pte_t *ptep, entry;
4575         spinlock_t *ptl;
4576         vm_fault_t ret;
4577         u32 hash;
4578         pgoff_t idx;
4579         struct page *page = NULL;
4580         struct page *pagecache_page = NULL;
4581         struct hstate *h = hstate_vma(vma);
4582         struct address_space *mapping;
4583         int need_wait_lock = 0;
4584         unsigned long haddr = address & huge_page_mask(h);
4585
4586         ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
4587         if (ptep) {
4588                 /*
4589                  * Since we hold no locks, ptep could be stale.  That is
4590                  * OK as we are only making decisions based on content and
4591                  * not actually modifying content here.
4592                  */
4593                 entry = huge_ptep_get(ptep);
4594                 if (unlikely(is_hugetlb_entry_migration(entry))) {
4595                         migration_entry_wait_huge(vma, mm, ptep);
4596                         return 0;
4597                 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
4598                         return VM_FAULT_HWPOISON_LARGE |
4599                                 VM_FAULT_SET_HINDEX(hstate_index(h));
4600         }
4601
4602         /*
4603          * Acquire i_mmap_rwsem before calling huge_pte_alloc and hold
4604          * until finished with ptep.  This serves two purposes:
4605          * 1) It prevents huge_pmd_unshare from being called elsewhere
4606          *    and making the ptep no longer valid.
4607          * 2) It synchronizes us with i_size modifications during truncation.
4608          *
4609          * ptep could have already be assigned via huge_pte_offset.  That
4610          * is OK, as huge_pte_alloc will return the same value unless
4611          * something has changed.
4612          */
4613         mapping = vma->vm_file->f_mapping;
4614         i_mmap_lock_read(mapping);
4615         ptep = huge_pte_alloc(mm, vma, haddr, huge_page_size(h));
4616         if (!ptep) {
4617                 i_mmap_unlock_read(mapping);
4618                 return VM_FAULT_OOM;
4619         }
4620
4621         /*
4622          * Serialize hugepage allocation and instantiation, so that we don't
4623          * get spurious allocation failures if two CPUs race to instantiate
4624          * the same page in the page cache.
4625          */
4626         idx = vma_hugecache_offset(h, vma, haddr);
4627         hash = hugetlb_fault_mutex_hash(mapping, idx);
4628         mutex_lock(&hugetlb_fault_mutex_table[hash]);
4629
4630         entry = huge_ptep_get(ptep);
4631         if (huge_pte_none(entry)) {
4632                 ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
4633                 goto out_mutex;
4634         }
4635
4636         ret = 0;
4637
4638         /*
4639          * entry could be a migration/hwpoison entry at this point, so this
4640          * check prevents the kernel from going below assuming that we have
4641          * an active hugepage in pagecache. This goto expects the 2nd page
4642          * fault, and is_hugetlb_entry_(migration|hwpoisoned) check will
4643          * properly handle it.
4644          */
4645         if (!pte_present(entry))
4646                 goto out_mutex;
4647
4648         /*
4649          * If we are going to COW the mapping later, we examine the pending
4650          * reservations for this page now. This will ensure that any
4651          * allocations necessary to record that reservation occur outside the
4652          * spinlock. For private mappings, we also lookup the pagecache
4653          * page now as it is used to determine if a reservation has been
4654          * consumed.
4655          */
4656         if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
4657                 if (vma_needs_reservation(h, vma, haddr) < 0) {
4658                         ret = VM_FAULT_OOM;
4659                         goto out_mutex;
4660                 }
4661                 /* Just decrements count, does not deallocate */
4662                 vma_end_reservation(h, vma, haddr);
4663
4664                 if (!(vma->vm_flags & VM_MAYSHARE))
4665                         pagecache_page = hugetlbfs_pagecache_page(h,
4666                                                                 vma, haddr);
4667         }
4668
4669         ptl = huge_pte_lock(h, mm, ptep);
4670
4671         /* Check for a racing update before calling hugetlb_cow */
4672         if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
4673                 goto out_ptl;
4674
4675         /*
4676          * hugetlb_cow() requires page locks of pte_page(entry) and
4677          * pagecache_page, so here we need take the former one
4678          * when page != pagecache_page or !pagecache_page.
4679          */
4680         page = pte_page(entry);
4681         if (page != pagecache_page)
4682                 if (!trylock_page(page)) {
4683                         need_wait_lock = 1;
4684                         goto out_ptl;
4685                 }
4686
4687         get_page(page);
4688
4689         if (flags & FAULT_FLAG_WRITE) {
4690                 if (!huge_pte_write(entry)) {
4691                         ret = hugetlb_cow(mm, vma, address, ptep,
4692                                           pagecache_page, ptl);
4693                         goto out_put_page;
4694                 }
4695                 entry = huge_pte_mkdirty(entry);
4696         }
4697         entry = pte_mkyoung(entry);
4698         if (huge_ptep_set_access_flags(vma, haddr, ptep, entry,
4699                                                 flags & FAULT_FLAG_WRITE))
4700                 update_mmu_cache(vma, haddr, ptep);
4701 out_put_page:
4702         if (page != pagecache_page)
4703                 unlock_page(page);
4704         put_page(page);
4705 out_ptl:
4706         spin_unlock(ptl);
4707
4708         if (pagecache_page) {
4709                 unlock_page(pagecache_page);
4710                 put_page(pagecache_page);
4711         }
4712 out_mutex:
4713         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
4714         i_mmap_unlock_read(mapping);
4715         /*
4716          * Generally it's safe to hold refcount during waiting page lock. But
4717          * here we just wait to defer the next page fault to avoid busy loop and
4718          * the page is not used after unlocked before returning from the current
4719          * page fault. So we are safe from accessing freed page, even if we wait
4720          * here without taking refcount.
4721          */
4722         if (need_wait_lock)
4723                 wait_on_page_locked(page);
4724         return ret;
4725 }
4726
4727 /*
4728  * Used by userfaultfd UFFDIO_COPY.  Based on mcopy_atomic_pte with
4729  * modifications for huge pages.
4730  */
4731 int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm,
4732                             pte_t *dst_pte,
4733                             struct vm_area_struct *dst_vma,
4734                             unsigned long dst_addr,
4735                             unsigned long src_addr,
4736                             struct page **pagep)
4737 {
4738         struct address_space *mapping;
4739         pgoff_t idx;
4740         unsigned long size;
4741         int vm_shared = dst_vma->vm_flags & VM_SHARED;
4742         struct hstate *h = hstate_vma(dst_vma);
4743         pte_t _dst_pte;
4744         spinlock_t *ptl;
4745         int ret;
4746         struct page *page;
4747
4748         if (!*pagep) {
4749                 ret = -ENOMEM;
4750                 page = alloc_huge_page(dst_vma, dst_addr, 0);
4751                 if (IS_ERR(page))
4752                         goto out;
4753
4754                 ret = copy_huge_page_from_user(page,
4755                                                 (const void __user *) src_addr,
4756                                                 pages_per_huge_page(h), false);
4757
4758                 /* fallback to copy_from_user outside mmap_lock */
4759                 if (unlikely(ret)) {
4760                         ret = -ENOENT;
4761                         *pagep = page;
4762                         /* don't free the page */
4763                         goto out;
4764                 }
4765         } else {
4766                 page = *pagep;
4767                 *pagep = NULL;
4768         }
4769
4770         /*
4771          * The memory barrier inside __SetPageUptodate makes sure that
4772          * preceding stores to the page contents become visible before
4773          * the set_pte_at() write.
4774          */
4775         __SetPageUptodate(page);
4776
4777         mapping = dst_vma->vm_file->f_mapping;
4778         idx = vma_hugecache_offset(h, dst_vma, dst_addr);
4779
4780         /*
4781          * If shared, add to page cache
4782          */
4783         if (vm_shared) {
4784                 size = i_size_read(mapping->host) >> huge_page_shift(h);
4785                 ret = -EFAULT;
4786                 if (idx >= size)
4787                         goto out_release_nounlock;
4788
4789                 /*
4790                  * Serialization between remove_inode_hugepages() and
4791                  * huge_add_to_page_cache() below happens through the
4792                  * hugetlb_fault_mutex_table that here must be hold by
4793                  * the caller.
4794                  */
4795                 ret = huge_add_to_page_cache(page, mapping, idx);
4796                 if (ret)
4797                         goto out_release_nounlock;
4798         }
4799
4800         ptl = huge_pte_lockptr(h, dst_mm, dst_pte);
4801         spin_lock(ptl);
4802
4803         /*
4804          * Recheck the i_size after holding PT lock to make sure not
4805          * to leave any page mapped (as page_mapped()) beyond the end
4806          * of the i_size (remove_inode_hugepages() is strict about
4807          * enforcing that). If we bail out here, we'll also leave a
4808          * page in the radix tree in the vm_shared case beyond the end
4809          * of the i_size, but remove_inode_hugepages() will take care
4810          * of it as soon as we drop the hugetlb_fault_mutex_table.
4811          */
4812         size = i_size_read(mapping->host) >> huge_page_shift(h);
4813         ret = -EFAULT;
4814         if (idx >= size)
4815                 goto out_release_unlock;
4816
4817         ret = -EEXIST;
4818         if (!huge_pte_none(huge_ptep_get(dst_pte)))
4819                 goto out_release_unlock;
4820
4821         if (vm_shared) {
4822                 page_dup_rmap(page, true);
4823         } else {
4824                 ClearHPageRestoreReserve(page);
4825                 hugepage_add_new_anon_rmap(page, dst_vma, dst_addr);
4826         }
4827
4828         _dst_pte = make_huge_pte(dst_vma, page, dst_vma->vm_flags & VM_WRITE);
4829         if (dst_vma->vm_flags & VM_WRITE)
4830                 _dst_pte = huge_pte_mkdirty(_dst_pte);
4831         _dst_pte = pte_mkyoung(_dst_pte);
4832
4833         set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
4834
4835         (void)huge_ptep_set_access_flags(dst_vma, dst_addr, dst_pte, _dst_pte,
4836                                         dst_vma->vm_flags & VM_WRITE);
4837         hugetlb_count_add(pages_per_huge_page(h), dst_mm);
4838
4839         /* No need to invalidate - it was non-present before */
4840         update_mmu_cache(dst_vma, dst_addr, dst_pte);
4841
4842         spin_unlock(ptl);
4843         SetHPageMigratable(page);
4844         if (vm_shared)
4845                 unlock_page(page);
4846         ret = 0;
4847 out:
4848         return ret;
4849 out_release_unlock:
4850         spin_unlock(ptl);
4851         if (vm_shared)
4852                 unlock_page(page);
4853 out_release_nounlock:
4854         put_page(page);
4855         goto out;
4856 }
4857
4858 static void record_subpages_vmas(struct page *page, struct vm_area_struct *vma,
4859                                  int refs, struct page **pages,
4860                                  struct vm_area_struct **vmas)
4861 {
4862         int nr;
4863
4864         for (nr = 0; nr < refs; nr++) {
4865                 if (likely(pages))
4866                         pages[nr] = mem_map_offset(page, nr);
4867                 if (vmas)
4868                         vmas[nr] = vma;
4869         }
4870 }
4871
4872 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
4873                          struct page **pages, struct vm_area_struct **vmas,
4874                          unsigned long *position, unsigned long *nr_pages,
4875                          long i, unsigned int flags, int *locked)
4876 {
4877         unsigned long pfn_offset;
4878         unsigned long vaddr = *position;
4879         unsigned long remainder = *nr_pages;
4880         struct hstate *h = hstate_vma(vma);
4881         int err = -EFAULT, refs;
4882
4883         while (vaddr < vma->vm_end && remainder) {
4884                 pte_t *pte;
4885                 spinlock_t *ptl = NULL;
4886                 int absent;
4887                 struct page *page;
4888
4889                 /*
4890                  * If we have a pending SIGKILL, don't keep faulting pages and
4891                  * potentially allocating memory.
4892                  */
4893                 if (fatal_signal_pending(current)) {
4894                         remainder = 0;
4895                         break;
4896                 }
4897
4898                 /*
4899                  * Some archs (sparc64, sh*) have multiple pte_ts to
4900                  * each hugepage.  We have to make sure we get the
4901                  * first, for the page indexing below to work.
4902                  *
4903                  * Note that page table lock is not held when pte is null.
4904                  */
4905                 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h),
4906                                       huge_page_size(h));
4907                 if (pte)
4908                         ptl = huge_pte_lock(h, mm, pte);
4909                 absent = !pte || huge_pte_none(huge_ptep_get(pte));
4910
4911                 /*
4912                  * When coredumping, it suits get_dump_page if we just return
4913                  * an error where there's an empty slot with no huge pagecache
4914                  * to back it.  This way, we avoid allocating a hugepage, and
4915                  * the sparse dumpfile avoids allocating disk blocks, but its
4916                  * huge holes still show up with zeroes where they need to be.
4917                  */
4918                 if (absent && (flags & FOLL_DUMP) &&
4919                     !hugetlbfs_pagecache_present(h, vma, vaddr)) {
4920                         if (pte)
4921                                 spin_unlock(ptl);
4922                         remainder = 0;
4923                         break;
4924                 }
4925
4926                 /*
4927                  * We need call hugetlb_fault for both hugepages under migration
4928                  * (in which case hugetlb_fault waits for the migration,) and
4929                  * hwpoisoned hugepages (in which case we need to prevent the
4930                  * caller from accessing to them.) In order to do this, we use
4931                  * here is_swap_pte instead of is_hugetlb_entry_migration and
4932                  * is_hugetlb_entry_hwpoisoned. This is because it simply covers
4933                  * both cases, and because we can't follow correct pages
4934                  * directly from any kind of swap entries.
4935                  */
4936                 if (absent || is_swap_pte(huge_ptep_get(pte)) ||
4937                     ((flags & FOLL_WRITE) &&
4938                       !huge_pte_write(huge_ptep_get(pte)))) {
4939                         vm_fault_t ret;
4940                         unsigned int fault_flags = 0;
4941
4942                         if (pte)
4943                                 spin_unlock(ptl);
4944                         if (flags & FOLL_WRITE)
4945                                 fault_flags |= FAULT_FLAG_WRITE;
4946                         if (locked)
4947                                 fault_flags |= FAULT_FLAG_ALLOW_RETRY |
4948                                         FAULT_FLAG_KILLABLE;
4949                         if (flags & FOLL_NOWAIT)
4950                                 fault_flags |= FAULT_FLAG_ALLOW_RETRY |
4951                                         FAULT_FLAG_RETRY_NOWAIT;
4952                         if (flags & FOLL_TRIED) {
4953                                 /*
4954                                  * Note: FAULT_FLAG_ALLOW_RETRY and
4955                                  * FAULT_FLAG_TRIED can co-exist
4956                                  */
4957                                 fault_flags |= FAULT_FLAG_TRIED;
4958                         }
4959                         ret = hugetlb_fault(mm, vma, vaddr, fault_flags);
4960                         if (ret & VM_FAULT_ERROR) {
4961                                 err = vm_fault_to_errno(ret, flags);
4962                                 remainder = 0;
4963                                 break;
4964                         }
4965                         if (ret & VM_FAULT_RETRY) {
4966                                 if (locked &&
4967                                     !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
4968                                         *locked = 0;
4969                                 *nr_pages = 0;
4970                                 /*
4971                                  * VM_FAULT_RETRY must not return an
4972                                  * error, it will return zero
4973                                  * instead.
4974                                  *
4975                                  * No need to update "position" as the
4976                                  * caller will not check it after
4977                                  * *nr_pages is set to 0.
4978                                  */
4979                                 return i;
4980                         }
4981                         continue;
4982                 }
4983
4984                 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
4985                 page = pte_page(huge_ptep_get(pte));
4986
4987                 /*
4988                  * If subpage information not requested, update counters
4989                  * and skip the same_page loop below.
4990                  */
4991                 if (!pages && !vmas && !pfn_offset &&
4992                     (vaddr + huge_page_size(h) < vma->vm_end) &&
4993                     (remainder >= pages_per_huge_page(h))) {
4994                         vaddr += huge_page_size(h);
4995                         remainder -= pages_per_huge_page(h);
4996                         i += pages_per_huge_page(h);
4997                         spin_unlock(ptl);
4998                         continue;
4999                 }
5000
5001                 refs = min3(pages_per_huge_page(h) - pfn_offset,
5002                             (vma->vm_end - vaddr) >> PAGE_SHIFT, remainder);
5003
5004                 if (pages || vmas)
5005                         record_subpages_vmas(mem_map_offset(page, pfn_offset),
5006                                              vma, refs,
5007                                              likely(pages) ? pages + i : NULL,
5008                                              vmas ? vmas + i : NULL);
5009
5010                 if (pages) {
5011                         /*
5012                          * try_grab_compound_head() should always succeed here,
5013                          * because: a) we hold the ptl lock, and b) we've just
5014                          * checked that the huge page is present in the page
5015                          * tables. If the huge page is present, then the tail
5016                          * pages must also be present. The ptl prevents the
5017                          * head page and tail pages from being rearranged in
5018                          * any way. So this page must be available at this
5019                          * point, unless the page refcount overflowed:
5020                          */
5021                         if (WARN_ON_ONCE(!try_grab_compound_head(pages[i],
5022                                                                  refs,
5023                                                                  flags))) {
5024                                 spin_unlock(ptl);
5025                                 remainder = 0;
5026                                 err = -ENOMEM;
5027                                 break;
5028                         }
5029                 }
5030
5031                 vaddr += (refs << PAGE_SHIFT);
5032                 remainder -= refs;
5033                 i += refs;
5034
5035                 spin_unlock(ptl);
5036         }
5037         *nr_pages = remainder;
5038         /*
5039          * setting position is actually required only if remainder is
5040          * not zero but it's faster not to add a "if (remainder)"
5041          * branch.
5042          */
5043         *position = vaddr;
5044
5045         return i ? i : err;
5046 }
5047
5048 unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
5049                 unsigned long address, unsigned long end, pgprot_t newprot)
5050 {
5051         struct mm_struct *mm = vma->vm_mm;
5052         unsigned long start = address;
5053         pte_t *ptep;
5054         pte_t pte;
5055         struct hstate *h = hstate_vma(vma);
5056         unsigned long pages = 0;
5057         bool shared_pmd = false;
5058         struct mmu_notifier_range range;
5059
5060         /*
5061          * In the case of shared PMDs, the area to flush could be beyond
5062          * start/end.  Set range.start/range.end to cover the maximum possible
5063          * range if PMD sharing is possible.
5064          */
5065         mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA,
5066                                 0, vma, mm, start, end);
5067         adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
5068
5069         BUG_ON(address >= end);
5070         flush_cache_range(vma, range.start, range.end);
5071
5072         mmu_notifier_invalidate_range_start(&range);
5073         i_mmap_lock_write(vma->vm_file->f_mapping);
5074         for (; address < end; address += huge_page_size(h)) {
5075                 spinlock_t *ptl;
5076                 ptep = huge_pte_offset(mm, address, huge_page_size(h));
5077                 if (!ptep)
5078                         continue;
5079                 ptl = huge_pte_lock(h, mm, ptep);
5080                 if (huge_pmd_unshare(mm, vma, &address, ptep)) {
5081                         pages++;
5082                         spin_unlock(ptl);
5083                         shared_pmd = true;
5084                         continue;
5085                 }
5086                 pte = huge_ptep_get(ptep);
5087                 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
5088                         spin_unlock(ptl);
5089                         continue;
5090                 }
5091                 if (unlikely(is_hugetlb_entry_migration(pte))) {
5092                         swp_entry_t entry = pte_to_swp_entry(pte);
5093
5094                         if (is_write_migration_entry(entry)) {
5095                                 pte_t newpte;
5096
5097                                 make_migration_entry_read(&entry);
5098                                 newpte = swp_entry_to_pte(entry);
5099                                 set_huge_swap_pte_at(mm, address, ptep,
5100                                                      newpte, huge_page_size(h));
5101                                 pages++;
5102                         }
5103                         spin_unlock(ptl);
5104                         continue;
5105                 }
5106                 if (!huge_pte_none(pte)) {
5107                         pte_t old_pte;
5108
5109                         old_pte = huge_ptep_modify_prot_start(vma, address, ptep);
5110                         pte = pte_mkhuge(huge_pte_modify(old_pte, newprot));
5111                         pte = arch_make_huge_pte(pte, vma, NULL, 0);
5112                         huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte);
5113                         pages++;
5114                 }
5115                 spin_unlock(ptl);
5116         }
5117         /*
5118          * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
5119          * may have cleared our pud entry and done put_page on the page table:
5120          * once we release i_mmap_rwsem, another task can do the final put_page
5121          * and that page table be reused and filled with junk.  If we actually
5122          * did unshare a page of pmds, flush the range corresponding to the pud.
5123          */
5124         if (shared_pmd)
5125                 flush_hugetlb_tlb_range(vma, range.start, range.end);
5126         else
5127                 flush_hugetlb_tlb_range(vma, start, end);
5128         /*
5129          * No need to call mmu_notifier_invalidate_range() we are downgrading
5130          * page table protection not changing it to point to a new page.
5131          *
5132          * See Documentation/vm/mmu_notifier.rst
5133          */
5134         i_mmap_unlock_write(vma->vm_file->f_mapping);
5135         mmu_notifier_invalidate_range_end(&range);
5136
5137         return pages << h->order;
5138 }
5139
5140 /* Return true if reservation was successful, false otherwise.  */
5141 bool hugetlb_reserve_pages(struct inode *inode,
5142                                         long from, long to,
5143                                         struct vm_area_struct *vma,
5144                                         vm_flags_t vm_flags)
5145 {
5146         long chg, add = -1;
5147         struct hstate *h = hstate_inode(inode);
5148         struct hugepage_subpool *spool = subpool_inode(inode);
5149         struct resv_map *resv_map;
5150         struct hugetlb_cgroup *h_cg = NULL;
5151         long gbl_reserve, regions_needed = 0;
5152
5153         /* This should never happen */
5154         if (from > to) {
5155                 VM_WARN(1, "%s called with a negative range\n", __func__);
5156                 return false;
5157         }
5158
5159         /*
5160          * Only apply hugepage reservation if asked. At fault time, an
5161          * attempt will be made for VM_NORESERVE to allocate a page
5162          * without using reserves
5163          */
5164         if (vm_flags & VM_NORESERVE)
5165                 return true;
5166
5167         /*
5168          * Shared mappings base their reservation on the number of pages that
5169          * are already allocated on behalf of the file. Private mappings need
5170          * to reserve the full area even if read-only as mprotect() may be
5171          * called to make the mapping read-write. Assume !vma is a shm mapping
5172          */
5173         if (!vma || vma->vm_flags & VM_MAYSHARE) {
5174                 /*
5175                  * resv_map can not be NULL as hugetlb_reserve_pages is only
5176                  * called for inodes for which resv_maps were created (see
5177                  * hugetlbfs_get_inode).
5178                  */
5179                 resv_map = inode_resv_map(inode);
5180
5181                 chg = region_chg(resv_map, from, to, &regions_needed);
5182
5183         } else {
5184                 /* Private mapping. */
5185                 resv_map = resv_map_alloc();
5186                 if (!resv_map)
5187                         return false;
5188
5189                 chg = to - from;
5190
5191                 set_vma_resv_map(vma, resv_map);
5192                 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
5193         }
5194
5195         if (chg < 0)
5196                 goto out_err;
5197
5198         if (hugetlb_cgroup_charge_cgroup_rsvd(hstate_index(h),
5199                                 chg * pages_per_huge_page(h), &h_cg) < 0)
5200                 goto out_err;
5201
5202         if (vma && !(vma->vm_flags & VM_MAYSHARE) && h_cg) {
5203                 /* For private mappings, the hugetlb_cgroup uncharge info hangs
5204                  * of the resv_map.
5205                  */
5206                 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, h_cg, h);
5207         }
5208
5209         /*
5210          * There must be enough pages in the subpool for the mapping. If
5211          * the subpool has a minimum size, there may be some global
5212          * reservations already in place (gbl_reserve).
5213          */
5214         gbl_reserve = hugepage_subpool_get_pages(spool, chg);
5215         if (gbl_reserve < 0)
5216                 goto out_uncharge_cgroup;
5217
5218         /*
5219          * Check enough hugepages are available for the reservation.
5220          * Hand the pages back to the subpool if there are not
5221          */
5222         if (hugetlb_acct_memory(h, gbl_reserve) < 0)
5223                 goto out_put_pages;
5224
5225         /*
5226          * Account for the reservations made. Shared mappings record regions
5227          * that have reservations as they are shared by multiple VMAs.
5228          * When the last VMA disappears, the region map says how much
5229          * the reservation was and the page cache tells how much of
5230          * the reservation was consumed. Private mappings are per-VMA and
5231          * only the consumed reservations are tracked. When the VMA
5232          * disappears, the original reservation is the VMA size and the
5233          * consumed reservations are stored in the map. Hence, nothing
5234          * else has to be done for private mappings here
5235          */
5236         if (!vma || vma->vm_flags & VM_MAYSHARE) {
5237                 add = region_add(resv_map, from, to, regions_needed, h, h_cg);
5238
5239                 if (unlikely(add < 0)) {
5240                         hugetlb_acct_memory(h, -gbl_reserve);
5241                         goto out_put_pages;
5242                 } else if (unlikely(chg > add)) {
5243                         /*
5244                          * pages in this range were added to the reserve
5245                          * map between region_chg and region_add.  This
5246                          * indicates a race with alloc_huge_page.  Adjust
5247                          * the subpool and reserve counts modified above
5248                          * based on the difference.
5249                          */
5250                         long rsv_adjust;
5251
5252                         /*
5253                          * hugetlb_cgroup_uncharge_cgroup_rsvd() will put the
5254                          * reference to h_cg->css. See comment below for detail.
5255                          */
5256                         hugetlb_cgroup_uncharge_cgroup_rsvd(
5257                                 hstate_index(h),
5258                                 (chg - add) * pages_per_huge_page(h), h_cg);
5259
5260                         rsv_adjust = hugepage_subpool_put_pages(spool,
5261                                                                 chg - add);
5262                         hugetlb_acct_memory(h, -rsv_adjust);
5263                 } else if (h_cg) {
5264                         /*
5265                          * The file_regions will hold their own reference to
5266                          * h_cg->css. So we should release the reference held
5267                          * via hugetlb_cgroup_charge_cgroup_rsvd() when we are
5268                          * done.
5269                          */
5270                         hugetlb_cgroup_put_rsvd_cgroup(h_cg);
5271                 }
5272         }
5273         return true;
5274
5275 out_put_pages:
5276         /* put back original number of pages, chg */
5277         (void)hugepage_subpool_put_pages(spool, chg);
5278 out_uncharge_cgroup:
5279         hugetlb_cgroup_uncharge_cgroup_rsvd(hstate_index(h),
5280                                             chg * pages_per_huge_page(h), h_cg);
5281 out_err:
5282         if (!vma || vma->vm_flags & VM_MAYSHARE)
5283                 /* Only call region_abort if the region_chg succeeded but the
5284                  * region_add failed or didn't run.
5285                  */
5286                 if (chg >= 0 && add < 0)
5287                         region_abort(resv_map, from, to, regions_needed);
5288         if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
5289                 kref_put(&resv_map->refs, resv_map_release);
5290         return false;
5291 }
5292
5293 long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
5294                                                                 long freed)
5295 {
5296         struct hstate *h = hstate_inode(inode);
5297         struct resv_map *resv_map = inode_resv_map(inode);
5298         long chg = 0;
5299         struct hugepage_subpool *spool = subpool_inode(inode);
5300         long gbl_reserve;
5301
5302         /*
5303          * Since this routine can be called in the evict inode path for all
5304          * hugetlbfs inodes, resv_map could be NULL.
5305          */
5306         if (resv_map) {
5307                 chg = region_del(resv_map, start, end);
5308                 /*
5309                  * region_del() can fail in the rare case where a region
5310                  * must be split and another region descriptor can not be
5311                  * allocated.  If end == LONG_MAX, it will not fail.
5312                  */
5313                 if (chg < 0)
5314                         return chg;
5315         }
5316
5317         spin_lock(&inode->i_lock);
5318         inode->i_blocks -= (blocks_per_huge_page(h) * freed);
5319         spin_unlock(&inode->i_lock);
5320
5321         /*
5322          * If the subpool has a minimum size, the number of global
5323          * reservations to be released may be adjusted.
5324          *
5325          * Note that !resv_map implies freed == 0. So (chg - freed)
5326          * won't go negative.
5327          */
5328         gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
5329         hugetlb_acct_memory(h, -gbl_reserve);
5330
5331         return 0;
5332 }
5333
5334 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
5335 static unsigned long page_table_shareable(struct vm_area_struct *svma,
5336                                 struct vm_area_struct *vma,
5337                                 unsigned long addr, pgoff_t idx)
5338 {
5339         unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
5340                                 svma->vm_start;
5341         unsigned long sbase = saddr & PUD_MASK;
5342         unsigned long s_end = sbase + PUD_SIZE;
5343
5344         /* Allow segments to share if only one is marked locked */
5345         unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
5346         unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
5347
5348         /*
5349          * match the virtual addresses, permission and the alignment of the
5350          * page table page.
5351          */
5352         if (pmd_index(addr) != pmd_index(saddr) ||
5353             vm_flags != svm_flags ||
5354             !range_in_vma(svma, sbase, s_end))
5355                 return 0;
5356
5357         return saddr;
5358 }
5359
5360 static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr)
5361 {
5362         unsigned long base = addr & PUD_MASK;
5363         unsigned long end = base + PUD_SIZE;
5364
5365         /*
5366          * check on proper vm_flags and page table alignment
5367          */
5368         if (vma->vm_flags & VM_MAYSHARE && range_in_vma(vma, base, end))
5369                 return true;
5370         return false;
5371 }
5372
5373 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
5374 {
5375 #ifdef CONFIG_USERFAULTFD
5376         if (uffd_disable_huge_pmd_share(vma))
5377                 return false;
5378 #endif
5379         return vma_shareable(vma, addr);
5380 }
5381
5382 /*
5383  * Determine if start,end range within vma could be mapped by shared pmd.
5384  * If yes, adjust start and end to cover range associated with possible
5385  * shared pmd mappings.
5386  */
5387 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
5388                                 unsigned long *start, unsigned long *end)
5389 {
5390         unsigned long v_start = ALIGN(vma->vm_start, PUD_SIZE),
5391                 v_end = ALIGN_DOWN(vma->vm_end, PUD_SIZE);
5392
5393         /*
5394          * vma need span at least one aligned PUD size and the start,end range
5395          * must at least partialy within it.
5396          */
5397         if (!(vma->vm_flags & VM_MAYSHARE) || !(v_end > v_start) ||
5398                 (*end <= v_start) || (*start >= v_end))
5399                 return;
5400
5401         /* Extend the range to be PUD aligned for a worst case scenario */
5402         if (*start > v_start)
5403                 *start = ALIGN_DOWN(*start, PUD_SIZE);
5404
5405         if (*end < v_end)
5406                 *end = ALIGN(*end, PUD_SIZE);
5407 }
5408
5409 /*
5410  * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
5411  * and returns the corresponding pte. While this is not necessary for the
5412  * !shared pmd case because we can allocate the pmd later as well, it makes the
5413  * code much cleaner.
5414  *
5415  * This routine must be called with i_mmap_rwsem held in at least read mode if
5416  * sharing is possible.  For hugetlbfs, this prevents removal of any page
5417  * table entries associated with the address space.  This is important as we
5418  * are setting up sharing based on existing page table entries (mappings).
5419  *
5420  * NOTE: This routine is only called from huge_pte_alloc.  Some callers of
5421  * huge_pte_alloc know that sharing is not possible and do not take
5422  * i_mmap_rwsem as a performance optimization.  This is handled by the
5423  * if !vma_shareable check at the beginning of the routine. i_mmap_rwsem is
5424  * only required for subsequent processing.
5425  */
5426 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
5427                       unsigned long addr, pud_t *pud)
5428 {
5429         struct address_space *mapping = vma->vm_file->f_mapping;
5430         pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
5431                         vma->vm_pgoff;
5432         struct vm_area_struct *svma;
5433         unsigned long saddr;
5434         pte_t *spte = NULL;
5435         pte_t *pte;
5436         spinlock_t *ptl;
5437
5438         i_mmap_assert_locked(mapping);
5439         vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
5440                 if (svma == vma)
5441                         continue;
5442
5443                 saddr = page_table_shareable(svma, vma, addr, idx);
5444                 if (saddr) {
5445                         spte = huge_pte_offset(svma->vm_mm, saddr,
5446                                                vma_mmu_pagesize(svma));
5447                         if (spte) {
5448                                 get_page(virt_to_page(spte));
5449                                 break;
5450                         }
5451                 }
5452         }
5453
5454         if (!spte)
5455                 goto out;
5456
5457         ptl = huge_pte_lock(hstate_vma(vma), mm, spte);
5458         if (pud_none(*pud)) {
5459                 pud_populate(mm, pud,
5460                                 (pmd_t *)((unsigned long)spte & PAGE_MASK));
5461                 mm_inc_nr_pmds(mm);
5462         } else {
5463                 put_page(virt_to_page(spte));
5464         }
5465         spin_unlock(ptl);
5466 out:
5467         pte = (pte_t *)pmd_alloc(mm, pud, addr);
5468         return pte;
5469 }
5470
5471 /*
5472  * unmap huge page backed by shared pte.
5473  *
5474  * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
5475  * indicated by page_count > 1, unmap is achieved by clearing pud and
5476  * decrementing the ref count. If count == 1, the pte page is not shared.
5477  *
5478  * Called with page table lock held and i_mmap_rwsem held in write mode.
5479  *
5480  * returns: 1 successfully unmapped a shared pte page
5481  *          0 the underlying pte page is not shared, or it is the last user
5482  */
5483 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
5484                                         unsigned long *addr, pte_t *ptep)
5485 {
5486         pgd_t *pgd = pgd_offset(mm, *addr);
5487         p4d_t *p4d = p4d_offset(pgd, *addr);
5488         pud_t *pud = pud_offset(p4d, *addr);
5489
5490         i_mmap_assert_write_locked(vma->vm_file->f_mapping);
5491         BUG_ON(page_count(virt_to_page(ptep)) == 0);
5492         if (page_count(virt_to_page(ptep)) == 1)
5493                 return 0;
5494
5495         pud_clear(pud);
5496         put_page(virt_to_page(ptep));
5497         mm_dec_nr_pmds(mm);
5498         *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
5499         return 1;
5500 }
5501
5502 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
5503 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
5504                       unsigned long addr, pud_t *pud)
5505 {
5506         return NULL;
5507 }
5508
5509 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
5510                                 unsigned long *addr, pte_t *ptep)
5511 {
5512         return 0;
5513 }
5514
5515 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
5516                                 unsigned long *start, unsigned long *end)
5517 {
5518 }
5519
5520 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
5521 {
5522         return false;
5523 }
5524 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
5525
5526 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
5527 pte_t *huge_pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
5528                         unsigned long addr, unsigned long sz)
5529 {
5530         pgd_t *pgd;
5531         p4d_t *p4d;
5532         pud_t *pud;
5533         pte_t *pte = NULL;
5534
5535         pgd = pgd_offset(mm, addr);
5536         p4d = p4d_alloc(mm, pgd, addr);
5537         if (!p4d)
5538                 return NULL;
5539         pud = pud_alloc(mm, p4d, addr);
5540         if (pud) {
5541                 if (sz == PUD_SIZE) {
5542                         pte = (pte_t *)pud;
5543                 } else {
5544                         BUG_ON(sz != PMD_SIZE);
5545                         if (want_pmd_share(vma, addr) && pud_none(*pud))
5546                                 pte = huge_pmd_share(mm, vma, addr, pud);
5547                         else
5548                                 pte = (pte_t *)pmd_alloc(mm, pud, addr);
5549                 }
5550         }
5551         BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte));
5552
5553         return pte;
5554 }
5555
5556 /*
5557  * huge_pte_offset() - Walk the page table to resolve the hugepage
5558  * entry at address @addr
5559  *
5560  * Return: Pointer to page table entry (PUD or PMD) for
5561  * address @addr, or NULL if a !p*d_present() entry is encountered and the
5562  * size @sz doesn't match the hugepage size at this level of the page
5563  * table.
5564  */
5565 pte_t *huge_pte_offset(struct mm_struct *mm,
5566                        unsigned long addr, unsigned long sz)
5567 {
5568         pgd_t *pgd;
5569         p4d_t *p4d;
5570         pud_t *pud;
5571         pmd_t *pmd;
5572
5573         pgd = pgd_offset(mm, addr);
5574         if (!pgd_present(*pgd))
5575                 return NULL;
5576         p4d = p4d_offset(pgd, addr);
5577         if (!p4d_present(*p4d))
5578                 return NULL;
5579
5580         pud = pud_offset(p4d, addr);
5581         if (sz == PUD_SIZE)
5582                 /* must be pud huge, non-present or none */
5583                 return (pte_t *)pud;
5584         if (!pud_present(*pud))
5585                 return NULL;
5586         /* must have a valid entry and size to go further */
5587
5588         pmd = pmd_offset(pud, addr);
5589         /* must be pmd huge, non-present or none */
5590         return (pte_t *)pmd;
5591 }
5592
5593 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
5594
5595 /*
5596  * These functions are overwritable if your architecture needs its own
5597  * behavior.
5598  */
5599 struct page * __weak
5600 follow_huge_addr(struct mm_struct *mm, unsigned long address,
5601                               int write)
5602 {
5603         return ERR_PTR(-EINVAL);
5604 }
5605
5606 struct page * __weak
5607 follow_huge_pd(struct vm_area_struct *vma,
5608                unsigned long address, hugepd_t hpd, int flags, int pdshift)
5609 {
5610         WARN(1, "hugepd follow called with no support for hugepage directory format\n");
5611         return NULL;
5612 }
5613
5614 struct page * __weak
5615 follow_huge_pmd(struct mm_struct *mm, unsigned long address,
5616                 pmd_t *pmd, int flags)
5617 {
5618         struct page *page = NULL;
5619         spinlock_t *ptl;
5620         pte_t pte;
5621
5622         /* FOLL_GET and FOLL_PIN are mutually exclusive. */
5623         if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
5624                          (FOLL_PIN | FOLL_GET)))
5625                 return NULL;
5626
5627 retry:
5628         ptl = pmd_lockptr(mm, pmd);
5629         spin_lock(ptl);
5630         /*
5631          * make sure that the address range covered by this pmd is not
5632          * unmapped from other threads.
5633          */
5634         if (!pmd_huge(*pmd))
5635                 goto out;
5636         pte = huge_ptep_get((pte_t *)pmd);
5637         if (pte_present(pte)) {
5638                 page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
5639                 /*
5640                  * try_grab_page() should always succeed here, because: a) we
5641                  * hold the pmd (ptl) lock, and b) we've just checked that the
5642                  * huge pmd (head) page is present in the page tables. The ptl
5643                  * prevents the head page and tail pages from being rearranged
5644                  * in any way. So this page must be available at this point,
5645                  * unless the page refcount overflowed:
5646                  */
5647                 if (WARN_ON_ONCE(!try_grab_page(page, flags))) {
5648                         page = NULL;
5649                         goto out;
5650                 }
5651         } else {
5652                 if (is_hugetlb_entry_migration(pte)) {
5653                         spin_unlock(ptl);
5654                         __migration_entry_wait(mm, (pte_t *)pmd, ptl);
5655                         goto retry;
5656                 }
5657                 /*
5658                  * hwpoisoned entry is treated as no_page_table in
5659                  * follow_page_mask().
5660                  */
5661         }
5662 out:
5663         spin_unlock(ptl);
5664         return page;
5665 }
5666
5667 struct page * __weak
5668 follow_huge_pud(struct mm_struct *mm, unsigned long address,
5669                 pud_t *pud, int flags)
5670 {
5671         if (flags & (FOLL_GET | FOLL_PIN))
5672                 return NULL;
5673
5674         return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
5675 }
5676
5677 struct page * __weak
5678 follow_huge_pgd(struct mm_struct *mm, unsigned long address, pgd_t *pgd, int flags)
5679 {
5680         if (flags & (FOLL_GET | FOLL_PIN))
5681                 return NULL;
5682
5683         return pte_page(*(pte_t *)pgd) + ((address & ~PGDIR_MASK) >> PAGE_SHIFT);
5684 }
5685
5686 bool isolate_huge_page(struct page *page, struct list_head *list)
5687 {
5688         bool ret = true;
5689
5690         spin_lock(&hugetlb_lock);
5691         if (!PageHeadHuge(page) ||
5692             !HPageMigratable(page) ||
5693             !get_page_unless_zero(page)) {
5694                 ret = false;
5695                 goto unlock;
5696         }
5697         ClearHPageMigratable(page);
5698         list_move_tail(&page->lru, list);
5699 unlock:
5700         spin_unlock(&hugetlb_lock);
5701         return ret;
5702 }
5703
5704 void putback_active_hugepage(struct page *page)
5705 {
5706         spin_lock(&hugetlb_lock);
5707         SetHPageMigratable(page);
5708         list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
5709         spin_unlock(&hugetlb_lock);
5710         put_page(page);
5711 }
5712
5713 void move_hugetlb_state(struct page *oldpage, struct page *newpage, int reason)
5714 {
5715         struct hstate *h = page_hstate(oldpage);
5716
5717         hugetlb_cgroup_migrate(oldpage, newpage);
5718         set_page_owner_migrate_reason(newpage, reason);
5719
5720         /*
5721          * transfer temporary state of the new huge page. This is
5722          * reverse to other transitions because the newpage is going to
5723          * be final while the old one will be freed so it takes over
5724          * the temporary status.
5725          *
5726          * Also note that we have to transfer the per-node surplus state
5727          * here as well otherwise the global surplus count will not match
5728          * the per-node's.
5729          */
5730         if (HPageTemporary(newpage)) {
5731                 int old_nid = page_to_nid(oldpage);
5732                 int new_nid = page_to_nid(newpage);
5733
5734                 SetHPageTemporary(oldpage);
5735                 ClearHPageTemporary(newpage);
5736
5737                 /*
5738                  * There is no need to transfer the per-node surplus state
5739                  * when we do not cross the node.
5740                  */
5741                 if (new_nid == old_nid)
5742                         return;
5743                 spin_lock(&hugetlb_lock);
5744                 if (h->surplus_huge_pages_node[old_nid]) {
5745                         h->surplus_huge_pages_node[old_nid]--;
5746                         h->surplus_huge_pages_node[new_nid]++;
5747                 }
5748                 spin_unlock(&hugetlb_lock);
5749         }
5750 }
5751
5752 /*
5753  * This function will unconditionally remove all the shared pmd pgtable entries
5754  * within the specific vma for a hugetlbfs memory range.
5755  */
5756 void hugetlb_unshare_all_pmds(struct vm_area_struct *vma)
5757 {
5758         struct hstate *h = hstate_vma(vma);
5759         unsigned long sz = huge_page_size(h);
5760         struct mm_struct *mm = vma->vm_mm;
5761         struct mmu_notifier_range range;
5762         unsigned long address, start, end;
5763         spinlock_t *ptl;
5764         pte_t *ptep;
5765
5766         if (!(vma->vm_flags & VM_MAYSHARE))
5767                 return;
5768
5769         start = ALIGN(vma->vm_start, PUD_SIZE);
5770         end = ALIGN_DOWN(vma->vm_end, PUD_SIZE);
5771
5772         if (start >= end)
5773                 return;
5774
5775         /*
5776          * No need to call adjust_range_if_pmd_sharing_possible(), because
5777          * we have already done the PUD_SIZE alignment.
5778          */
5779         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
5780                                 start, end);
5781         mmu_notifier_invalidate_range_start(&range);
5782         i_mmap_lock_write(vma->vm_file->f_mapping);
5783         for (address = start; address < end; address += PUD_SIZE) {
5784                 unsigned long tmp = address;
5785
5786                 ptep = huge_pte_offset(mm, address, sz);
5787                 if (!ptep)
5788                         continue;
5789                 ptl = huge_pte_lock(h, mm, ptep);
5790                 /* We don't want 'address' to be changed */
5791                 huge_pmd_unshare(mm, vma, &tmp, ptep);
5792                 spin_unlock(ptl);
5793         }
5794         flush_hugetlb_tlb_range(vma, start, end);
5795         i_mmap_unlock_write(vma->vm_file->f_mapping);
5796         /*
5797          * No need to call mmu_notifier_invalidate_range(), see
5798          * Documentation/vm/mmu_notifier.rst.
5799          */
5800         mmu_notifier_invalidate_range_end(&range);
5801 }
5802
5803 #ifdef CONFIG_CMA
5804 static bool cma_reserve_called __initdata;
5805
5806 static int __init cmdline_parse_hugetlb_cma(char *p)
5807 {
5808         hugetlb_cma_size = memparse(p, &p);
5809         return 0;
5810 }
5811
5812 early_param("hugetlb_cma", cmdline_parse_hugetlb_cma);
5813
5814 void __init hugetlb_cma_reserve(int order)
5815 {
5816         unsigned long size, reserved, per_node;
5817         int nid;
5818
5819         cma_reserve_called = true;
5820
5821         if (!hugetlb_cma_size)
5822                 return;
5823
5824         if (hugetlb_cma_size < (PAGE_SIZE << order)) {
5825                 pr_warn("hugetlb_cma: cma area should be at least %lu MiB\n",
5826                         (PAGE_SIZE << order) / SZ_1M);
5827                 return;
5828         }
5829
5830         /*
5831          * If 3 GB area is requested on a machine with 4 numa nodes,
5832          * let's allocate 1 GB on first three nodes and ignore the last one.
5833          */
5834         per_node = DIV_ROUND_UP(hugetlb_cma_size, nr_online_nodes);
5835         pr_info("hugetlb_cma: reserve %lu MiB, up to %lu MiB per node\n",
5836                 hugetlb_cma_size / SZ_1M, per_node / SZ_1M);
5837
5838         reserved = 0;
5839         for_each_node_state(nid, N_ONLINE) {
5840                 int res;
5841                 char name[CMA_MAX_NAME];
5842
5843                 size = min(per_node, hugetlb_cma_size - reserved);
5844                 size = round_up(size, PAGE_SIZE << order);
5845
5846                 snprintf(name, sizeof(name), "hugetlb%d", nid);
5847                 res = cma_declare_contiguous_nid(0, size, 0, PAGE_SIZE << order,
5848                                                  0, false, name,
5849                                                  &hugetlb_cma[nid], nid);
5850                 if (res) {
5851                         pr_warn("hugetlb_cma: reservation failed: err %d, node %d",
5852                                 res, nid);
5853                         continue;
5854                 }
5855
5856                 reserved += size;
5857                 pr_info("hugetlb_cma: reserved %lu MiB on node %d\n",
5858                         size / SZ_1M, nid);
5859
5860                 if (reserved >= hugetlb_cma_size)
5861                         break;
5862         }
5863 }
5864
5865 void __init hugetlb_cma_check(void)
5866 {
5867         if (!hugetlb_cma_size || cma_reserve_called)
5868                 return;
5869
5870         pr_warn("hugetlb_cma: the option isn't supported by current arch\n");
5871 }
5872
5873 #endif /* CONFIG_CMA */