mm/hugetlb: add region_del() to delete a specific range of entries
[linux-2.6-microblaze.git] / mm / hugetlb.c
1 /*
2  * Generic hugetlb support.
3  * (C) Nadia Yvette Chambers, April 2004
4  */
5 #include <linux/list.h>
6 #include <linux/init.h>
7 #include <linux/module.h>
8 #include <linux/mm.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/compiler.h>
17 #include <linux/cpuset.h>
18 #include <linux/mutex.h>
19 #include <linux/bootmem.h>
20 #include <linux/sysfs.h>
21 #include <linux/slab.h>
22 #include <linux/rmap.h>
23 #include <linux/swap.h>
24 #include <linux/swapops.h>
25 #include <linux/page-isolation.h>
26 #include <linux/jhash.h>
27
28 #include <asm/page.h>
29 #include <asm/pgtable.h>
30 #include <asm/tlb.h>
31
32 #include <linux/io.h>
33 #include <linux/hugetlb.h>
34 #include <linux/hugetlb_cgroup.h>
35 #include <linux/node.h>
36 #include "internal.h"
37
38 int hugepages_treat_as_movable;
39
40 int hugetlb_max_hstate __read_mostly;
41 unsigned int default_hstate_idx;
42 struct hstate hstates[HUGE_MAX_HSTATE];
43 /*
44  * Minimum page order among possible hugepage sizes, set to a proper value
45  * at boot time.
46  */
47 static unsigned int minimum_order __read_mostly = UINT_MAX;
48
49 __initdata LIST_HEAD(huge_boot_pages);
50
51 /* for command line parsing */
52 static struct hstate * __initdata parsed_hstate;
53 static unsigned long __initdata default_hstate_max_huge_pages;
54 static unsigned long __initdata default_hstate_size;
55
56 /*
57  * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
58  * free_huge_pages, and surplus_huge_pages.
59  */
60 DEFINE_SPINLOCK(hugetlb_lock);
61
62 /*
63  * Serializes faults on the same logical page.  This is used to
64  * prevent spurious OOMs when the hugepage pool is fully utilized.
65  */
66 static int num_fault_mutexes;
67 static struct mutex *htlb_fault_mutex_table ____cacheline_aligned_in_smp;
68
69 /* Forward declaration */
70 static int hugetlb_acct_memory(struct hstate *h, long delta);
71
72 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
73 {
74         bool free = (spool->count == 0) && (spool->used_hpages == 0);
75
76         spin_unlock(&spool->lock);
77
78         /* If no pages are used, and no other handles to the subpool
79          * remain, give up any reservations mased on minimum size and
80          * free the subpool */
81         if (free) {
82                 if (spool->min_hpages != -1)
83                         hugetlb_acct_memory(spool->hstate,
84                                                 -spool->min_hpages);
85                 kfree(spool);
86         }
87 }
88
89 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
90                                                 long min_hpages)
91 {
92         struct hugepage_subpool *spool;
93
94         spool = kzalloc(sizeof(*spool), GFP_KERNEL);
95         if (!spool)
96                 return NULL;
97
98         spin_lock_init(&spool->lock);
99         spool->count = 1;
100         spool->max_hpages = max_hpages;
101         spool->hstate = h;
102         spool->min_hpages = min_hpages;
103
104         if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
105                 kfree(spool);
106                 return NULL;
107         }
108         spool->rsv_hpages = min_hpages;
109
110         return spool;
111 }
112
113 void hugepage_put_subpool(struct hugepage_subpool *spool)
114 {
115         spin_lock(&spool->lock);
116         BUG_ON(!spool->count);
117         spool->count--;
118         unlock_or_release_subpool(spool);
119 }
120
121 /*
122  * Subpool accounting for allocating and reserving pages.
123  * Return -ENOMEM if there are not enough resources to satisfy the
124  * the request.  Otherwise, return the number of pages by which the
125  * global pools must be adjusted (upward).  The returned value may
126  * only be different than the passed value (delta) in the case where
127  * a subpool minimum size must be manitained.
128  */
129 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
130                                       long delta)
131 {
132         long ret = delta;
133
134         if (!spool)
135                 return ret;
136
137         spin_lock(&spool->lock);
138
139         if (spool->max_hpages != -1) {          /* maximum size accounting */
140                 if ((spool->used_hpages + delta) <= spool->max_hpages)
141                         spool->used_hpages += delta;
142                 else {
143                         ret = -ENOMEM;
144                         goto unlock_ret;
145                 }
146         }
147
148         if (spool->min_hpages != -1) {          /* minimum size accounting */
149                 if (delta > spool->rsv_hpages) {
150                         /*
151                          * Asking for more reserves than those already taken on
152                          * behalf of subpool.  Return difference.
153                          */
154                         ret = delta - spool->rsv_hpages;
155                         spool->rsv_hpages = 0;
156                 } else {
157                         ret = 0;        /* reserves already accounted for */
158                         spool->rsv_hpages -= delta;
159                 }
160         }
161
162 unlock_ret:
163         spin_unlock(&spool->lock);
164         return ret;
165 }
166
167 /*
168  * Subpool accounting for freeing and unreserving pages.
169  * Return the number of global page reservations that must be dropped.
170  * The return value may only be different than the passed value (delta)
171  * in the case where a subpool minimum size must be maintained.
172  */
173 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
174                                        long delta)
175 {
176         long ret = delta;
177
178         if (!spool)
179                 return delta;
180
181         spin_lock(&spool->lock);
182
183         if (spool->max_hpages != -1)            /* maximum size accounting */
184                 spool->used_hpages -= delta;
185
186         if (spool->min_hpages != -1) {          /* minimum size accounting */
187                 if (spool->rsv_hpages + delta <= spool->min_hpages)
188                         ret = 0;
189                 else
190                         ret = spool->rsv_hpages + delta - spool->min_hpages;
191
192                 spool->rsv_hpages += delta;
193                 if (spool->rsv_hpages > spool->min_hpages)
194                         spool->rsv_hpages = spool->min_hpages;
195         }
196
197         /*
198          * If hugetlbfs_put_super couldn't free spool due to an outstanding
199          * quota reference, free it now.
200          */
201         unlock_or_release_subpool(spool);
202
203         return ret;
204 }
205
206 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
207 {
208         return HUGETLBFS_SB(inode->i_sb)->spool;
209 }
210
211 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
212 {
213         return subpool_inode(file_inode(vma->vm_file));
214 }
215
216 /*
217  * Region tracking -- allows tracking of reservations and instantiated pages
218  *                    across the pages in a mapping.
219  *
220  * The region data structures are embedded into a resv_map and protected
221  * by a resv_map's lock.  The set of regions within the resv_map represent
222  * reservations for huge pages, or huge pages that have already been
223  * instantiated within the map.  The from and to elements are huge page
224  * indicies into the associated mapping.  from indicates the starting index
225  * of the region.  to represents the first index past the end of  the region.
226  *
227  * For example, a file region structure with from == 0 and to == 4 represents
228  * four huge pages in a mapping.  It is important to note that the to element
229  * represents the first element past the end of the region. This is used in
230  * arithmetic as 4(to) - 0(from) = 4 huge pages in the region.
231  *
232  * Interval notation of the form [from, to) will be used to indicate that
233  * the endpoint from is inclusive and to is exclusive.
234  */
235 struct file_region {
236         struct list_head link;
237         long from;
238         long to;
239 };
240
241 /*
242  * Add the huge page range represented by [f, t) to the reserve
243  * map.  In the normal case, existing regions will be expanded
244  * to accommodate the specified range.  Sufficient regions should
245  * exist for expansion due to the previous call to region_chg
246  * with the same range.  However, it is possible that region_del
247  * could have been called after region_chg and modifed the map
248  * in such a way that no region exists to be expanded.  In this
249  * case, pull a region descriptor from the cache associated with
250  * the map and use that for the new range.
251  *
252  * Return the number of new huge pages added to the map.  This
253  * number is greater than or equal to zero.
254  */
255 static long region_add(struct resv_map *resv, long f, long t)
256 {
257         struct list_head *head = &resv->regions;
258         struct file_region *rg, *nrg, *trg;
259         long add = 0;
260
261         spin_lock(&resv->lock);
262         /* Locate the region we are either in or before. */
263         list_for_each_entry(rg, head, link)
264                 if (f <= rg->to)
265                         break;
266
267         /*
268          * If no region exists which can be expanded to include the
269          * specified range, the list must have been modified by an
270          * interleving call to region_del().  Pull a region descriptor
271          * from the cache and use it for this range.
272          */
273         if (&rg->link == head || t < rg->from) {
274                 VM_BUG_ON(resv->region_cache_count <= 0);
275
276                 resv->region_cache_count--;
277                 nrg = list_first_entry(&resv->region_cache, struct file_region,
278                                         link);
279                 list_del(&nrg->link);
280
281                 nrg->from = f;
282                 nrg->to = t;
283                 list_add(&nrg->link, rg->link.prev);
284
285                 add += t - f;
286                 goto out_locked;
287         }
288
289         /* Round our left edge to the current segment if it encloses us. */
290         if (f > rg->from)
291                 f = rg->from;
292
293         /* Check for and consume any regions we now overlap with. */
294         nrg = rg;
295         list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
296                 if (&rg->link == head)
297                         break;
298                 if (rg->from > t)
299                         break;
300
301                 /* If this area reaches higher then extend our area to
302                  * include it completely.  If this is not the first area
303                  * which we intend to reuse, free it. */
304                 if (rg->to > t)
305                         t = rg->to;
306                 if (rg != nrg) {
307                         /* Decrement return value by the deleted range.
308                          * Another range will span this area so that by
309                          * end of routine add will be >= zero
310                          */
311                         add -= (rg->to - rg->from);
312                         list_del(&rg->link);
313                         kfree(rg);
314                 }
315         }
316
317         add += (nrg->from - f);         /* Added to beginning of region */
318         nrg->from = f;
319         add += t - nrg->to;             /* Added to end of region */
320         nrg->to = t;
321
322 out_locked:
323         resv->adds_in_progress--;
324         spin_unlock(&resv->lock);
325         VM_BUG_ON(add < 0);
326         return add;
327 }
328
329 /*
330  * Examine the existing reserve map and determine how many
331  * huge pages in the specified range [f, t) are NOT currently
332  * represented.  This routine is called before a subsequent
333  * call to region_add that will actually modify the reserve
334  * map to add the specified range [f, t).  region_chg does
335  * not change the number of huge pages represented by the
336  * map.  However, if the existing regions in the map can not
337  * be expanded to represent the new range, a new file_region
338  * structure is added to the map as a placeholder.  This is
339  * so that the subsequent region_add call will have all the
340  * regions it needs and will not fail.
341  *
342  * Upon entry, region_chg will also examine the cache of region descriptors
343  * associated with the map.  If there are not enough descriptors cached, one
344  * will be allocated for the in progress add operation.
345  *
346  * Returns the number of huge pages that need to be added to the existing
347  * reservation map for the range [f, t).  This number is greater or equal to
348  * zero.  -ENOMEM is returned if a new file_region structure or cache entry
349  * is needed and can not be allocated.
350  */
351 static long region_chg(struct resv_map *resv, long f, long t)
352 {
353         struct list_head *head = &resv->regions;
354         struct file_region *rg, *nrg = NULL;
355         long chg = 0;
356
357 retry:
358         spin_lock(&resv->lock);
359 retry_locked:
360         resv->adds_in_progress++;
361
362         /*
363          * Check for sufficient descriptors in the cache to accommodate
364          * the number of in progress add operations.
365          */
366         if (resv->adds_in_progress > resv->region_cache_count) {
367                 struct file_region *trg;
368
369                 VM_BUG_ON(resv->adds_in_progress - resv->region_cache_count > 1);
370                 /* Must drop lock to allocate a new descriptor. */
371                 resv->adds_in_progress--;
372                 spin_unlock(&resv->lock);
373
374                 trg = kmalloc(sizeof(*trg), GFP_KERNEL);
375                 if (!trg)
376                         return -ENOMEM;
377
378                 spin_lock(&resv->lock);
379                 list_add(&trg->link, &resv->region_cache);
380                 resv->region_cache_count++;
381                 goto retry_locked;
382         }
383
384         /* Locate the region we are before or in. */
385         list_for_each_entry(rg, head, link)
386                 if (f <= rg->to)
387                         break;
388
389         /* If we are below the current region then a new region is required.
390          * Subtle, allocate a new region at the position but make it zero
391          * size such that we can guarantee to record the reservation. */
392         if (&rg->link == head || t < rg->from) {
393                 if (!nrg) {
394                         resv->adds_in_progress--;
395                         spin_unlock(&resv->lock);
396                         nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
397                         if (!nrg)
398                                 return -ENOMEM;
399
400                         nrg->from = f;
401                         nrg->to   = f;
402                         INIT_LIST_HEAD(&nrg->link);
403                         goto retry;
404                 }
405
406                 list_add(&nrg->link, rg->link.prev);
407                 chg = t - f;
408                 goto out_nrg;
409         }
410
411         /* Round our left edge to the current segment if it encloses us. */
412         if (f > rg->from)
413                 f = rg->from;
414         chg = t - f;
415
416         /* Check for and consume any regions we now overlap with. */
417         list_for_each_entry(rg, rg->link.prev, link) {
418                 if (&rg->link == head)
419                         break;
420                 if (rg->from > t)
421                         goto out;
422
423                 /* We overlap with this area, if it extends further than
424                  * us then we must extend ourselves.  Account for its
425                  * existing reservation. */
426                 if (rg->to > t) {
427                         chg += rg->to - t;
428                         t = rg->to;
429                 }
430                 chg -= rg->to - rg->from;
431         }
432
433 out:
434         spin_unlock(&resv->lock);
435         /*  We already know we raced and no longer need the new region */
436         kfree(nrg);
437         return chg;
438 out_nrg:
439         spin_unlock(&resv->lock);
440         return chg;
441 }
442
443 /*
444  * Abort the in progress add operation.  The adds_in_progress field
445  * of the resv_map keeps track of the operations in progress between
446  * calls to region_chg and region_add.  Operations are sometimes
447  * aborted after the call to region_chg.  In such cases, region_abort
448  * is called to decrement the adds_in_progress counter.
449  *
450  * NOTE: The range arguments [f, t) are not needed or used in this
451  * routine.  They are kept to make reading the calling code easier as
452  * arguments will match the associated region_chg call.
453  */
454 static void region_abort(struct resv_map *resv, long f, long t)
455 {
456         spin_lock(&resv->lock);
457         VM_BUG_ON(!resv->region_cache_count);
458         resv->adds_in_progress--;
459         spin_unlock(&resv->lock);
460 }
461
462 /*
463  * Delete the specified range [f, t) from the reserve map.  If the
464  * t parameter is LONG_MAX, this indicates that ALL regions after f
465  * should be deleted.  Locate the regions which intersect [f, t)
466  * and either trim, delete or split the existing regions.
467  *
468  * Returns the number of huge pages deleted from the reserve map.
469  * In the normal case, the return value is zero or more.  In the
470  * case where a region must be split, a new region descriptor must
471  * be allocated.  If the allocation fails, -ENOMEM will be returned.
472  * NOTE: If the parameter t == LONG_MAX, then we will never split
473  * a region and possibly return -ENOMEM.  Callers specifying
474  * t == LONG_MAX do not need to check for -ENOMEM error.
475  */
476 static long region_del(struct resv_map *resv, long f, long t)
477 {
478         struct list_head *head = &resv->regions;
479         struct file_region *rg, *trg;
480         struct file_region *nrg = NULL;
481         long del = 0;
482
483 retry:
484         spin_lock(&resv->lock);
485         list_for_each_entry_safe(rg, trg, head, link) {
486                 if (rg->to <= f)
487                         continue;
488                 if (rg->from >= t)
489                         break;
490
491                 if (f > rg->from && t < rg->to) { /* Must split region */
492                         /*
493                          * Check for an entry in the cache before dropping
494                          * lock and attempting allocation.
495                          */
496                         if (!nrg &&
497                             resv->region_cache_count > resv->adds_in_progress) {
498                                 nrg = list_first_entry(&resv->region_cache,
499                                                         struct file_region,
500                                                         link);
501                                 list_del(&nrg->link);
502                                 resv->region_cache_count--;
503                         }
504
505                         if (!nrg) {
506                                 spin_unlock(&resv->lock);
507                                 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
508                                 if (!nrg)
509                                         return -ENOMEM;
510                                 goto retry;
511                         }
512
513                         del += t - f;
514
515                         /* New entry for end of split region */
516                         nrg->from = t;
517                         nrg->to = rg->to;
518                         INIT_LIST_HEAD(&nrg->link);
519
520                         /* Original entry is trimmed */
521                         rg->to = f;
522
523                         list_add(&nrg->link, &rg->link);
524                         nrg = NULL;
525                         break;
526                 }
527
528                 if (f <= rg->from && t >= rg->to) { /* Remove entire region */
529                         del += rg->to - rg->from;
530                         list_del(&rg->link);
531                         kfree(rg);
532                         continue;
533                 }
534
535                 if (f <= rg->from) {    /* Trim beginning of region */
536                         del += t - rg->from;
537                         rg->from = t;
538                 } else {                /* Trim end of region */
539                         del += rg->to - f;
540                         rg->to = f;
541                 }
542         }
543
544         spin_unlock(&resv->lock);
545         kfree(nrg);
546         return del;
547 }
548
549 /*
550  * Count and return the number of huge pages in the reserve map
551  * that intersect with the range [f, t).
552  */
553 static long region_count(struct resv_map *resv, long f, long t)
554 {
555         struct list_head *head = &resv->regions;
556         struct file_region *rg;
557         long chg = 0;
558
559         spin_lock(&resv->lock);
560         /* Locate each segment we overlap with, and count that overlap. */
561         list_for_each_entry(rg, head, link) {
562                 long seg_from;
563                 long seg_to;
564
565                 if (rg->to <= f)
566                         continue;
567                 if (rg->from >= t)
568                         break;
569
570                 seg_from = max(rg->from, f);
571                 seg_to = min(rg->to, t);
572
573                 chg += seg_to - seg_from;
574         }
575         spin_unlock(&resv->lock);
576
577         return chg;
578 }
579
580 /*
581  * Convert the address within this vma to the page offset within
582  * the mapping, in pagecache page units; huge pages here.
583  */
584 static pgoff_t vma_hugecache_offset(struct hstate *h,
585                         struct vm_area_struct *vma, unsigned long address)
586 {
587         return ((address - vma->vm_start) >> huge_page_shift(h)) +
588                         (vma->vm_pgoff >> huge_page_order(h));
589 }
590
591 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
592                                      unsigned long address)
593 {
594         return vma_hugecache_offset(hstate_vma(vma), vma, address);
595 }
596
597 /*
598  * Return the size of the pages allocated when backing a VMA. In the majority
599  * cases this will be same size as used by the page table entries.
600  */
601 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
602 {
603         struct hstate *hstate;
604
605         if (!is_vm_hugetlb_page(vma))
606                 return PAGE_SIZE;
607
608         hstate = hstate_vma(vma);
609
610         return 1UL << huge_page_shift(hstate);
611 }
612 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
613
614 /*
615  * Return the page size being used by the MMU to back a VMA. In the majority
616  * of cases, the page size used by the kernel matches the MMU size. On
617  * architectures where it differs, an architecture-specific version of this
618  * function is required.
619  */
620 #ifndef vma_mmu_pagesize
621 unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
622 {
623         return vma_kernel_pagesize(vma);
624 }
625 #endif
626
627 /*
628  * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
629  * bits of the reservation map pointer, which are always clear due to
630  * alignment.
631  */
632 #define HPAGE_RESV_OWNER    (1UL << 0)
633 #define HPAGE_RESV_UNMAPPED (1UL << 1)
634 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
635
636 /*
637  * These helpers are used to track how many pages are reserved for
638  * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
639  * is guaranteed to have their future faults succeed.
640  *
641  * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
642  * the reserve counters are updated with the hugetlb_lock held. It is safe
643  * to reset the VMA at fork() time as it is not in use yet and there is no
644  * chance of the global counters getting corrupted as a result of the values.
645  *
646  * The private mapping reservation is represented in a subtly different
647  * manner to a shared mapping.  A shared mapping has a region map associated
648  * with the underlying file, this region map represents the backing file
649  * pages which have ever had a reservation assigned which this persists even
650  * after the page is instantiated.  A private mapping has a region map
651  * associated with the original mmap which is attached to all VMAs which
652  * reference it, this region map represents those offsets which have consumed
653  * reservation ie. where pages have been instantiated.
654  */
655 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
656 {
657         return (unsigned long)vma->vm_private_data;
658 }
659
660 static void set_vma_private_data(struct vm_area_struct *vma,
661                                                         unsigned long value)
662 {
663         vma->vm_private_data = (void *)value;
664 }
665
666 struct resv_map *resv_map_alloc(void)
667 {
668         struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
669         struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
670
671         if (!resv_map || !rg) {
672                 kfree(resv_map);
673                 kfree(rg);
674                 return NULL;
675         }
676
677         kref_init(&resv_map->refs);
678         spin_lock_init(&resv_map->lock);
679         INIT_LIST_HEAD(&resv_map->regions);
680
681         resv_map->adds_in_progress = 0;
682
683         INIT_LIST_HEAD(&resv_map->region_cache);
684         list_add(&rg->link, &resv_map->region_cache);
685         resv_map->region_cache_count = 1;
686
687         return resv_map;
688 }
689
690 void resv_map_release(struct kref *ref)
691 {
692         struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
693         struct list_head *head = &resv_map->region_cache;
694         struct file_region *rg, *trg;
695
696         /* Clear out any active regions before we release the map. */
697         region_del(resv_map, 0, LONG_MAX);
698
699         /* ... and any entries left in the cache */
700         list_for_each_entry_safe(rg, trg, head, link) {
701                 list_del(&rg->link);
702                 kfree(rg);
703         }
704
705         VM_BUG_ON(resv_map->adds_in_progress);
706
707         kfree(resv_map);
708 }
709
710 static inline struct resv_map *inode_resv_map(struct inode *inode)
711 {
712         return inode->i_mapping->private_data;
713 }
714
715 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
716 {
717         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
718         if (vma->vm_flags & VM_MAYSHARE) {
719                 struct address_space *mapping = vma->vm_file->f_mapping;
720                 struct inode *inode = mapping->host;
721
722                 return inode_resv_map(inode);
723
724         } else {
725                 return (struct resv_map *)(get_vma_private_data(vma) &
726                                                         ~HPAGE_RESV_MASK);
727         }
728 }
729
730 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
731 {
732         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
733         VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
734
735         set_vma_private_data(vma, (get_vma_private_data(vma) &
736                                 HPAGE_RESV_MASK) | (unsigned long)map);
737 }
738
739 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
740 {
741         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
742         VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
743
744         set_vma_private_data(vma, get_vma_private_data(vma) | flags);
745 }
746
747 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
748 {
749         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
750
751         return (get_vma_private_data(vma) & flag) != 0;
752 }
753
754 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
755 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
756 {
757         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
758         if (!(vma->vm_flags & VM_MAYSHARE))
759                 vma->vm_private_data = (void *)0;
760 }
761
762 /* Returns true if the VMA has associated reserve pages */
763 static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
764 {
765         if (vma->vm_flags & VM_NORESERVE) {
766                 /*
767                  * This address is already reserved by other process(chg == 0),
768                  * so, we should decrement reserved count. Without decrementing,
769                  * reserve count remains after releasing inode, because this
770                  * allocated page will go into page cache and is regarded as
771                  * coming from reserved pool in releasing step.  Currently, we
772                  * don't have any other solution to deal with this situation
773                  * properly, so add work-around here.
774                  */
775                 if (vma->vm_flags & VM_MAYSHARE && chg == 0)
776                         return true;
777                 else
778                         return false;
779         }
780
781         /* Shared mappings always use reserves */
782         if (vma->vm_flags & VM_MAYSHARE)
783                 return true;
784
785         /*
786          * Only the process that called mmap() has reserves for
787          * private mappings.
788          */
789         if (is_vma_resv_set(vma, HPAGE_RESV_OWNER))
790                 return true;
791
792         return false;
793 }
794
795 static void enqueue_huge_page(struct hstate *h, struct page *page)
796 {
797         int nid = page_to_nid(page);
798         list_move(&page->lru, &h->hugepage_freelists[nid]);
799         h->free_huge_pages++;
800         h->free_huge_pages_node[nid]++;
801 }
802
803 static struct page *dequeue_huge_page_node(struct hstate *h, int nid)
804 {
805         struct page *page;
806
807         list_for_each_entry(page, &h->hugepage_freelists[nid], lru)
808                 if (!is_migrate_isolate_page(page))
809                         break;
810         /*
811          * if 'non-isolated free hugepage' not found on the list,
812          * the allocation fails.
813          */
814         if (&h->hugepage_freelists[nid] == &page->lru)
815                 return NULL;
816         list_move(&page->lru, &h->hugepage_activelist);
817         set_page_refcounted(page);
818         h->free_huge_pages--;
819         h->free_huge_pages_node[nid]--;
820         return page;
821 }
822
823 /* Movability of hugepages depends on migration support. */
824 static inline gfp_t htlb_alloc_mask(struct hstate *h)
825 {
826         if (hugepages_treat_as_movable || hugepage_migration_supported(h))
827                 return GFP_HIGHUSER_MOVABLE;
828         else
829                 return GFP_HIGHUSER;
830 }
831
832 static struct page *dequeue_huge_page_vma(struct hstate *h,
833                                 struct vm_area_struct *vma,
834                                 unsigned long address, int avoid_reserve,
835                                 long chg)
836 {
837         struct page *page = NULL;
838         struct mempolicy *mpol;
839         nodemask_t *nodemask;
840         struct zonelist *zonelist;
841         struct zone *zone;
842         struct zoneref *z;
843         unsigned int cpuset_mems_cookie;
844
845         /*
846          * A child process with MAP_PRIVATE mappings created by their parent
847          * have no page reserves. This check ensures that reservations are
848          * not "stolen". The child may still get SIGKILLed
849          */
850         if (!vma_has_reserves(vma, chg) &&
851                         h->free_huge_pages - h->resv_huge_pages == 0)
852                 goto err;
853
854         /* If reserves cannot be used, ensure enough pages are in the pool */
855         if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
856                 goto err;
857
858 retry_cpuset:
859         cpuset_mems_cookie = read_mems_allowed_begin();
860         zonelist = huge_zonelist(vma, address,
861                                         htlb_alloc_mask(h), &mpol, &nodemask);
862
863         for_each_zone_zonelist_nodemask(zone, z, zonelist,
864                                                 MAX_NR_ZONES - 1, nodemask) {
865                 if (cpuset_zone_allowed(zone, htlb_alloc_mask(h))) {
866                         page = dequeue_huge_page_node(h, zone_to_nid(zone));
867                         if (page) {
868                                 if (avoid_reserve)
869                                         break;
870                                 if (!vma_has_reserves(vma, chg))
871                                         break;
872
873                                 SetPagePrivate(page);
874                                 h->resv_huge_pages--;
875                                 break;
876                         }
877                 }
878         }
879
880         mpol_cond_put(mpol);
881         if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
882                 goto retry_cpuset;
883         return page;
884
885 err:
886         return NULL;
887 }
888
889 /*
890  * common helper functions for hstate_next_node_to_{alloc|free}.
891  * We may have allocated or freed a huge page based on a different
892  * nodes_allowed previously, so h->next_node_to_{alloc|free} might
893  * be outside of *nodes_allowed.  Ensure that we use an allowed
894  * node for alloc or free.
895  */
896 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
897 {
898         nid = next_node(nid, *nodes_allowed);
899         if (nid == MAX_NUMNODES)
900                 nid = first_node(*nodes_allowed);
901         VM_BUG_ON(nid >= MAX_NUMNODES);
902
903         return nid;
904 }
905
906 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
907 {
908         if (!node_isset(nid, *nodes_allowed))
909                 nid = next_node_allowed(nid, nodes_allowed);
910         return nid;
911 }
912
913 /*
914  * returns the previously saved node ["this node"] from which to
915  * allocate a persistent huge page for the pool and advance the
916  * next node from which to allocate, handling wrap at end of node
917  * mask.
918  */
919 static int hstate_next_node_to_alloc(struct hstate *h,
920                                         nodemask_t *nodes_allowed)
921 {
922         int nid;
923
924         VM_BUG_ON(!nodes_allowed);
925
926         nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
927         h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
928
929         return nid;
930 }
931
932 /*
933  * helper for free_pool_huge_page() - return the previously saved
934  * node ["this node"] from which to free a huge page.  Advance the
935  * next node id whether or not we find a free huge page to free so
936  * that the next attempt to free addresses the next node.
937  */
938 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
939 {
940         int nid;
941
942         VM_BUG_ON(!nodes_allowed);
943
944         nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
945         h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
946
947         return nid;
948 }
949
950 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask)           \
951         for (nr_nodes = nodes_weight(*mask);                            \
952                 nr_nodes > 0 &&                                         \
953                 ((node = hstate_next_node_to_alloc(hs, mask)) || 1);    \
954                 nr_nodes--)
955
956 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask)            \
957         for (nr_nodes = nodes_weight(*mask);                            \
958                 nr_nodes > 0 &&                                         \
959                 ((node = hstate_next_node_to_free(hs, mask)) || 1);     \
960                 nr_nodes--)
961
962 #if defined(CONFIG_CMA) && defined(CONFIG_X86_64)
963 static void destroy_compound_gigantic_page(struct page *page,
964                                         unsigned long order)
965 {
966         int i;
967         int nr_pages = 1 << order;
968         struct page *p = page + 1;
969
970         for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
971                 __ClearPageTail(p);
972                 set_page_refcounted(p);
973                 p->first_page = NULL;
974         }
975
976         set_compound_order(page, 0);
977         __ClearPageHead(page);
978 }
979
980 static void free_gigantic_page(struct page *page, unsigned order)
981 {
982         free_contig_range(page_to_pfn(page), 1 << order);
983 }
984
985 static int __alloc_gigantic_page(unsigned long start_pfn,
986                                 unsigned long nr_pages)
987 {
988         unsigned long end_pfn = start_pfn + nr_pages;
989         return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE);
990 }
991
992 static bool pfn_range_valid_gigantic(unsigned long start_pfn,
993                                 unsigned long nr_pages)
994 {
995         unsigned long i, end_pfn = start_pfn + nr_pages;
996         struct page *page;
997
998         for (i = start_pfn; i < end_pfn; i++) {
999                 if (!pfn_valid(i))
1000                         return false;
1001
1002                 page = pfn_to_page(i);
1003
1004                 if (PageReserved(page))
1005                         return false;
1006
1007                 if (page_count(page) > 0)
1008                         return false;
1009
1010                 if (PageHuge(page))
1011                         return false;
1012         }
1013
1014         return true;
1015 }
1016
1017 static bool zone_spans_last_pfn(const struct zone *zone,
1018                         unsigned long start_pfn, unsigned long nr_pages)
1019 {
1020         unsigned long last_pfn = start_pfn + nr_pages - 1;
1021         return zone_spans_pfn(zone, last_pfn);
1022 }
1023
1024 static struct page *alloc_gigantic_page(int nid, unsigned order)
1025 {
1026         unsigned long nr_pages = 1 << order;
1027         unsigned long ret, pfn, flags;
1028         struct zone *z;
1029
1030         z = NODE_DATA(nid)->node_zones;
1031         for (; z - NODE_DATA(nid)->node_zones < MAX_NR_ZONES; z++) {
1032                 spin_lock_irqsave(&z->lock, flags);
1033
1034                 pfn = ALIGN(z->zone_start_pfn, nr_pages);
1035                 while (zone_spans_last_pfn(z, pfn, nr_pages)) {
1036                         if (pfn_range_valid_gigantic(pfn, nr_pages)) {
1037                                 /*
1038                                  * We release the zone lock here because
1039                                  * alloc_contig_range() will also lock the zone
1040                                  * at some point. If there's an allocation
1041                                  * spinning on this lock, it may win the race
1042                                  * and cause alloc_contig_range() to fail...
1043                                  */
1044                                 spin_unlock_irqrestore(&z->lock, flags);
1045                                 ret = __alloc_gigantic_page(pfn, nr_pages);
1046                                 if (!ret)
1047                                         return pfn_to_page(pfn);
1048                                 spin_lock_irqsave(&z->lock, flags);
1049                         }
1050                         pfn += nr_pages;
1051                 }
1052
1053                 spin_unlock_irqrestore(&z->lock, flags);
1054         }
1055
1056         return NULL;
1057 }
1058
1059 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid);
1060 static void prep_compound_gigantic_page(struct page *page, unsigned long order);
1061
1062 static struct page *alloc_fresh_gigantic_page_node(struct hstate *h, int nid)
1063 {
1064         struct page *page;
1065
1066         page = alloc_gigantic_page(nid, huge_page_order(h));
1067         if (page) {
1068                 prep_compound_gigantic_page(page, huge_page_order(h));
1069                 prep_new_huge_page(h, page, nid);
1070         }
1071
1072         return page;
1073 }
1074
1075 static int alloc_fresh_gigantic_page(struct hstate *h,
1076                                 nodemask_t *nodes_allowed)
1077 {
1078         struct page *page = NULL;
1079         int nr_nodes, node;
1080
1081         for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1082                 page = alloc_fresh_gigantic_page_node(h, node);
1083                 if (page)
1084                         return 1;
1085         }
1086
1087         return 0;
1088 }
1089
1090 static inline bool gigantic_page_supported(void) { return true; }
1091 #else
1092 static inline bool gigantic_page_supported(void) { return false; }
1093 static inline void free_gigantic_page(struct page *page, unsigned order) { }
1094 static inline void destroy_compound_gigantic_page(struct page *page,
1095                                                 unsigned long order) { }
1096 static inline int alloc_fresh_gigantic_page(struct hstate *h,
1097                                         nodemask_t *nodes_allowed) { return 0; }
1098 #endif
1099
1100 static void update_and_free_page(struct hstate *h, struct page *page)
1101 {
1102         int i;
1103
1104         if (hstate_is_gigantic(h) && !gigantic_page_supported())
1105                 return;
1106
1107         h->nr_huge_pages--;
1108         h->nr_huge_pages_node[page_to_nid(page)]--;
1109         for (i = 0; i < pages_per_huge_page(h); i++) {
1110                 page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
1111                                 1 << PG_referenced | 1 << PG_dirty |
1112                                 1 << PG_active | 1 << PG_private |
1113                                 1 << PG_writeback);
1114         }
1115         VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
1116         set_compound_page_dtor(page, NULL);
1117         set_page_refcounted(page);
1118         if (hstate_is_gigantic(h)) {
1119                 destroy_compound_gigantic_page(page, huge_page_order(h));
1120                 free_gigantic_page(page, huge_page_order(h));
1121         } else {
1122                 __free_pages(page, huge_page_order(h));
1123         }
1124 }
1125
1126 struct hstate *size_to_hstate(unsigned long size)
1127 {
1128         struct hstate *h;
1129
1130         for_each_hstate(h) {
1131                 if (huge_page_size(h) == size)
1132                         return h;
1133         }
1134         return NULL;
1135 }
1136
1137 /*
1138  * Test to determine whether the hugepage is "active/in-use" (i.e. being linked
1139  * to hstate->hugepage_activelist.)
1140  *
1141  * This function can be called for tail pages, but never returns true for them.
1142  */
1143 bool page_huge_active(struct page *page)
1144 {
1145         VM_BUG_ON_PAGE(!PageHuge(page), page);
1146         return PageHead(page) && PagePrivate(&page[1]);
1147 }
1148
1149 /* never called for tail page */
1150 static void set_page_huge_active(struct page *page)
1151 {
1152         VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1153         SetPagePrivate(&page[1]);
1154 }
1155
1156 static void clear_page_huge_active(struct page *page)
1157 {
1158         VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1159         ClearPagePrivate(&page[1]);
1160 }
1161
1162 void free_huge_page(struct page *page)
1163 {
1164         /*
1165          * Can't pass hstate in here because it is called from the
1166          * compound page destructor.
1167          */
1168         struct hstate *h = page_hstate(page);
1169         int nid = page_to_nid(page);
1170         struct hugepage_subpool *spool =
1171                 (struct hugepage_subpool *)page_private(page);
1172         bool restore_reserve;
1173
1174         set_page_private(page, 0);
1175         page->mapping = NULL;
1176         BUG_ON(page_count(page));
1177         BUG_ON(page_mapcount(page));
1178         restore_reserve = PagePrivate(page);
1179         ClearPagePrivate(page);
1180
1181         /*
1182          * A return code of zero implies that the subpool will be under its
1183          * minimum size if the reservation is not restored after page is free.
1184          * Therefore, force restore_reserve operation.
1185          */
1186         if (hugepage_subpool_put_pages(spool, 1) == 0)
1187                 restore_reserve = true;
1188
1189         spin_lock(&hugetlb_lock);
1190         clear_page_huge_active(page);
1191         hugetlb_cgroup_uncharge_page(hstate_index(h),
1192                                      pages_per_huge_page(h), page);
1193         if (restore_reserve)
1194                 h->resv_huge_pages++;
1195
1196         if (h->surplus_huge_pages_node[nid]) {
1197                 /* remove the page from active list */
1198                 list_del(&page->lru);
1199                 update_and_free_page(h, page);
1200                 h->surplus_huge_pages--;
1201                 h->surplus_huge_pages_node[nid]--;
1202         } else {
1203                 arch_clear_hugepage_flags(page);
1204                 enqueue_huge_page(h, page);
1205         }
1206         spin_unlock(&hugetlb_lock);
1207 }
1208
1209 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
1210 {
1211         INIT_LIST_HEAD(&page->lru);
1212         set_compound_page_dtor(page, free_huge_page);
1213         spin_lock(&hugetlb_lock);
1214         set_hugetlb_cgroup(page, NULL);
1215         h->nr_huge_pages++;
1216         h->nr_huge_pages_node[nid]++;
1217         spin_unlock(&hugetlb_lock);
1218         put_page(page); /* free it into the hugepage allocator */
1219 }
1220
1221 static void prep_compound_gigantic_page(struct page *page, unsigned long order)
1222 {
1223         int i;
1224         int nr_pages = 1 << order;
1225         struct page *p = page + 1;
1226
1227         /* we rely on prep_new_huge_page to set the destructor */
1228         set_compound_order(page, order);
1229         __SetPageHead(page);
1230         __ClearPageReserved(page);
1231         for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1232                 /*
1233                  * For gigantic hugepages allocated through bootmem at
1234                  * boot, it's safer to be consistent with the not-gigantic
1235                  * hugepages and clear the PG_reserved bit from all tail pages
1236                  * too.  Otherwse drivers using get_user_pages() to access tail
1237                  * pages may get the reference counting wrong if they see
1238                  * PG_reserved set on a tail page (despite the head page not
1239                  * having PG_reserved set).  Enforcing this consistency between
1240                  * head and tail pages allows drivers to optimize away a check
1241                  * on the head page when they need know if put_page() is needed
1242                  * after get_user_pages().
1243                  */
1244                 __ClearPageReserved(p);
1245                 set_page_count(p, 0);
1246                 p->first_page = page;
1247                 /* Make sure p->first_page is always valid for PageTail() */
1248                 smp_wmb();
1249                 __SetPageTail(p);
1250         }
1251 }
1252
1253 /*
1254  * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1255  * transparent huge pages.  See the PageTransHuge() documentation for more
1256  * details.
1257  */
1258 int PageHuge(struct page *page)
1259 {
1260         if (!PageCompound(page))
1261                 return 0;
1262
1263         page = compound_head(page);
1264         return get_compound_page_dtor(page) == free_huge_page;
1265 }
1266 EXPORT_SYMBOL_GPL(PageHuge);
1267
1268 /*
1269  * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1270  * normal or transparent huge pages.
1271  */
1272 int PageHeadHuge(struct page *page_head)
1273 {
1274         if (!PageHead(page_head))
1275                 return 0;
1276
1277         return get_compound_page_dtor(page_head) == free_huge_page;
1278 }
1279
1280 pgoff_t __basepage_index(struct page *page)
1281 {
1282         struct page *page_head = compound_head(page);
1283         pgoff_t index = page_index(page_head);
1284         unsigned long compound_idx;
1285
1286         if (!PageHuge(page_head))
1287                 return page_index(page);
1288
1289         if (compound_order(page_head) >= MAX_ORDER)
1290                 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
1291         else
1292                 compound_idx = page - page_head;
1293
1294         return (index << compound_order(page_head)) + compound_idx;
1295 }
1296
1297 static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
1298 {
1299         struct page *page;
1300
1301         page = alloc_pages_exact_node(nid,
1302                 htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE|
1303                                                 __GFP_REPEAT|__GFP_NOWARN,
1304                 huge_page_order(h));
1305         if (page) {
1306                 prep_new_huge_page(h, page, nid);
1307         }
1308
1309         return page;
1310 }
1311
1312 static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
1313 {
1314         struct page *page;
1315         int nr_nodes, node;
1316         int ret = 0;
1317
1318         for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1319                 page = alloc_fresh_huge_page_node(h, node);
1320                 if (page) {
1321                         ret = 1;
1322                         break;
1323                 }
1324         }
1325
1326         if (ret)
1327                 count_vm_event(HTLB_BUDDY_PGALLOC);
1328         else
1329                 count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1330
1331         return ret;
1332 }
1333
1334 /*
1335  * Free huge page from pool from next node to free.
1336  * Attempt to keep persistent huge pages more or less
1337  * balanced over allowed nodes.
1338  * Called with hugetlb_lock locked.
1339  */
1340 static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1341                                                          bool acct_surplus)
1342 {
1343         int nr_nodes, node;
1344         int ret = 0;
1345
1346         for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1347                 /*
1348                  * If we're returning unused surplus pages, only examine
1349                  * nodes with surplus pages.
1350                  */
1351                 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
1352                     !list_empty(&h->hugepage_freelists[node])) {
1353                         struct page *page =
1354                                 list_entry(h->hugepage_freelists[node].next,
1355                                           struct page, lru);
1356                         list_del(&page->lru);
1357                         h->free_huge_pages--;
1358                         h->free_huge_pages_node[node]--;
1359                         if (acct_surplus) {
1360                                 h->surplus_huge_pages--;
1361                                 h->surplus_huge_pages_node[node]--;
1362                         }
1363                         update_and_free_page(h, page);
1364                         ret = 1;
1365                         break;
1366                 }
1367         }
1368
1369         return ret;
1370 }
1371
1372 /*
1373  * Dissolve a given free hugepage into free buddy pages. This function does
1374  * nothing for in-use (including surplus) hugepages.
1375  */
1376 static void dissolve_free_huge_page(struct page *page)
1377 {
1378         spin_lock(&hugetlb_lock);
1379         if (PageHuge(page) && !page_count(page)) {
1380                 struct hstate *h = page_hstate(page);
1381                 int nid = page_to_nid(page);
1382                 list_del(&page->lru);
1383                 h->free_huge_pages--;
1384                 h->free_huge_pages_node[nid]--;
1385                 update_and_free_page(h, page);
1386         }
1387         spin_unlock(&hugetlb_lock);
1388 }
1389
1390 /*
1391  * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
1392  * make specified memory blocks removable from the system.
1393  * Note that start_pfn should aligned with (minimum) hugepage size.
1394  */
1395 void dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
1396 {
1397         unsigned long pfn;
1398
1399         if (!hugepages_supported())
1400                 return;
1401
1402         VM_BUG_ON(!IS_ALIGNED(start_pfn, 1 << minimum_order));
1403         for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order)
1404                 dissolve_free_huge_page(pfn_to_page(pfn));
1405 }
1406
1407 static struct page *alloc_buddy_huge_page(struct hstate *h, int nid)
1408 {
1409         struct page *page;
1410         unsigned int r_nid;
1411
1412         if (hstate_is_gigantic(h))
1413                 return NULL;
1414
1415         /*
1416          * Assume we will successfully allocate the surplus page to
1417          * prevent racing processes from causing the surplus to exceed
1418          * overcommit
1419          *
1420          * This however introduces a different race, where a process B
1421          * tries to grow the static hugepage pool while alloc_pages() is
1422          * called by process A. B will only examine the per-node
1423          * counters in determining if surplus huge pages can be
1424          * converted to normal huge pages in adjust_pool_surplus(). A
1425          * won't be able to increment the per-node counter, until the
1426          * lock is dropped by B, but B doesn't drop hugetlb_lock until
1427          * no more huge pages can be converted from surplus to normal
1428          * state (and doesn't try to convert again). Thus, we have a
1429          * case where a surplus huge page exists, the pool is grown, and
1430          * the surplus huge page still exists after, even though it
1431          * should just have been converted to a normal huge page. This
1432          * does not leak memory, though, as the hugepage will be freed
1433          * once it is out of use. It also does not allow the counters to
1434          * go out of whack in adjust_pool_surplus() as we don't modify
1435          * the node values until we've gotten the hugepage and only the
1436          * per-node value is checked there.
1437          */
1438         spin_lock(&hugetlb_lock);
1439         if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
1440                 spin_unlock(&hugetlb_lock);
1441                 return NULL;
1442         } else {
1443                 h->nr_huge_pages++;
1444                 h->surplus_huge_pages++;
1445         }
1446         spin_unlock(&hugetlb_lock);
1447
1448         if (nid == NUMA_NO_NODE)
1449                 page = alloc_pages(htlb_alloc_mask(h)|__GFP_COMP|
1450                                    __GFP_REPEAT|__GFP_NOWARN,
1451                                    huge_page_order(h));
1452         else
1453                 page = alloc_pages_exact_node(nid,
1454                         htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE|
1455                         __GFP_REPEAT|__GFP_NOWARN, huge_page_order(h));
1456
1457         spin_lock(&hugetlb_lock);
1458         if (page) {
1459                 INIT_LIST_HEAD(&page->lru);
1460                 r_nid = page_to_nid(page);
1461                 set_compound_page_dtor(page, free_huge_page);
1462                 set_hugetlb_cgroup(page, NULL);
1463                 /*
1464                  * We incremented the global counters already
1465                  */
1466                 h->nr_huge_pages_node[r_nid]++;
1467                 h->surplus_huge_pages_node[r_nid]++;
1468                 __count_vm_event(HTLB_BUDDY_PGALLOC);
1469         } else {
1470                 h->nr_huge_pages--;
1471                 h->surplus_huge_pages--;
1472                 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1473         }
1474         spin_unlock(&hugetlb_lock);
1475
1476         return page;
1477 }
1478
1479 /*
1480  * This allocation function is useful in the context where vma is irrelevant.
1481  * E.g. soft-offlining uses this function because it only cares physical
1482  * address of error page.
1483  */
1484 struct page *alloc_huge_page_node(struct hstate *h, int nid)
1485 {
1486         struct page *page = NULL;
1487
1488         spin_lock(&hugetlb_lock);
1489         if (h->free_huge_pages - h->resv_huge_pages > 0)
1490                 page = dequeue_huge_page_node(h, nid);
1491         spin_unlock(&hugetlb_lock);
1492
1493         if (!page)
1494                 page = alloc_buddy_huge_page(h, nid);
1495
1496         return page;
1497 }
1498
1499 /*
1500  * Increase the hugetlb pool such that it can accommodate a reservation
1501  * of size 'delta'.
1502  */
1503 static int gather_surplus_pages(struct hstate *h, int delta)
1504 {
1505         struct list_head surplus_list;
1506         struct page *page, *tmp;
1507         int ret, i;
1508         int needed, allocated;
1509         bool alloc_ok = true;
1510
1511         needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
1512         if (needed <= 0) {
1513                 h->resv_huge_pages += delta;
1514                 return 0;
1515         }
1516
1517         allocated = 0;
1518         INIT_LIST_HEAD(&surplus_list);
1519
1520         ret = -ENOMEM;
1521 retry:
1522         spin_unlock(&hugetlb_lock);
1523         for (i = 0; i < needed; i++) {
1524                 page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
1525                 if (!page) {
1526                         alloc_ok = false;
1527                         break;
1528                 }
1529                 list_add(&page->lru, &surplus_list);
1530         }
1531         allocated += i;
1532
1533         /*
1534          * After retaking hugetlb_lock, we need to recalculate 'needed'
1535          * because either resv_huge_pages or free_huge_pages may have changed.
1536          */
1537         spin_lock(&hugetlb_lock);
1538         needed = (h->resv_huge_pages + delta) -
1539                         (h->free_huge_pages + allocated);
1540         if (needed > 0) {
1541                 if (alloc_ok)
1542                         goto retry;
1543                 /*
1544                  * We were not able to allocate enough pages to
1545                  * satisfy the entire reservation so we free what
1546                  * we've allocated so far.
1547                  */
1548                 goto free;
1549         }
1550         /*
1551          * The surplus_list now contains _at_least_ the number of extra pages
1552          * needed to accommodate the reservation.  Add the appropriate number
1553          * of pages to the hugetlb pool and free the extras back to the buddy
1554          * allocator.  Commit the entire reservation here to prevent another
1555          * process from stealing the pages as they are added to the pool but
1556          * before they are reserved.
1557          */
1558         needed += allocated;
1559         h->resv_huge_pages += delta;
1560         ret = 0;
1561
1562         /* Free the needed pages to the hugetlb pool */
1563         list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
1564                 if ((--needed) < 0)
1565                         break;
1566                 /*
1567                  * This page is now managed by the hugetlb allocator and has
1568                  * no users -- drop the buddy allocator's reference.
1569                  */
1570                 put_page_testzero(page);
1571                 VM_BUG_ON_PAGE(page_count(page), page);
1572                 enqueue_huge_page(h, page);
1573         }
1574 free:
1575         spin_unlock(&hugetlb_lock);
1576
1577         /* Free unnecessary surplus pages to the buddy allocator */
1578         list_for_each_entry_safe(page, tmp, &surplus_list, lru)
1579                 put_page(page);
1580         spin_lock(&hugetlb_lock);
1581
1582         return ret;
1583 }
1584
1585 /*
1586  * When releasing a hugetlb pool reservation, any surplus pages that were
1587  * allocated to satisfy the reservation must be explicitly freed if they were
1588  * never used.
1589  * Called with hugetlb_lock held.
1590  */
1591 static void return_unused_surplus_pages(struct hstate *h,
1592                                         unsigned long unused_resv_pages)
1593 {
1594         unsigned long nr_pages;
1595
1596         /* Uncommit the reservation */
1597         h->resv_huge_pages -= unused_resv_pages;
1598
1599         /* Cannot return gigantic pages currently */
1600         if (hstate_is_gigantic(h))
1601                 return;
1602
1603         nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
1604
1605         /*
1606          * We want to release as many surplus pages as possible, spread
1607          * evenly across all nodes with memory. Iterate across these nodes
1608          * until we can no longer free unreserved surplus pages. This occurs
1609          * when the nodes with surplus pages have no free pages.
1610          * free_pool_huge_page() will balance the the freed pages across the
1611          * on-line nodes with memory and will handle the hstate accounting.
1612          */
1613         while (nr_pages--) {
1614                 if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
1615                         break;
1616                 cond_resched_lock(&hugetlb_lock);
1617         }
1618 }
1619
1620
1621 /*
1622  * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
1623  * are used by the huge page allocation routines to manage reservations.
1624  *
1625  * vma_needs_reservation is called to determine if the huge page at addr
1626  * within the vma has an associated reservation.  If a reservation is
1627  * needed, the value 1 is returned.  The caller is then responsible for
1628  * managing the global reservation and subpool usage counts.  After
1629  * the huge page has been allocated, vma_commit_reservation is called
1630  * to add the page to the reservation map.  If the page allocation fails,
1631  * the reservation must be ended instead of committed.  vma_end_reservation
1632  * is called in such cases.
1633  *
1634  * In the normal case, vma_commit_reservation returns the same value
1635  * as the preceding vma_needs_reservation call.  The only time this
1636  * is not the case is if a reserve map was changed between calls.  It
1637  * is the responsibility of the caller to notice the difference and
1638  * take appropriate action.
1639  */
1640 enum vma_resv_mode {
1641         VMA_NEEDS_RESV,
1642         VMA_COMMIT_RESV,
1643         VMA_END_RESV,
1644 };
1645 static long __vma_reservation_common(struct hstate *h,
1646                                 struct vm_area_struct *vma, unsigned long addr,
1647                                 enum vma_resv_mode mode)
1648 {
1649         struct resv_map *resv;
1650         pgoff_t idx;
1651         long ret;
1652
1653         resv = vma_resv_map(vma);
1654         if (!resv)
1655                 return 1;
1656
1657         idx = vma_hugecache_offset(h, vma, addr);
1658         switch (mode) {
1659         case VMA_NEEDS_RESV:
1660                 ret = region_chg(resv, idx, idx + 1);
1661                 break;
1662         case VMA_COMMIT_RESV:
1663                 ret = region_add(resv, idx, idx + 1);
1664                 break;
1665         case VMA_END_RESV:
1666                 region_abort(resv, idx, idx + 1);
1667                 ret = 0;
1668                 break;
1669         default:
1670                 BUG();
1671         }
1672
1673         if (vma->vm_flags & VM_MAYSHARE)
1674                 return ret;
1675         else
1676                 return ret < 0 ? ret : 0;
1677 }
1678
1679 static long vma_needs_reservation(struct hstate *h,
1680                         struct vm_area_struct *vma, unsigned long addr)
1681 {
1682         return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
1683 }
1684
1685 static long vma_commit_reservation(struct hstate *h,
1686                         struct vm_area_struct *vma, unsigned long addr)
1687 {
1688         return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
1689 }
1690
1691 static void vma_end_reservation(struct hstate *h,
1692                         struct vm_area_struct *vma, unsigned long addr)
1693 {
1694         (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
1695 }
1696
1697 static struct page *alloc_huge_page(struct vm_area_struct *vma,
1698                                     unsigned long addr, int avoid_reserve)
1699 {
1700         struct hugepage_subpool *spool = subpool_vma(vma);
1701         struct hstate *h = hstate_vma(vma);
1702         struct page *page;
1703         long chg, commit;
1704         int ret, idx;
1705         struct hugetlb_cgroup *h_cg;
1706
1707         idx = hstate_index(h);
1708         /*
1709          * Processes that did not create the mapping will have no
1710          * reserves and will not have accounted against subpool
1711          * limit. Check that the subpool limit can be made before
1712          * satisfying the allocation MAP_NORESERVE mappings may also
1713          * need pages and subpool limit allocated allocated if no reserve
1714          * mapping overlaps.
1715          */
1716         chg = vma_needs_reservation(h, vma, addr);
1717         if (chg < 0)
1718                 return ERR_PTR(-ENOMEM);
1719         if (chg || avoid_reserve)
1720                 if (hugepage_subpool_get_pages(spool, 1) < 0) {
1721                         vma_end_reservation(h, vma, addr);
1722                         return ERR_PTR(-ENOSPC);
1723                 }
1724
1725         ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
1726         if (ret)
1727                 goto out_subpool_put;
1728
1729         spin_lock(&hugetlb_lock);
1730         page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, chg);
1731         if (!page) {
1732                 spin_unlock(&hugetlb_lock);
1733                 page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
1734                 if (!page)
1735                         goto out_uncharge_cgroup;
1736
1737                 spin_lock(&hugetlb_lock);
1738                 list_move(&page->lru, &h->hugepage_activelist);
1739                 /* Fall through */
1740         }
1741         hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
1742         spin_unlock(&hugetlb_lock);
1743
1744         set_page_private(page, (unsigned long)spool);
1745
1746         commit = vma_commit_reservation(h, vma, addr);
1747         if (unlikely(chg > commit)) {
1748                 /*
1749                  * The page was added to the reservation map between
1750                  * vma_needs_reservation and vma_commit_reservation.
1751                  * This indicates a race with hugetlb_reserve_pages.
1752                  * Adjust for the subpool count incremented above AND
1753                  * in hugetlb_reserve_pages for the same page.  Also,
1754                  * the reservation count added in hugetlb_reserve_pages
1755                  * no longer applies.
1756                  */
1757                 long rsv_adjust;
1758
1759                 rsv_adjust = hugepage_subpool_put_pages(spool, 1);
1760                 hugetlb_acct_memory(h, -rsv_adjust);
1761         }
1762         return page;
1763
1764 out_uncharge_cgroup:
1765         hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
1766 out_subpool_put:
1767         if (chg || avoid_reserve)
1768                 hugepage_subpool_put_pages(spool, 1);
1769         vma_end_reservation(h, vma, addr);
1770         return ERR_PTR(-ENOSPC);
1771 }
1772
1773 /*
1774  * alloc_huge_page()'s wrapper which simply returns the page if allocation
1775  * succeeds, otherwise NULL. This function is called from new_vma_page(),
1776  * where no ERR_VALUE is expected to be returned.
1777  */
1778 struct page *alloc_huge_page_noerr(struct vm_area_struct *vma,
1779                                 unsigned long addr, int avoid_reserve)
1780 {
1781         struct page *page = alloc_huge_page(vma, addr, avoid_reserve);
1782         if (IS_ERR(page))
1783                 page = NULL;
1784         return page;
1785 }
1786
1787 int __weak alloc_bootmem_huge_page(struct hstate *h)
1788 {
1789         struct huge_bootmem_page *m;
1790         int nr_nodes, node;
1791
1792         for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
1793                 void *addr;
1794
1795                 addr = memblock_virt_alloc_try_nid_nopanic(
1796                                 huge_page_size(h), huge_page_size(h),
1797                                 0, BOOTMEM_ALLOC_ACCESSIBLE, node);
1798                 if (addr) {
1799                         /*
1800                          * Use the beginning of the huge page to store the
1801                          * huge_bootmem_page struct (until gather_bootmem
1802                          * puts them into the mem_map).
1803                          */
1804                         m = addr;
1805                         goto found;
1806                 }
1807         }
1808         return 0;
1809
1810 found:
1811         BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h)));
1812         /* Put them into a private list first because mem_map is not up yet */
1813         list_add(&m->list, &huge_boot_pages);
1814         m->hstate = h;
1815         return 1;
1816 }
1817
1818 static void __init prep_compound_huge_page(struct page *page, int order)
1819 {
1820         if (unlikely(order > (MAX_ORDER - 1)))
1821                 prep_compound_gigantic_page(page, order);
1822         else
1823                 prep_compound_page(page, order);
1824 }
1825
1826 /* Put bootmem huge pages into the standard lists after mem_map is up */
1827 static void __init gather_bootmem_prealloc(void)
1828 {
1829         struct huge_bootmem_page *m;
1830
1831         list_for_each_entry(m, &huge_boot_pages, list) {
1832                 struct hstate *h = m->hstate;
1833                 struct page *page;
1834
1835 #ifdef CONFIG_HIGHMEM
1836                 page = pfn_to_page(m->phys >> PAGE_SHIFT);
1837                 memblock_free_late(__pa(m),
1838                                    sizeof(struct huge_bootmem_page));
1839 #else
1840                 page = virt_to_page(m);
1841 #endif
1842                 WARN_ON(page_count(page) != 1);
1843                 prep_compound_huge_page(page, h->order);
1844                 WARN_ON(PageReserved(page));
1845                 prep_new_huge_page(h, page, page_to_nid(page));
1846                 /*
1847                  * If we had gigantic hugepages allocated at boot time, we need
1848                  * to restore the 'stolen' pages to totalram_pages in order to
1849                  * fix confusing memory reports from free(1) and another
1850                  * side-effects, like CommitLimit going negative.
1851                  */
1852                 if (hstate_is_gigantic(h))
1853                         adjust_managed_page_count(page, 1 << h->order);
1854         }
1855 }
1856
1857 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
1858 {
1859         unsigned long i;
1860
1861         for (i = 0; i < h->max_huge_pages; ++i) {
1862                 if (hstate_is_gigantic(h)) {
1863                         if (!alloc_bootmem_huge_page(h))
1864                                 break;
1865                 } else if (!alloc_fresh_huge_page(h,
1866                                          &node_states[N_MEMORY]))
1867                         break;
1868         }
1869         h->max_huge_pages = i;
1870 }
1871
1872 static void __init hugetlb_init_hstates(void)
1873 {
1874         struct hstate *h;
1875
1876         for_each_hstate(h) {
1877                 if (minimum_order > huge_page_order(h))
1878                         minimum_order = huge_page_order(h);
1879
1880                 /* oversize hugepages were init'ed in early boot */
1881                 if (!hstate_is_gigantic(h))
1882                         hugetlb_hstate_alloc_pages(h);
1883         }
1884         VM_BUG_ON(minimum_order == UINT_MAX);
1885 }
1886
1887 static char * __init memfmt(char *buf, unsigned long n)
1888 {
1889         if (n >= (1UL << 30))
1890                 sprintf(buf, "%lu GB", n >> 30);
1891         else if (n >= (1UL << 20))
1892                 sprintf(buf, "%lu MB", n >> 20);
1893         else
1894                 sprintf(buf, "%lu KB", n >> 10);
1895         return buf;
1896 }
1897
1898 static void __init report_hugepages(void)
1899 {
1900         struct hstate *h;
1901
1902         for_each_hstate(h) {
1903                 char buf[32];
1904                 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
1905                         memfmt(buf, huge_page_size(h)),
1906                         h->free_huge_pages);
1907         }
1908 }
1909
1910 #ifdef CONFIG_HIGHMEM
1911 static void try_to_free_low(struct hstate *h, unsigned long count,
1912                                                 nodemask_t *nodes_allowed)
1913 {
1914         int i;
1915
1916         if (hstate_is_gigantic(h))
1917                 return;
1918
1919         for_each_node_mask(i, *nodes_allowed) {
1920                 struct page *page, *next;
1921                 struct list_head *freel = &h->hugepage_freelists[i];
1922                 list_for_each_entry_safe(page, next, freel, lru) {
1923                         if (count >= h->nr_huge_pages)
1924                                 return;
1925                         if (PageHighMem(page))
1926                                 continue;
1927                         list_del(&page->lru);
1928                         update_and_free_page(h, page);
1929                         h->free_huge_pages--;
1930                         h->free_huge_pages_node[page_to_nid(page)]--;
1931                 }
1932         }
1933 }
1934 #else
1935 static inline void try_to_free_low(struct hstate *h, unsigned long count,
1936                                                 nodemask_t *nodes_allowed)
1937 {
1938 }
1939 #endif
1940
1941 /*
1942  * Increment or decrement surplus_huge_pages.  Keep node-specific counters
1943  * balanced by operating on them in a round-robin fashion.
1944  * Returns 1 if an adjustment was made.
1945  */
1946 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
1947                                 int delta)
1948 {
1949         int nr_nodes, node;
1950
1951         VM_BUG_ON(delta != -1 && delta != 1);
1952
1953         if (delta < 0) {
1954                 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1955                         if (h->surplus_huge_pages_node[node])
1956                                 goto found;
1957                 }
1958         } else {
1959                 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1960                         if (h->surplus_huge_pages_node[node] <
1961                                         h->nr_huge_pages_node[node])
1962                                 goto found;
1963                 }
1964         }
1965         return 0;
1966
1967 found:
1968         h->surplus_huge_pages += delta;
1969         h->surplus_huge_pages_node[node] += delta;
1970         return 1;
1971 }
1972
1973 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
1974 static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
1975                                                 nodemask_t *nodes_allowed)
1976 {
1977         unsigned long min_count, ret;
1978
1979         if (hstate_is_gigantic(h) && !gigantic_page_supported())
1980                 return h->max_huge_pages;
1981
1982         /*
1983          * Increase the pool size
1984          * First take pages out of surplus state.  Then make up the
1985          * remaining difference by allocating fresh huge pages.
1986          *
1987          * We might race with alloc_buddy_huge_page() here and be unable
1988          * to convert a surplus huge page to a normal huge page. That is
1989          * not critical, though, it just means the overall size of the
1990          * pool might be one hugepage larger than it needs to be, but
1991          * within all the constraints specified by the sysctls.
1992          */
1993         spin_lock(&hugetlb_lock);
1994         while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
1995                 if (!adjust_pool_surplus(h, nodes_allowed, -1))
1996                         break;
1997         }
1998
1999         while (count > persistent_huge_pages(h)) {
2000                 /*
2001                  * If this allocation races such that we no longer need the
2002                  * page, free_huge_page will handle it by freeing the page
2003                  * and reducing the surplus.
2004                  */
2005                 spin_unlock(&hugetlb_lock);
2006                 if (hstate_is_gigantic(h))
2007                         ret = alloc_fresh_gigantic_page(h, nodes_allowed);
2008                 else
2009                         ret = alloc_fresh_huge_page(h, nodes_allowed);
2010                 spin_lock(&hugetlb_lock);
2011                 if (!ret)
2012                         goto out;
2013
2014                 /* Bail for signals. Probably ctrl-c from user */
2015                 if (signal_pending(current))
2016                         goto out;
2017         }
2018
2019         /*
2020          * Decrease the pool size
2021          * First return free pages to the buddy allocator (being careful
2022          * to keep enough around to satisfy reservations).  Then place
2023          * pages into surplus state as needed so the pool will shrink
2024          * to the desired size as pages become free.
2025          *
2026          * By placing pages into the surplus state independent of the
2027          * overcommit value, we are allowing the surplus pool size to
2028          * exceed overcommit. There are few sane options here. Since
2029          * alloc_buddy_huge_page() is checking the global counter,
2030          * though, we'll note that we're not allowed to exceed surplus
2031          * and won't grow the pool anywhere else. Not until one of the
2032          * sysctls are changed, or the surplus pages go out of use.
2033          */
2034         min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
2035         min_count = max(count, min_count);
2036         try_to_free_low(h, min_count, nodes_allowed);
2037         while (min_count < persistent_huge_pages(h)) {
2038                 if (!free_pool_huge_page(h, nodes_allowed, 0))
2039                         break;
2040                 cond_resched_lock(&hugetlb_lock);
2041         }
2042         while (count < persistent_huge_pages(h)) {
2043                 if (!adjust_pool_surplus(h, nodes_allowed, 1))
2044                         break;
2045         }
2046 out:
2047         ret = persistent_huge_pages(h);
2048         spin_unlock(&hugetlb_lock);
2049         return ret;
2050 }
2051
2052 #define HSTATE_ATTR_RO(_name) \
2053         static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2054
2055 #define HSTATE_ATTR(_name) \
2056         static struct kobj_attribute _name##_attr = \
2057                 __ATTR(_name, 0644, _name##_show, _name##_store)
2058
2059 static struct kobject *hugepages_kobj;
2060 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2061
2062 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
2063
2064 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
2065 {
2066         int i;
2067
2068         for (i = 0; i < HUGE_MAX_HSTATE; i++)
2069                 if (hstate_kobjs[i] == kobj) {
2070                         if (nidp)
2071                                 *nidp = NUMA_NO_NODE;
2072                         return &hstates[i];
2073                 }
2074
2075         return kobj_to_node_hstate(kobj, nidp);
2076 }
2077
2078 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
2079                                         struct kobj_attribute *attr, char *buf)
2080 {
2081         struct hstate *h;
2082         unsigned long nr_huge_pages;
2083         int nid;
2084
2085         h = kobj_to_hstate(kobj, &nid);
2086         if (nid == NUMA_NO_NODE)
2087                 nr_huge_pages = h->nr_huge_pages;
2088         else
2089                 nr_huge_pages = h->nr_huge_pages_node[nid];
2090
2091         return sprintf(buf, "%lu\n", nr_huge_pages);
2092 }
2093
2094 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
2095                                            struct hstate *h, int nid,
2096                                            unsigned long count, size_t len)
2097 {
2098         int err;
2099         NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
2100
2101         if (hstate_is_gigantic(h) && !gigantic_page_supported()) {
2102                 err = -EINVAL;
2103                 goto out;
2104         }
2105
2106         if (nid == NUMA_NO_NODE) {
2107                 /*
2108                  * global hstate attribute
2109                  */
2110                 if (!(obey_mempolicy &&
2111                                 init_nodemask_of_mempolicy(nodes_allowed))) {
2112                         NODEMASK_FREE(nodes_allowed);
2113                         nodes_allowed = &node_states[N_MEMORY];
2114                 }
2115         } else if (nodes_allowed) {
2116                 /*
2117                  * per node hstate attribute: adjust count to global,
2118                  * but restrict alloc/free to the specified node.
2119                  */
2120                 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
2121                 init_nodemask_of_node(nodes_allowed, nid);
2122         } else
2123                 nodes_allowed = &node_states[N_MEMORY];
2124
2125         h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
2126
2127         if (nodes_allowed != &node_states[N_MEMORY])
2128                 NODEMASK_FREE(nodes_allowed);
2129
2130         return len;
2131 out:
2132         NODEMASK_FREE(nodes_allowed);
2133         return err;
2134 }
2135
2136 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
2137                                          struct kobject *kobj, const char *buf,
2138                                          size_t len)
2139 {
2140         struct hstate *h;
2141         unsigned long count;
2142         int nid;
2143         int err;
2144
2145         err = kstrtoul(buf, 10, &count);
2146         if (err)
2147                 return err;
2148
2149         h = kobj_to_hstate(kobj, &nid);
2150         return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
2151 }
2152
2153 static ssize_t nr_hugepages_show(struct kobject *kobj,
2154                                        struct kobj_attribute *attr, char *buf)
2155 {
2156         return nr_hugepages_show_common(kobj, attr, buf);
2157 }
2158
2159 static ssize_t nr_hugepages_store(struct kobject *kobj,
2160                struct kobj_attribute *attr, const char *buf, size_t len)
2161 {
2162         return nr_hugepages_store_common(false, kobj, buf, len);
2163 }
2164 HSTATE_ATTR(nr_hugepages);
2165
2166 #ifdef CONFIG_NUMA
2167
2168 /*
2169  * hstate attribute for optionally mempolicy-based constraint on persistent
2170  * huge page alloc/free.
2171  */
2172 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
2173                                        struct kobj_attribute *attr, char *buf)
2174 {
2175         return nr_hugepages_show_common(kobj, attr, buf);
2176 }
2177
2178 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
2179                struct kobj_attribute *attr, const char *buf, size_t len)
2180 {
2181         return nr_hugepages_store_common(true, kobj, buf, len);
2182 }
2183 HSTATE_ATTR(nr_hugepages_mempolicy);
2184 #endif
2185
2186
2187 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
2188                                         struct kobj_attribute *attr, char *buf)
2189 {
2190         struct hstate *h = kobj_to_hstate(kobj, NULL);
2191         return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
2192 }
2193
2194 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
2195                 struct kobj_attribute *attr, const char *buf, size_t count)
2196 {
2197         int err;
2198         unsigned long input;
2199         struct hstate *h = kobj_to_hstate(kobj, NULL);
2200
2201         if (hstate_is_gigantic(h))
2202                 return -EINVAL;
2203
2204         err = kstrtoul(buf, 10, &input);
2205         if (err)
2206                 return err;
2207
2208         spin_lock(&hugetlb_lock);
2209         h->nr_overcommit_huge_pages = input;
2210         spin_unlock(&hugetlb_lock);
2211
2212         return count;
2213 }
2214 HSTATE_ATTR(nr_overcommit_hugepages);
2215
2216 static ssize_t free_hugepages_show(struct kobject *kobj,
2217                                         struct kobj_attribute *attr, char *buf)
2218 {
2219         struct hstate *h;
2220         unsigned long free_huge_pages;
2221         int nid;
2222
2223         h = kobj_to_hstate(kobj, &nid);
2224         if (nid == NUMA_NO_NODE)
2225                 free_huge_pages = h->free_huge_pages;
2226         else
2227                 free_huge_pages = h->free_huge_pages_node[nid];
2228
2229         return sprintf(buf, "%lu\n", free_huge_pages);
2230 }
2231 HSTATE_ATTR_RO(free_hugepages);
2232
2233 static ssize_t resv_hugepages_show(struct kobject *kobj,
2234                                         struct kobj_attribute *attr, char *buf)
2235 {
2236         struct hstate *h = kobj_to_hstate(kobj, NULL);
2237         return sprintf(buf, "%lu\n", h->resv_huge_pages);
2238 }
2239 HSTATE_ATTR_RO(resv_hugepages);
2240
2241 static ssize_t surplus_hugepages_show(struct kobject *kobj,
2242                                         struct kobj_attribute *attr, char *buf)
2243 {
2244         struct hstate *h;
2245         unsigned long surplus_huge_pages;
2246         int nid;
2247
2248         h = kobj_to_hstate(kobj, &nid);
2249         if (nid == NUMA_NO_NODE)
2250                 surplus_huge_pages = h->surplus_huge_pages;
2251         else
2252                 surplus_huge_pages = h->surplus_huge_pages_node[nid];
2253
2254         return sprintf(buf, "%lu\n", surplus_huge_pages);
2255 }
2256 HSTATE_ATTR_RO(surplus_hugepages);
2257
2258 static struct attribute *hstate_attrs[] = {
2259         &nr_hugepages_attr.attr,
2260         &nr_overcommit_hugepages_attr.attr,
2261         &free_hugepages_attr.attr,
2262         &resv_hugepages_attr.attr,
2263         &surplus_hugepages_attr.attr,
2264 #ifdef CONFIG_NUMA
2265         &nr_hugepages_mempolicy_attr.attr,
2266 #endif
2267         NULL,
2268 };
2269
2270 static struct attribute_group hstate_attr_group = {
2271         .attrs = hstate_attrs,
2272 };
2273
2274 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
2275                                     struct kobject **hstate_kobjs,
2276                                     struct attribute_group *hstate_attr_group)
2277 {
2278         int retval;
2279         int hi = hstate_index(h);
2280
2281         hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
2282         if (!hstate_kobjs[hi])
2283                 return -ENOMEM;
2284
2285         retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
2286         if (retval)
2287                 kobject_put(hstate_kobjs[hi]);
2288
2289         return retval;
2290 }
2291
2292 static void __init hugetlb_sysfs_init(void)
2293 {
2294         struct hstate *h;
2295         int err;
2296
2297         hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
2298         if (!hugepages_kobj)
2299                 return;
2300
2301         for_each_hstate(h) {
2302                 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
2303                                          hstate_kobjs, &hstate_attr_group);
2304                 if (err)
2305                         pr_err("Hugetlb: Unable to add hstate %s", h->name);
2306         }
2307 }
2308
2309 #ifdef CONFIG_NUMA
2310
2311 /*
2312  * node_hstate/s - associate per node hstate attributes, via their kobjects,
2313  * with node devices in node_devices[] using a parallel array.  The array
2314  * index of a node device or _hstate == node id.
2315  * This is here to avoid any static dependency of the node device driver, in
2316  * the base kernel, on the hugetlb module.
2317  */
2318 struct node_hstate {
2319         struct kobject          *hugepages_kobj;
2320         struct kobject          *hstate_kobjs[HUGE_MAX_HSTATE];
2321 };
2322 struct node_hstate node_hstates[MAX_NUMNODES];
2323
2324 /*
2325  * A subset of global hstate attributes for node devices
2326  */
2327 static struct attribute *per_node_hstate_attrs[] = {
2328         &nr_hugepages_attr.attr,
2329         &free_hugepages_attr.attr,
2330         &surplus_hugepages_attr.attr,
2331         NULL,
2332 };
2333
2334 static struct attribute_group per_node_hstate_attr_group = {
2335         .attrs = per_node_hstate_attrs,
2336 };
2337
2338 /*
2339  * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
2340  * Returns node id via non-NULL nidp.
2341  */
2342 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2343 {
2344         int nid;
2345
2346         for (nid = 0; nid < nr_node_ids; nid++) {
2347                 struct node_hstate *nhs = &node_hstates[nid];
2348                 int i;
2349                 for (i = 0; i < HUGE_MAX_HSTATE; i++)
2350                         if (nhs->hstate_kobjs[i] == kobj) {
2351                                 if (nidp)
2352                                         *nidp = nid;
2353                                 return &hstates[i];
2354                         }
2355         }
2356
2357         BUG();
2358         return NULL;
2359 }
2360
2361 /*
2362  * Unregister hstate attributes from a single node device.
2363  * No-op if no hstate attributes attached.
2364  */
2365 static void hugetlb_unregister_node(struct node *node)
2366 {
2367         struct hstate *h;
2368         struct node_hstate *nhs = &node_hstates[node->dev.id];
2369
2370         if (!nhs->hugepages_kobj)
2371                 return;         /* no hstate attributes */
2372
2373         for_each_hstate(h) {
2374                 int idx = hstate_index(h);
2375                 if (nhs->hstate_kobjs[idx]) {
2376                         kobject_put(nhs->hstate_kobjs[idx]);
2377                         nhs->hstate_kobjs[idx] = NULL;
2378                 }
2379         }
2380
2381         kobject_put(nhs->hugepages_kobj);
2382         nhs->hugepages_kobj = NULL;
2383 }
2384
2385 /*
2386  * hugetlb module exit:  unregister hstate attributes from node devices
2387  * that have them.
2388  */
2389 static void hugetlb_unregister_all_nodes(void)
2390 {
2391         int nid;
2392
2393         /*
2394          * disable node device registrations.
2395          */
2396         register_hugetlbfs_with_node(NULL, NULL);
2397
2398         /*
2399          * remove hstate attributes from any nodes that have them.
2400          */
2401         for (nid = 0; nid < nr_node_ids; nid++)
2402                 hugetlb_unregister_node(node_devices[nid]);
2403 }
2404
2405 /*
2406  * Register hstate attributes for a single node device.
2407  * No-op if attributes already registered.
2408  */
2409 static void hugetlb_register_node(struct node *node)
2410 {
2411         struct hstate *h;
2412         struct node_hstate *nhs = &node_hstates[node->dev.id];
2413         int err;
2414
2415         if (nhs->hugepages_kobj)
2416                 return;         /* already allocated */
2417
2418         nhs->hugepages_kobj = kobject_create_and_add("hugepages",
2419                                                         &node->dev.kobj);
2420         if (!nhs->hugepages_kobj)
2421                 return;
2422
2423         for_each_hstate(h) {
2424                 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
2425                                                 nhs->hstate_kobjs,
2426                                                 &per_node_hstate_attr_group);
2427                 if (err) {
2428                         pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
2429                                 h->name, node->dev.id);
2430                         hugetlb_unregister_node(node);
2431                         break;
2432                 }
2433         }
2434 }
2435
2436 /*
2437  * hugetlb init time:  register hstate attributes for all registered node
2438  * devices of nodes that have memory.  All on-line nodes should have
2439  * registered their associated device by this time.
2440  */
2441 static void __init hugetlb_register_all_nodes(void)
2442 {
2443         int nid;
2444
2445         for_each_node_state(nid, N_MEMORY) {
2446                 struct node *node = node_devices[nid];
2447                 if (node->dev.id == nid)
2448                         hugetlb_register_node(node);
2449         }
2450
2451         /*
2452          * Let the node device driver know we're here so it can
2453          * [un]register hstate attributes on node hotplug.
2454          */
2455         register_hugetlbfs_with_node(hugetlb_register_node,
2456                                      hugetlb_unregister_node);
2457 }
2458 #else   /* !CONFIG_NUMA */
2459
2460 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2461 {
2462         BUG();
2463         if (nidp)
2464                 *nidp = -1;
2465         return NULL;
2466 }
2467
2468 static void hugetlb_unregister_all_nodes(void) { }
2469
2470 static void hugetlb_register_all_nodes(void) { }
2471
2472 #endif
2473
2474 static void __exit hugetlb_exit(void)
2475 {
2476         struct hstate *h;
2477
2478         hugetlb_unregister_all_nodes();
2479
2480         for_each_hstate(h) {
2481                 kobject_put(hstate_kobjs[hstate_index(h)]);
2482         }
2483
2484         kobject_put(hugepages_kobj);
2485         kfree(htlb_fault_mutex_table);
2486 }
2487 module_exit(hugetlb_exit);
2488
2489 static int __init hugetlb_init(void)
2490 {
2491         int i;
2492
2493         if (!hugepages_supported())
2494                 return 0;
2495
2496         if (!size_to_hstate(default_hstate_size)) {
2497                 default_hstate_size = HPAGE_SIZE;
2498                 if (!size_to_hstate(default_hstate_size))
2499                         hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
2500         }
2501         default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
2502         if (default_hstate_max_huge_pages)
2503                 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
2504
2505         hugetlb_init_hstates();
2506         gather_bootmem_prealloc();
2507         report_hugepages();
2508
2509         hugetlb_sysfs_init();
2510         hugetlb_register_all_nodes();
2511         hugetlb_cgroup_file_init();
2512
2513 #ifdef CONFIG_SMP
2514         num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
2515 #else
2516         num_fault_mutexes = 1;
2517 #endif
2518         htlb_fault_mutex_table =
2519                 kmalloc(sizeof(struct mutex) * num_fault_mutexes, GFP_KERNEL);
2520         BUG_ON(!htlb_fault_mutex_table);
2521
2522         for (i = 0; i < num_fault_mutexes; i++)
2523                 mutex_init(&htlb_fault_mutex_table[i]);
2524         return 0;
2525 }
2526 module_init(hugetlb_init);
2527
2528 /* Should be called on processing a hugepagesz=... option */
2529 void __init hugetlb_add_hstate(unsigned order)
2530 {
2531         struct hstate *h;
2532         unsigned long i;
2533
2534         if (size_to_hstate(PAGE_SIZE << order)) {
2535                 pr_warning("hugepagesz= specified twice, ignoring\n");
2536                 return;
2537         }
2538         BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
2539         BUG_ON(order == 0);
2540         h = &hstates[hugetlb_max_hstate++];
2541         h->order = order;
2542         h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
2543         h->nr_huge_pages = 0;
2544         h->free_huge_pages = 0;
2545         for (i = 0; i < MAX_NUMNODES; ++i)
2546                 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
2547         INIT_LIST_HEAD(&h->hugepage_activelist);
2548         h->next_nid_to_alloc = first_node(node_states[N_MEMORY]);
2549         h->next_nid_to_free = first_node(node_states[N_MEMORY]);
2550         snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
2551                                         huge_page_size(h)/1024);
2552
2553         parsed_hstate = h;
2554 }
2555
2556 static int __init hugetlb_nrpages_setup(char *s)
2557 {
2558         unsigned long *mhp;
2559         static unsigned long *last_mhp;
2560
2561         /*
2562          * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
2563          * so this hugepages= parameter goes to the "default hstate".
2564          */
2565         if (!hugetlb_max_hstate)
2566                 mhp = &default_hstate_max_huge_pages;
2567         else
2568                 mhp = &parsed_hstate->max_huge_pages;
2569
2570         if (mhp == last_mhp) {
2571                 pr_warning("hugepages= specified twice without "
2572                            "interleaving hugepagesz=, ignoring\n");
2573                 return 1;
2574         }
2575
2576         if (sscanf(s, "%lu", mhp) <= 0)
2577                 *mhp = 0;
2578
2579         /*
2580          * Global state is always initialized later in hugetlb_init.
2581          * But we need to allocate >= MAX_ORDER hstates here early to still
2582          * use the bootmem allocator.
2583          */
2584         if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
2585                 hugetlb_hstate_alloc_pages(parsed_hstate);
2586
2587         last_mhp = mhp;
2588
2589         return 1;
2590 }
2591 __setup("hugepages=", hugetlb_nrpages_setup);
2592
2593 static int __init hugetlb_default_setup(char *s)
2594 {
2595         default_hstate_size = memparse(s, &s);
2596         return 1;
2597 }
2598 __setup("default_hugepagesz=", hugetlb_default_setup);
2599
2600 static unsigned int cpuset_mems_nr(unsigned int *array)
2601 {
2602         int node;
2603         unsigned int nr = 0;
2604
2605         for_each_node_mask(node, cpuset_current_mems_allowed)
2606                 nr += array[node];
2607
2608         return nr;
2609 }
2610
2611 #ifdef CONFIG_SYSCTL
2612 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
2613                          struct ctl_table *table, int write,
2614                          void __user *buffer, size_t *length, loff_t *ppos)
2615 {
2616         struct hstate *h = &default_hstate;
2617         unsigned long tmp = h->max_huge_pages;
2618         int ret;
2619
2620         if (!hugepages_supported())
2621                 return -ENOTSUPP;
2622
2623         table->data = &tmp;
2624         table->maxlen = sizeof(unsigned long);
2625         ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2626         if (ret)
2627                 goto out;
2628
2629         if (write)
2630                 ret = __nr_hugepages_store_common(obey_mempolicy, h,
2631                                                   NUMA_NO_NODE, tmp, *length);
2632 out:
2633         return ret;
2634 }
2635
2636 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
2637                           void __user *buffer, size_t *length, loff_t *ppos)
2638 {
2639
2640         return hugetlb_sysctl_handler_common(false, table, write,
2641                                                         buffer, length, ppos);
2642 }
2643
2644 #ifdef CONFIG_NUMA
2645 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
2646                           void __user *buffer, size_t *length, loff_t *ppos)
2647 {
2648         return hugetlb_sysctl_handler_common(true, table, write,
2649                                                         buffer, length, ppos);
2650 }
2651 #endif /* CONFIG_NUMA */
2652
2653 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
2654                         void __user *buffer,
2655                         size_t *length, loff_t *ppos)
2656 {
2657         struct hstate *h = &default_hstate;
2658         unsigned long tmp;
2659         int ret;
2660
2661         if (!hugepages_supported())
2662                 return -ENOTSUPP;
2663
2664         tmp = h->nr_overcommit_huge_pages;
2665
2666         if (write && hstate_is_gigantic(h))
2667                 return -EINVAL;
2668
2669         table->data = &tmp;
2670         table->maxlen = sizeof(unsigned long);
2671         ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2672         if (ret)
2673                 goto out;
2674
2675         if (write) {
2676                 spin_lock(&hugetlb_lock);
2677                 h->nr_overcommit_huge_pages = tmp;
2678                 spin_unlock(&hugetlb_lock);
2679         }
2680 out:
2681         return ret;
2682 }
2683
2684 #endif /* CONFIG_SYSCTL */
2685
2686 void hugetlb_report_meminfo(struct seq_file *m)
2687 {
2688         struct hstate *h = &default_hstate;
2689         if (!hugepages_supported())
2690                 return;
2691         seq_printf(m,
2692                         "HugePages_Total:   %5lu\n"
2693                         "HugePages_Free:    %5lu\n"
2694                         "HugePages_Rsvd:    %5lu\n"
2695                         "HugePages_Surp:    %5lu\n"
2696                         "Hugepagesize:   %8lu kB\n",
2697                         h->nr_huge_pages,
2698                         h->free_huge_pages,
2699                         h->resv_huge_pages,
2700                         h->surplus_huge_pages,
2701                         1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
2702 }
2703
2704 int hugetlb_report_node_meminfo(int nid, char *buf)
2705 {
2706         struct hstate *h = &default_hstate;
2707         if (!hugepages_supported())
2708                 return 0;
2709         return sprintf(buf,
2710                 "Node %d HugePages_Total: %5u\n"
2711                 "Node %d HugePages_Free:  %5u\n"
2712                 "Node %d HugePages_Surp:  %5u\n",
2713                 nid, h->nr_huge_pages_node[nid],
2714                 nid, h->free_huge_pages_node[nid],
2715                 nid, h->surplus_huge_pages_node[nid]);
2716 }
2717
2718 void hugetlb_show_meminfo(void)
2719 {
2720         struct hstate *h;
2721         int nid;
2722
2723         if (!hugepages_supported())
2724                 return;
2725
2726         for_each_node_state(nid, N_MEMORY)
2727                 for_each_hstate(h)
2728                         pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
2729                                 nid,
2730                                 h->nr_huge_pages_node[nid],
2731                                 h->free_huge_pages_node[nid],
2732                                 h->surplus_huge_pages_node[nid],
2733                                 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
2734 }
2735
2736 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
2737 unsigned long hugetlb_total_pages(void)
2738 {
2739         struct hstate *h;
2740         unsigned long nr_total_pages = 0;
2741
2742         for_each_hstate(h)
2743                 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
2744         return nr_total_pages;
2745 }
2746
2747 static int hugetlb_acct_memory(struct hstate *h, long delta)
2748 {
2749         int ret = -ENOMEM;
2750
2751         spin_lock(&hugetlb_lock);
2752         /*
2753          * When cpuset is configured, it breaks the strict hugetlb page
2754          * reservation as the accounting is done on a global variable. Such
2755          * reservation is completely rubbish in the presence of cpuset because
2756          * the reservation is not checked against page availability for the
2757          * current cpuset. Application can still potentially OOM'ed by kernel
2758          * with lack of free htlb page in cpuset that the task is in.
2759          * Attempt to enforce strict accounting with cpuset is almost
2760          * impossible (or too ugly) because cpuset is too fluid that
2761          * task or memory node can be dynamically moved between cpusets.
2762          *
2763          * The change of semantics for shared hugetlb mapping with cpuset is
2764          * undesirable. However, in order to preserve some of the semantics,
2765          * we fall back to check against current free page availability as
2766          * a best attempt and hopefully to minimize the impact of changing
2767          * semantics that cpuset has.
2768          */
2769         if (delta > 0) {
2770                 if (gather_surplus_pages(h, delta) < 0)
2771                         goto out;
2772
2773                 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
2774                         return_unused_surplus_pages(h, delta);
2775                         goto out;
2776                 }
2777         }
2778
2779         ret = 0;
2780         if (delta < 0)
2781                 return_unused_surplus_pages(h, (unsigned long) -delta);
2782
2783 out:
2784         spin_unlock(&hugetlb_lock);
2785         return ret;
2786 }
2787
2788 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
2789 {
2790         struct resv_map *resv = vma_resv_map(vma);
2791
2792         /*
2793          * This new VMA should share its siblings reservation map if present.
2794          * The VMA will only ever have a valid reservation map pointer where
2795          * it is being copied for another still existing VMA.  As that VMA
2796          * has a reference to the reservation map it cannot disappear until
2797          * after this open call completes.  It is therefore safe to take a
2798          * new reference here without additional locking.
2799          */
2800         if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
2801                 kref_get(&resv->refs);
2802 }
2803
2804 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
2805 {
2806         struct hstate *h = hstate_vma(vma);
2807         struct resv_map *resv = vma_resv_map(vma);
2808         struct hugepage_subpool *spool = subpool_vma(vma);
2809         unsigned long reserve, start, end;
2810         long gbl_reserve;
2811
2812         if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
2813                 return;
2814
2815         start = vma_hugecache_offset(h, vma, vma->vm_start);
2816         end = vma_hugecache_offset(h, vma, vma->vm_end);
2817
2818         reserve = (end - start) - region_count(resv, start, end);
2819
2820         kref_put(&resv->refs, resv_map_release);
2821
2822         if (reserve) {
2823                 /*
2824                  * Decrement reserve counts.  The global reserve count may be
2825                  * adjusted if the subpool has a minimum size.
2826                  */
2827                 gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
2828                 hugetlb_acct_memory(h, -gbl_reserve);
2829         }
2830 }
2831
2832 /*
2833  * We cannot handle pagefaults against hugetlb pages at all.  They cause
2834  * handle_mm_fault() to try to instantiate regular-sized pages in the
2835  * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
2836  * this far.
2837  */
2838 static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2839 {
2840         BUG();
2841         return 0;
2842 }
2843
2844 const struct vm_operations_struct hugetlb_vm_ops = {
2845         .fault = hugetlb_vm_op_fault,
2846         .open = hugetlb_vm_op_open,
2847         .close = hugetlb_vm_op_close,
2848 };
2849
2850 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
2851                                 int writable)
2852 {
2853         pte_t entry;
2854
2855         if (writable) {
2856                 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
2857                                          vma->vm_page_prot)));
2858         } else {
2859                 entry = huge_pte_wrprotect(mk_huge_pte(page,
2860                                            vma->vm_page_prot));
2861         }
2862         entry = pte_mkyoung(entry);
2863         entry = pte_mkhuge(entry);
2864         entry = arch_make_huge_pte(entry, vma, page, writable);
2865
2866         return entry;
2867 }
2868
2869 static void set_huge_ptep_writable(struct vm_area_struct *vma,
2870                                    unsigned long address, pte_t *ptep)
2871 {
2872         pte_t entry;
2873
2874         entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
2875         if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
2876                 update_mmu_cache(vma, address, ptep);
2877 }
2878
2879 static int is_hugetlb_entry_migration(pte_t pte)
2880 {
2881         swp_entry_t swp;
2882
2883         if (huge_pte_none(pte) || pte_present(pte))
2884                 return 0;
2885         swp = pte_to_swp_entry(pte);
2886         if (non_swap_entry(swp) && is_migration_entry(swp))
2887                 return 1;
2888         else
2889                 return 0;
2890 }
2891
2892 static int is_hugetlb_entry_hwpoisoned(pte_t pte)
2893 {
2894         swp_entry_t swp;
2895
2896         if (huge_pte_none(pte) || pte_present(pte))
2897                 return 0;
2898         swp = pte_to_swp_entry(pte);
2899         if (non_swap_entry(swp) && is_hwpoison_entry(swp))
2900                 return 1;
2901         else
2902                 return 0;
2903 }
2904
2905 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
2906                             struct vm_area_struct *vma)
2907 {
2908         pte_t *src_pte, *dst_pte, entry;
2909         struct page *ptepage;
2910         unsigned long addr;
2911         int cow;
2912         struct hstate *h = hstate_vma(vma);
2913         unsigned long sz = huge_page_size(h);
2914         unsigned long mmun_start;       /* For mmu_notifiers */
2915         unsigned long mmun_end;         /* For mmu_notifiers */
2916         int ret = 0;
2917
2918         cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
2919
2920         mmun_start = vma->vm_start;
2921         mmun_end = vma->vm_end;
2922         if (cow)
2923                 mmu_notifier_invalidate_range_start(src, mmun_start, mmun_end);
2924
2925         for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
2926                 spinlock_t *src_ptl, *dst_ptl;
2927                 src_pte = huge_pte_offset(src, addr);
2928                 if (!src_pte)
2929                         continue;
2930                 dst_pte = huge_pte_alloc(dst, addr, sz);
2931                 if (!dst_pte) {
2932                         ret = -ENOMEM;
2933                         break;
2934                 }
2935
2936                 /* If the pagetables are shared don't copy or take references */
2937                 if (dst_pte == src_pte)
2938                         continue;
2939
2940                 dst_ptl = huge_pte_lock(h, dst, dst_pte);
2941                 src_ptl = huge_pte_lockptr(h, src, src_pte);
2942                 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
2943                 entry = huge_ptep_get(src_pte);
2944                 if (huge_pte_none(entry)) { /* skip none entry */
2945                         ;
2946                 } else if (unlikely(is_hugetlb_entry_migration(entry) ||
2947                                     is_hugetlb_entry_hwpoisoned(entry))) {
2948                         swp_entry_t swp_entry = pte_to_swp_entry(entry);
2949
2950                         if (is_write_migration_entry(swp_entry) && cow) {
2951                                 /*
2952                                  * COW mappings require pages in both
2953                                  * parent and child to be set to read.
2954                                  */
2955                                 make_migration_entry_read(&swp_entry);
2956                                 entry = swp_entry_to_pte(swp_entry);
2957                                 set_huge_pte_at(src, addr, src_pte, entry);
2958                         }
2959                         set_huge_pte_at(dst, addr, dst_pte, entry);
2960                 } else {
2961                         if (cow) {
2962                                 huge_ptep_set_wrprotect(src, addr, src_pte);
2963                                 mmu_notifier_invalidate_range(src, mmun_start,
2964                                                                    mmun_end);
2965                         }
2966                         entry = huge_ptep_get(src_pte);
2967                         ptepage = pte_page(entry);
2968                         get_page(ptepage);
2969                         page_dup_rmap(ptepage);
2970                         set_huge_pte_at(dst, addr, dst_pte, entry);
2971                 }
2972                 spin_unlock(src_ptl);
2973                 spin_unlock(dst_ptl);
2974         }
2975
2976         if (cow)
2977                 mmu_notifier_invalidate_range_end(src, mmun_start, mmun_end);
2978
2979         return ret;
2980 }
2981
2982 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
2983                             unsigned long start, unsigned long end,
2984                             struct page *ref_page)
2985 {
2986         int force_flush = 0;
2987         struct mm_struct *mm = vma->vm_mm;
2988         unsigned long address;
2989         pte_t *ptep;
2990         pte_t pte;
2991         spinlock_t *ptl;
2992         struct page *page;
2993         struct hstate *h = hstate_vma(vma);
2994         unsigned long sz = huge_page_size(h);
2995         const unsigned long mmun_start = start; /* For mmu_notifiers */
2996         const unsigned long mmun_end   = end;   /* For mmu_notifiers */
2997
2998         WARN_ON(!is_vm_hugetlb_page(vma));
2999         BUG_ON(start & ~huge_page_mask(h));
3000         BUG_ON(end & ~huge_page_mask(h));
3001
3002         tlb_start_vma(tlb, vma);
3003         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
3004         address = start;
3005 again:
3006         for (; address < end; address += sz) {
3007                 ptep = huge_pte_offset(mm, address);
3008                 if (!ptep)
3009                         continue;
3010
3011                 ptl = huge_pte_lock(h, mm, ptep);
3012                 if (huge_pmd_unshare(mm, &address, ptep))
3013                         goto unlock;
3014
3015                 pte = huge_ptep_get(ptep);
3016                 if (huge_pte_none(pte))
3017                         goto unlock;
3018
3019                 /*
3020                  * Migrating hugepage or HWPoisoned hugepage is already
3021                  * unmapped and its refcount is dropped, so just clear pte here.
3022                  */
3023                 if (unlikely(!pte_present(pte))) {
3024                         huge_pte_clear(mm, address, ptep);
3025                         goto unlock;
3026                 }
3027
3028                 page = pte_page(pte);
3029                 /*
3030                  * If a reference page is supplied, it is because a specific
3031                  * page is being unmapped, not a range. Ensure the page we
3032                  * are about to unmap is the actual page of interest.
3033                  */
3034                 if (ref_page) {
3035                         if (page != ref_page)
3036                                 goto unlock;
3037
3038                         /*
3039                          * Mark the VMA as having unmapped its page so that
3040                          * future faults in this VMA will fail rather than
3041                          * looking like data was lost
3042                          */
3043                         set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
3044                 }
3045
3046                 pte = huge_ptep_get_and_clear(mm, address, ptep);
3047                 tlb_remove_tlb_entry(tlb, ptep, address);
3048                 if (huge_pte_dirty(pte))
3049                         set_page_dirty(page);
3050
3051                 page_remove_rmap(page);
3052                 force_flush = !__tlb_remove_page(tlb, page);
3053                 if (force_flush) {
3054                         address += sz;
3055                         spin_unlock(ptl);
3056                         break;
3057                 }
3058                 /* Bail out after unmapping reference page if supplied */
3059                 if (ref_page) {
3060                         spin_unlock(ptl);
3061                         break;
3062                 }
3063 unlock:
3064                 spin_unlock(ptl);
3065         }
3066         /*
3067          * mmu_gather ran out of room to batch pages, we break out of
3068          * the PTE lock to avoid doing the potential expensive TLB invalidate
3069          * and page-free while holding it.
3070          */
3071         if (force_flush) {
3072                 force_flush = 0;
3073                 tlb_flush_mmu(tlb);
3074                 if (address < end && !ref_page)
3075                         goto again;
3076         }
3077         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
3078         tlb_end_vma(tlb, vma);
3079 }
3080
3081 void __unmap_hugepage_range_final(struct mmu_gather *tlb,
3082                           struct vm_area_struct *vma, unsigned long start,
3083                           unsigned long end, struct page *ref_page)
3084 {
3085         __unmap_hugepage_range(tlb, vma, start, end, ref_page);
3086
3087         /*
3088          * Clear this flag so that x86's huge_pmd_share page_table_shareable
3089          * test will fail on a vma being torn down, and not grab a page table
3090          * on its way out.  We're lucky that the flag has such an appropriate
3091          * name, and can in fact be safely cleared here. We could clear it
3092          * before the __unmap_hugepage_range above, but all that's necessary
3093          * is to clear it before releasing the i_mmap_rwsem. This works
3094          * because in the context this is called, the VMA is about to be
3095          * destroyed and the i_mmap_rwsem is held.
3096          */
3097         vma->vm_flags &= ~VM_MAYSHARE;
3098 }
3099
3100 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
3101                           unsigned long end, struct page *ref_page)
3102 {
3103         struct mm_struct *mm;
3104         struct mmu_gather tlb;
3105
3106         mm = vma->vm_mm;
3107
3108         tlb_gather_mmu(&tlb, mm, start, end);
3109         __unmap_hugepage_range(&tlb, vma, start, end, ref_page);
3110         tlb_finish_mmu(&tlb, start, end);
3111 }
3112
3113 /*
3114  * This is called when the original mapper is failing to COW a MAP_PRIVATE
3115  * mappping it owns the reserve page for. The intention is to unmap the page
3116  * from other VMAs and let the children be SIGKILLed if they are faulting the
3117  * same region.
3118  */
3119 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
3120                               struct page *page, unsigned long address)
3121 {
3122         struct hstate *h = hstate_vma(vma);
3123         struct vm_area_struct *iter_vma;
3124         struct address_space *mapping;
3125         pgoff_t pgoff;
3126
3127         /*
3128          * vm_pgoff is in PAGE_SIZE units, hence the different calculation
3129          * from page cache lookup which is in HPAGE_SIZE units.
3130          */
3131         address = address & huge_page_mask(h);
3132         pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
3133                         vma->vm_pgoff;
3134         mapping = file_inode(vma->vm_file)->i_mapping;
3135
3136         /*
3137          * Take the mapping lock for the duration of the table walk. As
3138          * this mapping should be shared between all the VMAs,
3139          * __unmap_hugepage_range() is called as the lock is already held
3140          */
3141         i_mmap_lock_write(mapping);
3142         vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
3143                 /* Do not unmap the current VMA */
3144                 if (iter_vma == vma)
3145                         continue;
3146
3147                 /*
3148                  * Unmap the page from other VMAs without their own reserves.
3149                  * They get marked to be SIGKILLed if they fault in these
3150                  * areas. This is because a future no-page fault on this VMA
3151                  * could insert a zeroed page instead of the data existing
3152                  * from the time of fork. This would look like data corruption
3153                  */
3154                 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
3155                         unmap_hugepage_range(iter_vma, address,
3156                                              address + huge_page_size(h), page);
3157         }
3158         i_mmap_unlock_write(mapping);
3159 }
3160
3161 /*
3162  * Hugetlb_cow() should be called with page lock of the original hugepage held.
3163  * Called with hugetlb_instantiation_mutex held and pte_page locked so we
3164  * cannot race with other handlers or page migration.
3165  * Keep the pte_same checks anyway to make transition from the mutex easier.
3166  */
3167 static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
3168                         unsigned long address, pte_t *ptep, pte_t pte,
3169                         struct page *pagecache_page, spinlock_t *ptl)
3170 {
3171         struct hstate *h = hstate_vma(vma);
3172         struct page *old_page, *new_page;
3173         int ret = 0, outside_reserve = 0;
3174         unsigned long mmun_start;       /* For mmu_notifiers */
3175         unsigned long mmun_end;         /* For mmu_notifiers */
3176
3177         old_page = pte_page(pte);
3178
3179 retry_avoidcopy:
3180         /* If no-one else is actually using this page, avoid the copy
3181          * and just make the page writable */
3182         if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
3183                 page_move_anon_rmap(old_page, vma, address);
3184                 set_huge_ptep_writable(vma, address, ptep);
3185                 return 0;
3186         }
3187
3188         /*
3189          * If the process that created a MAP_PRIVATE mapping is about to
3190          * perform a COW due to a shared page count, attempt to satisfy
3191          * the allocation without using the existing reserves. The pagecache
3192          * page is used to determine if the reserve at this address was
3193          * consumed or not. If reserves were used, a partial faulted mapping
3194          * at the time of fork() could consume its reserves on COW instead
3195          * of the full address range.
3196          */
3197         if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
3198                         old_page != pagecache_page)
3199                 outside_reserve = 1;
3200
3201         page_cache_get(old_page);
3202
3203         /*
3204          * Drop page table lock as buddy allocator may be called. It will
3205          * be acquired again before returning to the caller, as expected.
3206          */
3207         spin_unlock(ptl);
3208         new_page = alloc_huge_page(vma, address, outside_reserve);
3209
3210         if (IS_ERR(new_page)) {
3211                 /*
3212                  * If a process owning a MAP_PRIVATE mapping fails to COW,
3213                  * it is due to references held by a child and an insufficient
3214                  * huge page pool. To guarantee the original mappers
3215                  * reliability, unmap the page from child processes. The child
3216                  * may get SIGKILLed if it later faults.
3217                  */
3218                 if (outside_reserve) {
3219                         page_cache_release(old_page);
3220                         BUG_ON(huge_pte_none(pte));
3221                         unmap_ref_private(mm, vma, old_page, address);
3222                         BUG_ON(huge_pte_none(pte));
3223                         spin_lock(ptl);
3224                         ptep = huge_pte_offset(mm, address & huge_page_mask(h));
3225                         if (likely(ptep &&
3226                                    pte_same(huge_ptep_get(ptep), pte)))
3227                                 goto retry_avoidcopy;
3228                         /*
3229                          * race occurs while re-acquiring page table
3230                          * lock, and our job is done.
3231                          */
3232                         return 0;
3233                 }
3234
3235                 ret = (PTR_ERR(new_page) == -ENOMEM) ?
3236                         VM_FAULT_OOM : VM_FAULT_SIGBUS;
3237                 goto out_release_old;
3238         }
3239
3240         /*
3241          * When the original hugepage is shared one, it does not have
3242          * anon_vma prepared.
3243          */
3244         if (unlikely(anon_vma_prepare(vma))) {
3245                 ret = VM_FAULT_OOM;
3246                 goto out_release_all;
3247         }
3248
3249         copy_user_huge_page(new_page, old_page, address, vma,
3250                             pages_per_huge_page(h));
3251         __SetPageUptodate(new_page);
3252         set_page_huge_active(new_page);
3253
3254         mmun_start = address & huge_page_mask(h);
3255         mmun_end = mmun_start + huge_page_size(h);
3256         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
3257
3258         /*
3259          * Retake the page table lock to check for racing updates
3260          * before the page tables are altered
3261          */
3262         spin_lock(ptl);
3263         ptep = huge_pte_offset(mm, address & huge_page_mask(h));
3264         if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
3265                 ClearPagePrivate(new_page);
3266
3267                 /* Break COW */
3268                 huge_ptep_clear_flush(vma, address, ptep);
3269                 mmu_notifier_invalidate_range(mm, mmun_start, mmun_end);
3270                 set_huge_pte_at(mm, address, ptep,
3271                                 make_huge_pte(vma, new_page, 1));
3272                 page_remove_rmap(old_page);
3273                 hugepage_add_new_anon_rmap(new_page, vma, address);
3274                 /* Make the old page be freed below */
3275                 new_page = old_page;
3276         }
3277         spin_unlock(ptl);
3278         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
3279 out_release_all:
3280         page_cache_release(new_page);
3281 out_release_old:
3282         page_cache_release(old_page);
3283
3284         spin_lock(ptl); /* Caller expects lock to be held */
3285         return ret;
3286 }
3287
3288 /* Return the pagecache page at a given address within a VMA */
3289 static struct page *hugetlbfs_pagecache_page(struct hstate *h,
3290                         struct vm_area_struct *vma, unsigned long address)
3291 {
3292         struct address_space *mapping;
3293         pgoff_t idx;
3294
3295         mapping = vma->vm_file->f_mapping;
3296         idx = vma_hugecache_offset(h, vma, address);
3297
3298         return find_lock_page(mapping, idx);
3299 }
3300
3301 /*
3302  * Return whether there is a pagecache page to back given address within VMA.
3303  * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
3304  */
3305 static bool hugetlbfs_pagecache_present(struct hstate *h,
3306                         struct vm_area_struct *vma, unsigned long address)
3307 {
3308         struct address_space *mapping;
3309         pgoff_t idx;
3310         struct page *page;
3311
3312         mapping = vma->vm_file->f_mapping;
3313         idx = vma_hugecache_offset(h, vma, address);
3314
3315         page = find_get_page(mapping, idx);
3316         if (page)
3317                 put_page(page);
3318         return page != NULL;
3319 }
3320
3321 static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
3322                            struct address_space *mapping, pgoff_t idx,
3323                            unsigned long address, pte_t *ptep, unsigned int flags)
3324 {
3325         struct hstate *h = hstate_vma(vma);
3326         int ret = VM_FAULT_SIGBUS;
3327         int anon_rmap = 0;
3328         unsigned long size;
3329         struct page *page;
3330         pte_t new_pte;
3331         spinlock_t *ptl;
3332
3333         /*
3334          * Currently, we are forced to kill the process in the event the
3335          * original mapper has unmapped pages from the child due to a failed
3336          * COW. Warn that such a situation has occurred as it may not be obvious
3337          */
3338         if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
3339                 pr_warning("PID %d killed due to inadequate hugepage pool\n",
3340                            current->pid);
3341                 return ret;
3342         }
3343
3344         /*
3345          * Use page lock to guard against racing truncation
3346          * before we get page_table_lock.
3347          */
3348 retry:
3349         page = find_lock_page(mapping, idx);
3350         if (!page) {
3351                 size = i_size_read(mapping->host) >> huge_page_shift(h);
3352                 if (idx >= size)
3353                         goto out;
3354                 page = alloc_huge_page(vma, address, 0);
3355                 if (IS_ERR(page)) {
3356                         ret = PTR_ERR(page);
3357                         if (ret == -ENOMEM)
3358                                 ret = VM_FAULT_OOM;
3359                         else
3360                                 ret = VM_FAULT_SIGBUS;
3361                         goto out;
3362                 }
3363                 clear_huge_page(page, address, pages_per_huge_page(h));
3364                 __SetPageUptodate(page);
3365                 set_page_huge_active(page);
3366
3367                 if (vma->vm_flags & VM_MAYSHARE) {
3368                         int err;
3369                         struct inode *inode = mapping->host;
3370
3371                         err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
3372                         if (err) {
3373                                 put_page(page);
3374                                 if (err == -EEXIST)
3375                                         goto retry;
3376                                 goto out;
3377                         }
3378                         ClearPagePrivate(page);
3379
3380                         spin_lock(&inode->i_lock);
3381                         inode->i_blocks += blocks_per_huge_page(h);
3382                         spin_unlock(&inode->i_lock);
3383                 } else {
3384                         lock_page(page);
3385                         if (unlikely(anon_vma_prepare(vma))) {
3386                                 ret = VM_FAULT_OOM;
3387                                 goto backout_unlocked;
3388                         }
3389                         anon_rmap = 1;
3390                 }
3391         } else {
3392                 /*
3393                  * If memory error occurs between mmap() and fault, some process
3394                  * don't have hwpoisoned swap entry for errored virtual address.
3395                  * So we need to block hugepage fault by PG_hwpoison bit check.
3396                  */
3397                 if (unlikely(PageHWPoison(page))) {
3398                         ret = VM_FAULT_HWPOISON |
3399                                 VM_FAULT_SET_HINDEX(hstate_index(h));
3400                         goto backout_unlocked;
3401                 }
3402         }
3403
3404         /*
3405          * If we are going to COW a private mapping later, we examine the
3406          * pending reservations for this page now. This will ensure that
3407          * any allocations necessary to record that reservation occur outside
3408          * the spinlock.
3409          */
3410         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3411                 if (vma_needs_reservation(h, vma, address) < 0) {
3412                         ret = VM_FAULT_OOM;
3413                         goto backout_unlocked;
3414                 }
3415                 /* Just decrements count, does not deallocate */
3416                 vma_end_reservation(h, vma, address);
3417         }
3418
3419         ptl = huge_pte_lockptr(h, mm, ptep);
3420         spin_lock(ptl);
3421         size = i_size_read(mapping->host) >> huge_page_shift(h);
3422         if (idx >= size)
3423                 goto backout;
3424
3425         ret = 0;
3426         if (!huge_pte_none(huge_ptep_get(ptep)))
3427                 goto backout;
3428
3429         if (anon_rmap) {
3430                 ClearPagePrivate(page);
3431                 hugepage_add_new_anon_rmap(page, vma, address);
3432         } else
3433                 page_dup_rmap(page);
3434         new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
3435                                 && (vma->vm_flags & VM_SHARED)));
3436         set_huge_pte_at(mm, address, ptep, new_pte);
3437
3438         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3439                 /* Optimization, do the COW without a second fault */
3440                 ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page, ptl);
3441         }
3442
3443         spin_unlock(ptl);
3444         unlock_page(page);
3445 out:
3446         return ret;
3447
3448 backout:
3449         spin_unlock(ptl);
3450 backout_unlocked:
3451         unlock_page(page);
3452         put_page(page);
3453         goto out;
3454 }
3455
3456 #ifdef CONFIG_SMP
3457 static u32 fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
3458                             struct vm_area_struct *vma,
3459                             struct address_space *mapping,
3460                             pgoff_t idx, unsigned long address)
3461 {
3462         unsigned long key[2];
3463         u32 hash;
3464
3465         if (vma->vm_flags & VM_SHARED) {
3466                 key[0] = (unsigned long) mapping;
3467                 key[1] = idx;
3468         } else {
3469                 key[0] = (unsigned long) mm;
3470                 key[1] = address >> huge_page_shift(h);
3471         }
3472
3473         hash = jhash2((u32 *)&key, sizeof(key)/sizeof(u32), 0);
3474
3475         return hash & (num_fault_mutexes - 1);
3476 }
3477 #else
3478 /*
3479  * For uniprocesor systems we always use a single mutex, so just
3480  * return 0 and avoid the hashing overhead.
3481  */
3482 static u32 fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
3483                             struct vm_area_struct *vma,
3484                             struct address_space *mapping,
3485                             pgoff_t idx, unsigned long address)
3486 {
3487         return 0;
3488 }
3489 #endif
3490
3491 int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3492                         unsigned long address, unsigned int flags)
3493 {
3494         pte_t *ptep, entry;
3495         spinlock_t *ptl;
3496         int ret;
3497         u32 hash;
3498         pgoff_t idx;
3499         struct page *page = NULL;
3500         struct page *pagecache_page = NULL;
3501         struct hstate *h = hstate_vma(vma);
3502         struct address_space *mapping;
3503         int need_wait_lock = 0;
3504
3505         address &= huge_page_mask(h);
3506
3507         ptep = huge_pte_offset(mm, address);
3508         if (ptep) {
3509                 entry = huge_ptep_get(ptep);
3510                 if (unlikely(is_hugetlb_entry_migration(entry))) {
3511                         migration_entry_wait_huge(vma, mm, ptep);
3512                         return 0;
3513                 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
3514                         return VM_FAULT_HWPOISON_LARGE |
3515                                 VM_FAULT_SET_HINDEX(hstate_index(h));
3516         }
3517
3518         ptep = huge_pte_alloc(mm, address, huge_page_size(h));
3519         if (!ptep)
3520                 return VM_FAULT_OOM;
3521
3522         mapping = vma->vm_file->f_mapping;
3523         idx = vma_hugecache_offset(h, vma, address);
3524
3525         /*
3526          * Serialize hugepage allocation and instantiation, so that we don't
3527          * get spurious allocation failures if two CPUs race to instantiate
3528          * the same page in the page cache.
3529          */
3530         hash = fault_mutex_hash(h, mm, vma, mapping, idx, address);
3531         mutex_lock(&htlb_fault_mutex_table[hash]);
3532
3533         entry = huge_ptep_get(ptep);
3534         if (huge_pte_none(entry)) {
3535                 ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
3536                 goto out_mutex;
3537         }
3538
3539         ret = 0;
3540
3541         /*
3542          * entry could be a migration/hwpoison entry at this point, so this
3543          * check prevents the kernel from going below assuming that we have
3544          * a active hugepage in pagecache. This goto expects the 2nd page fault,
3545          * and is_hugetlb_entry_(migration|hwpoisoned) check will properly
3546          * handle it.
3547          */
3548         if (!pte_present(entry))
3549                 goto out_mutex;
3550
3551         /*
3552          * If we are going to COW the mapping later, we examine the pending
3553          * reservations for this page now. This will ensure that any
3554          * allocations necessary to record that reservation occur outside the
3555          * spinlock. For private mappings, we also lookup the pagecache
3556          * page now as it is used to determine if a reservation has been
3557          * consumed.
3558          */
3559         if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
3560                 if (vma_needs_reservation(h, vma, address) < 0) {
3561                         ret = VM_FAULT_OOM;
3562                         goto out_mutex;
3563                 }
3564                 /* Just decrements count, does not deallocate */
3565                 vma_end_reservation(h, vma, address);
3566
3567                 if (!(vma->vm_flags & VM_MAYSHARE))
3568                         pagecache_page = hugetlbfs_pagecache_page(h,
3569                                                                 vma, address);
3570         }
3571
3572         ptl = huge_pte_lock(h, mm, ptep);
3573
3574         /* Check for a racing update before calling hugetlb_cow */
3575         if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
3576                 goto out_ptl;
3577
3578         /*
3579          * hugetlb_cow() requires page locks of pte_page(entry) and
3580          * pagecache_page, so here we need take the former one
3581          * when page != pagecache_page or !pagecache_page.
3582          */
3583         page = pte_page(entry);
3584         if (page != pagecache_page)
3585                 if (!trylock_page(page)) {
3586                         need_wait_lock = 1;
3587                         goto out_ptl;
3588                 }
3589
3590         get_page(page);
3591
3592         if (flags & FAULT_FLAG_WRITE) {
3593                 if (!huge_pte_write(entry)) {
3594                         ret = hugetlb_cow(mm, vma, address, ptep, entry,
3595                                         pagecache_page, ptl);
3596                         goto out_put_page;
3597                 }
3598                 entry = huge_pte_mkdirty(entry);
3599         }
3600         entry = pte_mkyoung(entry);
3601         if (huge_ptep_set_access_flags(vma, address, ptep, entry,
3602                                                 flags & FAULT_FLAG_WRITE))
3603                 update_mmu_cache(vma, address, ptep);
3604 out_put_page:
3605         if (page != pagecache_page)
3606                 unlock_page(page);
3607         put_page(page);
3608 out_ptl:
3609         spin_unlock(ptl);
3610
3611         if (pagecache_page) {
3612                 unlock_page(pagecache_page);
3613                 put_page(pagecache_page);
3614         }
3615 out_mutex:
3616         mutex_unlock(&htlb_fault_mutex_table[hash]);
3617         /*
3618          * Generally it's safe to hold refcount during waiting page lock. But
3619          * here we just wait to defer the next page fault to avoid busy loop and
3620          * the page is not used after unlocked before returning from the current
3621          * page fault. So we are safe from accessing freed page, even if we wait
3622          * here without taking refcount.
3623          */
3624         if (need_wait_lock)
3625                 wait_on_page_locked(page);
3626         return ret;
3627 }
3628
3629 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
3630                          struct page **pages, struct vm_area_struct **vmas,
3631                          unsigned long *position, unsigned long *nr_pages,
3632                          long i, unsigned int flags)
3633 {
3634         unsigned long pfn_offset;
3635         unsigned long vaddr = *position;
3636         unsigned long remainder = *nr_pages;
3637         struct hstate *h = hstate_vma(vma);
3638
3639         while (vaddr < vma->vm_end && remainder) {
3640                 pte_t *pte;
3641                 spinlock_t *ptl = NULL;
3642                 int absent;
3643                 struct page *page;
3644
3645                 /*
3646                  * If we have a pending SIGKILL, don't keep faulting pages and
3647                  * potentially allocating memory.
3648                  */
3649                 if (unlikely(fatal_signal_pending(current))) {
3650                         remainder = 0;
3651                         break;
3652                 }
3653
3654                 /*
3655                  * Some archs (sparc64, sh*) have multiple pte_ts to
3656                  * each hugepage.  We have to make sure we get the
3657                  * first, for the page indexing below to work.
3658                  *
3659                  * Note that page table lock is not held when pte is null.
3660                  */
3661                 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
3662                 if (pte)
3663                         ptl = huge_pte_lock(h, mm, pte);
3664                 absent = !pte || huge_pte_none(huge_ptep_get(pte));
3665
3666                 /*
3667                  * When coredumping, it suits get_dump_page if we just return
3668                  * an error where there's an empty slot with no huge pagecache
3669                  * to back it.  This way, we avoid allocating a hugepage, and
3670                  * the sparse dumpfile avoids allocating disk blocks, but its
3671                  * huge holes still show up with zeroes where they need to be.
3672                  */
3673                 if (absent && (flags & FOLL_DUMP) &&
3674                     !hugetlbfs_pagecache_present(h, vma, vaddr)) {
3675                         if (pte)
3676                                 spin_unlock(ptl);
3677                         remainder = 0;
3678                         break;
3679                 }
3680
3681                 /*
3682                  * We need call hugetlb_fault for both hugepages under migration
3683                  * (in which case hugetlb_fault waits for the migration,) and
3684                  * hwpoisoned hugepages (in which case we need to prevent the
3685                  * caller from accessing to them.) In order to do this, we use
3686                  * here is_swap_pte instead of is_hugetlb_entry_migration and
3687                  * is_hugetlb_entry_hwpoisoned. This is because it simply covers
3688                  * both cases, and because we can't follow correct pages
3689                  * directly from any kind of swap entries.
3690                  */
3691                 if (absent || is_swap_pte(huge_ptep_get(pte)) ||
3692                     ((flags & FOLL_WRITE) &&
3693                       !huge_pte_write(huge_ptep_get(pte)))) {
3694                         int ret;
3695
3696                         if (pte)
3697                                 spin_unlock(ptl);
3698                         ret = hugetlb_fault(mm, vma, vaddr,
3699                                 (flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0);
3700                         if (!(ret & VM_FAULT_ERROR))
3701                                 continue;
3702
3703                         remainder = 0;
3704                         break;
3705                 }
3706
3707                 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
3708                 page = pte_page(huge_ptep_get(pte));
3709 same_page:
3710                 if (pages) {
3711                         pages[i] = mem_map_offset(page, pfn_offset);
3712                         get_page_foll(pages[i]);
3713                 }
3714
3715                 if (vmas)
3716                         vmas[i] = vma;
3717
3718                 vaddr += PAGE_SIZE;
3719                 ++pfn_offset;
3720                 --remainder;
3721                 ++i;
3722                 if (vaddr < vma->vm_end && remainder &&
3723                                 pfn_offset < pages_per_huge_page(h)) {
3724                         /*
3725                          * We use pfn_offset to avoid touching the pageframes
3726                          * of this compound page.
3727                          */
3728                         goto same_page;
3729                 }
3730                 spin_unlock(ptl);
3731         }
3732         *nr_pages = remainder;
3733         *position = vaddr;
3734
3735         return i ? i : -EFAULT;
3736 }
3737
3738 unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
3739                 unsigned long address, unsigned long end, pgprot_t newprot)
3740 {
3741         struct mm_struct *mm = vma->vm_mm;
3742         unsigned long start = address;
3743         pte_t *ptep;
3744         pte_t pte;
3745         struct hstate *h = hstate_vma(vma);
3746         unsigned long pages = 0;
3747
3748         BUG_ON(address >= end);
3749         flush_cache_range(vma, address, end);
3750
3751         mmu_notifier_invalidate_range_start(mm, start, end);
3752         i_mmap_lock_write(vma->vm_file->f_mapping);
3753         for (; address < end; address += huge_page_size(h)) {
3754                 spinlock_t *ptl;
3755                 ptep = huge_pte_offset(mm, address);
3756                 if (!ptep)
3757                         continue;
3758                 ptl = huge_pte_lock(h, mm, ptep);
3759                 if (huge_pmd_unshare(mm, &address, ptep)) {
3760                         pages++;
3761                         spin_unlock(ptl);
3762                         continue;
3763                 }
3764                 pte = huge_ptep_get(ptep);
3765                 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
3766                         spin_unlock(ptl);
3767                         continue;
3768                 }
3769                 if (unlikely(is_hugetlb_entry_migration(pte))) {
3770                         swp_entry_t entry = pte_to_swp_entry(pte);
3771
3772                         if (is_write_migration_entry(entry)) {
3773                                 pte_t newpte;
3774
3775                                 make_migration_entry_read(&entry);
3776                                 newpte = swp_entry_to_pte(entry);
3777                                 set_huge_pte_at(mm, address, ptep, newpte);
3778                                 pages++;
3779                         }
3780                         spin_unlock(ptl);
3781                         continue;
3782                 }
3783                 if (!huge_pte_none(pte)) {
3784                         pte = huge_ptep_get_and_clear(mm, address, ptep);
3785                         pte = pte_mkhuge(huge_pte_modify(pte, newprot));
3786                         pte = arch_make_huge_pte(pte, vma, NULL, 0);
3787                         set_huge_pte_at(mm, address, ptep, pte);
3788                         pages++;
3789                 }
3790                 spin_unlock(ptl);
3791         }
3792         /*
3793          * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
3794          * may have cleared our pud entry and done put_page on the page table:
3795          * once we release i_mmap_rwsem, another task can do the final put_page
3796          * and that page table be reused and filled with junk.
3797          */
3798         flush_tlb_range(vma, start, end);
3799         mmu_notifier_invalidate_range(mm, start, end);
3800         i_mmap_unlock_write(vma->vm_file->f_mapping);
3801         mmu_notifier_invalidate_range_end(mm, start, end);
3802
3803         return pages << h->order;
3804 }
3805
3806 int hugetlb_reserve_pages(struct inode *inode,
3807                                         long from, long to,
3808                                         struct vm_area_struct *vma,
3809                                         vm_flags_t vm_flags)
3810 {
3811         long ret, chg;
3812         struct hstate *h = hstate_inode(inode);
3813         struct hugepage_subpool *spool = subpool_inode(inode);
3814         struct resv_map *resv_map;
3815         long gbl_reserve;
3816
3817         /*
3818          * Only apply hugepage reservation if asked. At fault time, an
3819          * attempt will be made for VM_NORESERVE to allocate a page
3820          * without using reserves
3821          */
3822         if (vm_flags & VM_NORESERVE)
3823                 return 0;
3824
3825         /*
3826          * Shared mappings base their reservation on the number of pages that
3827          * are already allocated on behalf of the file. Private mappings need
3828          * to reserve the full area even if read-only as mprotect() may be
3829          * called to make the mapping read-write. Assume !vma is a shm mapping
3830          */
3831         if (!vma || vma->vm_flags & VM_MAYSHARE) {
3832                 resv_map = inode_resv_map(inode);
3833
3834                 chg = region_chg(resv_map, from, to);
3835
3836         } else {
3837                 resv_map = resv_map_alloc();
3838                 if (!resv_map)
3839                         return -ENOMEM;
3840
3841                 chg = to - from;
3842
3843                 set_vma_resv_map(vma, resv_map);
3844                 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
3845         }
3846
3847         if (chg < 0) {
3848                 ret = chg;
3849                 goto out_err;
3850         }
3851
3852         /*
3853          * There must be enough pages in the subpool for the mapping. If
3854          * the subpool has a minimum size, there may be some global
3855          * reservations already in place (gbl_reserve).
3856          */
3857         gbl_reserve = hugepage_subpool_get_pages(spool, chg);
3858         if (gbl_reserve < 0) {
3859                 ret = -ENOSPC;
3860                 goto out_err;
3861         }
3862
3863         /*
3864          * Check enough hugepages are available for the reservation.
3865          * Hand the pages back to the subpool if there are not
3866          */
3867         ret = hugetlb_acct_memory(h, gbl_reserve);
3868         if (ret < 0) {
3869                 /* put back original number of pages, chg */
3870                 (void)hugepage_subpool_put_pages(spool, chg);
3871                 goto out_err;
3872         }
3873
3874         /*
3875          * Account for the reservations made. Shared mappings record regions
3876          * that have reservations as they are shared by multiple VMAs.
3877          * When the last VMA disappears, the region map says how much
3878          * the reservation was and the page cache tells how much of
3879          * the reservation was consumed. Private mappings are per-VMA and
3880          * only the consumed reservations are tracked. When the VMA
3881          * disappears, the original reservation is the VMA size and the
3882          * consumed reservations are stored in the map. Hence, nothing
3883          * else has to be done for private mappings here
3884          */
3885         if (!vma || vma->vm_flags & VM_MAYSHARE) {
3886                 long add = region_add(resv_map, from, to);
3887
3888                 if (unlikely(chg > add)) {
3889                         /*
3890                          * pages in this range were added to the reserve
3891                          * map between region_chg and region_add.  This
3892                          * indicates a race with alloc_huge_page.  Adjust
3893                          * the subpool and reserve counts modified above
3894                          * based on the difference.
3895                          */
3896                         long rsv_adjust;
3897
3898                         rsv_adjust = hugepage_subpool_put_pages(spool,
3899                                                                 chg - add);
3900                         hugetlb_acct_memory(h, -rsv_adjust);
3901                 }
3902         }
3903         return 0;
3904 out_err:
3905         if (!vma || vma->vm_flags & VM_MAYSHARE)
3906                 region_abort(resv_map, from, to);
3907         if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3908                 kref_put(&resv_map->refs, resv_map_release);
3909         return ret;
3910 }
3911
3912 void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
3913 {
3914         struct hstate *h = hstate_inode(inode);
3915         struct resv_map *resv_map = inode_resv_map(inode);
3916         long chg = 0;
3917         struct hugepage_subpool *spool = subpool_inode(inode);
3918         long gbl_reserve;
3919
3920         if (resv_map)
3921                 chg = region_del(resv_map, offset, LONG_MAX);
3922         spin_lock(&inode->i_lock);
3923         inode->i_blocks -= (blocks_per_huge_page(h) * freed);
3924         spin_unlock(&inode->i_lock);
3925
3926         /*
3927          * If the subpool has a minimum size, the number of global
3928          * reservations to be released may be adjusted.
3929          */
3930         gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
3931         hugetlb_acct_memory(h, -gbl_reserve);
3932 }
3933
3934 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
3935 static unsigned long page_table_shareable(struct vm_area_struct *svma,
3936                                 struct vm_area_struct *vma,
3937                                 unsigned long addr, pgoff_t idx)
3938 {
3939         unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
3940                                 svma->vm_start;
3941         unsigned long sbase = saddr & PUD_MASK;
3942         unsigned long s_end = sbase + PUD_SIZE;
3943
3944         /* Allow segments to share if only one is marked locked */
3945         unsigned long vm_flags = vma->vm_flags & ~VM_LOCKED;
3946         unsigned long svm_flags = svma->vm_flags & ~VM_LOCKED;
3947
3948         /*
3949          * match the virtual addresses, permission and the alignment of the
3950          * page table page.
3951          */
3952         if (pmd_index(addr) != pmd_index(saddr) ||
3953             vm_flags != svm_flags ||
3954             sbase < svma->vm_start || svma->vm_end < s_end)
3955                 return 0;
3956
3957         return saddr;
3958 }
3959
3960 static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr)
3961 {
3962         unsigned long base = addr & PUD_MASK;
3963         unsigned long end = base + PUD_SIZE;
3964
3965         /*
3966          * check on proper vm_flags and page table alignment
3967          */
3968         if (vma->vm_flags & VM_MAYSHARE &&
3969             vma->vm_start <= base && end <= vma->vm_end)
3970                 return true;
3971         return false;
3972 }
3973
3974 /*
3975  * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
3976  * and returns the corresponding pte. While this is not necessary for the
3977  * !shared pmd case because we can allocate the pmd later as well, it makes the
3978  * code much cleaner. pmd allocation is essential for the shared case because
3979  * pud has to be populated inside the same i_mmap_rwsem section - otherwise
3980  * racing tasks could either miss the sharing (see huge_pte_offset) or select a
3981  * bad pmd for sharing.
3982  */
3983 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
3984 {
3985         struct vm_area_struct *vma = find_vma(mm, addr);
3986         struct address_space *mapping = vma->vm_file->f_mapping;
3987         pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
3988                         vma->vm_pgoff;
3989         struct vm_area_struct *svma;
3990         unsigned long saddr;
3991         pte_t *spte = NULL;
3992         pte_t *pte;
3993         spinlock_t *ptl;
3994
3995         if (!vma_shareable(vma, addr))
3996                 return (pte_t *)pmd_alloc(mm, pud, addr);
3997
3998         i_mmap_lock_write(mapping);
3999         vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
4000                 if (svma == vma)
4001                         continue;
4002
4003                 saddr = page_table_shareable(svma, vma, addr, idx);
4004                 if (saddr) {
4005                         spte = huge_pte_offset(svma->vm_mm, saddr);
4006                         if (spte) {
4007                                 mm_inc_nr_pmds(mm);
4008                                 get_page(virt_to_page(spte));
4009                                 break;
4010                         }
4011                 }
4012         }
4013
4014         if (!spte)
4015                 goto out;
4016
4017         ptl = huge_pte_lockptr(hstate_vma(vma), mm, spte);
4018         spin_lock(ptl);
4019         if (pud_none(*pud)) {
4020                 pud_populate(mm, pud,
4021                                 (pmd_t *)((unsigned long)spte & PAGE_MASK));
4022         } else {
4023                 put_page(virt_to_page(spte));
4024                 mm_inc_nr_pmds(mm);
4025         }
4026         spin_unlock(ptl);
4027 out:
4028         pte = (pte_t *)pmd_alloc(mm, pud, addr);
4029         i_mmap_unlock_write(mapping);
4030         return pte;
4031 }
4032
4033 /*
4034  * unmap huge page backed by shared pte.
4035  *
4036  * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
4037  * indicated by page_count > 1, unmap is achieved by clearing pud and
4038  * decrementing the ref count. If count == 1, the pte page is not shared.
4039  *
4040  * called with page table lock held.
4041  *
4042  * returns: 1 successfully unmapped a shared pte page
4043  *          0 the underlying pte page is not shared, or it is the last user
4044  */
4045 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
4046 {
4047         pgd_t *pgd = pgd_offset(mm, *addr);
4048         pud_t *pud = pud_offset(pgd, *addr);
4049
4050         BUG_ON(page_count(virt_to_page(ptep)) == 0);
4051         if (page_count(virt_to_page(ptep)) == 1)
4052                 return 0;
4053
4054         pud_clear(pud);
4055         put_page(virt_to_page(ptep));
4056         mm_dec_nr_pmds(mm);
4057         *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
4058         return 1;
4059 }
4060 #define want_pmd_share()        (1)
4061 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4062 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
4063 {
4064         return NULL;
4065 }
4066
4067 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
4068 {
4069         return 0;
4070 }
4071 #define want_pmd_share()        (0)
4072 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4073
4074 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
4075 pte_t *huge_pte_alloc(struct mm_struct *mm,
4076                         unsigned long addr, unsigned long sz)
4077 {
4078         pgd_t *pgd;
4079         pud_t *pud;
4080         pte_t *pte = NULL;
4081
4082         pgd = pgd_offset(mm, addr);
4083         pud = pud_alloc(mm, pgd, addr);
4084         if (pud) {
4085                 if (sz == PUD_SIZE) {
4086                         pte = (pte_t *)pud;
4087                 } else {
4088                         BUG_ON(sz != PMD_SIZE);
4089                         if (want_pmd_share() && pud_none(*pud))
4090                                 pte = huge_pmd_share(mm, addr, pud);
4091                         else
4092                                 pte = (pte_t *)pmd_alloc(mm, pud, addr);
4093                 }
4094         }
4095         BUG_ON(pte && !pte_none(*pte) && !pte_huge(*pte));
4096
4097         return pte;
4098 }
4099
4100 pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
4101 {
4102         pgd_t *pgd;
4103         pud_t *pud;
4104         pmd_t *pmd = NULL;
4105
4106         pgd = pgd_offset(mm, addr);
4107         if (pgd_present(*pgd)) {
4108                 pud = pud_offset(pgd, addr);
4109                 if (pud_present(*pud)) {
4110                         if (pud_huge(*pud))
4111                                 return (pte_t *)pud;
4112                         pmd = pmd_offset(pud, addr);
4113                 }
4114         }
4115         return (pte_t *) pmd;
4116 }
4117
4118 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
4119
4120 /*
4121  * These functions are overwritable if your architecture needs its own
4122  * behavior.
4123  */
4124 struct page * __weak
4125 follow_huge_addr(struct mm_struct *mm, unsigned long address,
4126                               int write)
4127 {
4128         return ERR_PTR(-EINVAL);
4129 }
4130
4131 struct page * __weak
4132 follow_huge_pmd(struct mm_struct *mm, unsigned long address,
4133                 pmd_t *pmd, int flags)
4134 {
4135         struct page *page = NULL;
4136         spinlock_t *ptl;
4137 retry:
4138         ptl = pmd_lockptr(mm, pmd);
4139         spin_lock(ptl);
4140         /*
4141          * make sure that the address range covered by this pmd is not
4142          * unmapped from other threads.
4143          */
4144         if (!pmd_huge(*pmd))
4145                 goto out;
4146         if (pmd_present(*pmd)) {
4147                 page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
4148                 if (flags & FOLL_GET)
4149                         get_page(page);
4150         } else {
4151                 if (is_hugetlb_entry_migration(huge_ptep_get((pte_t *)pmd))) {
4152                         spin_unlock(ptl);
4153                         __migration_entry_wait(mm, (pte_t *)pmd, ptl);
4154                         goto retry;
4155                 }
4156                 /*
4157                  * hwpoisoned entry is treated as no_page_table in
4158                  * follow_page_mask().
4159                  */
4160         }
4161 out:
4162         spin_unlock(ptl);
4163         return page;
4164 }
4165
4166 struct page * __weak
4167 follow_huge_pud(struct mm_struct *mm, unsigned long address,
4168                 pud_t *pud, int flags)
4169 {
4170         if (flags & FOLL_GET)
4171                 return NULL;
4172
4173         return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
4174 }
4175
4176 #ifdef CONFIG_MEMORY_FAILURE
4177
4178 /*
4179  * This function is called from memory failure code.
4180  * Assume the caller holds page lock of the head page.
4181  */
4182 int dequeue_hwpoisoned_huge_page(struct page *hpage)
4183 {
4184         struct hstate *h = page_hstate(hpage);
4185         int nid = page_to_nid(hpage);
4186         int ret = -EBUSY;
4187
4188         spin_lock(&hugetlb_lock);
4189         /*
4190          * Just checking !page_huge_active is not enough, because that could be
4191          * an isolated/hwpoisoned hugepage (which have >0 refcount).
4192          */
4193         if (!page_huge_active(hpage) && !page_count(hpage)) {
4194                 /*
4195                  * Hwpoisoned hugepage isn't linked to activelist or freelist,
4196                  * but dangling hpage->lru can trigger list-debug warnings
4197                  * (this happens when we call unpoison_memory() on it),
4198                  * so let it point to itself with list_del_init().
4199                  */
4200                 list_del_init(&hpage->lru);
4201                 set_page_refcounted(hpage);
4202                 h->free_huge_pages--;
4203                 h->free_huge_pages_node[nid]--;
4204                 ret = 0;
4205         }
4206         spin_unlock(&hugetlb_lock);
4207         return ret;
4208 }
4209 #endif
4210
4211 bool isolate_huge_page(struct page *page, struct list_head *list)
4212 {
4213         bool ret = true;
4214
4215         VM_BUG_ON_PAGE(!PageHead(page), page);
4216         spin_lock(&hugetlb_lock);
4217         if (!page_huge_active(page) || !get_page_unless_zero(page)) {
4218                 ret = false;
4219                 goto unlock;
4220         }
4221         clear_page_huge_active(page);
4222         list_move_tail(&page->lru, list);
4223 unlock:
4224         spin_unlock(&hugetlb_lock);
4225         return ret;
4226 }
4227
4228 void putback_active_hugepage(struct page *page)
4229 {
4230         VM_BUG_ON_PAGE(!PageHead(page), page);
4231         spin_lock(&hugetlb_lock);
4232         set_page_huge_active(page);
4233         list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
4234         spin_unlock(&hugetlb_lock);
4235         put_page(page);
4236 }