b14f4d1749b215fa55ec4d4bcf5b5c43acb6ed17
[linux-2.6-microblaze.git] / mm / hugetlb.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Generic hugetlb support.
4  * (C) Nadia Yvette Chambers, April 2004
5  */
6 #include <linux/list.h>
7 #include <linux/init.h>
8 #include <linux/mm.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/compiler.h>
17 #include <linux/cpuset.h>
18 #include <linux/mutex.h>
19 #include <linux/memblock.h>
20 #include <linux/sysfs.h>
21 #include <linux/slab.h>
22 #include <linux/sched/mm.h>
23 #include <linux/mmdebug.h>
24 #include <linux/sched/signal.h>
25 #include <linux/rmap.h>
26 #include <linux/string_helpers.h>
27 #include <linux/swap.h>
28 #include <linux/swapops.h>
29 #include <linux/jhash.h>
30 #include <linux/numa.h>
31 #include <linux/llist.h>
32 #include <linux/cma.h>
33 #include <linux/migrate.h>
34
35 #include <asm/page.h>
36 #include <asm/pgalloc.h>
37 #include <asm/tlb.h>
38
39 #include <linux/io.h>
40 #include <linux/hugetlb.h>
41 #include <linux/hugetlb_cgroup.h>
42 #include <linux/node.h>
43 #include <linux/page_owner.h>
44 #include "internal.h"
45 #include "hugetlb_vmemmap.h"
46
47 int hugetlb_max_hstate __read_mostly;
48 unsigned int default_hstate_idx;
49 struct hstate hstates[HUGE_MAX_HSTATE];
50
51 #ifdef CONFIG_CMA
52 static struct cma *hugetlb_cma[MAX_NUMNODES];
53 #endif
54 static unsigned long hugetlb_cma_size __initdata;
55
56 /*
57  * Minimum page order among possible hugepage sizes, set to a proper value
58  * at boot time.
59  */
60 static unsigned int minimum_order __read_mostly = UINT_MAX;
61
62 __initdata LIST_HEAD(huge_boot_pages);
63
64 /* for command line parsing */
65 static struct hstate * __initdata parsed_hstate;
66 static unsigned long __initdata default_hstate_max_huge_pages;
67 static bool __initdata parsed_valid_hugepagesz = true;
68 static bool __initdata parsed_default_hugepagesz;
69
70 /*
71  * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
72  * free_huge_pages, and surplus_huge_pages.
73  */
74 DEFINE_SPINLOCK(hugetlb_lock);
75
76 /*
77  * Serializes faults on the same logical page.  This is used to
78  * prevent spurious OOMs when the hugepage pool is fully utilized.
79  */
80 static int num_fault_mutexes;
81 struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
82
83 /* Forward declaration */
84 static int hugetlb_acct_memory(struct hstate *h, long delta);
85
86 static inline bool subpool_is_free(struct hugepage_subpool *spool)
87 {
88         if (spool->count)
89                 return false;
90         if (spool->max_hpages != -1)
91                 return spool->used_hpages == 0;
92         if (spool->min_hpages != -1)
93                 return spool->rsv_hpages == spool->min_hpages;
94
95         return true;
96 }
97
98 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool,
99                                                 unsigned long irq_flags)
100 {
101         spin_unlock_irqrestore(&spool->lock, irq_flags);
102
103         /* If no pages are used, and no other handles to the subpool
104          * remain, give up any reservations based on minimum size and
105          * free the subpool */
106         if (subpool_is_free(spool)) {
107                 if (spool->min_hpages != -1)
108                         hugetlb_acct_memory(spool->hstate,
109                                                 -spool->min_hpages);
110                 kfree(spool);
111         }
112 }
113
114 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
115                                                 long min_hpages)
116 {
117         struct hugepage_subpool *spool;
118
119         spool = kzalloc(sizeof(*spool), GFP_KERNEL);
120         if (!spool)
121                 return NULL;
122
123         spin_lock_init(&spool->lock);
124         spool->count = 1;
125         spool->max_hpages = max_hpages;
126         spool->hstate = h;
127         spool->min_hpages = min_hpages;
128
129         if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
130                 kfree(spool);
131                 return NULL;
132         }
133         spool->rsv_hpages = min_hpages;
134
135         return spool;
136 }
137
138 void hugepage_put_subpool(struct hugepage_subpool *spool)
139 {
140         unsigned long flags;
141
142         spin_lock_irqsave(&spool->lock, flags);
143         BUG_ON(!spool->count);
144         spool->count--;
145         unlock_or_release_subpool(spool, flags);
146 }
147
148 /*
149  * Subpool accounting for allocating and reserving pages.
150  * Return -ENOMEM if there are not enough resources to satisfy the
151  * request.  Otherwise, return the number of pages by which the
152  * global pools must be adjusted (upward).  The returned value may
153  * only be different than the passed value (delta) in the case where
154  * a subpool minimum size must be maintained.
155  */
156 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
157                                       long delta)
158 {
159         long ret = delta;
160
161         if (!spool)
162                 return ret;
163
164         spin_lock_irq(&spool->lock);
165
166         if (spool->max_hpages != -1) {          /* maximum size accounting */
167                 if ((spool->used_hpages + delta) <= spool->max_hpages)
168                         spool->used_hpages += delta;
169                 else {
170                         ret = -ENOMEM;
171                         goto unlock_ret;
172                 }
173         }
174
175         /* minimum size accounting */
176         if (spool->min_hpages != -1 && spool->rsv_hpages) {
177                 if (delta > spool->rsv_hpages) {
178                         /*
179                          * Asking for more reserves than those already taken on
180                          * behalf of subpool.  Return difference.
181                          */
182                         ret = delta - spool->rsv_hpages;
183                         spool->rsv_hpages = 0;
184                 } else {
185                         ret = 0;        /* reserves already accounted for */
186                         spool->rsv_hpages -= delta;
187                 }
188         }
189
190 unlock_ret:
191         spin_unlock_irq(&spool->lock);
192         return ret;
193 }
194
195 /*
196  * Subpool accounting for freeing and unreserving pages.
197  * Return the number of global page reservations that must be dropped.
198  * The return value may only be different than the passed value (delta)
199  * in the case where a subpool minimum size must be maintained.
200  */
201 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
202                                        long delta)
203 {
204         long ret = delta;
205         unsigned long flags;
206
207         if (!spool)
208                 return delta;
209
210         spin_lock_irqsave(&spool->lock, flags);
211
212         if (spool->max_hpages != -1)            /* maximum size accounting */
213                 spool->used_hpages -= delta;
214
215          /* minimum size accounting */
216         if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
217                 if (spool->rsv_hpages + delta <= spool->min_hpages)
218                         ret = 0;
219                 else
220                         ret = spool->rsv_hpages + delta - spool->min_hpages;
221
222                 spool->rsv_hpages += delta;
223                 if (spool->rsv_hpages > spool->min_hpages)
224                         spool->rsv_hpages = spool->min_hpages;
225         }
226
227         /*
228          * If hugetlbfs_put_super couldn't free spool due to an outstanding
229          * quota reference, free it now.
230          */
231         unlock_or_release_subpool(spool, flags);
232
233         return ret;
234 }
235
236 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
237 {
238         return HUGETLBFS_SB(inode->i_sb)->spool;
239 }
240
241 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
242 {
243         return subpool_inode(file_inode(vma->vm_file));
244 }
245
246 /* Helper that removes a struct file_region from the resv_map cache and returns
247  * it for use.
248  */
249 static struct file_region *
250 get_file_region_entry_from_cache(struct resv_map *resv, long from, long to)
251 {
252         struct file_region *nrg = NULL;
253
254         VM_BUG_ON(resv->region_cache_count <= 0);
255
256         resv->region_cache_count--;
257         nrg = list_first_entry(&resv->region_cache, struct file_region, link);
258         list_del(&nrg->link);
259
260         nrg->from = from;
261         nrg->to = to;
262
263         return nrg;
264 }
265
266 static void copy_hugetlb_cgroup_uncharge_info(struct file_region *nrg,
267                                               struct file_region *rg)
268 {
269 #ifdef CONFIG_CGROUP_HUGETLB
270         nrg->reservation_counter = rg->reservation_counter;
271         nrg->css = rg->css;
272         if (rg->css)
273                 css_get(rg->css);
274 #endif
275 }
276
277 /* Helper that records hugetlb_cgroup uncharge info. */
278 static void record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup *h_cg,
279                                                 struct hstate *h,
280                                                 struct resv_map *resv,
281                                                 struct file_region *nrg)
282 {
283 #ifdef CONFIG_CGROUP_HUGETLB
284         if (h_cg) {
285                 nrg->reservation_counter =
286                         &h_cg->rsvd_hugepage[hstate_index(h)];
287                 nrg->css = &h_cg->css;
288                 /*
289                  * The caller will hold exactly one h_cg->css reference for the
290                  * whole contiguous reservation region. But this area might be
291                  * scattered when there are already some file_regions reside in
292                  * it. As a result, many file_regions may share only one css
293                  * reference. In order to ensure that one file_region must hold
294                  * exactly one h_cg->css reference, we should do css_get for
295                  * each file_region and leave the reference held by caller
296                  * untouched.
297                  */
298                 css_get(&h_cg->css);
299                 if (!resv->pages_per_hpage)
300                         resv->pages_per_hpage = pages_per_huge_page(h);
301                 /* pages_per_hpage should be the same for all entries in
302                  * a resv_map.
303                  */
304                 VM_BUG_ON(resv->pages_per_hpage != pages_per_huge_page(h));
305         } else {
306                 nrg->reservation_counter = NULL;
307                 nrg->css = NULL;
308         }
309 #endif
310 }
311
312 static void put_uncharge_info(struct file_region *rg)
313 {
314 #ifdef CONFIG_CGROUP_HUGETLB
315         if (rg->css)
316                 css_put(rg->css);
317 #endif
318 }
319
320 static bool has_same_uncharge_info(struct file_region *rg,
321                                    struct file_region *org)
322 {
323 #ifdef CONFIG_CGROUP_HUGETLB
324         return rg && org &&
325                rg->reservation_counter == org->reservation_counter &&
326                rg->css == org->css;
327
328 #else
329         return true;
330 #endif
331 }
332
333 static void coalesce_file_region(struct resv_map *resv, struct file_region *rg)
334 {
335         struct file_region *nrg = NULL, *prg = NULL;
336
337         prg = list_prev_entry(rg, link);
338         if (&prg->link != &resv->regions && prg->to == rg->from &&
339             has_same_uncharge_info(prg, rg)) {
340                 prg->to = rg->to;
341
342                 list_del(&rg->link);
343                 put_uncharge_info(rg);
344                 kfree(rg);
345
346                 rg = prg;
347         }
348
349         nrg = list_next_entry(rg, link);
350         if (&nrg->link != &resv->regions && nrg->from == rg->to &&
351             has_same_uncharge_info(nrg, rg)) {
352                 nrg->from = rg->from;
353
354                 list_del(&rg->link);
355                 put_uncharge_info(rg);
356                 kfree(rg);
357         }
358 }
359
360 static inline long
361 hugetlb_resv_map_add(struct resv_map *map, struct file_region *rg, long from,
362                      long to, struct hstate *h, struct hugetlb_cgroup *cg,
363                      long *regions_needed)
364 {
365         struct file_region *nrg;
366
367         if (!regions_needed) {
368                 nrg = get_file_region_entry_from_cache(map, from, to);
369                 record_hugetlb_cgroup_uncharge_info(cg, h, map, nrg);
370                 list_add(&nrg->link, rg->link.prev);
371                 coalesce_file_region(map, nrg);
372         } else
373                 *regions_needed += 1;
374
375         return to - from;
376 }
377
378 /*
379  * Must be called with resv->lock held.
380  *
381  * Calling this with regions_needed != NULL will count the number of pages
382  * to be added but will not modify the linked list. And regions_needed will
383  * indicate the number of file_regions needed in the cache to carry out to add
384  * the regions for this range.
385  */
386 static long add_reservation_in_range(struct resv_map *resv, long f, long t,
387                                      struct hugetlb_cgroup *h_cg,
388                                      struct hstate *h, long *regions_needed)
389 {
390         long add = 0;
391         struct list_head *head = &resv->regions;
392         long last_accounted_offset = f;
393         struct file_region *rg = NULL, *trg = NULL;
394
395         if (regions_needed)
396                 *regions_needed = 0;
397
398         /* In this loop, we essentially handle an entry for the range
399          * [last_accounted_offset, rg->from), at every iteration, with some
400          * bounds checking.
401          */
402         list_for_each_entry_safe(rg, trg, head, link) {
403                 /* Skip irrelevant regions that start before our range. */
404                 if (rg->from < f) {
405                         /* If this region ends after the last accounted offset,
406                          * then we need to update last_accounted_offset.
407                          */
408                         if (rg->to > last_accounted_offset)
409                                 last_accounted_offset = rg->to;
410                         continue;
411                 }
412
413                 /* When we find a region that starts beyond our range, we've
414                  * finished.
415                  */
416                 if (rg->from >= t)
417                         break;
418
419                 /* Add an entry for last_accounted_offset -> rg->from, and
420                  * update last_accounted_offset.
421                  */
422                 if (rg->from > last_accounted_offset)
423                         add += hugetlb_resv_map_add(resv, rg,
424                                                     last_accounted_offset,
425                                                     rg->from, h, h_cg,
426                                                     regions_needed);
427
428                 last_accounted_offset = rg->to;
429         }
430
431         /* Handle the case where our range extends beyond
432          * last_accounted_offset.
433          */
434         if (last_accounted_offset < t)
435                 add += hugetlb_resv_map_add(resv, rg, last_accounted_offset,
436                                             t, h, h_cg, regions_needed);
437
438         VM_BUG_ON(add < 0);
439         return add;
440 }
441
442 /* Must be called with resv->lock acquired. Will drop lock to allocate entries.
443  */
444 static int allocate_file_region_entries(struct resv_map *resv,
445                                         int regions_needed)
446         __must_hold(&resv->lock)
447 {
448         struct list_head allocated_regions;
449         int to_allocate = 0, i = 0;
450         struct file_region *trg = NULL, *rg = NULL;
451
452         VM_BUG_ON(regions_needed < 0);
453
454         INIT_LIST_HEAD(&allocated_regions);
455
456         /*
457          * Check for sufficient descriptors in the cache to accommodate
458          * the number of in progress add operations plus regions_needed.
459          *
460          * This is a while loop because when we drop the lock, some other call
461          * to region_add or region_del may have consumed some region_entries,
462          * so we keep looping here until we finally have enough entries for
463          * (adds_in_progress + regions_needed).
464          */
465         while (resv->region_cache_count <
466                (resv->adds_in_progress + regions_needed)) {
467                 to_allocate = resv->adds_in_progress + regions_needed -
468                               resv->region_cache_count;
469
470                 /* At this point, we should have enough entries in the cache
471                  * for all the existing adds_in_progress. We should only be
472                  * needing to allocate for regions_needed.
473                  */
474                 VM_BUG_ON(resv->region_cache_count < resv->adds_in_progress);
475
476                 spin_unlock(&resv->lock);
477                 for (i = 0; i < to_allocate; i++) {
478                         trg = kmalloc(sizeof(*trg), GFP_KERNEL);
479                         if (!trg)
480                                 goto out_of_memory;
481                         list_add(&trg->link, &allocated_regions);
482                 }
483
484                 spin_lock(&resv->lock);
485
486                 list_splice(&allocated_regions, &resv->region_cache);
487                 resv->region_cache_count += to_allocate;
488         }
489
490         return 0;
491
492 out_of_memory:
493         list_for_each_entry_safe(rg, trg, &allocated_regions, link) {
494                 list_del(&rg->link);
495                 kfree(rg);
496         }
497         return -ENOMEM;
498 }
499
500 /*
501  * Add the huge page range represented by [f, t) to the reserve
502  * map.  Regions will be taken from the cache to fill in this range.
503  * Sufficient regions should exist in the cache due to the previous
504  * call to region_chg with the same range, but in some cases the cache will not
505  * have sufficient entries due to races with other code doing region_add or
506  * region_del.  The extra needed entries will be allocated.
507  *
508  * regions_needed is the out value provided by a previous call to region_chg.
509  *
510  * Return the number of new huge pages added to the map.  This number is greater
511  * than or equal to zero.  If file_region entries needed to be allocated for
512  * this operation and we were not able to allocate, it returns -ENOMEM.
513  * region_add of regions of length 1 never allocate file_regions and cannot
514  * fail; region_chg will always allocate at least 1 entry and a region_add for
515  * 1 page will only require at most 1 entry.
516  */
517 static long region_add(struct resv_map *resv, long f, long t,
518                        long in_regions_needed, struct hstate *h,
519                        struct hugetlb_cgroup *h_cg)
520 {
521         long add = 0, actual_regions_needed = 0;
522
523         spin_lock(&resv->lock);
524 retry:
525
526         /* Count how many regions are actually needed to execute this add. */
527         add_reservation_in_range(resv, f, t, NULL, NULL,
528                                  &actual_regions_needed);
529
530         /*
531          * Check for sufficient descriptors in the cache to accommodate
532          * this add operation. Note that actual_regions_needed may be greater
533          * than in_regions_needed, as the resv_map may have been modified since
534          * the region_chg call. In this case, we need to make sure that we
535          * allocate extra entries, such that we have enough for all the
536          * existing adds_in_progress, plus the excess needed for this
537          * operation.
538          */
539         if (actual_regions_needed > in_regions_needed &&
540             resv->region_cache_count <
541                     resv->adds_in_progress +
542                             (actual_regions_needed - in_regions_needed)) {
543                 /* region_add operation of range 1 should never need to
544                  * allocate file_region entries.
545                  */
546                 VM_BUG_ON(t - f <= 1);
547
548                 if (allocate_file_region_entries(
549                             resv, actual_regions_needed - in_regions_needed)) {
550                         return -ENOMEM;
551                 }
552
553                 goto retry;
554         }
555
556         add = add_reservation_in_range(resv, f, t, h_cg, h, NULL);
557
558         resv->adds_in_progress -= in_regions_needed;
559
560         spin_unlock(&resv->lock);
561         return add;
562 }
563
564 /*
565  * Examine the existing reserve map and determine how many
566  * huge pages in the specified range [f, t) are NOT currently
567  * represented.  This routine is called before a subsequent
568  * call to region_add that will actually modify the reserve
569  * map to add the specified range [f, t).  region_chg does
570  * not change the number of huge pages represented by the
571  * map.  A number of new file_region structures is added to the cache as a
572  * placeholder, for the subsequent region_add call to use. At least 1
573  * file_region structure is added.
574  *
575  * out_regions_needed is the number of regions added to the
576  * resv->adds_in_progress.  This value needs to be provided to a follow up call
577  * to region_add or region_abort for proper accounting.
578  *
579  * Returns the number of huge pages that need to be added to the existing
580  * reservation map for the range [f, t).  This number is greater or equal to
581  * zero.  -ENOMEM is returned if a new file_region structure or cache entry
582  * is needed and can not be allocated.
583  */
584 static long region_chg(struct resv_map *resv, long f, long t,
585                        long *out_regions_needed)
586 {
587         long chg = 0;
588
589         spin_lock(&resv->lock);
590
591         /* Count how many hugepages in this range are NOT represented. */
592         chg = add_reservation_in_range(resv, f, t, NULL, NULL,
593                                        out_regions_needed);
594
595         if (*out_regions_needed == 0)
596                 *out_regions_needed = 1;
597
598         if (allocate_file_region_entries(resv, *out_regions_needed))
599                 return -ENOMEM;
600
601         resv->adds_in_progress += *out_regions_needed;
602
603         spin_unlock(&resv->lock);
604         return chg;
605 }
606
607 /*
608  * Abort the in progress add operation.  The adds_in_progress field
609  * of the resv_map keeps track of the operations in progress between
610  * calls to region_chg and region_add.  Operations are sometimes
611  * aborted after the call to region_chg.  In such cases, region_abort
612  * is called to decrement the adds_in_progress counter. regions_needed
613  * is the value returned by the region_chg call, it is used to decrement
614  * the adds_in_progress counter.
615  *
616  * NOTE: The range arguments [f, t) are not needed or used in this
617  * routine.  They are kept to make reading the calling code easier as
618  * arguments will match the associated region_chg call.
619  */
620 static void region_abort(struct resv_map *resv, long f, long t,
621                          long regions_needed)
622 {
623         spin_lock(&resv->lock);
624         VM_BUG_ON(!resv->region_cache_count);
625         resv->adds_in_progress -= regions_needed;
626         spin_unlock(&resv->lock);
627 }
628
629 /*
630  * Delete the specified range [f, t) from the reserve map.  If the
631  * t parameter is LONG_MAX, this indicates that ALL regions after f
632  * should be deleted.  Locate the regions which intersect [f, t)
633  * and either trim, delete or split the existing regions.
634  *
635  * Returns the number of huge pages deleted from the reserve map.
636  * In the normal case, the return value is zero or more.  In the
637  * case where a region must be split, a new region descriptor must
638  * be allocated.  If the allocation fails, -ENOMEM will be returned.
639  * NOTE: If the parameter t == LONG_MAX, then we will never split
640  * a region and possibly return -ENOMEM.  Callers specifying
641  * t == LONG_MAX do not need to check for -ENOMEM error.
642  */
643 static long region_del(struct resv_map *resv, long f, long t)
644 {
645         struct list_head *head = &resv->regions;
646         struct file_region *rg, *trg;
647         struct file_region *nrg = NULL;
648         long del = 0;
649
650 retry:
651         spin_lock(&resv->lock);
652         list_for_each_entry_safe(rg, trg, head, link) {
653                 /*
654                  * Skip regions before the range to be deleted.  file_region
655                  * ranges are normally of the form [from, to).  However, there
656                  * may be a "placeholder" entry in the map which is of the form
657                  * (from, to) with from == to.  Check for placeholder entries
658                  * at the beginning of the range to be deleted.
659                  */
660                 if (rg->to <= f && (rg->to != rg->from || rg->to != f))
661                         continue;
662
663                 if (rg->from >= t)
664                         break;
665
666                 if (f > rg->from && t < rg->to) { /* Must split region */
667                         /*
668                          * Check for an entry in the cache before dropping
669                          * lock and attempting allocation.
670                          */
671                         if (!nrg &&
672                             resv->region_cache_count > resv->adds_in_progress) {
673                                 nrg = list_first_entry(&resv->region_cache,
674                                                         struct file_region,
675                                                         link);
676                                 list_del(&nrg->link);
677                                 resv->region_cache_count--;
678                         }
679
680                         if (!nrg) {
681                                 spin_unlock(&resv->lock);
682                                 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
683                                 if (!nrg)
684                                         return -ENOMEM;
685                                 goto retry;
686                         }
687
688                         del += t - f;
689                         hugetlb_cgroup_uncharge_file_region(
690                                 resv, rg, t - f, false);
691
692                         /* New entry for end of split region */
693                         nrg->from = t;
694                         nrg->to = rg->to;
695
696                         copy_hugetlb_cgroup_uncharge_info(nrg, rg);
697
698                         INIT_LIST_HEAD(&nrg->link);
699
700                         /* Original entry is trimmed */
701                         rg->to = f;
702
703                         list_add(&nrg->link, &rg->link);
704                         nrg = NULL;
705                         break;
706                 }
707
708                 if (f <= rg->from && t >= rg->to) { /* Remove entire region */
709                         del += rg->to - rg->from;
710                         hugetlb_cgroup_uncharge_file_region(resv, rg,
711                                                             rg->to - rg->from, true);
712                         list_del(&rg->link);
713                         kfree(rg);
714                         continue;
715                 }
716
717                 if (f <= rg->from) {    /* Trim beginning of region */
718                         hugetlb_cgroup_uncharge_file_region(resv, rg,
719                                                             t - rg->from, false);
720
721                         del += t - rg->from;
722                         rg->from = t;
723                 } else {                /* Trim end of region */
724                         hugetlb_cgroup_uncharge_file_region(resv, rg,
725                                                             rg->to - f, false);
726
727                         del += rg->to - f;
728                         rg->to = f;
729                 }
730         }
731
732         spin_unlock(&resv->lock);
733         kfree(nrg);
734         return del;
735 }
736
737 /*
738  * A rare out of memory error was encountered which prevented removal of
739  * the reserve map region for a page.  The huge page itself was free'ed
740  * and removed from the page cache.  This routine will adjust the subpool
741  * usage count, and the global reserve count if needed.  By incrementing
742  * these counts, the reserve map entry which could not be deleted will
743  * appear as a "reserved" entry instead of simply dangling with incorrect
744  * counts.
745  */
746 void hugetlb_fix_reserve_counts(struct inode *inode)
747 {
748         struct hugepage_subpool *spool = subpool_inode(inode);
749         long rsv_adjust;
750         bool reserved = false;
751
752         rsv_adjust = hugepage_subpool_get_pages(spool, 1);
753         if (rsv_adjust > 0) {
754                 struct hstate *h = hstate_inode(inode);
755
756                 if (!hugetlb_acct_memory(h, 1))
757                         reserved = true;
758         } else if (!rsv_adjust) {
759                 reserved = true;
760         }
761
762         if (!reserved)
763                 pr_warn("hugetlb: Huge Page Reserved count may go negative.\n");
764 }
765
766 /*
767  * Count and return the number of huge pages in the reserve map
768  * that intersect with the range [f, t).
769  */
770 static long region_count(struct resv_map *resv, long f, long t)
771 {
772         struct list_head *head = &resv->regions;
773         struct file_region *rg;
774         long chg = 0;
775
776         spin_lock(&resv->lock);
777         /* Locate each segment we overlap with, and count that overlap. */
778         list_for_each_entry(rg, head, link) {
779                 long seg_from;
780                 long seg_to;
781
782                 if (rg->to <= f)
783                         continue;
784                 if (rg->from >= t)
785                         break;
786
787                 seg_from = max(rg->from, f);
788                 seg_to = min(rg->to, t);
789
790                 chg += seg_to - seg_from;
791         }
792         spin_unlock(&resv->lock);
793
794         return chg;
795 }
796
797 /*
798  * Convert the address within this vma to the page offset within
799  * the mapping, in pagecache page units; huge pages here.
800  */
801 static pgoff_t vma_hugecache_offset(struct hstate *h,
802                         struct vm_area_struct *vma, unsigned long address)
803 {
804         return ((address - vma->vm_start) >> huge_page_shift(h)) +
805                         (vma->vm_pgoff >> huge_page_order(h));
806 }
807
808 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
809                                      unsigned long address)
810 {
811         return vma_hugecache_offset(hstate_vma(vma), vma, address);
812 }
813 EXPORT_SYMBOL_GPL(linear_hugepage_index);
814
815 /*
816  * Return the size of the pages allocated when backing a VMA. In the majority
817  * cases this will be same size as used by the page table entries.
818  */
819 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
820 {
821         if (vma->vm_ops && vma->vm_ops->pagesize)
822                 return vma->vm_ops->pagesize(vma);
823         return PAGE_SIZE;
824 }
825 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
826
827 /*
828  * Return the page size being used by the MMU to back a VMA. In the majority
829  * of cases, the page size used by the kernel matches the MMU size. On
830  * architectures where it differs, an architecture-specific 'strong'
831  * version of this symbol is required.
832  */
833 __weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
834 {
835         return vma_kernel_pagesize(vma);
836 }
837
838 /*
839  * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
840  * bits of the reservation map pointer, which are always clear due to
841  * alignment.
842  */
843 #define HPAGE_RESV_OWNER    (1UL << 0)
844 #define HPAGE_RESV_UNMAPPED (1UL << 1)
845 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
846
847 /*
848  * These helpers are used to track how many pages are reserved for
849  * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
850  * is guaranteed to have their future faults succeed.
851  *
852  * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
853  * the reserve counters are updated with the hugetlb_lock held. It is safe
854  * to reset the VMA at fork() time as it is not in use yet and there is no
855  * chance of the global counters getting corrupted as a result of the values.
856  *
857  * The private mapping reservation is represented in a subtly different
858  * manner to a shared mapping.  A shared mapping has a region map associated
859  * with the underlying file, this region map represents the backing file
860  * pages which have ever had a reservation assigned which this persists even
861  * after the page is instantiated.  A private mapping has a region map
862  * associated with the original mmap which is attached to all VMAs which
863  * reference it, this region map represents those offsets which have consumed
864  * reservation ie. where pages have been instantiated.
865  */
866 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
867 {
868         return (unsigned long)vma->vm_private_data;
869 }
870
871 static void set_vma_private_data(struct vm_area_struct *vma,
872                                                         unsigned long value)
873 {
874         vma->vm_private_data = (void *)value;
875 }
876
877 static void
878 resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map *resv_map,
879                                           struct hugetlb_cgroup *h_cg,
880                                           struct hstate *h)
881 {
882 #ifdef CONFIG_CGROUP_HUGETLB
883         if (!h_cg || !h) {
884                 resv_map->reservation_counter = NULL;
885                 resv_map->pages_per_hpage = 0;
886                 resv_map->css = NULL;
887         } else {
888                 resv_map->reservation_counter =
889                         &h_cg->rsvd_hugepage[hstate_index(h)];
890                 resv_map->pages_per_hpage = pages_per_huge_page(h);
891                 resv_map->css = &h_cg->css;
892         }
893 #endif
894 }
895
896 struct resv_map *resv_map_alloc(void)
897 {
898         struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
899         struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
900
901         if (!resv_map || !rg) {
902                 kfree(resv_map);
903                 kfree(rg);
904                 return NULL;
905         }
906
907         kref_init(&resv_map->refs);
908         spin_lock_init(&resv_map->lock);
909         INIT_LIST_HEAD(&resv_map->regions);
910
911         resv_map->adds_in_progress = 0;
912         /*
913          * Initialize these to 0. On shared mappings, 0's here indicate these
914          * fields don't do cgroup accounting. On private mappings, these will be
915          * re-initialized to the proper values, to indicate that hugetlb cgroup
916          * reservations are to be un-charged from here.
917          */
918         resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, NULL, NULL);
919
920         INIT_LIST_HEAD(&resv_map->region_cache);
921         list_add(&rg->link, &resv_map->region_cache);
922         resv_map->region_cache_count = 1;
923
924         return resv_map;
925 }
926
927 void resv_map_release(struct kref *ref)
928 {
929         struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
930         struct list_head *head = &resv_map->region_cache;
931         struct file_region *rg, *trg;
932
933         /* Clear out any active regions before we release the map. */
934         region_del(resv_map, 0, LONG_MAX);
935
936         /* ... and any entries left in the cache */
937         list_for_each_entry_safe(rg, trg, head, link) {
938                 list_del(&rg->link);
939                 kfree(rg);
940         }
941
942         VM_BUG_ON(resv_map->adds_in_progress);
943
944         kfree(resv_map);
945 }
946
947 static inline struct resv_map *inode_resv_map(struct inode *inode)
948 {
949         /*
950          * At inode evict time, i_mapping may not point to the original
951          * address space within the inode.  This original address space
952          * contains the pointer to the resv_map.  So, always use the
953          * address space embedded within the inode.
954          * The VERY common case is inode->mapping == &inode->i_data but,
955          * this may not be true for device special inodes.
956          */
957         return (struct resv_map *)(&inode->i_data)->private_data;
958 }
959
960 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
961 {
962         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
963         if (vma->vm_flags & VM_MAYSHARE) {
964                 struct address_space *mapping = vma->vm_file->f_mapping;
965                 struct inode *inode = mapping->host;
966
967                 return inode_resv_map(inode);
968
969         } else {
970                 return (struct resv_map *)(get_vma_private_data(vma) &
971                                                         ~HPAGE_RESV_MASK);
972         }
973 }
974
975 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
976 {
977         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
978         VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
979
980         set_vma_private_data(vma, (get_vma_private_data(vma) &
981                                 HPAGE_RESV_MASK) | (unsigned long)map);
982 }
983
984 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
985 {
986         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
987         VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
988
989         set_vma_private_data(vma, get_vma_private_data(vma) | flags);
990 }
991
992 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
993 {
994         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
995
996         return (get_vma_private_data(vma) & flag) != 0;
997 }
998
999 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
1000 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
1001 {
1002         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1003         if (!(vma->vm_flags & VM_MAYSHARE))
1004                 vma->vm_private_data = (void *)0;
1005 }
1006
1007 /* Returns true if the VMA has associated reserve pages */
1008 static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
1009 {
1010         if (vma->vm_flags & VM_NORESERVE) {
1011                 /*
1012                  * This address is already reserved by other process(chg == 0),
1013                  * so, we should decrement reserved count. Without decrementing,
1014                  * reserve count remains after releasing inode, because this
1015                  * allocated page will go into page cache and is regarded as
1016                  * coming from reserved pool in releasing step.  Currently, we
1017                  * don't have any other solution to deal with this situation
1018                  * properly, so add work-around here.
1019                  */
1020                 if (vma->vm_flags & VM_MAYSHARE && chg == 0)
1021                         return true;
1022                 else
1023                         return false;
1024         }
1025
1026         /* Shared mappings always use reserves */
1027         if (vma->vm_flags & VM_MAYSHARE) {
1028                 /*
1029                  * We know VM_NORESERVE is not set.  Therefore, there SHOULD
1030                  * be a region map for all pages.  The only situation where
1031                  * there is no region map is if a hole was punched via
1032                  * fallocate.  In this case, there really are no reserves to
1033                  * use.  This situation is indicated if chg != 0.
1034                  */
1035                 if (chg)
1036                         return false;
1037                 else
1038                         return true;
1039         }
1040
1041         /*
1042          * Only the process that called mmap() has reserves for
1043          * private mappings.
1044          */
1045         if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1046                 /*
1047                  * Like the shared case above, a hole punch or truncate
1048                  * could have been performed on the private mapping.
1049                  * Examine the value of chg to determine if reserves
1050                  * actually exist or were previously consumed.
1051                  * Very Subtle - The value of chg comes from a previous
1052                  * call to vma_needs_reserves().  The reserve map for
1053                  * private mappings has different (opposite) semantics
1054                  * than that of shared mappings.  vma_needs_reserves()
1055                  * has already taken this difference in semantics into
1056                  * account.  Therefore, the meaning of chg is the same
1057                  * as in the shared case above.  Code could easily be
1058                  * combined, but keeping it separate draws attention to
1059                  * subtle differences.
1060                  */
1061                 if (chg)
1062                         return false;
1063                 else
1064                         return true;
1065         }
1066
1067         return false;
1068 }
1069
1070 static void enqueue_huge_page(struct hstate *h, struct page *page)
1071 {
1072         int nid = page_to_nid(page);
1073
1074         lockdep_assert_held(&hugetlb_lock);
1075         list_move(&page->lru, &h->hugepage_freelists[nid]);
1076         h->free_huge_pages++;
1077         h->free_huge_pages_node[nid]++;
1078         SetHPageFreed(page);
1079 }
1080
1081 static struct page *dequeue_huge_page_node_exact(struct hstate *h, int nid)
1082 {
1083         struct page *page;
1084         bool pin = !!(current->flags & PF_MEMALLOC_PIN);
1085
1086         lockdep_assert_held(&hugetlb_lock);
1087         list_for_each_entry(page, &h->hugepage_freelists[nid], lru) {
1088                 if (pin && !is_pinnable_page(page))
1089                         continue;
1090
1091                 if (PageHWPoison(page))
1092                         continue;
1093
1094                 list_move(&page->lru, &h->hugepage_activelist);
1095                 set_page_refcounted(page);
1096                 ClearHPageFreed(page);
1097                 h->free_huge_pages--;
1098                 h->free_huge_pages_node[nid]--;
1099                 return page;
1100         }
1101
1102         return NULL;
1103 }
1104
1105 static struct page *dequeue_huge_page_nodemask(struct hstate *h, gfp_t gfp_mask, int nid,
1106                 nodemask_t *nmask)
1107 {
1108         unsigned int cpuset_mems_cookie;
1109         struct zonelist *zonelist;
1110         struct zone *zone;
1111         struct zoneref *z;
1112         int node = NUMA_NO_NODE;
1113
1114         zonelist = node_zonelist(nid, gfp_mask);
1115
1116 retry_cpuset:
1117         cpuset_mems_cookie = read_mems_allowed_begin();
1118         for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
1119                 struct page *page;
1120
1121                 if (!cpuset_zone_allowed(zone, gfp_mask))
1122                         continue;
1123                 /*
1124                  * no need to ask again on the same node. Pool is node rather than
1125                  * zone aware
1126                  */
1127                 if (zone_to_nid(zone) == node)
1128                         continue;
1129                 node = zone_to_nid(zone);
1130
1131                 page = dequeue_huge_page_node_exact(h, node);
1132                 if (page)
1133                         return page;
1134         }
1135         if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
1136                 goto retry_cpuset;
1137
1138         return NULL;
1139 }
1140
1141 static struct page *dequeue_huge_page_vma(struct hstate *h,
1142                                 struct vm_area_struct *vma,
1143                                 unsigned long address, int avoid_reserve,
1144                                 long chg)
1145 {
1146         struct page *page;
1147         struct mempolicy *mpol;
1148         gfp_t gfp_mask;
1149         nodemask_t *nodemask;
1150         int nid;
1151
1152         /*
1153          * A child process with MAP_PRIVATE mappings created by their parent
1154          * have no page reserves. This check ensures that reservations are
1155          * not "stolen". The child may still get SIGKILLed
1156          */
1157         if (!vma_has_reserves(vma, chg) &&
1158                         h->free_huge_pages - h->resv_huge_pages == 0)
1159                 goto err;
1160
1161         /* If reserves cannot be used, ensure enough pages are in the pool */
1162         if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
1163                 goto err;
1164
1165         gfp_mask = htlb_alloc_mask(h);
1166         nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
1167         page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
1168         if (page && !avoid_reserve && vma_has_reserves(vma, chg)) {
1169                 SetHPageRestoreReserve(page);
1170                 h->resv_huge_pages--;
1171         }
1172
1173         mpol_cond_put(mpol);
1174         return page;
1175
1176 err:
1177         return NULL;
1178 }
1179
1180 /*
1181  * common helper functions for hstate_next_node_to_{alloc|free}.
1182  * We may have allocated or freed a huge page based on a different
1183  * nodes_allowed previously, so h->next_node_to_{alloc|free} might
1184  * be outside of *nodes_allowed.  Ensure that we use an allowed
1185  * node for alloc or free.
1186  */
1187 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
1188 {
1189         nid = next_node_in(nid, *nodes_allowed);
1190         VM_BUG_ON(nid >= MAX_NUMNODES);
1191
1192         return nid;
1193 }
1194
1195 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
1196 {
1197         if (!node_isset(nid, *nodes_allowed))
1198                 nid = next_node_allowed(nid, nodes_allowed);
1199         return nid;
1200 }
1201
1202 /*
1203  * returns the previously saved node ["this node"] from which to
1204  * allocate a persistent huge page for the pool and advance the
1205  * next node from which to allocate, handling wrap at end of node
1206  * mask.
1207  */
1208 static int hstate_next_node_to_alloc(struct hstate *h,
1209                                         nodemask_t *nodes_allowed)
1210 {
1211         int nid;
1212
1213         VM_BUG_ON(!nodes_allowed);
1214
1215         nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
1216         h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
1217
1218         return nid;
1219 }
1220
1221 /*
1222  * helper for remove_pool_huge_page() - return the previously saved
1223  * node ["this node"] from which to free a huge page.  Advance the
1224  * next node id whether or not we find a free huge page to free so
1225  * that the next attempt to free addresses the next node.
1226  */
1227 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1228 {
1229         int nid;
1230
1231         VM_BUG_ON(!nodes_allowed);
1232
1233         nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1234         h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1235
1236         return nid;
1237 }
1238
1239 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask)           \
1240         for (nr_nodes = nodes_weight(*mask);                            \
1241                 nr_nodes > 0 &&                                         \
1242                 ((node = hstate_next_node_to_alloc(hs, mask)) || 1);    \
1243                 nr_nodes--)
1244
1245 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask)            \
1246         for (nr_nodes = nodes_weight(*mask);                            \
1247                 nr_nodes > 0 &&                                         \
1248                 ((node = hstate_next_node_to_free(hs, mask)) || 1);     \
1249                 nr_nodes--)
1250
1251 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
1252 static void destroy_compound_gigantic_page(struct page *page,
1253                                         unsigned int order)
1254 {
1255         int i;
1256         int nr_pages = 1 << order;
1257         struct page *p = page + 1;
1258
1259         atomic_set(compound_mapcount_ptr(page), 0);
1260         atomic_set(compound_pincount_ptr(page), 0);
1261
1262         for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1263                 clear_compound_head(p);
1264                 set_page_refcounted(p);
1265         }
1266
1267         set_compound_order(page, 0);
1268         page[1].compound_nr = 0;
1269         __ClearPageHead(page);
1270 }
1271
1272 static void free_gigantic_page(struct page *page, unsigned int order)
1273 {
1274         /*
1275          * If the page isn't allocated using the cma allocator,
1276          * cma_release() returns false.
1277          */
1278 #ifdef CONFIG_CMA
1279         if (cma_release(hugetlb_cma[page_to_nid(page)], page, 1 << order))
1280                 return;
1281 #endif
1282
1283         free_contig_range(page_to_pfn(page), 1 << order);
1284 }
1285
1286 #ifdef CONFIG_CONTIG_ALLOC
1287 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1288                 int nid, nodemask_t *nodemask)
1289 {
1290         unsigned long nr_pages = pages_per_huge_page(h);
1291         if (nid == NUMA_NO_NODE)
1292                 nid = numa_mem_id();
1293
1294 #ifdef CONFIG_CMA
1295         {
1296                 struct page *page;
1297                 int node;
1298
1299                 if (hugetlb_cma[nid]) {
1300                         page = cma_alloc(hugetlb_cma[nid], nr_pages,
1301                                         huge_page_order(h), true);
1302                         if (page)
1303                                 return page;
1304                 }
1305
1306                 if (!(gfp_mask & __GFP_THISNODE)) {
1307                         for_each_node_mask(node, *nodemask) {
1308                                 if (node == nid || !hugetlb_cma[node])
1309                                         continue;
1310
1311                                 page = cma_alloc(hugetlb_cma[node], nr_pages,
1312                                                 huge_page_order(h), true);
1313                                 if (page)
1314                                         return page;
1315                         }
1316                 }
1317         }
1318 #endif
1319
1320         return alloc_contig_pages(nr_pages, gfp_mask, nid, nodemask);
1321 }
1322
1323 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid);
1324 static void prep_compound_gigantic_page(struct page *page, unsigned int order);
1325 #else /* !CONFIG_CONTIG_ALLOC */
1326 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1327                                         int nid, nodemask_t *nodemask)
1328 {
1329         return NULL;
1330 }
1331 #endif /* CONFIG_CONTIG_ALLOC */
1332
1333 #else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
1334 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1335                                         int nid, nodemask_t *nodemask)
1336 {
1337         return NULL;
1338 }
1339 static inline void free_gigantic_page(struct page *page, unsigned int order) { }
1340 static inline void destroy_compound_gigantic_page(struct page *page,
1341                                                 unsigned int order) { }
1342 #endif
1343
1344 /*
1345  * Remove hugetlb page from lists, and update dtor so that page appears
1346  * as just a compound page.  A reference is held on the page.
1347  *
1348  * Must be called with hugetlb lock held.
1349  */
1350 static void remove_hugetlb_page(struct hstate *h, struct page *page,
1351                                                         bool adjust_surplus)
1352 {
1353         int nid = page_to_nid(page);
1354
1355         VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
1356         VM_BUG_ON_PAGE(hugetlb_cgroup_from_page_rsvd(page), page);
1357
1358         lockdep_assert_held(&hugetlb_lock);
1359         if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1360                 return;
1361
1362         list_del(&page->lru);
1363
1364         if (HPageFreed(page)) {
1365                 h->free_huge_pages--;
1366                 h->free_huge_pages_node[nid]--;
1367         }
1368         if (adjust_surplus) {
1369                 h->surplus_huge_pages--;
1370                 h->surplus_huge_pages_node[nid]--;
1371         }
1372
1373         set_page_refcounted(page);
1374         set_compound_page_dtor(page, NULL_COMPOUND_DTOR);
1375
1376         h->nr_huge_pages--;
1377         h->nr_huge_pages_node[nid]--;
1378 }
1379
1380 static void add_hugetlb_page(struct hstate *h, struct page *page,
1381                              bool adjust_surplus)
1382 {
1383         int zeroed;
1384         int nid = page_to_nid(page);
1385
1386         VM_BUG_ON_PAGE(!HPageVmemmapOptimized(page), page);
1387
1388         lockdep_assert_held(&hugetlb_lock);
1389
1390         INIT_LIST_HEAD(&page->lru);
1391         h->nr_huge_pages++;
1392         h->nr_huge_pages_node[nid]++;
1393
1394         if (adjust_surplus) {
1395                 h->surplus_huge_pages++;
1396                 h->surplus_huge_pages_node[nid]++;
1397         }
1398
1399         set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1400         set_page_private(page, 0);
1401         SetHPageVmemmapOptimized(page);
1402
1403         /*
1404          * This page is now managed by the hugetlb allocator and has
1405          * no users -- drop the last reference.
1406          */
1407         zeroed = put_page_testzero(page);
1408         VM_BUG_ON_PAGE(!zeroed, page);
1409         arch_clear_hugepage_flags(page);
1410         enqueue_huge_page(h, page);
1411 }
1412
1413 static void __update_and_free_page(struct hstate *h, struct page *page)
1414 {
1415         int i;
1416         struct page *subpage = page;
1417
1418         if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1419                 return;
1420
1421         if (alloc_huge_page_vmemmap(h, page)) {
1422                 spin_lock_irq(&hugetlb_lock);
1423                 /*
1424                  * If we cannot allocate vmemmap pages, just refuse to free the
1425                  * page and put the page back on the hugetlb free list and treat
1426                  * as a surplus page.
1427                  */
1428                 add_hugetlb_page(h, page, true);
1429                 spin_unlock_irq(&hugetlb_lock);
1430                 return;
1431         }
1432
1433         for (i = 0; i < pages_per_huge_page(h);
1434              i++, subpage = mem_map_next(subpage, page, i)) {
1435                 subpage->flags &= ~(1 << PG_locked | 1 << PG_error |
1436                                 1 << PG_referenced | 1 << PG_dirty |
1437                                 1 << PG_active | 1 << PG_private |
1438                                 1 << PG_writeback);
1439         }
1440         if (hstate_is_gigantic(h)) {
1441                 destroy_compound_gigantic_page(page, huge_page_order(h));
1442                 free_gigantic_page(page, huge_page_order(h));
1443         } else {
1444                 __free_pages(page, huge_page_order(h));
1445         }
1446 }
1447
1448 /*
1449  * As update_and_free_page() can be called under any context, so we cannot
1450  * use GFP_KERNEL to allocate vmemmap pages. However, we can defer the
1451  * actual freeing in a workqueue to prevent from using GFP_ATOMIC to allocate
1452  * the vmemmap pages.
1453  *
1454  * free_hpage_workfn() locklessly retrieves the linked list of pages to be
1455  * freed and frees them one-by-one. As the page->mapping pointer is going
1456  * to be cleared in free_hpage_workfn() anyway, it is reused as the llist_node
1457  * structure of a lockless linked list of huge pages to be freed.
1458  */
1459 static LLIST_HEAD(hpage_freelist);
1460
1461 static void free_hpage_workfn(struct work_struct *work)
1462 {
1463         struct llist_node *node;
1464
1465         node = llist_del_all(&hpage_freelist);
1466
1467         while (node) {
1468                 struct page *page;
1469                 struct hstate *h;
1470
1471                 page = container_of((struct address_space **)node,
1472                                      struct page, mapping);
1473                 node = node->next;
1474                 page->mapping = NULL;
1475                 /*
1476                  * The VM_BUG_ON_PAGE(!PageHuge(page), page) in page_hstate()
1477                  * is going to trigger because a previous call to
1478                  * remove_hugetlb_page() will set_compound_page_dtor(page,
1479                  * NULL_COMPOUND_DTOR), so do not use page_hstate() directly.
1480                  */
1481                 h = size_to_hstate(page_size(page));
1482
1483                 __update_and_free_page(h, page);
1484
1485                 cond_resched();
1486         }
1487 }
1488 static DECLARE_WORK(free_hpage_work, free_hpage_workfn);
1489
1490 static inline void flush_free_hpage_work(struct hstate *h)
1491 {
1492         if (free_vmemmap_pages_per_hpage(h))
1493                 flush_work(&free_hpage_work);
1494 }
1495
1496 static void update_and_free_page(struct hstate *h, struct page *page,
1497                                  bool atomic)
1498 {
1499         if (!HPageVmemmapOptimized(page) || !atomic) {
1500                 __update_and_free_page(h, page);
1501                 return;
1502         }
1503
1504         /*
1505          * Defer freeing to avoid using GFP_ATOMIC to allocate vmemmap pages.
1506          *
1507          * Only call schedule_work() if hpage_freelist is previously
1508          * empty. Otherwise, schedule_work() had been called but the workfn
1509          * hasn't retrieved the list yet.
1510          */
1511         if (llist_add((struct llist_node *)&page->mapping, &hpage_freelist))
1512                 schedule_work(&free_hpage_work);
1513 }
1514
1515 static void update_and_free_pages_bulk(struct hstate *h, struct list_head *list)
1516 {
1517         struct page *page, *t_page;
1518
1519         list_for_each_entry_safe(page, t_page, list, lru) {
1520                 update_and_free_page(h, page, false);
1521                 cond_resched();
1522         }
1523 }
1524
1525 struct hstate *size_to_hstate(unsigned long size)
1526 {
1527         struct hstate *h;
1528
1529         for_each_hstate(h) {
1530                 if (huge_page_size(h) == size)
1531                         return h;
1532         }
1533         return NULL;
1534 }
1535
1536 void free_huge_page(struct page *page)
1537 {
1538         /*
1539          * Can't pass hstate in here because it is called from the
1540          * compound page destructor.
1541          */
1542         struct hstate *h = page_hstate(page);
1543         int nid = page_to_nid(page);
1544         struct hugepage_subpool *spool = hugetlb_page_subpool(page);
1545         bool restore_reserve;
1546         unsigned long flags;
1547
1548         VM_BUG_ON_PAGE(page_count(page), page);
1549         VM_BUG_ON_PAGE(page_mapcount(page), page);
1550
1551         hugetlb_set_page_subpool(page, NULL);
1552         page->mapping = NULL;
1553         restore_reserve = HPageRestoreReserve(page);
1554         ClearHPageRestoreReserve(page);
1555
1556         /*
1557          * If HPageRestoreReserve was set on page, page allocation consumed a
1558          * reservation.  If the page was associated with a subpool, there
1559          * would have been a page reserved in the subpool before allocation
1560          * via hugepage_subpool_get_pages().  Since we are 'restoring' the
1561          * reservation, do not call hugepage_subpool_put_pages() as this will
1562          * remove the reserved page from the subpool.
1563          */
1564         if (!restore_reserve) {
1565                 /*
1566                  * A return code of zero implies that the subpool will be
1567                  * under its minimum size if the reservation is not restored
1568                  * after page is free.  Therefore, force restore_reserve
1569                  * operation.
1570                  */
1571                 if (hugepage_subpool_put_pages(spool, 1) == 0)
1572                         restore_reserve = true;
1573         }
1574
1575         spin_lock_irqsave(&hugetlb_lock, flags);
1576         ClearHPageMigratable(page);
1577         hugetlb_cgroup_uncharge_page(hstate_index(h),
1578                                      pages_per_huge_page(h), page);
1579         hugetlb_cgroup_uncharge_page_rsvd(hstate_index(h),
1580                                           pages_per_huge_page(h), page);
1581         if (restore_reserve)
1582                 h->resv_huge_pages++;
1583
1584         if (HPageTemporary(page)) {
1585                 remove_hugetlb_page(h, page, false);
1586                 spin_unlock_irqrestore(&hugetlb_lock, flags);
1587                 update_and_free_page(h, page, true);
1588         } else if (h->surplus_huge_pages_node[nid]) {
1589                 /* remove the page from active list */
1590                 remove_hugetlb_page(h, page, true);
1591                 spin_unlock_irqrestore(&hugetlb_lock, flags);
1592                 update_and_free_page(h, page, true);
1593         } else {
1594                 arch_clear_hugepage_flags(page);
1595                 enqueue_huge_page(h, page);
1596                 spin_unlock_irqrestore(&hugetlb_lock, flags);
1597         }
1598 }
1599
1600 /*
1601  * Must be called with the hugetlb lock held
1602  */
1603 static void __prep_account_new_huge_page(struct hstate *h, int nid)
1604 {
1605         lockdep_assert_held(&hugetlb_lock);
1606         h->nr_huge_pages++;
1607         h->nr_huge_pages_node[nid]++;
1608 }
1609
1610 static void __prep_new_huge_page(struct hstate *h, struct page *page)
1611 {
1612         free_huge_page_vmemmap(h, page);
1613         INIT_LIST_HEAD(&page->lru);
1614         set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1615         hugetlb_set_page_subpool(page, NULL);
1616         set_hugetlb_cgroup(page, NULL);
1617         set_hugetlb_cgroup_rsvd(page, NULL);
1618 }
1619
1620 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
1621 {
1622         __prep_new_huge_page(h, page);
1623         spin_lock_irq(&hugetlb_lock);
1624         __prep_account_new_huge_page(h, nid);
1625         spin_unlock_irq(&hugetlb_lock);
1626 }
1627
1628 static void prep_compound_gigantic_page(struct page *page, unsigned int order)
1629 {
1630         int i;
1631         int nr_pages = 1 << order;
1632         struct page *p = page + 1;
1633
1634         /* we rely on prep_new_huge_page to set the destructor */
1635         set_compound_order(page, order);
1636         __ClearPageReserved(page);
1637         __SetPageHead(page);
1638         for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1639                 /*
1640                  * For gigantic hugepages allocated through bootmem at
1641                  * boot, it's safer to be consistent with the not-gigantic
1642                  * hugepages and clear the PG_reserved bit from all tail pages
1643                  * too.  Otherwise drivers using get_user_pages() to access tail
1644                  * pages may get the reference counting wrong if they see
1645                  * PG_reserved set on a tail page (despite the head page not
1646                  * having PG_reserved set).  Enforcing this consistency between
1647                  * head and tail pages allows drivers to optimize away a check
1648                  * on the head page when they need know if put_page() is needed
1649                  * after get_user_pages().
1650                  */
1651                 __ClearPageReserved(p);
1652                 set_page_count(p, 0);
1653                 set_compound_head(p, page);
1654         }
1655         atomic_set(compound_mapcount_ptr(page), -1);
1656         atomic_set(compound_pincount_ptr(page), 0);
1657 }
1658
1659 /*
1660  * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1661  * transparent huge pages.  See the PageTransHuge() documentation for more
1662  * details.
1663  */
1664 int PageHuge(struct page *page)
1665 {
1666         if (!PageCompound(page))
1667                 return 0;
1668
1669         page = compound_head(page);
1670         return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
1671 }
1672 EXPORT_SYMBOL_GPL(PageHuge);
1673
1674 /*
1675  * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1676  * normal or transparent huge pages.
1677  */
1678 int PageHeadHuge(struct page *page_head)
1679 {
1680         if (!PageHead(page_head))
1681                 return 0;
1682
1683         return page_head[1].compound_dtor == HUGETLB_PAGE_DTOR;
1684 }
1685
1686 /*
1687  * Find and lock address space (mapping) in write mode.
1688  *
1689  * Upon entry, the page is locked which means that page_mapping() is
1690  * stable.  Due to locking order, we can only trylock_write.  If we can
1691  * not get the lock, simply return NULL to caller.
1692  */
1693 struct address_space *hugetlb_page_mapping_lock_write(struct page *hpage)
1694 {
1695         struct address_space *mapping = page_mapping(hpage);
1696
1697         if (!mapping)
1698                 return mapping;
1699
1700         if (i_mmap_trylock_write(mapping))
1701                 return mapping;
1702
1703         return NULL;
1704 }
1705
1706 pgoff_t hugetlb_basepage_index(struct page *page)
1707 {
1708         struct page *page_head = compound_head(page);
1709         pgoff_t index = page_index(page_head);
1710         unsigned long compound_idx;
1711
1712         if (compound_order(page_head) >= MAX_ORDER)
1713                 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
1714         else
1715                 compound_idx = page - page_head;
1716
1717         return (index << compound_order(page_head)) + compound_idx;
1718 }
1719
1720 static struct page *alloc_buddy_huge_page(struct hstate *h,
1721                 gfp_t gfp_mask, int nid, nodemask_t *nmask,
1722                 nodemask_t *node_alloc_noretry)
1723 {
1724         int order = huge_page_order(h);
1725         struct page *page;
1726         bool alloc_try_hard = true;
1727
1728         /*
1729          * By default we always try hard to allocate the page with
1730          * __GFP_RETRY_MAYFAIL flag.  However, if we are allocating pages in
1731          * a loop (to adjust global huge page counts) and previous allocation
1732          * failed, do not continue to try hard on the same node.  Use the
1733          * node_alloc_noretry bitmap to manage this state information.
1734          */
1735         if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry))
1736                 alloc_try_hard = false;
1737         gfp_mask |= __GFP_COMP|__GFP_NOWARN;
1738         if (alloc_try_hard)
1739                 gfp_mask |= __GFP_RETRY_MAYFAIL;
1740         if (nid == NUMA_NO_NODE)
1741                 nid = numa_mem_id();
1742         page = __alloc_pages(gfp_mask, order, nid, nmask);
1743         if (page)
1744                 __count_vm_event(HTLB_BUDDY_PGALLOC);
1745         else
1746                 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1747
1748         /*
1749          * If we did not specify __GFP_RETRY_MAYFAIL, but still got a page this
1750          * indicates an overall state change.  Clear bit so that we resume
1751          * normal 'try hard' allocations.
1752          */
1753         if (node_alloc_noretry && page && !alloc_try_hard)
1754                 node_clear(nid, *node_alloc_noretry);
1755
1756         /*
1757          * If we tried hard to get a page but failed, set bit so that
1758          * subsequent attempts will not try as hard until there is an
1759          * overall state change.
1760          */
1761         if (node_alloc_noretry && !page && alloc_try_hard)
1762                 node_set(nid, *node_alloc_noretry);
1763
1764         return page;
1765 }
1766
1767 /*
1768  * Common helper to allocate a fresh hugetlb page. All specific allocators
1769  * should use this function to get new hugetlb pages
1770  */
1771 static struct page *alloc_fresh_huge_page(struct hstate *h,
1772                 gfp_t gfp_mask, int nid, nodemask_t *nmask,
1773                 nodemask_t *node_alloc_noretry)
1774 {
1775         struct page *page;
1776
1777         if (hstate_is_gigantic(h))
1778                 page = alloc_gigantic_page(h, gfp_mask, nid, nmask);
1779         else
1780                 page = alloc_buddy_huge_page(h, gfp_mask,
1781                                 nid, nmask, node_alloc_noretry);
1782         if (!page)
1783                 return NULL;
1784
1785         if (hstate_is_gigantic(h))
1786                 prep_compound_gigantic_page(page, huge_page_order(h));
1787         prep_new_huge_page(h, page, page_to_nid(page));
1788
1789         return page;
1790 }
1791
1792 /*
1793  * Allocates a fresh page to the hugetlb allocator pool in the node interleaved
1794  * manner.
1795  */
1796 static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1797                                 nodemask_t *node_alloc_noretry)
1798 {
1799         struct page *page;
1800         int nr_nodes, node;
1801         gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
1802
1803         for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1804                 page = alloc_fresh_huge_page(h, gfp_mask, node, nodes_allowed,
1805                                                 node_alloc_noretry);
1806                 if (page)
1807                         break;
1808         }
1809
1810         if (!page)
1811                 return 0;
1812
1813         put_page(page); /* free it into the hugepage allocator */
1814
1815         return 1;
1816 }
1817
1818 /*
1819  * Remove huge page from pool from next node to free.  Attempt to keep
1820  * persistent huge pages more or less balanced over allowed nodes.
1821  * This routine only 'removes' the hugetlb page.  The caller must make
1822  * an additional call to free the page to low level allocators.
1823  * Called with hugetlb_lock locked.
1824  */
1825 static struct page *remove_pool_huge_page(struct hstate *h,
1826                                                 nodemask_t *nodes_allowed,
1827                                                  bool acct_surplus)
1828 {
1829         int nr_nodes, node;
1830         struct page *page = NULL;
1831
1832         lockdep_assert_held(&hugetlb_lock);
1833         for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1834                 /*
1835                  * If we're returning unused surplus pages, only examine
1836                  * nodes with surplus pages.
1837                  */
1838                 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
1839                     !list_empty(&h->hugepage_freelists[node])) {
1840                         page = list_entry(h->hugepage_freelists[node].next,
1841                                           struct page, lru);
1842                         remove_hugetlb_page(h, page, acct_surplus);
1843                         break;
1844                 }
1845         }
1846
1847         return page;
1848 }
1849
1850 /*
1851  * Dissolve a given free hugepage into free buddy pages. This function does
1852  * nothing for in-use hugepages and non-hugepages.
1853  * This function returns values like below:
1854  *
1855  *  -ENOMEM: failed to allocate vmemmap pages to free the freed hugepages
1856  *           when the system is under memory pressure and the feature of
1857  *           freeing unused vmemmap pages associated with each hugetlb page
1858  *           is enabled.
1859  *  -EBUSY:  failed to dissolved free hugepages or the hugepage is in-use
1860  *           (allocated or reserved.)
1861  *       0:  successfully dissolved free hugepages or the page is not a
1862  *           hugepage (considered as already dissolved)
1863  */
1864 int dissolve_free_huge_page(struct page *page)
1865 {
1866         int rc = -EBUSY;
1867
1868 retry:
1869         /* Not to disrupt normal path by vainly holding hugetlb_lock */
1870         if (!PageHuge(page))
1871                 return 0;
1872
1873         spin_lock_irq(&hugetlb_lock);
1874         if (!PageHuge(page)) {
1875                 rc = 0;
1876                 goto out;
1877         }
1878
1879         if (!page_count(page)) {
1880                 struct page *head = compound_head(page);
1881                 struct hstate *h = page_hstate(head);
1882                 if (h->free_huge_pages - h->resv_huge_pages == 0)
1883                         goto out;
1884
1885                 /*
1886                  * We should make sure that the page is already on the free list
1887                  * when it is dissolved.
1888                  */
1889                 if (unlikely(!HPageFreed(head))) {
1890                         spin_unlock_irq(&hugetlb_lock);
1891                         cond_resched();
1892
1893                         /*
1894                          * Theoretically, we should return -EBUSY when we
1895                          * encounter this race. In fact, we have a chance
1896                          * to successfully dissolve the page if we do a
1897                          * retry. Because the race window is quite small.
1898                          * If we seize this opportunity, it is an optimization
1899                          * for increasing the success rate of dissolving page.
1900                          */
1901                         goto retry;
1902                 }
1903
1904                 remove_hugetlb_page(h, head, false);
1905                 h->max_huge_pages--;
1906                 spin_unlock_irq(&hugetlb_lock);
1907
1908                 /*
1909                  * Normally update_and_free_page will allocate required vmemmmap
1910                  * before freeing the page.  update_and_free_page will fail to
1911                  * free the page if it can not allocate required vmemmap.  We
1912                  * need to adjust max_huge_pages if the page is not freed.
1913                  * Attempt to allocate vmemmmap here so that we can take
1914                  * appropriate action on failure.
1915                  */
1916                 rc = alloc_huge_page_vmemmap(h, head);
1917                 if (!rc) {
1918                         /*
1919                          * Move PageHWPoison flag from head page to the raw
1920                          * error page, which makes any subpages rather than
1921                          * the error page reusable.
1922                          */
1923                         if (PageHWPoison(head) && page != head) {
1924                                 SetPageHWPoison(page);
1925                                 ClearPageHWPoison(head);
1926                         }
1927                         update_and_free_page(h, head, false);
1928                 } else {
1929                         spin_lock_irq(&hugetlb_lock);
1930                         add_hugetlb_page(h, head, false);
1931                         h->max_huge_pages++;
1932                         spin_unlock_irq(&hugetlb_lock);
1933                 }
1934
1935                 return rc;
1936         }
1937 out:
1938         spin_unlock_irq(&hugetlb_lock);
1939         return rc;
1940 }
1941
1942 /*
1943  * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
1944  * make specified memory blocks removable from the system.
1945  * Note that this will dissolve a free gigantic hugepage completely, if any
1946  * part of it lies within the given range.
1947  * Also note that if dissolve_free_huge_page() returns with an error, all
1948  * free hugepages that were dissolved before that error are lost.
1949  */
1950 int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
1951 {
1952         unsigned long pfn;
1953         struct page *page;
1954         int rc = 0;
1955
1956         if (!hugepages_supported())
1957                 return rc;
1958
1959         for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order) {
1960                 page = pfn_to_page(pfn);
1961                 rc = dissolve_free_huge_page(page);
1962                 if (rc)
1963                         break;
1964         }
1965
1966         return rc;
1967 }
1968
1969 /*
1970  * Allocates a fresh surplus page from the page allocator.
1971  */
1972 static struct page *alloc_surplus_huge_page(struct hstate *h, gfp_t gfp_mask,
1973                 int nid, nodemask_t *nmask)
1974 {
1975         struct page *page = NULL;
1976
1977         if (hstate_is_gigantic(h))
1978                 return NULL;
1979
1980         spin_lock_irq(&hugetlb_lock);
1981         if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages)
1982                 goto out_unlock;
1983         spin_unlock_irq(&hugetlb_lock);
1984
1985         page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
1986         if (!page)
1987                 return NULL;
1988
1989         spin_lock_irq(&hugetlb_lock);
1990         /*
1991          * We could have raced with the pool size change.
1992          * Double check that and simply deallocate the new page
1993          * if we would end up overcommiting the surpluses. Abuse
1994          * temporary page to workaround the nasty free_huge_page
1995          * codeflow
1996          */
1997         if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
1998                 SetHPageTemporary(page);
1999                 spin_unlock_irq(&hugetlb_lock);
2000                 put_page(page);
2001                 return NULL;
2002         } else {
2003                 h->surplus_huge_pages++;
2004                 h->surplus_huge_pages_node[page_to_nid(page)]++;
2005         }
2006
2007 out_unlock:
2008         spin_unlock_irq(&hugetlb_lock);
2009
2010         return page;
2011 }
2012
2013 static struct page *alloc_migrate_huge_page(struct hstate *h, gfp_t gfp_mask,
2014                                      int nid, nodemask_t *nmask)
2015 {
2016         struct page *page;
2017
2018         if (hstate_is_gigantic(h))
2019                 return NULL;
2020
2021         page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
2022         if (!page)
2023                 return NULL;
2024
2025         /*
2026          * We do not account these pages as surplus because they are only
2027          * temporary and will be released properly on the last reference
2028          */
2029         SetHPageTemporary(page);
2030
2031         return page;
2032 }
2033
2034 /*
2035  * Use the VMA's mpolicy to allocate a huge page from the buddy.
2036  */
2037 static
2038 struct page *alloc_buddy_huge_page_with_mpol(struct hstate *h,
2039                 struct vm_area_struct *vma, unsigned long addr)
2040 {
2041         struct page *page;
2042         struct mempolicy *mpol;
2043         gfp_t gfp_mask = htlb_alloc_mask(h);
2044         int nid;
2045         nodemask_t *nodemask;
2046
2047         nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
2048         page = alloc_surplus_huge_page(h, gfp_mask, nid, nodemask);
2049         mpol_cond_put(mpol);
2050
2051         return page;
2052 }
2053
2054 /* page migration callback function */
2055 struct page *alloc_huge_page_nodemask(struct hstate *h, int preferred_nid,
2056                 nodemask_t *nmask, gfp_t gfp_mask)
2057 {
2058         spin_lock_irq(&hugetlb_lock);
2059         if (h->free_huge_pages - h->resv_huge_pages > 0) {
2060                 struct page *page;
2061
2062                 page = dequeue_huge_page_nodemask(h, gfp_mask, preferred_nid, nmask);
2063                 if (page) {
2064                         spin_unlock_irq(&hugetlb_lock);
2065                         return page;
2066                 }
2067         }
2068         spin_unlock_irq(&hugetlb_lock);
2069
2070         return alloc_migrate_huge_page(h, gfp_mask, preferred_nid, nmask);
2071 }
2072
2073 /* mempolicy aware migration callback */
2074 struct page *alloc_huge_page_vma(struct hstate *h, struct vm_area_struct *vma,
2075                 unsigned long address)
2076 {
2077         struct mempolicy *mpol;
2078         nodemask_t *nodemask;
2079         struct page *page;
2080         gfp_t gfp_mask;
2081         int node;
2082
2083         gfp_mask = htlb_alloc_mask(h);
2084         node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
2085         page = alloc_huge_page_nodemask(h, node, nodemask, gfp_mask);
2086         mpol_cond_put(mpol);
2087
2088         return page;
2089 }
2090
2091 /*
2092  * Increase the hugetlb pool such that it can accommodate a reservation
2093  * of size 'delta'.
2094  */
2095 static int gather_surplus_pages(struct hstate *h, long delta)
2096         __must_hold(&hugetlb_lock)
2097 {
2098         struct list_head surplus_list;
2099         struct page *page, *tmp;
2100         int ret;
2101         long i;
2102         long needed, allocated;
2103         bool alloc_ok = true;
2104
2105         lockdep_assert_held(&hugetlb_lock);
2106         needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
2107         if (needed <= 0) {
2108                 h->resv_huge_pages += delta;
2109                 return 0;
2110         }
2111
2112         allocated = 0;
2113         INIT_LIST_HEAD(&surplus_list);
2114
2115         ret = -ENOMEM;
2116 retry:
2117         spin_unlock_irq(&hugetlb_lock);
2118         for (i = 0; i < needed; i++) {
2119                 page = alloc_surplus_huge_page(h, htlb_alloc_mask(h),
2120                                 NUMA_NO_NODE, NULL);
2121                 if (!page) {
2122                         alloc_ok = false;
2123                         break;
2124                 }
2125                 list_add(&page->lru, &surplus_list);
2126                 cond_resched();
2127         }
2128         allocated += i;
2129
2130         /*
2131          * After retaking hugetlb_lock, we need to recalculate 'needed'
2132          * because either resv_huge_pages or free_huge_pages may have changed.
2133          */
2134         spin_lock_irq(&hugetlb_lock);
2135         needed = (h->resv_huge_pages + delta) -
2136                         (h->free_huge_pages + allocated);
2137         if (needed > 0) {
2138                 if (alloc_ok)
2139                         goto retry;
2140                 /*
2141                  * We were not able to allocate enough pages to
2142                  * satisfy the entire reservation so we free what
2143                  * we've allocated so far.
2144                  */
2145                 goto free;
2146         }
2147         /*
2148          * The surplus_list now contains _at_least_ the number of extra pages
2149          * needed to accommodate the reservation.  Add the appropriate number
2150          * of pages to the hugetlb pool and free the extras back to the buddy
2151          * allocator.  Commit the entire reservation here to prevent another
2152          * process from stealing the pages as they are added to the pool but
2153          * before they are reserved.
2154          */
2155         needed += allocated;
2156         h->resv_huge_pages += delta;
2157         ret = 0;
2158
2159         /* Free the needed pages to the hugetlb pool */
2160         list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
2161                 int zeroed;
2162
2163                 if ((--needed) < 0)
2164                         break;
2165                 /*
2166                  * This page is now managed by the hugetlb allocator and has
2167                  * no users -- drop the buddy allocator's reference.
2168                  */
2169                 zeroed = put_page_testzero(page);
2170                 VM_BUG_ON_PAGE(!zeroed, page);
2171                 enqueue_huge_page(h, page);
2172         }
2173 free:
2174         spin_unlock_irq(&hugetlb_lock);
2175
2176         /* Free unnecessary surplus pages to the buddy allocator */
2177         list_for_each_entry_safe(page, tmp, &surplus_list, lru)
2178                 put_page(page);
2179         spin_lock_irq(&hugetlb_lock);
2180
2181         return ret;
2182 }
2183
2184 /*
2185  * This routine has two main purposes:
2186  * 1) Decrement the reservation count (resv_huge_pages) by the value passed
2187  *    in unused_resv_pages.  This corresponds to the prior adjustments made
2188  *    to the associated reservation map.
2189  * 2) Free any unused surplus pages that may have been allocated to satisfy
2190  *    the reservation.  As many as unused_resv_pages may be freed.
2191  */
2192 static void return_unused_surplus_pages(struct hstate *h,
2193                                         unsigned long unused_resv_pages)
2194 {
2195         unsigned long nr_pages;
2196         struct page *page;
2197         LIST_HEAD(page_list);
2198
2199         lockdep_assert_held(&hugetlb_lock);
2200         /* Uncommit the reservation */
2201         h->resv_huge_pages -= unused_resv_pages;
2202
2203         /* Cannot return gigantic pages currently */
2204         if (hstate_is_gigantic(h))
2205                 goto out;
2206
2207         /*
2208          * Part (or even all) of the reservation could have been backed
2209          * by pre-allocated pages. Only free surplus pages.
2210          */
2211         nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
2212
2213         /*
2214          * We want to release as many surplus pages as possible, spread
2215          * evenly across all nodes with memory. Iterate across these nodes
2216          * until we can no longer free unreserved surplus pages. This occurs
2217          * when the nodes with surplus pages have no free pages.
2218          * remove_pool_huge_page() will balance the freed pages across the
2219          * on-line nodes with memory and will handle the hstate accounting.
2220          */
2221         while (nr_pages--) {
2222                 page = remove_pool_huge_page(h, &node_states[N_MEMORY], 1);
2223                 if (!page)
2224                         goto out;
2225
2226                 list_add(&page->lru, &page_list);
2227         }
2228
2229 out:
2230         spin_unlock_irq(&hugetlb_lock);
2231         update_and_free_pages_bulk(h, &page_list);
2232         spin_lock_irq(&hugetlb_lock);
2233 }
2234
2235
2236 /*
2237  * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
2238  * are used by the huge page allocation routines to manage reservations.
2239  *
2240  * vma_needs_reservation is called to determine if the huge page at addr
2241  * within the vma has an associated reservation.  If a reservation is
2242  * needed, the value 1 is returned.  The caller is then responsible for
2243  * managing the global reservation and subpool usage counts.  After
2244  * the huge page has been allocated, vma_commit_reservation is called
2245  * to add the page to the reservation map.  If the page allocation fails,
2246  * the reservation must be ended instead of committed.  vma_end_reservation
2247  * is called in such cases.
2248  *
2249  * In the normal case, vma_commit_reservation returns the same value
2250  * as the preceding vma_needs_reservation call.  The only time this
2251  * is not the case is if a reserve map was changed between calls.  It
2252  * is the responsibility of the caller to notice the difference and
2253  * take appropriate action.
2254  *
2255  * vma_add_reservation is used in error paths where a reservation must
2256  * be restored when a newly allocated huge page must be freed.  It is
2257  * to be called after calling vma_needs_reservation to determine if a
2258  * reservation exists.
2259  *
2260  * vma_del_reservation is used in error paths where an entry in the reserve
2261  * map was created during huge page allocation and must be removed.  It is to
2262  * be called after calling vma_needs_reservation to determine if a reservation
2263  * exists.
2264  */
2265 enum vma_resv_mode {
2266         VMA_NEEDS_RESV,
2267         VMA_COMMIT_RESV,
2268         VMA_END_RESV,
2269         VMA_ADD_RESV,
2270         VMA_DEL_RESV,
2271 };
2272 static long __vma_reservation_common(struct hstate *h,
2273                                 struct vm_area_struct *vma, unsigned long addr,
2274                                 enum vma_resv_mode mode)
2275 {
2276         struct resv_map *resv;
2277         pgoff_t idx;
2278         long ret;
2279         long dummy_out_regions_needed;
2280
2281         resv = vma_resv_map(vma);
2282         if (!resv)
2283                 return 1;
2284
2285         idx = vma_hugecache_offset(h, vma, addr);
2286         switch (mode) {
2287         case VMA_NEEDS_RESV:
2288                 ret = region_chg(resv, idx, idx + 1, &dummy_out_regions_needed);
2289                 /* We assume that vma_reservation_* routines always operate on
2290                  * 1 page, and that adding to resv map a 1 page entry can only
2291                  * ever require 1 region.
2292                  */
2293                 VM_BUG_ON(dummy_out_regions_needed != 1);
2294                 break;
2295         case VMA_COMMIT_RESV:
2296                 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2297                 /* region_add calls of range 1 should never fail. */
2298                 VM_BUG_ON(ret < 0);
2299                 break;
2300         case VMA_END_RESV:
2301                 region_abort(resv, idx, idx + 1, 1);
2302                 ret = 0;
2303                 break;
2304         case VMA_ADD_RESV:
2305                 if (vma->vm_flags & VM_MAYSHARE) {
2306                         ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2307                         /* region_add calls of range 1 should never fail. */
2308                         VM_BUG_ON(ret < 0);
2309                 } else {
2310                         region_abort(resv, idx, idx + 1, 1);
2311                         ret = region_del(resv, idx, idx + 1);
2312                 }
2313                 break;
2314         case VMA_DEL_RESV:
2315                 if (vma->vm_flags & VM_MAYSHARE) {
2316                         region_abort(resv, idx, idx + 1, 1);
2317                         ret = region_del(resv, idx, idx + 1);
2318                 } else {
2319                         ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2320                         /* region_add calls of range 1 should never fail. */
2321                         VM_BUG_ON(ret < 0);
2322                 }
2323                 break;
2324         default:
2325                 BUG();
2326         }
2327
2328         if (vma->vm_flags & VM_MAYSHARE || mode == VMA_DEL_RESV)
2329                 return ret;
2330         /*
2331          * We know private mapping must have HPAGE_RESV_OWNER set.
2332          *
2333          * In most cases, reserves always exist for private mappings.
2334          * However, a file associated with mapping could have been
2335          * hole punched or truncated after reserves were consumed.
2336          * As subsequent fault on such a range will not use reserves.
2337          * Subtle - The reserve map for private mappings has the
2338          * opposite meaning than that of shared mappings.  If NO
2339          * entry is in the reserve map, it means a reservation exists.
2340          * If an entry exists in the reserve map, it means the
2341          * reservation has already been consumed.  As a result, the
2342          * return value of this routine is the opposite of the
2343          * value returned from reserve map manipulation routines above.
2344          */
2345         if (ret > 0)
2346                 return 0;
2347         if (ret == 0)
2348                 return 1;
2349         return ret;
2350 }
2351
2352 static long vma_needs_reservation(struct hstate *h,
2353                         struct vm_area_struct *vma, unsigned long addr)
2354 {
2355         return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
2356 }
2357
2358 static long vma_commit_reservation(struct hstate *h,
2359                         struct vm_area_struct *vma, unsigned long addr)
2360 {
2361         return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
2362 }
2363
2364 static void vma_end_reservation(struct hstate *h,
2365                         struct vm_area_struct *vma, unsigned long addr)
2366 {
2367         (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
2368 }
2369
2370 static long vma_add_reservation(struct hstate *h,
2371                         struct vm_area_struct *vma, unsigned long addr)
2372 {
2373         return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
2374 }
2375
2376 static long vma_del_reservation(struct hstate *h,
2377                         struct vm_area_struct *vma, unsigned long addr)
2378 {
2379         return __vma_reservation_common(h, vma, addr, VMA_DEL_RESV);
2380 }
2381
2382 /*
2383  * This routine is called to restore reservation information on error paths.
2384  * It should ONLY be called for pages allocated via alloc_huge_page(), and
2385  * the hugetlb mutex should remain held when calling this routine.
2386  *
2387  * It handles two specific cases:
2388  * 1) A reservation was in place and the page consumed the reservation.
2389  *    HPageRestoreReserve is set in the page.
2390  * 2) No reservation was in place for the page, so HPageRestoreReserve is
2391  *    not set.  However, alloc_huge_page always updates the reserve map.
2392  *
2393  * In case 1, free_huge_page later in the error path will increment the
2394  * global reserve count.  But, free_huge_page does not have enough context
2395  * to adjust the reservation map.  This case deals primarily with private
2396  * mappings.  Adjust the reserve map here to be consistent with global
2397  * reserve count adjustments to be made by free_huge_page.  Make sure the
2398  * reserve map indicates there is a reservation present.
2399  *
2400  * In case 2, simply undo reserve map modifications done by alloc_huge_page.
2401  */
2402 void restore_reserve_on_error(struct hstate *h, struct vm_area_struct *vma,
2403                         unsigned long address, struct page *page)
2404 {
2405         long rc = vma_needs_reservation(h, vma, address);
2406
2407         if (HPageRestoreReserve(page)) {
2408                 if (unlikely(rc < 0))
2409                         /*
2410                          * Rare out of memory condition in reserve map
2411                          * manipulation.  Clear HPageRestoreReserve so that
2412                          * global reserve count will not be incremented
2413                          * by free_huge_page.  This will make it appear
2414                          * as though the reservation for this page was
2415                          * consumed.  This may prevent the task from
2416                          * faulting in the page at a later time.  This
2417                          * is better than inconsistent global huge page
2418                          * accounting of reserve counts.
2419                          */
2420                         ClearHPageRestoreReserve(page);
2421                 else if (rc)
2422                         (void)vma_add_reservation(h, vma, address);
2423                 else
2424                         vma_end_reservation(h, vma, address);
2425         } else {
2426                 if (!rc) {
2427                         /*
2428                          * This indicates there is an entry in the reserve map
2429                          * added by alloc_huge_page.  We know it was added
2430                          * before the alloc_huge_page call, otherwise
2431                          * HPageRestoreReserve would be set on the page.
2432                          * Remove the entry so that a subsequent allocation
2433                          * does not consume a reservation.
2434                          */
2435                         rc = vma_del_reservation(h, vma, address);
2436                         if (rc < 0)
2437                                 /*
2438                                  * VERY rare out of memory condition.  Since
2439                                  * we can not delete the entry, set
2440                                  * HPageRestoreReserve so that the reserve
2441                                  * count will be incremented when the page
2442                                  * is freed.  This reserve will be consumed
2443                                  * on a subsequent allocation.
2444                                  */
2445                                 SetHPageRestoreReserve(page);
2446                 } else if (rc < 0) {
2447                         /*
2448                          * Rare out of memory condition from
2449                          * vma_needs_reservation call.  Memory allocation is
2450                          * only attempted if a new entry is needed.  Therefore,
2451                          * this implies there is not an entry in the
2452                          * reserve map.
2453                          *
2454                          * For shared mappings, no entry in the map indicates
2455                          * no reservation.  We are done.
2456                          */
2457                         if (!(vma->vm_flags & VM_MAYSHARE))
2458                                 /*
2459                                  * For private mappings, no entry indicates
2460                                  * a reservation is present.  Since we can
2461                                  * not add an entry, set SetHPageRestoreReserve
2462                                  * on the page so reserve count will be
2463                                  * incremented when freed.  This reserve will
2464                                  * be consumed on a subsequent allocation.
2465                                  */
2466                                 SetHPageRestoreReserve(page);
2467                 } else
2468                         /*
2469                          * No reservation present, do nothing
2470                          */
2471                          vma_end_reservation(h, vma, address);
2472         }
2473 }
2474
2475 /*
2476  * alloc_and_dissolve_huge_page - Allocate a new page and dissolve the old one
2477  * @h: struct hstate old page belongs to
2478  * @old_page: Old page to dissolve
2479  * @list: List to isolate the page in case we need to
2480  * Returns 0 on success, otherwise negated error.
2481  */
2482 static int alloc_and_dissolve_huge_page(struct hstate *h, struct page *old_page,
2483                                         struct list_head *list)
2484 {
2485         gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
2486         int nid = page_to_nid(old_page);
2487         struct page *new_page;
2488         int ret = 0;
2489
2490         /*
2491          * Before dissolving the page, we need to allocate a new one for the
2492          * pool to remain stable.  Here, we allocate the page and 'prep' it
2493          * by doing everything but actually updating counters and adding to
2494          * the pool.  This simplifies and let us do most of the processing
2495          * under the lock.
2496          */
2497         new_page = alloc_buddy_huge_page(h, gfp_mask, nid, NULL, NULL);
2498         if (!new_page)
2499                 return -ENOMEM;
2500         __prep_new_huge_page(h, new_page);
2501
2502 retry:
2503         spin_lock_irq(&hugetlb_lock);
2504         if (!PageHuge(old_page)) {
2505                 /*
2506                  * Freed from under us. Drop new_page too.
2507                  */
2508                 goto free_new;
2509         } else if (page_count(old_page)) {
2510                 /*
2511                  * Someone has grabbed the page, try to isolate it here.
2512                  * Fail with -EBUSY if not possible.
2513                  */
2514                 spin_unlock_irq(&hugetlb_lock);
2515                 if (!isolate_huge_page(old_page, list))
2516                         ret = -EBUSY;
2517                 spin_lock_irq(&hugetlb_lock);
2518                 goto free_new;
2519         } else if (!HPageFreed(old_page)) {
2520                 /*
2521                  * Page's refcount is 0 but it has not been enqueued in the
2522                  * freelist yet. Race window is small, so we can succeed here if
2523                  * we retry.
2524                  */
2525                 spin_unlock_irq(&hugetlb_lock);
2526                 cond_resched();
2527                 goto retry;
2528         } else {
2529                 /*
2530                  * Ok, old_page is still a genuine free hugepage. Remove it from
2531                  * the freelist and decrease the counters. These will be
2532                  * incremented again when calling __prep_account_new_huge_page()
2533                  * and enqueue_huge_page() for new_page. The counters will remain
2534                  * stable since this happens under the lock.
2535                  */
2536                 remove_hugetlb_page(h, old_page, false);
2537
2538                 /*
2539                  * Reference count trick is needed because allocator gives us
2540                  * referenced page but the pool requires pages with 0 refcount.
2541                  */
2542                 __prep_account_new_huge_page(h, nid);
2543                 page_ref_dec(new_page);
2544                 enqueue_huge_page(h, new_page);
2545
2546                 /*
2547                  * Pages have been replaced, we can safely free the old one.
2548                  */
2549                 spin_unlock_irq(&hugetlb_lock);
2550                 update_and_free_page(h, old_page, false);
2551         }
2552
2553         return ret;
2554
2555 free_new:
2556         spin_unlock_irq(&hugetlb_lock);
2557         update_and_free_page(h, new_page, false);
2558
2559         return ret;
2560 }
2561
2562 int isolate_or_dissolve_huge_page(struct page *page, struct list_head *list)
2563 {
2564         struct hstate *h;
2565         struct page *head;
2566         int ret = -EBUSY;
2567
2568         /*
2569          * The page might have been dissolved from under our feet, so make sure
2570          * to carefully check the state under the lock.
2571          * Return success when racing as if we dissolved the page ourselves.
2572          */
2573         spin_lock_irq(&hugetlb_lock);
2574         if (PageHuge(page)) {
2575                 head = compound_head(page);
2576                 h = page_hstate(head);
2577         } else {
2578                 spin_unlock_irq(&hugetlb_lock);
2579                 return 0;
2580         }
2581         spin_unlock_irq(&hugetlb_lock);
2582
2583         /*
2584          * Fence off gigantic pages as there is a cyclic dependency between
2585          * alloc_contig_range and them. Return -ENOMEM as this has the effect
2586          * of bailing out right away without further retrying.
2587          */
2588         if (hstate_is_gigantic(h))
2589                 return -ENOMEM;
2590
2591         if (page_count(head) && isolate_huge_page(head, list))
2592                 ret = 0;
2593         else if (!page_count(head))
2594                 ret = alloc_and_dissolve_huge_page(h, head, list);
2595
2596         return ret;
2597 }
2598
2599 struct page *alloc_huge_page(struct vm_area_struct *vma,
2600                                     unsigned long addr, int avoid_reserve)
2601 {
2602         struct hugepage_subpool *spool = subpool_vma(vma);
2603         struct hstate *h = hstate_vma(vma);
2604         struct page *page;
2605         long map_chg, map_commit;
2606         long gbl_chg;
2607         int ret, idx;
2608         struct hugetlb_cgroup *h_cg;
2609         bool deferred_reserve;
2610
2611         idx = hstate_index(h);
2612         /*
2613          * Examine the region/reserve map to determine if the process
2614          * has a reservation for the page to be allocated.  A return
2615          * code of zero indicates a reservation exists (no change).
2616          */
2617         map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
2618         if (map_chg < 0)
2619                 return ERR_PTR(-ENOMEM);
2620
2621         /*
2622          * Processes that did not create the mapping will have no
2623          * reserves as indicated by the region/reserve map. Check
2624          * that the allocation will not exceed the subpool limit.
2625          * Allocations for MAP_NORESERVE mappings also need to be
2626          * checked against any subpool limit.
2627          */
2628         if (map_chg || avoid_reserve) {
2629                 gbl_chg = hugepage_subpool_get_pages(spool, 1);
2630                 if (gbl_chg < 0) {
2631                         vma_end_reservation(h, vma, addr);
2632                         return ERR_PTR(-ENOSPC);
2633                 }
2634
2635                 /*
2636                  * Even though there was no reservation in the region/reserve
2637                  * map, there could be reservations associated with the
2638                  * subpool that can be used.  This would be indicated if the
2639                  * return value of hugepage_subpool_get_pages() is zero.
2640                  * However, if avoid_reserve is specified we still avoid even
2641                  * the subpool reservations.
2642                  */
2643                 if (avoid_reserve)
2644                         gbl_chg = 1;
2645         }
2646
2647         /* If this allocation is not consuming a reservation, charge it now.
2648          */
2649         deferred_reserve = map_chg || avoid_reserve;
2650         if (deferred_reserve) {
2651                 ret = hugetlb_cgroup_charge_cgroup_rsvd(
2652                         idx, pages_per_huge_page(h), &h_cg);
2653                 if (ret)
2654                         goto out_subpool_put;
2655         }
2656
2657         ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
2658         if (ret)
2659                 goto out_uncharge_cgroup_reservation;
2660
2661         spin_lock_irq(&hugetlb_lock);
2662         /*
2663          * glb_chg is passed to indicate whether or not a page must be taken
2664          * from the global free pool (global change).  gbl_chg == 0 indicates
2665          * a reservation exists for the allocation.
2666          */
2667         page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
2668         if (!page) {
2669                 spin_unlock_irq(&hugetlb_lock);
2670                 page = alloc_buddy_huge_page_with_mpol(h, vma, addr);
2671                 if (!page)
2672                         goto out_uncharge_cgroup;
2673                 if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
2674                         SetHPageRestoreReserve(page);
2675                         h->resv_huge_pages--;
2676                 }
2677                 spin_lock_irq(&hugetlb_lock);
2678                 list_add(&page->lru, &h->hugepage_activelist);
2679                 /* Fall through */
2680         }
2681         hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
2682         /* If allocation is not consuming a reservation, also store the
2683          * hugetlb_cgroup pointer on the page.
2684          */
2685         if (deferred_reserve) {
2686                 hugetlb_cgroup_commit_charge_rsvd(idx, pages_per_huge_page(h),
2687                                                   h_cg, page);
2688         }
2689
2690         spin_unlock_irq(&hugetlb_lock);
2691
2692         hugetlb_set_page_subpool(page, spool);
2693
2694         map_commit = vma_commit_reservation(h, vma, addr);
2695         if (unlikely(map_chg > map_commit)) {
2696                 /*
2697                  * The page was added to the reservation map between
2698                  * vma_needs_reservation and vma_commit_reservation.
2699                  * This indicates a race with hugetlb_reserve_pages.
2700                  * Adjust for the subpool count incremented above AND
2701                  * in hugetlb_reserve_pages for the same page.  Also,
2702                  * the reservation count added in hugetlb_reserve_pages
2703                  * no longer applies.
2704                  */
2705                 long rsv_adjust;
2706
2707                 rsv_adjust = hugepage_subpool_put_pages(spool, 1);
2708                 hugetlb_acct_memory(h, -rsv_adjust);
2709                 if (deferred_reserve)
2710                         hugetlb_cgroup_uncharge_page_rsvd(hstate_index(h),
2711                                         pages_per_huge_page(h), page);
2712         }
2713         return page;
2714
2715 out_uncharge_cgroup:
2716         hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
2717 out_uncharge_cgroup_reservation:
2718         if (deferred_reserve)
2719                 hugetlb_cgroup_uncharge_cgroup_rsvd(idx, pages_per_huge_page(h),
2720                                                     h_cg);
2721 out_subpool_put:
2722         if (map_chg || avoid_reserve)
2723                 hugepage_subpool_put_pages(spool, 1);
2724         vma_end_reservation(h, vma, addr);
2725         return ERR_PTR(-ENOSPC);
2726 }
2727
2728 int alloc_bootmem_huge_page(struct hstate *h)
2729         __attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
2730 int __alloc_bootmem_huge_page(struct hstate *h)
2731 {
2732         struct huge_bootmem_page *m;
2733         int nr_nodes, node;
2734
2735         for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
2736                 void *addr;
2737
2738                 addr = memblock_alloc_try_nid_raw(
2739                                 huge_page_size(h), huge_page_size(h),
2740                                 0, MEMBLOCK_ALLOC_ACCESSIBLE, node);
2741                 if (addr) {
2742                         /*
2743                          * Use the beginning of the huge page to store the
2744                          * huge_bootmem_page struct (until gather_bootmem
2745                          * puts them into the mem_map).
2746                          */
2747                         m = addr;
2748                         goto found;
2749                 }
2750         }
2751         return 0;
2752
2753 found:
2754         BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h)));
2755         /* Put them into a private list first because mem_map is not up yet */
2756         INIT_LIST_HEAD(&m->list);
2757         list_add(&m->list, &huge_boot_pages);
2758         m->hstate = h;
2759         return 1;
2760 }
2761
2762 static void __init prep_compound_huge_page(struct page *page,
2763                 unsigned int order)
2764 {
2765         if (unlikely(order > (MAX_ORDER - 1)))
2766                 prep_compound_gigantic_page(page, order);
2767         else
2768                 prep_compound_page(page, order);
2769 }
2770
2771 /* Put bootmem huge pages into the standard lists after mem_map is up */
2772 static void __init gather_bootmem_prealloc(void)
2773 {
2774         struct huge_bootmem_page *m;
2775
2776         list_for_each_entry(m, &huge_boot_pages, list) {
2777                 struct page *page = virt_to_page(m);
2778                 struct hstate *h = m->hstate;
2779
2780                 WARN_ON(page_count(page) != 1);
2781                 prep_compound_huge_page(page, huge_page_order(h));
2782                 WARN_ON(PageReserved(page));
2783                 prep_new_huge_page(h, page, page_to_nid(page));
2784                 put_page(page); /* free it into the hugepage allocator */
2785
2786                 /*
2787                  * If we had gigantic hugepages allocated at boot time, we need
2788                  * to restore the 'stolen' pages to totalram_pages in order to
2789                  * fix confusing memory reports from free(1) and another
2790                  * side-effects, like CommitLimit going negative.
2791                  */
2792                 if (hstate_is_gigantic(h))
2793                         adjust_managed_page_count(page, pages_per_huge_page(h));
2794                 cond_resched();
2795         }
2796 }
2797
2798 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
2799 {
2800         unsigned long i;
2801         nodemask_t *node_alloc_noretry;
2802
2803         if (!hstate_is_gigantic(h)) {
2804                 /*
2805                  * Bit mask controlling how hard we retry per-node allocations.
2806                  * Ignore errors as lower level routines can deal with
2807                  * node_alloc_noretry == NULL.  If this kmalloc fails at boot
2808                  * time, we are likely in bigger trouble.
2809                  */
2810                 node_alloc_noretry = kmalloc(sizeof(*node_alloc_noretry),
2811                                                 GFP_KERNEL);
2812         } else {
2813                 /* allocations done at boot time */
2814                 node_alloc_noretry = NULL;
2815         }
2816
2817         /* bit mask controlling how hard we retry per-node allocations */
2818         if (node_alloc_noretry)
2819                 nodes_clear(*node_alloc_noretry);
2820
2821         for (i = 0; i < h->max_huge_pages; ++i) {
2822                 if (hstate_is_gigantic(h)) {
2823                         if (hugetlb_cma_size) {
2824                                 pr_warn_once("HugeTLB: hugetlb_cma is enabled, skip boot time allocation\n");
2825                                 goto free;
2826                         }
2827                         if (!alloc_bootmem_huge_page(h))
2828                                 break;
2829                 } else if (!alloc_pool_huge_page(h,
2830                                          &node_states[N_MEMORY],
2831                                          node_alloc_noretry))
2832                         break;
2833                 cond_resched();
2834         }
2835         if (i < h->max_huge_pages) {
2836                 char buf[32];
2837
2838                 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
2839                 pr_warn("HugeTLB: allocating %lu of page size %s failed.  Only allocated %lu hugepages.\n",
2840                         h->max_huge_pages, buf, i);
2841                 h->max_huge_pages = i;
2842         }
2843 free:
2844         kfree(node_alloc_noretry);
2845 }
2846
2847 static void __init hugetlb_init_hstates(void)
2848 {
2849         struct hstate *h;
2850
2851         for_each_hstate(h) {
2852                 if (minimum_order > huge_page_order(h))
2853                         minimum_order = huge_page_order(h);
2854
2855                 /* oversize hugepages were init'ed in early boot */
2856                 if (!hstate_is_gigantic(h))
2857                         hugetlb_hstate_alloc_pages(h);
2858         }
2859         VM_BUG_ON(minimum_order == UINT_MAX);
2860 }
2861
2862 static void __init report_hugepages(void)
2863 {
2864         struct hstate *h;
2865
2866         for_each_hstate(h) {
2867                 char buf[32];
2868
2869                 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
2870                 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
2871                         buf, h->free_huge_pages);
2872         }
2873 }
2874
2875 #ifdef CONFIG_HIGHMEM
2876 static void try_to_free_low(struct hstate *h, unsigned long count,
2877                                                 nodemask_t *nodes_allowed)
2878 {
2879         int i;
2880         LIST_HEAD(page_list);
2881
2882         lockdep_assert_held(&hugetlb_lock);
2883         if (hstate_is_gigantic(h))
2884                 return;
2885
2886         /*
2887          * Collect pages to be freed on a list, and free after dropping lock
2888          */
2889         for_each_node_mask(i, *nodes_allowed) {
2890                 struct page *page, *next;
2891                 struct list_head *freel = &h->hugepage_freelists[i];
2892                 list_for_each_entry_safe(page, next, freel, lru) {
2893                         if (count >= h->nr_huge_pages)
2894                                 goto out;
2895                         if (PageHighMem(page))
2896                                 continue;
2897                         remove_hugetlb_page(h, page, false);
2898                         list_add(&page->lru, &page_list);
2899                 }
2900         }
2901
2902 out:
2903         spin_unlock_irq(&hugetlb_lock);
2904         update_and_free_pages_bulk(h, &page_list);
2905         spin_lock_irq(&hugetlb_lock);
2906 }
2907 #else
2908 static inline void try_to_free_low(struct hstate *h, unsigned long count,
2909                                                 nodemask_t *nodes_allowed)
2910 {
2911 }
2912 #endif
2913
2914 /*
2915  * Increment or decrement surplus_huge_pages.  Keep node-specific counters
2916  * balanced by operating on them in a round-robin fashion.
2917  * Returns 1 if an adjustment was made.
2918  */
2919 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
2920                                 int delta)
2921 {
2922         int nr_nodes, node;
2923
2924         lockdep_assert_held(&hugetlb_lock);
2925         VM_BUG_ON(delta != -1 && delta != 1);
2926
2927         if (delta < 0) {
2928                 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
2929                         if (h->surplus_huge_pages_node[node])
2930                                 goto found;
2931                 }
2932         } else {
2933                 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2934                         if (h->surplus_huge_pages_node[node] <
2935                                         h->nr_huge_pages_node[node])
2936                                 goto found;
2937                 }
2938         }
2939         return 0;
2940
2941 found:
2942         h->surplus_huge_pages += delta;
2943         h->surplus_huge_pages_node[node] += delta;
2944         return 1;
2945 }
2946
2947 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
2948 static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid,
2949                               nodemask_t *nodes_allowed)
2950 {
2951         unsigned long min_count, ret;
2952         struct page *page;
2953         LIST_HEAD(page_list);
2954         NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL);
2955
2956         /*
2957          * Bit mask controlling how hard we retry per-node allocations.
2958          * If we can not allocate the bit mask, do not attempt to allocate
2959          * the requested huge pages.
2960          */
2961         if (node_alloc_noretry)
2962                 nodes_clear(*node_alloc_noretry);
2963         else
2964                 return -ENOMEM;
2965
2966         /*
2967          * resize_lock mutex prevents concurrent adjustments to number of
2968          * pages in hstate via the proc/sysfs interfaces.
2969          */
2970         mutex_lock(&h->resize_lock);
2971         flush_free_hpage_work(h);
2972         spin_lock_irq(&hugetlb_lock);
2973
2974         /*
2975          * Check for a node specific request.
2976          * Changing node specific huge page count may require a corresponding
2977          * change to the global count.  In any case, the passed node mask
2978          * (nodes_allowed) will restrict alloc/free to the specified node.
2979          */
2980         if (nid != NUMA_NO_NODE) {
2981                 unsigned long old_count = count;
2982
2983                 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
2984                 /*
2985                  * User may have specified a large count value which caused the
2986                  * above calculation to overflow.  In this case, they wanted
2987                  * to allocate as many huge pages as possible.  Set count to
2988                  * largest possible value to align with their intention.
2989                  */
2990                 if (count < old_count)
2991                         count = ULONG_MAX;
2992         }
2993
2994         /*
2995          * Gigantic pages runtime allocation depend on the capability for large
2996          * page range allocation.
2997          * If the system does not provide this feature, return an error when
2998          * the user tries to allocate gigantic pages but let the user free the
2999          * boottime allocated gigantic pages.
3000          */
3001         if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) {
3002                 if (count > persistent_huge_pages(h)) {
3003                         spin_unlock_irq(&hugetlb_lock);
3004                         mutex_unlock(&h->resize_lock);
3005                         NODEMASK_FREE(node_alloc_noretry);
3006                         return -EINVAL;
3007                 }
3008                 /* Fall through to decrease pool */
3009         }
3010
3011         /*
3012          * Increase the pool size
3013          * First take pages out of surplus state.  Then make up the
3014          * remaining difference by allocating fresh huge pages.
3015          *
3016          * We might race with alloc_surplus_huge_page() here and be unable
3017          * to convert a surplus huge page to a normal huge page. That is
3018          * not critical, though, it just means the overall size of the
3019          * pool might be one hugepage larger than it needs to be, but
3020          * within all the constraints specified by the sysctls.
3021          */
3022         while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
3023                 if (!adjust_pool_surplus(h, nodes_allowed, -1))
3024                         break;
3025         }
3026
3027         while (count > persistent_huge_pages(h)) {
3028                 /*
3029                  * If this allocation races such that we no longer need the
3030                  * page, free_huge_page will handle it by freeing the page
3031                  * and reducing the surplus.
3032                  */
3033                 spin_unlock_irq(&hugetlb_lock);
3034
3035                 /* yield cpu to avoid soft lockup */
3036                 cond_resched();
3037
3038                 ret = alloc_pool_huge_page(h, nodes_allowed,
3039                                                 node_alloc_noretry);
3040                 spin_lock_irq(&hugetlb_lock);
3041                 if (!ret)
3042                         goto out;
3043
3044                 /* Bail for signals. Probably ctrl-c from user */
3045                 if (signal_pending(current))
3046                         goto out;
3047         }
3048
3049         /*
3050          * Decrease the pool size
3051          * First return free pages to the buddy allocator (being careful
3052          * to keep enough around to satisfy reservations).  Then place
3053          * pages into surplus state as needed so the pool will shrink
3054          * to the desired size as pages become free.
3055          *
3056          * By placing pages into the surplus state independent of the
3057          * overcommit value, we are allowing the surplus pool size to
3058          * exceed overcommit. There are few sane options here. Since
3059          * alloc_surplus_huge_page() is checking the global counter,
3060          * though, we'll note that we're not allowed to exceed surplus
3061          * and won't grow the pool anywhere else. Not until one of the
3062          * sysctls are changed, or the surplus pages go out of use.
3063          */
3064         min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
3065         min_count = max(count, min_count);
3066         try_to_free_low(h, min_count, nodes_allowed);
3067
3068         /*
3069          * Collect pages to be removed on list without dropping lock
3070          */
3071         while (min_count < persistent_huge_pages(h)) {
3072                 page = remove_pool_huge_page(h, nodes_allowed, 0);
3073                 if (!page)
3074                         break;
3075
3076                 list_add(&page->lru, &page_list);
3077         }
3078         /* free the pages after dropping lock */
3079         spin_unlock_irq(&hugetlb_lock);
3080         update_and_free_pages_bulk(h, &page_list);
3081         flush_free_hpage_work(h);
3082         spin_lock_irq(&hugetlb_lock);
3083
3084         while (count < persistent_huge_pages(h)) {
3085                 if (!adjust_pool_surplus(h, nodes_allowed, 1))
3086                         break;
3087         }
3088 out:
3089         h->max_huge_pages = persistent_huge_pages(h);
3090         spin_unlock_irq(&hugetlb_lock);
3091         mutex_unlock(&h->resize_lock);
3092
3093         NODEMASK_FREE(node_alloc_noretry);
3094
3095         return 0;
3096 }
3097
3098 #define HSTATE_ATTR_RO(_name) \
3099         static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
3100
3101 #define HSTATE_ATTR(_name) \
3102         static struct kobj_attribute _name##_attr = \
3103                 __ATTR(_name, 0644, _name##_show, _name##_store)
3104
3105 static struct kobject *hugepages_kobj;
3106 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
3107
3108 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
3109
3110 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
3111 {
3112         int i;
3113
3114         for (i = 0; i < HUGE_MAX_HSTATE; i++)
3115                 if (hstate_kobjs[i] == kobj) {
3116                         if (nidp)
3117                                 *nidp = NUMA_NO_NODE;
3118                         return &hstates[i];
3119                 }
3120
3121         return kobj_to_node_hstate(kobj, nidp);
3122 }
3123
3124 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
3125                                         struct kobj_attribute *attr, char *buf)
3126 {
3127         struct hstate *h;
3128         unsigned long nr_huge_pages;
3129         int nid;
3130
3131         h = kobj_to_hstate(kobj, &nid);
3132         if (nid == NUMA_NO_NODE)
3133                 nr_huge_pages = h->nr_huge_pages;
3134         else
3135                 nr_huge_pages = h->nr_huge_pages_node[nid];
3136
3137         return sysfs_emit(buf, "%lu\n", nr_huge_pages);
3138 }
3139
3140 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
3141                                            struct hstate *h, int nid,
3142                                            unsigned long count, size_t len)
3143 {
3144         int err;
3145         nodemask_t nodes_allowed, *n_mask;
3146
3147         if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
3148                 return -EINVAL;
3149
3150         if (nid == NUMA_NO_NODE) {
3151                 /*
3152                  * global hstate attribute
3153                  */
3154                 if (!(obey_mempolicy &&
3155                                 init_nodemask_of_mempolicy(&nodes_allowed)))
3156                         n_mask = &node_states[N_MEMORY];
3157                 else
3158                         n_mask = &nodes_allowed;
3159         } else {
3160                 /*
3161                  * Node specific request.  count adjustment happens in
3162                  * set_max_huge_pages() after acquiring hugetlb_lock.
3163                  */
3164                 init_nodemask_of_node(&nodes_allowed, nid);
3165                 n_mask = &nodes_allowed;
3166         }
3167
3168         err = set_max_huge_pages(h, count, nid, n_mask);
3169
3170         return err ? err : len;
3171 }
3172
3173 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
3174                                          struct kobject *kobj, const char *buf,
3175                                          size_t len)
3176 {
3177         struct hstate *h;
3178         unsigned long count;
3179         int nid;
3180         int err;
3181
3182         err = kstrtoul(buf, 10, &count);
3183         if (err)
3184                 return err;
3185
3186         h = kobj_to_hstate(kobj, &nid);
3187         return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
3188 }
3189
3190 static ssize_t nr_hugepages_show(struct kobject *kobj,
3191                                        struct kobj_attribute *attr, char *buf)
3192 {
3193         return nr_hugepages_show_common(kobj, attr, buf);
3194 }
3195
3196 static ssize_t nr_hugepages_store(struct kobject *kobj,
3197                struct kobj_attribute *attr, const char *buf, size_t len)
3198 {
3199         return nr_hugepages_store_common(false, kobj, buf, len);
3200 }
3201 HSTATE_ATTR(nr_hugepages);
3202
3203 #ifdef CONFIG_NUMA
3204
3205 /*
3206  * hstate attribute for optionally mempolicy-based constraint on persistent
3207  * huge page alloc/free.
3208  */
3209 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
3210                                            struct kobj_attribute *attr,
3211                                            char *buf)
3212 {
3213         return nr_hugepages_show_common(kobj, attr, buf);
3214 }
3215
3216 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
3217                struct kobj_attribute *attr, const char *buf, size_t len)
3218 {
3219         return nr_hugepages_store_common(true, kobj, buf, len);
3220 }
3221 HSTATE_ATTR(nr_hugepages_mempolicy);
3222 #endif
3223
3224
3225 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
3226                                         struct kobj_attribute *attr, char *buf)
3227 {
3228         struct hstate *h = kobj_to_hstate(kobj, NULL);
3229         return sysfs_emit(buf, "%lu\n", h->nr_overcommit_huge_pages);
3230 }
3231
3232 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
3233                 struct kobj_attribute *attr, const char *buf, size_t count)
3234 {
3235         int err;
3236         unsigned long input;
3237         struct hstate *h = kobj_to_hstate(kobj, NULL);
3238
3239         if (hstate_is_gigantic(h))
3240                 return -EINVAL;
3241
3242         err = kstrtoul(buf, 10, &input);
3243         if (err)
3244                 return err;
3245
3246         spin_lock_irq(&hugetlb_lock);
3247         h->nr_overcommit_huge_pages = input;
3248         spin_unlock_irq(&hugetlb_lock);
3249
3250         return count;
3251 }
3252 HSTATE_ATTR(nr_overcommit_hugepages);
3253
3254 static ssize_t free_hugepages_show(struct kobject *kobj,
3255                                         struct kobj_attribute *attr, char *buf)
3256 {
3257         struct hstate *h;
3258         unsigned long free_huge_pages;
3259         int nid;
3260
3261         h = kobj_to_hstate(kobj, &nid);
3262         if (nid == NUMA_NO_NODE)
3263                 free_huge_pages = h->free_huge_pages;
3264         else
3265                 free_huge_pages = h->free_huge_pages_node[nid];
3266
3267         return sysfs_emit(buf, "%lu\n", free_huge_pages);
3268 }
3269 HSTATE_ATTR_RO(free_hugepages);
3270
3271 static ssize_t resv_hugepages_show(struct kobject *kobj,
3272                                         struct kobj_attribute *attr, char *buf)
3273 {
3274         struct hstate *h = kobj_to_hstate(kobj, NULL);
3275         return sysfs_emit(buf, "%lu\n", h->resv_huge_pages);
3276 }
3277 HSTATE_ATTR_RO(resv_hugepages);
3278
3279 static ssize_t surplus_hugepages_show(struct kobject *kobj,
3280                                         struct kobj_attribute *attr, char *buf)
3281 {
3282         struct hstate *h;
3283         unsigned long surplus_huge_pages;
3284         int nid;
3285
3286         h = kobj_to_hstate(kobj, &nid);
3287         if (nid == NUMA_NO_NODE)
3288                 surplus_huge_pages = h->surplus_huge_pages;
3289         else
3290                 surplus_huge_pages = h->surplus_huge_pages_node[nid];
3291
3292         return sysfs_emit(buf, "%lu\n", surplus_huge_pages);
3293 }
3294 HSTATE_ATTR_RO(surplus_hugepages);
3295
3296 static struct attribute *hstate_attrs[] = {
3297         &nr_hugepages_attr.attr,
3298         &nr_overcommit_hugepages_attr.attr,
3299         &free_hugepages_attr.attr,
3300         &resv_hugepages_attr.attr,
3301         &surplus_hugepages_attr.attr,
3302 #ifdef CONFIG_NUMA
3303         &nr_hugepages_mempolicy_attr.attr,
3304 #endif
3305         NULL,
3306 };
3307
3308 static const struct attribute_group hstate_attr_group = {
3309         .attrs = hstate_attrs,
3310 };
3311
3312 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
3313                                     struct kobject **hstate_kobjs,
3314                                     const struct attribute_group *hstate_attr_group)
3315 {
3316         int retval;
3317         int hi = hstate_index(h);
3318
3319         hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
3320         if (!hstate_kobjs[hi])
3321                 return -ENOMEM;
3322
3323         retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
3324         if (retval) {
3325                 kobject_put(hstate_kobjs[hi]);
3326                 hstate_kobjs[hi] = NULL;
3327         }
3328
3329         return retval;
3330 }
3331
3332 static void __init hugetlb_sysfs_init(void)
3333 {
3334         struct hstate *h;
3335         int err;
3336
3337         hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
3338         if (!hugepages_kobj)
3339                 return;
3340
3341         for_each_hstate(h) {
3342                 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
3343                                          hstate_kobjs, &hstate_attr_group);
3344                 if (err)
3345                         pr_err("HugeTLB: Unable to add hstate %s", h->name);
3346         }
3347 }
3348
3349 #ifdef CONFIG_NUMA
3350
3351 /*
3352  * node_hstate/s - associate per node hstate attributes, via their kobjects,
3353  * with node devices in node_devices[] using a parallel array.  The array
3354  * index of a node device or _hstate == node id.
3355  * This is here to avoid any static dependency of the node device driver, in
3356  * the base kernel, on the hugetlb module.
3357  */
3358 struct node_hstate {
3359         struct kobject          *hugepages_kobj;
3360         struct kobject          *hstate_kobjs[HUGE_MAX_HSTATE];
3361 };
3362 static struct node_hstate node_hstates[MAX_NUMNODES];
3363
3364 /*
3365  * A subset of global hstate attributes for node devices
3366  */
3367 static struct attribute *per_node_hstate_attrs[] = {
3368         &nr_hugepages_attr.attr,
3369         &free_hugepages_attr.attr,
3370         &surplus_hugepages_attr.attr,
3371         NULL,
3372 };
3373
3374 static const struct attribute_group per_node_hstate_attr_group = {
3375         .attrs = per_node_hstate_attrs,
3376 };
3377
3378 /*
3379  * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
3380  * Returns node id via non-NULL nidp.
3381  */
3382 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
3383 {
3384         int nid;
3385
3386         for (nid = 0; nid < nr_node_ids; nid++) {
3387                 struct node_hstate *nhs = &node_hstates[nid];
3388                 int i;
3389                 for (i = 0; i < HUGE_MAX_HSTATE; i++)
3390                         if (nhs->hstate_kobjs[i] == kobj) {
3391                                 if (nidp)
3392                                         *nidp = nid;
3393                                 return &hstates[i];
3394                         }
3395         }
3396
3397         BUG();
3398         return NULL;
3399 }
3400
3401 /*
3402  * Unregister hstate attributes from a single node device.
3403  * No-op if no hstate attributes attached.
3404  */
3405 static void hugetlb_unregister_node(struct node *node)
3406 {
3407         struct hstate *h;
3408         struct node_hstate *nhs = &node_hstates[node->dev.id];
3409
3410         if (!nhs->hugepages_kobj)
3411                 return;         /* no hstate attributes */
3412
3413         for_each_hstate(h) {
3414                 int idx = hstate_index(h);
3415                 if (nhs->hstate_kobjs[idx]) {
3416                         kobject_put(nhs->hstate_kobjs[idx]);
3417                         nhs->hstate_kobjs[idx] = NULL;
3418                 }
3419         }
3420
3421         kobject_put(nhs->hugepages_kobj);
3422         nhs->hugepages_kobj = NULL;
3423 }
3424
3425
3426 /*
3427  * Register hstate attributes for a single node device.
3428  * No-op if attributes already registered.
3429  */
3430 static void hugetlb_register_node(struct node *node)
3431 {
3432         struct hstate *h;
3433         struct node_hstate *nhs = &node_hstates[node->dev.id];
3434         int err;
3435
3436         if (nhs->hugepages_kobj)
3437                 return;         /* already allocated */
3438
3439         nhs->hugepages_kobj = kobject_create_and_add("hugepages",
3440                                                         &node->dev.kobj);
3441         if (!nhs->hugepages_kobj)
3442                 return;
3443
3444         for_each_hstate(h) {
3445                 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
3446                                                 nhs->hstate_kobjs,
3447                                                 &per_node_hstate_attr_group);
3448                 if (err) {
3449                         pr_err("HugeTLB: Unable to add hstate %s for node %d\n",
3450                                 h->name, node->dev.id);
3451                         hugetlb_unregister_node(node);
3452                         break;
3453                 }
3454         }
3455 }
3456
3457 /*
3458  * hugetlb init time:  register hstate attributes for all registered node
3459  * devices of nodes that have memory.  All on-line nodes should have
3460  * registered their associated device by this time.
3461  */
3462 static void __init hugetlb_register_all_nodes(void)
3463 {
3464         int nid;
3465
3466         for_each_node_state(nid, N_MEMORY) {
3467                 struct node *node = node_devices[nid];
3468                 if (node->dev.id == nid)
3469                         hugetlb_register_node(node);
3470         }
3471
3472         /*
3473          * Let the node device driver know we're here so it can
3474          * [un]register hstate attributes on node hotplug.
3475          */
3476         register_hugetlbfs_with_node(hugetlb_register_node,
3477                                      hugetlb_unregister_node);
3478 }
3479 #else   /* !CONFIG_NUMA */
3480
3481 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
3482 {
3483         BUG();
3484         if (nidp)
3485                 *nidp = -1;
3486         return NULL;
3487 }
3488
3489 static void hugetlb_register_all_nodes(void) { }
3490
3491 #endif
3492
3493 static int __init hugetlb_init(void)
3494 {
3495         int i;
3496
3497         BUILD_BUG_ON(sizeof_field(struct page, private) * BITS_PER_BYTE <
3498                         __NR_HPAGEFLAGS);
3499
3500         if (!hugepages_supported()) {
3501                 if (hugetlb_max_hstate || default_hstate_max_huge_pages)
3502                         pr_warn("HugeTLB: huge pages not supported, ignoring associated command-line parameters\n");
3503                 return 0;
3504         }
3505
3506         /*
3507          * Make sure HPAGE_SIZE (HUGETLB_PAGE_ORDER) hstate exists.  Some
3508          * architectures depend on setup being done here.
3509          */
3510         hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
3511         if (!parsed_default_hugepagesz) {
3512                 /*
3513                  * If we did not parse a default huge page size, set
3514                  * default_hstate_idx to HPAGE_SIZE hstate. And, if the
3515                  * number of huge pages for this default size was implicitly
3516                  * specified, set that here as well.
3517                  * Note that the implicit setting will overwrite an explicit
3518                  * setting.  A warning will be printed in this case.
3519                  */
3520                 default_hstate_idx = hstate_index(size_to_hstate(HPAGE_SIZE));
3521                 if (default_hstate_max_huge_pages) {
3522                         if (default_hstate.max_huge_pages) {
3523                                 char buf[32];
3524
3525                                 string_get_size(huge_page_size(&default_hstate),
3526                                         1, STRING_UNITS_2, buf, 32);
3527                                 pr_warn("HugeTLB: Ignoring hugepages=%lu associated with %s page size\n",
3528                                         default_hstate.max_huge_pages, buf);
3529                                 pr_warn("HugeTLB: Using hugepages=%lu for number of default huge pages\n",
3530                                         default_hstate_max_huge_pages);
3531                         }
3532                         default_hstate.max_huge_pages =
3533                                 default_hstate_max_huge_pages;
3534                 }
3535         }
3536
3537         hugetlb_cma_check();
3538         hugetlb_init_hstates();
3539         gather_bootmem_prealloc();
3540         report_hugepages();
3541
3542         hugetlb_sysfs_init();
3543         hugetlb_register_all_nodes();
3544         hugetlb_cgroup_file_init();
3545
3546 #ifdef CONFIG_SMP
3547         num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
3548 #else
3549         num_fault_mutexes = 1;
3550 #endif
3551         hugetlb_fault_mutex_table =
3552                 kmalloc_array(num_fault_mutexes, sizeof(struct mutex),
3553                               GFP_KERNEL);
3554         BUG_ON(!hugetlb_fault_mutex_table);
3555
3556         for (i = 0; i < num_fault_mutexes; i++)
3557                 mutex_init(&hugetlb_fault_mutex_table[i]);
3558         return 0;
3559 }
3560 subsys_initcall(hugetlb_init);
3561
3562 /* Overwritten by architectures with more huge page sizes */
3563 bool __init __attribute((weak)) arch_hugetlb_valid_size(unsigned long size)
3564 {
3565         return size == HPAGE_SIZE;
3566 }
3567
3568 void __init hugetlb_add_hstate(unsigned int order)
3569 {
3570         struct hstate *h;
3571         unsigned long i;
3572
3573         if (size_to_hstate(PAGE_SIZE << order)) {
3574                 return;
3575         }
3576         BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
3577         BUG_ON(order == 0);
3578         h = &hstates[hugetlb_max_hstate++];
3579         mutex_init(&h->resize_lock);
3580         h->order = order;
3581         h->mask = ~(huge_page_size(h) - 1);
3582         for (i = 0; i < MAX_NUMNODES; ++i)
3583                 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
3584         INIT_LIST_HEAD(&h->hugepage_activelist);
3585         h->next_nid_to_alloc = first_memory_node;
3586         h->next_nid_to_free = first_memory_node;
3587         snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
3588                                         huge_page_size(h)/1024);
3589         hugetlb_vmemmap_init(h);
3590
3591         parsed_hstate = h;
3592 }
3593
3594 /*
3595  * hugepages command line processing
3596  * hugepages normally follows a valid hugepagsz or default_hugepagsz
3597  * specification.  If not, ignore the hugepages value.  hugepages can also
3598  * be the first huge page command line  option in which case it implicitly
3599  * specifies the number of huge pages for the default size.
3600  */
3601 static int __init hugepages_setup(char *s)
3602 {
3603         unsigned long *mhp;
3604         static unsigned long *last_mhp;
3605
3606         if (!parsed_valid_hugepagesz) {
3607                 pr_warn("HugeTLB: hugepages=%s does not follow a valid hugepagesz, ignoring\n", s);
3608                 parsed_valid_hugepagesz = true;
3609                 return 0;
3610         }
3611
3612         /*
3613          * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter
3614          * yet, so this hugepages= parameter goes to the "default hstate".
3615          * Otherwise, it goes with the previously parsed hugepagesz or
3616          * default_hugepagesz.
3617          */
3618         else if (!hugetlb_max_hstate)
3619                 mhp = &default_hstate_max_huge_pages;
3620         else
3621                 mhp = &parsed_hstate->max_huge_pages;
3622
3623         if (mhp == last_mhp) {
3624                 pr_warn("HugeTLB: hugepages= specified twice without interleaving hugepagesz=, ignoring hugepages=%s\n", s);
3625                 return 0;
3626         }
3627
3628         if (sscanf(s, "%lu", mhp) <= 0)
3629                 *mhp = 0;
3630
3631         /*
3632          * Global state is always initialized later in hugetlb_init.
3633          * But we need to allocate gigantic hstates here early to still
3634          * use the bootmem allocator.
3635          */
3636         if (hugetlb_max_hstate && hstate_is_gigantic(parsed_hstate))
3637                 hugetlb_hstate_alloc_pages(parsed_hstate);
3638
3639         last_mhp = mhp;
3640
3641         return 1;
3642 }
3643 __setup("hugepages=", hugepages_setup);
3644
3645 /*
3646  * hugepagesz command line processing
3647  * A specific huge page size can only be specified once with hugepagesz.
3648  * hugepagesz is followed by hugepages on the command line.  The global
3649  * variable 'parsed_valid_hugepagesz' is used to determine if prior
3650  * hugepagesz argument was valid.
3651  */
3652 static int __init hugepagesz_setup(char *s)
3653 {
3654         unsigned long size;
3655         struct hstate *h;
3656
3657         parsed_valid_hugepagesz = false;
3658         size = (unsigned long)memparse(s, NULL);
3659
3660         if (!arch_hugetlb_valid_size(size)) {
3661                 pr_err("HugeTLB: unsupported hugepagesz=%s\n", s);
3662                 return 0;
3663         }
3664
3665         h = size_to_hstate(size);
3666         if (h) {
3667                 /*
3668                  * hstate for this size already exists.  This is normally
3669                  * an error, but is allowed if the existing hstate is the
3670                  * default hstate.  More specifically, it is only allowed if
3671                  * the number of huge pages for the default hstate was not
3672                  * previously specified.
3673                  */
3674                 if (!parsed_default_hugepagesz ||  h != &default_hstate ||
3675                     default_hstate.max_huge_pages) {
3676                         pr_warn("HugeTLB: hugepagesz=%s specified twice, ignoring\n", s);
3677                         return 0;
3678                 }
3679
3680                 /*
3681                  * No need to call hugetlb_add_hstate() as hstate already
3682                  * exists.  But, do set parsed_hstate so that a following
3683                  * hugepages= parameter will be applied to this hstate.
3684                  */
3685                 parsed_hstate = h;
3686                 parsed_valid_hugepagesz = true;
3687                 return 1;
3688         }
3689
3690         hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
3691         parsed_valid_hugepagesz = true;
3692         return 1;
3693 }
3694 __setup("hugepagesz=", hugepagesz_setup);
3695
3696 /*
3697  * default_hugepagesz command line input
3698  * Only one instance of default_hugepagesz allowed on command line.
3699  */
3700 static int __init default_hugepagesz_setup(char *s)
3701 {
3702         unsigned long size;
3703
3704         parsed_valid_hugepagesz = false;
3705         if (parsed_default_hugepagesz) {
3706                 pr_err("HugeTLB: default_hugepagesz previously specified, ignoring %s\n", s);
3707                 return 0;
3708         }
3709
3710         size = (unsigned long)memparse(s, NULL);
3711
3712         if (!arch_hugetlb_valid_size(size)) {
3713                 pr_err("HugeTLB: unsupported default_hugepagesz=%s\n", s);
3714                 return 0;
3715         }
3716
3717         hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
3718         parsed_valid_hugepagesz = true;
3719         parsed_default_hugepagesz = true;
3720         default_hstate_idx = hstate_index(size_to_hstate(size));
3721
3722         /*
3723          * The number of default huge pages (for this size) could have been
3724          * specified as the first hugetlb parameter: hugepages=X.  If so,
3725          * then default_hstate_max_huge_pages is set.  If the default huge
3726          * page size is gigantic (>= MAX_ORDER), then the pages must be
3727          * allocated here from bootmem allocator.
3728          */
3729         if (default_hstate_max_huge_pages) {
3730                 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
3731                 if (hstate_is_gigantic(&default_hstate))
3732                         hugetlb_hstate_alloc_pages(&default_hstate);
3733                 default_hstate_max_huge_pages = 0;
3734         }
3735
3736         return 1;
3737 }
3738 __setup("default_hugepagesz=", default_hugepagesz_setup);
3739
3740 static unsigned int allowed_mems_nr(struct hstate *h)
3741 {
3742         int node;
3743         unsigned int nr = 0;
3744         nodemask_t *mpol_allowed;
3745         unsigned int *array = h->free_huge_pages_node;
3746         gfp_t gfp_mask = htlb_alloc_mask(h);
3747
3748         mpol_allowed = policy_nodemask_current(gfp_mask);
3749
3750         for_each_node_mask(node, cpuset_current_mems_allowed) {
3751                 if (!mpol_allowed || node_isset(node, *mpol_allowed))
3752                         nr += array[node];
3753         }
3754
3755         return nr;
3756 }
3757
3758 #ifdef CONFIG_SYSCTL
3759 static int proc_hugetlb_doulongvec_minmax(struct ctl_table *table, int write,
3760                                           void *buffer, size_t *length,
3761                                           loff_t *ppos, unsigned long *out)
3762 {
3763         struct ctl_table dup_table;
3764
3765         /*
3766          * In order to avoid races with __do_proc_doulongvec_minmax(), we
3767          * can duplicate the @table and alter the duplicate of it.
3768          */
3769         dup_table = *table;
3770         dup_table.data = out;
3771
3772         return proc_doulongvec_minmax(&dup_table, write, buffer, length, ppos);
3773 }
3774
3775 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
3776                          struct ctl_table *table, int write,
3777                          void *buffer, size_t *length, loff_t *ppos)
3778 {
3779         struct hstate *h = &default_hstate;
3780         unsigned long tmp = h->max_huge_pages;
3781         int ret;
3782
3783         if (!hugepages_supported())
3784                 return -EOPNOTSUPP;
3785
3786         ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
3787                                              &tmp);
3788         if (ret)
3789                 goto out;
3790
3791         if (write)
3792                 ret = __nr_hugepages_store_common(obey_mempolicy, h,
3793                                                   NUMA_NO_NODE, tmp, *length);
3794 out:
3795         return ret;
3796 }
3797
3798 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
3799                           void *buffer, size_t *length, loff_t *ppos)
3800 {
3801
3802         return hugetlb_sysctl_handler_common(false, table, write,
3803                                                         buffer, length, ppos);
3804 }
3805
3806 #ifdef CONFIG_NUMA
3807 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
3808                           void *buffer, size_t *length, loff_t *ppos)
3809 {
3810         return hugetlb_sysctl_handler_common(true, table, write,
3811                                                         buffer, length, ppos);
3812 }
3813 #endif /* CONFIG_NUMA */
3814
3815 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
3816                 void *buffer, size_t *length, loff_t *ppos)
3817 {
3818         struct hstate *h = &default_hstate;
3819         unsigned long tmp;
3820         int ret;
3821
3822         if (!hugepages_supported())
3823                 return -EOPNOTSUPP;
3824
3825         tmp = h->nr_overcommit_huge_pages;
3826
3827         if (write && hstate_is_gigantic(h))
3828                 return -EINVAL;
3829
3830         ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
3831                                              &tmp);
3832         if (ret)
3833                 goto out;
3834
3835         if (write) {
3836                 spin_lock_irq(&hugetlb_lock);
3837                 h->nr_overcommit_huge_pages = tmp;
3838                 spin_unlock_irq(&hugetlb_lock);
3839         }
3840 out:
3841         return ret;
3842 }
3843
3844 #endif /* CONFIG_SYSCTL */
3845
3846 void hugetlb_report_meminfo(struct seq_file *m)
3847 {
3848         struct hstate *h;
3849         unsigned long total = 0;
3850
3851         if (!hugepages_supported())
3852                 return;
3853
3854         for_each_hstate(h) {
3855                 unsigned long count = h->nr_huge_pages;
3856
3857                 total += huge_page_size(h) * count;
3858
3859                 if (h == &default_hstate)
3860                         seq_printf(m,
3861                                    "HugePages_Total:   %5lu\n"
3862                                    "HugePages_Free:    %5lu\n"
3863                                    "HugePages_Rsvd:    %5lu\n"
3864                                    "HugePages_Surp:    %5lu\n"
3865                                    "Hugepagesize:   %8lu kB\n",
3866                                    count,
3867                                    h->free_huge_pages,
3868                                    h->resv_huge_pages,
3869                                    h->surplus_huge_pages,
3870                                    huge_page_size(h) / SZ_1K);
3871         }
3872
3873         seq_printf(m, "Hugetlb:        %8lu kB\n", total / SZ_1K);
3874 }
3875
3876 int hugetlb_report_node_meminfo(char *buf, int len, int nid)
3877 {
3878         struct hstate *h = &default_hstate;
3879
3880         if (!hugepages_supported())
3881                 return 0;
3882
3883         return sysfs_emit_at(buf, len,
3884                              "Node %d HugePages_Total: %5u\n"
3885                              "Node %d HugePages_Free:  %5u\n"
3886                              "Node %d HugePages_Surp:  %5u\n",
3887                              nid, h->nr_huge_pages_node[nid],
3888                              nid, h->free_huge_pages_node[nid],
3889                              nid, h->surplus_huge_pages_node[nid]);
3890 }
3891
3892 void hugetlb_show_meminfo(void)
3893 {
3894         struct hstate *h;
3895         int nid;
3896
3897         if (!hugepages_supported())
3898                 return;
3899
3900         for_each_node_state(nid, N_MEMORY)
3901                 for_each_hstate(h)
3902                         pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
3903                                 nid,
3904                                 h->nr_huge_pages_node[nid],
3905                                 h->free_huge_pages_node[nid],
3906                                 h->surplus_huge_pages_node[nid],
3907                                 huge_page_size(h) / SZ_1K);
3908 }
3909
3910 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
3911 {
3912         seq_printf(m, "HugetlbPages:\t%8lu kB\n",
3913                    atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
3914 }
3915
3916 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
3917 unsigned long hugetlb_total_pages(void)
3918 {
3919         struct hstate *h;
3920         unsigned long nr_total_pages = 0;
3921
3922         for_each_hstate(h)
3923                 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
3924         return nr_total_pages;
3925 }
3926
3927 static int hugetlb_acct_memory(struct hstate *h, long delta)
3928 {
3929         int ret = -ENOMEM;
3930
3931         if (!delta)
3932                 return 0;
3933
3934         spin_lock_irq(&hugetlb_lock);
3935         /*
3936          * When cpuset is configured, it breaks the strict hugetlb page
3937          * reservation as the accounting is done on a global variable. Such
3938          * reservation is completely rubbish in the presence of cpuset because
3939          * the reservation is not checked against page availability for the
3940          * current cpuset. Application can still potentially OOM'ed by kernel
3941          * with lack of free htlb page in cpuset that the task is in.
3942          * Attempt to enforce strict accounting with cpuset is almost
3943          * impossible (or too ugly) because cpuset is too fluid that
3944          * task or memory node can be dynamically moved between cpusets.
3945          *
3946          * The change of semantics for shared hugetlb mapping with cpuset is
3947          * undesirable. However, in order to preserve some of the semantics,
3948          * we fall back to check against current free page availability as
3949          * a best attempt and hopefully to minimize the impact of changing
3950          * semantics that cpuset has.
3951          *
3952          * Apart from cpuset, we also have memory policy mechanism that
3953          * also determines from which node the kernel will allocate memory
3954          * in a NUMA system. So similar to cpuset, we also should consider
3955          * the memory policy of the current task. Similar to the description
3956          * above.
3957          */
3958         if (delta > 0) {
3959                 if (gather_surplus_pages(h, delta) < 0)
3960                         goto out;
3961
3962                 if (delta > allowed_mems_nr(h)) {
3963                         return_unused_surplus_pages(h, delta);
3964                         goto out;
3965                 }
3966         }
3967
3968         ret = 0;
3969         if (delta < 0)
3970                 return_unused_surplus_pages(h, (unsigned long) -delta);
3971
3972 out:
3973         spin_unlock_irq(&hugetlb_lock);
3974         return ret;
3975 }
3976
3977 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
3978 {
3979         struct resv_map *resv = vma_resv_map(vma);
3980
3981         /*
3982          * This new VMA should share its siblings reservation map if present.
3983          * The VMA will only ever have a valid reservation map pointer where
3984          * it is being copied for another still existing VMA.  As that VMA
3985          * has a reference to the reservation map it cannot disappear until
3986          * after this open call completes.  It is therefore safe to take a
3987          * new reference here without additional locking.
3988          */
3989         if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3990                 kref_get(&resv->refs);
3991 }
3992
3993 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
3994 {
3995         struct hstate *h = hstate_vma(vma);
3996         struct resv_map *resv = vma_resv_map(vma);
3997         struct hugepage_subpool *spool = subpool_vma(vma);
3998         unsigned long reserve, start, end;
3999         long gbl_reserve;
4000
4001         if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
4002                 return;
4003
4004         start = vma_hugecache_offset(h, vma, vma->vm_start);
4005         end = vma_hugecache_offset(h, vma, vma->vm_end);
4006
4007         reserve = (end - start) - region_count(resv, start, end);
4008         hugetlb_cgroup_uncharge_counter(resv, start, end);
4009         if (reserve) {
4010                 /*
4011                  * Decrement reserve counts.  The global reserve count may be
4012                  * adjusted if the subpool has a minimum size.
4013                  */
4014                 gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
4015                 hugetlb_acct_memory(h, -gbl_reserve);
4016         }
4017
4018         kref_put(&resv->refs, resv_map_release);
4019 }
4020
4021 static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
4022 {
4023         if (addr & ~(huge_page_mask(hstate_vma(vma))))
4024                 return -EINVAL;
4025         return 0;
4026 }
4027
4028 static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma)
4029 {
4030         return huge_page_size(hstate_vma(vma));
4031 }
4032
4033 /*
4034  * We cannot handle pagefaults against hugetlb pages at all.  They cause
4035  * handle_mm_fault() to try to instantiate regular-sized pages in the
4036  * hugepage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
4037  * this far.
4038  */
4039 static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf)
4040 {
4041         BUG();
4042         return 0;
4043 }
4044
4045 /*
4046  * When a new function is introduced to vm_operations_struct and added
4047  * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops.
4048  * This is because under System V memory model, mappings created via
4049  * shmget/shmat with "huge page" specified are backed by hugetlbfs files,
4050  * their original vm_ops are overwritten with shm_vm_ops.
4051  */
4052 const struct vm_operations_struct hugetlb_vm_ops = {
4053         .fault = hugetlb_vm_op_fault,
4054         .open = hugetlb_vm_op_open,
4055         .close = hugetlb_vm_op_close,
4056         .may_split = hugetlb_vm_op_split,
4057         .pagesize = hugetlb_vm_op_pagesize,
4058 };
4059
4060 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
4061                                 int writable)
4062 {
4063         pte_t entry;
4064         unsigned int shift = huge_page_shift(hstate_vma(vma));
4065
4066         if (writable) {
4067                 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
4068                                          vma->vm_page_prot)));
4069         } else {
4070                 entry = huge_pte_wrprotect(mk_huge_pte(page,
4071                                            vma->vm_page_prot));
4072         }
4073         entry = pte_mkyoung(entry);
4074         entry = pte_mkhuge(entry);
4075         entry = arch_make_huge_pte(entry, shift, vma->vm_flags);
4076
4077         return entry;
4078 }
4079
4080 static void set_huge_ptep_writable(struct vm_area_struct *vma,
4081                                    unsigned long address, pte_t *ptep)
4082 {
4083         pte_t entry;
4084
4085         entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
4086         if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
4087                 update_mmu_cache(vma, address, ptep);
4088 }
4089
4090 bool is_hugetlb_entry_migration(pte_t pte)
4091 {
4092         swp_entry_t swp;
4093
4094         if (huge_pte_none(pte) || pte_present(pte))
4095                 return false;
4096         swp = pte_to_swp_entry(pte);
4097         if (is_migration_entry(swp))
4098                 return true;
4099         else
4100                 return false;
4101 }
4102
4103 static bool is_hugetlb_entry_hwpoisoned(pte_t pte)
4104 {
4105         swp_entry_t swp;
4106
4107         if (huge_pte_none(pte) || pte_present(pte))
4108                 return false;
4109         swp = pte_to_swp_entry(pte);
4110         if (is_hwpoison_entry(swp))
4111                 return true;
4112         else
4113                 return false;
4114 }
4115
4116 static void
4117 hugetlb_install_page(struct vm_area_struct *vma, pte_t *ptep, unsigned long addr,
4118                      struct page *new_page)
4119 {
4120         __SetPageUptodate(new_page);
4121         set_huge_pte_at(vma->vm_mm, addr, ptep, make_huge_pte(vma, new_page, 1));
4122         hugepage_add_new_anon_rmap(new_page, vma, addr);
4123         hugetlb_count_add(pages_per_huge_page(hstate_vma(vma)), vma->vm_mm);
4124         ClearHPageRestoreReserve(new_page);
4125         SetHPageMigratable(new_page);
4126 }
4127
4128 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
4129                             struct vm_area_struct *vma)
4130 {
4131         pte_t *src_pte, *dst_pte, entry, dst_entry;
4132         struct page *ptepage;
4133         unsigned long addr;
4134         bool cow = is_cow_mapping(vma->vm_flags);
4135         struct hstate *h = hstate_vma(vma);
4136         unsigned long sz = huge_page_size(h);
4137         unsigned long npages = pages_per_huge_page(h);
4138         struct address_space *mapping = vma->vm_file->f_mapping;
4139         struct mmu_notifier_range range;
4140         int ret = 0;
4141
4142         if (cow) {
4143                 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, src,
4144                                         vma->vm_start,
4145                                         vma->vm_end);
4146                 mmu_notifier_invalidate_range_start(&range);
4147         } else {
4148                 /*
4149                  * For shared mappings i_mmap_rwsem must be held to call
4150                  * huge_pte_alloc, otherwise the returned ptep could go
4151                  * away if part of a shared pmd and another thread calls
4152                  * huge_pmd_unshare.
4153                  */
4154                 i_mmap_lock_read(mapping);
4155         }
4156
4157         for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
4158                 spinlock_t *src_ptl, *dst_ptl;
4159                 src_pte = huge_pte_offset(src, addr, sz);
4160                 if (!src_pte)
4161                         continue;
4162                 dst_pte = huge_pte_alloc(dst, vma, addr, sz);
4163                 if (!dst_pte) {
4164                         ret = -ENOMEM;
4165                         break;
4166                 }
4167
4168                 /*
4169                  * If the pagetables are shared don't copy or take references.
4170                  * dst_pte == src_pte is the common case of src/dest sharing.
4171                  *
4172                  * However, src could have 'unshared' and dst shares with
4173                  * another vma.  If dst_pte !none, this implies sharing.
4174                  * Check here before taking page table lock, and once again
4175                  * after taking the lock below.
4176                  */
4177                 dst_entry = huge_ptep_get(dst_pte);
4178                 if ((dst_pte == src_pte) || !huge_pte_none(dst_entry))
4179                         continue;
4180
4181                 dst_ptl = huge_pte_lock(h, dst, dst_pte);
4182                 src_ptl = huge_pte_lockptr(h, src, src_pte);
4183                 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
4184                 entry = huge_ptep_get(src_pte);
4185                 dst_entry = huge_ptep_get(dst_pte);
4186 again:
4187                 if (huge_pte_none(entry) || !huge_pte_none(dst_entry)) {
4188                         /*
4189                          * Skip if src entry none.  Also, skip in the
4190                          * unlikely case dst entry !none as this implies
4191                          * sharing with another vma.
4192                          */
4193                         ;
4194                 } else if (unlikely(is_hugetlb_entry_migration(entry) ||
4195                                     is_hugetlb_entry_hwpoisoned(entry))) {
4196                         swp_entry_t swp_entry = pte_to_swp_entry(entry);
4197
4198                         if (is_write_migration_entry(swp_entry) && cow) {
4199                                 /*
4200                                  * COW mappings require pages in both
4201                                  * parent and child to be set to read.
4202                                  */
4203                                 make_migration_entry_read(&swp_entry);
4204                                 entry = swp_entry_to_pte(swp_entry);
4205                                 set_huge_swap_pte_at(src, addr, src_pte,
4206                                                      entry, sz);
4207                         }
4208                         set_huge_swap_pte_at(dst, addr, dst_pte, entry, sz);
4209                 } else {
4210                         entry = huge_ptep_get(src_pte);
4211                         ptepage = pte_page(entry);
4212                         get_page(ptepage);
4213
4214                         /*
4215                          * This is a rare case where we see pinned hugetlb
4216                          * pages while they're prone to COW.  We need to do the
4217                          * COW earlier during fork.
4218                          *
4219                          * When pre-allocating the page or copying data, we
4220                          * need to be without the pgtable locks since we could
4221                          * sleep during the process.
4222                          */
4223                         if (unlikely(page_needs_cow_for_dma(vma, ptepage))) {
4224                                 pte_t src_pte_old = entry;
4225                                 struct page *new;
4226
4227                                 spin_unlock(src_ptl);
4228                                 spin_unlock(dst_ptl);
4229                                 /* Do not use reserve as it's private owned */
4230                                 new = alloc_huge_page(vma, addr, 1);
4231                                 if (IS_ERR(new)) {
4232                                         put_page(ptepage);
4233                                         ret = PTR_ERR(new);
4234                                         break;
4235                                 }
4236                                 copy_user_huge_page(new, ptepage, addr, vma,
4237                                                     npages);
4238                                 put_page(ptepage);
4239
4240                                 /* Install the new huge page if src pte stable */
4241                                 dst_ptl = huge_pte_lock(h, dst, dst_pte);
4242                                 src_ptl = huge_pte_lockptr(h, src, src_pte);
4243                                 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
4244                                 entry = huge_ptep_get(src_pte);
4245                                 if (!pte_same(src_pte_old, entry)) {
4246                                         restore_reserve_on_error(h, vma, addr,
4247                                                                 new);
4248                                         put_page(new);
4249                                         /* dst_entry won't change as in child */
4250                                         goto again;
4251                                 }
4252                                 hugetlb_install_page(vma, dst_pte, addr, new);
4253                                 spin_unlock(src_ptl);
4254                                 spin_unlock(dst_ptl);
4255                                 continue;
4256                         }
4257
4258                         if (cow) {
4259                                 /*
4260                                  * No need to notify as we are downgrading page
4261                                  * table protection not changing it to point
4262                                  * to a new page.
4263                                  *
4264                                  * See Documentation/vm/mmu_notifier.rst
4265                                  */
4266                                 huge_ptep_set_wrprotect(src, addr, src_pte);
4267                                 entry = huge_pte_wrprotect(entry);
4268                         }
4269
4270                         page_dup_rmap(ptepage, true);
4271                         set_huge_pte_at(dst, addr, dst_pte, entry);
4272                         hugetlb_count_add(npages, dst);
4273                 }
4274                 spin_unlock(src_ptl);
4275                 spin_unlock(dst_ptl);
4276         }
4277
4278         if (cow)
4279                 mmu_notifier_invalidate_range_end(&range);
4280         else
4281                 i_mmap_unlock_read(mapping);
4282
4283         return ret;
4284 }
4285
4286 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
4287                             unsigned long start, unsigned long end,
4288                             struct page *ref_page)
4289 {
4290         struct mm_struct *mm = vma->vm_mm;
4291         unsigned long address;
4292         pte_t *ptep;
4293         pte_t pte;
4294         spinlock_t *ptl;
4295         struct page *page;
4296         struct hstate *h = hstate_vma(vma);
4297         unsigned long sz = huge_page_size(h);
4298         struct mmu_notifier_range range;
4299
4300         WARN_ON(!is_vm_hugetlb_page(vma));
4301         BUG_ON(start & ~huge_page_mask(h));
4302         BUG_ON(end & ~huge_page_mask(h));
4303
4304         /*
4305          * This is a hugetlb vma, all the pte entries should point
4306          * to huge page.
4307          */
4308         tlb_change_page_size(tlb, sz);
4309         tlb_start_vma(tlb, vma);
4310
4311         /*
4312          * If sharing possible, alert mmu notifiers of worst case.
4313          */
4314         mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, mm, start,
4315                                 end);
4316         adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
4317         mmu_notifier_invalidate_range_start(&range);
4318         address = start;
4319         for (; address < end; address += sz) {
4320                 ptep = huge_pte_offset(mm, address, sz);
4321                 if (!ptep)
4322                         continue;
4323
4324                 ptl = huge_pte_lock(h, mm, ptep);
4325                 if (huge_pmd_unshare(mm, vma, &address, ptep)) {
4326                         spin_unlock(ptl);
4327                         /*
4328                          * We just unmapped a page of PMDs by clearing a PUD.
4329                          * The caller's TLB flush range should cover this area.
4330                          */
4331                         continue;
4332                 }
4333
4334                 pte = huge_ptep_get(ptep);
4335                 if (huge_pte_none(pte)) {
4336                         spin_unlock(ptl);
4337                         continue;
4338                 }
4339
4340                 /*
4341                  * Migrating hugepage or HWPoisoned hugepage is already
4342                  * unmapped and its refcount is dropped, so just clear pte here.
4343                  */
4344                 if (unlikely(!pte_present(pte))) {
4345                         huge_pte_clear(mm, address, ptep, sz);
4346                         spin_unlock(ptl);
4347                         continue;
4348                 }
4349
4350                 page = pte_page(pte);
4351                 /*
4352                  * If a reference page is supplied, it is because a specific
4353                  * page is being unmapped, not a range. Ensure the page we
4354                  * are about to unmap is the actual page of interest.
4355                  */
4356                 if (ref_page) {
4357                         if (page != ref_page) {
4358                                 spin_unlock(ptl);
4359                                 continue;
4360                         }
4361                         /*
4362                          * Mark the VMA as having unmapped its page so that
4363                          * future faults in this VMA will fail rather than
4364                          * looking like data was lost
4365                          */
4366                         set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
4367                 }
4368
4369                 pte = huge_ptep_get_and_clear(mm, address, ptep);
4370                 tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
4371                 if (huge_pte_dirty(pte))
4372                         set_page_dirty(page);
4373
4374                 hugetlb_count_sub(pages_per_huge_page(h), mm);
4375                 page_remove_rmap(page, true);
4376
4377                 spin_unlock(ptl);
4378                 tlb_remove_page_size(tlb, page, huge_page_size(h));
4379                 /*
4380                  * Bail out after unmapping reference page if supplied
4381                  */
4382                 if (ref_page)
4383                         break;
4384         }
4385         mmu_notifier_invalidate_range_end(&range);
4386         tlb_end_vma(tlb, vma);
4387 }
4388
4389 void __unmap_hugepage_range_final(struct mmu_gather *tlb,
4390                           struct vm_area_struct *vma, unsigned long start,
4391                           unsigned long end, struct page *ref_page)
4392 {
4393         __unmap_hugepage_range(tlb, vma, start, end, ref_page);
4394
4395         /*
4396          * Clear this flag so that x86's huge_pmd_share page_table_shareable
4397          * test will fail on a vma being torn down, and not grab a page table
4398          * on its way out.  We're lucky that the flag has such an appropriate
4399          * name, and can in fact be safely cleared here. We could clear it
4400          * before the __unmap_hugepage_range above, but all that's necessary
4401          * is to clear it before releasing the i_mmap_rwsem. This works
4402          * because in the context this is called, the VMA is about to be
4403          * destroyed and the i_mmap_rwsem is held.
4404          */
4405         vma->vm_flags &= ~VM_MAYSHARE;
4406 }
4407
4408 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
4409                           unsigned long end, struct page *ref_page)
4410 {
4411         struct mmu_gather tlb;
4412
4413         tlb_gather_mmu(&tlb, vma->vm_mm);
4414         __unmap_hugepage_range(&tlb, vma, start, end, ref_page);
4415         tlb_finish_mmu(&tlb);
4416 }
4417
4418 /*
4419  * This is called when the original mapper is failing to COW a MAP_PRIVATE
4420  * mapping it owns the reserve page for. The intention is to unmap the page
4421  * from other VMAs and let the children be SIGKILLed if they are faulting the
4422  * same region.
4423  */
4424 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
4425                               struct page *page, unsigned long address)
4426 {
4427         struct hstate *h = hstate_vma(vma);
4428         struct vm_area_struct *iter_vma;
4429         struct address_space *mapping;
4430         pgoff_t pgoff;
4431
4432         /*
4433          * vm_pgoff is in PAGE_SIZE units, hence the different calculation
4434          * from page cache lookup which is in HPAGE_SIZE units.
4435          */
4436         address = address & huge_page_mask(h);
4437         pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
4438                         vma->vm_pgoff;
4439         mapping = vma->vm_file->f_mapping;
4440
4441         /*
4442          * Take the mapping lock for the duration of the table walk. As
4443          * this mapping should be shared between all the VMAs,
4444          * __unmap_hugepage_range() is called as the lock is already held
4445          */
4446         i_mmap_lock_write(mapping);
4447         vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
4448                 /* Do not unmap the current VMA */
4449                 if (iter_vma == vma)
4450                         continue;
4451
4452                 /*
4453                  * Shared VMAs have their own reserves and do not affect
4454                  * MAP_PRIVATE accounting but it is possible that a shared
4455                  * VMA is using the same page so check and skip such VMAs.
4456                  */
4457                 if (iter_vma->vm_flags & VM_MAYSHARE)
4458                         continue;
4459
4460                 /*
4461                  * Unmap the page from other VMAs without their own reserves.
4462                  * They get marked to be SIGKILLed if they fault in these
4463                  * areas. This is because a future no-page fault on this VMA
4464                  * could insert a zeroed page instead of the data existing
4465                  * from the time of fork. This would look like data corruption
4466                  */
4467                 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
4468                         unmap_hugepage_range(iter_vma, address,
4469                                              address + huge_page_size(h), page);
4470         }
4471         i_mmap_unlock_write(mapping);
4472 }
4473
4474 /*
4475  * Hugetlb_cow() should be called with page lock of the original hugepage held.
4476  * Called with hugetlb_instantiation_mutex held and pte_page locked so we
4477  * cannot race with other handlers or page migration.
4478  * Keep the pte_same checks anyway to make transition from the mutex easier.
4479  */
4480 static vm_fault_t hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
4481                        unsigned long address, pte_t *ptep,
4482                        struct page *pagecache_page, spinlock_t *ptl)
4483 {
4484         pte_t pte;
4485         struct hstate *h = hstate_vma(vma);
4486         struct page *old_page, *new_page;
4487         int outside_reserve = 0;
4488         vm_fault_t ret = 0;
4489         unsigned long haddr = address & huge_page_mask(h);
4490         struct mmu_notifier_range range;
4491
4492         pte = huge_ptep_get(ptep);
4493         old_page = pte_page(pte);
4494
4495 retry_avoidcopy:
4496         /* If no-one else is actually using this page, avoid the copy
4497          * and just make the page writable */
4498         if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
4499                 page_move_anon_rmap(old_page, vma);
4500                 set_huge_ptep_writable(vma, haddr, ptep);
4501                 return 0;
4502         }
4503
4504         /*
4505          * If the process that created a MAP_PRIVATE mapping is about to
4506          * perform a COW due to a shared page count, attempt to satisfy
4507          * the allocation without using the existing reserves. The pagecache
4508          * page is used to determine if the reserve at this address was
4509          * consumed or not. If reserves were used, a partial faulted mapping
4510          * at the time of fork() could consume its reserves on COW instead
4511          * of the full address range.
4512          */
4513         if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
4514                         old_page != pagecache_page)
4515                 outside_reserve = 1;
4516
4517         get_page(old_page);
4518
4519         /*
4520          * Drop page table lock as buddy allocator may be called. It will
4521          * be acquired again before returning to the caller, as expected.
4522          */
4523         spin_unlock(ptl);
4524         new_page = alloc_huge_page(vma, haddr, outside_reserve);
4525
4526         if (IS_ERR(new_page)) {
4527                 /*
4528                  * If a process owning a MAP_PRIVATE mapping fails to COW,
4529                  * it is due to references held by a child and an insufficient
4530                  * huge page pool. To guarantee the original mappers
4531                  * reliability, unmap the page from child processes. The child
4532                  * may get SIGKILLed if it later faults.
4533                  */
4534                 if (outside_reserve) {
4535                         struct address_space *mapping = vma->vm_file->f_mapping;
4536                         pgoff_t idx;
4537                         u32 hash;
4538
4539                         put_page(old_page);
4540                         BUG_ON(huge_pte_none(pte));
4541                         /*
4542                          * Drop hugetlb_fault_mutex and i_mmap_rwsem before
4543                          * unmapping.  unmapping needs to hold i_mmap_rwsem
4544                          * in write mode.  Dropping i_mmap_rwsem in read mode
4545                          * here is OK as COW mappings do not interact with
4546                          * PMD sharing.
4547                          *
4548                          * Reacquire both after unmap operation.
4549                          */
4550                         idx = vma_hugecache_offset(h, vma, haddr);
4551                         hash = hugetlb_fault_mutex_hash(mapping, idx);
4552                         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
4553                         i_mmap_unlock_read(mapping);
4554
4555                         unmap_ref_private(mm, vma, old_page, haddr);
4556
4557                         i_mmap_lock_read(mapping);
4558                         mutex_lock(&hugetlb_fault_mutex_table[hash]);
4559                         spin_lock(ptl);
4560                         ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
4561                         if (likely(ptep &&
4562                                    pte_same(huge_ptep_get(ptep), pte)))
4563                                 goto retry_avoidcopy;
4564                         /*
4565                          * race occurs while re-acquiring page table
4566                          * lock, and our job is done.
4567                          */
4568                         return 0;
4569                 }
4570
4571                 ret = vmf_error(PTR_ERR(new_page));
4572                 goto out_release_old;
4573         }
4574
4575         /*
4576          * When the original hugepage is shared one, it does not have
4577          * anon_vma prepared.
4578          */
4579         if (unlikely(anon_vma_prepare(vma))) {
4580                 ret = VM_FAULT_OOM;
4581                 goto out_release_all;
4582         }
4583
4584         copy_user_huge_page(new_page, old_page, address, vma,
4585                             pages_per_huge_page(h));
4586         __SetPageUptodate(new_page);
4587
4588         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, haddr,
4589                                 haddr + huge_page_size(h));
4590         mmu_notifier_invalidate_range_start(&range);
4591
4592         /*
4593          * Retake the page table lock to check for racing updates
4594          * before the page tables are altered
4595          */
4596         spin_lock(ptl);
4597         ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
4598         if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
4599                 ClearHPageRestoreReserve(new_page);
4600
4601                 /* Break COW */
4602                 huge_ptep_clear_flush(vma, haddr, ptep);
4603                 mmu_notifier_invalidate_range(mm, range.start, range.end);
4604                 set_huge_pte_at(mm, haddr, ptep,
4605                                 make_huge_pte(vma, new_page, 1));
4606                 page_remove_rmap(old_page, true);
4607                 hugepage_add_new_anon_rmap(new_page, vma, haddr);
4608                 SetHPageMigratable(new_page);
4609                 /* Make the old page be freed below */
4610                 new_page = old_page;
4611         }
4612         spin_unlock(ptl);
4613         mmu_notifier_invalidate_range_end(&range);
4614 out_release_all:
4615         restore_reserve_on_error(h, vma, haddr, new_page);
4616         put_page(new_page);
4617 out_release_old:
4618         put_page(old_page);
4619
4620         spin_lock(ptl); /* Caller expects lock to be held */
4621         return ret;
4622 }
4623
4624 /* Return the pagecache page at a given address within a VMA */
4625 static struct page *hugetlbfs_pagecache_page(struct hstate *h,
4626                         struct vm_area_struct *vma, unsigned long address)
4627 {
4628         struct address_space *mapping;
4629         pgoff_t idx;
4630
4631         mapping = vma->vm_file->f_mapping;
4632         idx = vma_hugecache_offset(h, vma, address);
4633
4634         return find_lock_page(mapping, idx);
4635 }
4636
4637 /*
4638  * Return whether there is a pagecache page to back given address within VMA.
4639  * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
4640  */
4641 static bool hugetlbfs_pagecache_present(struct hstate *h,
4642                         struct vm_area_struct *vma, unsigned long address)
4643 {
4644         struct address_space *mapping;
4645         pgoff_t idx;
4646         struct page *page;
4647
4648         mapping = vma->vm_file->f_mapping;
4649         idx = vma_hugecache_offset(h, vma, address);
4650
4651         page = find_get_page(mapping, idx);
4652         if (page)
4653                 put_page(page);
4654         return page != NULL;
4655 }
4656
4657 int huge_add_to_page_cache(struct page *page, struct address_space *mapping,
4658                            pgoff_t idx)
4659 {
4660         struct inode *inode = mapping->host;
4661         struct hstate *h = hstate_inode(inode);
4662         int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
4663
4664         if (err)
4665                 return err;
4666         ClearHPageRestoreReserve(page);
4667
4668         /*
4669          * set page dirty so that it will not be removed from cache/file
4670          * by non-hugetlbfs specific code paths.
4671          */
4672         set_page_dirty(page);
4673
4674         spin_lock(&inode->i_lock);
4675         inode->i_blocks += blocks_per_huge_page(h);
4676         spin_unlock(&inode->i_lock);
4677         return 0;
4678 }
4679
4680 static inline vm_fault_t hugetlb_handle_userfault(struct vm_area_struct *vma,
4681                                                   struct address_space *mapping,
4682                                                   pgoff_t idx,
4683                                                   unsigned int flags,
4684                                                   unsigned long haddr,
4685                                                   unsigned long reason)
4686 {
4687         vm_fault_t ret;
4688         u32 hash;
4689         struct vm_fault vmf = {
4690                 .vma = vma,
4691                 .address = haddr,
4692                 .flags = flags,
4693
4694                 /*
4695                  * Hard to debug if it ends up being
4696                  * used by a callee that assumes
4697                  * something about the other
4698                  * uninitialized fields... same as in
4699                  * memory.c
4700                  */
4701         };
4702
4703         /*
4704          * hugetlb_fault_mutex and i_mmap_rwsem must be
4705          * dropped before handling userfault.  Reacquire
4706          * after handling fault to make calling code simpler.
4707          */
4708         hash = hugetlb_fault_mutex_hash(mapping, idx);
4709         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
4710         i_mmap_unlock_read(mapping);
4711         ret = handle_userfault(&vmf, reason);
4712         i_mmap_lock_read(mapping);
4713         mutex_lock(&hugetlb_fault_mutex_table[hash]);
4714
4715         return ret;
4716 }
4717
4718 static vm_fault_t hugetlb_no_page(struct mm_struct *mm,
4719                         struct vm_area_struct *vma,
4720                         struct address_space *mapping, pgoff_t idx,
4721                         unsigned long address, pte_t *ptep, unsigned int flags)
4722 {
4723         struct hstate *h = hstate_vma(vma);
4724         vm_fault_t ret = VM_FAULT_SIGBUS;
4725         int anon_rmap = 0;
4726         unsigned long size;
4727         struct page *page;
4728         pte_t new_pte;
4729         spinlock_t *ptl;
4730         unsigned long haddr = address & huge_page_mask(h);
4731         bool new_page = false;
4732
4733         /*
4734          * Currently, we are forced to kill the process in the event the
4735          * original mapper has unmapped pages from the child due to a failed
4736          * COW. Warn that such a situation has occurred as it may not be obvious
4737          */
4738         if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
4739                 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
4740                            current->pid);
4741                 return ret;
4742         }
4743
4744         /*
4745          * We can not race with truncation due to holding i_mmap_rwsem.
4746          * i_size is modified when holding i_mmap_rwsem, so check here
4747          * once for faults beyond end of file.
4748          */
4749         size = i_size_read(mapping->host) >> huge_page_shift(h);
4750         if (idx >= size)
4751                 goto out;
4752
4753 retry:
4754         page = find_lock_page(mapping, idx);
4755         if (!page) {
4756                 /* Check for page in userfault range */
4757                 if (userfaultfd_missing(vma)) {
4758                         ret = hugetlb_handle_userfault(vma, mapping, idx,
4759                                                        flags, haddr,
4760                                                        VM_UFFD_MISSING);
4761                         goto out;
4762                 }
4763
4764                 page = alloc_huge_page(vma, haddr, 0);
4765                 if (IS_ERR(page)) {
4766                         /*
4767                          * Returning error will result in faulting task being
4768                          * sent SIGBUS.  The hugetlb fault mutex prevents two
4769                          * tasks from racing to fault in the same page which
4770                          * could result in false unable to allocate errors.
4771                          * Page migration does not take the fault mutex, but
4772                          * does a clear then write of pte's under page table
4773                          * lock.  Page fault code could race with migration,
4774                          * notice the clear pte and try to allocate a page
4775                          * here.  Before returning error, get ptl and make
4776                          * sure there really is no pte entry.
4777                          */
4778                         ptl = huge_pte_lock(h, mm, ptep);
4779                         ret = 0;
4780                         if (huge_pte_none(huge_ptep_get(ptep)))
4781                                 ret = vmf_error(PTR_ERR(page));
4782                         spin_unlock(ptl);
4783                         goto out;
4784                 }
4785                 clear_huge_page(page, address, pages_per_huge_page(h));
4786                 __SetPageUptodate(page);
4787                 new_page = true;
4788
4789                 if (vma->vm_flags & VM_MAYSHARE) {
4790                         int err = huge_add_to_page_cache(page, mapping, idx);
4791                         if (err) {
4792                                 put_page(page);
4793                                 if (err == -EEXIST)
4794                                         goto retry;
4795                                 goto out;
4796                         }
4797                 } else {
4798                         lock_page(page);
4799                         if (unlikely(anon_vma_prepare(vma))) {
4800                                 ret = VM_FAULT_OOM;
4801                                 goto backout_unlocked;
4802                         }
4803                         anon_rmap = 1;
4804                 }
4805         } else {
4806                 /*
4807                  * If memory error occurs between mmap() and fault, some process
4808                  * don't have hwpoisoned swap entry for errored virtual address.
4809                  * So we need to block hugepage fault by PG_hwpoison bit check.
4810                  */
4811                 if (unlikely(PageHWPoison(page))) {
4812                         ret = VM_FAULT_HWPOISON_LARGE |
4813                                 VM_FAULT_SET_HINDEX(hstate_index(h));
4814                         goto backout_unlocked;
4815                 }
4816
4817                 /* Check for page in userfault range. */
4818                 if (userfaultfd_minor(vma)) {
4819                         unlock_page(page);
4820                         put_page(page);
4821                         ret = hugetlb_handle_userfault(vma, mapping, idx,
4822                                                        flags, haddr,
4823                                                        VM_UFFD_MINOR);
4824                         goto out;
4825                 }
4826         }
4827
4828         /*
4829          * If we are going to COW a private mapping later, we examine the
4830          * pending reservations for this page now. This will ensure that
4831          * any allocations necessary to record that reservation occur outside
4832          * the spinlock.
4833          */
4834         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
4835                 if (vma_needs_reservation(h, vma, haddr) < 0) {
4836                         ret = VM_FAULT_OOM;
4837                         goto backout_unlocked;
4838                 }
4839                 /* Just decrements count, does not deallocate */
4840                 vma_end_reservation(h, vma, haddr);
4841         }
4842
4843         ptl = huge_pte_lock(h, mm, ptep);
4844         ret = 0;
4845         if (!huge_pte_none(huge_ptep_get(ptep)))
4846                 goto backout;
4847
4848         if (anon_rmap) {
4849                 ClearHPageRestoreReserve(page);
4850                 hugepage_add_new_anon_rmap(page, vma, haddr);
4851         } else
4852                 page_dup_rmap(page, true);
4853         new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
4854                                 && (vma->vm_flags & VM_SHARED)));
4855         set_huge_pte_at(mm, haddr, ptep, new_pte);
4856
4857         hugetlb_count_add(pages_per_huge_page(h), mm);
4858         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
4859                 /* Optimization, do the COW without a second fault */
4860                 ret = hugetlb_cow(mm, vma, address, ptep, page, ptl);
4861         }
4862
4863         spin_unlock(ptl);
4864
4865         /*
4866          * Only set HPageMigratable in newly allocated pages.  Existing pages
4867          * found in the pagecache may not have HPageMigratableset if they have
4868          * been isolated for migration.
4869          */
4870         if (new_page)
4871                 SetHPageMigratable(page);
4872
4873         unlock_page(page);
4874 out:
4875         return ret;
4876
4877 backout:
4878         spin_unlock(ptl);
4879 backout_unlocked:
4880         unlock_page(page);
4881         restore_reserve_on_error(h, vma, haddr, page);
4882         put_page(page);
4883         goto out;
4884 }
4885
4886 #ifdef CONFIG_SMP
4887 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
4888 {
4889         unsigned long key[2];
4890         u32 hash;
4891
4892         key[0] = (unsigned long) mapping;
4893         key[1] = idx;
4894
4895         hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0);
4896
4897         return hash & (num_fault_mutexes - 1);
4898 }
4899 #else
4900 /*
4901  * For uniprocessor systems we always use a single mutex, so just
4902  * return 0 and avoid the hashing overhead.
4903  */
4904 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
4905 {
4906         return 0;
4907 }
4908 #endif
4909
4910 vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
4911                         unsigned long address, unsigned int flags)
4912 {
4913         pte_t *ptep, entry;
4914         spinlock_t *ptl;
4915         vm_fault_t ret;
4916         u32 hash;
4917         pgoff_t idx;
4918         struct page *page = NULL;
4919         struct page *pagecache_page = NULL;
4920         struct hstate *h = hstate_vma(vma);
4921         struct address_space *mapping;
4922         int need_wait_lock = 0;
4923         unsigned long haddr = address & huge_page_mask(h);
4924
4925         ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
4926         if (ptep) {
4927                 /*
4928                  * Since we hold no locks, ptep could be stale.  That is
4929                  * OK as we are only making decisions based on content and
4930                  * not actually modifying content here.
4931                  */
4932                 entry = huge_ptep_get(ptep);
4933                 if (unlikely(is_hugetlb_entry_migration(entry))) {
4934                         migration_entry_wait_huge(vma, mm, ptep);
4935                         return 0;
4936                 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
4937                         return VM_FAULT_HWPOISON_LARGE |
4938                                 VM_FAULT_SET_HINDEX(hstate_index(h));
4939         }
4940
4941         /*
4942          * Acquire i_mmap_rwsem before calling huge_pte_alloc and hold
4943          * until finished with ptep.  This serves two purposes:
4944          * 1) It prevents huge_pmd_unshare from being called elsewhere
4945          *    and making the ptep no longer valid.
4946          * 2) It synchronizes us with i_size modifications during truncation.
4947          *
4948          * ptep could have already be assigned via huge_pte_offset.  That
4949          * is OK, as huge_pte_alloc will return the same value unless
4950          * something has changed.
4951          */
4952         mapping = vma->vm_file->f_mapping;
4953         i_mmap_lock_read(mapping);
4954         ptep = huge_pte_alloc(mm, vma, haddr, huge_page_size(h));
4955         if (!ptep) {
4956                 i_mmap_unlock_read(mapping);
4957                 return VM_FAULT_OOM;
4958         }
4959
4960         /*
4961          * Serialize hugepage allocation and instantiation, so that we don't
4962          * get spurious allocation failures if two CPUs race to instantiate
4963          * the same page in the page cache.
4964          */
4965         idx = vma_hugecache_offset(h, vma, haddr);
4966         hash = hugetlb_fault_mutex_hash(mapping, idx);
4967         mutex_lock(&hugetlb_fault_mutex_table[hash]);
4968
4969         entry = huge_ptep_get(ptep);
4970         if (huge_pte_none(entry)) {
4971                 ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
4972                 goto out_mutex;
4973         }
4974
4975         ret = 0;
4976
4977         /*
4978          * entry could be a migration/hwpoison entry at this point, so this
4979          * check prevents the kernel from going below assuming that we have
4980          * an active hugepage in pagecache. This goto expects the 2nd page
4981          * fault, and is_hugetlb_entry_(migration|hwpoisoned) check will
4982          * properly handle it.
4983          */
4984         if (!pte_present(entry))
4985                 goto out_mutex;
4986
4987         /*
4988          * If we are going to COW the mapping later, we examine the pending
4989          * reservations for this page now. This will ensure that any
4990          * allocations necessary to record that reservation occur outside the
4991          * spinlock. For private mappings, we also lookup the pagecache
4992          * page now as it is used to determine if a reservation has been
4993          * consumed.
4994          */
4995         if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
4996                 if (vma_needs_reservation(h, vma, haddr) < 0) {
4997                         ret = VM_FAULT_OOM;
4998                         goto out_mutex;
4999                 }
5000                 /* Just decrements count, does not deallocate */
5001                 vma_end_reservation(h, vma, haddr);
5002
5003                 if (!(vma->vm_flags & VM_MAYSHARE))
5004                         pagecache_page = hugetlbfs_pagecache_page(h,
5005                                                                 vma, haddr);
5006         }
5007
5008         ptl = huge_pte_lock(h, mm, ptep);
5009
5010         /* Check for a racing update before calling hugetlb_cow */
5011         if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
5012                 goto out_ptl;
5013
5014         /*
5015          * hugetlb_cow() requires page locks of pte_page(entry) and
5016          * pagecache_page, so here we need take the former one
5017          * when page != pagecache_page or !pagecache_page.
5018          */
5019         page = pte_page(entry);
5020         if (page != pagecache_page)
5021                 if (!trylock_page(page)) {
5022                         need_wait_lock = 1;
5023                         goto out_ptl;
5024                 }
5025
5026         get_page(page);
5027
5028         if (flags & FAULT_FLAG_WRITE) {
5029                 if (!huge_pte_write(entry)) {
5030                         ret = hugetlb_cow(mm, vma, address, ptep,
5031                                           pagecache_page, ptl);
5032                         goto out_put_page;
5033                 }
5034                 entry = huge_pte_mkdirty(entry);
5035         }
5036         entry = pte_mkyoung(entry);
5037         if (huge_ptep_set_access_flags(vma, haddr, ptep, entry,
5038                                                 flags & FAULT_FLAG_WRITE))
5039                 update_mmu_cache(vma, haddr, ptep);
5040 out_put_page:
5041         if (page != pagecache_page)
5042                 unlock_page(page);
5043         put_page(page);
5044 out_ptl:
5045         spin_unlock(ptl);
5046
5047         if (pagecache_page) {
5048                 unlock_page(pagecache_page);
5049                 put_page(pagecache_page);
5050         }
5051 out_mutex:
5052         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5053         i_mmap_unlock_read(mapping);
5054         /*
5055          * Generally it's safe to hold refcount during waiting page lock. But
5056          * here we just wait to defer the next page fault to avoid busy loop and
5057          * the page is not used after unlocked before returning from the current
5058          * page fault. So we are safe from accessing freed page, even if we wait
5059          * here without taking refcount.
5060          */
5061         if (need_wait_lock)
5062                 wait_on_page_locked(page);
5063         return ret;
5064 }
5065
5066 #ifdef CONFIG_USERFAULTFD
5067 /*
5068  * Used by userfaultfd UFFDIO_COPY.  Based on mcopy_atomic_pte with
5069  * modifications for huge pages.
5070  */
5071 int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm,
5072                             pte_t *dst_pte,
5073                             struct vm_area_struct *dst_vma,
5074                             unsigned long dst_addr,
5075                             unsigned long src_addr,
5076                             enum mcopy_atomic_mode mode,
5077                             struct page **pagep)
5078 {
5079         bool is_continue = (mode == MCOPY_ATOMIC_CONTINUE);
5080         struct hstate *h = hstate_vma(dst_vma);
5081         struct address_space *mapping = dst_vma->vm_file->f_mapping;
5082         pgoff_t idx = vma_hugecache_offset(h, dst_vma, dst_addr);
5083         unsigned long size;
5084         int vm_shared = dst_vma->vm_flags & VM_SHARED;
5085         pte_t _dst_pte;
5086         spinlock_t *ptl;
5087         int ret = -ENOMEM;
5088         struct page *page;
5089         int writable;
5090
5091         if (is_continue) {
5092                 ret = -EFAULT;
5093                 page = find_lock_page(mapping, idx);
5094                 if (!page)
5095                         goto out;
5096         } else if (!*pagep) {
5097                 /* If a page already exists, then it's UFFDIO_COPY for
5098                  * a non-missing case. Return -EEXIST.
5099                  */
5100                 if (vm_shared &&
5101                     hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
5102                         ret = -EEXIST;
5103                         goto out;
5104                 }
5105
5106                 page = alloc_huge_page(dst_vma, dst_addr, 0);
5107                 if (IS_ERR(page)) {
5108                         ret = -ENOMEM;
5109                         goto out;
5110                 }
5111
5112                 ret = copy_huge_page_from_user(page,
5113                                                 (const void __user *) src_addr,
5114                                                 pages_per_huge_page(h), false);
5115
5116                 /* fallback to copy_from_user outside mmap_lock */
5117                 if (unlikely(ret)) {
5118                         ret = -ENOENT;
5119                         /* Free the allocated page which may have
5120                          * consumed a reservation.
5121                          */
5122                         restore_reserve_on_error(h, dst_vma, dst_addr, page);
5123                         put_page(page);
5124
5125                         /* Allocate a temporary page to hold the copied
5126                          * contents.
5127                          */
5128                         page = alloc_huge_page_vma(h, dst_vma, dst_addr);
5129                         if (!page) {
5130                                 ret = -ENOMEM;
5131                                 goto out;
5132                         }
5133                         *pagep = page;
5134                         /* Set the outparam pagep and return to the caller to
5135                          * copy the contents outside the lock. Don't free the
5136                          * page.
5137                          */
5138                         goto out;
5139                 }
5140         } else {
5141                 if (vm_shared &&
5142                     hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
5143                         put_page(*pagep);
5144                         ret = -EEXIST;
5145                         *pagep = NULL;
5146                         goto out;
5147                 }
5148
5149                 page = alloc_huge_page(dst_vma, dst_addr, 0);
5150                 if (IS_ERR(page)) {
5151                         ret = -ENOMEM;
5152                         *pagep = NULL;
5153                         goto out;
5154                 }
5155                 copy_huge_page(page, *pagep);
5156                 put_page(*pagep);
5157                 *pagep = NULL;
5158         }
5159
5160         /*
5161          * The memory barrier inside __SetPageUptodate makes sure that
5162          * preceding stores to the page contents become visible before
5163          * the set_pte_at() write.
5164          */
5165         __SetPageUptodate(page);
5166
5167         /* Add shared, newly allocated pages to the page cache. */
5168         if (vm_shared && !is_continue) {
5169                 size = i_size_read(mapping->host) >> huge_page_shift(h);
5170                 ret = -EFAULT;
5171                 if (idx >= size)
5172                         goto out_release_nounlock;
5173
5174                 /*
5175                  * Serialization between remove_inode_hugepages() and
5176                  * huge_add_to_page_cache() below happens through the
5177                  * hugetlb_fault_mutex_table that here must be hold by
5178                  * the caller.
5179                  */
5180                 ret = huge_add_to_page_cache(page, mapping, idx);
5181                 if (ret)
5182                         goto out_release_nounlock;
5183         }
5184
5185         ptl = huge_pte_lockptr(h, dst_mm, dst_pte);
5186         spin_lock(ptl);
5187
5188         /*
5189          * Recheck the i_size after holding PT lock to make sure not
5190          * to leave any page mapped (as page_mapped()) beyond the end
5191          * of the i_size (remove_inode_hugepages() is strict about
5192          * enforcing that). If we bail out here, we'll also leave a
5193          * page in the radix tree in the vm_shared case beyond the end
5194          * of the i_size, but remove_inode_hugepages() will take care
5195          * of it as soon as we drop the hugetlb_fault_mutex_table.
5196          */
5197         size = i_size_read(mapping->host) >> huge_page_shift(h);
5198         ret = -EFAULT;
5199         if (idx >= size)
5200                 goto out_release_unlock;
5201
5202         ret = -EEXIST;
5203         if (!huge_pte_none(huge_ptep_get(dst_pte)))
5204                 goto out_release_unlock;
5205
5206         if (vm_shared) {
5207                 page_dup_rmap(page, true);
5208         } else {
5209                 ClearHPageRestoreReserve(page);
5210                 hugepage_add_new_anon_rmap(page, dst_vma, dst_addr);
5211         }
5212
5213         /* For CONTINUE on a non-shared VMA, don't set VM_WRITE for CoW. */
5214         if (is_continue && !vm_shared)
5215                 writable = 0;
5216         else
5217                 writable = dst_vma->vm_flags & VM_WRITE;
5218
5219         _dst_pte = make_huge_pte(dst_vma, page, writable);
5220         if (writable)
5221                 _dst_pte = huge_pte_mkdirty(_dst_pte);
5222         _dst_pte = pte_mkyoung(_dst_pte);
5223
5224         set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
5225
5226         (void)huge_ptep_set_access_flags(dst_vma, dst_addr, dst_pte, _dst_pte,
5227                                         dst_vma->vm_flags & VM_WRITE);
5228         hugetlb_count_add(pages_per_huge_page(h), dst_mm);
5229
5230         /* No need to invalidate - it was non-present before */
5231         update_mmu_cache(dst_vma, dst_addr, dst_pte);
5232
5233         spin_unlock(ptl);
5234         if (!is_continue)
5235                 SetHPageMigratable(page);
5236         if (vm_shared || is_continue)
5237                 unlock_page(page);
5238         ret = 0;
5239 out:
5240         return ret;
5241 out_release_unlock:
5242         spin_unlock(ptl);
5243         if (vm_shared || is_continue)
5244                 unlock_page(page);
5245 out_release_nounlock:
5246         restore_reserve_on_error(h, dst_vma, dst_addr, page);
5247         put_page(page);
5248         goto out;
5249 }
5250 #endif /* CONFIG_USERFAULTFD */
5251
5252 static void record_subpages_vmas(struct page *page, struct vm_area_struct *vma,
5253                                  int refs, struct page **pages,
5254                                  struct vm_area_struct **vmas)
5255 {
5256         int nr;
5257
5258         for (nr = 0; nr < refs; nr++) {
5259                 if (likely(pages))
5260                         pages[nr] = mem_map_offset(page, nr);
5261                 if (vmas)
5262                         vmas[nr] = vma;
5263         }
5264 }
5265
5266 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
5267                          struct page **pages, struct vm_area_struct **vmas,
5268                          unsigned long *position, unsigned long *nr_pages,
5269                          long i, unsigned int flags, int *locked)
5270 {
5271         unsigned long pfn_offset;
5272         unsigned long vaddr = *position;
5273         unsigned long remainder = *nr_pages;
5274         struct hstate *h = hstate_vma(vma);
5275         int err = -EFAULT, refs;
5276
5277         while (vaddr < vma->vm_end && remainder) {
5278                 pte_t *pte;
5279                 spinlock_t *ptl = NULL;
5280                 int absent;
5281                 struct page *page;
5282
5283                 /*
5284                  * If we have a pending SIGKILL, don't keep faulting pages and
5285                  * potentially allocating memory.
5286                  */
5287                 if (fatal_signal_pending(current)) {
5288                         remainder = 0;
5289                         break;
5290                 }
5291
5292                 /*
5293                  * Some archs (sparc64, sh*) have multiple pte_ts to
5294                  * each hugepage.  We have to make sure we get the
5295                  * first, for the page indexing below to work.
5296                  *
5297                  * Note that page table lock is not held when pte is null.
5298                  */
5299                 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h),
5300                                       huge_page_size(h));
5301                 if (pte)
5302                         ptl = huge_pte_lock(h, mm, pte);
5303                 absent = !pte || huge_pte_none(huge_ptep_get(pte));
5304
5305                 /*
5306                  * When coredumping, it suits get_dump_page if we just return
5307                  * an error where there's an empty slot with no huge pagecache
5308                  * to back it.  This way, we avoid allocating a hugepage, and
5309                  * the sparse dumpfile avoids allocating disk blocks, but its
5310                  * huge holes still show up with zeroes where they need to be.
5311                  */
5312                 if (absent && (flags & FOLL_DUMP) &&
5313                     !hugetlbfs_pagecache_present(h, vma, vaddr)) {
5314                         if (pte)
5315                                 spin_unlock(ptl);
5316                         remainder = 0;
5317                         break;
5318                 }
5319
5320                 /*
5321                  * We need call hugetlb_fault for both hugepages under migration
5322                  * (in which case hugetlb_fault waits for the migration,) and
5323                  * hwpoisoned hugepages (in which case we need to prevent the
5324                  * caller from accessing to them.) In order to do this, we use
5325                  * here is_swap_pte instead of is_hugetlb_entry_migration and
5326                  * is_hugetlb_entry_hwpoisoned. This is because it simply covers
5327                  * both cases, and because we can't follow correct pages
5328                  * directly from any kind of swap entries.
5329                  */
5330                 if (absent || is_swap_pte(huge_ptep_get(pte)) ||
5331                     ((flags & FOLL_WRITE) &&
5332                       !huge_pte_write(huge_ptep_get(pte)))) {
5333                         vm_fault_t ret;
5334                         unsigned int fault_flags = 0;
5335
5336                         if (pte)
5337                                 spin_unlock(ptl);
5338                         if (flags & FOLL_WRITE)
5339                                 fault_flags |= FAULT_FLAG_WRITE;
5340                         if (locked)
5341                                 fault_flags |= FAULT_FLAG_ALLOW_RETRY |
5342                                         FAULT_FLAG_KILLABLE;
5343                         if (flags & FOLL_NOWAIT)
5344                                 fault_flags |= FAULT_FLAG_ALLOW_RETRY |
5345                                         FAULT_FLAG_RETRY_NOWAIT;
5346                         if (flags & FOLL_TRIED) {
5347                                 /*
5348                                  * Note: FAULT_FLAG_ALLOW_RETRY and
5349                                  * FAULT_FLAG_TRIED can co-exist
5350                                  */
5351                                 fault_flags |= FAULT_FLAG_TRIED;
5352                         }
5353                         ret = hugetlb_fault(mm, vma, vaddr, fault_flags);
5354                         if (ret & VM_FAULT_ERROR) {
5355                                 err = vm_fault_to_errno(ret, flags);
5356                                 remainder = 0;
5357                                 break;
5358                         }
5359                         if (ret & VM_FAULT_RETRY) {
5360                                 if (locked &&
5361                                     !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
5362                                         *locked = 0;
5363                                 *nr_pages = 0;
5364                                 /*
5365                                  * VM_FAULT_RETRY must not return an
5366                                  * error, it will return zero
5367                                  * instead.
5368                                  *
5369                                  * No need to update "position" as the
5370                                  * caller will not check it after
5371                                  * *nr_pages is set to 0.
5372                                  */
5373                                 return i;
5374                         }
5375                         continue;
5376                 }
5377
5378                 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
5379                 page = pte_page(huge_ptep_get(pte));
5380
5381                 /*
5382                  * If subpage information not requested, update counters
5383                  * and skip the same_page loop below.
5384                  */
5385                 if (!pages && !vmas && !pfn_offset &&
5386                     (vaddr + huge_page_size(h) < vma->vm_end) &&
5387                     (remainder >= pages_per_huge_page(h))) {
5388                         vaddr += huge_page_size(h);
5389                         remainder -= pages_per_huge_page(h);
5390                         i += pages_per_huge_page(h);
5391                         spin_unlock(ptl);
5392                         continue;
5393                 }
5394
5395                 refs = min3(pages_per_huge_page(h) - pfn_offset,
5396                             (vma->vm_end - vaddr) >> PAGE_SHIFT, remainder);
5397
5398                 if (pages || vmas)
5399                         record_subpages_vmas(mem_map_offset(page, pfn_offset),
5400                                              vma, refs,
5401                                              likely(pages) ? pages + i : NULL,
5402                                              vmas ? vmas + i : NULL);
5403
5404                 if (pages) {
5405                         /*
5406                          * try_grab_compound_head() should always succeed here,
5407                          * because: a) we hold the ptl lock, and b) we've just
5408                          * checked that the huge page is present in the page
5409                          * tables. If the huge page is present, then the tail
5410                          * pages must also be present. The ptl prevents the
5411                          * head page and tail pages from being rearranged in
5412                          * any way. So this page must be available at this
5413                          * point, unless the page refcount overflowed:
5414                          */
5415                         if (WARN_ON_ONCE(!try_grab_compound_head(pages[i],
5416                                                                  refs,
5417                                                                  flags))) {
5418                                 spin_unlock(ptl);
5419                                 remainder = 0;
5420                                 err = -ENOMEM;
5421                                 break;
5422                         }
5423                 }
5424
5425                 vaddr += (refs << PAGE_SHIFT);
5426                 remainder -= refs;
5427                 i += refs;
5428
5429                 spin_unlock(ptl);
5430         }
5431         *nr_pages = remainder;
5432         /*
5433          * setting position is actually required only if remainder is
5434          * not zero but it's faster not to add a "if (remainder)"
5435          * branch.
5436          */
5437         *position = vaddr;
5438
5439         return i ? i : err;
5440 }
5441
5442 unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
5443                 unsigned long address, unsigned long end, pgprot_t newprot)
5444 {
5445         struct mm_struct *mm = vma->vm_mm;
5446         unsigned long start = address;
5447         pte_t *ptep;
5448         pte_t pte;
5449         struct hstate *h = hstate_vma(vma);
5450         unsigned long pages = 0;
5451         bool shared_pmd = false;
5452         struct mmu_notifier_range range;
5453
5454         /*
5455          * In the case of shared PMDs, the area to flush could be beyond
5456          * start/end.  Set range.start/range.end to cover the maximum possible
5457          * range if PMD sharing is possible.
5458          */
5459         mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA,
5460                                 0, vma, mm, start, end);
5461         adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
5462
5463         BUG_ON(address >= end);
5464         flush_cache_range(vma, range.start, range.end);
5465
5466         mmu_notifier_invalidate_range_start(&range);
5467         i_mmap_lock_write(vma->vm_file->f_mapping);
5468         for (; address < end; address += huge_page_size(h)) {
5469                 spinlock_t *ptl;
5470                 ptep = huge_pte_offset(mm, address, huge_page_size(h));
5471                 if (!ptep)
5472                         continue;
5473                 ptl = huge_pte_lock(h, mm, ptep);
5474                 if (huge_pmd_unshare(mm, vma, &address, ptep)) {
5475                         pages++;
5476                         spin_unlock(ptl);
5477                         shared_pmd = true;
5478                         continue;
5479                 }
5480                 pte = huge_ptep_get(ptep);
5481                 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
5482                         spin_unlock(ptl);
5483                         continue;
5484                 }
5485                 if (unlikely(is_hugetlb_entry_migration(pte))) {
5486                         swp_entry_t entry = pte_to_swp_entry(pte);
5487
5488                         if (is_write_migration_entry(entry)) {
5489                                 pte_t newpte;
5490
5491                                 make_migration_entry_read(&entry);
5492                                 newpte = swp_entry_to_pte(entry);
5493                                 set_huge_swap_pte_at(mm, address, ptep,
5494                                                      newpte, huge_page_size(h));
5495                                 pages++;
5496                         }
5497                         spin_unlock(ptl);
5498                         continue;
5499                 }
5500                 if (!huge_pte_none(pte)) {
5501                         pte_t old_pte;
5502                         unsigned int shift = huge_page_shift(hstate_vma(vma));
5503
5504                         old_pte = huge_ptep_modify_prot_start(vma, address, ptep);
5505                         pte = pte_mkhuge(huge_pte_modify(old_pte, newprot));
5506                         pte = arch_make_huge_pte(pte, shift, vma->vm_flags);
5507                         huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte);
5508                         pages++;
5509                 }
5510                 spin_unlock(ptl);
5511         }
5512         /*
5513          * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
5514          * may have cleared our pud entry and done put_page on the page table:
5515          * once we release i_mmap_rwsem, another task can do the final put_page
5516          * and that page table be reused and filled with junk.  If we actually
5517          * did unshare a page of pmds, flush the range corresponding to the pud.
5518          */
5519         if (shared_pmd)
5520                 flush_hugetlb_tlb_range(vma, range.start, range.end);
5521         else
5522                 flush_hugetlb_tlb_range(vma, start, end);
5523         /*
5524          * No need to call mmu_notifier_invalidate_range() we are downgrading
5525          * page table protection not changing it to point to a new page.
5526          *
5527          * See Documentation/vm/mmu_notifier.rst
5528          */
5529         i_mmap_unlock_write(vma->vm_file->f_mapping);
5530         mmu_notifier_invalidate_range_end(&range);
5531
5532         return pages << h->order;
5533 }
5534
5535 /* Return true if reservation was successful, false otherwise.  */
5536 bool hugetlb_reserve_pages(struct inode *inode,
5537                                         long from, long to,
5538                                         struct vm_area_struct *vma,
5539                                         vm_flags_t vm_flags)
5540 {
5541         long chg, add = -1;
5542         struct hstate *h = hstate_inode(inode);
5543         struct hugepage_subpool *spool = subpool_inode(inode);
5544         struct resv_map *resv_map;
5545         struct hugetlb_cgroup *h_cg = NULL;
5546         long gbl_reserve, regions_needed = 0;
5547
5548         /* This should never happen */
5549         if (from > to) {
5550                 VM_WARN(1, "%s called with a negative range\n", __func__);
5551                 return false;
5552         }
5553
5554         /*
5555          * Only apply hugepage reservation if asked. At fault time, an
5556          * attempt will be made for VM_NORESERVE to allocate a page
5557          * without using reserves
5558          */
5559         if (vm_flags & VM_NORESERVE)
5560                 return true;
5561
5562         /*
5563          * Shared mappings base their reservation on the number of pages that
5564          * are already allocated on behalf of the file. Private mappings need
5565          * to reserve the full area even if read-only as mprotect() may be
5566          * called to make the mapping read-write. Assume !vma is a shm mapping
5567          */
5568         if (!vma || vma->vm_flags & VM_MAYSHARE) {
5569                 /*
5570                  * resv_map can not be NULL as hugetlb_reserve_pages is only
5571                  * called for inodes for which resv_maps were created (see
5572                  * hugetlbfs_get_inode).
5573                  */
5574                 resv_map = inode_resv_map(inode);
5575
5576                 chg = region_chg(resv_map, from, to, &regions_needed);
5577
5578         } else {
5579                 /* Private mapping. */
5580                 resv_map = resv_map_alloc();
5581                 if (!resv_map)
5582                         return false;
5583
5584                 chg = to - from;
5585
5586                 set_vma_resv_map(vma, resv_map);
5587                 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
5588         }
5589
5590         if (chg < 0)
5591                 goto out_err;
5592
5593         if (hugetlb_cgroup_charge_cgroup_rsvd(hstate_index(h),
5594                                 chg * pages_per_huge_page(h), &h_cg) < 0)
5595                 goto out_err;
5596
5597         if (vma && !(vma->vm_flags & VM_MAYSHARE) && h_cg) {
5598                 /* For private mappings, the hugetlb_cgroup uncharge info hangs
5599                  * of the resv_map.
5600                  */
5601                 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, h_cg, h);
5602         }
5603
5604         /*
5605          * There must be enough pages in the subpool for the mapping. If
5606          * the subpool has a minimum size, there may be some global
5607          * reservations already in place (gbl_reserve).
5608          */
5609         gbl_reserve = hugepage_subpool_get_pages(spool, chg);
5610         if (gbl_reserve < 0)
5611                 goto out_uncharge_cgroup;
5612
5613         /*
5614          * Check enough hugepages are available for the reservation.
5615          * Hand the pages back to the subpool if there are not
5616          */
5617         if (hugetlb_acct_memory(h, gbl_reserve) < 0)
5618                 goto out_put_pages;
5619
5620         /*
5621          * Account for the reservations made. Shared mappings record regions
5622          * that have reservations as they are shared by multiple VMAs.
5623          * When the last VMA disappears, the region map says how much
5624          * the reservation was and the page cache tells how much of
5625          * the reservation was consumed. Private mappings are per-VMA and
5626          * only the consumed reservations are tracked. When the VMA
5627          * disappears, the original reservation is the VMA size and the
5628          * consumed reservations are stored in the map. Hence, nothing
5629          * else has to be done for private mappings here
5630          */
5631         if (!vma || vma->vm_flags & VM_MAYSHARE) {
5632                 add = region_add(resv_map, from, to, regions_needed, h, h_cg);
5633
5634                 if (unlikely(add < 0)) {
5635                         hugetlb_acct_memory(h, -gbl_reserve);
5636                         goto out_put_pages;
5637                 } else if (unlikely(chg > add)) {
5638                         /*
5639                          * pages in this range were added to the reserve
5640                          * map between region_chg and region_add.  This
5641                          * indicates a race with alloc_huge_page.  Adjust
5642                          * the subpool and reserve counts modified above
5643                          * based on the difference.
5644                          */
5645                         long rsv_adjust;
5646
5647                         /*
5648                          * hugetlb_cgroup_uncharge_cgroup_rsvd() will put the
5649                          * reference to h_cg->css. See comment below for detail.
5650                          */
5651                         hugetlb_cgroup_uncharge_cgroup_rsvd(
5652                                 hstate_index(h),
5653                                 (chg - add) * pages_per_huge_page(h), h_cg);
5654
5655                         rsv_adjust = hugepage_subpool_put_pages(spool,
5656                                                                 chg - add);
5657                         hugetlb_acct_memory(h, -rsv_adjust);
5658                 } else if (h_cg) {
5659                         /*
5660                          * The file_regions will hold their own reference to
5661                          * h_cg->css. So we should release the reference held
5662                          * via hugetlb_cgroup_charge_cgroup_rsvd() when we are
5663                          * done.
5664                          */
5665                         hugetlb_cgroup_put_rsvd_cgroup(h_cg);
5666                 }
5667         }
5668         return true;
5669
5670 out_put_pages:
5671         /* put back original number of pages, chg */
5672         (void)hugepage_subpool_put_pages(spool, chg);
5673 out_uncharge_cgroup:
5674         hugetlb_cgroup_uncharge_cgroup_rsvd(hstate_index(h),
5675                                             chg * pages_per_huge_page(h), h_cg);
5676 out_err:
5677         if (!vma || vma->vm_flags & VM_MAYSHARE)
5678                 /* Only call region_abort if the region_chg succeeded but the
5679                  * region_add failed or didn't run.
5680                  */
5681                 if (chg >= 0 && add < 0)
5682                         region_abort(resv_map, from, to, regions_needed);
5683         if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
5684                 kref_put(&resv_map->refs, resv_map_release);
5685         return false;
5686 }
5687
5688 long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
5689                                                                 long freed)
5690 {
5691         struct hstate *h = hstate_inode(inode);
5692         struct resv_map *resv_map = inode_resv_map(inode);
5693         long chg = 0;
5694         struct hugepage_subpool *spool = subpool_inode(inode);
5695         long gbl_reserve;
5696
5697         /*
5698          * Since this routine can be called in the evict inode path for all
5699          * hugetlbfs inodes, resv_map could be NULL.
5700          */
5701         if (resv_map) {
5702                 chg = region_del(resv_map, start, end);
5703                 /*
5704                  * region_del() can fail in the rare case where a region
5705                  * must be split and another region descriptor can not be
5706                  * allocated.  If end == LONG_MAX, it will not fail.
5707                  */
5708                 if (chg < 0)
5709                         return chg;
5710         }
5711
5712         spin_lock(&inode->i_lock);
5713         inode->i_blocks -= (blocks_per_huge_page(h) * freed);
5714         spin_unlock(&inode->i_lock);
5715
5716         /*
5717          * If the subpool has a minimum size, the number of global
5718          * reservations to be released may be adjusted.
5719          *
5720          * Note that !resv_map implies freed == 0. So (chg - freed)
5721          * won't go negative.
5722          */
5723         gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
5724         hugetlb_acct_memory(h, -gbl_reserve);
5725
5726         return 0;
5727 }
5728
5729 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
5730 static unsigned long page_table_shareable(struct vm_area_struct *svma,
5731                                 struct vm_area_struct *vma,
5732                                 unsigned long addr, pgoff_t idx)
5733 {
5734         unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
5735                                 svma->vm_start;
5736         unsigned long sbase = saddr & PUD_MASK;
5737         unsigned long s_end = sbase + PUD_SIZE;
5738
5739         /* Allow segments to share if only one is marked locked */
5740         unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
5741         unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
5742
5743         /*
5744          * match the virtual addresses, permission and the alignment of the
5745          * page table page.
5746          */
5747         if (pmd_index(addr) != pmd_index(saddr) ||
5748             vm_flags != svm_flags ||
5749             !range_in_vma(svma, sbase, s_end))
5750                 return 0;
5751
5752         return saddr;
5753 }
5754
5755 static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr)
5756 {
5757         unsigned long base = addr & PUD_MASK;
5758         unsigned long end = base + PUD_SIZE;
5759
5760         /*
5761          * check on proper vm_flags and page table alignment
5762          */
5763         if (vma->vm_flags & VM_MAYSHARE && range_in_vma(vma, base, end))
5764                 return true;
5765         return false;
5766 }
5767
5768 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
5769 {
5770 #ifdef CONFIG_USERFAULTFD
5771         if (uffd_disable_huge_pmd_share(vma))
5772                 return false;
5773 #endif
5774         return vma_shareable(vma, addr);
5775 }
5776
5777 /*
5778  * Determine if start,end range within vma could be mapped by shared pmd.
5779  * If yes, adjust start and end to cover range associated with possible
5780  * shared pmd mappings.
5781  */
5782 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
5783                                 unsigned long *start, unsigned long *end)
5784 {
5785         unsigned long v_start = ALIGN(vma->vm_start, PUD_SIZE),
5786                 v_end = ALIGN_DOWN(vma->vm_end, PUD_SIZE);
5787
5788         /*
5789          * vma needs to span at least one aligned PUD size, and the range
5790          * must be at least partially within in.
5791          */
5792         if (!(vma->vm_flags & VM_MAYSHARE) || !(v_end > v_start) ||
5793                 (*end <= v_start) || (*start >= v_end))
5794                 return;
5795
5796         /* Extend the range to be PUD aligned for a worst case scenario */
5797         if (*start > v_start)
5798                 *start = ALIGN_DOWN(*start, PUD_SIZE);
5799
5800         if (*end < v_end)
5801                 *end = ALIGN(*end, PUD_SIZE);
5802 }
5803
5804 /*
5805  * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
5806  * and returns the corresponding pte. While this is not necessary for the
5807  * !shared pmd case because we can allocate the pmd later as well, it makes the
5808  * code much cleaner.
5809  *
5810  * This routine must be called with i_mmap_rwsem held in at least read mode if
5811  * sharing is possible.  For hugetlbfs, this prevents removal of any page
5812  * table entries associated with the address space.  This is important as we
5813  * are setting up sharing based on existing page table entries (mappings).
5814  *
5815  * NOTE: This routine is only called from huge_pte_alloc.  Some callers of
5816  * huge_pte_alloc know that sharing is not possible and do not take
5817  * i_mmap_rwsem as a performance optimization.  This is handled by the
5818  * if !vma_shareable check at the beginning of the routine. i_mmap_rwsem is
5819  * only required for subsequent processing.
5820  */
5821 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
5822                       unsigned long addr, pud_t *pud)
5823 {
5824         struct address_space *mapping = vma->vm_file->f_mapping;
5825         pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
5826                         vma->vm_pgoff;
5827         struct vm_area_struct *svma;
5828         unsigned long saddr;
5829         pte_t *spte = NULL;
5830         pte_t *pte;
5831         spinlock_t *ptl;
5832
5833         i_mmap_assert_locked(mapping);
5834         vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
5835                 if (svma == vma)
5836                         continue;
5837
5838                 saddr = page_table_shareable(svma, vma, addr, idx);
5839                 if (saddr) {
5840                         spte = huge_pte_offset(svma->vm_mm, saddr,
5841                                                vma_mmu_pagesize(svma));
5842                         if (spte) {
5843                                 get_page(virt_to_page(spte));
5844                                 break;
5845                         }
5846                 }
5847         }
5848
5849         if (!spte)
5850                 goto out;
5851
5852         ptl = huge_pte_lock(hstate_vma(vma), mm, spte);
5853         if (pud_none(*pud)) {
5854                 pud_populate(mm, pud,
5855                                 (pmd_t *)((unsigned long)spte & PAGE_MASK));
5856                 mm_inc_nr_pmds(mm);
5857         } else {
5858                 put_page(virt_to_page(spte));
5859         }
5860         spin_unlock(ptl);
5861 out:
5862         pte = (pte_t *)pmd_alloc(mm, pud, addr);
5863         return pte;
5864 }
5865
5866 /*
5867  * unmap huge page backed by shared pte.
5868  *
5869  * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
5870  * indicated by page_count > 1, unmap is achieved by clearing pud and
5871  * decrementing the ref count. If count == 1, the pte page is not shared.
5872  *
5873  * Called with page table lock held and i_mmap_rwsem held in write mode.
5874  *
5875  * returns: 1 successfully unmapped a shared pte page
5876  *          0 the underlying pte page is not shared, or it is the last user
5877  */
5878 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
5879                                         unsigned long *addr, pte_t *ptep)
5880 {
5881         pgd_t *pgd = pgd_offset(mm, *addr);
5882         p4d_t *p4d = p4d_offset(pgd, *addr);
5883         pud_t *pud = pud_offset(p4d, *addr);
5884
5885         i_mmap_assert_write_locked(vma->vm_file->f_mapping);
5886         BUG_ON(page_count(virt_to_page(ptep)) == 0);
5887         if (page_count(virt_to_page(ptep)) == 1)
5888                 return 0;
5889
5890         pud_clear(pud);
5891         put_page(virt_to_page(ptep));
5892         mm_dec_nr_pmds(mm);
5893         *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
5894         return 1;
5895 }
5896
5897 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
5898 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
5899                       unsigned long addr, pud_t *pud)
5900 {
5901         return NULL;
5902 }
5903
5904 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
5905                                 unsigned long *addr, pte_t *ptep)
5906 {
5907         return 0;
5908 }
5909
5910 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
5911                                 unsigned long *start, unsigned long *end)
5912 {
5913 }
5914
5915 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
5916 {
5917         return false;
5918 }
5919 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
5920
5921 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
5922 pte_t *huge_pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
5923                         unsigned long addr, unsigned long sz)
5924 {
5925         pgd_t *pgd;
5926         p4d_t *p4d;
5927         pud_t *pud;
5928         pte_t *pte = NULL;
5929
5930         pgd = pgd_offset(mm, addr);
5931         p4d = p4d_alloc(mm, pgd, addr);
5932         if (!p4d)
5933                 return NULL;
5934         pud = pud_alloc(mm, p4d, addr);
5935         if (pud) {
5936                 if (sz == PUD_SIZE) {
5937                         pte = (pte_t *)pud;
5938                 } else {
5939                         BUG_ON(sz != PMD_SIZE);
5940                         if (want_pmd_share(vma, addr) && pud_none(*pud))
5941                                 pte = huge_pmd_share(mm, vma, addr, pud);
5942                         else
5943                                 pte = (pte_t *)pmd_alloc(mm, pud, addr);
5944                 }
5945         }
5946         BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte));
5947
5948         return pte;
5949 }
5950
5951 /*
5952  * huge_pte_offset() - Walk the page table to resolve the hugepage
5953  * entry at address @addr
5954  *
5955  * Return: Pointer to page table entry (PUD or PMD) for
5956  * address @addr, or NULL if a !p*d_present() entry is encountered and the
5957  * size @sz doesn't match the hugepage size at this level of the page
5958  * table.
5959  */
5960 pte_t *huge_pte_offset(struct mm_struct *mm,
5961                        unsigned long addr, unsigned long sz)
5962 {
5963         pgd_t *pgd;
5964         p4d_t *p4d;
5965         pud_t *pud;
5966         pmd_t *pmd;
5967
5968         pgd = pgd_offset(mm, addr);
5969         if (!pgd_present(*pgd))
5970                 return NULL;
5971         p4d = p4d_offset(pgd, addr);
5972         if (!p4d_present(*p4d))
5973                 return NULL;
5974
5975         pud = pud_offset(p4d, addr);
5976         if (sz == PUD_SIZE)
5977                 /* must be pud huge, non-present or none */
5978                 return (pte_t *)pud;
5979         if (!pud_present(*pud))
5980                 return NULL;
5981         /* must have a valid entry and size to go further */
5982
5983         pmd = pmd_offset(pud, addr);
5984         /* must be pmd huge, non-present or none */
5985         return (pte_t *)pmd;
5986 }
5987
5988 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
5989
5990 /*
5991  * These functions are overwritable if your architecture needs its own
5992  * behavior.
5993  */
5994 struct page * __weak
5995 follow_huge_addr(struct mm_struct *mm, unsigned long address,
5996                               int write)
5997 {
5998         return ERR_PTR(-EINVAL);
5999 }
6000
6001 struct page * __weak
6002 follow_huge_pd(struct vm_area_struct *vma,
6003                unsigned long address, hugepd_t hpd, int flags, int pdshift)
6004 {
6005         WARN(1, "hugepd follow called with no support for hugepage directory format\n");
6006         return NULL;
6007 }
6008
6009 struct page * __weak
6010 follow_huge_pmd(struct mm_struct *mm, unsigned long address,
6011                 pmd_t *pmd, int flags)
6012 {
6013         struct page *page = NULL;
6014         spinlock_t *ptl;
6015         pte_t pte;
6016
6017         /* FOLL_GET and FOLL_PIN are mutually exclusive. */
6018         if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
6019                          (FOLL_PIN | FOLL_GET)))
6020                 return NULL;
6021
6022 retry:
6023         ptl = pmd_lockptr(mm, pmd);
6024         spin_lock(ptl);
6025         /*
6026          * make sure that the address range covered by this pmd is not
6027          * unmapped from other threads.
6028          */
6029         if (!pmd_huge(*pmd))
6030                 goto out;
6031         pte = huge_ptep_get((pte_t *)pmd);
6032         if (pte_present(pte)) {
6033                 page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
6034                 /*
6035                  * try_grab_page() should always succeed here, because: a) we
6036                  * hold the pmd (ptl) lock, and b) we've just checked that the
6037                  * huge pmd (head) page is present in the page tables. The ptl
6038                  * prevents the head page and tail pages from being rearranged
6039                  * in any way. So this page must be available at this point,
6040                  * unless the page refcount overflowed:
6041                  */
6042                 if (WARN_ON_ONCE(!try_grab_page(page, flags))) {
6043                         page = NULL;
6044                         goto out;
6045                 }
6046         } else {
6047                 if (is_hugetlb_entry_migration(pte)) {
6048                         spin_unlock(ptl);
6049                         __migration_entry_wait(mm, (pte_t *)pmd, ptl);
6050                         goto retry;
6051                 }
6052                 /*
6053                  * hwpoisoned entry is treated as no_page_table in
6054                  * follow_page_mask().
6055                  */
6056         }
6057 out:
6058         spin_unlock(ptl);
6059         return page;
6060 }
6061
6062 struct page * __weak
6063 follow_huge_pud(struct mm_struct *mm, unsigned long address,
6064                 pud_t *pud, int flags)
6065 {
6066         if (flags & (FOLL_GET | FOLL_PIN))
6067                 return NULL;
6068
6069         return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
6070 }
6071
6072 struct page * __weak
6073 follow_huge_pgd(struct mm_struct *mm, unsigned long address, pgd_t *pgd, int flags)
6074 {
6075         if (flags & (FOLL_GET | FOLL_PIN))
6076                 return NULL;
6077
6078         return pte_page(*(pte_t *)pgd) + ((address & ~PGDIR_MASK) >> PAGE_SHIFT);
6079 }
6080
6081 bool isolate_huge_page(struct page *page, struct list_head *list)
6082 {
6083         bool ret = true;
6084
6085         spin_lock_irq(&hugetlb_lock);
6086         if (!PageHeadHuge(page) ||
6087             !HPageMigratable(page) ||
6088             !get_page_unless_zero(page)) {
6089                 ret = false;
6090                 goto unlock;
6091         }
6092         ClearHPageMigratable(page);
6093         list_move_tail(&page->lru, list);
6094 unlock:
6095         spin_unlock_irq(&hugetlb_lock);
6096         return ret;
6097 }
6098
6099 int get_hwpoison_huge_page(struct page *page, bool *hugetlb)
6100 {
6101         int ret = 0;
6102
6103         *hugetlb = false;
6104         spin_lock_irq(&hugetlb_lock);
6105         if (PageHeadHuge(page)) {
6106                 *hugetlb = true;
6107                 if (HPageFreed(page) || HPageMigratable(page))
6108                         ret = get_page_unless_zero(page);
6109                 else
6110                         ret = -EBUSY;
6111         }
6112         spin_unlock_irq(&hugetlb_lock);
6113         return ret;
6114 }
6115
6116 void putback_active_hugepage(struct page *page)
6117 {
6118         spin_lock_irq(&hugetlb_lock);
6119         SetHPageMigratable(page);
6120         list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
6121         spin_unlock_irq(&hugetlb_lock);
6122         put_page(page);
6123 }
6124
6125 void move_hugetlb_state(struct page *oldpage, struct page *newpage, int reason)
6126 {
6127         struct hstate *h = page_hstate(oldpage);
6128
6129         hugetlb_cgroup_migrate(oldpage, newpage);
6130         set_page_owner_migrate_reason(newpage, reason);
6131
6132         /*
6133          * transfer temporary state of the new huge page. This is
6134          * reverse to other transitions because the newpage is going to
6135          * be final while the old one will be freed so it takes over
6136          * the temporary status.
6137          *
6138          * Also note that we have to transfer the per-node surplus state
6139          * here as well otherwise the global surplus count will not match
6140          * the per-node's.
6141          */
6142         if (HPageTemporary(newpage)) {
6143                 int old_nid = page_to_nid(oldpage);
6144                 int new_nid = page_to_nid(newpage);
6145
6146                 SetHPageTemporary(oldpage);
6147                 ClearHPageTemporary(newpage);
6148
6149                 /*
6150                  * There is no need to transfer the per-node surplus state
6151                  * when we do not cross the node.
6152                  */
6153                 if (new_nid == old_nid)
6154                         return;
6155                 spin_lock_irq(&hugetlb_lock);
6156                 if (h->surplus_huge_pages_node[old_nid]) {
6157                         h->surplus_huge_pages_node[old_nid]--;
6158                         h->surplus_huge_pages_node[new_nid]++;
6159                 }
6160                 spin_unlock_irq(&hugetlb_lock);
6161         }
6162 }
6163
6164 /*
6165  * This function will unconditionally remove all the shared pmd pgtable entries
6166  * within the specific vma for a hugetlbfs memory range.
6167  */
6168 void hugetlb_unshare_all_pmds(struct vm_area_struct *vma)
6169 {
6170         struct hstate *h = hstate_vma(vma);
6171         unsigned long sz = huge_page_size(h);
6172         struct mm_struct *mm = vma->vm_mm;
6173         struct mmu_notifier_range range;
6174         unsigned long address, start, end;
6175         spinlock_t *ptl;
6176         pte_t *ptep;
6177
6178         if (!(vma->vm_flags & VM_MAYSHARE))
6179                 return;
6180
6181         start = ALIGN(vma->vm_start, PUD_SIZE);
6182         end = ALIGN_DOWN(vma->vm_end, PUD_SIZE);
6183
6184         if (start >= end)
6185                 return;
6186
6187         /*
6188          * No need to call adjust_range_if_pmd_sharing_possible(), because
6189          * we have already done the PUD_SIZE alignment.
6190          */
6191         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
6192                                 start, end);
6193         mmu_notifier_invalidate_range_start(&range);
6194         i_mmap_lock_write(vma->vm_file->f_mapping);
6195         for (address = start; address < end; address += PUD_SIZE) {
6196                 unsigned long tmp = address;
6197
6198                 ptep = huge_pte_offset(mm, address, sz);
6199                 if (!ptep)
6200                         continue;
6201                 ptl = huge_pte_lock(h, mm, ptep);
6202                 /* We don't want 'address' to be changed */
6203                 huge_pmd_unshare(mm, vma, &tmp, ptep);
6204                 spin_unlock(ptl);
6205         }
6206         flush_hugetlb_tlb_range(vma, start, end);
6207         i_mmap_unlock_write(vma->vm_file->f_mapping);
6208         /*
6209          * No need to call mmu_notifier_invalidate_range(), see
6210          * Documentation/vm/mmu_notifier.rst.
6211          */
6212         mmu_notifier_invalidate_range_end(&range);
6213 }
6214
6215 #ifdef CONFIG_CMA
6216 static bool cma_reserve_called __initdata;
6217
6218 static int __init cmdline_parse_hugetlb_cma(char *p)
6219 {
6220         hugetlb_cma_size = memparse(p, &p);
6221         return 0;
6222 }
6223
6224 early_param("hugetlb_cma", cmdline_parse_hugetlb_cma);
6225
6226 void __init hugetlb_cma_reserve(int order)
6227 {
6228         unsigned long size, reserved, per_node;
6229         int nid;
6230
6231         cma_reserve_called = true;
6232
6233         if (!hugetlb_cma_size)
6234                 return;
6235
6236         if (hugetlb_cma_size < (PAGE_SIZE << order)) {
6237                 pr_warn("hugetlb_cma: cma area should be at least %lu MiB\n",
6238                         (PAGE_SIZE << order) / SZ_1M);
6239                 return;
6240         }
6241
6242         /*
6243          * If 3 GB area is requested on a machine with 4 numa nodes,
6244          * let's allocate 1 GB on first three nodes and ignore the last one.
6245          */
6246         per_node = DIV_ROUND_UP(hugetlb_cma_size, nr_online_nodes);
6247         pr_info("hugetlb_cma: reserve %lu MiB, up to %lu MiB per node\n",
6248                 hugetlb_cma_size / SZ_1M, per_node / SZ_1M);
6249
6250         reserved = 0;
6251         for_each_node_state(nid, N_ONLINE) {
6252                 int res;
6253                 char name[CMA_MAX_NAME];
6254
6255                 size = min(per_node, hugetlb_cma_size - reserved);
6256                 size = round_up(size, PAGE_SIZE << order);
6257
6258                 snprintf(name, sizeof(name), "hugetlb%d", nid);
6259                 res = cma_declare_contiguous_nid(0, size, 0, PAGE_SIZE << order,
6260                                                  0, false, name,
6261                                                  &hugetlb_cma[nid], nid);
6262                 if (res) {
6263                         pr_warn("hugetlb_cma: reservation failed: err %d, node %d",
6264                                 res, nid);
6265                         continue;
6266                 }
6267
6268                 reserved += size;
6269                 pr_info("hugetlb_cma: reserved %lu MiB on node %d\n",
6270                         size / SZ_1M, nid);
6271
6272                 if (reserved >= hugetlb_cma_size)
6273                         break;
6274         }
6275 }
6276
6277 void __init hugetlb_cma_check(void)
6278 {
6279         if (!hugetlb_cma_size || cma_reserve_called)
6280                 return;
6281
6282         pr_warn("hugetlb_cma: the option isn't supported by current arch\n");
6283 }
6284
6285 #endif /* CONFIG_CMA */