hugetlb: remove prep_compound_huge_page cleanup
[linux-2.6-microblaze.git] / mm / hugetlb.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Generic hugetlb support.
4  * (C) Nadia Yvette Chambers, April 2004
5  */
6 #include <linux/list.h>
7 #include <linux/init.h>
8 #include <linux/mm.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/compiler.h>
17 #include <linux/cpuset.h>
18 #include <linux/mutex.h>
19 #include <linux/memblock.h>
20 #include <linux/sysfs.h>
21 #include <linux/slab.h>
22 #include <linux/sched/mm.h>
23 #include <linux/mmdebug.h>
24 #include <linux/sched/signal.h>
25 #include <linux/rmap.h>
26 #include <linux/string_helpers.h>
27 #include <linux/swap.h>
28 #include <linux/swapops.h>
29 #include <linux/jhash.h>
30 #include <linux/numa.h>
31 #include <linux/llist.h>
32 #include <linux/cma.h>
33 #include <linux/migrate.h>
34
35 #include <asm/page.h>
36 #include <asm/pgalloc.h>
37 #include <asm/tlb.h>
38
39 #include <linux/io.h>
40 #include <linux/hugetlb.h>
41 #include <linux/hugetlb_cgroup.h>
42 #include <linux/node.h>
43 #include <linux/page_owner.h>
44 #include "internal.h"
45 #include "hugetlb_vmemmap.h"
46
47 int hugetlb_max_hstate __read_mostly;
48 unsigned int default_hstate_idx;
49 struct hstate hstates[HUGE_MAX_HSTATE];
50
51 #ifdef CONFIG_CMA
52 static struct cma *hugetlb_cma[MAX_NUMNODES];
53 #endif
54 static unsigned long hugetlb_cma_size __initdata;
55
56 /*
57  * Minimum page order among possible hugepage sizes, set to a proper value
58  * at boot time.
59  */
60 static unsigned int minimum_order __read_mostly = UINT_MAX;
61
62 __initdata LIST_HEAD(huge_boot_pages);
63
64 /* for command line parsing */
65 static struct hstate * __initdata parsed_hstate;
66 static unsigned long __initdata default_hstate_max_huge_pages;
67 static bool __initdata parsed_valid_hugepagesz = true;
68 static bool __initdata parsed_default_hugepagesz;
69
70 /*
71  * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
72  * free_huge_pages, and surplus_huge_pages.
73  */
74 DEFINE_SPINLOCK(hugetlb_lock);
75
76 /*
77  * Serializes faults on the same logical page.  This is used to
78  * prevent spurious OOMs when the hugepage pool is fully utilized.
79  */
80 static int num_fault_mutexes;
81 struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
82
83 /* Forward declaration */
84 static int hugetlb_acct_memory(struct hstate *h, long delta);
85
86 static inline bool subpool_is_free(struct hugepage_subpool *spool)
87 {
88         if (spool->count)
89                 return false;
90         if (spool->max_hpages != -1)
91                 return spool->used_hpages == 0;
92         if (spool->min_hpages != -1)
93                 return spool->rsv_hpages == spool->min_hpages;
94
95         return true;
96 }
97
98 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool,
99                                                 unsigned long irq_flags)
100 {
101         spin_unlock_irqrestore(&spool->lock, irq_flags);
102
103         /* If no pages are used, and no other handles to the subpool
104          * remain, give up any reservations based on minimum size and
105          * free the subpool */
106         if (subpool_is_free(spool)) {
107                 if (spool->min_hpages != -1)
108                         hugetlb_acct_memory(spool->hstate,
109                                                 -spool->min_hpages);
110                 kfree(spool);
111         }
112 }
113
114 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
115                                                 long min_hpages)
116 {
117         struct hugepage_subpool *spool;
118
119         spool = kzalloc(sizeof(*spool), GFP_KERNEL);
120         if (!spool)
121                 return NULL;
122
123         spin_lock_init(&spool->lock);
124         spool->count = 1;
125         spool->max_hpages = max_hpages;
126         spool->hstate = h;
127         spool->min_hpages = min_hpages;
128
129         if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
130                 kfree(spool);
131                 return NULL;
132         }
133         spool->rsv_hpages = min_hpages;
134
135         return spool;
136 }
137
138 void hugepage_put_subpool(struct hugepage_subpool *spool)
139 {
140         unsigned long flags;
141
142         spin_lock_irqsave(&spool->lock, flags);
143         BUG_ON(!spool->count);
144         spool->count--;
145         unlock_or_release_subpool(spool, flags);
146 }
147
148 /*
149  * Subpool accounting for allocating and reserving pages.
150  * Return -ENOMEM if there are not enough resources to satisfy the
151  * request.  Otherwise, return the number of pages by which the
152  * global pools must be adjusted (upward).  The returned value may
153  * only be different than the passed value (delta) in the case where
154  * a subpool minimum size must be maintained.
155  */
156 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
157                                       long delta)
158 {
159         long ret = delta;
160
161         if (!spool)
162                 return ret;
163
164         spin_lock_irq(&spool->lock);
165
166         if (spool->max_hpages != -1) {          /* maximum size accounting */
167                 if ((spool->used_hpages + delta) <= spool->max_hpages)
168                         spool->used_hpages += delta;
169                 else {
170                         ret = -ENOMEM;
171                         goto unlock_ret;
172                 }
173         }
174
175         /* minimum size accounting */
176         if (spool->min_hpages != -1 && spool->rsv_hpages) {
177                 if (delta > spool->rsv_hpages) {
178                         /*
179                          * Asking for more reserves than those already taken on
180                          * behalf of subpool.  Return difference.
181                          */
182                         ret = delta - spool->rsv_hpages;
183                         spool->rsv_hpages = 0;
184                 } else {
185                         ret = 0;        /* reserves already accounted for */
186                         spool->rsv_hpages -= delta;
187                 }
188         }
189
190 unlock_ret:
191         spin_unlock_irq(&spool->lock);
192         return ret;
193 }
194
195 /*
196  * Subpool accounting for freeing and unreserving pages.
197  * Return the number of global page reservations that must be dropped.
198  * The return value may only be different than the passed value (delta)
199  * in the case where a subpool minimum size must be maintained.
200  */
201 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
202                                        long delta)
203 {
204         long ret = delta;
205         unsigned long flags;
206
207         if (!spool)
208                 return delta;
209
210         spin_lock_irqsave(&spool->lock, flags);
211
212         if (spool->max_hpages != -1)            /* maximum size accounting */
213                 spool->used_hpages -= delta;
214
215          /* minimum size accounting */
216         if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
217                 if (spool->rsv_hpages + delta <= spool->min_hpages)
218                         ret = 0;
219                 else
220                         ret = spool->rsv_hpages + delta - spool->min_hpages;
221
222                 spool->rsv_hpages += delta;
223                 if (spool->rsv_hpages > spool->min_hpages)
224                         spool->rsv_hpages = spool->min_hpages;
225         }
226
227         /*
228          * If hugetlbfs_put_super couldn't free spool due to an outstanding
229          * quota reference, free it now.
230          */
231         unlock_or_release_subpool(spool, flags);
232
233         return ret;
234 }
235
236 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
237 {
238         return HUGETLBFS_SB(inode->i_sb)->spool;
239 }
240
241 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
242 {
243         return subpool_inode(file_inode(vma->vm_file));
244 }
245
246 /* Helper that removes a struct file_region from the resv_map cache and returns
247  * it for use.
248  */
249 static struct file_region *
250 get_file_region_entry_from_cache(struct resv_map *resv, long from, long to)
251 {
252         struct file_region *nrg = NULL;
253
254         VM_BUG_ON(resv->region_cache_count <= 0);
255
256         resv->region_cache_count--;
257         nrg = list_first_entry(&resv->region_cache, struct file_region, link);
258         list_del(&nrg->link);
259
260         nrg->from = from;
261         nrg->to = to;
262
263         return nrg;
264 }
265
266 static void copy_hugetlb_cgroup_uncharge_info(struct file_region *nrg,
267                                               struct file_region *rg)
268 {
269 #ifdef CONFIG_CGROUP_HUGETLB
270         nrg->reservation_counter = rg->reservation_counter;
271         nrg->css = rg->css;
272         if (rg->css)
273                 css_get(rg->css);
274 #endif
275 }
276
277 /* Helper that records hugetlb_cgroup uncharge info. */
278 static void record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup *h_cg,
279                                                 struct hstate *h,
280                                                 struct resv_map *resv,
281                                                 struct file_region *nrg)
282 {
283 #ifdef CONFIG_CGROUP_HUGETLB
284         if (h_cg) {
285                 nrg->reservation_counter =
286                         &h_cg->rsvd_hugepage[hstate_index(h)];
287                 nrg->css = &h_cg->css;
288                 /*
289                  * The caller will hold exactly one h_cg->css reference for the
290                  * whole contiguous reservation region. But this area might be
291                  * scattered when there are already some file_regions reside in
292                  * it. As a result, many file_regions may share only one css
293                  * reference. In order to ensure that one file_region must hold
294                  * exactly one h_cg->css reference, we should do css_get for
295                  * each file_region and leave the reference held by caller
296                  * untouched.
297                  */
298                 css_get(&h_cg->css);
299                 if (!resv->pages_per_hpage)
300                         resv->pages_per_hpage = pages_per_huge_page(h);
301                 /* pages_per_hpage should be the same for all entries in
302                  * a resv_map.
303                  */
304                 VM_BUG_ON(resv->pages_per_hpage != pages_per_huge_page(h));
305         } else {
306                 nrg->reservation_counter = NULL;
307                 nrg->css = NULL;
308         }
309 #endif
310 }
311
312 static void put_uncharge_info(struct file_region *rg)
313 {
314 #ifdef CONFIG_CGROUP_HUGETLB
315         if (rg->css)
316                 css_put(rg->css);
317 #endif
318 }
319
320 static bool has_same_uncharge_info(struct file_region *rg,
321                                    struct file_region *org)
322 {
323 #ifdef CONFIG_CGROUP_HUGETLB
324         return rg && org &&
325                rg->reservation_counter == org->reservation_counter &&
326                rg->css == org->css;
327
328 #else
329         return true;
330 #endif
331 }
332
333 static void coalesce_file_region(struct resv_map *resv, struct file_region *rg)
334 {
335         struct file_region *nrg = NULL, *prg = NULL;
336
337         prg = list_prev_entry(rg, link);
338         if (&prg->link != &resv->regions && prg->to == rg->from &&
339             has_same_uncharge_info(prg, rg)) {
340                 prg->to = rg->to;
341
342                 list_del(&rg->link);
343                 put_uncharge_info(rg);
344                 kfree(rg);
345
346                 rg = prg;
347         }
348
349         nrg = list_next_entry(rg, link);
350         if (&nrg->link != &resv->regions && nrg->from == rg->to &&
351             has_same_uncharge_info(nrg, rg)) {
352                 nrg->from = rg->from;
353
354                 list_del(&rg->link);
355                 put_uncharge_info(rg);
356                 kfree(rg);
357         }
358 }
359
360 static inline long
361 hugetlb_resv_map_add(struct resv_map *map, struct file_region *rg, long from,
362                      long to, struct hstate *h, struct hugetlb_cgroup *cg,
363                      long *regions_needed)
364 {
365         struct file_region *nrg;
366
367         if (!regions_needed) {
368                 nrg = get_file_region_entry_from_cache(map, from, to);
369                 record_hugetlb_cgroup_uncharge_info(cg, h, map, nrg);
370                 list_add(&nrg->link, rg->link.prev);
371                 coalesce_file_region(map, nrg);
372         } else
373                 *regions_needed += 1;
374
375         return to - from;
376 }
377
378 /*
379  * Must be called with resv->lock held.
380  *
381  * Calling this with regions_needed != NULL will count the number of pages
382  * to be added but will not modify the linked list. And regions_needed will
383  * indicate the number of file_regions needed in the cache to carry out to add
384  * the regions for this range.
385  */
386 static long add_reservation_in_range(struct resv_map *resv, long f, long t,
387                                      struct hugetlb_cgroup *h_cg,
388                                      struct hstate *h, long *regions_needed)
389 {
390         long add = 0;
391         struct list_head *head = &resv->regions;
392         long last_accounted_offset = f;
393         struct file_region *rg = NULL, *trg = NULL;
394
395         if (regions_needed)
396                 *regions_needed = 0;
397
398         /* In this loop, we essentially handle an entry for the range
399          * [last_accounted_offset, rg->from), at every iteration, with some
400          * bounds checking.
401          */
402         list_for_each_entry_safe(rg, trg, head, link) {
403                 /* Skip irrelevant regions that start before our range. */
404                 if (rg->from < f) {
405                         /* If this region ends after the last accounted offset,
406                          * then we need to update last_accounted_offset.
407                          */
408                         if (rg->to > last_accounted_offset)
409                                 last_accounted_offset = rg->to;
410                         continue;
411                 }
412
413                 /* When we find a region that starts beyond our range, we've
414                  * finished.
415                  */
416                 if (rg->from >= t)
417                         break;
418
419                 /* Add an entry for last_accounted_offset -> rg->from, and
420                  * update last_accounted_offset.
421                  */
422                 if (rg->from > last_accounted_offset)
423                         add += hugetlb_resv_map_add(resv, rg,
424                                                     last_accounted_offset,
425                                                     rg->from, h, h_cg,
426                                                     regions_needed);
427
428                 last_accounted_offset = rg->to;
429         }
430
431         /* Handle the case where our range extends beyond
432          * last_accounted_offset.
433          */
434         if (last_accounted_offset < t)
435                 add += hugetlb_resv_map_add(resv, rg, last_accounted_offset,
436                                             t, h, h_cg, regions_needed);
437
438         VM_BUG_ON(add < 0);
439         return add;
440 }
441
442 /* Must be called with resv->lock acquired. Will drop lock to allocate entries.
443  */
444 static int allocate_file_region_entries(struct resv_map *resv,
445                                         int regions_needed)
446         __must_hold(&resv->lock)
447 {
448         struct list_head allocated_regions;
449         int to_allocate = 0, i = 0;
450         struct file_region *trg = NULL, *rg = NULL;
451
452         VM_BUG_ON(regions_needed < 0);
453
454         INIT_LIST_HEAD(&allocated_regions);
455
456         /*
457          * Check for sufficient descriptors in the cache to accommodate
458          * the number of in progress add operations plus regions_needed.
459          *
460          * This is a while loop because when we drop the lock, some other call
461          * to region_add or region_del may have consumed some region_entries,
462          * so we keep looping here until we finally have enough entries for
463          * (adds_in_progress + regions_needed).
464          */
465         while (resv->region_cache_count <
466                (resv->adds_in_progress + regions_needed)) {
467                 to_allocate = resv->adds_in_progress + regions_needed -
468                               resv->region_cache_count;
469
470                 /* At this point, we should have enough entries in the cache
471                  * for all the existing adds_in_progress. We should only be
472                  * needing to allocate for regions_needed.
473                  */
474                 VM_BUG_ON(resv->region_cache_count < resv->adds_in_progress);
475
476                 spin_unlock(&resv->lock);
477                 for (i = 0; i < to_allocate; i++) {
478                         trg = kmalloc(sizeof(*trg), GFP_KERNEL);
479                         if (!trg)
480                                 goto out_of_memory;
481                         list_add(&trg->link, &allocated_regions);
482                 }
483
484                 spin_lock(&resv->lock);
485
486                 list_splice(&allocated_regions, &resv->region_cache);
487                 resv->region_cache_count += to_allocate;
488         }
489
490         return 0;
491
492 out_of_memory:
493         list_for_each_entry_safe(rg, trg, &allocated_regions, link) {
494                 list_del(&rg->link);
495                 kfree(rg);
496         }
497         return -ENOMEM;
498 }
499
500 /*
501  * Add the huge page range represented by [f, t) to the reserve
502  * map.  Regions will be taken from the cache to fill in this range.
503  * Sufficient regions should exist in the cache due to the previous
504  * call to region_chg with the same range, but in some cases the cache will not
505  * have sufficient entries due to races with other code doing region_add or
506  * region_del.  The extra needed entries will be allocated.
507  *
508  * regions_needed is the out value provided by a previous call to region_chg.
509  *
510  * Return the number of new huge pages added to the map.  This number is greater
511  * than or equal to zero.  If file_region entries needed to be allocated for
512  * this operation and we were not able to allocate, it returns -ENOMEM.
513  * region_add of regions of length 1 never allocate file_regions and cannot
514  * fail; region_chg will always allocate at least 1 entry and a region_add for
515  * 1 page will only require at most 1 entry.
516  */
517 static long region_add(struct resv_map *resv, long f, long t,
518                        long in_regions_needed, struct hstate *h,
519                        struct hugetlb_cgroup *h_cg)
520 {
521         long add = 0, actual_regions_needed = 0;
522
523         spin_lock(&resv->lock);
524 retry:
525
526         /* Count how many regions are actually needed to execute this add. */
527         add_reservation_in_range(resv, f, t, NULL, NULL,
528                                  &actual_regions_needed);
529
530         /*
531          * Check for sufficient descriptors in the cache to accommodate
532          * this add operation. Note that actual_regions_needed may be greater
533          * than in_regions_needed, as the resv_map may have been modified since
534          * the region_chg call. In this case, we need to make sure that we
535          * allocate extra entries, such that we have enough for all the
536          * existing adds_in_progress, plus the excess needed for this
537          * operation.
538          */
539         if (actual_regions_needed > in_regions_needed &&
540             resv->region_cache_count <
541                     resv->adds_in_progress +
542                             (actual_regions_needed - in_regions_needed)) {
543                 /* region_add operation of range 1 should never need to
544                  * allocate file_region entries.
545                  */
546                 VM_BUG_ON(t - f <= 1);
547
548                 if (allocate_file_region_entries(
549                             resv, actual_regions_needed - in_regions_needed)) {
550                         return -ENOMEM;
551                 }
552
553                 goto retry;
554         }
555
556         add = add_reservation_in_range(resv, f, t, h_cg, h, NULL);
557
558         resv->adds_in_progress -= in_regions_needed;
559
560         spin_unlock(&resv->lock);
561         return add;
562 }
563
564 /*
565  * Examine the existing reserve map and determine how many
566  * huge pages in the specified range [f, t) are NOT currently
567  * represented.  This routine is called before a subsequent
568  * call to region_add that will actually modify the reserve
569  * map to add the specified range [f, t).  region_chg does
570  * not change the number of huge pages represented by the
571  * map.  A number of new file_region structures is added to the cache as a
572  * placeholder, for the subsequent region_add call to use. At least 1
573  * file_region structure is added.
574  *
575  * out_regions_needed is the number of regions added to the
576  * resv->adds_in_progress.  This value needs to be provided to a follow up call
577  * to region_add or region_abort for proper accounting.
578  *
579  * Returns the number of huge pages that need to be added to the existing
580  * reservation map for the range [f, t).  This number is greater or equal to
581  * zero.  -ENOMEM is returned if a new file_region structure or cache entry
582  * is needed and can not be allocated.
583  */
584 static long region_chg(struct resv_map *resv, long f, long t,
585                        long *out_regions_needed)
586 {
587         long chg = 0;
588
589         spin_lock(&resv->lock);
590
591         /* Count how many hugepages in this range are NOT represented. */
592         chg = add_reservation_in_range(resv, f, t, NULL, NULL,
593                                        out_regions_needed);
594
595         if (*out_regions_needed == 0)
596                 *out_regions_needed = 1;
597
598         if (allocate_file_region_entries(resv, *out_regions_needed))
599                 return -ENOMEM;
600
601         resv->adds_in_progress += *out_regions_needed;
602
603         spin_unlock(&resv->lock);
604         return chg;
605 }
606
607 /*
608  * Abort the in progress add operation.  The adds_in_progress field
609  * of the resv_map keeps track of the operations in progress between
610  * calls to region_chg and region_add.  Operations are sometimes
611  * aborted after the call to region_chg.  In such cases, region_abort
612  * is called to decrement the adds_in_progress counter. regions_needed
613  * is the value returned by the region_chg call, it is used to decrement
614  * the adds_in_progress counter.
615  *
616  * NOTE: The range arguments [f, t) are not needed or used in this
617  * routine.  They are kept to make reading the calling code easier as
618  * arguments will match the associated region_chg call.
619  */
620 static void region_abort(struct resv_map *resv, long f, long t,
621                          long regions_needed)
622 {
623         spin_lock(&resv->lock);
624         VM_BUG_ON(!resv->region_cache_count);
625         resv->adds_in_progress -= regions_needed;
626         spin_unlock(&resv->lock);
627 }
628
629 /*
630  * Delete the specified range [f, t) from the reserve map.  If the
631  * t parameter is LONG_MAX, this indicates that ALL regions after f
632  * should be deleted.  Locate the regions which intersect [f, t)
633  * and either trim, delete or split the existing regions.
634  *
635  * Returns the number of huge pages deleted from the reserve map.
636  * In the normal case, the return value is zero or more.  In the
637  * case where a region must be split, a new region descriptor must
638  * be allocated.  If the allocation fails, -ENOMEM will be returned.
639  * NOTE: If the parameter t == LONG_MAX, then we will never split
640  * a region and possibly return -ENOMEM.  Callers specifying
641  * t == LONG_MAX do not need to check for -ENOMEM error.
642  */
643 static long region_del(struct resv_map *resv, long f, long t)
644 {
645         struct list_head *head = &resv->regions;
646         struct file_region *rg, *trg;
647         struct file_region *nrg = NULL;
648         long del = 0;
649
650 retry:
651         spin_lock(&resv->lock);
652         list_for_each_entry_safe(rg, trg, head, link) {
653                 /*
654                  * Skip regions before the range to be deleted.  file_region
655                  * ranges are normally of the form [from, to).  However, there
656                  * may be a "placeholder" entry in the map which is of the form
657                  * (from, to) with from == to.  Check for placeholder entries
658                  * at the beginning of the range to be deleted.
659                  */
660                 if (rg->to <= f && (rg->to != rg->from || rg->to != f))
661                         continue;
662
663                 if (rg->from >= t)
664                         break;
665
666                 if (f > rg->from && t < rg->to) { /* Must split region */
667                         /*
668                          * Check for an entry in the cache before dropping
669                          * lock and attempting allocation.
670                          */
671                         if (!nrg &&
672                             resv->region_cache_count > resv->adds_in_progress) {
673                                 nrg = list_first_entry(&resv->region_cache,
674                                                         struct file_region,
675                                                         link);
676                                 list_del(&nrg->link);
677                                 resv->region_cache_count--;
678                         }
679
680                         if (!nrg) {
681                                 spin_unlock(&resv->lock);
682                                 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
683                                 if (!nrg)
684                                         return -ENOMEM;
685                                 goto retry;
686                         }
687
688                         del += t - f;
689                         hugetlb_cgroup_uncharge_file_region(
690                                 resv, rg, t - f, false);
691
692                         /* New entry for end of split region */
693                         nrg->from = t;
694                         nrg->to = rg->to;
695
696                         copy_hugetlb_cgroup_uncharge_info(nrg, rg);
697
698                         INIT_LIST_HEAD(&nrg->link);
699
700                         /* Original entry is trimmed */
701                         rg->to = f;
702
703                         list_add(&nrg->link, &rg->link);
704                         nrg = NULL;
705                         break;
706                 }
707
708                 if (f <= rg->from && t >= rg->to) { /* Remove entire region */
709                         del += rg->to - rg->from;
710                         hugetlb_cgroup_uncharge_file_region(resv, rg,
711                                                             rg->to - rg->from, true);
712                         list_del(&rg->link);
713                         kfree(rg);
714                         continue;
715                 }
716
717                 if (f <= rg->from) {    /* Trim beginning of region */
718                         hugetlb_cgroup_uncharge_file_region(resv, rg,
719                                                             t - rg->from, false);
720
721                         del += t - rg->from;
722                         rg->from = t;
723                 } else {                /* Trim end of region */
724                         hugetlb_cgroup_uncharge_file_region(resv, rg,
725                                                             rg->to - f, false);
726
727                         del += rg->to - f;
728                         rg->to = f;
729                 }
730         }
731
732         spin_unlock(&resv->lock);
733         kfree(nrg);
734         return del;
735 }
736
737 /*
738  * A rare out of memory error was encountered which prevented removal of
739  * the reserve map region for a page.  The huge page itself was free'ed
740  * and removed from the page cache.  This routine will adjust the subpool
741  * usage count, and the global reserve count if needed.  By incrementing
742  * these counts, the reserve map entry which could not be deleted will
743  * appear as a "reserved" entry instead of simply dangling with incorrect
744  * counts.
745  */
746 void hugetlb_fix_reserve_counts(struct inode *inode)
747 {
748         struct hugepage_subpool *spool = subpool_inode(inode);
749         long rsv_adjust;
750         bool reserved = false;
751
752         rsv_adjust = hugepage_subpool_get_pages(spool, 1);
753         if (rsv_adjust > 0) {
754                 struct hstate *h = hstate_inode(inode);
755
756                 if (!hugetlb_acct_memory(h, 1))
757                         reserved = true;
758         } else if (!rsv_adjust) {
759                 reserved = true;
760         }
761
762         if (!reserved)
763                 pr_warn("hugetlb: Huge Page Reserved count may go negative.\n");
764 }
765
766 /*
767  * Count and return the number of huge pages in the reserve map
768  * that intersect with the range [f, t).
769  */
770 static long region_count(struct resv_map *resv, long f, long t)
771 {
772         struct list_head *head = &resv->regions;
773         struct file_region *rg;
774         long chg = 0;
775
776         spin_lock(&resv->lock);
777         /* Locate each segment we overlap with, and count that overlap. */
778         list_for_each_entry(rg, head, link) {
779                 long seg_from;
780                 long seg_to;
781
782                 if (rg->to <= f)
783                         continue;
784                 if (rg->from >= t)
785                         break;
786
787                 seg_from = max(rg->from, f);
788                 seg_to = min(rg->to, t);
789
790                 chg += seg_to - seg_from;
791         }
792         spin_unlock(&resv->lock);
793
794         return chg;
795 }
796
797 /*
798  * Convert the address within this vma to the page offset within
799  * the mapping, in pagecache page units; huge pages here.
800  */
801 static pgoff_t vma_hugecache_offset(struct hstate *h,
802                         struct vm_area_struct *vma, unsigned long address)
803 {
804         return ((address - vma->vm_start) >> huge_page_shift(h)) +
805                         (vma->vm_pgoff >> huge_page_order(h));
806 }
807
808 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
809                                      unsigned long address)
810 {
811         return vma_hugecache_offset(hstate_vma(vma), vma, address);
812 }
813 EXPORT_SYMBOL_GPL(linear_hugepage_index);
814
815 /*
816  * Return the size of the pages allocated when backing a VMA. In the majority
817  * cases this will be same size as used by the page table entries.
818  */
819 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
820 {
821         if (vma->vm_ops && vma->vm_ops->pagesize)
822                 return vma->vm_ops->pagesize(vma);
823         return PAGE_SIZE;
824 }
825 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
826
827 /*
828  * Return the page size being used by the MMU to back a VMA. In the majority
829  * of cases, the page size used by the kernel matches the MMU size. On
830  * architectures where it differs, an architecture-specific 'strong'
831  * version of this symbol is required.
832  */
833 __weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
834 {
835         return vma_kernel_pagesize(vma);
836 }
837
838 /*
839  * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
840  * bits of the reservation map pointer, which are always clear due to
841  * alignment.
842  */
843 #define HPAGE_RESV_OWNER    (1UL << 0)
844 #define HPAGE_RESV_UNMAPPED (1UL << 1)
845 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
846
847 /*
848  * These helpers are used to track how many pages are reserved for
849  * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
850  * is guaranteed to have their future faults succeed.
851  *
852  * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
853  * the reserve counters are updated with the hugetlb_lock held. It is safe
854  * to reset the VMA at fork() time as it is not in use yet and there is no
855  * chance of the global counters getting corrupted as a result of the values.
856  *
857  * The private mapping reservation is represented in a subtly different
858  * manner to a shared mapping.  A shared mapping has a region map associated
859  * with the underlying file, this region map represents the backing file
860  * pages which have ever had a reservation assigned which this persists even
861  * after the page is instantiated.  A private mapping has a region map
862  * associated with the original mmap which is attached to all VMAs which
863  * reference it, this region map represents those offsets which have consumed
864  * reservation ie. where pages have been instantiated.
865  */
866 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
867 {
868         return (unsigned long)vma->vm_private_data;
869 }
870
871 static void set_vma_private_data(struct vm_area_struct *vma,
872                                                         unsigned long value)
873 {
874         vma->vm_private_data = (void *)value;
875 }
876
877 static void
878 resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map *resv_map,
879                                           struct hugetlb_cgroup *h_cg,
880                                           struct hstate *h)
881 {
882 #ifdef CONFIG_CGROUP_HUGETLB
883         if (!h_cg || !h) {
884                 resv_map->reservation_counter = NULL;
885                 resv_map->pages_per_hpage = 0;
886                 resv_map->css = NULL;
887         } else {
888                 resv_map->reservation_counter =
889                         &h_cg->rsvd_hugepage[hstate_index(h)];
890                 resv_map->pages_per_hpage = pages_per_huge_page(h);
891                 resv_map->css = &h_cg->css;
892         }
893 #endif
894 }
895
896 struct resv_map *resv_map_alloc(void)
897 {
898         struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
899         struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
900
901         if (!resv_map || !rg) {
902                 kfree(resv_map);
903                 kfree(rg);
904                 return NULL;
905         }
906
907         kref_init(&resv_map->refs);
908         spin_lock_init(&resv_map->lock);
909         INIT_LIST_HEAD(&resv_map->regions);
910
911         resv_map->adds_in_progress = 0;
912         /*
913          * Initialize these to 0. On shared mappings, 0's here indicate these
914          * fields don't do cgroup accounting. On private mappings, these will be
915          * re-initialized to the proper values, to indicate that hugetlb cgroup
916          * reservations are to be un-charged from here.
917          */
918         resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, NULL, NULL);
919
920         INIT_LIST_HEAD(&resv_map->region_cache);
921         list_add(&rg->link, &resv_map->region_cache);
922         resv_map->region_cache_count = 1;
923
924         return resv_map;
925 }
926
927 void resv_map_release(struct kref *ref)
928 {
929         struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
930         struct list_head *head = &resv_map->region_cache;
931         struct file_region *rg, *trg;
932
933         /* Clear out any active regions before we release the map. */
934         region_del(resv_map, 0, LONG_MAX);
935
936         /* ... and any entries left in the cache */
937         list_for_each_entry_safe(rg, trg, head, link) {
938                 list_del(&rg->link);
939                 kfree(rg);
940         }
941
942         VM_BUG_ON(resv_map->adds_in_progress);
943
944         kfree(resv_map);
945 }
946
947 static inline struct resv_map *inode_resv_map(struct inode *inode)
948 {
949         /*
950          * At inode evict time, i_mapping may not point to the original
951          * address space within the inode.  This original address space
952          * contains the pointer to the resv_map.  So, always use the
953          * address space embedded within the inode.
954          * The VERY common case is inode->mapping == &inode->i_data but,
955          * this may not be true for device special inodes.
956          */
957         return (struct resv_map *)(&inode->i_data)->private_data;
958 }
959
960 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
961 {
962         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
963         if (vma->vm_flags & VM_MAYSHARE) {
964                 struct address_space *mapping = vma->vm_file->f_mapping;
965                 struct inode *inode = mapping->host;
966
967                 return inode_resv_map(inode);
968
969         } else {
970                 return (struct resv_map *)(get_vma_private_data(vma) &
971                                                         ~HPAGE_RESV_MASK);
972         }
973 }
974
975 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
976 {
977         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
978         VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
979
980         set_vma_private_data(vma, (get_vma_private_data(vma) &
981                                 HPAGE_RESV_MASK) | (unsigned long)map);
982 }
983
984 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
985 {
986         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
987         VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
988
989         set_vma_private_data(vma, get_vma_private_data(vma) | flags);
990 }
991
992 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
993 {
994         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
995
996         return (get_vma_private_data(vma) & flag) != 0;
997 }
998
999 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
1000 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
1001 {
1002         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1003         if (!(vma->vm_flags & VM_MAYSHARE))
1004                 vma->vm_private_data = (void *)0;
1005 }
1006
1007 /* Returns true if the VMA has associated reserve pages */
1008 static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
1009 {
1010         if (vma->vm_flags & VM_NORESERVE) {
1011                 /*
1012                  * This address is already reserved by other process(chg == 0),
1013                  * so, we should decrement reserved count. Without decrementing,
1014                  * reserve count remains after releasing inode, because this
1015                  * allocated page will go into page cache and is regarded as
1016                  * coming from reserved pool in releasing step.  Currently, we
1017                  * don't have any other solution to deal with this situation
1018                  * properly, so add work-around here.
1019                  */
1020                 if (vma->vm_flags & VM_MAYSHARE && chg == 0)
1021                         return true;
1022                 else
1023                         return false;
1024         }
1025
1026         /* Shared mappings always use reserves */
1027         if (vma->vm_flags & VM_MAYSHARE) {
1028                 /*
1029                  * We know VM_NORESERVE is not set.  Therefore, there SHOULD
1030                  * be a region map for all pages.  The only situation where
1031                  * there is no region map is if a hole was punched via
1032                  * fallocate.  In this case, there really are no reserves to
1033                  * use.  This situation is indicated if chg != 0.
1034                  */
1035                 if (chg)
1036                         return false;
1037                 else
1038                         return true;
1039         }
1040
1041         /*
1042          * Only the process that called mmap() has reserves for
1043          * private mappings.
1044          */
1045         if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1046                 /*
1047                  * Like the shared case above, a hole punch or truncate
1048                  * could have been performed on the private mapping.
1049                  * Examine the value of chg to determine if reserves
1050                  * actually exist or were previously consumed.
1051                  * Very Subtle - The value of chg comes from a previous
1052                  * call to vma_needs_reserves().  The reserve map for
1053                  * private mappings has different (opposite) semantics
1054                  * than that of shared mappings.  vma_needs_reserves()
1055                  * has already taken this difference in semantics into
1056                  * account.  Therefore, the meaning of chg is the same
1057                  * as in the shared case above.  Code could easily be
1058                  * combined, but keeping it separate draws attention to
1059                  * subtle differences.
1060                  */
1061                 if (chg)
1062                         return false;
1063                 else
1064                         return true;
1065         }
1066
1067         return false;
1068 }
1069
1070 static void enqueue_huge_page(struct hstate *h, struct page *page)
1071 {
1072         int nid = page_to_nid(page);
1073
1074         lockdep_assert_held(&hugetlb_lock);
1075         list_move(&page->lru, &h->hugepage_freelists[nid]);
1076         h->free_huge_pages++;
1077         h->free_huge_pages_node[nid]++;
1078         SetHPageFreed(page);
1079 }
1080
1081 static struct page *dequeue_huge_page_node_exact(struct hstate *h, int nid)
1082 {
1083         struct page *page;
1084         bool pin = !!(current->flags & PF_MEMALLOC_PIN);
1085
1086         lockdep_assert_held(&hugetlb_lock);
1087         list_for_each_entry(page, &h->hugepage_freelists[nid], lru) {
1088                 if (pin && !is_pinnable_page(page))
1089                         continue;
1090
1091                 if (PageHWPoison(page))
1092                         continue;
1093
1094                 list_move(&page->lru, &h->hugepage_activelist);
1095                 set_page_refcounted(page);
1096                 ClearHPageFreed(page);
1097                 h->free_huge_pages--;
1098                 h->free_huge_pages_node[nid]--;
1099                 return page;
1100         }
1101
1102         return NULL;
1103 }
1104
1105 static struct page *dequeue_huge_page_nodemask(struct hstate *h, gfp_t gfp_mask, int nid,
1106                 nodemask_t *nmask)
1107 {
1108         unsigned int cpuset_mems_cookie;
1109         struct zonelist *zonelist;
1110         struct zone *zone;
1111         struct zoneref *z;
1112         int node = NUMA_NO_NODE;
1113
1114         zonelist = node_zonelist(nid, gfp_mask);
1115
1116 retry_cpuset:
1117         cpuset_mems_cookie = read_mems_allowed_begin();
1118         for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
1119                 struct page *page;
1120
1121                 if (!cpuset_zone_allowed(zone, gfp_mask))
1122                         continue;
1123                 /*
1124                  * no need to ask again on the same node. Pool is node rather than
1125                  * zone aware
1126                  */
1127                 if (zone_to_nid(zone) == node)
1128                         continue;
1129                 node = zone_to_nid(zone);
1130
1131                 page = dequeue_huge_page_node_exact(h, node);
1132                 if (page)
1133                         return page;
1134         }
1135         if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
1136                 goto retry_cpuset;
1137
1138         return NULL;
1139 }
1140
1141 static struct page *dequeue_huge_page_vma(struct hstate *h,
1142                                 struct vm_area_struct *vma,
1143                                 unsigned long address, int avoid_reserve,
1144                                 long chg)
1145 {
1146         struct page *page;
1147         struct mempolicy *mpol;
1148         gfp_t gfp_mask;
1149         nodemask_t *nodemask;
1150         int nid;
1151
1152         /*
1153          * A child process with MAP_PRIVATE mappings created by their parent
1154          * have no page reserves. This check ensures that reservations are
1155          * not "stolen". The child may still get SIGKILLed
1156          */
1157         if (!vma_has_reserves(vma, chg) &&
1158                         h->free_huge_pages - h->resv_huge_pages == 0)
1159                 goto err;
1160
1161         /* If reserves cannot be used, ensure enough pages are in the pool */
1162         if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
1163                 goto err;
1164
1165         gfp_mask = htlb_alloc_mask(h);
1166         nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
1167         page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
1168         if (page && !avoid_reserve && vma_has_reserves(vma, chg)) {
1169                 SetHPageRestoreReserve(page);
1170                 h->resv_huge_pages--;
1171         }
1172
1173         mpol_cond_put(mpol);
1174         return page;
1175
1176 err:
1177         return NULL;
1178 }
1179
1180 /*
1181  * common helper functions for hstate_next_node_to_{alloc|free}.
1182  * We may have allocated or freed a huge page based on a different
1183  * nodes_allowed previously, so h->next_node_to_{alloc|free} might
1184  * be outside of *nodes_allowed.  Ensure that we use an allowed
1185  * node for alloc or free.
1186  */
1187 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
1188 {
1189         nid = next_node_in(nid, *nodes_allowed);
1190         VM_BUG_ON(nid >= MAX_NUMNODES);
1191
1192         return nid;
1193 }
1194
1195 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
1196 {
1197         if (!node_isset(nid, *nodes_allowed))
1198                 nid = next_node_allowed(nid, nodes_allowed);
1199         return nid;
1200 }
1201
1202 /*
1203  * returns the previously saved node ["this node"] from which to
1204  * allocate a persistent huge page for the pool and advance the
1205  * next node from which to allocate, handling wrap at end of node
1206  * mask.
1207  */
1208 static int hstate_next_node_to_alloc(struct hstate *h,
1209                                         nodemask_t *nodes_allowed)
1210 {
1211         int nid;
1212
1213         VM_BUG_ON(!nodes_allowed);
1214
1215         nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
1216         h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
1217
1218         return nid;
1219 }
1220
1221 /*
1222  * helper for remove_pool_huge_page() - return the previously saved
1223  * node ["this node"] from which to free a huge page.  Advance the
1224  * next node id whether or not we find a free huge page to free so
1225  * that the next attempt to free addresses the next node.
1226  */
1227 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1228 {
1229         int nid;
1230
1231         VM_BUG_ON(!nodes_allowed);
1232
1233         nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1234         h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1235
1236         return nid;
1237 }
1238
1239 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask)           \
1240         for (nr_nodes = nodes_weight(*mask);                            \
1241                 nr_nodes > 0 &&                                         \
1242                 ((node = hstate_next_node_to_alloc(hs, mask)) || 1);    \
1243                 nr_nodes--)
1244
1245 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask)            \
1246         for (nr_nodes = nodes_weight(*mask);                            \
1247                 nr_nodes > 0 &&                                         \
1248                 ((node = hstate_next_node_to_free(hs, mask)) || 1);     \
1249                 nr_nodes--)
1250
1251 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
1252 static void destroy_compound_gigantic_page(struct page *page,
1253                                         unsigned int order)
1254 {
1255         int i;
1256         int nr_pages = 1 << order;
1257         struct page *p = page + 1;
1258
1259         atomic_set(compound_mapcount_ptr(page), 0);
1260         atomic_set(compound_pincount_ptr(page), 0);
1261
1262         for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1263                 clear_compound_head(p);
1264                 set_page_refcounted(p);
1265         }
1266
1267         set_compound_order(page, 0);
1268         page[1].compound_nr = 0;
1269         __ClearPageHead(page);
1270 }
1271
1272 static void free_gigantic_page(struct page *page, unsigned int order)
1273 {
1274         /*
1275          * If the page isn't allocated using the cma allocator,
1276          * cma_release() returns false.
1277          */
1278 #ifdef CONFIG_CMA
1279         if (cma_release(hugetlb_cma[page_to_nid(page)], page, 1 << order))
1280                 return;
1281 #endif
1282
1283         free_contig_range(page_to_pfn(page), 1 << order);
1284 }
1285
1286 #ifdef CONFIG_CONTIG_ALLOC
1287 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1288                 int nid, nodemask_t *nodemask)
1289 {
1290         unsigned long nr_pages = pages_per_huge_page(h);
1291         if (nid == NUMA_NO_NODE)
1292                 nid = numa_mem_id();
1293
1294 #ifdef CONFIG_CMA
1295         {
1296                 struct page *page;
1297                 int node;
1298
1299                 if (hugetlb_cma[nid]) {
1300                         page = cma_alloc(hugetlb_cma[nid], nr_pages,
1301                                         huge_page_order(h), true);
1302                         if (page)
1303                                 return page;
1304                 }
1305
1306                 if (!(gfp_mask & __GFP_THISNODE)) {
1307                         for_each_node_mask(node, *nodemask) {
1308                                 if (node == nid || !hugetlb_cma[node])
1309                                         continue;
1310
1311                                 page = cma_alloc(hugetlb_cma[node], nr_pages,
1312                                                 huge_page_order(h), true);
1313                                 if (page)
1314                                         return page;
1315                         }
1316                 }
1317         }
1318 #endif
1319
1320         return alloc_contig_pages(nr_pages, gfp_mask, nid, nodemask);
1321 }
1322
1323 #else /* !CONFIG_CONTIG_ALLOC */
1324 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1325                                         int nid, nodemask_t *nodemask)
1326 {
1327         return NULL;
1328 }
1329 #endif /* CONFIG_CONTIG_ALLOC */
1330
1331 #else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
1332 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1333                                         int nid, nodemask_t *nodemask)
1334 {
1335         return NULL;
1336 }
1337 static inline void free_gigantic_page(struct page *page, unsigned int order) { }
1338 static inline void destroy_compound_gigantic_page(struct page *page,
1339                                                 unsigned int order) { }
1340 #endif
1341
1342 /*
1343  * Remove hugetlb page from lists, and update dtor so that page appears
1344  * as just a compound page.  A reference is held on the page.
1345  *
1346  * Must be called with hugetlb lock held.
1347  */
1348 static void remove_hugetlb_page(struct hstate *h, struct page *page,
1349                                                         bool adjust_surplus)
1350 {
1351         int nid = page_to_nid(page);
1352
1353         VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
1354         VM_BUG_ON_PAGE(hugetlb_cgroup_from_page_rsvd(page), page);
1355
1356         lockdep_assert_held(&hugetlb_lock);
1357         if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1358                 return;
1359
1360         list_del(&page->lru);
1361
1362         if (HPageFreed(page)) {
1363                 h->free_huge_pages--;
1364                 h->free_huge_pages_node[nid]--;
1365         }
1366         if (adjust_surplus) {
1367                 h->surplus_huge_pages--;
1368                 h->surplus_huge_pages_node[nid]--;
1369         }
1370
1371         set_page_refcounted(page);
1372         set_compound_page_dtor(page, NULL_COMPOUND_DTOR);
1373
1374         h->nr_huge_pages--;
1375         h->nr_huge_pages_node[nid]--;
1376 }
1377
1378 static void add_hugetlb_page(struct hstate *h, struct page *page,
1379                              bool adjust_surplus)
1380 {
1381         int zeroed;
1382         int nid = page_to_nid(page);
1383
1384         VM_BUG_ON_PAGE(!HPageVmemmapOptimized(page), page);
1385
1386         lockdep_assert_held(&hugetlb_lock);
1387
1388         INIT_LIST_HEAD(&page->lru);
1389         h->nr_huge_pages++;
1390         h->nr_huge_pages_node[nid]++;
1391
1392         if (adjust_surplus) {
1393                 h->surplus_huge_pages++;
1394                 h->surplus_huge_pages_node[nid]++;
1395         }
1396
1397         set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1398         set_page_private(page, 0);
1399         SetHPageVmemmapOptimized(page);
1400
1401         /*
1402          * This page is now managed by the hugetlb allocator and has
1403          * no users -- drop the last reference.
1404          */
1405         zeroed = put_page_testzero(page);
1406         VM_BUG_ON_PAGE(!zeroed, page);
1407         arch_clear_hugepage_flags(page);
1408         enqueue_huge_page(h, page);
1409 }
1410
1411 static void __update_and_free_page(struct hstate *h, struct page *page)
1412 {
1413         int i;
1414         struct page *subpage = page;
1415
1416         if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1417                 return;
1418
1419         if (alloc_huge_page_vmemmap(h, page)) {
1420                 spin_lock_irq(&hugetlb_lock);
1421                 /*
1422                  * If we cannot allocate vmemmap pages, just refuse to free the
1423                  * page and put the page back on the hugetlb free list and treat
1424                  * as a surplus page.
1425                  */
1426                 add_hugetlb_page(h, page, true);
1427                 spin_unlock_irq(&hugetlb_lock);
1428                 return;
1429         }
1430
1431         for (i = 0; i < pages_per_huge_page(h);
1432              i++, subpage = mem_map_next(subpage, page, i)) {
1433                 subpage->flags &= ~(1 << PG_locked | 1 << PG_error |
1434                                 1 << PG_referenced | 1 << PG_dirty |
1435                                 1 << PG_active | 1 << PG_private |
1436                                 1 << PG_writeback);
1437         }
1438         if (hstate_is_gigantic(h)) {
1439                 destroy_compound_gigantic_page(page, huge_page_order(h));
1440                 free_gigantic_page(page, huge_page_order(h));
1441         } else {
1442                 __free_pages(page, huge_page_order(h));
1443         }
1444 }
1445
1446 /*
1447  * As update_and_free_page() can be called under any context, so we cannot
1448  * use GFP_KERNEL to allocate vmemmap pages. However, we can defer the
1449  * actual freeing in a workqueue to prevent from using GFP_ATOMIC to allocate
1450  * the vmemmap pages.
1451  *
1452  * free_hpage_workfn() locklessly retrieves the linked list of pages to be
1453  * freed and frees them one-by-one. As the page->mapping pointer is going
1454  * to be cleared in free_hpage_workfn() anyway, it is reused as the llist_node
1455  * structure of a lockless linked list of huge pages to be freed.
1456  */
1457 static LLIST_HEAD(hpage_freelist);
1458
1459 static void free_hpage_workfn(struct work_struct *work)
1460 {
1461         struct llist_node *node;
1462
1463         node = llist_del_all(&hpage_freelist);
1464
1465         while (node) {
1466                 struct page *page;
1467                 struct hstate *h;
1468
1469                 page = container_of((struct address_space **)node,
1470                                      struct page, mapping);
1471                 node = node->next;
1472                 page->mapping = NULL;
1473                 /*
1474                  * The VM_BUG_ON_PAGE(!PageHuge(page), page) in page_hstate()
1475                  * is going to trigger because a previous call to
1476                  * remove_hugetlb_page() will set_compound_page_dtor(page,
1477                  * NULL_COMPOUND_DTOR), so do not use page_hstate() directly.
1478                  */
1479                 h = size_to_hstate(page_size(page));
1480
1481                 __update_and_free_page(h, page);
1482
1483                 cond_resched();
1484         }
1485 }
1486 static DECLARE_WORK(free_hpage_work, free_hpage_workfn);
1487
1488 static inline void flush_free_hpage_work(struct hstate *h)
1489 {
1490         if (free_vmemmap_pages_per_hpage(h))
1491                 flush_work(&free_hpage_work);
1492 }
1493
1494 static void update_and_free_page(struct hstate *h, struct page *page,
1495                                  bool atomic)
1496 {
1497         if (!HPageVmemmapOptimized(page) || !atomic) {
1498                 __update_and_free_page(h, page);
1499                 return;
1500         }
1501
1502         /*
1503          * Defer freeing to avoid using GFP_ATOMIC to allocate vmemmap pages.
1504          *
1505          * Only call schedule_work() if hpage_freelist is previously
1506          * empty. Otherwise, schedule_work() had been called but the workfn
1507          * hasn't retrieved the list yet.
1508          */
1509         if (llist_add((struct llist_node *)&page->mapping, &hpage_freelist))
1510                 schedule_work(&free_hpage_work);
1511 }
1512
1513 static void update_and_free_pages_bulk(struct hstate *h, struct list_head *list)
1514 {
1515         struct page *page, *t_page;
1516
1517         list_for_each_entry_safe(page, t_page, list, lru) {
1518                 update_and_free_page(h, page, false);
1519                 cond_resched();
1520         }
1521 }
1522
1523 struct hstate *size_to_hstate(unsigned long size)
1524 {
1525         struct hstate *h;
1526
1527         for_each_hstate(h) {
1528                 if (huge_page_size(h) == size)
1529                         return h;
1530         }
1531         return NULL;
1532 }
1533
1534 void free_huge_page(struct page *page)
1535 {
1536         /*
1537          * Can't pass hstate in here because it is called from the
1538          * compound page destructor.
1539          */
1540         struct hstate *h = page_hstate(page);
1541         int nid = page_to_nid(page);
1542         struct hugepage_subpool *spool = hugetlb_page_subpool(page);
1543         bool restore_reserve;
1544         unsigned long flags;
1545
1546         VM_BUG_ON_PAGE(page_count(page), page);
1547         VM_BUG_ON_PAGE(page_mapcount(page), page);
1548
1549         hugetlb_set_page_subpool(page, NULL);
1550         page->mapping = NULL;
1551         restore_reserve = HPageRestoreReserve(page);
1552         ClearHPageRestoreReserve(page);
1553
1554         /*
1555          * If HPageRestoreReserve was set on page, page allocation consumed a
1556          * reservation.  If the page was associated with a subpool, there
1557          * would have been a page reserved in the subpool before allocation
1558          * via hugepage_subpool_get_pages().  Since we are 'restoring' the
1559          * reservation, do not call hugepage_subpool_put_pages() as this will
1560          * remove the reserved page from the subpool.
1561          */
1562         if (!restore_reserve) {
1563                 /*
1564                  * A return code of zero implies that the subpool will be
1565                  * under its minimum size if the reservation is not restored
1566                  * after page is free.  Therefore, force restore_reserve
1567                  * operation.
1568                  */
1569                 if (hugepage_subpool_put_pages(spool, 1) == 0)
1570                         restore_reserve = true;
1571         }
1572
1573         spin_lock_irqsave(&hugetlb_lock, flags);
1574         ClearHPageMigratable(page);
1575         hugetlb_cgroup_uncharge_page(hstate_index(h),
1576                                      pages_per_huge_page(h), page);
1577         hugetlb_cgroup_uncharge_page_rsvd(hstate_index(h),
1578                                           pages_per_huge_page(h), page);
1579         if (restore_reserve)
1580                 h->resv_huge_pages++;
1581
1582         if (HPageTemporary(page)) {
1583                 remove_hugetlb_page(h, page, false);
1584                 spin_unlock_irqrestore(&hugetlb_lock, flags);
1585                 update_and_free_page(h, page, true);
1586         } else if (h->surplus_huge_pages_node[nid]) {
1587                 /* remove the page from active list */
1588                 remove_hugetlb_page(h, page, true);
1589                 spin_unlock_irqrestore(&hugetlb_lock, flags);
1590                 update_and_free_page(h, page, true);
1591         } else {
1592                 arch_clear_hugepage_flags(page);
1593                 enqueue_huge_page(h, page);
1594                 spin_unlock_irqrestore(&hugetlb_lock, flags);
1595         }
1596 }
1597
1598 /*
1599  * Must be called with the hugetlb lock held
1600  */
1601 static void __prep_account_new_huge_page(struct hstate *h, int nid)
1602 {
1603         lockdep_assert_held(&hugetlb_lock);
1604         h->nr_huge_pages++;
1605         h->nr_huge_pages_node[nid]++;
1606 }
1607
1608 static void __prep_new_huge_page(struct hstate *h, struct page *page)
1609 {
1610         free_huge_page_vmemmap(h, page);
1611         INIT_LIST_HEAD(&page->lru);
1612         set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1613         hugetlb_set_page_subpool(page, NULL);
1614         set_hugetlb_cgroup(page, NULL);
1615         set_hugetlb_cgroup_rsvd(page, NULL);
1616 }
1617
1618 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
1619 {
1620         __prep_new_huge_page(h, page);
1621         spin_lock_irq(&hugetlb_lock);
1622         __prep_account_new_huge_page(h, nid);
1623         spin_unlock_irq(&hugetlb_lock);
1624 }
1625
1626 static void prep_compound_gigantic_page(struct page *page, unsigned int order)
1627 {
1628         int i;
1629         int nr_pages = 1 << order;
1630         struct page *p = page + 1;
1631
1632         /* we rely on prep_new_huge_page to set the destructor */
1633         set_compound_order(page, order);
1634         __ClearPageReserved(page);
1635         __SetPageHead(page);
1636         for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1637                 /*
1638                  * For gigantic hugepages allocated through bootmem at
1639                  * boot, it's safer to be consistent with the not-gigantic
1640                  * hugepages and clear the PG_reserved bit from all tail pages
1641                  * too.  Otherwise drivers using get_user_pages() to access tail
1642                  * pages may get the reference counting wrong if they see
1643                  * PG_reserved set on a tail page (despite the head page not
1644                  * having PG_reserved set).  Enforcing this consistency between
1645                  * head and tail pages allows drivers to optimize away a check
1646                  * on the head page when they need know if put_page() is needed
1647                  * after get_user_pages().
1648                  */
1649                 __ClearPageReserved(p);
1650                 set_page_count(p, 0);
1651                 set_compound_head(p, page);
1652         }
1653         atomic_set(compound_mapcount_ptr(page), -1);
1654         atomic_set(compound_pincount_ptr(page), 0);
1655 }
1656
1657 /*
1658  * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1659  * transparent huge pages.  See the PageTransHuge() documentation for more
1660  * details.
1661  */
1662 int PageHuge(struct page *page)
1663 {
1664         if (!PageCompound(page))
1665                 return 0;
1666
1667         page = compound_head(page);
1668         return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
1669 }
1670 EXPORT_SYMBOL_GPL(PageHuge);
1671
1672 /*
1673  * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1674  * normal or transparent huge pages.
1675  */
1676 int PageHeadHuge(struct page *page_head)
1677 {
1678         if (!PageHead(page_head))
1679                 return 0;
1680
1681         return page_head[1].compound_dtor == HUGETLB_PAGE_DTOR;
1682 }
1683
1684 /*
1685  * Find and lock address space (mapping) in write mode.
1686  *
1687  * Upon entry, the page is locked which means that page_mapping() is
1688  * stable.  Due to locking order, we can only trylock_write.  If we can
1689  * not get the lock, simply return NULL to caller.
1690  */
1691 struct address_space *hugetlb_page_mapping_lock_write(struct page *hpage)
1692 {
1693         struct address_space *mapping = page_mapping(hpage);
1694
1695         if (!mapping)
1696                 return mapping;
1697
1698         if (i_mmap_trylock_write(mapping))
1699                 return mapping;
1700
1701         return NULL;
1702 }
1703
1704 pgoff_t hugetlb_basepage_index(struct page *page)
1705 {
1706         struct page *page_head = compound_head(page);
1707         pgoff_t index = page_index(page_head);
1708         unsigned long compound_idx;
1709
1710         if (compound_order(page_head) >= MAX_ORDER)
1711                 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
1712         else
1713                 compound_idx = page - page_head;
1714
1715         return (index << compound_order(page_head)) + compound_idx;
1716 }
1717
1718 static struct page *alloc_buddy_huge_page(struct hstate *h,
1719                 gfp_t gfp_mask, int nid, nodemask_t *nmask,
1720                 nodemask_t *node_alloc_noretry)
1721 {
1722         int order = huge_page_order(h);
1723         struct page *page;
1724         bool alloc_try_hard = true;
1725
1726         /*
1727          * By default we always try hard to allocate the page with
1728          * __GFP_RETRY_MAYFAIL flag.  However, if we are allocating pages in
1729          * a loop (to adjust global huge page counts) and previous allocation
1730          * failed, do not continue to try hard on the same node.  Use the
1731          * node_alloc_noretry bitmap to manage this state information.
1732          */
1733         if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry))
1734                 alloc_try_hard = false;
1735         gfp_mask |= __GFP_COMP|__GFP_NOWARN;
1736         if (alloc_try_hard)
1737                 gfp_mask |= __GFP_RETRY_MAYFAIL;
1738         if (nid == NUMA_NO_NODE)
1739                 nid = numa_mem_id();
1740         page = __alloc_pages(gfp_mask, order, nid, nmask);
1741         if (page)
1742                 __count_vm_event(HTLB_BUDDY_PGALLOC);
1743         else
1744                 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1745
1746         /*
1747          * If we did not specify __GFP_RETRY_MAYFAIL, but still got a page this
1748          * indicates an overall state change.  Clear bit so that we resume
1749          * normal 'try hard' allocations.
1750          */
1751         if (node_alloc_noretry && page && !alloc_try_hard)
1752                 node_clear(nid, *node_alloc_noretry);
1753
1754         /*
1755          * If we tried hard to get a page but failed, set bit so that
1756          * subsequent attempts will not try as hard until there is an
1757          * overall state change.
1758          */
1759         if (node_alloc_noretry && !page && alloc_try_hard)
1760                 node_set(nid, *node_alloc_noretry);
1761
1762         return page;
1763 }
1764
1765 /*
1766  * Common helper to allocate a fresh hugetlb page. All specific allocators
1767  * should use this function to get new hugetlb pages
1768  */
1769 static struct page *alloc_fresh_huge_page(struct hstate *h,
1770                 gfp_t gfp_mask, int nid, nodemask_t *nmask,
1771                 nodemask_t *node_alloc_noretry)
1772 {
1773         struct page *page;
1774
1775         if (hstate_is_gigantic(h))
1776                 page = alloc_gigantic_page(h, gfp_mask, nid, nmask);
1777         else
1778                 page = alloc_buddy_huge_page(h, gfp_mask,
1779                                 nid, nmask, node_alloc_noretry);
1780         if (!page)
1781                 return NULL;
1782
1783         if (hstate_is_gigantic(h))
1784                 prep_compound_gigantic_page(page, huge_page_order(h));
1785         prep_new_huge_page(h, page, page_to_nid(page));
1786
1787         return page;
1788 }
1789
1790 /*
1791  * Allocates a fresh page to the hugetlb allocator pool in the node interleaved
1792  * manner.
1793  */
1794 static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1795                                 nodemask_t *node_alloc_noretry)
1796 {
1797         struct page *page;
1798         int nr_nodes, node;
1799         gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
1800
1801         for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1802                 page = alloc_fresh_huge_page(h, gfp_mask, node, nodes_allowed,
1803                                                 node_alloc_noretry);
1804                 if (page)
1805                         break;
1806         }
1807
1808         if (!page)
1809                 return 0;
1810
1811         put_page(page); /* free it into the hugepage allocator */
1812
1813         return 1;
1814 }
1815
1816 /*
1817  * Remove huge page from pool from next node to free.  Attempt to keep
1818  * persistent huge pages more or less balanced over allowed nodes.
1819  * This routine only 'removes' the hugetlb page.  The caller must make
1820  * an additional call to free the page to low level allocators.
1821  * Called with hugetlb_lock locked.
1822  */
1823 static struct page *remove_pool_huge_page(struct hstate *h,
1824                                                 nodemask_t *nodes_allowed,
1825                                                  bool acct_surplus)
1826 {
1827         int nr_nodes, node;
1828         struct page *page = NULL;
1829
1830         lockdep_assert_held(&hugetlb_lock);
1831         for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1832                 /*
1833                  * If we're returning unused surplus pages, only examine
1834                  * nodes with surplus pages.
1835                  */
1836                 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
1837                     !list_empty(&h->hugepage_freelists[node])) {
1838                         page = list_entry(h->hugepage_freelists[node].next,
1839                                           struct page, lru);
1840                         remove_hugetlb_page(h, page, acct_surplus);
1841                         break;
1842                 }
1843         }
1844
1845         return page;
1846 }
1847
1848 /*
1849  * Dissolve a given free hugepage into free buddy pages. This function does
1850  * nothing for in-use hugepages and non-hugepages.
1851  * This function returns values like below:
1852  *
1853  *  -ENOMEM: failed to allocate vmemmap pages to free the freed hugepages
1854  *           when the system is under memory pressure and the feature of
1855  *           freeing unused vmemmap pages associated with each hugetlb page
1856  *           is enabled.
1857  *  -EBUSY:  failed to dissolved free hugepages or the hugepage is in-use
1858  *           (allocated or reserved.)
1859  *       0:  successfully dissolved free hugepages or the page is not a
1860  *           hugepage (considered as already dissolved)
1861  */
1862 int dissolve_free_huge_page(struct page *page)
1863 {
1864         int rc = -EBUSY;
1865
1866 retry:
1867         /* Not to disrupt normal path by vainly holding hugetlb_lock */
1868         if (!PageHuge(page))
1869                 return 0;
1870
1871         spin_lock_irq(&hugetlb_lock);
1872         if (!PageHuge(page)) {
1873                 rc = 0;
1874                 goto out;
1875         }
1876
1877         if (!page_count(page)) {
1878                 struct page *head = compound_head(page);
1879                 struct hstate *h = page_hstate(head);
1880                 if (h->free_huge_pages - h->resv_huge_pages == 0)
1881                         goto out;
1882
1883                 /*
1884                  * We should make sure that the page is already on the free list
1885                  * when it is dissolved.
1886                  */
1887                 if (unlikely(!HPageFreed(head))) {
1888                         spin_unlock_irq(&hugetlb_lock);
1889                         cond_resched();
1890
1891                         /*
1892                          * Theoretically, we should return -EBUSY when we
1893                          * encounter this race. In fact, we have a chance
1894                          * to successfully dissolve the page if we do a
1895                          * retry. Because the race window is quite small.
1896                          * If we seize this opportunity, it is an optimization
1897                          * for increasing the success rate of dissolving page.
1898                          */
1899                         goto retry;
1900                 }
1901
1902                 remove_hugetlb_page(h, head, false);
1903                 h->max_huge_pages--;
1904                 spin_unlock_irq(&hugetlb_lock);
1905
1906                 /*
1907                  * Normally update_and_free_page will allocate required vmemmmap
1908                  * before freeing the page.  update_and_free_page will fail to
1909                  * free the page if it can not allocate required vmemmap.  We
1910                  * need to adjust max_huge_pages if the page is not freed.
1911                  * Attempt to allocate vmemmmap here so that we can take
1912                  * appropriate action on failure.
1913                  */
1914                 rc = alloc_huge_page_vmemmap(h, head);
1915                 if (!rc) {
1916                         /*
1917                          * Move PageHWPoison flag from head page to the raw
1918                          * error page, which makes any subpages rather than
1919                          * the error page reusable.
1920                          */
1921                         if (PageHWPoison(head) && page != head) {
1922                                 SetPageHWPoison(page);
1923                                 ClearPageHWPoison(head);
1924                         }
1925                         update_and_free_page(h, head, false);
1926                 } else {
1927                         spin_lock_irq(&hugetlb_lock);
1928                         add_hugetlb_page(h, head, false);
1929                         h->max_huge_pages++;
1930                         spin_unlock_irq(&hugetlb_lock);
1931                 }
1932
1933                 return rc;
1934         }
1935 out:
1936         spin_unlock_irq(&hugetlb_lock);
1937         return rc;
1938 }
1939
1940 /*
1941  * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
1942  * make specified memory blocks removable from the system.
1943  * Note that this will dissolve a free gigantic hugepage completely, if any
1944  * part of it lies within the given range.
1945  * Also note that if dissolve_free_huge_page() returns with an error, all
1946  * free hugepages that were dissolved before that error are lost.
1947  */
1948 int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
1949 {
1950         unsigned long pfn;
1951         struct page *page;
1952         int rc = 0;
1953
1954         if (!hugepages_supported())
1955                 return rc;
1956
1957         for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order) {
1958                 page = pfn_to_page(pfn);
1959                 rc = dissolve_free_huge_page(page);
1960                 if (rc)
1961                         break;
1962         }
1963
1964         return rc;
1965 }
1966
1967 /*
1968  * Allocates a fresh surplus page from the page allocator.
1969  */
1970 static struct page *alloc_surplus_huge_page(struct hstate *h, gfp_t gfp_mask,
1971                 int nid, nodemask_t *nmask)
1972 {
1973         struct page *page = NULL;
1974
1975         if (hstate_is_gigantic(h))
1976                 return NULL;
1977
1978         spin_lock_irq(&hugetlb_lock);
1979         if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages)
1980                 goto out_unlock;
1981         spin_unlock_irq(&hugetlb_lock);
1982
1983         page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
1984         if (!page)
1985                 return NULL;
1986
1987         spin_lock_irq(&hugetlb_lock);
1988         /*
1989          * We could have raced with the pool size change.
1990          * Double check that and simply deallocate the new page
1991          * if we would end up overcommiting the surpluses. Abuse
1992          * temporary page to workaround the nasty free_huge_page
1993          * codeflow
1994          */
1995         if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
1996                 SetHPageTemporary(page);
1997                 spin_unlock_irq(&hugetlb_lock);
1998                 put_page(page);
1999                 return NULL;
2000         } else {
2001                 h->surplus_huge_pages++;
2002                 h->surplus_huge_pages_node[page_to_nid(page)]++;
2003         }
2004
2005 out_unlock:
2006         spin_unlock_irq(&hugetlb_lock);
2007
2008         return page;
2009 }
2010
2011 static struct page *alloc_migrate_huge_page(struct hstate *h, gfp_t gfp_mask,
2012                                      int nid, nodemask_t *nmask)
2013 {
2014         struct page *page;
2015
2016         if (hstate_is_gigantic(h))
2017                 return NULL;
2018
2019         page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
2020         if (!page)
2021                 return NULL;
2022
2023         /*
2024          * We do not account these pages as surplus because they are only
2025          * temporary and will be released properly on the last reference
2026          */
2027         SetHPageTemporary(page);
2028
2029         return page;
2030 }
2031
2032 /*
2033  * Use the VMA's mpolicy to allocate a huge page from the buddy.
2034  */
2035 static
2036 struct page *alloc_buddy_huge_page_with_mpol(struct hstate *h,
2037                 struct vm_area_struct *vma, unsigned long addr)
2038 {
2039         struct page *page;
2040         struct mempolicy *mpol;
2041         gfp_t gfp_mask = htlb_alloc_mask(h);
2042         int nid;
2043         nodemask_t *nodemask;
2044
2045         nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
2046         page = alloc_surplus_huge_page(h, gfp_mask, nid, nodemask);
2047         mpol_cond_put(mpol);
2048
2049         return page;
2050 }
2051
2052 /* page migration callback function */
2053 struct page *alloc_huge_page_nodemask(struct hstate *h, int preferred_nid,
2054                 nodemask_t *nmask, gfp_t gfp_mask)
2055 {
2056         spin_lock_irq(&hugetlb_lock);
2057         if (h->free_huge_pages - h->resv_huge_pages > 0) {
2058                 struct page *page;
2059
2060                 page = dequeue_huge_page_nodemask(h, gfp_mask, preferred_nid, nmask);
2061                 if (page) {
2062                         spin_unlock_irq(&hugetlb_lock);
2063                         return page;
2064                 }
2065         }
2066         spin_unlock_irq(&hugetlb_lock);
2067
2068         return alloc_migrate_huge_page(h, gfp_mask, preferred_nid, nmask);
2069 }
2070
2071 /* mempolicy aware migration callback */
2072 struct page *alloc_huge_page_vma(struct hstate *h, struct vm_area_struct *vma,
2073                 unsigned long address)
2074 {
2075         struct mempolicy *mpol;
2076         nodemask_t *nodemask;
2077         struct page *page;
2078         gfp_t gfp_mask;
2079         int node;
2080
2081         gfp_mask = htlb_alloc_mask(h);
2082         node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
2083         page = alloc_huge_page_nodemask(h, node, nodemask, gfp_mask);
2084         mpol_cond_put(mpol);
2085
2086         return page;
2087 }
2088
2089 /*
2090  * Increase the hugetlb pool such that it can accommodate a reservation
2091  * of size 'delta'.
2092  */
2093 static int gather_surplus_pages(struct hstate *h, long delta)
2094         __must_hold(&hugetlb_lock)
2095 {
2096         struct list_head surplus_list;
2097         struct page *page, *tmp;
2098         int ret;
2099         long i;
2100         long needed, allocated;
2101         bool alloc_ok = true;
2102
2103         lockdep_assert_held(&hugetlb_lock);
2104         needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
2105         if (needed <= 0) {
2106                 h->resv_huge_pages += delta;
2107                 return 0;
2108         }
2109
2110         allocated = 0;
2111         INIT_LIST_HEAD(&surplus_list);
2112
2113         ret = -ENOMEM;
2114 retry:
2115         spin_unlock_irq(&hugetlb_lock);
2116         for (i = 0; i < needed; i++) {
2117                 page = alloc_surplus_huge_page(h, htlb_alloc_mask(h),
2118                                 NUMA_NO_NODE, NULL);
2119                 if (!page) {
2120                         alloc_ok = false;
2121                         break;
2122                 }
2123                 list_add(&page->lru, &surplus_list);
2124                 cond_resched();
2125         }
2126         allocated += i;
2127
2128         /*
2129          * After retaking hugetlb_lock, we need to recalculate 'needed'
2130          * because either resv_huge_pages or free_huge_pages may have changed.
2131          */
2132         spin_lock_irq(&hugetlb_lock);
2133         needed = (h->resv_huge_pages + delta) -
2134                         (h->free_huge_pages + allocated);
2135         if (needed > 0) {
2136                 if (alloc_ok)
2137                         goto retry;
2138                 /*
2139                  * We were not able to allocate enough pages to
2140                  * satisfy the entire reservation so we free what
2141                  * we've allocated so far.
2142                  */
2143                 goto free;
2144         }
2145         /*
2146          * The surplus_list now contains _at_least_ the number of extra pages
2147          * needed to accommodate the reservation.  Add the appropriate number
2148          * of pages to the hugetlb pool and free the extras back to the buddy
2149          * allocator.  Commit the entire reservation here to prevent another
2150          * process from stealing the pages as they are added to the pool but
2151          * before they are reserved.
2152          */
2153         needed += allocated;
2154         h->resv_huge_pages += delta;
2155         ret = 0;
2156
2157         /* Free the needed pages to the hugetlb pool */
2158         list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
2159                 int zeroed;
2160
2161                 if ((--needed) < 0)
2162                         break;
2163                 /*
2164                  * This page is now managed by the hugetlb allocator and has
2165                  * no users -- drop the buddy allocator's reference.
2166                  */
2167                 zeroed = put_page_testzero(page);
2168                 VM_BUG_ON_PAGE(!zeroed, page);
2169                 enqueue_huge_page(h, page);
2170         }
2171 free:
2172         spin_unlock_irq(&hugetlb_lock);
2173
2174         /* Free unnecessary surplus pages to the buddy allocator */
2175         list_for_each_entry_safe(page, tmp, &surplus_list, lru)
2176                 put_page(page);
2177         spin_lock_irq(&hugetlb_lock);
2178
2179         return ret;
2180 }
2181
2182 /*
2183  * This routine has two main purposes:
2184  * 1) Decrement the reservation count (resv_huge_pages) by the value passed
2185  *    in unused_resv_pages.  This corresponds to the prior adjustments made
2186  *    to the associated reservation map.
2187  * 2) Free any unused surplus pages that may have been allocated to satisfy
2188  *    the reservation.  As many as unused_resv_pages may be freed.
2189  */
2190 static void return_unused_surplus_pages(struct hstate *h,
2191                                         unsigned long unused_resv_pages)
2192 {
2193         unsigned long nr_pages;
2194         struct page *page;
2195         LIST_HEAD(page_list);
2196
2197         lockdep_assert_held(&hugetlb_lock);
2198         /* Uncommit the reservation */
2199         h->resv_huge_pages -= unused_resv_pages;
2200
2201         /* Cannot return gigantic pages currently */
2202         if (hstate_is_gigantic(h))
2203                 goto out;
2204
2205         /*
2206          * Part (or even all) of the reservation could have been backed
2207          * by pre-allocated pages. Only free surplus pages.
2208          */
2209         nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
2210
2211         /*
2212          * We want to release as many surplus pages as possible, spread
2213          * evenly across all nodes with memory. Iterate across these nodes
2214          * until we can no longer free unreserved surplus pages. This occurs
2215          * when the nodes with surplus pages have no free pages.
2216          * remove_pool_huge_page() will balance the freed pages across the
2217          * on-line nodes with memory and will handle the hstate accounting.
2218          */
2219         while (nr_pages--) {
2220                 page = remove_pool_huge_page(h, &node_states[N_MEMORY], 1);
2221                 if (!page)
2222                         goto out;
2223
2224                 list_add(&page->lru, &page_list);
2225         }
2226
2227 out:
2228         spin_unlock_irq(&hugetlb_lock);
2229         update_and_free_pages_bulk(h, &page_list);
2230         spin_lock_irq(&hugetlb_lock);
2231 }
2232
2233
2234 /*
2235  * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
2236  * are used by the huge page allocation routines to manage reservations.
2237  *
2238  * vma_needs_reservation is called to determine if the huge page at addr
2239  * within the vma has an associated reservation.  If a reservation is
2240  * needed, the value 1 is returned.  The caller is then responsible for
2241  * managing the global reservation and subpool usage counts.  After
2242  * the huge page has been allocated, vma_commit_reservation is called
2243  * to add the page to the reservation map.  If the page allocation fails,
2244  * the reservation must be ended instead of committed.  vma_end_reservation
2245  * is called in such cases.
2246  *
2247  * In the normal case, vma_commit_reservation returns the same value
2248  * as the preceding vma_needs_reservation call.  The only time this
2249  * is not the case is if a reserve map was changed between calls.  It
2250  * is the responsibility of the caller to notice the difference and
2251  * take appropriate action.
2252  *
2253  * vma_add_reservation is used in error paths where a reservation must
2254  * be restored when a newly allocated huge page must be freed.  It is
2255  * to be called after calling vma_needs_reservation to determine if a
2256  * reservation exists.
2257  *
2258  * vma_del_reservation is used in error paths where an entry in the reserve
2259  * map was created during huge page allocation and must be removed.  It is to
2260  * be called after calling vma_needs_reservation to determine if a reservation
2261  * exists.
2262  */
2263 enum vma_resv_mode {
2264         VMA_NEEDS_RESV,
2265         VMA_COMMIT_RESV,
2266         VMA_END_RESV,
2267         VMA_ADD_RESV,
2268         VMA_DEL_RESV,
2269 };
2270 static long __vma_reservation_common(struct hstate *h,
2271                                 struct vm_area_struct *vma, unsigned long addr,
2272                                 enum vma_resv_mode mode)
2273 {
2274         struct resv_map *resv;
2275         pgoff_t idx;
2276         long ret;
2277         long dummy_out_regions_needed;
2278
2279         resv = vma_resv_map(vma);
2280         if (!resv)
2281                 return 1;
2282
2283         idx = vma_hugecache_offset(h, vma, addr);
2284         switch (mode) {
2285         case VMA_NEEDS_RESV:
2286                 ret = region_chg(resv, idx, idx + 1, &dummy_out_regions_needed);
2287                 /* We assume that vma_reservation_* routines always operate on
2288                  * 1 page, and that adding to resv map a 1 page entry can only
2289                  * ever require 1 region.
2290                  */
2291                 VM_BUG_ON(dummy_out_regions_needed != 1);
2292                 break;
2293         case VMA_COMMIT_RESV:
2294                 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2295                 /* region_add calls of range 1 should never fail. */
2296                 VM_BUG_ON(ret < 0);
2297                 break;
2298         case VMA_END_RESV:
2299                 region_abort(resv, idx, idx + 1, 1);
2300                 ret = 0;
2301                 break;
2302         case VMA_ADD_RESV:
2303                 if (vma->vm_flags & VM_MAYSHARE) {
2304                         ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2305                         /* region_add calls of range 1 should never fail. */
2306                         VM_BUG_ON(ret < 0);
2307                 } else {
2308                         region_abort(resv, idx, idx + 1, 1);
2309                         ret = region_del(resv, idx, idx + 1);
2310                 }
2311                 break;
2312         case VMA_DEL_RESV:
2313                 if (vma->vm_flags & VM_MAYSHARE) {
2314                         region_abort(resv, idx, idx + 1, 1);
2315                         ret = region_del(resv, idx, idx + 1);
2316                 } else {
2317                         ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2318                         /* region_add calls of range 1 should never fail. */
2319                         VM_BUG_ON(ret < 0);
2320                 }
2321                 break;
2322         default:
2323                 BUG();
2324         }
2325
2326         if (vma->vm_flags & VM_MAYSHARE || mode == VMA_DEL_RESV)
2327                 return ret;
2328         /*
2329          * We know private mapping must have HPAGE_RESV_OWNER set.
2330          *
2331          * In most cases, reserves always exist for private mappings.
2332          * However, a file associated with mapping could have been
2333          * hole punched or truncated after reserves were consumed.
2334          * As subsequent fault on such a range will not use reserves.
2335          * Subtle - The reserve map for private mappings has the
2336          * opposite meaning than that of shared mappings.  If NO
2337          * entry is in the reserve map, it means a reservation exists.
2338          * If an entry exists in the reserve map, it means the
2339          * reservation has already been consumed.  As a result, the
2340          * return value of this routine is the opposite of the
2341          * value returned from reserve map manipulation routines above.
2342          */
2343         if (ret > 0)
2344                 return 0;
2345         if (ret == 0)
2346                 return 1;
2347         return ret;
2348 }
2349
2350 static long vma_needs_reservation(struct hstate *h,
2351                         struct vm_area_struct *vma, unsigned long addr)
2352 {
2353         return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
2354 }
2355
2356 static long vma_commit_reservation(struct hstate *h,
2357                         struct vm_area_struct *vma, unsigned long addr)
2358 {
2359         return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
2360 }
2361
2362 static void vma_end_reservation(struct hstate *h,
2363                         struct vm_area_struct *vma, unsigned long addr)
2364 {
2365         (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
2366 }
2367
2368 static long vma_add_reservation(struct hstate *h,
2369                         struct vm_area_struct *vma, unsigned long addr)
2370 {
2371         return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
2372 }
2373
2374 static long vma_del_reservation(struct hstate *h,
2375                         struct vm_area_struct *vma, unsigned long addr)
2376 {
2377         return __vma_reservation_common(h, vma, addr, VMA_DEL_RESV);
2378 }
2379
2380 /*
2381  * This routine is called to restore reservation information on error paths.
2382  * It should ONLY be called for pages allocated via alloc_huge_page(), and
2383  * the hugetlb mutex should remain held when calling this routine.
2384  *
2385  * It handles two specific cases:
2386  * 1) A reservation was in place and the page consumed the reservation.
2387  *    HPageRestoreReserve is set in the page.
2388  * 2) No reservation was in place for the page, so HPageRestoreReserve is
2389  *    not set.  However, alloc_huge_page always updates the reserve map.
2390  *
2391  * In case 1, free_huge_page later in the error path will increment the
2392  * global reserve count.  But, free_huge_page does not have enough context
2393  * to adjust the reservation map.  This case deals primarily with private
2394  * mappings.  Adjust the reserve map here to be consistent with global
2395  * reserve count adjustments to be made by free_huge_page.  Make sure the
2396  * reserve map indicates there is a reservation present.
2397  *
2398  * In case 2, simply undo reserve map modifications done by alloc_huge_page.
2399  */
2400 void restore_reserve_on_error(struct hstate *h, struct vm_area_struct *vma,
2401                         unsigned long address, struct page *page)
2402 {
2403         long rc = vma_needs_reservation(h, vma, address);
2404
2405         if (HPageRestoreReserve(page)) {
2406                 if (unlikely(rc < 0))
2407                         /*
2408                          * Rare out of memory condition in reserve map
2409                          * manipulation.  Clear HPageRestoreReserve so that
2410                          * global reserve count will not be incremented
2411                          * by free_huge_page.  This will make it appear
2412                          * as though the reservation for this page was
2413                          * consumed.  This may prevent the task from
2414                          * faulting in the page at a later time.  This
2415                          * is better than inconsistent global huge page
2416                          * accounting of reserve counts.
2417                          */
2418                         ClearHPageRestoreReserve(page);
2419                 else if (rc)
2420                         (void)vma_add_reservation(h, vma, address);
2421                 else
2422                         vma_end_reservation(h, vma, address);
2423         } else {
2424                 if (!rc) {
2425                         /*
2426                          * This indicates there is an entry in the reserve map
2427                          * added by alloc_huge_page.  We know it was added
2428                          * before the alloc_huge_page call, otherwise
2429                          * HPageRestoreReserve would be set on the page.
2430                          * Remove the entry so that a subsequent allocation
2431                          * does not consume a reservation.
2432                          */
2433                         rc = vma_del_reservation(h, vma, address);
2434                         if (rc < 0)
2435                                 /*
2436                                  * VERY rare out of memory condition.  Since
2437                                  * we can not delete the entry, set
2438                                  * HPageRestoreReserve so that the reserve
2439                                  * count will be incremented when the page
2440                                  * is freed.  This reserve will be consumed
2441                                  * on a subsequent allocation.
2442                                  */
2443                                 SetHPageRestoreReserve(page);
2444                 } else if (rc < 0) {
2445                         /*
2446                          * Rare out of memory condition from
2447                          * vma_needs_reservation call.  Memory allocation is
2448                          * only attempted if a new entry is needed.  Therefore,
2449                          * this implies there is not an entry in the
2450                          * reserve map.
2451                          *
2452                          * For shared mappings, no entry in the map indicates
2453                          * no reservation.  We are done.
2454                          */
2455                         if (!(vma->vm_flags & VM_MAYSHARE))
2456                                 /*
2457                                  * For private mappings, no entry indicates
2458                                  * a reservation is present.  Since we can
2459                                  * not add an entry, set SetHPageRestoreReserve
2460                                  * on the page so reserve count will be
2461                                  * incremented when freed.  This reserve will
2462                                  * be consumed on a subsequent allocation.
2463                                  */
2464                                 SetHPageRestoreReserve(page);
2465                 } else
2466                         /*
2467                          * No reservation present, do nothing
2468                          */
2469                          vma_end_reservation(h, vma, address);
2470         }
2471 }
2472
2473 /*
2474  * alloc_and_dissolve_huge_page - Allocate a new page and dissolve the old one
2475  * @h: struct hstate old page belongs to
2476  * @old_page: Old page to dissolve
2477  * @list: List to isolate the page in case we need to
2478  * Returns 0 on success, otherwise negated error.
2479  */
2480 static int alloc_and_dissolve_huge_page(struct hstate *h, struct page *old_page,
2481                                         struct list_head *list)
2482 {
2483         gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
2484         int nid = page_to_nid(old_page);
2485         struct page *new_page;
2486         int ret = 0;
2487
2488         /*
2489          * Before dissolving the page, we need to allocate a new one for the
2490          * pool to remain stable.  Here, we allocate the page and 'prep' it
2491          * by doing everything but actually updating counters and adding to
2492          * the pool.  This simplifies and let us do most of the processing
2493          * under the lock.
2494          */
2495         new_page = alloc_buddy_huge_page(h, gfp_mask, nid, NULL, NULL);
2496         if (!new_page)
2497                 return -ENOMEM;
2498         __prep_new_huge_page(h, new_page);
2499
2500 retry:
2501         spin_lock_irq(&hugetlb_lock);
2502         if (!PageHuge(old_page)) {
2503                 /*
2504                  * Freed from under us. Drop new_page too.
2505                  */
2506                 goto free_new;
2507         } else if (page_count(old_page)) {
2508                 /*
2509                  * Someone has grabbed the page, try to isolate it here.
2510                  * Fail with -EBUSY if not possible.
2511                  */
2512                 spin_unlock_irq(&hugetlb_lock);
2513                 if (!isolate_huge_page(old_page, list))
2514                         ret = -EBUSY;
2515                 spin_lock_irq(&hugetlb_lock);
2516                 goto free_new;
2517         } else if (!HPageFreed(old_page)) {
2518                 /*
2519                  * Page's refcount is 0 but it has not been enqueued in the
2520                  * freelist yet. Race window is small, so we can succeed here if
2521                  * we retry.
2522                  */
2523                 spin_unlock_irq(&hugetlb_lock);
2524                 cond_resched();
2525                 goto retry;
2526         } else {
2527                 /*
2528                  * Ok, old_page is still a genuine free hugepage. Remove it from
2529                  * the freelist and decrease the counters. These will be
2530                  * incremented again when calling __prep_account_new_huge_page()
2531                  * and enqueue_huge_page() for new_page. The counters will remain
2532                  * stable since this happens under the lock.
2533                  */
2534                 remove_hugetlb_page(h, old_page, false);
2535
2536                 /*
2537                  * Reference count trick is needed because allocator gives us
2538                  * referenced page but the pool requires pages with 0 refcount.
2539                  */
2540                 __prep_account_new_huge_page(h, nid);
2541                 page_ref_dec(new_page);
2542                 enqueue_huge_page(h, new_page);
2543
2544                 /*
2545                  * Pages have been replaced, we can safely free the old one.
2546                  */
2547                 spin_unlock_irq(&hugetlb_lock);
2548                 update_and_free_page(h, old_page, false);
2549         }
2550
2551         return ret;
2552
2553 free_new:
2554         spin_unlock_irq(&hugetlb_lock);
2555         update_and_free_page(h, new_page, false);
2556
2557         return ret;
2558 }
2559
2560 int isolate_or_dissolve_huge_page(struct page *page, struct list_head *list)
2561 {
2562         struct hstate *h;
2563         struct page *head;
2564         int ret = -EBUSY;
2565
2566         /*
2567          * The page might have been dissolved from under our feet, so make sure
2568          * to carefully check the state under the lock.
2569          * Return success when racing as if we dissolved the page ourselves.
2570          */
2571         spin_lock_irq(&hugetlb_lock);
2572         if (PageHuge(page)) {
2573                 head = compound_head(page);
2574                 h = page_hstate(head);
2575         } else {
2576                 spin_unlock_irq(&hugetlb_lock);
2577                 return 0;
2578         }
2579         spin_unlock_irq(&hugetlb_lock);
2580
2581         /*
2582          * Fence off gigantic pages as there is a cyclic dependency between
2583          * alloc_contig_range and them. Return -ENOMEM as this has the effect
2584          * of bailing out right away without further retrying.
2585          */
2586         if (hstate_is_gigantic(h))
2587                 return -ENOMEM;
2588
2589         if (page_count(head) && isolate_huge_page(head, list))
2590                 ret = 0;
2591         else if (!page_count(head))
2592                 ret = alloc_and_dissolve_huge_page(h, head, list);
2593
2594         return ret;
2595 }
2596
2597 struct page *alloc_huge_page(struct vm_area_struct *vma,
2598                                     unsigned long addr, int avoid_reserve)
2599 {
2600         struct hugepage_subpool *spool = subpool_vma(vma);
2601         struct hstate *h = hstate_vma(vma);
2602         struct page *page;
2603         long map_chg, map_commit;
2604         long gbl_chg;
2605         int ret, idx;
2606         struct hugetlb_cgroup *h_cg;
2607         bool deferred_reserve;
2608
2609         idx = hstate_index(h);
2610         /*
2611          * Examine the region/reserve map to determine if the process
2612          * has a reservation for the page to be allocated.  A return
2613          * code of zero indicates a reservation exists (no change).
2614          */
2615         map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
2616         if (map_chg < 0)
2617                 return ERR_PTR(-ENOMEM);
2618
2619         /*
2620          * Processes that did not create the mapping will have no
2621          * reserves as indicated by the region/reserve map. Check
2622          * that the allocation will not exceed the subpool limit.
2623          * Allocations for MAP_NORESERVE mappings also need to be
2624          * checked against any subpool limit.
2625          */
2626         if (map_chg || avoid_reserve) {
2627                 gbl_chg = hugepage_subpool_get_pages(spool, 1);
2628                 if (gbl_chg < 0) {
2629                         vma_end_reservation(h, vma, addr);
2630                         return ERR_PTR(-ENOSPC);
2631                 }
2632
2633                 /*
2634                  * Even though there was no reservation in the region/reserve
2635                  * map, there could be reservations associated with the
2636                  * subpool that can be used.  This would be indicated if the
2637                  * return value of hugepage_subpool_get_pages() is zero.
2638                  * However, if avoid_reserve is specified we still avoid even
2639                  * the subpool reservations.
2640                  */
2641                 if (avoid_reserve)
2642                         gbl_chg = 1;
2643         }
2644
2645         /* If this allocation is not consuming a reservation, charge it now.
2646          */
2647         deferred_reserve = map_chg || avoid_reserve;
2648         if (deferred_reserve) {
2649                 ret = hugetlb_cgroup_charge_cgroup_rsvd(
2650                         idx, pages_per_huge_page(h), &h_cg);
2651                 if (ret)
2652                         goto out_subpool_put;
2653         }
2654
2655         ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
2656         if (ret)
2657                 goto out_uncharge_cgroup_reservation;
2658
2659         spin_lock_irq(&hugetlb_lock);
2660         /*
2661          * glb_chg is passed to indicate whether or not a page must be taken
2662          * from the global free pool (global change).  gbl_chg == 0 indicates
2663          * a reservation exists for the allocation.
2664          */
2665         page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
2666         if (!page) {
2667                 spin_unlock_irq(&hugetlb_lock);
2668                 page = alloc_buddy_huge_page_with_mpol(h, vma, addr);
2669                 if (!page)
2670                         goto out_uncharge_cgroup;
2671                 if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
2672                         SetHPageRestoreReserve(page);
2673                         h->resv_huge_pages--;
2674                 }
2675                 spin_lock_irq(&hugetlb_lock);
2676                 list_add(&page->lru, &h->hugepage_activelist);
2677                 /* Fall through */
2678         }
2679         hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
2680         /* If allocation is not consuming a reservation, also store the
2681          * hugetlb_cgroup pointer on the page.
2682          */
2683         if (deferred_reserve) {
2684                 hugetlb_cgroup_commit_charge_rsvd(idx, pages_per_huge_page(h),
2685                                                   h_cg, page);
2686         }
2687
2688         spin_unlock_irq(&hugetlb_lock);
2689
2690         hugetlb_set_page_subpool(page, spool);
2691
2692         map_commit = vma_commit_reservation(h, vma, addr);
2693         if (unlikely(map_chg > map_commit)) {
2694                 /*
2695                  * The page was added to the reservation map between
2696                  * vma_needs_reservation and vma_commit_reservation.
2697                  * This indicates a race with hugetlb_reserve_pages.
2698                  * Adjust for the subpool count incremented above AND
2699                  * in hugetlb_reserve_pages for the same page.  Also,
2700                  * the reservation count added in hugetlb_reserve_pages
2701                  * no longer applies.
2702                  */
2703                 long rsv_adjust;
2704
2705                 rsv_adjust = hugepage_subpool_put_pages(spool, 1);
2706                 hugetlb_acct_memory(h, -rsv_adjust);
2707                 if (deferred_reserve)
2708                         hugetlb_cgroup_uncharge_page_rsvd(hstate_index(h),
2709                                         pages_per_huge_page(h), page);
2710         }
2711         return page;
2712
2713 out_uncharge_cgroup:
2714         hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
2715 out_uncharge_cgroup_reservation:
2716         if (deferred_reserve)
2717                 hugetlb_cgroup_uncharge_cgroup_rsvd(idx, pages_per_huge_page(h),
2718                                                     h_cg);
2719 out_subpool_put:
2720         if (map_chg || avoid_reserve)
2721                 hugepage_subpool_put_pages(spool, 1);
2722         vma_end_reservation(h, vma, addr);
2723         return ERR_PTR(-ENOSPC);
2724 }
2725
2726 int alloc_bootmem_huge_page(struct hstate *h)
2727         __attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
2728 int __alloc_bootmem_huge_page(struct hstate *h)
2729 {
2730         struct huge_bootmem_page *m;
2731         int nr_nodes, node;
2732
2733         for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
2734                 void *addr;
2735
2736                 addr = memblock_alloc_try_nid_raw(
2737                                 huge_page_size(h), huge_page_size(h),
2738                                 0, MEMBLOCK_ALLOC_ACCESSIBLE, node);
2739                 if (addr) {
2740                         /*
2741                          * Use the beginning of the huge page to store the
2742                          * huge_bootmem_page struct (until gather_bootmem
2743                          * puts them into the mem_map).
2744                          */
2745                         m = addr;
2746                         goto found;
2747                 }
2748         }
2749         return 0;
2750
2751 found:
2752         BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h)));
2753         /* Put them into a private list first because mem_map is not up yet */
2754         INIT_LIST_HEAD(&m->list);
2755         list_add(&m->list, &huge_boot_pages);
2756         m->hstate = h;
2757         return 1;
2758 }
2759
2760 /*
2761  * Put bootmem huge pages into the standard lists after mem_map is up.
2762  * Note: This only applies to gigantic (order > MAX_ORDER) pages.
2763  */
2764 static void __init gather_bootmem_prealloc(void)
2765 {
2766         struct huge_bootmem_page *m;
2767
2768         list_for_each_entry(m, &huge_boot_pages, list) {
2769                 struct page *page = virt_to_page(m);
2770                 struct hstate *h = m->hstate;
2771
2772                 VM_BUG_ON(!hstate_is_gigantic(h));
2773                 WARN_ON(page_count(page) != 1);
2774                 prep_compound_gigantic_page(page, huge_page_order(h));
2775                 WARN_ON(PageReserved(page));
2776                 prep_new_huge_page(h, page, page_to_nid(page));
2777                 put_page(page); /* free it into the hugepage allocator */
2778
2779                 /*
2780                  * We need to restore the 'stolen' pages to totalram_pages
2781                  * in order to fix confusing memory reports from free(1) and
2782                  * other side-effects, like CommitLimit going negative.
2783                  */
2784                 adjust_managed_page_count(page, pages_per_huge_page(h));
2785                 cond_resched();
2786         }
2787 }
2788
2789 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
2790 {
2791         unsigned long i;
2792         nodemask_t *node_alloc_noretry;
2793
2794         if (!hstate_is_gigantic(h)) {
2795                 /*
2796                  * Bit mask controlling how hard we retry per-node allocations.
2797                  * Ignore errors as lower level routines can deal with
2798                  * node_alloc_noretry == NULL.  If this kmalloc fails at boot
2799                  * time, we are likely in bigger trouble.
2800                  */
2801                 node_alloc_noretry = kmalloc(sizeof(*node_alloc_noretry),
2802                                                 GFP_KERNEL);
2803         } else {
2804                 /* allocations done at boot time */
2805                 node_alloc_noretry = NULL;
2806         }
2807
2808         /* bit mask controlling how hard we retry per-node allocations */
2809         if (node_alloc_noretry)
2810                 nodes_clear(*node_alloc_noretry);
2811
2812         for (i = 0; i < h->max_huge_pages; ++i) {
2813                 if (hstate_is_gigantic(h)) {
2814                         if (hugetlb_cma_size) {
2815                                 pr_warn_once("HugeTLB: hugetlb_cma is enabled, skip boot time allocation\n");
2816                                 goto free;
2817                         }
2818                         if (!alloc_bootmem_huge_page(h))
2819                                 break;
2820                 } else if (!alloc_pool_huge_page(h,
2821                                          &node_states[N_MEMORY],
2822                                          node_alloc_noretry))
2823                         break;
2824                 cond_resched();
2825         }
2826         if (i < h->max_huge_pages) {
2827                 char buf[32];
2828
2829                 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
2830                 pr_warn("HugeTLB: allocating %lu of page size %s failed.  Only allocated %lu hugepages.\n",
2831                         h->max_huge_pages, buf, i);
2832                 h->max_huge_pages = i;
2833         }
2834 free:
2835         kfree(node_alloc_noretry);
2836 }
2837
2838 static void __init hugetlb_init_hstates(void)
2839 {
2840         struct hstate *h;
2841
2842         for_each_hstate(h) {
2843                 if (minimum_order > huge_page_order(h))
2844                         minimum_order = huge_page_order(h);
2845
2846                 /* oversize hugepages were init'ed in early boot */
2847                 if (!hstate_is_gigantic(h))
2848                         hugetlb_hstate_alloc_pages(h);
2849         }
2850         VM_BUG_ON(minimum_order == UINT_MAX);
2851 }
2852
2853 static void __init report_hugepages(void)
2854 {
2855         struct hstate *h;
2856
2857         for_each_hstate(h) {
2858                 char buf[32];
2859
2860                 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
2861                 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
2862                         buf, h->free_huge_pages);
2863         }
2864 }
2865
2866 #ifdef CONFIG_HIGHMEM
2867 static void try_to_free_low(struct hstate *h, unsigned long count,
2868                                                 nodemask_t *nodes_allowed)
2869 {
2870         int i;
2871         LIST_HEAD(page_list);
2872
2873         lockdep_assert_held(&hugetlb_lock);
2874         if (hstate_is_gigantic(h))
2875                 return;
2876
2877         /*
2878          * Collect pages to be freed on a list, and free after dropping lock
2879          */
2880         for_each_node_mask(i, *nodes_allowed) {
2881                 struct page *page, *next;
2882                 struct list_head *freel = &h->hugepage_freelists[i];
2883                 list_for_each_entry_safe(page, next, freel, lru) {
2884                         if (count >= h->nr_huge_pages)
2885                                 goto out;
2886                         if (PageHighMem(page))
2887                                 continue;
2888                         remove_hugetlb_page(h, page, false);
2889                         list_add(&page->lru, &page_list);
2890                 }
2891         }
2892
2893 out:
2894         spin_unlock_irq(&hugetlb_lock);
2895         update_and_free_pages_bulk(h, &page_list);
2896         spin_lock_irq(&hugetlb_lock);
2897 }
2898 #else
2899 static inline void try_to_free_low(struct hstate *h, unsigned long count,
2900                                                 nodemask_t *nodes_allowed)
2901 {
2902 }
2903 #endif
2904
2905 /*
2906  * Increment or decrement surplus_huge_pages.  Keep node-specific counters
2907  * balanced by operating on them in a round-robin fashion.
2908  * Returns 1 if an adjustment was made.
2909  */
2910 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
2911                                 int delta)
2912 {
2913         int nr_nodes, node;
2914
2915         lockdep_assert_held(&hugetlb_lock);
2916         VM_BUG_ON(delta != -1 && delta != 1);
2917
2918         if (delta < 0) {
2919                 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
2920                         if (h->surplus_huge_pages_node[node])
2921                                 goto found;
2922                 }
2923         } else {
2924                 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2925                         if (h->surplus_huge_pages_node[node] <
2926                                         h->nr_huge_pages_node[node])
2927                                 goto found;
2928                 }
2929         }
2930         return 0;
2931
2932 found:
2933         h->surplus_huge_pages += delta;
2934         h->surplus_huge_pages_node[node] += delta;
2935         return 1;
2936 }
2937
2938 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
2939 static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid,
2940                               nodemask_t *nodes_allowed)
2941 {
2942         unsigned long min_count, ret;
2943         struct page *page;
2944         LIST_HEAD(page_list);
2945         NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL);
2946
2947         /*
2948          * Bit mask controlling how hard we retry per-node allocations.
2949          * If we can not allocate the bit mask, do not attempt to allocate
2950          * the requested huge pages.
2951          */
2952         if (node_alloc_noretry)
2953                 nodes_clear(*node_alloc_noretry);
2954         else
2955                 return -ENOMEM;
2956
2957         /*
2958          * resize_lock mutex prevents concurrent adjustments to number of
2959          * pages in hstate via the proc/sysfs interfaces.
2960          */
2961         mutex_lock(&h->resize_lock);
2962         flush_free_hpage_work(h);
2963         spin_lock_irq(&hugetlb_lock);
2964
2965         /*
2966          * Check for a node specific request.
2967          * Changing node specific huge page count may require a corresponding
2968          * change to the global count.  In any case, the passed node mask
2969          * (nodes_allowed) will restrict alloc/free to the specified node.
2970          */
2971         if (nid != NUMA_NO_NODE) {
2972                 unsigned long old_count = count;
2973
2974                 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
2975                 /*
2976                  * User may have specified a large count value which caused the
2977                  * above calculation to overflow.  In this case, they wanted
2978                  * to allocate as many huge pages as possible.  Set count to
2979                  * largest possible value to align with their intention.
2980                  */
2981                 if (count < old_count)
2982                         count = ULONG_MAX;
2983         }
2984
2985         /*
2986          * Gigantic pages runtime allocation depend on the capability for large
2987          * page range allocation.
2988          * If the system does not provide this feature, return an error when
2989          * the user tries to allocate gigantic pages but let the user free the
2990          * boottime allocated gigantic pages.
2991          */
2992         if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) {
2993                 if (count > persistent_huge_pages(h)) {
2994                         spin_unlock_irq(&hugetlb_lock);
2995                         mutex_unlock(&h->resize_lock);
2996                         NODEMASK_FREE(node_alloc_noretry);
2997                         return -EINVAL;
2998                 }
2999                 /* Fall through to decrease pool */
3000         }
3001
3002         /*
3003          * Increase the pool size
3004          * First take pages out of surplus state.  Then make up the
3005          * remaining difference by allocating fresh huge pages.
3006          *
3007          * We might race with alloc_surplus_huge_page() here and be unable
3008          * to convert a surplus huge page to a normal huge page. That is
3009          * not critical, though, it just means the overall size of the
3010          * pool might be one hugepage larger than it needs to be, but
3011          * within all the constraints specified by the sysctls.
3012          */
3013         while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
3014                 if (!adjust_pool_surplus(h, nodes_allowed, -1))
3015                         break;
3016         }
3017
3018         while (count > persistent_huge_pages(h)) {
3019                 /*
3020                  * If this allocation races such that we no longer need the
3021                  * page, free_huge_page will handle it by freeing the page
3022                  * and reducing the surplus.
3023                  */
3024                 spin_unlock_irq(&hugetlb_lock);
3025
3026                 /* yield cpu to avoid soft lockup */
3027                 cond_resched();
3028
3029                 ret = alloc_pool_huge_page(h, nodes_allowed,
3030                                                 node_alloc_noretry);
3031                 spin_lock_irq(&hugetlb_lock);
3032                 if (!ret)
3033                         goto out;
3034
3035                 /* Bail for signals. Probably ctrl-c from user */
3036                 if (signal_pending(current))
3037                         goto out;
3038         }
3039
3040         /*
3041          * Decrease the pool size
3042          * First return free pages to the buddy allocator (being careful
3043          * to keep enough around to satisfy reservations).  Then place
3044          * pages into surplus state as needed so the pool will shrink
3045          * to the desired size as pages become free.
3046          *
3047          * By placing pages into the surplus state independent of the
3048          * overcommit value, we are allowing the surplus pool size to
3049          * exceed overcommit. There are few sane options here. Since
3050          * alloc_surplus_huge_page() is checking the global counter,
3051          * though, we'll note that we're not allowed to exceed surplus
3052          * and won't grow the pool anywhere else. Not until one of the
3053          * sysctls are changed, or the surplus pages go out of use.
3054          */
3055         min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
3056         min_count = max(count, min_count);
3057         try_to_free_low(h, min_count, nodes_allowed);
3058
3059         /*
3060          * Collect pages to be removed on list without dropping lock
3061          */
3062         while (min_count < persistent_huge_pages(h)) {
3063                 page = remove_pool_huge_page(h, nodes_allowed, 0);
3064                 if (!page)
3065                         break;
3066
3067                 list_add(&page->lru, &page_list);
3068         }
3069         /* free the pages after dropping lock */
3070         spin_unlock_irq(&hugetlb_lock);
3071         update_and_free_pages_bulk(h, &page_list);
3072         flush_free_hpage_work(h);
3073         spin_lock_irq(&hugetlb_lock);
3074
3075         while (count < persistent_huge_pages(h)) {
3076                 if (!adjust_pool_surplus(h, nodes_allowed, 1))
3077                         break;
3078         }
3079 out:
3080         h->max_huge_pages = persistent_huge_pages(h);
3081         spin_unlock_irq(&hugetlb_lock);
3082         mutex_unlock(&h->resize_lock);
3083
3084         NODEMASK_FREE(node_alloc_noretry);
3085
3086         return 0;
3087 }
3088
3089 #define HSTATE_ATTR_RO(_name) \
3090         static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
3091
3092 #define HSTATE_ATTR(_name) \
3093         static struct kobj_attribute _name##_attr = \
3094                 __ATTR(_name, 0644, _name##_show, _name##_store)
3095
3096 static struct kobject *hugepages_kobj;
3097 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
3098
3099 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
3100
3101 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
3102 {
3103         int i;
3104
3105         for (i = 0; i < HUGE_MAX_HSTATE; i++)
3106                 if (hstate_kobjs[i] == kobj) {
3107                         if (nidp)
3108                                 *nidp = NUMA_NO_NODE;
3109                         return &hstates[i];
3110                 }
3111
3112         return kobj_to_node_hstate(kobj, nidp);
3113 }
3114
3115 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
3116                                         struct kobj_attribute *attr, char *buf)
3117 {
3118         struct hstate *h;
3119         unsigned long nr_huge_pages;
3120         int nid;
3121
3122         h = kobj_to_hstate(kobj, &nid);
3123         if (nid == NUMA_NO_NODE)
3124                 nr_huge_pages = h->nr_huge_pages;
3125         else
3126                 nr_huge_pages = h->nr_huge_pages_node[nid];
3127
3128         return sysfs_emit(buf, "%lu\n", nr_huge_pages);
3129 }
3130
3131 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
3132                                            struct hstate *h, int nid,
3133                                            unsigned long count, size_t len)
3134 {
3135         int err;
3136         nodemask_t nodes_allowed, *n_mask;
3137
3138         if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
3139                 return -EINVAL;
3140
3141         if (nid == NUMA_NO_NODE) {
3142                 /*
3143                  * global hstate attribute
3144                  */
3145                 if (!(obey_mempolicy &&
3146                                 init_nodemask_of_mempolicy(&nodes_allowed)))
3147                         n_mask = &node_states[N_MEMORY];
3148                 else
3149                         n_mask = &nodes_allowed;
3150         } else {
3151                 /*
3152                  * Node specific request.  count adjustment happens in
3153                  * set_max_huge_pages() after acquiring hugetlb_lock.
3154                  */
3155                 init_nodemask_of_node(&nodes_allowed, nid);
3156                 n_mask = &nodes_allowed;
3157         }
3158
3159         err = set_max_huge_pages(h, count, nid, n_mask);
3160
3161         return err ? err : len;
3162 }
3163
3164 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
3165                                          struct kobject *kobj, const char *buf,
3166                                          size_t len)
3167 {
3168         struct hstate *h;
3169         unsigned long count;
3170         int nid;
3171         int err;
3172
3173         err = kstrtoul(buf, 10, &count);
3174         if (err)
3175                 return err;
3176
3177         h = kobj_to_hstate(kobj, &nid);
3178         return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
3179 }
3180
3181 static ssize_t nr_hugepages_show(struct kobject *kobj,
3182                                        struct kobj_attribute *attr, char *buf)
3183 {
3184         return nr_hugepages_show_common(kobj, attr, buf);
3185 }
3186
3187 static ssize_t nr_hugepages_store(struct kobject *kobj,
3188                struct kobj_attribute *attr, const char *buf, size_t len)
3189 {
3190         return nr_hugepages_store_common(false, kobj, buf, len);
3191 }
3192 HSTATE_ATTR(nr_hugepages);
3193
3194 #ifdef CONFIG_NUMA
3195
3196 /*
3197  * hstate attribute for optionally mempolicy-based constraint on persistent
3198  * huge page alloc/free.
3199  */
3200 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
3201                                            struct kobj_attribute *attr,
3202                                            char *buf)
3203 {
3204         return nr_hugepages_show_common(kobj, attr, buf);
3205 }
3206
3207 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
3208                struct kobj_attribute *attr, const char *buf, size_t len)
3209 {
3210         return nr_hugepages_store_common(true, kobj, buf, len);
3211 }
3212 HSTATE_ATTR(nr_hugepages_mempolicy);
3213 #endif
3214
3215
3216 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
3217                                         struct kobj_attribute *attr, char *buf)
3218 {
3219         struct hstate *h = kobj_to_hstate(kobj, NULL);
3220         return sysfs_emit(buf, "%lu\n", h->nr_overcommit_huge_pages);
3221 }
3222
3223 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
3224                 struct kobj_attribute *attr, const char *buf, size_t count)
3225 {
3226         int err;
3227         unsigned long input;
3228         struct hstate *h = kobj_to_hstate(kobj, NULL);
3229
3230         if (hstate_is_gigantic(h))
3231                 return -EINVAL;
3232
3233         err = kstrtoul(buf, 10, &input);
3234         if (err)
3235                 return err;
3236
3237         spin_lock_irq(&hugetlb_lock);
3238         h->nr_overcommit_huge_pages = input;
3239         spin_unlock_irq(&hugetlb_lock);
3240
3241         return count;
3242 }
3243 HSTATE_ATTR(nr_overcommit_hugepages);
3244
3245 static ssize_t free_hugepages_show(struct kobject *kobj,
3246                                         struct kobj_attribute *attr, char *buf)
3247 {
3248         struct hstate *h;
3249         unsigned long free_huge_pages;
3250         int nid;
3251
3252         h = kobj_to_hstate(kobj, &nid);
3253         if (nid == NUMA_NO_NODE)
3254                 free_huge_pages = h->free_huge_pages;
3255         else
3256                 free_huge_pages = h->free_huge_pages_node[nid];
3257
3258         return sysfs_emit(buf, "%lu\n", free_huge_pages);
3259 }
3260 HSTATE_ATTR_RO(free_hugepages);
3261
3262 static ssize_t resv_hugepages_show(struct kobject *kobj,
3263                                         struct kobj_attribute *attr, char *buf)
3264 {
3265         struct hstate *h = kobj_to_hstate(kobj, NULL);
3266         return sysfs_emit(buf, "%lu\n", h->resv_huge_pages);
3267 }
3268 HSTATE_ATTR_RO(resv_hugepages);
3269
3270 static ssize_t surplus_hugepages_show(struct kobject *kobj,
3271                                         struct kobj_attribute *attr, char *buf)
3272 {
3273         struct hstate *h;
3274         unsigned long surplus_huge_pages;
3275         int nid;
3276
3277         h = kobj_to_hstate(kobj, &nid);
3278         if (nid == NUMA_NO_NODE)
3279                 surplus_huge_pages = h->surplus_huge_pages;
3280         else
3281                 surplus_huge_pages = h->surplus_huge_pages_node[nid];
3282
3283         return sysfs_emit(buf, "%lu\n", surplus_huge_pages);
3284 }
3285 HSTATE_ATTR_RO(surplus_hugepages);
3286
3287 static struct attribute *hstate_attrs[] = {
3288         &nr_hugepages_attr.attr,
3289         &nr_overcommit_hugepages_attr.attr,
3290         &free_hugepages_attr.attr,
3291         &resv_hugepages_attr.attr,
3292         &surplus_hugepages_attr.attr,
3293 #ifdef CONFIG_NUMA
3294         &nr_hugepages_mempolicy_attr.attr,
3295 #endif
3296         NULL,
3297 };
3298
3299 static const struct attribute_group hstate_attr_group = {
3300         .attrs = hstate_attrs,
3301 };
3302
3303 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
3304                                     struct kobject **hstate_kobjs,
3305                                     const struct attribute_group *hstate_attr_group)
3306 {
3307         int retval;
3308         int hi = hstate_index(h);
3309
3310         hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
3311         if (!hstate_kobjs[hi])
3312                 return -ENOMEM;
3313
3314         retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
3315         if (retval) {
3316                 kobject_put(hstate_kobjs[hi]);
3317                 hstate_kobjs[hi] = NULL;
3318         }
3319
3320         return retval;
3321 }
3322
3323 static void __init hugetlb_sysfs_init(void)
3324 {
3325         struct hstate *h;
3326         int err;
3327
3328         hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
3329         if (!hugepages_kobj)
3330                 return;
3331
3332         for_each_hstate(h) {
3333                 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
3334                                          hstate_kobjs, &hstate_attr_group);
3335                 if (err)
3336                         pr_err("HugeTLB: Unable to add hstate %s", h->name);
3337         }
3338 }
3339
3340 #ifdef CONFIG_NUMA
3341
3342 /*
3343  * node_hstate/s - associate per node hstate attributes, via their kobjects,
3344  * with node devices in node_devices[] using a parallel array.  The array
3345  * index of a node device or _hstate == node id.
3346  * This is here to avoid any static dependency of the node device driver, in
3347  * the base kernel, on the hugetlb module.
3348  */
3349 struct node_hstate {
3350         struct kobject          *hugepages_kobj;
3351         struct kobject          *hstate_kobjs[HUGE_MAX_HSTATE];
3352 };
3353 static struct node_hstate node_hstates[MAX_NUMNODES];
3354
3355 /*
3356  * A subset of global hstate attributes for node devices
3357  */
3358 static struct attribute *per_node_hstate_attrs[] = {
3359         &nr_hugepages_attr.attr,
3360         &free_hugepages_attr.attr,
3361         &surplus_hugepages_attr.attr,
3362         NULL,
3363 };
3364
3365 static const struct attribute_group per_node_hstate_attr_group = {
3366         .attrs = per_node_hstate_attrs,
3367 };
3368
3369 /*
3370  * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
3371  * Returns node id via non-NULL nidp.
3372  */
3373 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
3374 {
3375         int nid;
3376
3377         for (nid = 0; nid < nr_node_ids; nid++) {
3378                 struct node_hstate *nhs = &node_hstates[nid];
3379                 int i;
3380                 for (i = 0; i < HUGE_MAX_HSTATE; i++)
3381                         if (nhs->hstate_kobjs[i] == kobj) {
3382                                 if (nidp)
3383                                         *nidp = nid;
3384                                 return &hstates[i];
3385                         }
3386         }
3387
3388         BUG();
3389         return NULL;
3390 }
3391
3392 /*
3393  * Unregister hstate attributes from a single node device.
3394  * No-op if no hstate attributes attached.
3395  */
3396 static void hugetlb_unregister_node(struct node *node)
3397 {
3398         struct hstate *h;
3399         struct node_hstate *nhs = &node_hstates[node->dev.id];
3400
3401         if (!nhs->hugepages_kobj)
3402                 return;         /* no hstate attributes */
3403
3404         for_each_hstate(h) {
3405                 int idx = hstate_index(h);
3406                 if (nhs->hstate_kobjs[idx]) {
3407                         kobject_put(nhs->hstate_kobjs[idx]);
3408                         nhs->hstate_kobjs[idx] = NULL;
3409                 }
3410         }
3411
3412         kobject_put(nhs->hugepages_kobj);
3413         nhs->hugepages_kobj = NULL;
3414 }
3415
3416
3417 /*
3418  * Register hstate attributes for a single node device.
3419  * No-op if attributes already registered.
3420  */
3421 static void hugetlb_register_node(struct node *node)
3422 {
3423         struct hstate *h;
3424         struct node_hstate *nhs = &node_hstates[node->dev.id];
3425         int err;
3426
3427         if (nhs->hugepages_kobj)
3428                 return;         /* already allocated */
3429
3430         nhs->hugepages_kobj = kobject_create_and_add("hugepages",
3431                                                         &node->dev.kobj);
3432         if (!nhs->hugepages_kobj)
3433                 return;
3434
3435         for_each_hstate(h) {
3436                 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
3437                                                 nhs->hstate_kobjs,
3438                                                 &per_node_hstate_attr_group);
3439                 if (err) {
3440                         pr_err("HugeTLB: Unable to add hstate %s for node %d\n",
3441                                 h->name, node->dev.id);
3442                         hugetlb_unregister_node(node);
3443                         break;
3444                 }
3445         }
3446 }
3447
3448 /*
3449  * hugetlb init time:  register hstate attributes for all registered node
3450  * devices of nodes that have memory.  All on-line nodes should have
3451  * registered their associated device by this time.
3452  */
3453 static void __init hugetlb_register_all_nodes(void)
3454 {
3455         int nid;
3456
3457         for_each_node_state(nid, N_MEMORY) {
3458                 struct node *node = node_devices[nid];
3459                 if (node->dev.id == nid)
3460                         hugetlb_register_node(node);
3461         }
3462
3463         /*
3464          * Let the node device driver know we're here so it can
3465          * [un]register hstate attributes on node hotplug.
3466          */
3467         register_hugetlbfs_with_node(hugetlb_register_node,
3468                                      hugetlb_unregister_node);
3469 }
3470 #else   /* !CONFIG_NUMA */
3471
3472 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
3473 {
3474         BUG();
3475         if (nidp)
3476                 *nidp = -1;
3477         return NULL;
3478 }
3479
3480 static void hugetlb_register_all_nodes(void) { }
3481
3482 #endif
3483
3484 static int __init hugetlb_init(void)
3485 {
3486         int i;
3487
3488         BUILD_BUG_ON(sizeof_field(struct page, private) * BITS_PER_BYTE <
3489                         __NR_HPAGEFLAGS);
3490
3491         if (!hugepages_supported()) {
3492                 if (hugetlb_max_hstate || default_hstate_max_huge_pages)
3493                         pr_warn("HugeTLB: huge pages not supported, ignoring associated command-line parameters\n");
3494                 return 0;
3495         }
3496
3497         /*
3498          * Make sure HPAGE_SIZE (HUGETLB_PAGE_ORDER) hstate exists.  Some
3499          * architectures depend on setup being done here.
3500          */
3501         hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
3502         if (!parsed_default_hugepagesz) {
3503                 /*
3504                  * If we did not parse a default huge page size, set
3505                  * default_hstate_idx to HPAGE_SIZE hstate. And, if the
3506                  * number of huge pages for this default size was implicitly
3507                  * specified, set that here as well.
3508                  * Note that the implicit setting will overwrite an explicit
3509                  * setting.  A warning will be printed in this case.
3510                  */
3511                 default_hstate_idx = hstate_index(size_to_hstate(HPAGE_SIZE));
3512                 if (default_hstate_max_huge_pages) {
3513                         if (default_hstate.max_huge_pages) {
3514                                 char buf[32];
3515
3516                                 string_get_size(huge_page_size(&default_hstate),
3517                                         1, STRING_UNITS_2, buf, 32);
3518                                 pr_warn("HugeTLB: Ignoring hugepages=%lu associated with %s page size\n",
3519                                         default_hstate.max_huge_pages, buf);
3520                                 pr_warn("HugeTLB: Using hugepages=%lu for number of default huge pages\n",
3521                                         default_hstate_max_huge_pages);
3522                         }
3523                         default_hstate.max_huge_pages =
3524                                 default_hstate_max_huge_pages;
3525                 }
3526         }
3527
3528         hugetlb_cma_check();
3529         hugetlb_init_hstates();
3530         gather_bootmem_prealloc();
3531         report_hugepages();
3532
3533         hugetlb_sysfs_init();
3534         hugetlb_register_all_nodes();
3535         hugetlb_cgroup_file_init();
3536
3537 #ifdef CONFIG_SMP
3538         num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
3539 #else
3540         num_fault_mutexes = 1;
3541 #endif
3542         hugetlb_fault_mutex_table =
3543                 kmalloc_array(num_fault_mutexes, sizeof(struct mutex),
3544                               GFP_KERNEL);
3545         BUG_ON(!hugetlb_fault_mutex_table);
3546
3547         for (i = 0; i < num_fault_mutexes; i++)
3548                 mutex_init(&hugetlb_fault_mutex_table[i]);
3549         return 0;
3550 }
3551 subsys_initcall(hugetlb_init);
3552
3553 /* Overwritten by architectures with more huge page sizes */
3554 bool __init __attribute((weak)) arch_hugetlb_valid_size(unsigned long size)
3555 {
3556         return size == HPAGE_SIZE;
3557 }
3558
3559 void __init hugetlb_add_hstate(unsigned int order)
3560 {
3561         struct hstate *h;
3562         unsigned long i;
3563
3564         if (size_to_hstate(PAGE_SIZE << order)) {
3565                 return;
3566         }
3567         BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
3568         BUG_ON(order == 0);
3569         h = &hstates[hugetlb_max_hstate++];
3570         mutex_init(&h->resize_lock);
3571         h->order = order;
3572         h->mask = ~(huge_page_size(h) - 1);
3573         for (i = 0; i < MAX_NUMNODES; ++i)
3574                 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
3575         INIT_LIST_HEAD(&h->hugepage_activelist);
3576         h->next_nid_to_alloc = first_memory_node;
3577         h->next_nid_to_free = first_memory_node;
3578         snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
3579                                         huge_page_size(h)/1024);
3580         hugetlb_vmemmap_init(h);
3581
3582         parsed_hstate = h;
3583 }
3584
3585 /*
3586  * hugepages command line processing
3587  * hugepages normally follows a valid hugepagsz or default_hugepagsz
3588  * specification.  If not, ignore the hugepages value.  hugepages can also
3589  * be the first huge page command line  option in which case it implicitly
3590  * specifies the number of huge pages for the default size.
3591  */
3592 static int __init hugepages_setup(char *s)
3593 {
3594         unsigned long *mhp;
3595         static unsigned long *last_mhp;
3596
3597         if (!parsed_valid_hugepagesz) {
3598                 pr_warn("HugeTLB: hugepages=%s does not follow a valid hugepagesz, ignoring\n", s);
3599                 parsed_valid_hugepagesz = true;
3600                 return 0;
3601         }
3602
3603         /*
3604          * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter
3605          * yet, so this hugepages= parameter goes to the "default hstate".
3606          * Otherwise, it goes with the previously parsed hugepagesz or
3607          * default_hugepagesz.
3608          */
3609         else if (!hugetlb_max_hstate)
3610                 mhp = &default_hstate_max_huge_pages;
3611         else
3612                 mhp = &parsed_hstate->max_huge_pages;
3613
3614         if (mhp == last_mhp) {
3615                 pr_warn("HugeTLB: hugepages= specified twice without interleaving hugepagesz=, ignoring hugepages=%s\n", s);
3616                 return 0;
3617         }
3618
3619         if (sscanf(s, "%lu", mhp) <= 0)
3620                 *mhp = 0;
3621
3622         /*
3623          * Global state is always initialized later in hugetlb_init.
3624          * But we need to allocate gigantic hstates here early to still
3625          * use the bootmem allocator.
3626          */
3627         if (hugetlb_max_hstate && hstate_is_gigantic(parsed_hstate))
3628                 hugetlb_hstate_alloc_pages(parsed_hstate);
3629
3630         last_mhp = mhp;
3631
3632         return 1;
3633 }
3634 __setup("hugepages=", hugepages_setup);
3635
3636 /*
3637  * hugepagesz command line processing
3638  * A specific huge page size can only be specified once with hugepagesz.
3639  * hugepagesz is followed by hugepages on the command line.  The global
3640  * variable 'parsed_valid_hugepagesz' is used to determine if prior
3641  * hugepagesz argument was valid.
3642  */
3643 static int __init hugepagesz_setup(char *s)
3644 {
3645         unsigned long size;
3646         struct hstate *h;
3647
3648         parsed_valid_hugepagesz = false;
3649         size = (unsigned long)memparse(s, NULL);
3650
3651         if (!arch_hugetlb_valid_size(size)) {
3652                 pr_err("HugeTLB: unsupported hugepagesz=%s\n", s);
3653                 return 0;
3654         }
3655
3656         h = size_to_hstate(size);
3657         if (h) {
3658                 /*
3659                  * hstate for this size already exists.  This is normally
3660                  * an error, but is allowed if the existing hstate is the
3661                  * default hstate.  More specifically, it is only allowed if
3662                  * the number of huge pages for the default hstate was not
3663                  * previously specified.
3664                  */
3665                 if (!parsed_default_hugepagesz ||  h != &default_hstate ||
3666                     default_hstate.max_huge_pages) {
3667                         pr_warn("HugeTLB: hugepagesz=%s specified twice, ignoring\n", s);
3668                         return 0;
3669                 }
3670
3671                 /*
3672                  * No need to call hugetlb_add_hstate() as hstate already
3673                  * exists.  But, do set parsed_hstate so that a following
3674                  * hugepages= parameter will be applied to this hstate.
3675                  */
3676                 parsed_hstate = h;
3677                 parsed_valid_hugepagesz = true;
3678                 return 1;
3679         }
3680
3681         hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
3682         parsed_valid_hugepagesz = true;
3683         return 1;
3684 }
3685 __setup("hugepagesz=", hugepagesz_setup);
3686
3687 /*
3688  * default_hugepagesz command line input
3689  * Only one instance of default_hugepagesz allowed on command line.
3690  */
3691 static int __init default_hugepagesz_setup(char *s)
3692 {
3693         unsigned long size;
3694
3695         parsed_valid_hugepagesz = false;
3696         if (parsed_default_hugepagesz) {
3697                 pr_err("HugeTLB: default_hugepagesz previously specified, ignoring %s\n", s);
3698                 return 0;
3699         }
3700
3701         size = (unsigned long)memparse(s, NULL);
3702
3703         if (!arch_hugetlb_valid_size(size)) {
3704                 pr_err("HugeTLB: unsupported default_hugepagesz=%s\n", s);
3705                 return 0;
3706         }
3707
3708         hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
3709         parsed_valid_hugepagesz = true;
3710         parsed_default_hugepagesz = true;
3711         default_hstate_idx = hstate_index(size_to_hstate(size));
3712
3713         /*
3714          * The number of default huge pages (for this size) could have been
3715          * specified as the first hugetlb parameter: hugepages=X.  If so,
3716          * then default_hstate_max_huge_pages is set.  If the default huge
3717          * page size is gigantic (>= MAX_ORDER), then the pages must be
3718          * allocated here from bootmem allocator.
3719          */
3720         if (default_hstate_max_huge_pages) {
3721                 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
3722                 if (hstate_is_gigantic(&default_hstate))
3723                         hugetlb_hstate_alloc_pages(&default_hstate);
3724                 default_hstate_max_huge_pages = 0;
3725         }
3726
3727         return 1;
3728 }
3729 __setup("default_hugepagesz=", default_hugepagesz_setup);
3730
3731 static unsigned int allowed_mems_nr(struct hstate *h)
3732 {
3733         int node;
3734         unsigned int nr = 0;
3735         nodemask_t *mpol_allowed;
3736         unsigned int *array = h->free_huge_pages_node;
3737         gfp_t gfp_mask = htlb_alloc_mask(h);
3738
3739         mpol_allowed = policy_nodemask_current(gfp_mask);
3740
3741         for_each_node_mask(node, cpuset_current_mems_allowed) {
3742                 if (!mpol_allowed || node_isset(node, *mpol_allowed))
3743                         nr += array[node];
3744         }
3745
3746         return nr;
3747 }
3748
3749 #ifdef CONFIG_SYSCTL
3750 static int proc_hugetlb_doulongvec_minmax(struct ctl_table *table, int write,
3751                                           void *buffer, size_t *length,
3752                                           loff_t *ppos, unsigned long *out)
3753 {
3754         struct ctl_table dup_table;
3755
3756         /*
3757          * In order to avoid races with __do_proc_doulongvec_minmax(), we
3758          * can duplicate the @table and alter the duplicate of it.
3759          */
3760         dup_table = *table;
3761         dup_table.data = out;
3762
3763         return proc_doulongvec_minmax(&dup_table, write, buffer, length, ppos);
3764 }
3765
3766 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
3767                          struct ctl_table *table, int write,
3768                          void *buffer, size_t *length, loff_t *ppos)
3769 {
3770         struct hstate *h = &default_hstate;
3771         unsigned long tmp = h->max_huge_pages;
3772         int ret;
3773
3774         if (!hugepages_supported())
3775                 return -EOPNOTSUPP;
3776
3777         ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
3778                                              &tmp);
3779         if (ret)
3780                 goto out;
3781
3782         if (write)
3783                 ret = __nr_hugepages_store_common(obey_mempolicy, h,
3784                                                   NUMA_NO_NODE, tmp, *length);
3785 out:
3786         return ret;
3787 }
3788
3789 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
3790                           void *buffer, size_t *length, loff_t *ppos)
3791 {
3792
3793         return hugetlb_sysctl_handler_common(false, table, write,
3794                                                         buffer, length, ppos);
3795 }
3796
3797 #ifdef CONFIG_NUMA
3798 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
3799                           void *buffer, size_t *length, loff_t *ppos)
3800 {
3801         return hugetlb_sysctl_handler_common(true, table, write,
3802                                                         buffer, length, ppos);
3803 }
3804 #endif /* CONFIG_NUMA */
3805
3806 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
3807                 void *buffer, size_t *length, loff_t *ppos)
3808 {
3809         struct hstate *h = &default_hstate;
3810         unsigned long tmp;
3811         int ret;
3812
3813         if (!hugepages_supported())
3814                 return -EOPNOTSUPP;
3815
3816         tmp = h->nr_overcommit_huge_pages;
3817
3818         if (write && hstate_is_gigantic(h))
3819                 return -EINVAL;
3820
3821         ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
3822                                              &tmp);
3823         if (ret)
3824                 goto out;
3825
3826         if (write) {
3827                 spin_lock_irq(&hugetlb_lock);
3828                 h->nr_overcommit_huge_pages = tmp;
3829                 spin_unlock_irq(&hugetlb_lock);
3830         }
3831 out:
3832         return ret;
3833 }
3834
3835 #endif /* CONFIG_SYSCTL */
3836
3837 void hugetlb_report_meminfo(struct seq_file *m)
3838 {
3839         struct hstate *h;
3840         unsigned long total = 0;
3841
3842         if (!hugepages_supported())
3843                 return;
3844
3845         for_each_hstate(h) {
3846                 unsigned long count = h->nr_huge_pages;
3847
3848                 total += huge_page_size(h) * count;
3849
3850                 if (h == &default_hstate)
3851                         seq_printf(m,
3852                                    "HugePages_Total:   %5lu\n"
3853                                    "HugePages_Free:    %5lu\n"
3854                                    "HugePages_Rsvd:    %5lu\n"
3855                                    "HugePages_Surp:    %5lu\n"
3856                                    "Hugepagesize:   %8lu kB\n",
3857                                    count,
3858                                    h->free_huge_pages,
3859                                    h->resv_huge_pages,
3860                                    h->surplus_huge_pages,
3861                                    huge_page_size(h) / SZ_1K);
3862         }
3863
3864         seq_printf(m, "Hugetlb:        %8lu kB\n", total / SZ_1K);
3865 }
3866
3867 int hugetlb_report_node_meminfo(char *buf, int len, int nid)
3868 {
3869         struct hstate *h = &default_hstate;
3870
3871         if (!hugepages_supported())
3872                 return 0;
3873
3874         return sysfs_emit_at(buf, len,
3875                              "Node %d HugePages_Total: %5u\n"
3876                              "Node %d HugePages_Free:  %5u\n"
3877                              "Node %d HugePages_Surp:  %5u\n",
3878                              nid, h->nr_huge_pages_node[nid],
3879                              nid, h->free_huge_pages_node[nid],
3880                              nid, h->surplus_huge_pages_node[nid]);
3881 }
3882
3883 void hugetlb_show_meminfo(void)
3884 {
3885         struct hstate *h;
3886         int nid;
3887
3888         if (!hugepages_supported())
3889                 return;
3890
3891         for_each_node_state(nid, N_MEMORY)
3892                 for_each_hstate(h)
3893                         pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
3894                                 nid,
3895                                 h->nr_huge_pages_node[nid],
3896                                 h->free_huge_pages_node[nid],
3897                                 h->surplus_huge_pages_node[nid],
3898                                 huge_page_size(h) / SZ_1K);
3899 }
3900
3901 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
3902 {
3903         seq_printf(m, "HugetlbPages:\t%8lu kB\n",
3904                    atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
3905 }
3906
3907 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
3908 unsigned long hugetlb_total_pages(void)
3909 {
3910         struct hstate *h;
3911         unsigned long nr_total_pages = 0;
3912
3913         for_each_hstate(h)
3914                 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
3915         return nr_total_pages;
3916 }
3917
3918 static int hugetlb_acct_memory(struct hstate *h, long delta)
3919 {
3920         int ret = -ENOMEM;
3921
3922         if (!delta)
3923                 return 0;
3924
3925         spin_lock_irq(&hugetlb_lock);
3926         /*
3927          * When cpuset is configured, it breaks the strict hugetlb page
3928          * reservation as the accounting is done on a global variable. Such
3929          * reservation is completely rubbish in the presence of cpuset because
3930          * the reservation is not checked against page availability for the
3931          * current cpuset. Application can still potentially OOM'ed by kernel
3932          * with lack of free htlb page in cpuset that the task is in.
3933          * Attempt to enforce strict accounting with cpuset is almost
3934          * impossible (or too ugly) because cpuset is too fluid that
3935          * task or memory node can be dynamically moved between cpusets.
3936          *
3937          * The change of semantics for shared hugetlb mapping with cpuset is
3938          * undesirable. However, in order to preserve some of the semantics,
3939          * we fall back to check against current free page availability as
3940          * a best attempt and hopefully to minimize the impact of changing
3941          * semantics that cpuset has.
3942          *
3943          * Apart from cpuset, we also have memory policy mechanism that
3944          * also determines from which node the kernel will allocate memory
3945          * in a NUMA system. So similar to cpuset, we also should consider
3946          * the memory policy of the current task. Similar to the description
3947          * above.
3948          */
3949         if (delta > 0) {
3950                 if (gather_surplus_pages(h, delta) < 0)
3951                         goto out;
3952
3953                 if (delta > allowed_mems_nr(h)) {
3954                         return_unused_surplus_pages(h, delta);
3955                         goto out;
3956                 }
3957         }
3958
3959         ret = 0;
3960         if (delta < 0)
3961                 return_unused_surplus_pages(h, (unsigned long) -delta);
3962
3963 out:
3964         spin_unlock_irq(&hugetlb_lock);
3965         return ret;
3966 }
3967
3968 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
3969 {
3970         struct resv_map *resv = vma_resv_map(vma);
3971
3972         /*
3973          * This new VMA should share its siblings reservation map if present.
3974          * The VMA will only ever have a valid reservation map pointer where
3975          * it is being copied for another still existing VMA.  As that VMA
3976          * has a reference to the reservation map it cannot disappear until
3977          * after this open call completes.  It is therefore safe to take a
3978          * new reference here without additional locking.
3979          */
3980         if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3981                 kref_get(&resv->refs);
3982 }
3983
3984 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
3985 {
3986         struct hstate *h = hstate_vma(vma);
3987         struct resv_map *resv = vma_resv_map(vma);
3988         struct hugepage_subpool *spool = subpool_vma(vma);
3989         unsigned long reserve, start, end;
3990         long gbl_reserve;
3991
3992         if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3993                 return;
3994
3995         start = vma_hugecache_offset(h, vma, vma->vm_start);
3996         end = vma_hugecache_offset(h, vma, vma->vm_end);
3997
3998         reserve = (end - start) - region_count(resv, start, end);
3999         hugetlb_cgroup_uncharge_counter(resv, start, end);
4000         if (reserve) {
4001                 /*
4002                  * Decrement reserve counts.  The global reserve count may be
4003                  * adjusted if the subpool has a minimum size.
4004                  */
4005                 gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
4006                 hugetlb_acct_memory(h, -gbl_reserve);
4007         }
4008
4009         kref_put(&resv->refs, resv_map_release);
4010 }
4011
4012 static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
4013 {
4014         if (addr & ~(huge_page_mask(hstate_vma(vma))))
4015                 return -EINVAL;
4016         return 0;
4017 }
4018
4019 static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma)
4020 {
4021         return huge_page_size(hstate_vma(vma));
4022 }
4023
4024 /*
4025  * We cannot handle pagefaults against hugetlb pages at all.  They cause
4026  * handle_mm_fault() to try to instantiate regular-sized pages in the
4027  * hugepage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
4028  * this far.
4029  */
4030 static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf)
4031 {
4032         BUG();
4033         return 0;
4034 }
4035
4036 /*
4037  * When a new function is introduced to vm_operations_struct and added
4038  * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops.
4039  * This is because under System V memory model, mappings created via
4040  * shmget/shmat with "huge page" specified are backed by hugetlbfs files,
4041  * their original vm_ops are overwritten with shm_vm_ops.
4042  */
4043 const struct vm_operations_struct hugetlb_vm_ops = {
4044         .fault = hugetlb_vm_op_fault,
4045         .open = hugetlb_vm_op_open,
4046         .close = hugetlb_vm_op_close,
4047         .may_split = hugetlb_vm_op_split,
4048         .pagesize = hugetlb_vm_op_pagesize,
4049 };
4050
4051 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
4052                                 int writable)
4053 {
4054         pte_t entry;
4055         unsigned int shift = huge_page_shift(hstate_vma(vma));
4056
4057         if (writable) {
4058                 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
4059                                          vma->vm_page_prot)));
4060         } else {
4061                 entry = huge_pte_wrprotect(mk_huge_pte(page,
4062                                            vma->vm_page_prot));
4063         }
4064         entry = pte_mkyoung(entry);
4065         entry = pte_mkhuge(entry);
4066         entry = arch_make_huge_pte(entry, shift, vma->vm_flags);
4067
4068         return entry;
4069 }
4070
4071 static void set_huge_ptep_writable(struct vm_area_struct *vma,
4072                                    unsigned long address, pte_t *ptep)
4073 {
4074         pte_t entry;
4075
4076         entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
4077         if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
4078                 update_mmu_cache(vma, address, ptep);
4079 }
4080
4081 bool is_hugetlb_entry_migration(pte_t pte)
4082 {
4083         swp_entry_t swp;
4084
4085         if (huge_pte_none(pte) || pte_present(pte))
4086                 return false;
4087         swp = pte_to_swp_entry(pte);
4088         if (is_migration_entry(swp))
4089                 return true;
4090         else
4091                 return false;
4092 }
4093
4094 static bool is_hugetlb_entry_hwpoisoned(pte_t pte)
4095 {
4096         swp_entry_t swp;
4097
4098         if (huge_pte_none(pte) || pte_present(pte))
4099                 return false;
4100         swp = pte_to_swp_entry(pte);
4101         if (is_hwpoison_entry(swp))
4102                 return true;
4103         else
4104                 return false;
4105 }
4106
4107 static void
4108 hugetlb_install_page(struct vm_area_struct *vma, pte_t *ptep, unsigned long addr,
4109                      struct page *new_page)
4110 {
4111         __SetPageUptodate(new_page);
4112         set_huge_pte_at(vma->vm_mm, addr, ptep, make_huge_pte(vma, new_page, 1));
4113         hugepage_add_new_anon_rmap(new_page, vma, addr);
4114         hugetlb_count_add(pages_per_huge_page(hstate_vma(vma)), vma->vm_mm);
4115         ClearHPageRestoreReserve(new_page);
4116         SetHPageMigratable(new_page);
4117 }
4118
4119 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
4120                             struct vm_area_struct *vma)
4121 {
4122         pte_t *src_pte, *dst_pte, entry, dst_entry;
4123         struct page *ptepage;
4124         unsigned long addr;
4125         bool cow = is_cow_mapping(vma->vm_flags);
4126         struct hstate *h = hstate_vma(vma);
4127         unsigned long sz = huge_page_size(h);
4128         unsigned long npages = pages_per_huge_page(h);
4129         struct address_space *mapping = vma->vm_file->f_mapping;
4130         struct mmu_notifier_range range;
4131         int ret = 0;
4132
4133         if (cow) {
4134                 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, src,
4135                                         vma->vm_start,
4136                                         vma->vm_end);
4137                 mmu_notifier_invalidate_range_start(&range);
4138         } else {
4139                 /*
4140                  * For shared mappings i_mmap_rwsem must be held to call
4141                  * huge_pte_alloc, otherwise the returned ptep could go
4142                  * away if part of a shared pmd and another thread calls
4143                  * huge_pmd_unshare.
4144                  */
4145                 i_mmap_lock_read(mapping);
4146         }
4147
4148         for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
4149                 spinlock_t *src_ptl, *dst_ptl;
4150                 src_pte = huge_pte_offset(src, addr, sz);
4151                 if (!src_pte)
4152                         continue;
4153                 dst_pte = huge_pte_alloc(dst, vma, addr, sz);
4154                 if (!dst_pte) {
4155                         ret = -ENOMEM;
4156                         break;
4157                 }
4158
4159                 /*
4160                  * If the pagetables are shared don't copy or take references.
4161                  * dst_pte == src_pte is the common case of src/dest sharing.
4162                  *
4163                  * However, src could have 'unshared' and dst shares with
4164                  * another vma.  If dst_pte !none, this implies sharing.
4165                  * Check here before taking page table lock, and once again
4166                  * after taking the lock below.
4167                  */
4168                 dst_entry = huge_ptep_get(dst_pte);
4169                 if ((dst_pte == src_pte) || !huge_pte_none(dst_entry))
4170                         continue;
4171
4172                 dst_ptl = huge_pte_lock(h, dst, dst_pte);
4173                 src_ptl = huge_pte_lockptr(h, src, src_pte);
4174                 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
4175                 entry = huge_ptep_get(src_pte);
4176                 dst_entry = huge_ptep_get(dst_pte);
4177 again:
4178                 if (huge_pte_none(entry) || !huge_pte_none(dst_entry)) {
4179                         /*
4180                          * Skip if src entry none.  Also, skip in the
4181                          * unlikely case dst entry !none as this implies
4182                          * sharing with another vma.
4183                          */
4184                         ;
4185                 } else if (unlikely(is_hugetlb_entry_migration(entry) ||
4186                                     is_hugetlb_entry_hwpoisoned(entry))) {
4187                         swp_entry_t swp_entry = pte_to_swp_entry(entry);
4188
4189                         if (is_write_migration_entry(swp_entry) && cow) {
4190                                 /*
4191                                  * COW mappings require pages in both
4192                                  * parent and child to be set to read.
4193                                  */
4194                                 make_migration_entry_read(&swp_entry);
4195                                 entry = swp_entry_to_pte(swp_entry);
4196                                 set_huge_swap_pte_at(src, addr, src_pte,
4197                                                      entry, sz);
4198                         }
4199                         set_huge_swap_pte_at(dst, addr, dst_pte, entry, sz);
4200                 } else {
4201                         entry = huge_ptep_get(src_pte);
4202                         ptepage = pte_page(entry);
4203                         get_page(ptepage);
4204
4205                         /*
4206                          * This is a rare case where we see pinned hugetlb
4207                          * pages while they're prone to COW.  We need to do the
4208                          * COW earlier during fork.
4209                          *
4210                          * When pre-allocating the page or copying data, we
4211                          * need to be without the pgtable locks since we could
4212                          * sleep during the process.
4213                          */
4214                         if (unlikely(page_needs_cow_for_dma(vma, ptepage))) {
4215                                 pte_t src_pte_old = entry;
4216                                 struct page *new;
4217
4218                                 spin_unlock(src_ptl);
4219                                 spin_unlock(dst_ptl);
4220                                 /* Do not use reserve as it's private owned */
4221                                 new = alloc_huge_page(vma, addr, 1);
4222                                 if (IS_ERR(new)) {
4223                                         put_page(ptepage);
4224                                         ret = PTR_ERR(new);
4225                                         break;
4226                                 }
4227                                 copy_user_huge_page(new, ptepage, addr, vma,
4228                                                     npages);
4229                                 put_page(ptepage);
4230
4231                                 /* Install the new huge page if src pte stable */
4232                                 dst_ptl = huge_pte_lock(h, dst, dst_pte);
4233                                 src_ptl = huge_pte_lockptr(h, src, src_pte);
4234                                 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
4235                                 entry = huge_ptep_get(src_pte);
4236                                 if (!pte_same(src_pte_old, entry)) {
4237                                         restore_reserve_on_error(h, vma, addr,
4238                                                                 new);
4239                                         put_page(new);
4240                                         /* dst_entry won't change as in child */
4241                                         goto again;
4242                                 }
4243                                 hugetlb_install_page(vma, dst_pte, addr, new);
4244                                 spin_unlock(src_ptl);
4245                                 spin_unlock(dst_ptl);
4246                                 continue;
4247                         }
4248
4249                         if (cow) {
4250                                 /*
4251                                  * No need to notify as we are downgrading page
4252                                  * table protection not changing it to point
4253                                  * to a new page.
4254                                  *
4255                                  * See Documentation/vm/mmu_notifier.rst
4256                                  */
4257                                 huge_ptep_set_wrprotect(src, addr, src_pte);
4258                                 entry = huge_pte_wrprotect(entry);
4259                         }
4260
4261                         page_dup_rmap(ptepage, true);
4262                         set_huge_pte_at(dst, addr, dst_pte, entry);
4263                         hugetlb_count_add(npages, dst);
4264                 }
4265                 spin_unlock(src_ptl);
4266                 spin_unlock(dst_ptl);
4267         }
4268
4269         if (cow)
4270                 mmu_notifier_invalidate_range_end(&range);
4271         else
4272                 i_mmap_unlock_read(mapping);
4273
4274         return ret;
4275 }
4276
4277 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
4278                             unsigned long start, unsigned long end,
4279                             struct page *ref_page)
4280 {
4281         struct mm_struct *mm = vma->vm_mm;
4282         unsigned long address;
4283         pte_t *ptep;
4284         pte_t pte;
4285         spinlock_t *ptl;
4286         struct page *page;
4287         struct hstate *h = hstate_vma(vma);
4288         unsigned long sz = huge_page_size(h);
4289         struct mmu_notifier_range range;
4290
4291         WARN_ON(!is_vm_hugetlb_page(vma));
4292         BUG_ON(start & ~huge_page_mask(h));
4293         BUG_ON(end & ~huge_page_mask(h));
4294
4295         /*
4296          * This is a hugetlb vma, all the pte entries should point
4297          * to huge page.
4298          */
4299         tlb_change_page_size(tlb, sz);
4300         tlb_start_vma(tlb, vma);
4301
4302         /*
4303          * If sharing possible, alert mmu notifiers of worst case.
4304          */
4305         mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, mm, start,
4306                                 end);
4307         adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
4308         mmu_notifier_invalidate_range_start(&range);
4309         address = start;
4310         for (; address < end; address += sz) {
4311                 ptep = huge_pte_offset(mm, address, sz);
4312                 if (!ptep)
4313                         continue;
4314
4315                 ptl = huge_pte_lock(h, mm, ptep);
4316                 if (huge_pmd_unshare(mm, vma, &address, ptep)) {
4317                         spin_unlock(ptl);
4318                         /*
4319                          * We just unmapped a page of PMDs by clearing a PUD.
4320                          * The caller's TLB flush range should cover this area.
4321                          */
4322                         continue;
4323                 }
4324
4325                 pte = huge_ptep_get(ptep);
4326                 if (huge_pte_none(pte)) {
4327                         spin_unlock(ptl);
4328                         continue;
4329                 }
4330
4331                 /*
4332                  * Migrating hugepage or HWPoisoned hugepage is already
4333                  * unmapped and its refcount is dropped, so just clear pte here.
4334                  */
4335                 if (unlikely(!pte_present(pte))) {
4336                         huge_pte_clear(mm, address, ptep, sz);
4337                         spin_unlock(ptl);
4338                         continue;
4339                 }
4340
4341                 page = pte_page(pte);
4342                 /*
4343                  * If a reference page is supplied, it is because a specific
4344                  * page is being unmapped, not a range. Ensure the page we
4345                  * are about to unmap is the actual page of interest.
4346                  */
4347                 if (ref_page) {
4348                         if (page != ref_page) {
4349                                 spin_unlock(ptl);
4350                                 continue;
4351                         }
4352                         /*
4353                          * Mark the VMA as having unmapped its page so that
4354                          * future faults in this VMA will fail rather than
4355                          * looking like data was lost
4356                          */
4357                         set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
4358                 }
4359
4360                 pte = huge_ptep_get_and_clear(mm, address, ptep);
4361                 tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
4362                 if (huge_pte_dirty(pte))
4363                         set_page_dirty(page);
4364
4365                 hugetlb_count_sub(pages_per_huge_page(h), mm);
4366                 page_remove_rmap(page, true);
4367
4368                 spin_unlock(ptl);
4369                 tlb_remove_page_size(tlb, page, huge_page_size(h));
4370                 /*
4371                  * Bail out after unmapping reference page if supplied
4372                  */
4373                 if (ref_page)
4374                         break;
4375         }
4376         mmu_notifier_invalidate_range_end(&range);
4377         tlb_end_vma(tlb, vma);
4378 }
4379
4380 void __unmap_hugepage_range_final(struct mmu_gather *tlb,
4381                           struct vm_area_struct *vma, unsigned long start,
4382                           unsigned long end, struct page *ref_page)
4383 {
4384         __unmap_hugepage_range(tlb, vma, start, end, ref_page);
4385
4386         /*
4387          * Clear this flag so that x86's huge_pmd_share page_table_shareable
4388          * test will fail on a vma being torn down, and not grab a page table
4389          * on its way out.  We're lucky that the flag has such an appropriate
4390          * name, and can in fact be safely cleared here. We could clear it
4391          * before the __unmap_hugepage_range above, but all that's necessary
4392          * is to clear it before releasing the i_mmap_rwsem. This works
4393          * because in the context this is called, the VMA is about to be
4394          * destroyed and the i_mmap_rwsem is held.
4395          */
4396         vma->vm_flags &= ~VM_MAYSHARE;
4397 }
4398
4399 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
4400                           unsigned long end, struct page *ref_page)
4401 {
4402         struct mmu_gather tlb;
4403
4404         tlb_gather_mmu(&tlb, vma->vm_mm);
4405         __unmap_hugepage_range(&tlb, vma, start, end, ref_page);
4406         tlb_finish_mmu(&tlb);
4407 }
4408
4409 /*
4410  * This is called when the original mapper is failing to COW a MAP_PRIVATE
4411  * mapping it owns the reserve page for. The intention is to unmap the page
4412  * from other VMAs and let the children be SIGKILLed if they are faulting the
4413  * same region.
4414  */
4415 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
4416                               struct page *page, unsigned long address)
4417 {
4418         struct hstate *h = hstate_vma(vma);
4419         struct vm_area_struct *iter_vma;
4420         struct address_space *mapping;
4421         pgoff_t pgoff;
4422
4423         /*
4424          * vm_pgoff is in PAGE_SIZE units, hence the different calculation
4425          * from page cache lookup which is in HPAGE_SIZE units.
4426          */
4427         address = address & huge_page_mask(h);
4428         pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
4429                         vma->vm_pgoff;
4430         mapping = vma->vm_file->f_mapping;
4431
4432         /*
4433          * Take the mapping lock for the duration of the table walk. As
4434          * this mapping should be shared between all the VMAs,
4435          * __unmap_hugepage_range() is called as the lock is already held
4436          */
4437         i_mmap_lock_write(mapping);
4438         vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
4439                 /* Do not unmap the current VMA */
4440                 if (iter_vma == vma)
4441                         continue;
4442
4443                 /*
4444                  * Shared VMAs have their own reserves and do not affect
4445                  * MAP_PRIVATE accounting but it is possible that a shared
4446                  * VMA is using the same page so check and skip such VMAs.
4447                  */
4448                 if (iter_vma->vm_flags & VM_MAYSHARE)
4449                         continue;
4450
4451                 /*
4452                  * Unmap the page from other VMAs without their own reserves.
4453                  * They get marked to be SIGKILLed if they fault in these
4454                  * areas. This is because a future no-page fault on this VMA
4455                  * could insert a zeroed page instead of the data existing
4456                  * from the time of fork. This would look like data corruption
4457                  */
4458                 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
4459                         unmap_hugepage_range(iter_vma, address,
4460                                              address + huge_page_size(h), page);
4461         }
4462         i_mmap_unlock_write(mapping);
4463 }
4464
4465 /*
4466  * Hugetlb_cow() should be called with page lock of the original hugepage held.
4467  * Called with hugetlb_instantiation_mutex held and pte_page locked so we
4468  * cannot race with other handlers or page migration.
4469  * Keep the pte_same checks anyway to make transition from the mutex easier.
4470  */
4471 static vm_fault_t hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
4472                        unsigned long address, pte_t *ptep,
4473                        struct page *pagecache_page, spinlock_t *ptl)
4474 {
4475         pte_t pte;
4476         struct hstate *h = hstate_vma(vma);
4477         struct page *old_page, *new_page;
4478         int outside_reserve = 0;
4479         vm_fault_t ret = 0;
4480         unsigned long haddr = address & huge_page_mask(h);
4481         struct mmu_notifier_range range;
4482
4483         pte = huge_ptep_get(ptep);
4484         old_page = pte_page(pte);
4485
4486 retry_avoidcopy:
4487         /* If no-one else is actually using this page, avoid the copy
4488          * and just make the page writable */
4489         if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
4490                 page_move_anon_rmap(old_page, vma);
4491                 set_huge_ptep_writable(vma, haddr, ptep);
4492                 return 0;
4493         }
4494
4495         /*
4496          * If the process that created a MAP_PRIVATE mapping is about to
4497          * perform a COW due to a shared page count, attempt to satisfy
4498          * the allocation without using the existing reserves. The pagecache
4499          * page is used to determine if the reserve at this address was
4500          * consumed or not. If reserves were used, a partial faulted mapping
4501          * at the time of fork() could consume its reserves on COW instead
4502          * of the full address range.
4503          */
4504         if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
4505                         old_page != pagecache_page)
4506                 outside_reserve = 1;
4507
4508         get_page(old_page);
4509
4510         /*
4511          * Drop page table lock as buddy allocator may be called. It will
4512          * be acquired again before returning to the caller, as expected.
4513          */
4514         spin_unlock(ptl);
4515         new_page = alloc_huge_page(vma, haddr, outside_reserve);
4516
4517         if (IS_ERR(new_page)) {
4518                 /*
4519                  * If a process owning a MAP_PRIVATE mapping fails to COW,
4520                  * it is due to references held by a child and an insufficient
4521                  * huge page pool. To guarantee the original mappers
4522                  * reliability, unmap the page from child processes. The child
4523                  * may get SIGKILLed if it later faults.
4524                  */
4525                 if (outside_reserve) {
4526                         struct address_space *mapping = vma->vm_file->f_mapping;
4527                         pgoff_t idx;
4528                         u32 hash;
4529
4530                         put_page(old_page);
4531                         BUG_ON(huge_pte_none(pte));
4532                         /*
4533                          * Drop hugetlb_fault_mutex and i_mmap_rwsem before
4534                          * unmapping.  unmapping needs to hold i_mmap_rwsem
4535                          * in write mode.  Dropping i_mmap_rwsem in read mode
4536                          * here is OK as COW mappings do not interact with
4537                          * PMD sharing.
4538                          *
4539                          * Reacquire both after unmap operation.
4540                          */
4541                         idx = vma_hugecache_offset(h, vma, haddr);
4542                         hash = hugetlb_fault_mutex_hash(mapping, idx);
4543                         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
4544                         i_mmap_unlock_read(mapping);
4545
4546                         unmap_ref_private(mm, vma, old_page, haddr);
4547
4548                         i_mmap_lock_read(mapping);
4549                         mutex_lock(&hugetlb_fault_mutex_table[hash]);
4550                         spin_lock(ptl);
4551                         ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
4552                         if (likely(ptep &&
4553                                    pte_same(huge_ptep_get(ptep), pte)))
4554                                 goto retry_avoidcopy;
4555                         /*
4556                          * race occurs while re-acquiring page table
4557                          * lock, and our job is done.
4558                          */
4559                         return 0;
4560                 }
4561
4562                 ret = vmf_error(PTR_ERR(new_page));
4563                 goto out_release_old;
4564         }
4565
4566         /*
4567          * When the original hugepage is shared one, it does not have
4568          * anon_vma prepared.
4569          */
4570         if (unlikely(anon_vma_prepare(vma))) {
4571                 ret = VM_FAULT_OOM;
4572                 goto out_release_all;
4573         }
4574
4575         copy_user_huge_page(new_page, old_page, address, vma,
4576                             pages_per_huge_page(h));
4577         __SetPageUptodate(new_page);
4578
4579         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, haddr,
4580                                 haddr + huge_page_size(h));
4581         mmu_notifier_invalidate_range_start(&range);
4582
4583         /*
4584          * Retake the page table lock to check for racing updates
4585          * before the page tables are altered
4586          */
4587         spin_lock(ptl);
4588         ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
4589         if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
4590                 ClearHPageRestoreReserve(new_page);
4591
4592                 /* Break COW */
4593                 huge_ptep_clear_flush(vma, haddr, ptep);
4594                 mmu_notifier_invalidate_range(mm, range.start, range.end);
4595                 set_huge_pte_at(mm, haddr, ptep,
4596                                 make_huge_pte(vma, new_page, 1));
4597                 page_remove_rmap(old_page, true);
4598                 hugepage_add_new_anon_rmap(new_page, vma, haddr);
4599                 SetHPageMigratable(new_page);
4600                 /* Make the old page be freed below */
4601                 new_page = old_page;
4602         }
4603         spin_unlock(ptl);
4604         mmu_notifier_invalidate_range_end(&range);
4605 out_release_all:
4606         restore_reserve_on_error(h, vma, haddr, new_page);
4607         put_page(new_page);
4608 out_release_old:
4609         put_page(old_page);
4610
4611         spin_lock(ptl); /* Caller expects lock to be held */
4612         return ret;
4613 }
4614
4615 /* Return the pagecache page at a given address within a VMA */
4616 static struct page *hugetlbfs_pagecache_page(struct hstate *h,
4617                         struct vm_area_struct *vma, unsigned long address)
4618 {
4619         struct address_space *mapping;
4620         pgoff_t idx;
4621
4622         mapping = vma->vm_file->f_mapping;
4623         idx = vma_hugecache_offset(h, vma, address);
4624
4625         return find_lock_page(mapping, idx);
4626 }
4627
4628 /*
4629  * Return whether there is a pagecache page to back given address within VMA.
4630  * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
4631  */
4632 static bool hugetlbfs_pagecache_present(struct hstate *h,
4633                         struct vm_area_struct *vma, unsigned long address)
4634 {
4635         struct address_space *mapping;
4636         pgoff_t idx;
4637         struct page *page;
4638
4639         mapping = vma->vm_file->f_mapping;
4640         idx = vma_hugecache_offset(h, vma, address);
4641
4642         page = find_get_page(mapping, idx);
4643         if (page)
4644                 put_page(page);
4645         return page != NULL;
4646 }
4647
4648 int huge_add_to_page_cache(struct page *page, struct address_space *mapping,
4649                            pgoff_t idx)
4650 {
4651         struct inode *inode = mapping->host;
4652         struct hstate *h = hstate_inode(inode);
4653         int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
4654
4655         if (err)
4656                 return err;
4657         ClearHPageRestoreReserve(page);
4658
4659         /*
4660          * set page dirty so that it will not be removed from cache/file
4661          * by non-hugetlbfs specific code paths.
4662          */
4663         set_page_dirty(page);
4664
4665         spin_lock(&inode->i_lock);
4666         inode->i_blocks += blocks_per_huge_page(h);
4667         spin_unlock(&inode->i_lock);
4668         return 0;
4669 }
4670
4671 static inline vm_fault_t hugetlb_handle_userfault(struct vm_area_struct *vma,
4672                                                   struct address_space *mapping,
4673                                                   pgoff_t idx,
4674                                                   unsigned int flags,
4675                                                   unsigned long haddr,
4676                                                   unsigned long reason)
4677 {
4678         vm_fault_t ret;
4679         u32 hash;
4680         struct vm_fault vmf = {
4681                 .vma = vma,
4682                 .address = haddr,
4683                 .flags = flags,
4684
4685                 /*
4686                  * Hard to debug if it ends up being
4687                  * used by a callee that assumes
4688                  * something about the other
4689                  * uninitialized fields... same as in
4690                  * memory.c
4691                  */
4692         };
4693
4694         /*
4695          * hugetlb_fault_mutex and i_mmap_rwsem must be
4696          * dropped before handling userfault.  Reacquire
4697          * after handling fault to make calling code simpler.
4698          */
4699         hash = hugetlb_fault_mutex_hash(mapping, idx);
4700         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
4701         i_mmap_unlock_read(mapping);
4702         ret = handle_userfault(&vmf, reason);
4703         i_mmap_lock_read(mapping);
4704         mutex_lock(&hugetlb_fault_mutex_table[hash]);
4705
4706         return ret;
4707 }
4708
4709 static vm_fault_t hugetlb_no_page(struct mm_struct *mm,
4710                         struct vm_area_struct *vma,
4711                         struct address_space *mapping, pgoff_t idx,
4712                         unsigned long address, pte_t *ptep, unsigned int flags)
4713 {
4714         struct hstate *h = hstate_vma(vma);
4715         vm_fault_t ret = VM_FAULT_SIGBUS;
4716         int anon_rmap = 0;
4717         unsigned long size;
4718         struct page *page;
4719         pte_t new_pte;
4720         spinlock_t *ptl;
4721         unsigned long haddr = address & huge_page_mask(h);
4722         bool new_page = false;
4723
4724         /*
4725          * Currently, we are forced to kill the process in the event the
4726          * original mapper has unmapped pages from the child due to a failed
4727          * COW. Warn that such a situation has occurred as it may not be obvious
4728          */
4729         if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
4730                 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
4731                            current->pid);
4732                 return ret;
4733         }
4734
4735         /*
4736          * We can not race with truncation due to holding i_mmap_rwsem.
4737          * i_size is modified when holding i_mmap_rwsem, so check here
4738          * once for faults beyond end of file.
4739          */
4740         size = i_size_read(mapping->host) >> huge_page_shift(h);
4741         if (idx >= size)
4742                 goto out;
4743
4744 retry:
4745         page = find_lock_page(mapping, idx);
4746         if (!page) {
4747                 /* Check for page in userfault range */
4748                 if (userfaultfd_missing(vma)) {
4749                         ret = hugetlb_handle_userfault(vma, mapping, idx,
4750                                                        flags, haddr,
4751                                                        VM_UFFD_MISSING);
4752                         goto out;
4753                 }
4754
4755                 page = alloc_huge_page(vma, haddr, 0);
4756                 if (IS_ERR(page)) {
4757                         /*
4758                          * Returning error will result in faulting task being
4759                          * sent SIGBUS.  The hugetlb fault mutex prevents two
4760                          * tasks from racing to fault in the same page which
4761                          * could result in false unable to allocate errors.
4762                          * Page migration does not take the fault mutex, but
4763                          * does a clear then write of pte's under page table
4764                          * lock.  Page fault code could race with migration,
4765                          * notice the clear pte and try to allocate a page
4766                          * here.  Before returning error, get ptl and make
4767                          * sure there really is no pte entry.
4768                          */
4769                         ptl = huge_pte_lock(h, mm, ptep);
4770                         ret = 0;
4771                         if (huge_pte_none(huge_ptep_get(ptep)))
4772                                 ret = vmf_error(PTR_ERR(page));
4773                         spin_unlock(ptl);
4774                         goto out;
4775                 }
4776                 clear_huge_page(page, address, pages_per_huge_page(h));
4777                 __SetPageUptodate(page);
4778                 new_page = true;
4779
4780                 if (vma->vm_flags & VM_MAYSHARE) {
4781                         int err = huge_add_to_page_cache(page, mapping, idx);
4782                         if (err) {
4783                                 put_page(page);
4784                                 if (err == -EEXIST)
4785                                         goto retry;
4786                                 goto out;
4787                         }
4788                 } else {
4789                         lock_page(page);
4790                         if (unlikely(anon_vma_prepare(vma))) {
4791                                 ret = VM_FAULT_OOM;
4792                                 goto backout_unlocked;
4793                         }
4794                         anon_rmap = 1;
4795                 }
4796         } else {
4797                 /*
4798                  * If memory error occurs between mmap() and fault, some process
4799                  * don't have hwpoisoned swap entry for errored virtual address.
4800                  * So we need to block hugepage fault by PG_hwpoison bit check.
4801                  */
4802                 if (unlikely(PageHWPoison(page))) {
4803                         ret = VM_FAULT_HWPOISON_LARGE |
4804                                 VM_FAULT_SET_HINDEX(hstate_index(h));
4805                         goto backout_unlocked;
4806                 }
4807
4808                 /* Check for page in userfault range. */
4809                 if (userfaultfd_minor(vma)) {
4810                         unlock_page(page);
4811                         put_page(page);
4812                         ret = hugetlb_handle_userfault(vma, mapping, idx,
4813                                                        flags, haddr,
4814                                                        VM_UFFD_MINOR);
4815                         goto out;
4816                 }
4817         }
4818
4819         /*
4820          * If we are going to COW a private mapping later, we examine the
4821          * pending reservations for this page now. This will ensure that
4822          * any allocations necessary to record that reservation occur outside
4823          * the spinlock.
4824          */
4825         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
4826                 if (vma_needs_reservation(h, vma, haddr) < 0) {
4827                         ret = VM_FAULT_OOM;
4828                         goto backout_unlocked;
4829                 }
4830                 /* Just decrements count, does not deallocate */
4831                 vma_end_reservation(h, vma, haddr);
4832         }
4833
4834         ptl = huge_pte_lock(h, mm, ptep);
4835         ret = 0;
4836         if (!huge_pte_none(huge_ptep_get(ptep)))
4837                 goto backout;
4838
4839         if (anon_rmap) {
4840                 ClearHPageRestoreReserve(page);
4841                 hugepage_add_new_anon_rmap(page, vma, haddr);
4842         } else
4843                 page_dup_rmap(page, true);
4844         new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
4845                                 && (vma->vm_flags & VM_SHARED)));
4846         set_huge_pte_at(mm, haddr, ptep, new_pte);
4847
4848         hugetlb_count_add(pages_per_huge_page(h), mm);
4849         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
4850                 /* Optimization, do the COW without a second fault */
4851                 ret = hugetlb_cow(mm, vma, address, ptep, page, ptl);
4852         }
4853
4854         spin_unlock(ptl);
4855
4856         /*
4857          * Only set HPageMigratable in newly allocated pages.  Existing pages
4858          * found in the pagecache may not have HPageMigratableset if they have
4859          * been isolated for migration.
4860          */
4861         if (new_page)
4862                 SetHPageMigratable(page);
4863
4864         unlock_page(page);
4865 out:
4866         return ret;
4867
4868 backout:
4869         spin_unlock(ptl);
4870 backout_unlocked:
4871         unlock_page(page);
4872         restore_reserve_on_error(h, vma, haddr, page);
4873         put_page(page);
4874         goto out;
4875 }
4876
4877 #ifdef CONFIG_SMP
4878 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
4879 {
4880         unsigned long key[2];
4881         u32 hash;
4882
4883         key[0] = (unsigned long) mapping;
4884         key[1] = idx;
4885
4886         hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0);
4887
4888         return hash & (num_fault_mutexes - 1);
4889 }
4890 #else
4891 /*
4892  * For uniprocessor systems we always use a single mutex, so just
4893  * return 0 and avoid the hashing overhead.
4894  */
4895 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
4896 {
4897         return 0;
4898 }
4899 #endif
4900
4901 vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
4902                         unsigned long address, unsigned int flags)
4903 {
4904         pte_t *ptep, entry;
4905         spinlock_t *ptl;
4906         vm_fault_t ret;
4907         u32 hash;
4908         pgoff_t idx;
4909         struct page *page = NULL;
4910         struct page *pagecache_page = NULL;
4911         struct hstate *h = hstate_vma(vma);
4912         struct address_space *mapping;
4913         int need_wait_lock = 0;
4914         unsigned long haddr = address & huge_page_mask(h);
4915
4916         ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
4917         if (ptep) {
4918                 /*
4919                  * Since we hold no locks, ptep could be stale.  That is
4920                  * OK as we are only making decisions based on content and
4921                  * not actually modifying content here.
4922                  */
4923                 entry = huge_ptep_get(ptep);
4924                 if (unlikely(is_hugetlb_entry_migration(entry))) {
4925                         migration_entry_wait_huge(vma, mm, ptep);
4926                         return 0;
4927                 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
4928                         return VM_FAULT_HWPOISON_LARGE |
4929                                 VM_FAULT_SET_HINDEX(hstate_index(h));
4930         }
4931
4932         /*
4933          * Acquire i_mmap_rwsem before calling huge_pte_alloc and hold
4934          * until finished with ptep.  This serves two purposes:
4935          * 1) It prevents huge_pmd_unshare from being called elsewhere
4936          *    and making the ptep no longer valid.
4937          * 2) It synchronizes us with i_size modifications during truncation.
4938          *
4939          * ptep could have already be assigned via huge_pte_offset.  That
4940          * is OK, as huge_pte_alloc will return the same value unless
4941          * something has changed.
4942          */
4943         mapping = vma->vm_file->f_mapping;
4944         i_mmap_lock_read(mapping);
4945         ptep = huge_pte_alloc(mm, vma, haddr, huge_page_size(h));
4946         if (!ptep) {
4947                 i_mmap_unlock_read(mapping);
4948                 return VM_FAULT_OOM;
4949         }
4950
4951         /*
4952          * Serialize hugepage allocation and instantiation, so that we don't
4953          * get spurious allocation failures if two CPUs race to instantiate
4954          * the same page in the page cache.
4955          */
4956         idx = vma_hugecache_offset(h, vma, haddr);
4957         hash = hugetlb_fault_mutex_hash(mapping, idx);
4958         mutex_lock(&hugetlb_fault_mutex_table[hash]);
4959
4960         entry = huge_ptep_get(ptep);
4961         if (huge_pte_none(entry)) {
4962                 ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
4963                 goto out_mutex;
4964         }
4965
4966         ret = 0;
4967
4968         /*
4969          * entry could be a migration/hwpoison entry at this point, so this
4970          * check prevents the kernel from going below assuming that we have
4971          * an active hugepage in pagecache. This goto expects the 2nd page
4972          * fault, and is_hugetlb_entry_(migration|hwpoisoned) check will
4973          * properly handle it.
4974          */
4975         if (!pte_present(entry))
4976                 goto out_mutex;
4977
4978         /*
4979          * If we are going to COW the mapping later, we examine the pending
4980          * reservations for this page now. This will ensure that any
4981          * allocations necessary to record that reservation occur outside the
4982          * spinlock. For private mappings, we also lookup the pagecache
4983          * page now as it is used to determine if a reservation has been
4984          * consumed.
4985          */
4986         if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
4987                 if (vma_needs_reservation(h, vma, haddr) < 0) {
4988                         ret = VM_FAULT_OOM;
4989                         goto out_mutex;
4990                 }
4991                 /* Just decrements count, does not deallocate */
4992                 vma_end_reservation(h, vma, haddr);
4993
4994                 if (!(vma->vm_flags & VM_MAYSHARE))
4995                         pagecache_page = hugetlbfs_pagecache_page(h,
4996                                                                 vma, haddr);
4997         }
4998
4999         ptl = huge_pte_lock(h, mm, ptep);
5000
5001         /* Check for a racing update before calling hugetlb_cow */
5002         if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
5003                 goto out_ptl;
5004
5005         /*
5006          * hugetlb_cow() requires page locks of pte_page(entry) and
5007          * pagecache_page, so here we need take the former one
5008          * when page != pagecache_page or !pagecache_page.
5009          */
5010         page = pte_page(entry);
5011         if (page != pagecache_page)
5012                 if (!trylock_page(page)) {
5013                         need_wait_lock = 1;
5014                         goto out_ptl;
5015                 }
5016
5017         get_page(page);
5018
5019         if (flags & FAULT_FLAG_WRITE) {
5020                 if (!huge_pte_write(entry)) {
5021                         ret = hugetlb_cow(mm, vma, address, ptep,
5022                                           pagecache_page, ptl);
5023                         goto out_put_page;
5024                 }
5025                 entry = huge_pte_mkdirty(entry);
5026         }
5027         entry = pte_mkyoung(entry);
5028         if (huge_ptep_set_access_flags(vma, haddr, ptep, entry,
5029                                                 flags & FAULT_FLAG_WRITE))
5030                 update_mmu_cache(vma, haddr, ptep);
5031 out_put_page:
5032         if (page != pagecache_page)
5033                 unlock_page(page);
5034         put_page(page);
5035 out_ptl:
5036         spin_unlock(ptl);
5037
5038         if (pagecache_page) {
5039                 unlock_page(pagecache_page);
5040                 put_page(pagecache_page);
5041         }
5042 out_mutex:
5043         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5044         i_mmap_unlock_read(mapping);
5045         /*
5046          * Generally it's safe to hold refcount during waiting page lock. But
5047          * here we just wait to defer the next page fault to avoid busy loop and
5048          * the page is not used after unlocked before returning from the current
5049          * page fault. So we are safe from accessing freed page, even if we wait
5050          * here without taking refcount.
5051          */
5052         if (need_wait_lock)
5053                 wait_on_page_locked(page);
5054         return ret;
5055 }
5056
5057 #ifdef CONFIG_USERFAULTFD
5058 /*
5059  * Used by userfaultfd UFFDIO_COPY.  Based on mcopy_atomic_pte with
5060  * modifications for huge pages.
5061  */
5062 int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm,
5063                             pte_t *dst_pte,
5064                             struct vm_area_struct *dst_vma,
5065                             unsigned long dst_addr,
5066                             unsigned long src_addr,
5067                             enum mcopy_atomic_mode mode,
5068                             struct page **pagep)
5069 {
5070         bool is_continue = (mode == MCOPY_ATOMIC_CONTINUE);
5071         struct hstate *h = hstate_vma(dst_vma);
5072         struct address_space *mapping = dst_vma->vm_file->f_mapping;
5073         pgoff_t idx = vma_hugecache_offset(h, dst_vma, dst_addr);
5074         unsigned long size;
5075         int vm_shared = dst_vma->vm_flags & VM_SHARED;
5076         pte_t _dst_pte;
5077         spinlock_t *ptl;
5078         int ret = -ENOMEM;
5079         struct page *page;
5080         int writable;
5081
5082         if (is_continue) {
5083                 ret = -EFAULT;
5084                 page = find_lock_page(mapping, idx);
5085                 if (!page)
5086                         goto out;
5087         } else if (!*pagep) {
5088                 /* If a page already exists, then it's UFFDIO_COPY for
5089                  * a non-missing case. Return -EEXIST.
5090                  */
5091                 if (vm_shared &&
5092                     hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
5093                         ret = -EEXIST;
5094                         goto out;
5095                 }
5096
5097                 page = alloc_huge_page(dst_vma, dst_addr, 0);
5098                 if (IS_ERR(page)) {
5099                         ret = -ENOMEM;
5100                         goto out;
5101                 }
5102
5103                 ret = copy_huge_page_from_user(page,
5104                                                 (const void __user *) src_addr,
5105                                                 pages_per_huge_page(h), false);
5106
5107                 /* fallback to copy_from_user outside mmap_lock */
5108                 if (unlikely(ret)) {
5109                         ret = -ENOENT;
5110                         /* Free the allocated page which may have
5111                          * consumed a reservation.
5112                          */
5113                         restore_reserve_on_error(h, dst_vma, dst_addr, page);
5114                         put_page(page);
5115
5116                         /* Allocate a temporary page to hold the copied
5117                          * contents.
5118                          */
5119                         page = alloc_huge_page_vma(h, dst_vma, dst_addr);
5120                         if (!page) {
5121                                 ret = -ENOMEM;
5122                                 goto out;
5123                         }
5124                         *pagep = page;
5125                         /* Set the outparam pagep and return to the caller to
5126                          * copy the contents outside the lock. Don't free the
5127                          * page.
5128                          */
5129                         goto out;
5130                 }
5131         } else {
5132                 if (vm_shared &&
5133                     hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
5134                         put_page(*pagep);
5135                         ret = -EEXIST;
5136                         *pagep = NULL;
5137                         goto out;
5138                 }
5139
5140                 page = alloc_huge_page(dst_vma, dst_addr, 0);
5141                 if (IS_ERR(page)) {
5142                         ret = -ENOMEM;
5143                         *pagep = NULL;
5144                         goto out;
5145                 }
5146                 copy_huge_page(page, *pagep);
5147                 put_page(*pagep);
5148                 *pagep = NULL;
5149         }
5150
5151         /*
5152          * The memory barrier inside __SetPageUptodate makes sure that
5153          * preceding stores to the page contents become visible before
5154          * the set_pte_at() write.
5155          */
5156         __SetPageUptodate(page);
5157
5158         /* Add shared, newly allocated pages to the page cache. */
5159         if (vm_shared && !is_continue) {
5160                 size = i_size_read(mapping->host) >> huge_page_shift(h);
5161                 ret = -EFAULT;
5162                 if (idx >= size)
5163                         goto out_release_nounlock;
5164
5165                 /*
5166                  * Serialization between remove_inode_hugepages() and
5167                  * huge_add_to_page_cache() below happens through the
5168                  * hugetlb_fault_mutex_table that here must be hold by
5169                  * the caller.
5170                  */
5171                 ret = huge_add_to_page_cache(page, mapping, idx);
5172                 if (ret)
5173                         goto out_release_nounlock;
5174         }
5175
5176         ptl = huge_pte_lockptr(h, dst_mm, dst_pte);
5177         spin_lock(ptl);
5178
5179         /*
5180          * Recheck the i_size after holding PT lock to make sure not
5181          * to leave any page mapped (as page_mapped()) beyond the end
5182          * of the i_size (remove_inode_hugepages() is strict about
5183          * enforcing that). If we bail out here, we'll also leave a
5184          * page in the radix tree in the vm_shared case beyond the end
5185          * of the i_size, but remove_inode_hugepages() will take care
5186          * of it as soon as we drop the hugetlb_fault_mutex_table.
5187          */
5188         size = i_size_read(mapping->host) >> huge_page_shift(h);
5189         ret = -EFAULT;
5190         if (idx >= size)
5191                 goto out_release_unlock;
5192
5193         ret = -EEXIST;
5194         if (!huge_pte_none(huge_ptep_get(dst_pte)))
5195                 goto out_release_unlock;
5196
5197         if (vm_shared) {
5198                 page_dup_rmap(page, true);
5199         } else {
5200                 ClearHPageRestoreReserve(page);
5201                 hugepage_add_new_anon_rmap(page, dst_vma, dst_addr);
5202         }
5203
5204         /* For CONTINUE on a non-shared VMA, don't set VM_WRITE for CoW. */
5205         if (is_continue && !vm_shared)
5206                 writable = 0;
5207         else
5208                 writable = dst_vma->vm_flags & VM_WRITE;
5209
5210         _dst_pte = make_huge_pte(dst_vma, page, writable);
5211         if (writable)
5212                 _dst_pte = huge_pte_mkdirty(_dst_pte);
5213         _dst_pte = pte_mkyoung(_dst_pte);
5214
5215         set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
5216
5217         (void)huge_ptep_set_access_flags(dst_vma, dst_addr, dst_pte, _dst_pte,
5218                                         dst_vma->vm_flags & VM_WRITE);
5219         hugetlb_count_add(pages_per_huge_page(h), dst_mm);
5220
5221         /* No need to invalidate - it was non-present before */
5222         update_mmu_cache(dst_vma, dst_addr, dst_pte);
5223
5224         spin_unlock(ptl);
5225         if (!is_continue)
5226                 SetHPageMigratable(page);
5227         if (vm_shared || is_continue)
5228                 unlock_page(page);
5229         ret = 0;
5230 out:
5231         return ret;
5232 out_release_unlock:
5233         spin_unlock(ptl);
5234         if (vm_shared || is_continue)
5235                 unlock_page(page);
5236 out_release_nounlock:
5237         restore_reserve_on_error(h, dst_vma, dst_addr, page);
5238         put_page(page);
5239         goto out;
5240 }
5241 #endif /* CONFIG_USERFAULTFD */
5242
5243 static void record_subpages_vmas(struct page *page, struct vm_area_struct *vma,
5244                                  int refs, struct page **pages,
5245                                  struct vm_area_struct **vmas)
5246 {
5247         int nr;
5248
5249         for (nr = 0; nr < refs; nr++) {
5250                 if (likely(pages))
5251                         pages[nr] = mem_map_offset(page, nr);
5252                 if (vmas)
5253                         vmas[nr] = vma;
5254         }
5255 }
5256
5257 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
5258                          struct page **pages, struct vm_area_struct **vmas,
5259                          unsigned long *position, unsigned long *nr_pages,
5260                          long i, unsigned int flags, int *locked)
5261 {
5262         unsigned long pfn_offset;
5263         unsigned long vaddr = *position;
5264         unsigned long remainder = *nr_pages;
5265         struct hstate *h = hstate_vma(vma);
5266         int err = -EFAULT, refs;
5267
5268         while (vaddr < vma->vm_end && remainder) {
5269                 pte_t *pte;
5270                 spinlock_t *ptl = NULL;
5271                 int absent;
5272                 struct page *page;
5273
5274                 /*
5275                  * If we have a pending SIGKILL, don't keep faulting pages and
5276                  * potentially allocating memory.
5277                  */
5278                 if (fatal_signal_pending(current)) {
5279                         remainder = 0;
5280                         break;
5281                 }
5282
5283                 /*
5284                  * Some archs (sparc64, sh*) have multiple pte_ts to
5285                  * each hugepage.  We have to make sure we get the
5286                  * first, for the page indexing below to work.
5287                  *
5288                  * Note that page table lock is not held when pte is null.
5289                  */
5290                 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h),
5291                                       huge_page_size(h));
5292                 if (pte)
5293                         ptl = huge_pte_lock(h, mm, pte);
5294                 absent = !pte || huge_pte_none(huge_ptep_get(pte));
5295
5296                 /*
5297                  * When coredumping, it suits get_dump_page if we just return
5298                  * an error where there's an empty slot with no huge pagecache
5299                  * to back it.  This way, we avoid allocating a hugepage, and
5300                  * the sparse dumpfile avoids allocating disk blocks, but its
5301                  * huge holes still show up with zeroes where they need to be.
5302                  */
5303                 if (absent && (flags & FOLL_DUMP) &&
5304                     !hugetlbfs_pagecache_present(h, vma, vaddr)) {
5305                         if (pte)
5306                                 spin_unlock(ptl);
5307                         remainder = 0;
5308                         break;
5309                 }
5310
5311                 /*
5312                  * We need call hugetlb_fault for both hugepages under migration
5313                  * (in which case hugetlb_fault waits for the migration,) and
5314                  * hwpoisoned hugepages (in which case we need to prevent the
5315                  * caller from accessing to them.) In order to do this, we use
5316                  * here is_swap_pte instead of is_hugetlb_entry_migration and
5317                  * is_hugetlb_entry_hwpoisoned. This is because it simply covers
5318                  * both cases, and because we can't follow correct pages
5319                  * directly from any kind of swap entries.
5320                  */
5321                 if (absent || is_swap_pte(huge_ptep_get(pte)) ||
5322                     ((flags & FOLL_WRITE) &&
5323                       !huge_pte_write(huge_ptep_get(pte)))) {
5324                         vm_fault_t ret;
5325                         unsigned int fault_flags = 0;
5326
5327                         if (pte)
5328                                 spin_unlock(ptl);
5329                         if (flags & FOLL_WRITE)
5330                                 fault_flags |= FAULT_FLAG_WRITE;
5331                         if (locked)
5332                                 fault_flags |= FAULT_FLAG_ALLOW_RETRY |
5333                                         FAULT_FLAG_KILLABLE;
5334                         if (flags & FOLL_NOWAIT)
5335                                 fault_flags |= FAULT_FLAG_ALLOW_RETRY |
5336                                         FAULT_FLAG_RETRY_NOWAIT;
5337                         if (flags & FOLL_TRIED) {
5338                                 /*
5339                                  * Note: FAULT_FLAG_ALLOW_RETRY and
5340                                  * FAULT_FLAG_TRIED can co-exist
5341                                  */
5342                                 fault_flags |= FAULT_FLAG_TRIED;
5343                         }
5344                         ret = hugetlb_fault(mm, vma, vaddr, fault_flags);
5345                         if (ret & VM_FAULT_ERROR) {
5346                                 err = vm_fault_to_errno(ret, flags);
5347                                 remainder = 0;
5348                                 break;
5349                         }
5350                         if (ret & VM_FAULT_RETRY) {
5351                                 if (locked &&
5352                                     !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
5353                                         *locked = 0;
5354                                 *nr_pages = 0;
5355                                 /*
5356                                  * VM_FAULT_RETRY must not return an
5357                                  * error, it will return zero
5358                                  * instead.
5359                                  *
5360                                  * No need to update "position" as the
5361                                  * caller will not check it after
5362                                  * *nr_pages is set to 0.
5363                                  */
5364                                 return i;
5365                         }
5366                         continue;
5367                 }
5368
5369                 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
5370                 page = pte_page(huge_ptep_get(pte));
5371
5372                 /*
5373                  * If subpage information not requested, update counters
5374                  * and skip the same_page loop below.
5375                  */
5376                 if (!pages && !vmas && !pfn_offset &&
5377                     (vaddr + huge_page_size(h) < vma->vm_end) &&
5378                     (remainder >= pages_per_huge_page(h))) {
5379                         vaddr += huge_page_size(h);
5380                         remainder -= pages_per_huge_page(h);
5381                         i += pages_per_huge_page(h);
5382                         spin_unlock(ptl);
5383                         continue;
5384                 }
5385
5386                 refs = min3(pages_per_huge_page(h) - pfn_offset,
5387                             (vma->vm_end - vaddr) >> PAGE_SHIFT, remainder);
5388
5389                 if (pages || vmas)
5390                         record_subpages_vmas(mem_map_offset(page, pfn_offset),
5391                                              vma, refs,
5392                                              likely(pages) ? pages + i : NULL,
5393                                              vmas ? vmas + i : NULL);
5394
5395                 if (pages) {
5396                         /*
5397                          * try_grab_compound_head() should always succeed here,
5398                          * because: a) we hold the ptl lock, and b) we've just
5399                          * checked that the huge page is present in the page
5400                          * tables. If the huge page is present, then the tail
5401                          * pages must also be present. The ptl prevents the
5402                          * head page and tail pages from being rearranged in
5403                          * any way. So this page must be available at this
5404                          * point, unless the page refcount overflowed:
5405                          */
5406                         if (WARN_ON_ONCE(!try_grab_compound_head(pages[i],
5407                                                                  refs,
5408                                                                  flags))) {
5409                                 spin_unlock(ptl);
5410                                 remainder = 0;
5411                                 err = -ENOMEM;
5412                                 break;
5413                         }
5414                 }
5415
5416                 vaddr += (refs << PAGE_SHIFT);
5417                 remainder -= refs;
5418                 i += refs;
5419
5420                 spin_unlock(ptl);
5421         }
5422         *nr_pages = remainder;
5423         /*
5424          * setting position is actually required only if remainder is
5425          * not zero but it's faster not to add a "if (remainder)"
5426          * branch.
5427          */
5428         *position = vaddr;
5429
5430         return i ? i : err;
5431 }
5432
5433 unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
5434                 unsigned long address, unsigned long end, pgprot_t newprot)
5435 {
5436         struct mm_struct *mm = vma->vm_mm;
5437         unsigned long start = address;
5438         pte_t *ptep;
5439         pte_t pte;
5440         struct hstate *h = hstate_vma(vma);
5441         unsigned long pages = 0;
5442         bool shared_pmd = false;
5443         struct mmu_notifier_range range;
5444
5445         /*
5446          * In the case of shared PMDs, the area to flush could be beyond
5447          * start/end.  Set range.start/range.end to cover the maximum possible
5448          * range if PMD sharing is possible.
5449          */
5450         mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA,
5451                                 0, vma, mm, start, end);
5452         adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
5453
5454         BUG_ON(address >= end);
5455         flush_cache_range(vma, range.start, range.end);
5456
5457         mmu_notifier_invalidate_range_start(&range);
5458         i_mmap_lock_write(vma->vm_file->f_mapping);
5459         for (; address < end; address += huge_page_size(h)) {
5460                 spinlock_t *ptl;
5461                 ptep = huge_pte_offset(mm, address, huge_page_size(h));
5462                 if (!ptep)
5463                         continue;
5464                 ptl = huge_pte_lock(h, mm, ptep);
5465                 if (huge_pmd_unshare(mm, vma, &address, ptep)) {
5466                         pages++;
5467                         spin_unlock(ptl);
5468                         shared_pmd = true;
5469                         continue;
5470                 }
5471                 pte = huge_ptep_get(ptep);
5472                 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
5473                         spin_unlock(ptl);
5474                         continue;
5475                 }
5476                 if (unlikely(is_hugetlb_entry_migration(pte))) {
5477                         swp_entry_t entry = pte_to_swp_entry(pte);
5478
5479                         if (is_write_migration_entry(entry)) {
5480                                 pte_t newpte;
5481
5482                                 make_migration_entry_read(&entry);
5483                                 newpte = swp_entry_to_pte(entry);
5484                                 set_huge_swap_pte_at(mm, address, ptep,
5485                                                      newpte, huge_page_size(h));
5486                                 pages++;
5487                         }
5488                         spin_unlock(ptl);
5489                         continue;
5490                 }
5491                 if (!huge_pte_none(pte)) {
5492                         pte_t old_pte;
5493                         unsigned int shift = huge_page_shift(hstate_vma(vma));
5494
5495                         old_pte = huge_ptep_modify_prot_start(vma, address, ptep);
5496                         pte = pte_mkhuge(huge_pte_modify(old_pte, newprot));
5497                         pte = arch_make_huge_pte(pte, shift, vma->vm_flags);
5498                         huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte);
5499                         pages++;
5500                 }
5501                 spin_unlock(ptl);
5502         }
5503         /*
5504          * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
5505          * may have cleared our pud entry and done put_page on the page table:
5506          * once we release i_mmap_rwsem, another task can do the final put_page
5507          * and that page table be reused and filled with junk.  If we actually
5508          * did unshare a page of pmds, flush the range corresponding to the pud.
5509          */
5510         if (shared_pmd)
5511                 flush_hugetlb_tlb_range(vma, range.start, range.end);
5512         else
5513                 flush_hugetlb_tlb_range(vma, start, end);
5514         /*
5515          * No need to call mmu_notifier_invalidate_range() we are downgrading
5516          * page table protection not changing it to point to a new page.
5517          *
5518          * See Documentation/vm/mmu_notifier.rst
5519          */
5520         i_mmap_unlock_write(vma->vm_file->f_mapping);
5521         mmu_notifier_invalidate_range_end(&range);
5522
5523         return pages << h->order;
5524 }
5525
5526 /* Return true if reservation was successful, false otherwise.  */
5527 bool hugetlb_reserve_pages(struct inode *inode,
5528                                         long from, long to,
5529                                         struct vm_area_struct *vma,
5530                                         vm_flags_t vm_flags)
5531 {
5532         long chg, add = -1;
5533         struct hstate *h = hstate_inode(inode);
5534         struct hugepage_subpool *spool = subpool_inode(inode);
5535         struct resv_map *resv_map;
5536         struct hugetlb_cgroup *h_cg = NULL;
5537         long gbl_reserve, regions_needed = 0;
5538
5539         /* This should never happen */
5540         if (from > to) {
5541                 VM_WARN(1, "%s called with a negative range\n", __func__);
5542                 return false;
5543         }
5544
5545         /*
5546          * Only apply hugepage reservation if asked. At fault time, an
5547          * attempt will be made for VM_NORESERVE to allocate a page
5548          * without using reserves
5549          */
5550         if (vm_flags & VM_NORESERVE)
5551                 return true;
5552
5553         /*
5554          * Shared mappings base their reservation on the number of pages that
5555          * are already allocated on behalf of the file. Private mappings need
5556          * to reserve the full area even if read-only as mprotect() may be
5557          * called to make the mapping read-write. Assume !vma is a shm mapping
5558          */
5559         if (!vma || vma->vm_flags & VM_MAYSHARE) {
5560                 /*
5561                  * resv_map can not be NULL as hugetlb_reserve_pages is only
5562                  * called for inodes for which resv_maps were created (see
5563                  * hugetlbfs_get_inode).
5564                  */
5565                 resv_map = inode_resv_map(inode);
5566
5567                 chg = region_chg(resv_map, from, to, &regions_needed);
5568
5569         } else {
5570                 /* Private mapping. */
5571                 resv_map = resv_map_alloc();
5572                 if (!resv_map)
5573                         return false;
5574
5575                 chg = to - from;
5576
5577                 set_vma_resv_map(vma, resv_map);
5578                 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
5579         }
5580
5581         if (chg < 0)
5582                 goto out_err;
5583
5584         if (hugetlb_cgroup_charge_cgroup_rsvd(hstate_index(h),
5585                                 chg * pages_per_huge_page(h), &h_cg) < 0)
5586                 goto out_err;
5587
5588         if (vma && !(vma->vm_flags & VM_MAYSHARE) && h_cg) {
5589                 /* For private mappings, the hugetlb_cgroup uncharge info hangs
5590                  * of the resv_map.
5591                  */
5592                 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, h_cg, h);
5593         }
5594
5595         /*
5596          * There must be enough pages in the subpool for the mapping. If
5597          * the subpool has a minimum size, there may be some global
5598          * reservations already in place (gbl_reserve).
5599          */
5600         gbl_reserve = hugepage_subpool_get_pages(spool, chg);
5601         if (gbl_reserve < 0)
5602                 goto out_uncharge_cgroup;
5603
5604         /*
5605          * Check enough hugepages are available for the reservation.
5606          * Hand the pages back to the subpool if there are not
5607          */
5608         if (hugetlb_acct_memory(h, gbl_reserve) < 0)
5609                 goto out_put_pages;
5610
5611         /*
5612          * Account for the reservations made. Shared mappings record regions
5613          * that have reservations as they are shared by multiple VMAs.
5614          * When the last VMA disappears, the region map says how much
5615          * the reservation was and the page cache tells how much of
5616          * the reservation was consumed. Private mappings are per-VMA and
5617          * only the consumed reservations are tracked. When the VMA
5618          * disappears, the original reservation is the VMA size and the
5619          * consumed reservations are stored in the map. Hence, nothing
5620          * else has to be done for private mappings here
5621          */
5622         if (!vma || vma->vm_flags & VM_MAYSHARE) {
5623                 add = region_add(resv_map, from, to, regions_needed, h, h_cg);
5624
5625                 if (unlikely(add < 0)) {
5626                         hugetlb_acct_memory(h, -gbl_reserve);
5627                         goto out_put_pages;
5628                 } else if (unlikely(chg > add)) {
5629                         /*
5630                          * pages in this range were added to the reserve
5631                          * map between region_chg and region_add.  This
5632                          * indicates a race with alloc_huge_page.  Adjust
5633                          * the subpool and reserve counts modified above
5634                          * based on the difference.
5635                          */
5636                         long rsv_adjust;
5637
5638                         /*
5639                          * hugetlb_cgroup_uncharge_cgroup_rsvd() will put the
5640                          * reference to h_cg->css. See comment below for detail.
5641                          */
5642                         hugetlb_cgroup_uncharge_cgroup_rsvd(
5643                                 hstate_index(h),
5644                                 (chg - add) * pages_per_huge_page(h), h_cg);
5645
5646                         rsv_adjust = hugepage_subpool_put_pages(spool,
5647                                                                 chg - add);
5648                         hugetlb_acct_memory(h, -rsv_adjust);
5649                 } else if (h_cg) {
5650                         /*
5651                          * The file_regions will hold their own reference to
5652                          * h_cg->css. So we should release the reference held
5653                          * via hugetlb_cgroup_charge_cgroup_rsvd() when we are
5654                          * done.
5655                          */
5656                         hugetlb_cgroup_put_rsvd_cgroup(h_cg);
5657                 }
5658         }
5659         return true;
5660
5661 out_put_pages:
5662         /* put back original number of pages, chg */
5663         (void)hugepage_subpool_put_pages(spool, chg);
5664 out_uncharge_cgroup:
5665         hugetlb_cgroup_uncharge_cgroup_rsvd(hstate_index(h),
5666                                             chg * pages_per_huge_page(h), h_cg);
5667 out_err:
5668         if (!vma || vma->vm_flags & VM_MAYSHARE)
5669                 /* Only call region_abort if the region_chg succeeded but the
5670                  * region_add failed or didn't run.
5671                  */
5672                 if (chg >= 0 && add < 0)
5673                         region_abort(resv_map, from, to, regions_needed);
5674         if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
5675                 kref_put(&resv_map->refs, resv_map_release);
5676         return false;
5677 }
5678
5679 long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
5680                                                                 long freed)
5681 {
5682         struct hstate *h = hstate_inode(inode);
5683         struct resv_map *resv_map = inode_resv_map(inode);
5684         long chg = 0;
5685         struct hugepage_subpool *spool = subpool_inode(inode);
5686         long gbl_reserve;
5687
5688         /*
5689          * Since this routine can be called in the evict inode path for all
5690          * hugetlbfs inodes, resv_map could be NULL.
5691          */
5692         if (resv_map) {
5693                 chg = region_del(resv_map, start, end);
5694                 /*
5695                  * region_del() can fail in the rare case where a region
5696                  * must be split and another region descriptor can not be
5697                  * allocated.  If end == LONG_MAX, it will not fail.
5698                  */
5699                 if (chg < 0)
5700                         return chg;
5701         }
5702
5703         spin_lock(&inode->i_lock);
5704         inode->i_blocks -= (blocks_per_huge_page(h) * freed);
5705         spin_unlock(&inode->i_lock);
5706
5707         /*
5708          * If the subpool has a minimum size, the number of global
5709          * reservations to be released may be adjusted.
5710          *
5711          * Note that !resv_map implies freed == 0. So (chg - freed)
5712          * won't go negative.
5713          */
5714         gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
5715         hugetlb_acct_memory(h, -gbl_reserve);
5716
5717         return 0;
5718 }
5719
5720 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
5721 static unsigned long page_table_shareable(struct vm_area_struct *svma,
5722                                 struct vm_area_struct *vma,
5723                                 unsigned long addr, pgoff_t idx)
5724 {
5725         unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
5726                                 svma->vm_start;
5727         unsigned long sbase = saddr & PUD_MASK;
5728         unsigned long s_end = sbase + PUD_SIZE;
5729
5730         /* Allow segments to share if only one is marked locked */
5731         unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
5732         unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
5733
5734         /*
5735          * match the virtual addresses, permission and the alignment of the
5736          * page table page.
5737          */
5738         if (pmd_index(addr) != pmd_index(saddr) ||
5739             vm_flags != svm_flags ||
5740             !range_in_vma(svma, sbase, s_end))
5741                 return 0;
5742
5743         return saddr;
5744 }
5745
5746 static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr)
5747 {
5748         unsigned long base = addr & PUD_MASK;
5749         unsigned long end = base + PUD_SIZE;
5750
5751         /*
5752          * check on proper vm_flags and page table alignment
5753          */
5754         if (vma->vm_flags & VM_MAYSHARE && range_in_vma(vma, base, end))
5755                 return true;
5756         return false;
5757 }
5758
5759 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
5760 {
5761 #ifdef CONFIG_USERFAULTFD
5762         if (uffd_disable_huge_pmd_share(vma))
5763                 return false;
5764 #endif
5765         return vma_shareable(vma, addr);
5766 }
5767
5768 /*
5769  * Determine if start,end range within vma could be mapped by shared pmd.
5770  * If yes, adjust start and end to cover range associated with possible
5771  * shared pmd mappings.
5772  */
5773 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
5774                                 unsigned long *start, unsigned long *end)
5775 {
5776         unsigned long v_start = ALIGN(vma->vm_start, PUD_SIZE),
5777                 v_end = ALIGN_DOWN(vma->vm_end, PUD_SIZE);
5778
5779         /*
5780          * vma needs to span at least one aligned PUD size, and the range
5781          * must be at least partially within in.
5782          */
5783         if (!(vma->vm_flags & VM_MAYSHARE) || !(v_end > v_start) ||
5784                 (*end <= v_start) || (*start >= v_end))
5785                 return;
5786
5787         /* Extend the range to be PUD aligned for a worst case scenario */
5788         if (*start > v_start)
5789                 *start = ALIGN_DOWN(*start, PUD_SIZE);
5790
5791         if (*end < v_end)
5792                 *end = ALIGN(*end, PUD_SIZE);
5793 }
5794
5795 /*
5796  * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
5797  * and returns the corresponding pte. While this is not necessary for the
5798  * !shared pmd case because we can allocate the pmd later as well, it makes the
5799  * code much cleaner.
5800  *
5801  * This routine must be called with i_mmap_rwsem held in at least read mode if
5802  * sharing is possible.  For hugetlbfs, this prevents removal of any page
5803  * table entries associated with the address space.  This is important as we
5804  * are setting up sharing based on existing page table entries (mappings).
5805  *
5806  * NOTE: This routine is only called from huge_pte_alloc.  Some callers of
5807  * huge_pte_alloc know that sharing is not possible and do not take
5808  * i_mmap_rwsem as a performance optimization.  This is handled by the
5809  * if !vma_shareable check at the beginning of the routine. i_mmap_rwsem is
5810  * only required for subsequent processing.
5811  */
5812 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
5813                       unsigned long addr, pud_t *pud)
5814 {
5815         struct address_space *mapping = vma->vm_file->f_mapping;
5816         pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
5817                         vma->vm_pgoff;
5818         struct vm_area_struct *svma;
5819         unsigned long saddr;
5820         pte_t *spte = NULL;
5821         pte_t *pte;
5822         spinlock_t *ptl;
5823
5824         i_mmap_assert_locked(mapping);
5825         vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
5826                 if (svma == vma)
5827                         continue;
5828
5829                 saddr = page_table_shareable(svma, vma, addr, idx);
5830                 if (saddr) {
5831                         spte = huge_pte_offset(svma->vm_mm, saddr,
5832                                                vma_mmu_pagesize(svma));
5833                         if (spte) {
5834                                 get_page(virt_to_page(spte));
5835                                 break;
5836                         }
5837                 }
5838         }
5839
5840         if (!spte)
5841                 goto out;
5842
5843         ptl = huge_pte_lock(hstate_vma(vma), mm, spte);
5844         if (pud_none(*pud)) {
5845                 pud_populate(mm, pud,
5846                                 (pmd_t *)((unsigned long)spte & PAGE_MASK));
5847                 mm_inc_nr_pmds(mm);
5848         } else {
5849                 put_page(virt_to_page(spte));
5850         }
5851         spin_unlock(ptl);
5852 out:
5853         pte = (pte_t *)pmd_alloc(mm, pud, addr);
5854         return pte;
5855 }
5856
5857 /*
5858  * unmap huge page backed by shared pte.
5859  *
5860  * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
5861  * indicated by page_count > 1, unmap is achieved by clearing pud and
5862  * decrementing the ref count. If count == 1, the pte page is not shared.
5863  *
5864  * Called with page table lock held and i_mmap_rwsem held in write mode.
5865  *
5866  * returns: 1 successfully unmapped a shared pte page
5867  *          0 the underlying pte page is not shared, or it is the last user
5868  */
5869 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
5870                                         unsigned long *addr, pte_t *ptep)
5871 {
5872         pgd_t *pgd = pgd_offset(mm, *addr);
5873         p4d_t *p4d = p4d_offset(pgd, *addr);
5874         pud_t *pud = pud_offset(p4d, *addr);
5875
5876         i_mmap_assert_write_locked(vma->vm_file->f_mapping);
5877         BUG_ON(page_count(virt_to_page(ptep)) == 0);
5878         if (page_count(virt_to_page(ptep)) == 1)
5879                 return 0;
5880
5881         pud_clear(pud);
5882         put_page(virt_to_page(ptep));
5883         mm_dec_nr_pmds(mm);
5884         *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
5885         return 1;
5886 }
5887
5888 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
5889 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
5890                       unsigned long addr, pud_t *pud)
5891 {
5892         return NULL;
5893 }
5894
5895 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
5896                                 unsigned long *addr, pte_t *ptep)
5897 {
5898         return 0;
5899 }
5900
5901 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
5902                                 unsigned long *start, unsigned long *end)
5903 {
5904 }
5905
5906 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
5907 {
5908         return false;
5909 }
5910 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
5911
5912 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
5913 pte_t *huge_pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
5914                         unsigned long addr, unsigned long sz)
5915 {
5916         pgd_t *pgd;
5917         p4d_t *p4d;
5918         pud_t *pud;
5919         pte_t *pte = NULL;
5920
5921         pgd = pgd_offset(mm, addr);
5922         p4d = p4d_alloc(mm, pgd, addr);
5923         if (!p4d)
5924                 return NULL;
5925         pud = pud_alloc(mm, p4d, addr);
5926         if (pud) {
5927                 if (sz == PUD_SIZE) {
5928                         pte = (pte_t *)pud;
5929                 } else {
5930                         BUG_ON(sz != PMD_SIZE);
5931                         if (want_pmd_share(vma, addr) && pud_none(*pud))
5932                                 pte = huge_pmd_share(mm, vma, addr, pud);
5933                         else
5934                                 pte = (pte_t *)pmd_alloc(mm, pud, addr);
5935                 }
5936         }
5937         BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte));
5938
5939         return pte;
5940 }
5941
5942 /*
5943  * huge_pte_offset() - Walk the page table to resolve the hugepage
5944  * entry at address @addr
5945  *
5946  * Return: Pointer to page table entry (PUD or PMD) for
5947  * address @addr, or NULL if a !p*d_present() entry is encountered and the
5948  * size @sz doesn't match the hugepage size at this level of the page
5949  * table.
5950  */
5951 pte_t *huge_pte_offset(struct mm_struct *mm,
5952                        unsigned long addr, unsigned long sz)
5953 {
5954         pgd_t *pgd;
5955         p4d_t *p4d;
5956         pud_t *pud;
5957         pmd_t *pmd;
5958
5959         pgd = pgd_offset(mm, addr);
5960         if (!pgd_present(*pgd))
5961                 return NULL;
5962         p4d = p4d_offset(pgd, addr);
5963         if (!p4d_present(*p4d))
5964                 return NULL;
5965
5966         pud = pud_offset(p4d, addr);
5967         if (sz == PUD_SIZE)
5968                 /* must be pud huge, non-present or none */
5969                 return (pte_t *)pud;
5970         if (!pud_present(*pud))
5971                 return NULL;
5972         /* must have a valid entry and size to go further */
5973
5974         pmd = pmd_offset(pud, addr);
5975         /* must be pmd huge, non-present or none */
5976         return (pte_t *)pmd;
5977 }
5978
5979 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
5980
5981 /*
5982  * These functions are overwritable if your architecture needs its own
5983  * behavior.
5984  */
5985 struct page * __weak
5986 follow_huge_addr(struct mm_struct *mm, unsigned long address,
5987                               int write)
5988 {
5989         return ERR_PTR(-EINVAL);
5990 }
5991
5992 struct page * __weak
5993 follow_huge_pd(struct vm_area_struct *vma,
5994                unsigned long address, hugepd_t hpd, int flags, int pdshift)
5995 {
5996         WARN(1, "hugepd follow called with no support for hugepage directory format\n");
5997         return NULL;
5998 }
5999
6000 struct page * __weak
6001 follow_huge_pmd(struct mm_struct *mm, unsigned long address,
6002                 pmd_t *pmd, int flags)
6003 {
6004         struct page *page = NULL;
6005         spinlock_t *ptl;
6006         pte_t pte;
6007
6008         /* FOLL_GET and FOLL_PIN are mutually exclusive. */
6009         if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
6010                          (FOLL_PIN | FOLL_GET)))
6011                 return NULL;
6012
6013 retry:
6014         ptl = pmd_lockptr(mm, pmd);
6015         spin_lock(ptl);
6016         /*
6017          * make sure that the address range covered by this pmd is not
6018          * unmapped from other threads.
6019          */
6020         if (!pmd_huge(*pmd))
6021                 goto out;
6022         pte = huge_ptep_get((pte_t *)pmd);
6023         if (pte_present(pte)) {
6024                 page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
6025                 /*
6026                  * try_grab_page() should always succeed here, because: a) we
6027                  * hold the pmd (ptl) lock, and b) we've just checked that the
6028                  * huge pmd (head) page is present in the page tables. The ptl
6029                  * prevents the head page and tail pages from being rearranged
6030                  * in any way. So this page must be available at this point,
6031                  * unless the page refcount overflowed:
6032                  */
6033                 if (WARN_ON_ONCE(!try_grab_page(page, flags))) {
6034                         page = NULL;
6035                         goto out;
6036                 }
6037         } else {
6038                 if (is_hugetlb_entry_migration(pte)) {
6039                         spin_unlock(ptl);
6040                         __migration_entry_wait(mm, (pte_t *)pmd, ptl);
6041                         goto retry;
6042                 }
6043                 /*
6044                  * hwpoisoned entry is treated as no_page_table in
6045                  * follow_page_mask().
6046                  */
6047         }
6048 out:
6049         spin_unlock(ptl);
6050         return page;
6051 }
6052
6053 struct page * __weak
6054 follow_huge_pud(struct mm_struct *mm, unsigned long address,
6055                 pud_t *pud, int flags)
6056 {
6057         if (flags & (FOLL_GET | FOLL_PIN))
6058                 return NULL;
6059
6060         return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
6061 }
6062
6063 struct page * __weak
6064 follow_huge_pgd(struct mm_struct *mm, unsigned long address, pgd_t *pgd, int flags)
6065 {
6066         if (flags & (FOLL_GET | FOLL_PIN))
6067                 return NULL;
6068
6069         return pte_page(*(pte_t *)pgd) + ((address & ~PGDIR_MASK) >> PAGE_SHIFT);
6070 }
6071
6072 bool isolate_huge_page(struct page *page, struct list_head *list)
6073 {
6074         bool ret = true;
6075
6076         spin_lock_irq(&hugetlb_lock);
6077         if (!PageHeadHuge(page) ||
6078             !HPageMigratable(page) ||
6079             !get_page_unless_zero(page)) {
6080                 ret = false;
6081                 goto unlock;
6082         }
6083         ClearHPageMigratable(page);
6084         list_move_tail(&page->lru, list);
6085 unlock:
6086         spin_unlock_irq(&hugetlb_lock);
6087         return ret;
6088 }
6089
6090 int get_hwpoison_huge_page(struct page *page, bool *hugetlb)
6091 {
6092         int ret = 0;
6093
6094         *hugetlb = false;
6095         spin_lock_irq(&hugetlb_lock);
6096         if (PageHeadHuge(page)) {
6097                 *hugetlb = true;
6098                 if (HPageFreed(page) || HPageMigratable(page))
6099                         ret = get_page_unless_zero(page);
6100                 else
6101                         ret = -EBUSY;
6102         }
6103         spin_unlock_irq(&hugetlb_lock);
6104         return ret;
6105 }
6106
6107 void putback_active_hugepage(struct page *page)
6108 {
6109         spin_lock_irq(&hugetlb_lock);
6110         SetHPageMigratable(page);
6111         list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
6112         spin_unlock_irq(&hugetlb_lock);
6113         put_page(page);
6114 }
6115
6116 void move_hugetlb_state(struct page *oldpage, struct page *newpage, int reason)
6117 {
6118         struct hstate *h = page_hstate(oldpage);
6119
6120         hugetlb_cgroup_migrate(oldpage, newpage);
6121         set_page_owner_migrate_reason(newpage, reason);
6122
6123         /*
6124          * transfer temporary state of the new huge page. This is
6125          * reverse to other transitions because the newpage is going to
6126          * be final while the old one will be freed so it takes over
6127          * the temporary status.
6128          *
6129          * Also note that we have to transfer the per-node surplus state
6130          * here as well otherwise the global surplus count will not match
6131          * the per-node's.
6132          */
6133         if (HPageTemporary(newpage)) {
6134                 int old_nid = page_to_nid(oldpage);
6135                 int new_nid = page_to_nid(newpage);
6136
6137                 SetHPageTemporary(oldpage);
6138                 ClearHPageTemporary(newpage);
6139
6140                 /*
6141                  * There is no need to transfer the per-node surplus state
6142                  * when we do not cross the node.
6143                  */
6144                 if (new_nid == old_nid)
6145                         return;
6146                 spin_lock_irq(&hugetlb_lock);
6147                 if (h->surplus_huge_pages_node[old_nid]) {
6148                         h->surplus_huge_pages_node[old_nid]--;
6149                         h->surplus_huge_pages_node[new_nid]++;
6150                 }
6151                 spin_unlock_irq(&hugetlb_lock);
6152         }
6153 }
6154
6155 /*
6156  * This function will unconditionally remove all the shared pmd pgtable entries
6157  * within the specific vma for a hugetlbfs memory range.
6158  */
6159 void hugetlb_unshare_all_pmds(struct vm_area_struct *vma)
6160 {
6161         struct hstate *h = hstate_vma(vma);
6162         unsigned long sz = huge_page_size(h);
6163         struct mm_struct *mm = vma->vm_mm;
6164         struct mmu_notifier_range range;
6165         unsigned long address, start, end;
6166         spinlock_t *ptl;
6167         pte_t *ptep;
6168
6169         if (!(vma->vm_flags & VM_MAYSHARE))
6170                 return;
6171
6172         start = ALIGN(vma->vm_start, PUD_SIZE);
6173         end = ALIGN_DOWN(vma->vm_end, PUD_SIZE);
6174
6175         if (start >= end)
6176                 return;
6177
6178         /*
6179          * No need to call adjust_range_if_pmd_sharing_possible(), because
6180          * we have already done the PUD_SIZE alignment.
6181          */
6182         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
6183                                 start, end);
6184         mmu_notifier_invalidate_range_start(&range);
6185         i_mmap_lock_write(vma->vm_file->f_mapping);
6186         for (address = start; address < end; address += PUD_SIZE) {
6187                 unsigned long tmp = address;
6188
6189                 ptep = huge_pte_offset(mm, address, sz);
6190                 if (!ptep)
6191                         continue;
6192                 ptl = huge_pte_lock(h, mm, ptep);
6193                 /* We don't want 'address' to be changed */
6194                 huge_pmd_unshare(mm, vma, &tmp, ptep);
6195                 spin_unlock(ptl);
6196         }
6197         flush_hugetlb_tlb_range(vma, start, end);
6198         i_mmap_unlock_write(vma->vm_file->f_mapping);
6199         /*
6200          * No need to call mmu_notifier_invalidate_range(), see
6201          * Documentation/vm/mmu_notifier.rst.
6202          */
6203         mmu_notifier_invalidate_range_end(&range);
6204 }
6205
6206 #ifdef CONFIG_CMA
6207 static bool cma_reserve_called __initdata;
6208
6209 static int __init cmdline_parse_hugetlb_cma(char *p)
6210 {
6211         hugetlb_cma_size = memparse(p, &p);
6212         return 0;
6213 }
6214
6215 early_param("hugetlb_cma", cmdline_parse_hugetlb_cma);
6216
6217 void __init hugetlb_cma_reserve(int order)
6218 {
6219         unsigned long size, reserved, per_node;
6220         int nid;
6221
6222         cma_reserve_called = true;
6223
6224         if (!hugetlb_cma_size)
6225                 return;
6226
6227         if (hugetlb_cma_size < (PAGE_SIZE << order)) {
6228                 pr_warn("hugetlb_cma: cma area should be at least %lu MiB\n",
6229                         (PAGE_SIZE << order) / SZ_1M);
6230                 return;
6231         }
6232
6233         /*
6234          * If 3 GB area is requested on a machine with 4 numa nodes,
6235          * let's allocate 1 GB on first three nodes and ignore the last one.
6236          */
6237         per_node = DIV_ROUND_UP(hugetlb_cma_size, nr_online_nodes);
6238         pr_info("hugetlb_cma: reserve %lu MiB, up to %lu MiB per node\n",
6239                 hugetlb_cma_size / SZ_1M, per_node / SZ_1M);
6240
6241         reserved = 0;
6242         for_each_node_state(nid, N_ONLINE) {
6243                 int res;
6244                 char name[CMA_MAX_NAME];
6245
6246                 size = min(per_node, hugetlb_cma_size - reserved);
6247                 size = round_up(size, PAGE_SIZE << order);
6248
6249                 snprintf(name, sizeof(name), "hugetlb%d", nid);
6250                 res = cma_declare_contiguous_nid(0, size, 0, PAGE_SIZE << order,
6251                                                  0, false, name,
6252                                                  &hugetlb_cma[nid], nid);
6253                 if (res) {
6254                         pr_warn("hugetlb_cma: reservation failed: err %d, node %d",
6255                                 res, nid);
6256                         continue;
6257                 }
6258
6259                 reserved += size;
6260                 pr_info("hugetlb_cma: reserved %lu MiB on node %d\n",
6261                         size / SZ_1M, nid);
6262
6263                 if (reserved >= hugetlb_cma_size)
6264                         break;
6265         }
6266 }
6267
6268 void __init hugetlb_cma_check(void)
6269 {
6270         if (!hugetlb_cma_size || cma_reserve_called)
6271                 return;
6272
6273         pr_warn("hugetlb_cma: the option isn't supported by current arch\n");
6274 }
6275
6276 #endif /* CONFIG_CMA */