mm: memcontrol: restore proper dirty throttling when memory.high changes
[linux-2.6-microblaze.git] / mm / hugetlb.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Generic hugetlb support.
4  * (C) Nadia Yvette Chambers, April 2004
5  */
6 #include <linux/list.h>
7 #include <linux/init.h>
8 #include <linux/mm.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/compiler.h>
17 #include <linux/cpuset.h>
18 #include <linux/mutex.h>
19 #include <linux/memblock.h>
20 #include <linux/sysfs.h>
21 #include <linux/slab.h>
22 #include <linux/mmdebug.h>
23 #include <linux/sched/signal.h>
24 #include <linux/rmap.h>
25 #include <linux/string_helpers.h>
26 #include <linux/swap.h>
27 #include <linux/swapops.h>
28 #include <linux/jhash.h>
29 #include <linux/numa.h>
30 #include <linux/llist.h>
31 #include <linux/cma.h>
32
33 #include <asm/page.h>
34 #include <asm/tlb.h>
35
36 #include <linux/io.h>
37 #include <linux/hugetlb.h>
38 #include <linux/hugetlb_cgroup.h>
39 #include <linux/node.h>
40 #include <linux/userfaultfd_k.h>
41 #include <linux/page_owner.h>
42 #include "internal.h"
43
44 int hugetlb_max_hstate __read_mostly;
45 unsigned int default_hstate_idx;
46 struct hstate hstates[HUGE_MAX_HSTATE];
47
48 #ifdef CONFIG_CMA
49 static struct cma *hugetlb_cma[MAX_NUMNODES];
50 #endif
51 static unsigned long hugetlb_cma_size __initdata;
52
53 /*
54  * Minimum page order among possible hugepage sizes, set to a proper value
55  * at boot time.
56  */
57 static unsigned int minimum_order __read_mostly = UINT_MAX;
58
59 __initdata LIST_HEAD(huge_boot_pages);
60
61 /* for command line parsing */
62 static struct hstate * __initdata parsed_hstate;
63 static unsigned long __initdata default_hstate_max_huge_pages;
64 static bool __initdata parsed_valid_hugepagesz = true;
65 static bool __initdata parsed_default_hugepagesz;
66
67 /*
68  * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
69  * free_huge_pages, and surplus_huge_pages.
70  */
71 DEFINE_SPINLOCK(hugetlb_lock);
72
73 /*
74  * Serializes faults on the same logical page.  This is used to
75  * prevent spurious OOMs when the hugepage pool is fully utilized.
76  */
77 static int num_fault_mutexes;
78 struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
79
80 /* Forward declaration */
81 static int hugetlb_acct_memory(struct hstate *h, long delta);
82
83 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
84 {
85         bool free = (spool->count == 0) && (spool->used_hpages == 0);
86
87         spin_unlock(&spool->lock);
88
89         /* If no pages are used, and no other handles to the subpool
90          * remain, give up any reservations based on minimum size and
91          * free the subpool */
92         if (free) {
93                 if (spool->min_hpages != -1)
94                         hugetlb_acct_memory(spool->hstate,
95                                                 -spool->min_hpages);
96                 kfree(spool);
97         }
98 }
99
100 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
101                                                 long min_hpages)
102 {
103         struct hugepage_subpool *spool;
104
105         spool = kzalloc(sizeof(*spool), GFP_KERNEL);
106         if (!spool)
107                 return NULL;
108
109         spin_lock_init(&spool->lock);
110         spool->count = 1;
111         spool->max_hpages = max_hpages;
112         spool->hstate = h;
113         spool->min_hpages = min_hpages;
114
115         if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
116                 kfree(spool);
117                 return NULL;
118         }
119         spool->rsv_hpages = min_hpages;
120
121         return spool;
122 }
123
124 void hugepage_put_subpool(struct hugepage_subpool *spool)
125 {
126         spin_lock(&spool->lock);
127         BUG_ON(!spool->count);
128         spool->count--;
129         unlock_or_release_subpool(spool);
130 }
131
132 /*
133  * Subpool accounting for allocating and reserving pages.
134  * Return -ENOMEM if there are not enough resources to satisfy the
135  * the request.  Otherwise, return the number of pages by which the
136  * global pools must be adjusted (upward).  The returned value may
137  * only be different than the passed value (delta) in the case where
138  * a subpool minimum size must be maintained.
139  */
140 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
141                                       long delta)
142 {
143         long ret = delta;
144
145         if (!spool)
146                 return ret;
147
148         spin_lock(&spool->lock);
149
150         if (spool->max_hpages != -1) {          /* maximum size accounting */
151                 if ((spool->used_hpages + delta) <= spool->max_hpages)
152                         spool->used_hpages += delta;
153                 else {
154                         ret = -ENOMEM;
155                         goto unlock_ret;
156                 }
157         }
158
159         /* minimum size accounting */
160         if (spool->min_hpages != -1 && spool->rsv_hpages) {
161                 if (delta > spool->rsv_hpages) {
162                         /*
163                          * Asking for more reserves than those already taken on
164                          * behalf of subpool.  Return difference.
165                          */
166                         ret = delta - spool->rsv_hpages;
167                         spool->rsv_hpages = 0;
168                 } else {
169                         ret = 0;        /* reserves already accounted for */
170                         spool->rsv_hpages -= delta;
171                 }
172         }
173
174 unlock_ret:
175         spin_unlock(&spool->lock);
176         return ret;
177 }
178
179 /*
180  * Subpool accounting for freeing and unreserving pages.
181  * Return the number of global page reservations that must be dropped.
182  * The return value may only be different than the passed value (delta)
183  * in the case where a subpool minimum size must be maintained.
184  */
185 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
186                                        long delta)
187 {
188         long ret = delta;
189
190         if (!spool)
191                 return delta;
192
193         spin_lock(&spool->lock);
194
195         if (spool->max_hpages != -1)            /* maximum size accounting */
196                 spool->used_hpages -= delta;
197
198          /* minimum size accounting */
199         if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
200                 if (spool->rsv_hpages + delta <= spool->min_hpages)
201                         ret = 0;
202                 else
203                         ret = spool->rsv_hpages + delta - spool->min_hpages;
204
205                 spool->rsv_hpages += delta;
206                 if (spool->rsv_hpages > spool->min_hpages)
207                         spool->rsv_hpages = spool->min_hpages;
208         }
209
210         /*
211          * If hugetlbfs_put_super couldn't free spool due to an outstanding
212          * quota reference, free it now.
213          */
214         unlock_or_release_subpool(spool);
215
216         return ret;
217 }
218
219 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
220 {
221         return HUGETLBFS_SB(inode->i_sb)->spool;
222 }
223
224 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
225 {
226         return subpool_inode(file_inode(vma->vm_file));
227 }
228
229 /* Helper that removes a struct file_region from the resv_map cache and returns
230  * it for use.
231  */
232 static struct file_region *
233 get_file_region_entry_from_cache(struct resv_map *resv, long from, long to)
234 {
235         struct file_region *nrg = NULL;
236
237         VM_BUG_ON(resv->region_cache_count <= 0);
238
239         resv->region_cache_count--;
240         nrg = list_first_entry(&resv->region_cache, struct file_region, link);
241         VM_BUG_ON(!nrg);
242         list_del(&nrg->link);
243
244         nrg->from = from;
245         nrg->to = to;
246
247         return nrg;
248 }
249
250 static void copy_hugetlb_cgroup_uncharge_info(struct file_region *nrg,
251                                               struct file_region *rg)
252 {
253 #ifdef CONFIG_CGROUP_HUGETLB
254         nrg->reservation_counter = rg->reservation_counter;
255         nrg->css = rg->css;
256         if (rg->css)
257                 css_get(rg->css);
258 #endif
259 }
260
261 /* Helper that records hugetlb_cgroup uncharge info. */
262 static void record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup *h_cg,
263                                                 struct hstate *h,
264                                                 struct resv_map *resv,
265                                                 struct file_region *nrg)
266 {
267 #ifdef CONFIG_CGROUP_HUGETLB
268         if (h_cg) {
269                 nrg->reservation_counter =
270                         &h_cg->rsvd_hugepage[hstate_index(h)];
271                 nrg->css = &h_cg->css;
272                 if (!resv->pages_per_hpage)
273                         resv->pages_per_hpage = pages_per_huge_page(h);
274                 /* pages_per_hpage should be the same for all entries in
275                  * a resv_map.
276                  */
277                 VM_BUG_ON(resv->pages_per_hpage != pages_per_huge_page(h));
278         } else {
279                 nrg->reservation_counter = NULL;
280                 nrg->css = NULL;
281         }
282 #endif
283 }
284
285 static bool has_same_uncharge_info(struct file_region *rg,
286                                    struct file_region *org)
287 {
288 #ifdef CONFIG_CGROUP_HUGETLB
289         return rg && org &&
290                rg->reservation_counter == org->reservation_counter &&
291                rg->css == org->css;
292
293 #else
294         return true;
295 #endif
296 }
297
298 static void coalesce_file_region(struct resv_map *resv, struct file_region *rg)
299 {
300         struct file_region *nrg = NULL, *prg = NULL;
301
302         prg = list_prev_entry(rg, link);
303         if (&prg->link != &resv->regions && prg->to == rg->from &&
304             has_same_uncharge_info(prg, rg)) {
305                 prg->to = rg->to;
306
307                 list_del(&rg->link);
308                 kfree(rg);
309
310                 coalesce_file_region(resv, prg);
311                 return;
312         }
313
314         nrg = list_next_entry(rg, link);
315         if (&nrg->link != &resv->regions && nrg->from == rg->to &&
316             has_same_uncharge_info(nrg, rg)) {
317                 nrg->from = rg->from;
318
319                 list_del(&rg->link);
320                 kfree(rg);
321
322                 coalesce_file_region(resv, nrg);
323                 return;
324         }
325 }
326
327 /* Must be called with resv->lock held. Calling this with count_only == true
328  * will count the number of pages to be added but will not modify the linked
329  * list. If regions_needed != NULL and count_only == true, then regions_needed
330  * will indicate the number of file_regions needed in the cache to carry out to
331  * add the regions for this range.
332  */
333 static long add_reservation_in_range(struct resv_map *resv, long f, long t,
334                                      struct hugetlb_cgroup *h_cg,
335                                      struct hstate *h, long *regions_needed,
336                                      bool count_only)
337 {
338         long add = 0;
339         struct list_head *head = &resv->regions;
340         long last_accounted_offset = f;
341         struct file_region *rg = NULL, *trg = NULL, *nrg = NULL;
342
343         if (regions_needed)
344                 *regions_needed = 0;
345
346         /* In this loop, we essentially handle an entry for the range
347          * [last_accounted_offset, rg->from), at every iteration, with some
348          * bounds checking.
349          */
350         list_for_each_entry_safe(rg, trg, head, link) {
351                 /* Skip irrelevant regions that start before our range. */
352                 if (rg->from < f) {
353                         /* If this region ends after the last accounted offset,
354                          * then we need to update last_accounted_offset.
355                          */
356                         if (rg->to > last_accounted_offset)
357                                 last_accounted_offset = rg->to;
358                         continue;
359                 }
360
361                 /* When we find a region that starts beyond our range, we've
362                  * finished.
363                  */
364                 if (rg->from > t)
365                         break;
366
367                 /* Add an entry for last_accounted_offset -> rg->from, and
368                  * update last_accounted_offset.
369                  */
370                 if (rg->from > last_accounted_offset) {
371                         add += rg->from - last_accounted_offset;
372                         if (!count_only) {
373                                 nrg = get_file_region_entry_from_cache(
374                                         resv, last_accounted_offset, rg->from);
375                                 record_hugetlb_cgroup_uncharge_info(h_cg, h,
376                                                                     resv, nrg);
377                                 list_add(&nrg->link, rg->link.prev);
378                                 coalesce_file_region(resv, nrg);
379                         } else if (regions_needed)
380                                 *regions_needed += 1;
381                 }
382
383                 last_accounted_offset = rg->to;
384         }
385
386         /* Handle the case where our range extends beyond
387          * last_accounted_offset.
388          */
389         if (last_accounted_offset < t) {
390                 add += t - last_accounted_offset;
391                 if (!count_only) {
392                         nrg = get_file_region_entry_from_cache(
393                                 resv, last_accounted_offset, t);
394                         record_hugetlb_cgroup_uncharge_info(h_cg, h, resv, nrg);
395                         list_add(&nrg->link, rg->link.prev);
396                         coalesce_file_region(resv, nrg);
397                 } else if (regions_needed)
398                         *regions_needed += 1;
399         }
400
401         VM_BUG_ON(add < 0);
402         return add;
403 }
404
405 /* Must be called with resv->lock acquired. Will drop lock to allocate entries.
406  */
407 static int allocate_file_region_entries(struct resv_map *resv,
408                                         int regions_needed)
409         __must_hold(&resv->lock)
410 {
411         struct list_head allocated_regions;
412         int to_allocate = 0, i = 0;
413         struct file_region *trg = NULL, *rg = NULL;
414
415         VM_BUG_ON(regions_needed < 0);
416
417         INIT_LIST_HEAD(&allocated_regions);
418
419         /*
420          * Check for sufficient descriptors in the cache to accommodate
421          * the number of in progress add operations plus regions_needed.
422          *
423          * This is a while loop because when we drop the lock, some other call
424          * to region_add or region_del may have consumed some region_entries,
425          * so we keep looping here until we finally have enough entries for
426          * (adds_in_progress + regions_needed).
427          */
428         while (resv->region_cache_count <
429                (resv->adds_in_progress + regions_needed)) {
430                 to_allocate = resv->adds_in_progress + regions_needed -
431                               resv->region_cache_count;
432
433                 /* At this point, we should have enough entries in the cache
434                  * for all the existings adds_in_progress. We should only be
435                  * needing to allocate for regions_needed.
436                  */
437                 VM_BUG_ON(resv->region_cache_count < resv->adds_in_progress);
438
439                 spin_unlock(&resv->lock);
440                 for (i = 0; i < to_allocate; i++) {
441                         trg = kmalloc(sizeof(*trg), GFP_KERNEL);
442                         if (!trg)
443                                 goto out_of_memory;
444                         list_add(&trg->link, &allocated_regions);
445                 }
446
447                 spin_lock(&resv->lock);
448
449                 list_for_each_entry_safe(rg, trg, &allocated_regions, link) {
450                         list_del(&rg->link);
451                         list_add(&rg->link, &resv->region_cache);
452                         resv->region_cache_count++;
453                 }
454         }
455
456         return 0;
457
458 out_of_memory:
459         list_for_each_entry_safe(rg, trg, &allocated_regions, link) {
460                 list_del(&rg->link);
461                 kfree(rg);
462         }
463         return -ENOMEM;
464 }
465
466 /*
467  * Add the huge page range represented by [f, t) to the reserve
468  * map.  Regions will be taken from the cache to fill in this range.
469  * Sufficient regions should exist in the cache due to the previous
470  * call to region_chg with the same range, but in some cases the cache will not
471  * have sufficient entries due to races with other code doing region_add or
472  * region_del.  The extra needed entries will be allocated.
473  *
474  * regions_needed is the out value provided by a previous call to region_chg.
475  *
476  * Return the number of new huge pages added to the map.  This number is greater
477  * than or equal to zero.  If file_region entries needed to be allocated for
478  * this operation and we were not able to allocate, it returns -ENOMEM.
479  * region_add of regions of length 1 never allocate file_regions and cannot
480  * fail; region_chg will always allocate at least 1 entry and a region_add for
481  * 1 page will only require at most 1 entry.
482  */
483 static long region_add(struct resv_map *resv, long f, long t,
484                        long in_regions_needed, struct hstate *h,
485                        struct hugetlb_cgroup *h_cg)
486 {
487         long add = 0, actual_regions_needed = 0;
488
489         spin_lock(&resv->lock);
490 retry:
491
492         /* Count how many regions are actually needed to execute this add. */
493         add_reservation_in_range(resv, f, t, NULL, NULL, &actual_regions_needed,
494                                  true);
495
496         /*
497          * Check for sufficient descriptors in the cache to accommodate
498          * this add operation. Note that actual_regions_needed may be greater
499          * than in_regions_needed, as the resv_map may have been modified since
500          * the region_chg call. In this case, we need to make sure that we
501          * allocate extra entries, such that we have enough for all the
502          * existing adds_in_progress, plus the excess needed for this
503          * operation.
504          */
505         if (actual_regions_needed > in_regions_needed &&
506             resv->region_cache_count <
507                     resv->adds_in_progress +
508                             (actual_regions_needed - in_regions_needed)) {
509                 /* region_add operation of range 1 should never need to
510                  * allocate file_region entries.
511                  */
512                 VM_BUG_ON(t - f <= 1);
513
514                 if (allocate_file_region_entries(
515                             resv, actual_regions_needed - in_regions_needed)) {
516                         return -ENOMEM;
517                 }
518
519                 goto retry;
520         }
521
522         add = add_reservation_in_range(resv, f, t, h_cg, h, NULL, false);
523
524         resv->adds_in_progress -= in_regions_needed;
525
526         spin_unlock(&resv->lock);
527         VM_BUG_ON(add < 0);
528         return add;
529 }
530
531 /*
532  * Examine the existing reserve map and determine how many
533  * huge pages in the specified range [f, t) are NOT currently
534  * represented.  This routine is called before a subsequent
535  * call to region_add that will actually modify the reserve
536  * map to add the specified range [f, t).  region_chg does
537  * not change the number of huge pages represented by the
538  * map.  A number of new file_region structures is added to the cache as a
539  * placeholder, for the subsequent region_add call to use. At least 1
540  * file_region structure is added.
541  *
542  * out_regions_needed is the number of regions added to the
543  * resv->adds_in_progress.  This value needs to be provided to a follow up call
544  * to region_add or region_abort for proper accounting.
545  *
546  * Returns the number of huge pages that need to be added to the existing
547  * reservation map for the range [f, t).  This number is greater or equal to
548  * zero.  -ENOMEM is returned if a new file_region structure or cache entry
549  * is needed and can not be allocated.
550  */
551 static long region_chg(struct resv_map *resv, long f, long t,
552                        long *out_regions_needed)
553 {
554         long chg = 0;
555
556         spin_lock(&resv->lock);
557
558         /* Count how many hugepages in this range are NOT respresented. */
559         chg = add_reservation_in_range(resv, f, t, NULL, NULL,
560                                        out_regions_needed, true);
561
562         if (*out_regions_needed == 0)
563                 *out_regions_needed = 1;
564
565         if (allocate_file_region_entries(resv, *out_regions_needed))
566                 return -ENOMEM;
567
568         resv->adds_in_progress += *out_regions_needed;
569
570         spin_unlock(&resv->lock);
571         return chg;
572 }
573
574 /*
575  * Abort the in progress add operation.  The adds_in_progress field
576  * of the resv_map keeps track of the operations in progress between
577  * calls to region_chg and region_add.  Operations are sometimes
578  * aborted after the call to region_chg.  In such cases, region_abort
579  * is called to decrement the adds_in_progress counter. regions_needed
580  * is the value returned by the region_chg call, it is used to decrement
581  * the adds_in_progress counter.
582  *
583  * NOTE: The range arguments [f, t) are not needed or used in this
584  * routine.  They are kept to make reading the calling code easier as
585  * arguments will match the associated region_chg call.
586  */
587 static void region_abort(struct resv_map *resv, long f, long t,
588                          long regions_needed)
589 {
590         spin_lock(&resv->lock);
591         VM_BUG_ON(!resv->region_cache_count);
592         resv->adds_in_progress -= regions_needed;
593         spin_unlock(&resv->lock);
594 }
595
596 /*
597  * Delete the specified range [f, t) from the reserve map.  If the
598  * t parameter is LONG_MAX, this indicates that ALL regions after f
599  * should be deleted.  Locate the regions which intersect [f, t)
600  * and either trim, delete or split the existing regions.
601  *
602  * Returns the number of huge pages deleted from the reserve map.
603  * In the normal case, the return value is zero or more.  In the
604  * case where a region must be split, a new region descriptor must
605  * be allocated.  If the allocation fails, -ENOMEM will be returned.
606  * NOTE: If the parameter t == LONG_MAX, then we will never split
607  * a region and possibly return -ENOMEM.  Callers specifying
608  * t == LONG_MAX do not need to check for -ENOMEM error.
609  */
610 static long region_del(struct resv_map *resv, long f, long t)
611 {
612         struct list_head *head = &resv->regions;
613         struct file_region *rg, *trg;
614         struct file_region *nrg = NULL;
615         long del = 0;
616
617 retry:
618         spin_lock(&resv->lock);
619         list_for_each_entry_safe(rg, trg, head, link) {
620                 /*
621                  * Skip regions before the range to be deleted.  file_region
622                  * ranges are normally of the form [from, to).  However, there
623                  * may be a "placeholder" entry in the map which is of the form
624                  * (from, to) with from == to.  Check for placeholder entries
625                  * at the beginning of the range to be deleted.
626                  */
627                 if (rg->to <= f && (rg->to != rg->from || rg->to != f))
628                         continue;
629
630                 if (rg->from >= t)
631                         break;
632
633                 if (f > rg->from && t < rg->to) { /* Must split region */
634                         /*
635                          * Check for an entry in the cache before dropping
636                          * lock and attempting allocation.
637                          */
638                         if (!nrg &&
639                             resv->region_cache_count > resv->adds_in_progress) {
640                                 nrg = list_first_entry(&resv->region_cache,
641                                                         struct file_region,
642                                                         link);
643                                 list_del(&nrg->link);
644                                 resv->region_cache_count--;
645                         }
646
647                         if (!nrg) {
648                                 spin_unlock(&resv->lock);
649                                 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
650                                 if (!nrg)
651                                         return -ENOMEM;
652                                 goto retry;
653                         }
654
655                         del += t - f;
656
657                         /* New entry for end of split region */
658                         nrg->from = t;
659                         nrg->to = rg->to;
660
661                         copy_hugetlb_cgroup_uncharge_info(nrg, rg);
662
663                         INIT_LIST_HEAD(&nrg->link);
664
665                         /* Original entry is trimmed */
666                         rg->to = f;
667
668                         hugetlb_cgroup_uncharge_file_region(
669                                 resv, rg, nrg->to - nrg->from);
670
671                         list_add(&nrg->link, &rg->link);
672                         nrg = NULL;
673                         break;
674                 }
675
676                 if (f <= rg->from && t >= rg->to) { /* Remove entire region */
677                         del += rg->to - rg->from;
678                         hugetlb_cgroup_uncharge_file_region(resv, rg,
679                                                             rg->to - rg->from);
680                         list_del(&rg->link);
681                         kfree(rg);
682                         continue;
683                 }
684
685                 if (f <= rg->from) {    /* Trim beginning of region */
686                         del += t - rg->from;
687                         rg->from = t;
688
689                         hugetlb_cgroup_uncharge_file_region(resv, rg,
690                                                             t - rg->from);
691                 } else {                /* Trim end of region */
692                         del += rg->to - f;
693                         rg->to = f;
694
695                         hugetlb_cgroup_uncharge_file_region(resv, rg,
696                                                             rg->to - f);
697                 }
698         }
699
700         spin_unlock(&resv->lock);
701         kfree(nrg);
702         return del;
703 }
704
705 /*
706  * A rare out of memory error was encountered which prevented removal of
707  * the reserve map region for a page.  The huge page itself was free'ed
708  * and removed from the page cache.  This routine will adjust the subpool
709  * usage count, and the global reserve count if needed.  By incrementing
710  * these counts, the reserve map entry which could not be deleted will
711  * appear as a "reserved" entry instead of simply dangling with incorrect
712  * counts.
713  */
714 void hugetlb_fix_reserve_counts(struct inode *inode)
715 {
716         struct hugepage_subpool *spool = subpool_inode(inode);
717         long rsv_adjust;
718
719         rsv_adjust = hugepage_subpool_get_pages(spool, 1);
720         if (rsv_adjust) {
721                 struct hstate *h = hstate_inode(inode);
722
723                 hugetlb_acct_memory(h, 1);
724         }
725 }
726
727 /*
728  * Count and return the number of huge pages in the reserve map
729  * that intersect with the range [f, t).
730  */
731 static long region_count(struct resv_map *resv, long f, long t)
732 {
733         struct list_head *head = &resv->regions;
734         struct file_region *rg;
735         long chg = 0;
736
737         spin_lock(&resv->lock);
738         /* Locate each segment we overlap with, and count that overlap. */
739         list_for_each_entry(rg, head, link) {
740                 long seg_from;
741                 long seg_to;
742
743                 if (rg->to <= f)
744                         continue;
745                 if (rg->from >= t)
746                         break;
747
748                 seg_from = max(rg->from, f);
749                 seg_to = min(rg->to, t);
750
751                 chg += seg_to - seg_from;
752         }
753         spin_unlock(&resv->lock);
754
755         return chg;
756 }
757
758 /*
759  * Convert the address within this vma to the page offset within
760  * the mapping, in pagecache page units; huge pages here.
761  */
762 static pgoff_t vma_hugecache_offset(struct hstate *h,
763                         struct vm_area_struct *vma, unsigned long address)
764 {
765         return ((address - vma->vm_start) >> huge_page_shift(h)) +
766                         (vma->vm_pgoff >> huge_page_order(h));
767 }
768
769 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
770                                      unsigned long address)
771 {
772         return vma_hugecache_offset(hstate_vma(vma), vma, address);
773 }
774 EXPORT_SYMBOL_GPL(linear_hugepage_index);
775
776 /*
777  * Return the size of the pages allocated when backing a VMA. In the majority
778  * cases this will be same size as used by the page table entries.
779  */
780 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
781 {
782         if (vma->vm_ops && vma->vm_ops->pagesize)
783                 return vma->vm_ops->pagesize(vma);
784         return PAGE_SIZE;
785 }
786 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
787
788 /*
789  * Return the page size being used by the MMU to back a VMA. In the majority
790  * of cases, the page size used by the kernel matches the MMU size. On
791  * architectures where it differs, an architecture-specific 'strong'
792  * version of this symbol is required.
793  */
794 __weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
795 {
796         return vma_kernel_pagesize(vma);
797 }
798
799 /*
800  * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
801  * bits of the reservation map pointer, which are always clear due to
802  * alignment.
803  */
804 #define HPAGE_RESV_OWNER    (1UL << 0)
805 #define HPAGE_RESV_UNMAPPED (1UL << 1)
806 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
807
808 /*
809  * These helpers are used to track how many pages are reserved for
810  * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
811  * is guaranteed to have their future faults succeed.
812  *
813  * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
814  * the reserve counters are updated with the hugetlb_lock held. It is safe
815  * to reset the VMA at fork() time as it is not in use yet and there is no
816  * chance of the global counters getting corrupted as a result of the values.
817  *
818  * The private mapping reservation is represented in a subtly different
819  * manner to a shared mapping.  A shared mapping has a region map associated
820  * with the underlying file, this region map represents the backing file
821  * pages which have ever had a reservation assigned which this persists even
822  * after the page is instantiated.  A private mapping has a region map
823  * associated with the original mmap which is attached to all VMAs which
824  * reference it, this region map represents those offsets which have consumed
825  * reservation ie. where pages have been instantiated.
826  */
827 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
828 {
829         return (unsigned long)vma->vm_private_data;
830 }
831
832 static void set_vma_private_data(struct vm_area_struct *vma,
833                                                         unsigned long value)
834 {
835         vma->vm_private_data = (void *)value;
836 }
837
838 static void
839 resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map *resv_map,
840                                           struct hugetlb_cgroup *h_cg,
841                                           struct hstate *h)
842 {
843 #ifdef CONFIG_CGROUP_HUGETLB
844         if (!h_cg || !h) {
845                 resv_map->reservation_counter = NULL;
846                 resv_map->pages_per_hpage = 0;
847                 resv_map->css = NULL;
848         } else {
849                 resv_map->reservation_counter =
850                         &h_cg->rsvd_hugepage[hstate_index(h)];
851                 resv_map->pages_per_hpage = pages_per_huge_page(h);
852                 resv_map->css = &h_cg->css;
853         }
854 #endif
855 }
856
857 struct resv_map *resv_map_alloc(void)
858 {
859         struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
860         struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
861
862         if (!resv_map || !rg) {
863                 kfree(resv_map);
864                 kfree(rg);
865                 return NULL;
866         }
867
868         kref_init(&resv_map->refs);
869         spin_lock_init(&resv_map->lock);
870         INIT_LIST_HEAD(&resv_map->regions);
871
872         resv_map->adds_in_progress = 0;
873         /*
874          * Initialize these to 0. On shared mappings, 0's here indicate these
875          * fields don't do cgroup accounting. On private mappings, these will be
876          * re-initialized to the proper values, to indicate that hugetlb cgroup
877          * reservations are to be un-charged from here.
878          */
879         resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, NULL, NULL);
880
881         INIT_LIST_HEAD(&resv_map->region_cache);
882         list_add(&rg->link, &resv_map->region_cache);
883         resv_map->region_cache_count = 1;
884
885         return resv_map;
886 }
887
888 void resv_map_release(struct kref *ref)
889 {
890         struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
891         struct list_head *head = &resv_map->region_cache;
892         struct file_region *rg, *trg;
893
894         /* Clear out any active regions before we release the map. */
895         region_del(resv_map, 0, LONG_MAX);
896
897         /* ... and any entries left in the cache */
898         list_for_each_entry_safe(rg, trg, head, link) {
899                 list_del(&rg->link);
900                 kfree(rg);
901         }
902
903         VM_BUG_ON(resv_map->adds_in_progress);
904
905         kfree(resv_map);
906 }
907
908 static inline struct resv_map *inode_resv_map(struct inode *inode)
909 {
910         /*
911          * At inode evict time, i_mapping may not point to the original
912          * address space within the inode.  This original address space
913          * contains the pointer to the resv_map.  So, always use the
914          * address space embedded within the inode.
915          * The VERY common case is inode->mapping == &inode->i_data but,
916          * this may not be true for device special inodes.
917          */
918         return (struct resv_map *)(&inode->i_data)->private_data;
919 }
920
921 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
922 {
923         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
924         if (vma->vm_flags & VM_MAYSHARE) {
925                 struct address_space *mapping = vma->vm_file->f_mapping;
926                 struct inode *inode = mapping->host;
927
928                 return inode_resv_map(inode);
929
930         } else {
931                 return (struct resv_map *)(get_vma_private_data(vma) &
932                                                         ~HPAGE_RESV_MASK);
933         }
934 }
935
936 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
937 {
938         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
939         VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
940
941         set_vma_private_data(vma, (get_vma_private_data(vma) &
942                                 HPAGE_RESV_MASK) | (unsigned long)map);
943 }
944
945 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
946 {
947         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
948         VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
949
950         set_vma_private_data(vma, get_vma_private_data(vma) | flags);
951 }
952
953 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
954 {
955         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
956
957         return (get_vma_private_data(vma) & flag) != 0;
958 }
959
960 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
961 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
962 {
963         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
964         if (!(vma->vm_flags & VM_MAYSHARE))
965                 vma->vm_private_data = (void *)0;
966 }
967
968 /* Returns true if the VMA has associated reserve pages */
969 static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
970 {
971         if (vma->vm_flags & VM_NORESERVE) {
972                 /*
973                  * This address is already reserved by other process(chg == 0),
974                  * so, we should decrement reserved count. Without decrementing,
975                  * reserve count remains after releasing inode, because this
976                  * allocated page will go into page cache and is regarded as
977                  * coming from reserved pool in releasing step.  Currently, we
978                  * don't have any other solution to deal with this situation
979                  * properly, so add work-around here.
980                  */
981                 if (vma->vm_flags & VM_MAYSHARE && chg == 0)
982                         return true;
983                 else
984                         return false;
985         }
986
987         /* Shared mappings always use reserves */
988         if (vma->vm_flags & VM_MAYSHARE) {
989                 /*
990                  * We know VM_NORESERVE is not set.  Therefore, there SHOULD
991                  * be a region map for all pages.  The only situation where
992                  * there is no region map is if a hole was punched via
993                  * fallocate.  In this case, there really are no reserves to
994                  * use.  This situation is indicated if chg != 0.
995                  */
996                 if (chg)
997                         return false;
998                 else
999                         return true;
1000         }
1001
1002         /*
1003          * Only the process that called mmap() has reserves for
1004          * private mappings.
1005          */
1006         if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1007                 /*
1008                  * Like the shared case above, a hole punch or truncate
1009                  * could have been performed on the private mapping.
1010                  * Examine the value of chg to determine if reserves
1011                  * actually exist or were previously consumed.
1012                  * Very Subtle - The value of chg comes from a previous
1013                  * call to vma_needs_reserves().  The reserve map for
1014                  * private mappings has different (opposite) semantics
1015                  * than that of shared mappings.  vma_needs_reserves()
1016                  * has already taken this difference in semantics into
1017                  * account.  Therefore, the meaning of chg is the same
1018                  * as in the shared case above.  Code could easily be
1019                  * combined, but keeping it separate draws attention to
1020                  * subtle differences.
1021                  */
1022                 if (chg)
1023                         return false;
1024                 else
1025                         return true;
1026         }
1027
1028         return false;
1029 }
1030
1031 static void enqueue_huge_page(struct hstate *h, struct page *page)
1032 {
1033         int nid = page_to_nid(page);
1034         list_move(&page->lru, &h->hugepage_freelists[nid]);
1035         h->free_huge_pages++;
1036         h->free_huge_pages_node[nid]++;
1037 }
1038
1039 static struct page *dequeue_huge_page_node_exact(struct hstate *h, int nid)
1040 {
1041         struct page *page;
1042
1043         list_for_each_entry(page, &h->hugepage_freelists[nid], lru)
1044                 if (!PageHWPoison(page))
1045                         break;
1046         /*
1047          * if 'non-isolated free hugepage' not found on the list,
1048          * the allocation fails.
1049          */
1050         if (&h->hugepage_freelists[nid] == &page->lru)
1051                 return NULL;
1052         list_move(&page->lru, &h->hugepage_activelist);
1053         set_page_refcounted(page);
1054         h->free_huge_pages--;
1055         h->free_huge_pages_node[nid]--;
1056         return page;
1057 }
1058
1059 static struct page *dequeue_huge_page_nodemask(struct hstate *h, gfp_t gfp_mask, int nid,
1060                 nodemask_t *nmask)
1061 {
1062         unsigned int cpuset_mems_cookie;
1063         struct zonelist *zonelist;
1064         struct zone *zone;
1065         struct zoneref *z;
1066         int node = NUMA_NO_NODE;
1067
1068         zonelist = node_zonelist(nid, gfp_mask);
1069
1070 retry_cpuset:
1071         cpuset_mems_cookie = read_mems_allowed_begin();
1072         for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
1073                 struct page *page;
1074
1075                 if (!cpuset_zone_allowed(zone, gfp_mask))
1076                         continue;
1077                 /*
1078                  * no need to ask again on the same node. Pool is node rather than
1079                  * zone aware
1080                  */
1081                 if (zone_to_nid(zone) == node)
1082                         continue;
1083                 node = zone_to_nid(zone);
1084
1085                 page = dequeue_huge_page_node_exact(h, node);
1086                 if (page)
1087                         return page;
1088         }
1089         if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
1090                 goto retry_cpuset;
1091
1092         return NULL;
1093 }
1094
1095 /* Movability of hugepages depends on migration support. */
1096 static inline gfp_t htlb_alloc_mask(struct hstate *h)
1097 {
1098         if (hugepage_movable_supported(h))
1099                 return GFP_HIGHUSER_MOVABLE;
1100         else
1101                 return GFP_HIGHUSER;
1102 }
1103
1104 static struct page *dequeue_huge_page_vma(struct hstate *h,
1105                                 struct vm_area_struct *vma,
1106                                 unsigned long address, int avoid_reserve,
1107                                 long chg)
1108 {
1109         struct page *page;
1110         struct mempolicy *mpol;
1111         gfp_t gfp_mask;
1112         nodemask_t *nodemask;
1113         int nid;
1114
1115         /*
1116          * A child process with MAP_PRIVATE mappings created by their parent
1117          * have no page reserves. This check ensures that reservations are
1118          * not "stolen". The child may still get SIGKILLed
1119          */
1120         if (!vma_has_reserves(vma, chg) &&
1121                         h->free_huge_pages - h->resv_huge_pages == 0)
1122                 goto err;
1123
1124         /* If reserves cannot be used, ensure enough pages are in the pool */
1125         if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
1126                 goto err;
1127
1128         gfp_mask = htlb_alloc_mask(h);
1129         nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
1130         page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
1131         if (page && !avoid_reserve && vma_has_reserves(vma, chg)) {
1132                 SetPagePrivate(page);
1133                 h->resv_huge_pages--;
1134         }
1135
1136         mpol_cond_put(mpol);
1137         return page;
1138
1139 err:
1140         return NULL;
1141 }
1142
1143 /*
1144  * common helper functions for hstate_next_node_to_{alloc|free}.
1145  * We may have allocated or freed a huge page based on a different
1146  * nodes_allowed previously, so h->next_node_to_{alloc|free} might
1147  * be outside of *nodes_allowed.  Ensure that we use an allowed
1148  * node for alloc or free.
1149  */
1150 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
1151 {
1152         nid = next_node_in(nid, *nodes_allowed);
1153         VM_BUG_ON(nid >= MAX_NUMNODES);
1154
1155         return nid;
1156 }
1157
1158 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
1159 {
1160         if (!node_isset(nid, *nodes_allowed))
1161                 nid = next_node_allowed(nid, nodes_allowed);
1162         return nid;
1163 }
1164
1165 /*
1166  * returns the previously saved node ["this node"] from which to
1167  * allocate a persistent huge page for the pool and advance the
1168  * next node from which to allocate, handling wrap at end of node
1169  * mask.
1170  */
1171 static int hstate_next_node_to_alloc(struct hstate *h,
1172                                         nodemask_t *nodes_allowed)
1173 {
1174         int nid;
1175
1176         VM_BUG_ON(!nodes_allowed);
1177
1178         nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
1179         h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
1180
1181         return nid;
1182 }
1183
1184 /*
1185  * helper for free_pool_huge_page() - return the previously saved
1186  * node ["this node"] from which to free a huge page.  Advance the
1187  * next node id whether or not we find a free huge page to free so
1188  * that the next attempt to free addresses the next node.
1189  */
1190 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1191 {
1192         int nid;
1193
1194         VM_BUG_ON(!nodes_allowed);
1195
1196         nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1197         h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1198
1199         return nid;
1200 }
1201
1202 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask)           \
1203         for (nr_nodes = nodes_weight(*mask);                            \
1204                 nr_nodes > 0 &&                                         \
1205                 ((node = hstate_next_node_to_alloc(hs, mask)) || 1);    \
1206                 nr_nodes--)
1207
1208 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask)            \
1209         for (nr_nodes = nodes_weight(*mask);                            \
1210                 nr_nodes > 0 &&                                         \
1211                 ((node = hstate_next_node_to_free(hs, mask)) || 1);     \
1212                 nr_nodes--)
1213
1214 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
1215 static void destroy_compound_gigantic_page(struct page *page,
1216                                         unsigned int order)
1217 {
1218         int i;
1219         int nr_pages = 1 << order;
1220         struct page *p = page + 1;
1221
1222         atomic_set(compound_mapcount_ptr(page), 0);
1223         if (hpage_pincount_available(page))
1224                 atomic_set(compound_pincount_ptr(page), 0);
1225
1226         for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1227                 clear_compound_head(p);
1228                 set_page_refcounted(p);
1229         }
1230
1231         set_compound_order(page, 0);
1232         __ClearPageHead(page);
1233 }
1234
1235 static void free_gigantic_page(struct page *page, unsigned int order)
1236 {
1237         /*
1238          * If the page isn't allocated using the cma allocator,
1239          * cma_release() returns false.
1240          */
1241 #ifdef CONFIG_CMA
1242         if (cma_release(hugetlb_cma[page_to_nid(page)], page, 1 << order))
1243                 return;
1244 #endif
1245
1246         free_contig_range(page_to_pfn(page), 1 << order);
1247 }
1248
1249 #ifdef CONFIG_CONTIG_ALLOC
1250 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1251                 int nid, nodemask_t *nodemask)
1252 {
1253         unsigned long nr_pages = 1UL << huge_page_order(h);
1254
1255 #ifdef CONFIG_CMA
1256         {
1257                 struct page *page;
1258                 int node;
1259
1260                 for_each_node_mask(node, *nodemask) {
1261                         if (!hugetlb_cma[node])
1262                                 continue;
1263
1264                         page = cma_alloc(hugetlb_cma[node], nr_pages,
1265                                          huge_page_order(h), true);
1266                         if (page)
1267                                 return page;
1268                 }
1269         }
1270 #endif
1271
1272         return alloc_contig_pages(nr_pages, gfp_mask, nid, nodemask);
1273 }
1274
1275 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid);
1276 static void prep_compound_gigantic_page(struct page *page, unsigned int order);
1277 #else /* !CONFIG_CONTIG_ALLOC */
1278 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1279                                         int nid, nodemask_t *nodemask)
1280 {
1281         return NULL;
1282 }
1283 #endif /* CONFIG_CONTIG_ALLOC */
1284
1285 #else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
1286 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1287                                         int nid, nodemask_t *nodemask)
1288 {
1289         return NULL;
1290 }
1291 static inline void free_gigantic_page(struct page *page, unsigned int order) { }
1292 static inline void destroy_compound_gigantic_page(struct page *page,
1293                                                 unsigned int order) { }
1294 #endif
1295
1296 static void update_and_free_page(struct hstate *h, struct page *page)
1297 {
1298         int i;
1299
1300         if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1301                 return;
1302
1303         h->nr_huge_pages--;
1304         h->nr_huge_pages_node[page_to_nid(page)]--;
1305         for (i = 0; i < pages_per_huge_page(h); i++) {
1306                 page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
1307                                 1 << PG_referenced | 1 << PG_dirty |
1308                                 1 << PG_active | 1 << PG_private |
1309                                 1 << PG_writeback);
1310         }
1311         VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
1312         VM_BUG_ON_PAGE(hugetlb_cgroup_from_page_rsvd(page), page);
1313         set_compound_page_dtor(page, NULL_COMPOUND_DTOR);
1314         set_page_refcounted(page);
1315         if (hstate_is_gigantic(h)) {
1316                 /*
1317                  * Temporarily drop the hugetlb_lock, because
1318                  * we might block in free_gigantic_page().
1319                  */
1320                 spin_unlock(&hugetlb_lock);
1321                 destroy_compound_gigantic_page(page, huge_page_order(h));
1322                 free_gigantic_page(page, huge_page_order(h));
1323                 spin_lock(&hugetlb_lock);
1324         } else {
1325                 __free_pages(page, huge_page_order(h));
1326         }
1327 }
1328
1329 struct hstate *size_to_hstate(unsigned long size)
1330 {
1331         struct hstate *h;
1332
1333         for_each_hstate(h) {
1334                 if (huge_page_size(h) == size)
1335                         return h;
1336         }
1337         return NULL;
1338 }
1339
1340 /*
1341  * Test to determine whether the hugepage is "active/in-use" (i.e. being linked
1342  * to hstate->hugepage_activelist.)
1343  *
1344  * This function can be called for tail pages, but never returns true for them.
1345  */
1346 bool page_huge_active(struct page *page)
1347 {
1348         VM_BUG_ON_PAGE(!PageHuge(page), page);
1349         return PageHead(page) && PagePrivate(&page[1]);
1350 }
1351
1352 /* never called for tail page */
1353 static void set_page_huge_active(struct page *page)
1354 {
1355         VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1356         SetPagePrivate(&page[1]);
1357 }
1358
1359 static void clear_page_huge_active(struct page *page)
1360 {
1361         VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1362         ClearPagePrivate(&page[1]);
1363 }
1364
1365 /*
1366  * Internal hugetlb specific page flag. Do not use outside of the hugetlb
1367  * code
1368  */
1369 static inline bool PageHugeTemporary(struct page *page)
1370 {
1371         if (!PageHuge(page))
1372                 return false;
1373
1374         return (unsigned long)page[2].mapping == -1U;
1375 }
1376
1377 static inline void SetPageHugeTemporary(struct page *page)
1378 {
1379         page[2].mapping = (void *)-1U;
1380 }
1381
1382 static inline void ClearPageHugeTemporary(struct page *page)
1383 {
1384         page[2].mapping = NULL;
1385 }
1386
1387 static void __free_huge_page(struct page *page)
1388 {
1389         /*
1390          * Can't pass hstate in here because it is called from the
1391          * compound page destructor.
1392          */
1393         struct hstate *h = page_hstate(page);
1394         int nid = page_to_nid(page);
1395         struct hugepage_subpool *spool =
1396                 (struct hugepage_subpool *)page_private(page);
1397         bool restore_reserve;
1398
1399         VM_BUG_ON_PAGE(page_count(page), page);
1400         VM_BUG_ON_PAGE(page_mapcount(page), page);
1401
1402         set_page_private(page, 0);
1403         page->mapping = NULL;
1404         restore_reserve = PagePrivate(page);
1405         ClearPagePrivate(page);
1406
1407         /*
1408          * If PagePrivate() was set on page, page allocation consumed a
1409          * reservation.  If the page was associated with a subpool, there
1410          * would have been a page reserved in the subpool before allocation
1411          * via hugepage_subpool_get_pages().  Since we are 'restoring' the
1412          * reservtion, do not call hugepage_subpool_put_pages() as this will
1413          * remove the reserved page from the subpool.
1414          */
1415         if (!restore_reserve) {
1416                 /*
1417                  * A return code of zero implies that the subpool will be
1418                  * under its minimum size if the reservation is not restored
1419                  * after page is free.  Therefore, force restore_reserve
1420                  * operation.
1421                  */
1422                 if (hugepage_subpool_put_pages(spool, 1) == 0)
1423                         restore_reserve = true;
1424         }
1425
1426         spin_lock(&hugetlb_lock);
1427         clear_page_huge_active(page);
1428         hugetlb_cgroup_uncharge_page(hstate_index(h),
1429                                      pages_per_huge_page(h), page);
1430         hugetlb_cgroup_uncharge_page_rsvd(hstate_index(h),
1431                                           pages_per_huge_page(h), page);
1432         if (restore_reserve)
1433                 h->resv_huge_pages++;
1434
1435         if (PageHugeTemporary(page)) {
1436                 list_del(&page->lru);
1437                 ClearPageHugeTemporary(page);
1438                 update_and_free_page(h, page);
1439         } else if (h->surplus_huge_pages_node[nid]) {
1440                 /* remove the page from active list */
1441                 list_del(&page->lru);
1442                 update_and_free_page(h, page);
1443                 h->surplus_huge_pages--;
1444                 h->surplus_huge_pages_node[nid]--;
1445         } else {
1446                 arch_clear_hugepage_flags(page);
1447                 enqueue_huge_page(h, page);
1448         }
1449         spin_unlock(&hugetlb_lock);
1450 }
1451
1452 /*
1453  * As free_huge_page() can be called from a non-task context, we have
1454  * to defer the actual freeing in a workqueue to prevent potential
1455  * hugetlb_lock deadlock.
1456  *
1457  * free_hpage_workfn() locklessly retrieves the linked list of pages to
1458  * be freed and frees them one-by-one. As the page->mapping pointer is
1459  * going to be cleared in __free_huge_page() anyway, it is reused as the
1460  * llist_node structure of a lockless linked list of huge pages to be freed.
1461  */
1462 static LLIST_HEAD(hpage_freelist);
1463
1464 static void free_hpage_workfn(struct work_struct *work)
1465 {
1466         struct llist_node *node;
1467         struct page *page;
1468
1469         node = llist_del_all(&hpage_freelist);
1470
1471         while (node) {
1472                 page = container_of((struct address_space **)node,
1473                                      struct page, mapping);
1474                 node = node->next;
1475                 __free_huge_page(page);
1476         }
1477 }
1478 static DECLARE_WORK(free_hpage_work, free_hpage_workfn);
1479
1480 void free_huge_page(struct page *page)
1481 {
1482         /*
1483          * Defer freeing if in non-task context to avoid hugetlb_lock deadlock.
1484          */
1485         if (!in_task()) {
1486                 /*
1487                  * Only call schedule_work() if hpage_freelist is previously
1488                  * empty. Otherwise, schedule_work() had been called but the
1489                  * workfn hasn't retrieved the list yet.
1490                  */
1491                 if (llist_add((struct llist_node *)&page->mapping,
1492                               &hpage_freelist))
1493                         schedule_work(&free_hpage_work);
1494                 return;
1495         }
1496
1497         __free_huge_page(page);
1498 }
1499
1500 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
1501 {
1502         INIT_LIST_HEAD(&page->lru);
1503         set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1504         spin_lock(&hugetlb_lock);
1505         set_hugetlb_cgroup(page, NULL);
1506         set_hugetlb_cgroup_rsvd(page, NULL);
1507         h->nr_huge_pages++;
1508         h->nr_huge_pages_node[nid]++;
1509         spin_unlock(&hugetlb_lock);
1510 }
1511
1512 static void prep_compound_gigantic_page(struct page *page, unsigned int order)
1513 {
1514         int i;
1515         int nr_pages = 1 << order;
1516         struct page *p = page + 1;
1517
1518         /* we rely on prep_new_huge_page to set the destructor */
1519         set_compound_order(page, order);
1520         __ClearPageReserved(page);
1521         __SetPageHead(page);
1522         for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1523                 /*
1524                  * For gigantic hugepages allocated through bootmem at
1525                  * boot, it's safer to be consistent with the not-gigantic
1526                  * hugepages and clear the PG_reserved bit from all tail pages
1527                  * too.  Otherwise drivers using get_user_pages() to access tail
1528                  * pages may get the reference counting wrong if they see
1529                  * PG_reserved set on a tail page (despite the head page not
1530                  * having PG_reserved set).  Enforcing this consistency between
1531                  * head and tail pages allows drivers to optimize away a check
1532                  * on the head page when they need know if put_page() is needed
1533                  * after get_user_pages().
1534                  */
1535                 __ClearPageReserved(p);
1536                 set_page_count(p, 0);
1537                 set_compound_head(p, page);
1538         }
1539         atomic_set(compound_mapcount_ptr(page), -1);
1540
1541         if (hpage_pincount_available(page))
1542                 atomic_set(compound_pincount_ptr(page), 0);
1543 }
1544
1545 /*
1546  * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1547  * transparent huge pages.  See the PageTransHuge() documentation for more
1548  * details.
1549  */
1550 int PageHuge(struct page *page)
1551 {
1552         if (!PageCompound(page))
1553                 return 0;
1554
1555         page = compound_head(page);
1556         return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
1557 }
1558 EXPORT_SYMBOL_GPL(PageHuge);
1559
1560 /*
1561  * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1562  * normal or transparent huge pages.
1563  */
1564 int PageHeadHuge(struct page *page_head)
1565 {
1566         if (!PageHead(page_head))
1567                 return 0;
1568
1569         return page_head[1].compound_dtor == HUGETLB_PAGE_DTOR;
1570 }
1571
1572 /*
1573  * Find address_space associated with hugetlbfs page.
1574  * Upon entry page is locked and page 'was' mapped although mapped state
1575  * could change.  If necessary, use anon_vma to find vma and associated
1576  * address space.  The returned mapping may be stale, but it can not be
1577  * invalid as page lock (which is held) is required to destroy mapping.
1578  */
1579 static struct address_space *_get_hugetlb_page_mapping(struct page *hpage)
1580 {
1581         struct anon_vma *anon_vma;
1582         pgoff_t pgoff_start, pgoff_end;
1583         struct anon_vma_chain *avc;
1584         struct address_space *mapping = page_mapping(hpage);
1585
1586         /* Simple file based mapping */
1587         if (mapping)
1588                 return mapping;
1589
1590         /*
1591          * Even anonymous hugetlbfs mappings are associated with an
1592          * underlying hugetlbfs file (see hugetlb_file_setup in mmap
1593          * code).  Find a vma associated with the anonymous vma, and
1594          * use the file pointer to get address_space.
1595          */
1596         anon_vma = page_lock_anon_vma_read(hpage);
1597         if (!anon_vma)
1598                 return mapping;  /* NULL */
1599
1600         /* Use first found vma */
1601         pgoff_start = page_to_pgoff(hpage);
1602         pgoff_end = pgoff_start + pages_per_huge_page(page_hstate(hpage)) - 1;
1603         anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root,
1604                                         pgoff_start, pgoff_end) {
1605                 struct vm_area_struct *vma = avc->vma;
1606
1607                 mapping = vma->vm_file->f_mapping;
1608                 break;
1609         }
1610
1611         anon_vma_unlock_read(anon_vma);
1612         return mapping;
1613 }
1614
1615 /*
1616  * Find and lock address space (mapping) in write mode.
1617  *
1618  * Upon entry, the page is locked which allows us to find the mapping
1619  * even in the case of an anon page.  However, locking order dictates
1620  * the i_mmap_rwsem be acquired BEFORE the page lock.  This is hugetlbfs
1621  * specific.  So, we first try to lock the sema while still holding the
1622  * page lock.  If this works, great!  If not, then we need to drop the
1623  * page lock and then acquire i_mmap_rwsem and reacquire page lock.  Of
1624  * course, need to revalidate state along the way.
1625  */
1626 struct address_space *hugetlb_page_mapping_lock_write(struct page *hpage)
1627 {
1628         struct address_space *mapping, *mapping2;
1629
1630         mapping = _get_hugetlb_page_mapping(hpage);
1631 retry:
1632         if (!mapping)
1633                 return mapping;
1634
1635         /*
1636          * If no contention, take lock and return
1637          */
1638         if (i_mmap_trylock_write(mapping))
1639                 return mapping;
1640
1641         /*
1642          * Must drop page lock and wait on mapping sema.
1643          * Note:  Once page lock is dropped, mapping could become invalid.
1644          * As a hack, increase map count until we lock page again.
1645          */
1646         atomic_inc(&hpage->_mapcount);
1647         unlock_page(hpage);
1648         i_mmap_lock_write(mapping);
1649         lock_page(hpage);
1650         atomic_add_negative(-1, &hpage->_mapcount);
1651
1652         /* verify page is still mapped */
1653         if (!page_mapped(hpage)) {
1654                 i_mmap_unlock_write(mapping);
1655                 return NULL;
1656         }
1657
1658         /*
1659          * Get address space again and verify it is the same one
1660          * we locked.  If not, drop lock and retry.
1661          */
1662         mapping2 = _get_hugetlb_page_mapping(hpage);
1663         if (mapping2 != mapping) {
1664                 i_mmap_unlock_write(mapping);
1665                 mapping = mapping2;
1666                 goto retry;
1667         }
1668
1669         return mapping;
1670 }
1671
1672 pgoff_t __basepage_index(struct page *page)
1673 {
1674         struct page *page_head = compound_head(page);
1675         pgoff_t index = page_index(page_head);
1676         unsigned long compound_idx;
1677
1678         if (!PageHuge(page_head))
1679                 return page_index(page);
1680
1681         if (compound_order(page_head) >= MAX_ORDER)
1682                 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
1683         else
1684                 compound_idx = page - page_head;
1685
1686         return (index << compound_order(page_head)) + compound_idx;
1687 }
1688
1689 static struct page *alloc_buddy_huge_page(struct hstate *h,
1690                 gfp_t gfp_mask, int nid, nodemask_t *nmask,
1691                 nodemask_t *node_alloc_noretry)
1692 {
1693         int order = huge_page_order(h);
1694         struct page *page;
1695         bool alloc_try_hard = true;
1696
1697         /*
1698          * By default we always try hard to allocate the page with
1699          * __GFP_RETRY_MAYFAIL flag.  However, if we are allocating pages in
1700          * a loop (to adjust global huge page counts) and previous allocation
1701          * failed, do not continue to try hard on the same node.  Use the
1702          * node_alloc_noretry bitmap to manage this state information.
1703          */
1704         if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry))
1705                 alloc_try_hard = false;
1706         gfp_mask |= __GFP_COMP|__GFP_NOWARN;
1707         if (alloc_try_hard)
1708                 gfp_mask |= __GFP_RETRY_MAYFAIL;
1709         if (nid == NUMA_NO_NODE)
1710                 nid = numa_mem_id();
1711         page = __alloc_pages_nodemask(gfp_mask, order, nid, nmask);
1712         if (page)
1713                 __count_vm_event(HTLB_BUDDY_PGALLOC);
1714         else
1715                 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1716
1717         /*
1718          * If we did not specify __GFP_RETRY_MAYFAIL, but still got a page this
1719          * indicates an overall state change.  Clear bit so that we resume
1720          * normal 'try hard' allocations.
1721          */
1722         if (node_alloc_noretry && page && !alloc_try_hard)
1723                 node_clear(nid, *node_alloc_noretry);
1724
1725         /*
1726          * If we tried hard to get a page but failed, set bit so that
1727          * subsequent attempts will not try as hard until there is an
1728          * overall state change.
1729          */
1730         if (node_alloc_noretry && !page && alloc_try_hard)
1731                 node_set(nid, *node_alloc_noretry);
1732
1733         return page;
1734 }
1735
1736 /*
1737  * Common helper to allocate a fresh hugetlb page. All specific allocators
1738  * should use this function to get new hugetlb pages
1739  */
1740 static struct page *alloc_fresh_huge_page(struct hstate *h,
1741                 gfp_t gfp_mask, int nid, nodemask_t *nmask,
1742                 nodemask_t *node_alloc_noretry)
1743 {
1744         struct page *page;
1745
1746         if (hstate_is_gigantic(h))
1747                 page = alloc_gigantic_page(h, gfp_mask, nid, nmask);
1748         else
1749                 page = alloc_buddy_huge_page(h, gfp_mask,
1750                                 nid, nmask, node_alloc_noretry);
1751         if (!page)
1752                 return NULL;
1753
1754         if (hstate_is_gigantic(h))
1755                 prep_compound_gigantic_page(page, huge_page_order(h));
1756         prep_new_huge_page(h, page, page_to_nid(page));
1757
1758         return page;
1759 }
1760
1761 /*
1762  * Allocates a fresh page to the hugetlb allocator pool in the node interleaved
1763  * manner.
1764  */
1765 static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1766                                 nodemask_t *node_alloc_noretry)
1767 {
1768         struct page *page;
1769         int nr_nodes, node;
1770         gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
1771
1772         for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1773                 page = alloc_fresh_huge_page(h, gfp_mask, node, nodes_allowed,
1774                                                 node_alloc_noretry);
1775                 if (page)
1776                         break;
1777         }
1778
1779         if (!page)
1780                 return 0;
1781
1782         put_page(page); /* free it into the hugepage allocator */
1783
1784         return 1;
1785 }
1786
1787 /*
1788  * Free huge page from pool from next node to free.
1789  * Attempt to keep persistent huge pages more or less
1790  * balanced over allowed nodes.
1791  * Called with hugetlb_lock locked.
1792  */
1793 static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1794                                                          bool acct_surplus)
1795 {
1796         int nr_nodes, node;
1797         int ret = 0;
1798
1799         for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1800                 /*
1801                  * If we're returning unused surplus pages, only examine
1802                  * nodes with surplus pages.
1803                  */
1804                 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
1805                     !list_empty(&h->hugepage_freelists[node])) {
1806                         struct page *page =
1807                                 list_entry(h->hugepage_freelists[node].next,
1808                                           struct page, lru);
1809                         list_del(&page->lru);
1810                         h->free_huge_pages--;
1811                         h->free_huge_pages_node[node]--;
1812                         if (acct_surplus) {
1813                                 h->surplus_huge_pages--;
1814                                 h->surplus_huge_pages_node[node]--;
1815                         }
1816                         update_and_free_page(h, page);
1817                         ret = 1;
1818                         break;
1819                 }
1820         }
1821
1822         return ret;
1823 }
1824
1825 /*
1826  * Dissolve a given free hugepage into free buddy pages. This function does
1827  * nothing for in-use hugepages and non-hugepages.
1828  * This function returns values like below:
1829  *
1830  *  -EBUSY: failed to dissolved free hugepages or the hugepage is in-use
1831  *          (allocated or reserved.)
1832  *       0: successfully dissolved free hugepages or the page is not a
1833  *          hugepage (considered as already dissolved)
1834  */
1835 int dissolve_free_huge_page(struct page *page)
1836 {
1837         int rc = -EBUSY;
1838
1839         /* Not to disrupt normal path by vainly holding hugetlb_lock */
1840         if (!PageHuge(page))
1841                 return 0;
1842
1843         spin_lock(&hugetlb_lock);
1844         if (!PageHuge(page)) {
1845                 rc = 0;
1846                 goto out;
1847         }
1848
1849         if (!page_count(page)) {
1850                 struct page *head = compound_head(page);
1851                 struct hstate *h = page_hstate(head);
1852                 int nid = page_to_nid(head);
1853                 if (h->free_huge_pages - h->resv_huge_pages == 0)
1854                         goto out;
1855                 /*
1856                  * Move PageHWPoison flag from head page to the raw error page,
1857                  * which makes any subpages rather than the error page reusable.
1858                  */
1859                 if (PageHWPoison(head) && page != head) {
1860                         SetPageHWPoison(page);
1861                         ClearPageHWPoison(head);
1862                 }
1863                 list_del(&head->lru);
1864                 h->free_huge_pages--;
1865                 h->free_huge_pages_node[nid]--;
1866                 h->max_huge_pages--;
1867                 update_and_free_page(h, head);
1868                 rc = 0;
1869         }
1870 out:
1871         spin_unlock(&hugetlb_lock);
1872         return rc;
1873 }
1874
1875 /*
1876  * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
1877  * make specified memory blocks removable from the system.
1878  * Note that this will dissolve a free gigantic hugepage completely, if any
1879  * part of it lies within the given range.
1880  * Also note that if dissolve_free_huge_page() returns with an error, all
1881  * free hugepages that were dissolved before that error are lost.
1882  */
1883 int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
1884 {
1885         unsigned long pfn;
1886         struct page *page;
1887         int rc = 0;
1888
1889         if (!hugepages_supported())
1890                 return rc;
1891
1892         for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order) {
1893                 page = pfn_to_page(pfn);
1894                 rc = dissolve_free_huge_page(page);
1895                 if (rc)
1896                         break;
1897         }
1898
1899         return rc;
1900 }
1901
1902 /*
1903  * Allocates a fresh surplus page from the page allocator.
1904  */
1905 static struct page *alloc_surplus_huge_page(struct hstate *h, gfp_t gfp_mask,
1906                 int nid, nodemask_t *nmask)
1907 {
1908         struct page *page = NULL;
1909
1910         if (hstate_is_gigantic(h))
1911                 return NULL;
1912
1913         spin_lock(&hugetlb_lock);
1914         if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages)
1915                 goto out_unlock;
1916         spin_unlock(&hugetlb_lock);
1917
1918         page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
1919         if (!page)
1920                 return NULL;
1921
1922         spin_lock(&hugetlb_lock);
1923         /*
1924          * We could have raced with the pool size change.
1925          * Double check that and simply deallocate the new page
1926          * if we would end up overcommiting the surpluses. Abuse
1927          * temporary page to workaround the nasty free_huge_page
1928          * codeflow
1929          */
1930         if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
1931                 SetPageHugeTemporary(page);
1932                 spin_unlock(&hugetlb_lock);
1933                 put_page(page);
1934                 return NULL;
1935         } else {
1936                 h->surplus_huge_pages++;
1937                 h->surplus_huge_pages_node[page_to_nid(page)]++;
1938         }
1939
1940 out_unlock:
1941         spin_unlock(&hugetlb_lock);
1942
1943         return page;
1944 }
1945
1946 struct page *alloc_migrate_huge_page(struct hstate *h, gfp_t gfp_mask,
1947                                      int nid, nodemask_t *nmask)
1948 {
1949         struct page *page;
1950
1951         if (hstate_is_gigantic(h))
1952                 return NULL;
1953
1954         page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
1955         if (!page)
1956                 return NULL;
1957
1958         /*
1959          * We do not account these pages as surplus because they are only
1960          * temporary and will be released properly on the last reference
1961          */
1962         SetPageHugeTemporary(page);
1963
1964         return page;
1965 }
1966
1967 /*
1968  * Use the VMA's mpolicy to allocate a huge page from the buddy.
1969  */
1970 static
1971 struct page *alloc_buddy_huge_page_with_mpol(struct hstate *h,
1972                 struct vm_area_struct *vma, unsigned long addr)
1973 {
1974         struct page *page;
1975         struct mempolicy *mpol;
1976         gfp_t gfp_mask = htlb_alloc_mask(h);
1977         int nid;
1978         nodemask_t *nodemask;
1979
1980         nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
1981         page = alloc_surplus_huge_page(h, gfp_mask, nid, nodemask);
1982         mpol_cond_put(mpol);
1983
1984         return page;
1985 }
1986
1987 /* page migration callback function */
1988 struct page *alloc_huge_page_node(struct hstate *h, int nid)
1989 {
1990         gfp_t gfp_mask = htlb_alloc_mask(h);
1991         struct page *page = NULL;
1992
1993         if (nid != NUMA_NO_NODE)
1994                 gfp_mask |= __GFP_THISNODE;
1995
1996         spin_lock(&hugetlb_lock);
1997         if (h->free_huge_pages - h->resv_huge_pages > 0)
1998                 page = dequeue_huge_page_nodemask(h, gfp_mask, nid, NULL);
1999         spin_unlock(&hugetlb_lock);
2000
2001         if (!page)
2002                 page = alloc_migrate_huge_page(h, gfp_mask, nid, NULL);
2003
2004         return page;
2005 }
2006
2007 /* page migration callback function */
2008 struct page *alloc_huge_page_nodemask(struct hstate *h, int preferred_nid,
2009                 nodemask_t *nmask)
2010 {
2011         gfp_t gfp_mask = htlb_alloc_mask(h);
2012
2013         spin_lock(&hugetlb_lock);
2014         if (h->free_huge_pages - h->resv_huge_pages > 0) {
2015                 struct page *page;
2016
2017                 page = dequeue_huge_page_nodemask(h, gfp_mask, preferred_nid, nmask);
2018                 if (page) {
2019                         spin_unlock(&hugetlb_lock);
2020                         return page;
2021                 }
2022         }
2023         spin_unlock(&hugetlb_lock);
2024
2025         return alloc_migrate_huge_page(h, gfp_mask, preferred_nid, nmask);
2026 }
2027
2028 /* mempolicy aware migration callback */
2029 struct page *alloc_huge_page_vma(struct hstate *h, struct vm_area_struct *vma,
2030                 unsigned long address)
2031 {
2032         struct mempolicy *mpol;
2033         nodemask_t *nodemask;
2034         struct page *page;
2035         gfp_t gfp_mask;
2036         int node;
2037
2038         gfp_mask = htlb_alloc_mask(h);
2039         node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
2040         page = alloc_huge_page_nodemask(h, node, nodemask);
2041         mpol_cond_put(mpol);
2042
2043         return page;
2044 }
2045
2046 /*
2047  * Increase the hugetlb pool such that it can accommodate a reservation
2048  * of size 'delta'.
2049  */
2050 static int gather_surplus_pages(struct hstate *h, int delta)
2051         __must_hold(&hugetlb_lock)
2052 {
2053         struct list_head surplus_list;
2054         struct page *page, *tmp;
2055         int ret, i;
2056         int needed, allocated;
2057         bool alloc_ok = true;
2058
2059         needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
2060         if (needed <= 0) {
2061                 h->resv_huge_pages += delta;
2062                 return 0;
2063         }
2064
2065         allocated = 0;
2066         INIT_LIST_HEAD(&surplus_list);
2067
2068         ret = -ENOMEM;
2069 retry:
2070         spin_unlock(&hugetlb_lock);
2071         for (i = 0; i < needed; i++) {
2072                 page = alloc_surplus_huge_page(h, htlb_alloc_mask(h),
2073                                 NUMA_NO_NODE, NULL);
2074                 if (!page) {
2075                         alloc_ok = false;
2076                         break;
2077                 }
2078                 list_add(&page->lru, &surplus_list);
2079                 cond_resched();
2080         }
2081         allocated += i;
2082
2083         /*
2084          * After retaking hugetlb_lock, we need to recalculate 'needed'
2085          * because either resv_huge_pages or free_huge_pages may have changed.
2086          */
2087         spin_lock(&hugetlb_lock);
2088         needed = (h->resv_huge_pages + delta) -
2089                         (h->free_huge_pages + allocated);
2090         if (needed > 0) {
2091                 if (alloc_ok)
2092                         goto retry;
2093                 /*
2094                  * We were not able to allocate enough pages to
2095                  * satisfy the entire reservation so we free what
2096                  * we've allocated so far.
2097                  */
2098                 goto free;
2099         }
2100         /*
2101          * The surplus_list now contains _at_least_ the number of extra pages
2102          * needed to accommodate the reservation.  Add the appropriate number
2103          * of pages to the hugetlb pool and free the extras back to the buddy
2104          * allocator.  Commit the entire reservation here to prevent another
2105          * process from stealing the pages as they are added to the pool but
2106          * before they are reserved.
2107          */
2108         needed += allocated;
2109         h->resv_huge_pages += delta;
2110         ret = 0;
2111
2112         /* Free the needed pages to the hugetlb pool */
2113         list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
2114                 if ((--needed) < 0)
2115                         break;
2116                 /*
2117                  * This page is now managed by the hugetlb allocator and has
2118                  * no users -- drop the buddy allocator's reference.
2119                  */
2120                 put_page_testzero(page);
2121                 VM_BUG_ON_PAGE(page_count(page), page);
2122                 enqueue_huge_page(h, page);
2123         }
2124 free:
2125         spin_unlock(&hugetlb_lock);
2126
2127         /* Free unnecessary surplus pages to the buddy allocator */
2128         list_for_each_entry_safe(page, tmp, &surplus_list, lru)
2129                 put_page(page);
2130         spin_lock(&hugetlb_lock);
2131
2132         return ret;
2133 }
2134
2135 /*
2136  * This routine has two main purposes:
2137  * 1) Decrement the reservation count (resv_huge_pages) by the value passed
2138  *    in unused_resv_pages.  This corresponds to the prior adjustments made
2139  *    to the associated reservation map.
2140  * 2) Free any unused surplus pages that may have been allocated to satisfy
2141  *    the reservation.  As many as unused_resv_pages may be freed.
2142  *
2143  * Called with hugetlb_lock held.  However, the lock could be dropped (and
2144  * reacquired) during calls to cond_resched_lock.  Whenever dropping the lock,
2145  * we must make sure nobody else can claim pages we are in the process of
2146  * freeing.  Do this by ensuring resv_huge_page always is greater than the
2147  * number of huge pages we plan to free when dropping the lock.
2148  */
2149 static void return_unused_surplus_pages(struct hstate *h,
2150                                         unsigned long unused_resv_pages)
2151 {
2152         unsigned long nr_pages;
2153
2154         /* Cannot return gigantic pages currently */
2155         if (hstate_is_gigantic(h))
2156                 goto out;
2157
2158         /*
2159          * Part (or even all) of the reservation could have been backed
2160          * by pre-allocated pages. Only free surplus pages.
2161          */
2162         nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
2163
2164         /*
2165          * We want to release as many surplus pages as possible, spread
2166          * evenly across all nodes with memory. Iterate across these nodes
2167          * until we can no longer free unreserved surplus pages. This occurs
2168          * when the nodes with surplus pages have no free pages.
2169          * free_pool_huge_page() will balance the the freed pages across the
2170          * on-line nodes with memory and will handle the hstate accounting.
2171          *
2172          * Note that we decrement resv_huge_pages as we free the pages.  If
2173          * we drop the lock, resv_huge_pages will still be sufficiently large
2174          * to cover subsequent pages we may free.
2175          */
2176         while (nr_pages--) {
2177                 h->resv_huge_pages--;
2178                 unused_resv_pages--;
2179                 if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
2180                         goto out;
2181                 cond_resched_lock(&hugetlb_lock);
2182         }
2183
2184 out:
2185         /* Fully uncommit the reservation */
2186         h->resv_huge_pages -= unused_resv_pages;
2187 }
2188
2189
2190 /*
2191  * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
2192  * are used by the huge page allocation routines to manage reservations.
2193  *
2194  * vma_needs_reservation is called to determine if the huge page at addr
2195  * within the vma has an associated reservation.  If a reservation is
2196  * needed, the value 1 is returned.  The caller is then responsible for
2197  * managing the global reservation and subpool usage counts.  After
2198  * the huge page has been allocated, vma_commit_reservation is called
2199  * to add the page to the reservation map.  If the page allocation fails,
2200  * the reservation must be ended instead of committed.  vma_end_reservation
2201  * is called in such cases.
2202  *
2203  * In the normal case, vma_commit_reservation returns the same value
2204  * as the preceding vma_needs_reservation call.  The only time this
2205  * is not the case is if a reserve map was changed between calls.  It
2206  * is the responsibility of the caller to notice the difference and
2207  * take appropriate action.
2208  *
2209  * vma_add_reservation is used in error paths where a reservation must
2210  * be restored when a newly allocated huge page must be freed.  It is
2211  * to be called after calling vma_needs_reservation to determine if a
2212  * reservation exists.
2213  */
2214 enum vma_resv_mode {
2215         VMA_NEEDS_RESV,
2216         VMA_COMMIT_RESV,
2217         VMA_END_RESV,
2218         VMA_ADD_RESV,
2219 };
2220 static long __vma_reservation_common(struct hstate *h,
2221                                 struct vm_area_struct *vma, unsigned long addr,
2222                                 enum vma_resv_mode mode)
2223 {
2224         struct resv_map *resv;
2225         pgoff_t idx;
2226         long ret;
2227         long dummy_out_regions_needed;
2228
2229         resv = vma_resv_map(vma);
2230         if (!resv)
2231                 return 1;
2232
2233         idx = vma_hugecache_offset(h, vma, addr);
2234         switch (mode) {
2235         case VMA_NEEDS_RESV:
2236                 ret = region_chg(resv, idx, idx + 1, &dummy_out_regions_needed);
2237                 /* We assume that vma_reservation_* routines always operate on
2238                  * 1 page, and that adding to resv map a 1 page entry can only
2239                  * ever require 1 region.
2240                  */
2241                 VM_BUG_ON(dummy_out_regions_needed != 1);
2242                 break;
2243         case VMA_COMMIT_RESV:
2244                 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2245                 /* region_add calls of range 1 should never fail. */
2246                 VM_BUG_ON(ret < 0);
2247                 break;
2248         case VMA_END_RESV:
2249                 region_abort(resv, idx, idx + 1, 1);
2250                 ret = 0;
2251                 break;
2252         case VMA_ADD_RESV:
2253                 if (vma->vm_flags & VM_MAYSHARE) {
2254                         ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2255                         /* region_add calls of range 1 should never fail. */
2256                         VM_BUG_ON(ret < 0);
2257                 } else {
2258                         region_abort(resv, idx, idx + 1, 1);
2259                         ret = region_del(resv, idx, idx + 1);
2260                 }
2261                 break;
2262         default:
2263                 BUG();
2264         }
2265
2266         if (vma->vm_flags & VM_MAYSHARE)
2267                 return ret;
2268         else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && ret >= 0) {
2269                 /*
2270                  * In most cases, reserves always exist for private mappings.
2271                  * However, a file associated with mapping could have been
2272                  * hole punched or truncated after reserves were consumed.
2273                  * As subsequent fault on such a range will not use reserves.
2274                  * Subtle - The reserve map for private mappings has the
2275                  * opposite meaning than that of shared mappings.  If NO
2276                  * entry is in the reserve map, it means a reservation exists.
2277                  * If an entry exists in the reserve map, it means the
2278                  * reservation has already been consumed.  As a result, the
2279                  * return value of this routine is the opposite of the
2280                  * value returned from reserve map manipulation routines above.
2281                  */
2282                 if (ret)
2283                         return 0;
2284                 else
2285                         return 1;
2286         }
2287         else
2288                 return ret < 0 ? ret : 0;
2289 }
2290
2291 static long vma_needs_reservation(struct hstate *h,
2292                         struct vm_area_struct *vma, unsigned long addr)
2293 {
2294         return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
2295 }
2296
2297 static long vma_commit_reservation(struct hstate *h,
2298                         struct vm_area_struct *vma, unsigned long addr)
2299 {
2300         return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
2301 }
2302
2303 static void vma_end_reservation(struct hstate *h,
2304                         struct vm_area_struct *vma, unsigned long addr)
2305 {
2306         (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
2307 }
2308
2309 static long vma_add_reservation(struct hstate *h,
2310                         struct vm_area_struct *vma, unsigned long addr)
2311 {
2312         return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
2313 }
2314
2315 /*
2316  * This routine is called to restore a reservation on error paths.  In the
2317  * specific error paths, a huge page was allocated (via alloc_huge_page)
2318  * and is about to be freed.  If a reservation for the page existed,
2319  * alloc_huge_page would have consumed the reservation and set PagePrivate
2320  * in the newly allocated page.  When the page is freed via free_huge_page,
2321  * the global reservation count will be incremented if PagePrivate is set.
2322  * However, free_huge_page can not adjust the reserve map.  Adjust the
2323  * reserve map here to be consistent with global reserve count adjustments
2324  * to be made by free_huge_page.
2325  */
2326 static void restore_reserve_on_error(struct hstate *h,
2327                         struct vm_area_struct *vma, unsigned long address,
2328                         struct page *page)
2329 {
2330         if (unlikely(PagePrivate(page))) {
2331                 long rc = vma_needs_reservation(h, vma, address);
2332
2333                 if (unlikely(rc < 0)) {
2334                         /*
2335                          * Rare out of memory condition in reserve map
2336                          * manipulation.  Clear PagePrivate so that
2337                          * global reserve count will not be incremented
2338                          * by free_huge_page.  This will make it appear
2339                          * as though the reservation for this page was
2340                          * consumed.  This may prevent the task from
2341                          * faulting in the page at a later time.  This
2342                          * is better than inconsistent global huge page
2343                          * accounting of reserve counts.
2344                          */
2345                         ClearPagePrivate(page);
2346                 } else if (rc) {
2347                         rc = vma_add_reservation(h, vma, address);
2348                         if (unlikely(rc < 0))
2349                                 /*
2350                                  * See above comment about rare out of
2351                                  * memory condition.
2352                                  */
2353                                 ClearPagePrivate(page);
2354                 } else
2355                         vma_end_reservation(h, vma, address);
2356         }
2357 }
2358
2359 struct page *alloc_huge_page(struct vm_area_struct *vma,
2360                                     unsigned long addr, int avoid_reserve)
2361 {
2362         struct hugepage_subpool *spool = subpool_vma(vma);
2363         struct hstate *h = hstate_vma(vma);
2364         struct page *page;
2365         long map_chg, map_commit;
2366         long gbl_chg;
2367         int ret, idx;
2368         struct hugetlb_cgroup *h_cg;
2369         bool deferred_reserve;
2370
2371         idx = hstate_index(h);
2372         /*
2373          * Examine the region/reserve map to determine if the process
2374          * has a reservation for the page to be allocated.  A return
2375          * code of zero indicates a reservation exists (no change).
2376          */
2377         map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
2378         if (map_chg < 0)
2379                 return ERR_PTR(-ENOMEM);
2380
2381         /*
2382          * Processes that did not create the mapping will have no
2383          * reserves as indicated by the region/reserve map. Check
2384          * that the allocation will not exceed the subpool limit.
2385          * Allocations for MAP_NORESERVE mappings also need to be
2386          * checked against any subpool limit.
2387          */
2388         if (map_chg || avoid_reserve) {
2389                 gbl_chg = hugepage_subpool_get_pages(spool, 1);
2390                 if (gbl_chg < 0) {
2391                         vma_end_reservation(h, vma, addr);
2392                         return ERR_PTR(-ENOSPC);
2393                 }
2394
2395                 /*
2396                  * Even though there was no reservation in the region/reserve
2397                  * map, there could be reservations associated with the
2398                  * subpool that can be used.  This would be indicated if the
2399                  * return value of hugepage_subpool_get_pages() is zero.
2400                  * However, if avoid_reserve is specified we still avoid even
2401                  * the subpool reservations.
2402                  */
2403                 if (avoid_reserve)
2404                         gbl_chg = 1;
2405         }
2406
2407         /* If this allocation is not consuming a reservation, charge it now.
2408          */
2409         deferred_reserve = map_chg || avoid_reserve || !vma_resv_map(vma);
2410         if (deferred_reserve) {
2411                 ret = hugetlb_cgroup_charge_cgroup_rsvd(
2412                         idx, pages_per_huge_page(h), &h_cg);
2413                 if (ret)
2414                         goto out_subpool_put;
2415         }
2416
2417         ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
2418         if (ret)
2419                 goto out_uncharge_cgroup_reservation;
2420
2421         spin_lock(&hugetlb_lock);
2422         /*
2423          * glb_chg is passed to indicate whether or not a page must be taken
2424          * from the global free pool (global change).  gbl_chg == 0 indicates
2425          * a reservation exists for the allocation.
2426          */
2427         page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
2428         if (!page) {
2429                 spin_unlock(&hugetlb_lock);
2430                 page = alloc_buddy_huge_page_with_mpol(h, vma, addr);
2431                 if (!page)
2432                         goto out_uncharge_cgroup;
2433                 if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
2434                         SetPagePrivate(page);
2435                         h->resv_huge_pages--;
2436                 }
2437                 spin_lock(&hugetlb_lock);
2438                 list_move(&page->lru, &h->hugepage_activelist);
2439                 /* Fall through */
2440         }
2441         hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
2442         /* If allocation is not consuming a reservation, also store the
2443          * hugetlb_cgroup pointer on the page.
2444          */
2445         if (deferred_reserve) {
2446                 hugetlb_cgroup_commit_charge_rsvd(idx, pages_per_huge_page(h),
2447                                                   h_cg, page);
2448         }
2449
2450         spin_unlock(&hugetlb_lock);
2451
2452         set_page_private(page, (unsigned long)spool);
2453
2454         map_commit = vma_commit_reservation(h, vma, addr);
2455         if (unlikely(map_chg > map_commit)) {
2456                 /*
2457                  * The page was added to the reservation map between
2458                  * vma_needs_reservation and vma_commit_reservation.
2459                  * This indicates a race with hugetlb_reserve_pages.
2460                  * Adjust for the subpool count incremented above AND
2461                  * in hugetlb_reserve_pages for the same page.  Also,
2462                  * the reservation count added in hugetlb_reserve_pages
2463                  * no longer applies.
2464                  */
2465                 long rsv_adjust;
2466
2467                 rsv_adjust = hugepage_subpool_put_pages(spool, 1);
2468                 hugetlb_acct_memory(h, -rsv_adjust);
2469         }
2470         return page;
2471
2472 out_uncharge_cgroup:
2473         hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
2474 out_uncharge_cgroup_reservation:
2475         if (deferred_reserve)
2476                 hugetlb_cgroup_uncharge_cgroup_rsvd(idx, pages_per_huge_page(h),
2477                                                     h_cg);
2478 out_subpool_put:
2479         if (map_chg || avoid_reserve)
2480                 hugepage_subpool_put_pages(spool, 1);
2481         vma_end_reservation(h, vma, addr);
2482         return ERR_PTR(-ENOSPC);
2483 }
2484
2485 int alloc_bootmem_huge_page(struct hstate *h)
2486         __attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
2487 int __alloc_bootmem_huge_page(struct hstate *h)
2488 {
2489         struct huge_bootmem_page *m;
2490         int nr_nodes, node;
2491
2492         for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
2493                 void *addr;
2494
2495                 addr = memblock_alloc_try_nid_raw(
2496                                 huge_page_size(h), huge_page_size(h),
2497                                 0, MEMBLOCK_ALLOC_ACCESSIBLE, node);
2498                 if (addr) {
2499                         /*
2500                          * Use the beginning of the huge page to store the
2501                          * huge_bootmem_page struct (until gather_bootmem
2502                          * puts them into the mem_map).
2503                          */
2504                         m = addr;
2505                         goto found;
2506                 }
2507         }
2508         return 0;
2509
2510 found:
2511         BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h)));
2512         /* Put them into a private list first because mem_map is not up yet */
2513         INIT_LIST_HEAD(&m->list);
2514         list_add(&m->list, &huge_boot_pages);
2515         m->hstate = h;
2516         return 1;
2517 }
2518
2519 static void __init prep_compound_huge_page(struct page *page,
2520                 unsigned int order)
2521 {
2522         if (unlikely(order > (MAX_ORDER - 1)))
2523                 prep_compound_gigantic_page(page, order);
2524         else
2525                 prep_compound_page(page, order);
2526 }
2527
2528 /* Put bootmem huge pages into the standard lists after mem_map is up */
2529 static void __init gather_bootmem_prealloc(void)
2530 {
2531         struct huge_bootmem_page *m;
2532
2533         list_for_each_entry(m, &huge_boot_pages, list) {
2534                 struct page *page = virt_to_page(m);
2535                 struct hstate *h = m->hstate;
2536
2537                 WARN_ON(page_count(page) != 1);
2538                 prep_compound_huge_page(page, h->order);
2539                 WARN_ON(PageReserved(page));
2540                 prep_new_huge_page(h, page, page_to_nid(page));
2541                 put_page(page); /* free it into the hugepage allocator */
2542
2543                 /*
2544                  * If we had gigantic hugepages allocated at boot time, we need
2545                  * to restore the 'stolen' pages to totalram_pages in order to
2546                  * fix confusing memory reports from free(1) and another
2547                  * side-effects, like CommitLimit going negative.
2548                  */
2549                 if (hstate_is_gigantic(h))
2550                         adjust_managed_page_count(page, 1 << h->order);
2551                 cond_resched();
2552         }
2553 }
2554
2555 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
2556 {
2557         unsigned long i;
2558         nodemask_t *node_alloc_noretry;
2559
2560         if (!hstate_is_gigantic(h)) {
2561                 /*
2562                  * Bit mask controlling how hard we retry per-node allocations.
2563                  * Ignore errors as lower level routines can deal with
2564                  * node_alloc_noretry == NULL.  If this kmalloc fails at boot
2565                  * time, we are likely in bigger trouble.
2566                  */
2567                 node_alloc_noretry = kmalloc(sizeof(*node_alloc_noretry),
2568                                                 GFP_KERNEL);
2569         } else {
2570                 /* allocations done at boot time */
2571                 node_alloc_noretry = NULL;
2572         }
2573
2574         /* bit mask controlling how hard we retry per-node allocations */
2575         if (node_alloc_noretry)
2576                 nodes_clear(*node_alloc_noretry);
2577
2578         for (i = 0; i < h->max_huge_pages; ++i) {
2579                 if (hstate_is_gigantic(h)) {
2580                         if (hugetlb_cma_size) {
2581                                 pr_warn_once("HugeTLB: hugetlb_cma is enabled, skip boot time allocation\n");
2582                                 break;
2583                         }
2584                         if (!alloc_bootmem_huge_page(h))
2585                                 break;
2586                 } else if (!alloc_pool_huge_page(h,
2587                                          &node_states[N_MEMORY],
2588                                          node_alloc_noretry))
2589                         break;
2590                 cond_resched();
2591         }
2592         if (i < h->max_huge_pages) {
2593                 char buf[32];
2594
2595                 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
2596                 pr_warn("HugeTLB: allocating %lu of page size %s failed.  Only allocated %lu hugepages.\n",
2597                         h->max_huge_pages, buf, i);
2598                 h->max_huge_pages = i;
2599         }
2600
2601         kfree(node_alloc_noretry);
2602 }
2603
2604 static void __init hugetlb_init_hstates(void)
2605 {
2606         struct hstate *h;
2607
2608         for_each_hstate(h) {
2609                 if (minimum_order > huge_page_order(h))
2610                         minimum_order = huge_page_order(h);
2611
2612                 /* oversize hugepages were init'ed in early boot */
2613                 if (!hstate_is_gigantic(h))
2614                         hugetlb_hstate_alloc_pages(h);
2615         }
2616         VM_BUG_ON(minimum_order == UINT_MAX);
2617 }
2618
2619 static void __init report_hugepages(void)
2620 {
2621         struct hstate *h;
2622
2623         for_each_hstate(h) {
2624                 char buf[32];
2625
2626                 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
2627                 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
2628                         buf, h->free_huge_pages);
2629         }
2630 }
2631
2632 #ifdef CONFIG_HIGHMEM
2633 static void try_to_free_low(struct hstate *h, unsigned long count,
2634                                                 nodemask_t *nodes_allowed)
2635 {
2636         int i;
2637
2638         if (hstate_is_gigantic(h))
2639                 return;
2640
2641         for_each_node_mask(i, *nodes_allowed) {
2642                 struct page *page, *next;
2643                 struct list_head *freel = &h->hugepage_freelists[i];
2644                 list_for_each_entry_safe(page, next, freel, lru) {
2645                         if (count >= h->nr_huge_pages)
2646                                 return;
2647                         if (PageHighMem(page))
2648                                 continue;
2649                         list_del(&page->lru);
2650                         update_and_free_page(h, page);
2651                         h->free_huge_pages--;
2652                         h->free_huge_pages_node[page_to_nid(page)]--;
2653                 }
2654         }
2655 }
2656 #else
2657 static inline void try_to_free_low(struct hstate *h, unsigned long count,
2658                                                 nodemask_t *nodes_allowed)
2659 {
2660 }
2661 #endif
2662
2663 /*
2664  * Increment or decrement surplus_huge_pages.  Keep node-specific counters
2665  * balanced by operating on them in a round-robin fashion.
2666  * Returns 1 if an adjustment was made.
2667  */
2668 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
2669                                 int delta)
2670 {
2671         int nr_nodes, node;
2672
2673         VM_BUG_ON(delta != -1 && delta != 1);
2674
2675         if (delta < 0) {
2676                 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
2677                         if (h->surplus_huge_pages_node[node])
2678                                 goto found;
2679                 }
2680         } else {
2681                 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2682                         if (h->surplus_huge_pages_node[node] <
2683                                         h->nr_huge_pages_node[node])
2684                                 goto found;
2685                 }
2686         }
2687         return 0;
2688
2689 found:
2690         h->surplus_huge_pages += delta;
2691         h->surplus_huge_pages_node[node] += delta;
2692         return 1;
2693 }
2694
2695 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
2696 static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid,
2697                               nodemask_t *nodes_allowed)
2698 {
2699         unsigned long min_count, ret;
2700         NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL);
2701
2702         /*
2703          * Bit mask controlling how hard we retry per-node allocations.
2704          * If we can not allocate the bit mask, do not attempt to allocate
2705          * the requested huge pages.
2706          */
2707         if (node_alloc_noretry)
2708                 nodes_clear(*node_alloc_noretry);
2709         else
2710                 return -ENOMEM;
2711
2712         spin_lock(&hugetlb_lock);
2713
2714         /*
2715          * Check for a node specific request.
2716          * Changing node specific huge page count may require a corresponding
2717          * change to the global count.  In any case, the passed node mask
2718          * (nodes_allowed) will restrict alloc/free to the specified node.
2719          */
2720         if (nid != NUMA_NO_NODE) {
2721                 unsigned long old_count = count;
2722
2723                 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
2724                 /*
2725                  * User may have specified a large count value which caused the
2726                  * above calculation to overflow.  In this case, they wanted
2727                  * to allocate as many huge pages as possible.  Set count to
2728                  * largest possible value to align with their intention.
2729                  */
2730                 if (count < old_count)
2731                         count = ULONG_MAX;
2732         }
2733
2734         /*
2735          * Gigantic pages runtime allocation depend on the capability for large
2736          * page range allocation.
2737          * If the system does not provide this feature, return an error when
2738          * the user tries to allocate gigantic pages but let the user free the
2739          * boottime allocated gigantic pages.
2740          */
2741         if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) {
2742                 if (count > persistent_huge_pages(h)) {
2743                         spin_unlock(&hugetlb_lock);
2744                         NODEMASK_FREE(node_alloc_noretry);
2745                         return -EINVAL;
2746                 }
2747                 /* Fall through to decrease pool */
2748         }
2749
2750         /*
2751          * Increase the pool size
2752          * First take pages out of surplus state.  Then make up the
2753          * remaining difference by allocating fresh huge pages.
2754          *
2755          * We might race with alloc_surplus_huge_page() here and be unable
2756          * to convert a surplus huge page to a normal huge page. That is
2757          * not critical, though, it just means the overall size of the
2758          * pool might be one hugepage larger than it needs to be, but
2759          * within all the constraints specified by the sysctls.
2760          */
2761         while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
2762                 if (!adjust_pool_surplus(h, nodes_allowed, -1))
2763                         break;
2764         }
2765
2766         while (count > persistent_huge_pages(h)) {
2767                 /*
2768                  * If this allocation races such that we no longer need the
2769                  * page, free_huge_page will handle it by freeing the page
2770                  * and reducing the surplus.
2771                  */
2772                 spin_unlock(&hugetlb_lock);
2773
2774                 /* yield cpu to avoid soft lockup */
2775                 cond_resched();
2776
2777                 ret = alloc_pool_huge_page(h, nodes_allowed,
2778                                                 node_alloc_noretry);
2779                 spin_lock(&hugetlb_lock);
2780                 if (!ret)
2781                         goto out;
2782
2783                 /* Bail for signals. Probably ctrl-c from user */
2784                 if (signal_pending(current))
2785                         goto out;
2786         }
2787
2788         /*
2789          * Decrease the pool size
2790          * First return free pages to the buddy allocator (being careful
2791          * to keep enough around to satisfy reservations).  Then place
2792          * pages into surplus state as needed so the pool will shrink
2793          * to the desired size as pages become free.
2794          *
2795          * By placing pages into the surplus state independent of the
2796          * overcommit value, we are allowing the surplus pool size to
2797          * exceed overcommit. There are few sane options here. Since
2798          * alloc_surplus_huge_page() is checking the global counter,
2799          * though, we'll note that we're not allowed to exceed surplus
2800          * and won't grow the pool anywhere else. Not until one of the
2801          * sysctls are changed, or the surplus pages go out of use.
2802          */
2803         min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
2804         min_count = max(count, min_count);
2805         try_to_free_low(h, min_count, nodes_allowed);
2806         while (min_count < persistent_huge_pages(h)) {
2807                 if (!free_pool_huge_page(h, nodes_allowed, 0))
2808                         break;
2809                 cond_resched_lock(&hugetlb_lock);
2810         }
2811         while (count < persistent_huge_pages(h)) {
2812                 if (!adjust_pool_surplus(h, nodes_allowed, 1))
2813                         break;
2814         }
2815 out:
2816         h->max_huge_pages = persistent_huge_pages(h);
2817         spin_unlock(&hugetlb_lock);
2818
2819         NODEMASK_FREE(node_alloc_noretry);
2820
2821         return 0;
2822 }
2823
2824 #define HSTATE_ATTR_RO(_name) \
2825         static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2826
2827 #define HSTATE_ATTR(_name) \
2828         static struct kobj_attribute _name##_attr = \
2829                 __ATTR(_name, 0644, _name##_show, _name##_store)
2830
2831 static struct kobject *hugepages_kobj;
2832 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2833
2834 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
2835
2836 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
2837 {
2838         int i;
2839
2840         for (i = 0; i < HUGE_MAX_HSTATE; i++)
2841                 if (hstate_kobjs[i] == kobj) {
2842                         if (nidp)
2843                                 *nidp = NUMA_NO_NODE;
2844                         return &hstates[i];
2845                 }
2846
2847         return kobj_to_node_hstate(kobj, nidp);
2848 }
2849
2850 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
2851                                         struct kobj_attribute *attr, char *buf)
2852 {
2853         struct hstate *h;
2854         unsigned long nr_huge_pages;
2855         int nid;
2856
2857         h = kobj_to_hstate(kobj, &nid);
2858         if (nid == NUMA_NO_NODE)
2859                 nr_huge_pages = h->nr_huge_pages;
2860         else
2861                 nr_huge_pages = h->nr_huge_pages_node[nid];
2862
2863         return sprintf(buf, "%lu\n", nr_huge_pages);
2864 }
2865
2866 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
2867                                            struct hstate *h, int nid,
2868                                            unsigned long count, size_t len)
2869 {
2870         int err;
2871         nodemask_t nodes_allowed, *n_mask;
2872
2873         if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
2874                 return -EINVAL;
2875
2876         if (nid == NUMA_NO_NODE) {
2877                 /*
2878                  * global hstate attribute
2879                  */
2880                 if (!(obey_mempolicy &&
2881                                 init_nodemask_of_mempolicy(&nodes_allowed)))
2882                         n_mask = &node_states[N_MEMORY];
2883                 else
2884                         n_mask = &nodes_allowed;
2885         } else {
2886                 /*
2887                  * Node specific request.  count adjustment happens in
2888                  * set_max_huge_pages() after acquiring hugetlb_lock.
2889                  */
2890                 init_nodemask_of_node(&nodes_allowed, nid);
2891                 n_mask = &nodes_allowed;
2892         }
2893
2894         err = set_max_huge_pages(h, count, nid, n_mask);
2895
2896         return err ? err : len;
2897 }
2898
2899 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
2900                                          struct kobject *kobj, const char *buf,
2901                                          size_t len)
2902 {
2903         struct hstate *h;
2904         unsigned long count;
2905         int nid;
2906         int err;
2907
2908         err = kstrtoul(buf, 10, &count);
2909         if (err)
2910                 return err;
2911
2912         h = kobj_to_hstate(kobj, &nid);
2913         return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
2914 }
2915
2916 static ssize_t nr_hugepages_show(struct kobject *kobj,
2917                                        struct kobj_attribute *attr, char *buf)
2918 {
2919         return nr_hugepages_show_common(kobj, attr, buf);
2920 }
2921
2922 static ssize_t nr_hugepages_store(struct kobject *kobj,
2923                struct kobj_attribute *attr, const char *buf, size_t len)
2924 {
2925         return nr_hugepages_store_common(false, kobj, buf, len);
2926 }
2927 HSTATE_ATTR(nr_hugepages);
2928
2929 #ifdef CONFIG_NUMA
2930
2931 /*
2932  * hstate attribute for optionally mempolicy-based constraint on persistent
2933  * huge page alloc/free.
2934  */
2935 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
2936                                        struct kobj_attribute *attr, char *buf)
2937 {
2938         return nr_hugepages_show_common(kobj, attr, buf);
2939 }
2940
2941 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
2942                struct kobj_attribute *attr, const char *buf, size_t len)
2943 {
2944         return nr_hugepages_store_common(true, kobj, buf, len);
2945 }
2946 HSTATE_ATTR(nr_hugepages_mempolicy);
2947 #endif
2948
2949
2950 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
2951                                         struct kobj_attribute *attr, char *buf)
2952 {
2953         struct hstate *h = kobj_to_hstate(kobj, NULL);
2954         return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
2955 }
2956
2957 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
2958                 struct kobj_attribute *attr, const char *buf, size_t count)
2959 {
2960         int err;
2961         unsigned long input;
2962         struct hstate *h = kobj_to_hstate(kobj, NULL);
2963
2964         if (hstate_is_gigantic(h))
2965                 return -EINVAL;
2966
2967         err = kstrtoul(buf, 10, &input);
2968         if (err)
2969                 return err;
2970
2971         spin_lock(&hugetlb_lock);
2972         h->nr_overcommit_huge_pages = input;
2973         spin_unlock(&hugetlb_lock);
2974
2975         return count;
2976 }
2977 HSTATE_ATTR(nr_overcommit_hugepages);
2978
2979 static ssize_t free_hugepages_show(struct kobject *kobj,
2980                                         struct kobj_attribute *attr, char *buf)
2981 {
2982         struct hstate *h;
2983         unsigned long free_huge_pages;
2984         int nid;
2985
2986         h = kobj_to_hstate(kobj, &nid);
2987         if (nid == NUMA_NO_NODE)
2988                 free_huge_pages = h->free_huge_pages;
2989         else
2990                 free_huge_pages = h->free_huge_pages_node[nid];
2991
2992         return sprintf(buf, "%lu\n", free_huge_pages);
2993 }
2994 HSTATE_ATTR_RO(free_hugepages);
2995
2996 static ssize_t resv_hugepages_show(struct kobject *kobj,
2997                                         struct kobj_attribute *attr, char *buf)
2998 {
2999         struct hstate *h = kobj_to_hstate(kobj, NULL);
3000         return sprintf(buf, "%lu\n", h->resv_huge_pages);
3001 }
3002 HSTATE_ATTR_RO(resv_hugepages);
3003
3004 static ssize_t surplus_hugepages_show(struct kobject *kobj,
3005                                         struct kobj_attribute *attr, char *buf)
3006 {
3007         struct hstate *h;
3008         unsigned long surplus_huge_pages;
3009         int nid;
3010
3011         h = kobj_to_hstate(kobj, &nid);
3012         if (nid == NUMA_NO_NODE)
3013                 surplus_huge_pages = h->surplus_huge_pages;
3014         else
3015                 surplus_huge_pages = h->surplus_huge_pages_node[nid];
3016
3017         return sprintf(buf, "%lu\n", surplus_huge_pages);
3018 }
3019 HSTATE_ATTR_RO(surplus_hugepages);
3020
3021 static struct attribute *hstate_attrs[] = {
3022         &nr_hugepages_attr.attr,
3023         &nr_overcommit_hugepages_attr.attr,
3024         &free_hugepages_attr.attr,
3025         &resv_hugepages_attr.attr,
3026         &surplus_hugepages_attr.attr,
3027 #ifdef CONFIG_NUMA
3028         &nr_hugepages_mempolicy_attr.attr,
3029 #endif
3030         NULL,
3031 };
3032
3033 static const struct attribute_group hstate_attr_group = {
3034         .attrs = hstate_attrs,
3035 };
3036
3037 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
3038                                     struct kobject **hstate_kobjs,
3039                                     const struct attribute_group *hstate_attr_group)
3040 {
3041         int retval;
3042         int hi = hstate_index(h);
3043
3044         hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
3045         if (!hstate_kobjs[hi])
3046                 return -ENOMEM;
3047
3048         retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
3049         if (retval)
3050                 kobject_put(hstate_kobjs[hi]);
3051
3052         return retval;
3053 }
3054
3055 static void __init hugetlb_sysfs_init(void)
3056 {
3057         struct hstate *h;
3058         int err;
3059
3060         hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
3061         if (!hugepages_kobj)
3062                 return;
3063
3064         for_each_hstate(h) {
3065                 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
3066                                          hstate_kobjs, &hstate_attr_group);
3067                 if (err)
3068                         pr_err("HugeTLB: Unable to add hstate %s", h->name);
3069         }
3070 }
3071
3072 #ifdef CONFIG_NUMA
3073
3074 /*
3075  * node_hstate/s - associate per node hstate attributes, via their kobjects,
3076  * with node devices in node_devices[] using a parallel array.  The array
3077  * index of a node device or _hstate == node id.
3078  * This is here to avoid any static dependency of the node device driver, in
3079  * the base kernel, on the hugetlb module.
3080  */
3081 struct node_hstate {
3082         struct kobject          *hugepages_kobj;
3083         struct kobject          *hstate_kobjs[HUGE_MAX_HSTATE];
3084 };
3085 static struct node_hstate node_hstates[MAX_NUMNODES];
3086
3087 /*
3088  * A subset of global hstate attributes for node devices
3089  */
3090 static struct attribute *per_node_hstate_attrs[] = {
3091         &nr_hugepages_attr.attr,
3092         &free_hugepages_attr.attr,
3093         &surplus_hugepages_attr.attr,
3094         NULL,
3095 };
3096
3097 static const struct attribute_group per_node_hstate_attr_group = {
3098         .attrs = per_node_hstate_attrs,
3099 };
3100
3101 /*
3102  * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
3103  * Returns node id via non-NULL nidp.
3104  */
3105 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
3106 {
3107         int nid;
3108
3109         for (nid = 0; nid < nr_node_ids; nid++) {
3110                 struct node_hstate *nhs = &node_hstates[nid];
3111                 int i;
3112                 for (i = 0; i < HUGE_MAX_HSTATE; i++)
3113                         if (nhs->hstate_kobjs[i] == kobj) {
3114                                 if (nidp)
3115                                         *nidp = nid;
3116                                 return &hstates[i];
3117                         }
3118         }
3119
3120         BUG();
3121         return NULL;
3122 }
3123
3124 /*
3125  * Unregister hstate attributes from a single node device.
3126  * No-op if no hstate attributes attached.
3127  */
3128 static void hugetlb_unregister_node(struct node *node)
3129 {
3130         struct hstate *h;
3131         struct node_hstate *nhs = &node_hstates[node->dev.id];
3132
3133         if (!nhs->hugepages_kobj)
3134                 return;         /* no hstate attributes */
3135
3136         for_each_hstate(h) {
3137                 int idx = hstate_index(h);
3138                 if (nhs->hstate_kobjs[idx]) {
3139                         kobject_put(nhs->hstate_kobjs[idx]);
3140                         nhs->hstate_kobjs[idx] = NULL;
3141                 }
3142         }
3143
3144         kobject_put(nhs->hugepages_kobj);
3145         nhs->hugepages_kobj = NULL;
3146 }
3147
3148
3149 /*
3150  * Register hstate attributes for a single node device.
3151  * No-op if attributes already registered.
3152  */
3153 static void hugetlb_register_node(struct node *node)
3154 {
3155         struct hstate *h;
3156         struct node_hstate *nhs = &node_hstates[node->dev.id];
3157         int err;
3158
3159         if (nhs->hugepages_kobj)
3160                 return;         /* already allocated */
3161
3162         nhs->hugepages_kobj = kobject_create_and_add("hugepages",
3163                                                         &node->dev.kobj);
3164         if (!nhs->hugepages_kobj)
3165                 return;
3166
3167         for_each_hstate(h) {
3168                 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
3169                                                 nhs->hstate_kobjs,
3170                                                 &per_node_hstate_attr_group);
3171                 if (err) {
3172                         pr_err("HugeTLB: Unable to add hstate %s for node %d\n",
3173                                 h->name, node->dev.id);
3174                         hugetlb_unregister_node(node);
3175                         break;
3176                 }
3177         }
3178 }
3179
3180 /*
3181  * hugetlb init time:  register hstate attributes for all registered node
3182  * devices of nodes that have memory.  All on-line nodes should have
3183  * registered their associated device by this time.
3184  */
3185 static void __init hugetlb_register_all_nodes(void)
3186 {
3187         int nid;
3188
3189         for_each_node_state(nid, N_MEMORY) {
3190                 struct node *node = node_devices[nid];
3191                 if (node->dev.id == nid)
3192                         hugetlb_register_node(node);
3193         }
3194
3195         /*
3196          * Let the node device driver know we're here so it can
3197          * [un]register hstate attributes on node hotplug.
3198          */
3199         register_hugetlbfs_with_node(hugetlb_register_node,
3200                                      hugetlb_unregister_node);
3201 }
3202 #else   /* !CONFIG_NUMA */
3203
3204 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
3205 {
3206         BUG();
3207         if (nidp)
3208                 *nidp = -1;
3209         return NULL;
3210 }
3211
3212 static void hugetlb_register_all_nodes(void) { }
3213
3214 #endif
3215
3216 static int __init hugetlb_init(void)
3217 {
3218         int i;
3219
3220         if (!hugepages_supported()) {
3221                 if (hugetlb_max_hstate || default_hstate_max_huge_pages)
3222                         pr_warn("HugeTLB: huge pages not supported, ignoring associated command-line parameters\n");
3223                 return 0;
3224         }
3225
3226         /*
3227          * Make sure HPAGE_SIZE (HUGETLB_PAGE_ORDER) hstate exists.  Some
3228          * architectures depend on setup being done here.
3229          */
3230         hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
3231         if (!parsed_default_hugepagesz) {
3232                 /*
3233                  * If we did not parse a default huge page size, set
3234                  * default_hstate_idx to HPAGE_SIZE hstate. And, if the
3235                  * number of huge pages for this default size was implicitly
3236                  * specified, set that here as well.
3237                  * Note that the implicit setting will overwrite an explicit
3238                  * setting.  A warning will be printed in this case.
3239                  */
3240                 default_hstate_idx = hstate_index(size_to_hstate(HPAGE_SIZE));
3241                 if (default_hstate_max_huge_pages) {
3242                         if (default_hstate.max_huge_pages) {
3243                                 char buf[32];
3244
3245                                 string_get_size(huge_page_size(&default_hstate),
3246                                         1, STRING_UNITS_2, buf, 32);
3247                                 pr_warn("HugeTLB: Ignoring hugepages=%lu associated with %s page size\n",
3248                                         default_hstate.max_huge_pages, buf);
3249                                 pr_warn("HugeTLB: Using hugepages=%lu for number of default huge pages\n",
3250                                         default_hstate_max_huge_pages);
3251                         }
3252                         default_hstate.max_huge_pages =
3253                                 default_hstate_max_huge_pages;
3254                 }
3255         }
3256
3257         hugetlb_cma_check();
3258         hugetlb_init_hstates();
3259         gather_bootmem_prealloc();
3260         report_hugepages();
3261
3262         hugetlb_sysfs_init();
3263         hugetlb_register_all_nodes();
3264         hugetlb_cgroup_file_init();
3265
3266 #ifdef CONFIG_SMP
3267         num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
3268 #else
3269         num_fault_mutexes = 1;
3270 #endif
3271         hugetlb_fault_mutex_table =
3272                 kmalloc_array(num_fault_mutexes, sizeof(struct mutex),
3273                               GFP_KERNEL);
3274         BUG_ON(!hugetlb_fault_mutex_table);
3275
3276         for (i = 0; i < num_fault_mutexes; i++)
3277                 mutex_init(&hugetlb_fault_mutex_table[i]);
3278         return 0;
3279 }
3280 subsys_initcall(hugetlb_init);
3281
3282 /* Overwritten by architectures with more huge page sizes */
3283 bool __init __attribute((weak)) arch_hugetlb_valid_size(unsigned long size)
3284 {
3285         return size == HPAGE_SIZE;
3286 }
3287
3288 void __init hugetlb_add_hstate(unsigned int order)
3289 {
3290         struct hstate *h;
3291         unsigned long i;
3292
3293         if (size_to_hstate(PAGE_SIZE << order)) {
3294                 return;
3295         }
3296         BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
3297         BUG_ON(order == 0);
3298         h = &hstates[hugetlb_max_hstate++];
3299         h->order = order;
3300         h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
3301         h->nr_huge_pages = 0;
3302         h->free_huge_pages = 0;
3303         for (i = 0; i < MAX_NUMNODES; ++i)
3304                 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
3305         INIT_LIST_HEAD(&h->hugepage_activelist);
3306         h->next_nid_to_alloc = first_memory_node;
3307         h->next_nid_to_free = first_memory_node;
3308         snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
3309                                         huge_page_size(h)/1024);
3310
3311         parsed_hstate = h;
3312 }
3313
3314 /*
3315  * hugepages command line processing
3316  * hugepages normally follows a valid hugepagsz or default_hugepagsz
3317  * specification.  If not, ignore the hugepages value.  hugepages can also
3318  * be the first huge page command line  option in which case it implicitly
3319  * specifies the number of huge pages for the default size.
3320  */
3321 static int __init hugepages_setup(char *s)
3322 {
3323         unsigned long *mhp;
3324         static unsigned long *last_mhp;
3325
3326         if (!parsed_valid_hugepagesz) {
3327                 pr_warn("HugeTLB: hugepages=%s does not follow a valid hugepagesz, ignoring\n", s);
3328                 parsed_valid_hugepagesz = true;
3329                 return 0;
3330         }
3331
3332         /*
3333          * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter
3334          * yet, so this hugepages= parameter goes to the "default hstate".
3335          * Otherwise, it goes with the previously parsed hugepagesz or
3336          * default_hugepagesz.
3337          */
3338         else if (!hugetlb_max_hstate)
3339                 mhp = &default_hstate_max_huge_pages;
3340         else
3341                 mhp = &parsed_hstate->max_huge_pages;
3342
3343         if (mhp == last_mhp) {
3344                 pr_warn("HugeTLB: hugepages= specified twice without interleaving hugepagesz=, ignoring hugepages=%s\n", s);
3345                 return 0;
3346         }
3347
3348         if (sscanf(s, "%lu", mhp) <= 0)
3349                 *mhp = 0;
3350
3351         /*
3352          * Global state is always initialized later in hugetlb_init.
3353          * But we need to allocate >= MAX_ORDER hstates here early to still
3354          * use the bootmem allocator.
3355          */
3356         if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
3357                 hugetlb_hstate_alloc_pages(parsed_hstate);
3358
3359         last_mhp = mhp;
3360
3361         return 1;
3362 }
3363 __setup("hugepages=", hugepages_setup);
3364
3365 /*
3366  * hugepagesz command line processing
3367  * A specific huge page size can only be specified once with hugepagesz.
3368  * hugepagesz is followed by hugepages on the command line.  The global
3369  * variable 'parsed_valid_hugepagesz' is used to determine if prior
3370  * hugepagesz argument was valid.
3371  */
3372 static int __init hugepagesz_setup(char *s)
3373 {
3374         unsigned long size;
3375         struct hstate *h;
3376
3377         parsed_valid_hugepagesz = false;
3378         size = (unsigned long)memparse(s, NULL);
3379
3380         if (!arch_hugetlb_valid_size(size)) {
3381                 pr_err("HugeTLB: unsupported hugepagesz=%s\n", s);
3382                 return 0;
3383         }
3384
3385         h = size_to_hstate(size);
3386         if (h) {
3387                 /*
3388                  * hstate for this size already exists.  This is normally
3389                  * an error, but is allowed if the existing hstate is the
3390                  * default hstate.  More specifically, it is only allowed if
3391                  * the number of huge pages for the default hstate was not
3392                  * previously specified.
3393                  */
3394                 if (!parsed_default_hugepagesz ||  h != &default_hstate ||
3395                     default_hstate.max_huge_pages) {
3396                         pr_warn("HugeTLB: hugepagesz=%s specified twice, ignoring\n", s);
3397                         return 0;
3398                 }
3399
3400                 /*
3401                  * No need to call hugetlb_add_hstate() as hstate already
3402                  * exists.  But, do set parsed_hstate so that a following
3403                  * hugepages= parameter will be applied to this hstate.
3404                  */
3405                 parsed_hstate = h;
3406                 parsed_valid_hugepagesz = true;
3407                 return 1;
3408         }
3409
3410         hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
3411         parsed_valid_hugepagesz = true;
3412         return 1;
3413 }
3414 __setup("hugepagesz=", hugepagesz_setup);
3415
3416 /*
3417  * default_hugepagesz command line input
3418  * Only one instance of default_hugepagesz allowed on command line.
3419  */
3420 static int __init default_hugepagesz_setup(char *s)
3421 {
3422         unsigned long size;
3423
3424         parsed_valid_hugepagesz = false;
3425         if (parsed_default_hugepagesz) {
3426                 pr_err("HugeTLB: default_hugepagesz previously specified, ignoring %s\n", s);
3427                 return 0;
3428         }
3429
3430         size = (unsigned long)memparse(s, NULL);
3431
3432         if (!arch_hugetlb_valid_size(size)) {
3433                 pr_err("HugeTLB: unsupported default_hugepagesz=%s\n", s);
3434                 return 0;
3435         }
3436
3437         hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
3438         parsed_valid_hugepagesz = true;
3439         parsed_default_hugepagesz = true;
3440         default_hstate_idx = hstate_index(size_to_hstate(size));
3441
3442         /*
3443          * The number of default huge pages (for this size) could have been
3444          * specified as the first hugetlb parameter: hugepages=X.  If so,
3445          * then default_hstate_max_huge_pages is set.  If the default huge
3446          * page size is gigantic (>= MAX_ORDER), then the pages must be
3447          * allocated here from bootmem allocator.
3448          */
3449         if (default_hstate_max_huge_pages) {
3450                 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
3451                 if (hstate_is_gigantic(&default_hstate))
3452                         hugetlb_hstate_alloc_pages(&default_hstate);
3453                 default_hstate_max_huge_pages = 0;
3454         }
3455
3456         return 1;
3457 }
3458 __setup("default_hugepagesz=", default_hugepagesz_setup);
3459
3460 static unsigned int cpuset_mems_nr(unsigned int *array)
3461 {
3462         int node;
3463         unsigned int nr = 0;
3464
3465         for_each_node_mask(node, cpuset_current_mems_allowed)
3466                 nr += array[node];
3467
3468         return nr;
3469 }
3470
3471 #ifdef CONFIG_SYSCTL
3472 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
3473                          struct ctl_table *table, int write,
3474                          void *buffer, size_t *length, loff_t *ppos)
3475 {
3476         struct hstate *h = &default_hstate;
3477         unsigned long tmp = h->max_huge_pages;
3478         int ret;
3479
3480         if (!hugepages_supported())
3481                 return -EOPNOTSUPP;
3482
3483         table->data = &tmp;
3484         table->maxlen = sizeof(unsigned long);
3485         ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
3486         if (ret)
3487                 goto out;
3488
3489         if (write)
3490                 ret = __nr_hugepages_store_common(obey_mempolicy, h,
3491                                                   NUMA_NO_NODE, tmp, *length);
3492 out:
3493         return ret;
3494 }
3495
3496 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
3497                           void *buffer, size_t *length, loff_t *ppos)
3498 {
3499
3500         return hugetlb_sysctl_handler_common(false, table, write,
3501                                                         buffer, length, ppos);
3502 }
3503
3504 #ifdef CONFIG_NUMA
3505 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
3506                           void *buffer, size_t *length, loff_t *ppos)
3507 {
3508         return hugetlb_sysctl_handler_common(true, table, write,
3509                                                         buffer, length, ppos);
3510 }
3511 #endif /* CONFIG_NUMA */
3512
3513 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
3514                 void *buffer, size_t *length, loff_t *ppos)
3515 {
3516         struct hstate *h = &default_hstate;
3517         unsigned long tmp;
3518         int ret;
3519
3520         if (!hugepages_supported())
3521                 return -EOPNOTSUPP;
3522
3523         tmp = h->nr_overcommit_huge_pages;
3524
3525         if (write && hstate_is_gigantic(h))
3526                 return -EINVAL;
3527
3528         table->data = &tmp;
3529         table->maxlen = sizeof(unsigned long);
3530         ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
3531         if (ret)
3532                 goto out;
3533
3534         if (write) {
3535                 spin_lock(&hugetlb_lock);
3536                 h->nr_overcommit_huge_pages = tmp;
3537                 spin_unlock(&hugetlb_lock);
3538         }
3539 out:
3540         return ret;
3541 }
3542
3543 #endif /* CONFIG_SYSCTL */
3544
3545 void hugetlb_report_meminfo(struct seq_file *m)
3546 {
3547         struct hstate *h;
3548         unsigned long total = 0;
3549
3550         if (!hugepages_supported())
3551                 return;
3552
3553         for_each_hstate(h) {
3554                 unsigned long count = h->nr_huge_pages;
3555
3556                 total += (PAGE_SIZE << huge_page_order(h)) * count;
3557
3558                 if (h == &default_hstate)
3559                         seq_printf(m,
3560                                    "HugePages_Total:   %5lu\n"
3561                                    "HugePages_Free:    %5lu\n"
3562                                    "HugePages_Rsvd:    %5lu\n"
3563                                    "HugePages_Surp:    %5lu\n"
3564                                    "Hugepagesize:   %8lu kB\n",
3565                                    count,
3566                                    h->free_huge_pages,
3567                                    h->resv_huge_pages,
3568                                    h->surplus_huge_pages,
3569                                    (PAGE_SIZE << huge_page_order(h)) / 1024);
3570         }
3571
3572         seq_printf(m, "Hugetlb:        %8lu kB\n", total / 1024);
3573 }
3574
3575 int hugetlb_report_node_meminfo(int nid, char *buf)
3576 {
3577         struct hstate *h = &default_hstate;
3578         if (!hugepages_supported())
3579                 return 0;
3580         return sprintf(buf,
3581                 "Node %d HugePages_Total: %5u\n"
3582                 "Node %d HugePages_Free:  %5u\n"
3583                 "Node %d HugePages_Surp:  %5u\n",
3584                 nid, h->nr_huge_pages_node[nid],
3585                 nid, h->free_huge_pages_node[nid],
3586                 nid, h->surplus_huge_pages_node[nid]);
3587 }
3588
3589 void hugetlb_show_meminfo(void)
3590 {
3591         struct hstate *h;
3592         int nid;
3593
3594         if (!hugepages_supported())
3595                 return;
3596
3597         for_each_node_state(nid, N_MEMORY)
3598                 for_each_hstate(h)
3599                         pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
3600                                 nid,
3601                                 h->nr_huge_pages_node[nid],
3602                                 h->free_huge_pages_node[nid],
3603                                 h->surplus_huge_pages_node[nid],
3604                                 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
3605 }
3606
3607 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
3608 {
3609         seq_printf(m, "HugetlbPages:\t%8lu kB\n",
3610                    atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
3611 }
3612
3613 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
3614 unsigned long hugetlb_total_pages(void)
3615 {
3616         struct hstate *h;
3617         unsigned long nr_total_pages = 0;
3618
3619         for_each_hstate(h)
3620                 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
3621         return nr_total_pages;
3622 }
3623
3624 static int hugetlb_acct_memory(struct hstate *h, long delta)
3625 {
3626         int ret = -ENOMEM;
3627
3628         spin_lock(&hugetlb_lock);
3629         /*
3630          * When cpuset is configured, it breaks the strict hugetlb page
3631          * reservation as the accounting is done on a global variable. Such
3632          * reservation is completely rubbish in the presence of cpuset because
3633          * the reservation is not checked against page availability for the
3634          * current cpuset. Application can still potentially OOM'ed by kernel
3635          * with lack of free htlb page in cpuset that the task is in.
3636          * Attempt to enforce strict accounting with cpuset is almost
3637          * impossible (or too ugly) because cpuset is too fluid that
3638          * task or memory node can be dynamically moved between cpusets.
3639          *
3640          * The change of semantics for shared hugetlb mapping with cpuset is
3641          * undesirable. However, in order to preserve some of the semantics,
3642          * we fall back to check against current free page availability as
3643          * a best attempt and hopefully to minimize the impact of changing
3644          * semantics that cpuset has.
3645          */
3646         if (delta > 0) {
3647                 if (gather_surplus_pages(h, delta) < 0)
3648                         goto out;
3649
3650                 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
3651                         return_unused_surplus_pages(h, delta);
3652                         goto out;
3653                 }
3654         }
3655
3656         ret = 0;
3657         if (delta < 0)
3658                 return_unused_surplus_pages(h, (unsigned long) -delta);
3659
3660 out:
3661         spin_unlock(&hugetlb_lock);
3662         return ret;
3663 }
3664
3665 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
3666 {
3667         struct resv_map *resv = vma_resv_map(vma);
3668
3669         /*
3670          * This new VMA should share its siblings reservation map if present.
3671          * The VMA will only ever have a valid reservation map pointer where
3672          * it is being copied for another still existing VMA.  As that VMA
3673          * has a reference to the reservation map it cannot disappear until
3674          * after this open call completes.  It is therefore safe to take a
3675          * new reference here without additional locking.
3676          */
3677         if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3678                 kref_get(&resv->refs);
3679 }
3680
3681 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
3682 {
3683         struct hstate *h = hstate_vma(vma);
3684         struct resv_map *resv = vma_resv_map(vma);
3685         struct hugepage_subpool *spool = subpool_vma(vma);
3686         unsigned long reserve, start, end;
3687         long gbl_reserve;
3688
3689         if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3690                 return;
3691
3692         start = vma_hugecache_offset(h, vma, vma->vm_start);
3693         end = vma_hugecache_offset(h, vma, vma->vm_end);
3694
3695         reserve = (end - start) - region_count(resv, start, end);
3696         hugetlb_cgroup_uncharge_counter(resv, start, end);
3697         if (reserve) {
3698                 /*
3699                  * Decrement reserve counts.  The global reserve count may be
3700                  * adjusted if the subpool has a minimum size.
3701                  */
3702                 gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
3703                 hugetlb_acct_memory(h, -gbl_reserve);
3704         }
3705
3706         kref_put(&resv->refs, resv_map_release);
3707 }
3708
3709 static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
3710 {
3711         if (addr & ~(huge_page_mask(hstate_vma(vma))))
3712                 return -EINVAL;
3713         return 0;
3714 }
3715
3716 static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma)
3717 {
3718         struct hstate *hstate = hstate_vma(vma);
3719
3720         return 1UL << huge_page_shift(hstate);
3721 }
3722
3723 /*
3724  * We cannot handle pagefaults against hugetlb pages at all.  They cause
3725  * handle_mm_fault() to try to instantiate regular-sized pages in the
3726  * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
3727  * this far.
3728  */
3729 static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf)
3730 {
3731         BUG();
3732         return 0;
3733 }
3734
3735 /*
3736  * When a new function is introduced to vm_operations_struct and added
3737  * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops.
3738  * This is because under System V memory model, mappings created via
3739  * shmget/shmat with "huge page" specified are backed by hugetlbfs files,
3740  * their original vm_ops are overwritten with shm_vm_ops.
3741  */
3742 const struct vm_operations_struct hugetlb_vm_ops = {
3743         .fault = hugetlb_vm_op_fault,
3744         .open = hugetlb_vm_op_open,
3745         .close = hugetlb_vm_op_close,
3746         .split = hugetlb_vm_op_split,
3747         .pagesize = hugetlb_vm_op_pagesize,
3748 };
3749
3750 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
3751                                 int writable)
3752 {
3753         pte_t entry;
3754
3755         if (writable) {
3756                 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
3757                                          vma->vm_page_prot)));
3758         } else {
3759                 entry = huge_pte_wrprotect(mk_huge_pte(page,
3760                                            vma->vm_page_prot));
3761         }
3762         entry = pte_mkyoung(entry);
3763         entry = pte_mkhuge(entry);
3764         entry = arch_make_huge_pte(entry, vma, page, writable);
3765
3766         return entry;
3767 }
3768
3769 static void set_huge_ptep_writable(struct vm_area_struct *vma,
3770                                    unsigned long address, pte_t *ptep)
3771 {
3772         pte_t entry;
3773
3774         entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
3775         if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
3776                 update_mmu_cache(vma, address, ptep);
3777 }
3778
3779 bool is_hugetlb_entry_migration(pte_t pte)
3780 {
3781         swp_entry_t swp;
3782
3783         if (huge_pte_none(pte) || pte_present(pte))
3784                 return false;
3785         swp = pte_to_swp_entry(pte);
3786         if (non_swap_entry(swp) && is_migration_entry(swp))
3787                 return true;
3788         else
3789                 return false;
3790 }
3791
3792 static int is_hugetlb_entry_hwpoisoned(pte_t pte)
3793 {
3794         swp_entry_t swp;
3795
3796         if (huge_pte_none(pte) || pte_present(pte))
3797                 return 0;
3798         swp = pte_to_swp_entry(pte);
3799         if (non_swap_entry(swp) && is_hwpoison_entry(swp))
3800                 return 1;
3801         else
3802                 return 0;
3803 }
3804
3805 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
3806                             struct vm_area_struct *vma)
3807 {
3808         pte_t *src_pte, *dst_pte, entry, dst_entry;
3809         struct page *ptepage;
3810         unsigned long addr;
3811         int cow;
3812         struct hstate *h = hstate_vma(vma);
3813         unsigned long sz = huge_page_size(h);
3814         struct address_space *mapping = vma->vm_file->f_mapping;
3815         struct mmu_notifier_range range;
3816         int ret = 0;
3817
3818         cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
3819
3820         if (cow) {
3821                 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, src,
3822                                         vma->vm_start,
3823                                         vma->vm_end);
3824                 mmu_notifier_invalidate_range_start(&range);
3825         } else {
3826                 /*
3827                  * For shared mappings i_mmap_rwsem must be held to call
3828                  * huge_pte_alloc, otherwise the returned ptep could go
3829                  * away if part of a shared pmd and another thread calls
3830                  * huge_pmd_unshare.
3831                  */
3832                 i_mmap_lock_read(mapping);
3833         }
3834
3835         for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
3836                 spinlock_t *src_ptl, *dst_ptl;
3837                 src_pte = huge_pte_offset(src, addr, sz);
3838                 if (!src_pte)
3839                         continue;
3840                 dst_pte = huge_pte_alloc(dst, addr, sz);
3841                 if (!dst_pte) {
3842                         ret = -ENOMEM;
3843                         break;
3844                 }
3845
3846                 /*
3847                  * If the pagetables are shared don't copy or take references.
3848                  * dst_pte == src_pte is the common case of src/dest sharing.
3849                  *
3850                  * However, src could have 'unshared' and dst shares with
3851                  * another vma.  If dst_pte !none, this implies sharing.
3852                  * Check here before taking page table lock, and once again
3853                  * after taking the lock below.
3854                  */
3855                 dst_entry = huge_ptep_get(dst_pte);
3856                 if ((dst_pte == src_pte) || !huge_pte_none(dst_entry))
3857                         continue;
3858
3859                 dst_ptl = huge_pte_lock(h, dst, dst_pte);
3860                 src_ptl = huge_pte_lockptr(h, src, src_pte);
3861                 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
3862                 entry = huge_ptep_get(src_pte);
3863                 dst_entry = huge_ptep_get(dst_pte);
3864                 if (huge_pte_none(entry) || !huge_pte_none(dst_entry)) {
3865                         /*
3866                          * Skip if src entry none.  Also, skip in the
3867                          * unlikely case dst entry !none as this implies
3868                          * sharing with another vma.
3869                          */
3870                         ;
3871                 } else if (unlikely(is_hugetlb_entry_migration(entry) ||
3872                                     is_hugetlb_entry_hwpoisoned(entry))) {
3873                         swp_entry_t swp_entry = pte_to_swp_entry(entry);
3874
3875                         if (is_write_migration_entry(swp_entry) && cow) {
3876                                 /*
3877                                  * COW mappings require pages in both
3878                                  * parent and child to be set to read.
3879                                  */
3880                                 make_migration_entry_read(&swp_entry);
3881                                 entry = swp_entry_to_pte(swp_entry);
3882                                 set_huge_swap_pte_at(src, addr, src_pte,
3883                                                      entry, sz);
3884                         }
3885                         set_huge_swap_pte_at(dst, addr, dst_pte, entry, sz);
3886                 } else {
3887                         if (cow) {
3888                                 /*
3889                                  * No need to notify as we are downgrading page
3890                                  * table protection not changing it to point
3891                                  * to a new page.
3892                                  *
3893                                  * See Documentation/vm/mmu_notifier.rst
3894                                  */
3895                                 huge_ptep_set_wrprotect(src, addr, src_pte);
3896                         }
3897                         entry = huge_ptep_get(src_pte);
3898                         ptepage = pte_page(entry);
3899                         get_page(ptepage);
3900                         page_dup_rmap(ptepage, true);
3901                         set_huge_pte_at(dst, addr, dst_pte, entry);
3902                         hugetlb_count_add(pages_per_huge_page(h), dst);
3903                 }
3904                 spin_unlock(src_ptl);
3905                 spin_unlock(dst_ptl);
3906         }
3907
3908         if (cow)
3909                 mmu_notifier_invalidate_range_end(&range);
3910         else
3911                 i_mmap_unlock_read(mapping);
3912
3913         return ret;
3914 }
3915
3916 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
3917                             unsigned long start, unsigned long end,
3918                             struct page *ref_page)
3919 {
3920         struct mm_struct *mm = vma->vm_mm;
3921         unsigned long address;
3922         pte_t *ptep;
3923         pte_t pte;
3924         spinlock_t *ptl;
3925         struct page *page;
3926         struct hstate *h = hstate_vma(vma);
3927         unsigned long sz = huge_page_size(h);
3928         struct mmu_notifier_range range;
3929
3930         WARN_ON(!is_vm_hugetlb_page(vma));
3931         BUG_ON(start & ~huge_page_mask(h));
3932         BUG_ON(end & ~huge_page_mask(h));
3933
3934         /*
3935          * This is a hugetlb vma, all the pte entries should point
3936          * to huge page.
3937          */
3938         tlb_change_page_size(tlb, sz);
3939         tlb_start_vma(tlb, vma);
3940
3941         /*
3942          * If sharing possible, alert mmu notifiers of worst case.
3943          */
3944         mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, mm, start,
3945                                 end);
3946         adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
3947         mmu_notifier_invalidate_range_start(&range);
3948         address = start;
3949         for (; address < end; address += sz) {
3950                 ptep = huge_pte_offset(mm, address, sz);
3951                 if (!ptep)
3952                         continue;
3953
3954                 ptl = huge_pte_lock(h, mm, ptep);
3955                 if (huge_pmd_unshare(mm, &address, ptep)) {
3956                         spin_unlock(ptl);
3957                         /*
3958                          * We just unmapped a page of PMDs by clearing a PUD.
3959                          * The caller's TLB flush range should cover this area.
3960                          */
3961                         continue;
3962                 }
3963
3964                 pte = huge_ptep_get(ptep);
3965                 if (huge_pte_none(pte)) {
3966                         spin_unlock(ptl);
3967                         continue;
3968                 }
3969
3970                 /*
3971                  * Migrating hugepage or HWPoisoned hugepage is already
3972                  * unmapped and its refcount is dropped, so just clear pte here.
3973                  */
3974                 if (unlikely(!pte_present(pte))) {
3975                         huge_pte_clear(mm, address, ptep, sz);
3976                         spin_unlock(ptl);
3977                         continue;
3978                 }
3979
3980                 page = pte_page(pte);
3981                 /*
3982                  * If a reference page is supplied, it is because a specific
3983                  * page is being unmapped, not a range. Ensure the page we
3984                  * are about to unmap is the actual page of interest.
3985                  */
3986                 if (ref_page) {
3987                         if (page != ref_page) {
3988                                 spin_unlock(ptl);
3989                                 continue;
3990                         }
3991                         /*
3992                          * Mark the VMA as having unmapped its page so that
3993                          * future faults in this VMA will fail rather than
3994                          * looking like data was lost
3995                          */
3996                         set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
3997                 }
3998
3999                 pte = huge_ptep_get_and_clear(mm, address, ptep);
4000                 tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
4001                 if (huge_pte_dirty(pte))
4002                         set_page_dirty(page);
4003
4004                 hugetlb_count_sub(pages_per_huge_page(h), mm);
4005                 page_remove_rmap(page, true);
4006
4007                 spin_unlock(ptl);
4008                 tlb_remove_page_size(tlb, page, huge_page_size(h));
4009                 /*
4010                  * Bail out after unmapping reference page if supplied
4011                  */
4012                 if (ref_page)
4013                         break;
4014         }
4015         mmu_notifier_invalidate_range_end(&range);
4016         tlb_end_vma(tlb, vma);
4017 }
4018
4019 void __unmap_hugepage_range_final(struct mmu_gather *tlb,
4020                           struct vm_area_struct *vma, unsigned long start,
4021                           unsigned long end, struct page *ref_page)
4022 {
4023         __unmap_hugepage_range(tlb, vma, start, end, ref_page);
4024
4025         /*
4026          * Clear this flag so that x86's huge_pmd_share page_table_shareable
4027          * test will fail on a vma being torn down, and not grab a page table
4028          * on its way out.  We're lucky that the flag has such an appropriate
4029          * name, and can in fact be safely cleared here. We could clear it
4030          * before the __unmap_hugepage_range above, but all that's necessary
4031          * is to clear it before releasing the i_mmap_rwsem. This works
4032          * because in the context this is called, the VMA is about to be
4033          * destroyed and the i_mmap_rwsem is held.
4034          */
4035         vma->vm_flags &= ~VM_MAYSHARE;
4036 }
4037
4038 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
4039                           unsigned long end, struct page *ref_page)
4040 {
4041         struct mm_struct *mm;
4042         struct mmu_gather tlb;
4043         unsigned long tlb_start = start;
4044         unsigned long tlb_end = end;
4045
4046         /*
4047          * If shared PMDs were possibly used within this vma range, adjust
4048          * start/end for worst case tlb flushing.
4049          * Note that we can not be sure if PMDs are shared until we try to
4050          * unmap pages.  However, we want to make sure TLB flushing covers
4051          * the largest possible range.
4052          */
4053         adjust_range_if_pmd_sharing_possible(vma, &tlb_start, &tlb_end);
4054
4055         mm = vma->vm_mm;
4056
4057         tlb_gather_mmu(&tlb, mm, tlb_start, tlb_end);
4058         __unmap_hugepage_range(&tlb, vma, start, end, ref_page);
4059         tlb_finish_mmu(&tlb, tlb_start, tlb_end);
4060 }
4061
4062 /*
4063  * This is called when the original mapper is failing to COW a MAP_PRIVATE
4064  * mappping it owns the reserve page for. The intention is to unmap the page
4065  * from other VMAs and let the children be SIGKILLed if they are faulting the
4066  * same region.
4067  */
4068 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
4069                               struct page *page, unsigned long address)
4070 {
4071         struct hstate *h = hstate_vma(vma);
4072         struct vm_area_struct *iter_vma;
4073         struct address_space *mapping;
4074         pgoff_t pgoff;
4075
4076         /*
4077          * vm_pgoff is in PAGE_SIZE units, hence the different calculation
4078          * from page cache lookup which is in HPAGE_SIZE units.
4079          */
4080         address = address & huge_page_mask(h);
4081         pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
4082                         vma->vm_pgoff;
4083         mapping = vma->vm_file->f_mapping;
4084
4085         /*
4086          * Take the mapping lock for the duration of the table walk. As
4087          * this mapping should be shared between all the VMAs,
4088          * __unmap_hugepage_range() is called as the lock is already held
4089          */
4090         i_mmap_lock_write(mapping);
4091         vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
4092                 /* Do not unmap the current VMA */
4093                 if (iter_vma == vma)
4094                         continue;
4095
4096                 /*
4097                  * Shared VMAs have their own reserves and do not affect
4098                  * MAP_PRIVATE accounting but it is possible that a shared
4099                  * VMA is using the same page so check and skip such VMAs.
4100                  */
4101                 if (iter_vma->vm_flags & VM_MAYSHARE)
4102                         continue;
4103
4104                 /*
4105                  * Unmap the page from other VMAs without their own reserves.
4106                  * They get marked to be SIGKILLed if they fault in these
4107                  * areas. This is because a future no-page fault on this VMA
4108                  * could insert a zeroed page instead of the data existing
4109                  * from the time of fork. This would look like data corruption
4110                  */
4111                 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
4112                         unmap_hugepage_range(iter_vma, address,
4113                                              address + huge_page_size(h), page);
4114         }
4115         i_mmap_unlock_write(mapping);
4116 }
4117
4118 /*
4119  * Hugetlb_cow() should be called with page lock of the original hugepage held.
4120  * Called with hugetlb_instantiation_mutex held and pte_page locked so we
4121  * cannot race with other handlers or page migration.
4122  * Keep the pte_same checks anyway to make transition from the mutex easier.
4123  */
4124 static vm_fault_t hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
4125                        unsigned long address, pte_t *ptep,
4126                        struct page *pagecache_page, spinlock_t *ptl)
4127 {
4128         pte_t pte;
4129         struct hstate *h = hstate_vma(vma);
4130         struct page *old_page, *new_page;
4131         int outside_reserve = 0;
4132         vm_fault_t ret = 0;
4133         unsigned long haddr = address & huge_page_mask(h);
4134         struct mmu_notifier_range range;
4135
4136         pte = huge_ptep_get(ptep);
4137         old_page = pte_page(pte);
4138
4139 retry_avoidcopy:
4140         /* If no-one else is actually using this page, avoid the copy
4141          * and just make the page writable */
4142         if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
4143                 page_move_anon_rmap(old_page, vma);
4144                 set_huge_ptep_writable(vma, haddr, ptep);
4145                 return 0;
4146         }
4147
4148         /*
4149          * If the process that created a MAP_PRIVATE mapping is about to
4150          * perform a COW due to a shared page count, attempt to satisfy
4151          * the allocation without using the existing reserves. The pagecache
4152          * page is used to determine if the reserve at this address was
4153          * consumed or not. If reserves were used, a partial faulted mapping
4154          * at the time of fork() could consume its reserves on COW instead
4155          * of the full address range.
4156          */
4157         if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
4158                         old_page != pagecache_page)
4159                 outside_reserve = 1;
4160
4161         get_page(old_page);
4162
4163         /*
4164          * Drop page table lock as buddy allocator may be called. It will
4165          * be acquired again before returning to the caller, as expected.
4166          */
4167         spin_unlock(ptl);
4168         new_page = alloc_huge_page(vma, haddr, outside_reserve);
4169
4170         if (IS_ERR(new_page)) {
4171                 /*
4172                  * If a process owning a MAP_PRIVATE mapping fails to COW,
4173                  * it is due to references held by a child and an insufficient
4174                  * huge page pool. To guarantee the original mappers
4175                  * reliability, unmap the page from child processes. The child
4176                  * may get SIGKILLed if it later faults.
4177                  */
4178                 if (outside_reserve) {
4179                         put_page(old_page);
4180                         BUG_ON(huge_pte_none(pte));
4181                         unmap_ref_private(mm, vma, old_page, haddr);
4182                         BUG_ON(huge_pte_none(pte));
4183                         spin_lock(ptl);
4184                         ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
4185                         if (likely(ptep &&
4186                                    pte_same(huge_ptep_get(ptep), pte)))
4187                                 goto retry_avoidcopy;
4188                         /*
4189                          * race occurs while re-acquiring page table
4190                          * lock, and our job is done.
4191                          */
4192                         return 0;
4193                 }
4194
4195                 ret = vmf_error(PTR_ERR(new_page));
4196                 goto out_release_old;
4197         }
4198
4199         /*
4200          * When the original hugepage is shared one, it does not have
4201          * anon_vma prepared.
4202          */
4203         if (unlikely(anon_vma_prepare(vma))) {
4204                 ret = VM_FAULT_OOM;
4205                 goto out_release_all;
4206         }
4207
4208         copy_user_huge_page(new_page, old_page, address, vma,
4209                             pages_per_huge_page(h));
4210         __SetPageUptodate(new_page);
4211
4212         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, haddr,
4213                                 haddr + huge_page_size(h));
4214         mmu_notifier_invalidate_range_start(&range);
4215
4216         /*
4217          * Retake the page table lock to check for racing updates
4218          * before the page tables are altered
4219          */
4220         spin_lock(ptl);
4221         ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
4222         if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
4223                 ClearPagePrivate(new_page);
4224
4225                 /* Break COW */
4226                 huge_ptep_clear_flush(vma, haddr, ptep);
4227                 mmu_notifier_invalidate_range(mm, range.start, range.end);
4228                 set_huge_pte_at(mm, haddr, ptep,
4229                                 make_huge_pte(vma, new_page, 1));
4230                 page_remove_rmap(old_page, true);
4231                 hugepage_add_new_anon_rmap(new_page, vma, haddr);
4232                 set_page_huge_active(new_page);
4233                 /* Make the old page be freed below */
4234                 new_page = old_page;
4235         }
4236         spin_unlock(ptl);
4237         mmu_notifier_invalidate_range_end(&range);
4238 out_release_all:
4239         restore_reserve_on_error(h, vma, haddr, new_page);
4240         put_page(new_page);
4241 out_release_old:
4242         put_page(old_page);
4243
4244         spin_lock(ptl); /* Caller expects lock to be held */
4245         return ret;
4246 }
4247
4248 /* Return the pagecache page at a given address within a VMA */
4249 static struct page *hugetlbfs_pagecache_page(struct hstate *h,
4250                         struct vm_area_struct *vma, unsigned long address)
4251 {
4252         struct address_space *mapping;
4253         pgoff_t idx;
4254
4255         mapping = vma->vm_file->f_mapping;
4256         idx = vma_hugecache_offset(h, vma, address);
4257
4258         return find_lock_page(mapping, idx);
4259 }
4260
4261 /*
4262  * Return whether there is a pagecache page to back given address within VMA.
4263  * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
4264  */
4265 static bool hugetlbfs_pagecache_present(struct hstate *h,
4266                         struct vm_area_struct *vma, unsigned long address)
4267 {
4268         struct address_space *mapping;
4269         pgoff_t idx;
4270         struct page *page;
4271
4272         mapping = vma->vm_file->f_mapping;
4273         idx = vma_hugecache_offset(h, vma, address);
4274
4275         page = find_get_page(mapping, idx);
4276         if (page)
4277                 put_page(page);
4278         return page != NULL;
4279 }
4280
4281 int huge_add_to_page_cache(struct page *page, struct address_space *mapping,
4282                            pgoff_t idx)
4283 {
4284         struct inode *inode = mapping->host;
4285         struct hstate *h = hstate_inode(inode);
4286         int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
4287
4288         if (err)
4289                 return err;
4290         ClearPagePrivate(page);
4291
4292         /*
4293          * set page dirty so that it will not be removed from cache/file
4294          * by non-hugetlbfs specific code paths.
4295          */
4296         set_page_dirty(page);
4297
4298         spin_lock(&inode->i_lock);
4299         inode->i_blocks += blocks_per_huge_page(h);
4300         spin_unlock(&inode->i_lock);
4301         return 0;
4302 }
4303
4304 static vm_fault_t hugetlb_no_page(struct mm_struct *mm,
4305                         struct vm_area_struct *vma,
4306                         struct address_space *mapping, pgoff_t idx,
4307                         unsigned long address, pte_t *ptep, unsigned int flags)
4308 {
4309         struct hstate *h = hstate_vma(vma);
4310         vm_fault_t ret = VM_FAULT_SIGBUS;
4311         int anon_rmap = 0;
4312         unsigned long size;
4313         struct page *page;
4314         pte_t new_pte;
4315         spinlock_t *ptl;
4316         unsigned long haddr = address & huge_page_mask(h);
4317         bool new_page = false;
4318
4319         /*
4320          * Currently, we are forced to kill the process in the event the
4321          * original mapper has unmapped pages from the child due to a failed
4322          * COW. Warn that such a situation has occurred as it may not be obvious
4323          */
4324         if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
4325                 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
4326                            current->pid);
4327                 return ret;
4328         }
4329
4330         /*
4331          * We can not race with truncation due to holding i_mmap_rwsem.
4332          * i_size is modified when holding i_mmap_rwsem, so check here
4333          * once for faults beyond end of file.
4334          */
4335         size = i_size_read(mapping->host) >> huge_page_shift(h);
4336         if (idx >= size)
4337                 goto out;
4338
4339 retry:
4340         page = find_lock_page(mapping, idx);
4341         if (!page) {
4342                 /*
4343                  * Check for page in userfault range
4344                  */
4345                 if (userfaultfd_missing(vma)) {
4346                         u32 hash;
4347                         struct vm_fault vmf = {
4348                                 .vma = vma,
4349                                 .address = haddr,
4350                                 .flags = flags,
4351                                 /*
4352                                  * Hard to debug if it ends up being
4353                                  * used by a callee that assumes
4354                                  * something about the other
4355                                  * uninitialized fields... same as in
4356                                  * memory.c
4357                                  */
4358                         };
4359
4360                         /*
4361                          * hugetlb_fault_mutex and i_mmap_rwsem must be
4362                          * dropped before handling userfault.  Reacquire
4363                          * after handling fault to make calling code simpler.
4364                          */
4365                         hash = hugetlb_fault_mutex_hash(mapping, idx);
4366                         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
4367                         i_mmap_unlock_read(mapping);
4368                         ret = handle_userfault(&vmf, VM_UFFD_MISSING);
4369                         i_mmap_lock_read(mapping);
4370                         mutex_lock(&hugetlb_fault_mutex_table[hash]);
4371                         goto out;
4372                 }
4373
4374                 page = alloc_huge_page(vma, haddr, 0);
4375                 if (IS_ERR(page)) {
4376                         /*
4377                          * Returning error will result in faulting task being
4378                          * sent SIGBUS.  The hugetlb fault mutex prevents two
4379                          * tasks from racing to fault in the same page which
4380                          * could result in false unable to allocate errors.
4381                          * Page migration does not take the fault mutex, but
4382                          * does a clear then write of pte's under page table
4383                          * lock.  Page fault code could race with migration,
4384                          * notice the clear pte and try to allocate a page
4385                          * here.  Before returning error, get ptl and make
4386                          * sure there really is no pte entry.
4387                          */
4388                         ptl = huge_pte_lock(h, mm, ptep);
4389                         if (!huge_pte_none(huge_ptep_get(ptep))) {
4390                                 ret = 0;
4391                                 spin_unlock(ptl);
4392                                 goto out;
4393                         }
4394                         spin_unlock(ptl);
4395                         ret = vmf_error(PTR_ERR(page));
4396                         goto out;
4397                 }
4398                 clear_huge_page(page, address, pages_per_huge_page(h));
4399                 __SetPageUptodate(page);
4400                 new_page = true;
4401
4402                 if (vma->vm_flags & VM_MAYSHARE) {
4403                         int err = huge_add_to_page_cache(page, mapping, idx);
4404                         if (err) {
4405                                 put_page(page);
4406                                 if (err == -EEXIST)
4407                                         goto retry;
4408                                 goto out;
4409                         }
4410                 } else {
4411                         lock_page(page);
4412                         if (unlikely(anon_vma_prepare(vma))) {
4413                                 ret = VM_FAULT_OOM;
4414                                 goto backout_unlocked;
4415                         }
4416                         anon_rmap = 1;
4417                 }
4418         } else {
4419                 /*
4420                  * If memory error occurs between mmap() and fault, some process
4421                  * don't have hwpoisoned swap entry for errored virtual address.
4422                  * So we need to block hugepage fault by PG_hwpoison bit check.
4423                  */
4424                 if (unlikely(PageHWPoison(page))) {
4425                         ret = VM_FAULT_HWPOISON |
4426                                 VM_FAULT_SET_HINDEX(hstate_index(h));
4427                         goto backout_unlocked;
4428                 }
4429         }
4430
4431         /*
4432          * If we are going to COW a private mapping later, we examine the
4433          * pending reservations for this page now. This will ensure that
4434          * any allocations necessary to record that reservation occur outside
4435          * the spinlock.
4436          */
4437         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
4438                 if (vma_needs_reservation(h, vma, haddr) < 0) {
4439                         ret = VM_FAULT_OOM;
4440                         goto backout_unlocked;
4441                 }
4442                 /* Just decrements count, does not deallocate */
4443                 vma_end_reservation(h, vma, haddr);
4444         }
4445
4446         ptl = huge_pte_lock(h, mm, ptep);
4447         ret = 0;
4448         if (!huge_pte_none(huge_ptep_get(ptep)))
4449                 goto backout;
4450
4451         if (anon_rmap) {
4452                 ClearPagePrivate(page);
4453                 hugepage_add_new_anon_rmap(page, vma, haddr);
4454         } else
4455                 page_dup_rmap(page, true);
4456         new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
4457                                 && (vma->vm_flags & VM_SHARED)));
4458         set_huge_pte_at(mm, haddr, ptep, new_pte);
4459
4460         hugetlb_count_add(pages_per_huge_page(h), mm);
4461         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
4462                 /* Optimization, do the COW without a second fault */
4463                 ret = hugetlb_cow(mm, vma, address, ptep, page, ptl);
4464         }
4465
4466         spin_unlock(ptl);
4467
4468         /*
4469          * Only make newly allocated pages active.  Existing pages found
4470          * in the pagecache could be !page_huge_active() if they have been
4471          * isolated for migration.
4472          */
4473         if (new_page)
4474                 set_page_huge_active(page);
4475
4476         unlock_page(page);
4477 out:
4478         return ret;
4479
4480 backout:
4481         spin_unlock(ptl);
4482 backout_unlocked:
4483         unlock_page(page);
4484         restore_reserve_on_error(h, vma, haddr, page);
4485         put_page(page);
4486         goto out;
4487 }
4488
4489 #ifdef CONFIG_SMP
4490 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
4491 {
4492         unsigned long key[2];
4493         u32 hash;
4494
4495         key[0] = (unsigned long) mapping;
4496         key[1] = idx;
4497
4498         hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0);
4499
4500         return hash & (num_fault_mutexes - 1);
4501 }
4502 #else
4503 /*
4504  * For uniprocesor systems we always use a single mutex, so just
4505  * return 0 and avoid the hashing overhead.
4506  */
4507 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
4508 {
4509         return 0;
4510 }
4511 #endif
4512
4513 vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
4514                         unsigned long address, unsigned int flags)
4515 {
4516         pte_t *ptep, entry;
4517         spinlock_t *ptl;
4518         vm_fault_t ret;
4519         u32 hash;
4520         pgoff_t idx;
4521         struct page *page = NULL;
4522         struct page *pagecache_page = NULL;
4523         struct hstate *h = hstate_vma(vma);
4524         struct address_space *mapping;
4525         int need_wait_lock = 0;
4526         unsigned long haddr = address & huge_page_mask(h);
4527
4528         ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
4529         if (ptep) {
4530                 /*
4531                  * Since we hold no locks, ptep could be stale.  That is
4532                  * OK as we are only making decisions based on content and
4533                  * not actually modifying content here.
4534                  */
4535                 entry = huge_ptep_get(ptep);
4536                 if (unlikely(is_hugetlb_entry_migration(entry))) {
4537                         migration_entry_wait_huge(vma, mm, ptep);
4538                         return 0;
4539                 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
4540                         return VM_FAULT_HWPOISON_LARGE |
4541                                 VM_FAULT_SET_HINDEX(hstate_index(h));
4542         } else {
4543                 ptep = huge_pte_alloc(mm, haddr, huge_page_size(h));
4544                 if (!ptep)
4545                         return VM_FAULT_OOM;
4546         }
4547
4548         /*
4549          * Acquire i_mmap_rwsem before calling huge_pte_alloc and hold
4550          * until finished with ptep.  This serves two purposes:
4551          * 1) It prevents huge_pmd_unshare from being called elsewhere
4552          *    and making the ptep no longer valid.
4553          * 2) It synchronizes us with i_size modifications during truncation.
4554          *
4555          * ptep could have already be assigned via huge_pte_offset.  That
4556          * is OK, as huge_pte_alloc will return the same value unless
4557          * something has changed.
4558          */
4559         mapping = vma->vm_file->f_mapping;
4560         i_mmap_lock_read(mapping);
4561         ptep = huge_pte_alloc(mm, haddr, huge_page_size(h));
4562         if (!ptep) {
4563                 i_mmap_unlock_read(mapping);
4564                 return VM_FAULT_OOM;
4565         }
4566
4567         /*
4568          * Serialize hugepage allocation and instantiation, so that we don't
4569          * get spurious allocation failures if two CPUs race to instantiate
4570          * the same page in the page cache.
4571          */
4572         idx = vma_hugecache_offset(h, vma, haddr);
4573         hash = hugetlb_fault_mutex_hash(mapping, idx);
4574         mutex_lock(&hugetlb_fault_mutex_table[hash]);
4575
4576         entry = huge_ptep_get(ptep);
4577         if (huge_pte_none(entry)) {
4578                 ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
4579                 goto out_mutex;
4580         }
4581
4582         ret = 0;
4583
4584         /*
4585          * entry could be a migration/hwpoison entry at this point, so this
4586          * check prevents the kernel from going below assuming that we have
4587          * an active hugepage in pagecache. This goto expects the 2nd page
4588          * fault, and is_hugetlb_entry_(migration|hwpoisoned) check will
4589          * properly handle it.
4590          */
4591         if (!pte_present(entry))
4592                 goto out_mutex;
4593
4594         /*
4595          * If we are going to COW the mapping later, we examine the pending
4596          * reservations for this page now. This will ensure that any
4597          * allocations necessary to record that reservation occur outside the
4598          * spinlock. For private mappings, we also lookup the pagecache
4599          * page now as it is used to determine if a reservation has been
4600          * consumed.
4601          */
4602         if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
4603                 if (vma_needs_reservation(h, vma, haddr) < 0) {
4604                         ret = VM_FAULT_OOM;
4605                         goto out_mutex;
4606                 }
4607                 /* Just decrements count, does not deallocate */
4608                 vma_end_reservation(h, vma, haddr);
4609
4610                 if (!(vma->vm_flags & VM_MAYSHARE))
4611                         pagecache_page = hugetlbfs_pagecache_page(h,
4612                                                                 vma, haddr);
4613         }
4614
4615         ptl = huge_pte_lock(h, mm, ptep);
4616
4617         /* Check for a racing update before calling hugetlb_cow */
4618         if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
4619                 goto out_ptl;
4620
4621         /*
4622          * hugetlb_cow() requires page locks of pte_page(entry) and
4623          * pagecache_page, so here we need take the former one
4624          * when page != pagecache_page or !pagecache_page.
4625          */
4626         page = pte_page(entry);
4627         if (page != pagecache_page)
4628                 if (!trylock_page(page)) {
4629                         need_wait_lock = 1;
4630                         goto out_ptl;
4631                 }
4632
4633         get_page(page);
4634
4635         if (flags & FAULT_FLAG_WRITE) {
4636                 if (!huge_pte_write(entry)) {
4637                         ret = hugetlb_cow(mm, vma, address, ptep,
4638                                           pagecache_page, ptl);
4639                         goto out_put_page;
4640                 }
4641                 entry = huge_pte_mkdirty(entry);
4642         }
4643         entry = pte_mkyoung(entry);
4644         if (huge_ptep_set_access_flags(vma, haddr, ptep, entry,
4645                                                 flags & FAULT_FLAG_WRITE))
4646                 update_mmu_cache(vma, haddr, ptep);
4647 out_put_page:
4648         if (page != pagecache_page)
4649                 unlock_page(page);
4650         put_page(page);
4651 out_ptl:
4652         spin_unlock(ptl);
4653
4654         if (pagecache_page) {
4655                 unlock_page(pagecache_page);
4656                 put_page(pagecache_page);
4657         }
4658 out_mutex:
4659         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
4660         i_mmap_unlock_read(mapping);
4661         /*
4662          * Generally it's safe to hold refcount during waiting page lock. But
4663          * here we just wait to defer the next page fault to avoid busy loop and
4664          * the page is not used after unlocked before returning from the current
4665          * page fault. So we are safe from accessing freed page, even if we wait
4666          * here without taking refcount.
4667          */
4668         if (need_wait_lock)
4669                 wait_on_page_locked(page);
4670         return ret;
4671 }
4672
4673 /*
4674  * Used by userfaultfd UFFDIO_COPY.  Based on mcopy_atomic_pte with
4675  * modifications for huge pages.
4676  */
4677 int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm,
4678                             pte_t *dst_pte,
4679                             struct vm_area_struct *dst_vma,
4680                             unsigned long dst_addr,
4681                             unsigned long src_addr,
4682                             struct page **pagep)
4683 {
4684         struct address_space *mapping;
4685         pgoff_t idx;
4686         unsigned long size;
4687         int vm_shared = dst_vma->vm_flags & VM_SHARED;
4688         struct hstate *h = hstate_vma(dst_vma);
4689         pte_t _dst_pte;
4690         spinlock_t *ptl;
4691         int ret;
4692         struct page *page;
4693
4694         if (!*pagep) {
4695                 ret = -ENOMEM;
4696                 page = alloc_huge_page(dst_vma, dst_addr, 0);
4697                 if (IS_ERR(page))
4698                         goto out;
4699
4700                 ret = copy_huge_page_from_user(page,
4701                                                 (const void __user *) src_addr,
4702                                                 pages_per_huge_page(h), false);
4703
4704                 /* fallback to copy_from_user outside mmap_lock */
4705                 if (unlikely(ret)) {
4706                         ret = -ENOENT;
4707                         *pagep = page;
4708                         /* don't free the page */
4709                         goto out;
4710                 }
4711         } else {
4712                 page = *pagep;
4713                 *pagep = NULL;
4714         }
4715
4716         /*
4717          * The memory barrier inside __SetPageUptodate makes sure that
4718          * preceding stores to the page contents become visible before
4719          * the set_pte_at() write.
4720          */
4721         __SetPageUptodate(page);
4722
4723         mapping = dst_vma->vm_file->f_mapping;
4724         idx = vma_hugecache_offset(h, dst_vma, dst_addr);
4725
4726         /*
4727          * If shared, add to page cache
4728          */
4729         if (vm_shared) {
4730                 size = i_size_read(mapping->host) >> huge_page_shift(h);
4731                 ret = -EFAULT;
4732                 if (idx >= size)
4733                         goto out_release_nounlock;
4734
4735                 /*
4736                  * Serialization between remove_inode_hugepages() and
4737                  * huge_add_to_page_cache() below happens through the
4738                  * hugetlb_fault_mutex_table that here must be hold by
4739                  * the caller.
4740                  */
4741                 ret = huge_add_to_page_cache(page, mapping, idx);
4742                 if (ret)
4743                         goto out_release_nounlock;
4744         }
4745
4746         ptl = huge_pte_lockptr(h, dst_mm, dst_pte);
4747         spin_lock(ptl);
4748
4749         /*
4750          * Recheck the i_size after holding PT lock to make sure not
4751          * to leave any page mapped (as page_mapped()) beyond the end
4752          * of the i_size (remove_inode_hugepages() is strict about
4753          * enforcing that). If we bail out here, we'll also leave a
4754          * page in the radix tree in the vm_shared case beyond the end
4755          * of the i_size, but remove_inode_hugepages() will take care
4756          * of it as soon as we drop the hugetlb_fault_mutex_table.
4757          */
4758         size = i_size_read(mapping->host) >> huge_page_shift(h);
4759         ret = -EFAULT;
4760         if (idx >= size)
4761                 goto out_release_unlock;
4762
4763         ret = -EEXIST;
4764         if (!huge_pte_none(huge_ptep_get(dst_pte)))
4765                 goto out_release_unlock;
4766
4767         if (vm_shared) {
4768                 page_dup_rmap(page, true);
4769         } else {
4770                 ClearPagePrivate(page);
4771                 hugepage_add_new_anon_rmap(page, dst_vma, dst_addr);
4772         }
4773
4774         _dst_pte = make_huge_pte(dst_vma, page, dst_vma->vm_flags & VM_WRITE);
4775         if (dst_vma->vm_flags & VM_WRITE)
4776                 _dst_pte = huge_pte_mkdirty(_dst_pte);
4777         _dst_pte = pte_mkyoung(_dst_pte);
4778
4779         set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
4780
4781         (void)huge_ptep_set_access_flags(dst_vma, dst_addr, dst_pte, _dst_pte,
4782                                         dst_vma->vm_flags & VM_WRITE);
4783         hugetlb_count_add(pages_per_huge_page(h), dst_mm);
4784
4785         /* No need to invalidate - it was non-present before */
4786         update_mmu_cache(dst_vma, dst_addr, dst_pte);
4787
4788         spin_unlock(ptl);
4789         set_page_huge_active(page);
4790         if (vm_shared)
4791                 unlock_page(page);
4792         ret = 0;
4793 out:
4794         return ret;
4795 out_release_unlock:
4796         spin_unlock(ptl);
4797         if (vm_shared)
4798                 unlock_page(page);
4799 out_release_nounlock:
4800         put_page(page);
4801         goto out;
4802 }
4803
4804 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
4805                          struct page **pages, struct vm_area_struct **vmas,
4806                          unsigned long *position, unsigned long *nr_pages,
4807                          long i, unsigned int flags, int *locked)
4808 {
4809         unsigned long pfn_offset;
4810         unsigned long vaddr = *position;
4811         unsigned long remainder = *nr_pages;
4812         struct hstate *h = hstate_vma(vma);
4813         int err = -EFAULT;
4814
4815         while (vaddr < vma->vm_end && remainder) {
4816                 pte_t *pte;
4817                 spinlock_t *ptl = NULL;
4818                 int absent;
4819                 struct page *page;
4820
4821                 /*
4822                  * If we have a pending SIGKILL, don't keep faulting pages and
4823                  * potentially allocating memory.
4824                  */
4825                 if (fatal_signal_pending(current)) {
4826                         remainder = 0;
4827                         break;
4828                 }
4829
4830                 /*
4831                  * Some archs (sparc64, sh*) have multiple pte_ts to
4832                  * each hugepage.  We have to make sure we get the
4833                  * first, for the page indexing below to work.
4834                  *
4835                  * Note that page table lock is not held when pte is null.
4836                  */
4837                 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h),
4838                                       huge_page_size(h));
4839                 if (pte)
4840                         ptl = huge_pte_lock(h, mm, pte);
4841                 absent = !pte || huge_pte_none(huge_ptep_get(pte));
4842
4843                 /*
4844                  * When coredumping, it suits get_dump_page if we just return
4845                  * an error where there's an empty slot with no huge pagecache
4846                  * to back it.  This way, we avoid allocating a hugepage, and
4847                  * the sparse dumpfile avoids allocating disk blocks, but its
4848                  * huge holes still show up with zeroes where they need to be.
4849                  */
4850                 if (absent && (flags & FOLL_DUMP) &&
4851                     !hugetlbfs_pagecache_present(h, vma, vaddr)) {
4852                         if (pte)
4853                                 spin_unlock(ptl);
4854                         remainder = 0;
4855                         break;
4856                 }
4857
4858                 /*
4859                  * We need call hugetlb_fault for both hugepages under migration
4860                  * (in which case hugetlb_fault waits for the migration,) and
4861                  * hwpoisoned hugepages (in which case we need to prevent the
4862                  * caller from accessing to them.) In order to do this, we use
4863                  * here is_swap_pte instead of is_hugetlb_entry_migration and
4864                  * is_hugetlb_entry_hwpoisoned. This is because it simply covers
4865                  * both cases, and because we can't follow correct pages
4866                  * directly from any kind of swap entries.
4867                  */
4868                 if (absent || is_swap_pte(huge_ptep_get(pte)) ||
4869                     ((flags & FOLL_WRITE) &&
4870                       !huge_pte_write(huge_ptep_get(pte)))) {
4871                         vm_fault_t ret;
4872                         unsigned int fault_flags = 0;
4873
4874                         if (pte)
4875                                 spin_unlock(ptl);
4876                         if (flags & FOLL_WRITE)
4877                                 fault_flags |= FAULT_FLAG_WRITE;
4878                         if (locked)
4879                                 fault_flags |= FAULT_FLAG_ALLOW_RETRY |
4880                                         FAULT_FLAG_KILLABLE;
4881                         if (flags & FOLL_NOWAIT)
4882                                 fault_flags |= FAULT_FLAG_ALLOW_RETRY |
4883                                         FAULT_FLAG_RETRY_NOWAIT;
4884                         if (flags & FOLL_TRIED) {
4885                                 /*
4886                                  * Note: FAULT_FLAG_ALLOW_RETRY and
4887                                  * FAULT_FLAG_TRIED can co-exist
4888                                  */
4889                                 fault_flags |= FAULT_FLAG_TRIED;
4890                         }
4891                         ret = hugetlb_fault(mm, vma, vaddr, fault_flags);
4892                         if (ret & VM_FAULT_ERROR) {
4893                                 err = vm_fault_to_errno(ret, flags);
4894                                 remainder = 0;
4895                                 break;
4896                         }
4897                         if (ret & VM_FAULT_RETRY) {
4898                                 if (locked &&
4899                                     !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
4900                                         *locked = 0;
4901                                 *nr_pages = 0;
4902                                 /*
4903                                  * VM_FAULT_RETRY must not return an
4904                                  * error, it will return zero
4905                                  * instead.
4906                                  *
4907                                  * No need to update "position" as the
4908                                  * caller will not check it after
4909                                  * *nr_pages is set to 0.
4910                                  */
4911                                 return i;
4912                         }
4913                         continue;
4914                 }
4915
4916                 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
4917                 page = pte_page(huge_ptep_get(pte));
4918
4919                 /*
4920                  * If subpage information not requested, update counters
4921                  * and skip the same_page loop below.
4922                  */
4923                 if (!pages && !vmas && !pfn_offset &&
4924                     (vaddr + huge_page_size(h) < vma->vm_end) &&
4925                     (remainder >= pages_per_huge_page(h))) {
4926                         vaddr += huge_page_size(h);
4927                         remainder -= pages_per_huge_page(h);
4928                         i += pages_per_huge_page(h);
4929                         spin_unlock(ptl);
4930                         continue;
4931                 }
4932
4933 same_page:
4934                 if (pages) {
4935                         pages[i] = mem_map_offset(page, pfn_offset);
4936                         /*
4937                          * try_grab_page() should always succeed here, because:
4938                          * a) we hold the ptl lock, and b) we've just checked
4939                          * that the huge page is present in the page tables. If
4940                          * the huge page is present, then the tail pages must
4941                          * also be present. The ptl prevents the head page and
4942                          * tail pages from being rearranged in any way. So this
4943                          * page must be available at this point, unless the page
4944                          * refcount overflowed:
4945                          */
4946                         if (WARN_ON_ONCE(!try_grab_page(pages[i], flags))) {
4947                                 spin_unlock(ptl);
4948                                 remainder = 0;
4949                                 err = -ENOMEM;
4950                                 break;
4951                         }
4952                 }
4953
4954                 if (vmas)
4955                         vmas[i] = vma;
4956
4957                 vaddr += PAGE_SIZE;
4958                 ++pfn_offset;
4959                 --remainder;
4960                 ++i;
4961                 if (vaddr < vma->vm_end && remainder &&
4962                                 pfn_offset < pages_per_huge_page(h)) {
4963                         /*
4964                          * We use pfn_offset to avoid touching the pageframes
4965                          * of this compound page.
4966                          */
4967                         goto same_page;
4968                 }
4969                 spin_unlock(ptl);
4970         }
4971         *nr_pages = remainder;
4972         /*
4973          * setting position is actually required only if remainder is
4974          * not zero but it's faster not to add a "if (remainder)"
4975          * branch.
4976          */
4977         *position = vaddr;
4978
4979         return i ? i : err;
4980 }
4981
4982 #ifndef __HAVE_ARCH_FLUSH_HUGETLB_TLB_RANGE
4983 /*
4984  * ARCHes with special requirements for evicting HUGETLB backing TLB entries can
4985  * implement this.
4986  */
4987 #define flush_hugetlb_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end)
4988 #endif
4989
4990 unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
4991                 unsigned long address, unsigned long end, pgprot_t newprot)
4992 {
4993         struct mm_struct *mm = vma->vm_mm;
4994         unsigned long start = address;
4995         pte_t *ptep;
4996         pte_t pte;
4997         struct hstate *h = hstate_vma(vma);
4998         unsigned long pages = 0;
4999         bool shared_pmd = false;
5000         struct mmu_notifier_range range;
5001
5002         /*
5003          * In the case of shared PMDs, the area to flush could be beyond
5004          * start/end.  Set range.start/range.end to cover the maximum possible
5005          * range if PMD sharing is possible.
5006          */
5007         mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA,
5008                                 0, vma, mm, start, end);
5009         adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
5010
5011         BUG_ON(address >= end);
5012         flush_cache_range(vma, range.start, range.end);
5013
5014         mmu_notifier_invalidate_range_start(&range);
5015         i_mmap_lock_write(vma->vm_file->f_mapping);
5016         for (; address < end; address += huge_page_size(h)) {
5017                 spinlock_t *ptl;
5018                 ptep = huge_pte_offset(mm, address, huge_page_size(h));
5019                 if (!ptep)
5020                         continue;
5021                 ptl = huge_pte_lock(h, mm, ptep);
5022                 if (huge_pmd_unshare(mm, &address, ptep)) {
5023                         pages++;
5024                         spin_unlock(ptl);
5025                         shared_pmd = true;
5026                         continue;
5027                 }
5028                 pte = huge_ptep_get(ptep);
5029                 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
5030                         spin_unlock(ptl);
5031                         continue;
5032                 }
5033                 if (unlikely(is_hugetlb_entry_migration(pte))) {
5034                         swp_entry_t entry = pte_to_swp_entry(pte);
5035
5036                         if (is_write_migration_entry(entry)) {
5037                                 pte_t newpte;
5038
5039                                 make_migration_entry_read(&entry);
5040                                 newpte = swp_entry_to_pte(entry);
5041                                 set_huge_swap_pte_at(mm, address, ptep,
5042                                                      newpte, huge_page_size(h));
5043                                 pages++;
5044                         }
5045                         spin_unlock(ptl);
5046                         continue;
5047                 }
5048                 if (!huge_pte_none(pte)) {
5049                         pte_t old_pte;
5050
5051                         old_pte = huge_ptep_modify_prot_start(vma, address, ptep);
5052                         pte = pte_mkhuge(huge_pte_modify(old_pte, newprot));
5053                         pte = arch_make_huge_pte(pte, vma, NULL, 0);
5054                         huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte);
5055                         pages++;
5056                 }
5057                 spin_unlock(ptl);
5058         }
5059         /*
5060          * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
5061          * may have cleared our pud entry and done put_page on the page table:
5062          * once we release i_mmap_rwsem, another task can do the final put_page
5063          * and that page table be reused and filled with junk.  If we actually
5064          * did unshare a page of pmds, flush the range corresponding to the pud.
5065          */
5066         if (shared_pmd)
5067                 flush_hugetlb_tlb_range(vma, range.start, range.end);
5068         else
5069                 flush_hugetlb_tlb_range(vma, start, end);
5070         /*
5071          * No need to call mmu_notifier_invalidate_range() we are downgrading
5072          * page table protection not changing it to point to a new page.
5073          *
5074          * See Documentation/vm/mmu_notifier.rst
5075          */
5076         i_mmap_unlock_write(vma->vm_file->f_mapping);
5077         mmu_notifier_invalidate_range_end(&range);
5078
5079         return pages << h->order;
5080 }
5081
5082 int hugetlb_reserve_pages(struct inode *inode,
5083                                         long from, long to,
5084                                         struct vm_area_struct *vma,
5085                                         vm_flags_t vm_flags)
5086 {
5087         long ret, chg, add = -1;
5088         struct hstate *h = hstate_inode(inode);
5089         struct hugepage_subpool *spool = subpool_inode(inode);
5090         struct resv_map *resv_map;
5091         struct hugetlb_cgroup *h_cg = NULL;
5092         long gbl_reserve, regions_needed = 0;
5093
5094         /* This should never happen */
5095         if (from > to) {
5096                 VM_WARN(1, "%s called with a negative range\n", __func__);
5097                 return -EINVAL;
5098         }
5099
5100         /*
5101          * Only apply hugepage reservation if asked. At fault time, an
5102          * attempt will be made for VM_NORESERVE to allocate a page
5103          * without using reserves
5104          */
5105         if (vm_flags & VM_NORESERVE)
5106                 return 0;
5107
5108         /*
5109          * Shared mappings base their reservation on the number of pages that
5110          * are already allocated on behalf of the file. Private mappings need
5111          * to reserve the full area even if read-only as mprotect() may be
5112          * called to make the mapping read-write. Assume !vma is a shm mapping
5113          */
5114         if (!vma || vma->vm_flags & VM_MAYSHARE) {
5115                 /*
5116                  * resv_map can not be NULL as hugetlb_reserve_pages is only
5117                  * called for inodes for which resv_maps were created (see
5118                  * hugetlbfs_get_inode).
5119                  */
5120                 resv_map = inode_resv_map(inode);
5121
5122                 chg = region_chg(resv_map, from, to, &regions_needed);
5123
5124         } else {
5125                 /* Private mapping. */
5126                 resv_map = resv_map_alloc();
5127                 if (!resv_map)
5128                         return -ENOMEM;
5129
5130                 chg = to - from;
5131
5132                 set_vma_resv_map(vma, resv_map);
5133                 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
5134         }
5135
5136         if (chg < 0) {
5137                 ret = chg;
5138                 goto out_err;
5139         }
5140
5141         ret = hugetlb_cgroup_charge_cgroup_rsvd(
5142                 hstate_index(h), chg * pages_per_huge_page(h), &h_cg);
5143
5144         if (ret < 0) {
5145                 ret = -ENOMEM;
5146                 goto out_err;
5147         }
5148
5149         if (vma && !(vma->vm_flags & VM_MAYSHARE) && h_cg) {
5150                 /* For private mappings, the hugetlb_cgroup uncharge info hangs
5151                  * of the resv_map.
5152                  */
5153                 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, h_cg, h);
5154         }
5155
5156         /*
5157          * There must be enough pages in the subpool for the mapping. If
5158          * the subpool has a minimum size, there may be some global
5159          * reservations already in place (gbl_reserve).
5160          */
5161         gbl_reserve = hugepage_subpool_get_pages(spool, chg);
5162         if (gbl_reserve < 0) {
5163                 ret = -ENOSPC;
5164                 goto out_uncharge_cgroup;
5165         }
5166
5167         /*
5168          * Check enough hugepages are available for the reservation.
5169          * Hand the pages back to the subpool if there are not
5170          */
5171         ret = hugetlb_acct_memory(h, gbl_reserve);
5172         if (ret < 0) {
5173                 goto out_put_pages;
5174         }
5175
5176         /*
5177          * Account for the reservations made. Shared mappings record regions
5178          * that have reservations as they are shared by multiple VMAs.
5179          * When the last VMA disappears, the region map says how much
5180          * the reservation was and the page cache tells how much of
5181          * the reservation was consumed. Private mappings are per-VMA and
5182          * only the consumed reservations are tracked. When the VMA
5183          * disappears, the original reservation is the VMA size and the
5184          * consumed reservations are stored in the map. Hence, nothing
5185          * else has to be done for private mappings here
5186          */
5187         if (!vma || vma->vm_flags & VM_MAYSHARE) {
5188                 add = region_add(resv_map, from, to, regions_needed, h, h_cg);
5189
5190                 if (unlikely(add < 0)) {
5191                         hugetlb_acct_memory(h, -gbl_reserve);
5192                         goto out_put_pages;
5193                 } else if (unlikely(chg > add)) {
5194                         /*
5195                          * pages in this range were added to the reserve
5196                          * map between region_chg and region_add.  This
5197                          * indicates a race with alloc_huge_page.  Adjust
5198                          * the subpool and reserve counts modified above
5199                          * based on the difference.
5200                          */
5201                         long rsv_adjust;
5202
5203                         hugetlb_cgroup_uncharge_cgroup_rsvd(
5204                                 hstate_index(h),
5205                                 (chg - add) * pages_per_huge_page(h), h_cg);
5206
5207                         rsv_adjust = hugepage_subpool_put_pages(spool,
5208                                                                 chg - add);
5209                         hugetlb_acct_memory(h, -rsv_adjust);
5210                 }
5211         }
5212         return 0;
5213 out_put_pages:
5214         /* put back original number of pages, chg */
5215         (void)hugepage_subpool_put_pages(spool, chg);
5216 out_uncharge_cgroup:
5217         hugetlb_cgroup_uncharge_cgroup_rsvd(hstate_index(h),
5218                                             chg * pages_per_huge_page(h), h_cg);
5219 out_err:
5220         if (!vma || vma->vm_flags & VM_MAYSHARE)
5221                 /* Only call region_abort if the region_chg succeeded but the
5222                  * region_add failed or didn't run.
5223                  */
5224                 if (chg >= 0 && add < 0)
5225                         region_abort(resv_map, from, to, regions_needed);
5226         if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
5227                 kref_put(&resv_map->refs, resv_map_release);
5228         return ret;
5229 }
5230
5231 long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
5232                                                                 long freed)
5233 {
5234         struct hstate *h = hstate_inode(inode);
5235         struct resv_map *resv_map = inode_resv_map(inode);
5236         long chg = 0;
5237         struct hugepage_subpool *spool = subpool_inode(inode);
5238         long gbl_reserve;
5239
5240         /*
5241          * Since this routine can be called in the evict inode path for all
5242          * hugetlbfs inodes, resv_map could be NULL.
5243          */
5244         if (resv_map) {
5245                 chg = region_del(resv_map, start, end);
5246                 /*
5247                  * region_del() can fail in the rare case where a region
5248                  * must be split and another region descriptor can not be
5249                  * allocated.  If end == LONG_MAX, it will not fail.
5250                  */
5251                 if (chg < 0)
5252                         return chg;
5253         }
5254
5255         spin_lock(&inode->i_lock);
5256         inode->i_blocks -= (blocks_per_huge_page(h) * freed);
5257         spin_unlock(&inode->i_lock);
5258
5259         /*
5260          * If the subpool has a minimum size, the number of global
5261          * reservations to be released may be adjusted.
5262          */
5263         gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
5264         hugetlb_acct_memory(h, -gbl_reserve);
5265
5266         return 0;
5267 }
5268
5269 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
5270 static unsigned long page_table_shareable(struct vm_area_struct *svma,
5271                                 struct vm_area_struct *vma,
5272                                 unsigned long addr, pgoff_t idx)
5273 {
5274         unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
5275                                 svma->vm_start;
5276         unsigned long sbase = saddr & PUD_MASK;
5277         unsigned long s_end = sbase + PUD_SIZE;
5278
5279         /* Allow segments to share if only one is marked locked */
5280         unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
5281         unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
5282
5283         /*
5284          * match the virtual addresses, permission and the alignment of the
5285          * page table page.
5286          */
5287         if (pmd_index(addr) != pmd_index(saddr) ||
5288             vm_flags != svm_flags ||
5289             sbase < svma->vm_start || svma->vm_end < s_end)
5290                 return 0;
5291
5292         return saddr;
5293 }
5294
5295 static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr)
5296 {
5297         unsigned long base = addr & PUD_MASK;
5298         unsigned long end = base + PUD_SIZE;
5299
5300         /*
5301          * check on proper vm_flags and page table alignment
5302          */
5303         if (vma->vm_flags & VM_MAYSHARE && range_in_vma(vma, base, end))
5304                 return true;
5305         return false;
5306 }
5307
5308 /*
5309  * Determine if start,end range within vma could be mapped by shared pmd.
5310  * If yes, adjust start and end to cover range associated with possible
5311  * shared pmd mappings.
5312  */
5313 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
5314                                 unsigned long *start, unsigned long *end)
5315 {
5316         unsigned long check_addr;
5317
5318         if (!(vma->vm_flags & VM_MAYSHARE))
5319                 return;
5320
5321         for (check_addr = *start; check_addr < *end; check_addr += PUD_SIZE) {
5322                 unsigned long a_start = check_addr & PUD_MASK;
5323                 unsigned long a_end = a_start + PUD_SIZE;
5324
5325                 /*
5326                  * If sharing is possible, adjust start/end if necessary.
5327                  */
5328                 if (range_in_vma(vma, a_start, a_end)) {
5329                         if (a_start < *start)
5330                                 *start = a_start;
5331                         if (a_end > *end)
5332                                 *end = a_end;
5333                 }
5334         }
5335 }
5336
5337 /*
5338  * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
5339  * and returns the corresponding pte. While this is not necessary for the
5340  * !shared pmd case because we can allocate the pmd later as well, it makes the
5341  * code much cleaner.
5342  *
5343  * This routine must be called with i_mmap_rwsem held in at least read mode.
5344  * For hugetlbfs, this prevents removal of any page table entries associated
5345  * with the address space.  This is important as we are setting up sharing
5346  * based on existing page table entries (mappings).
5347  */
5348 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
5349 {
5350         struct vm_area_struct *vma = find_vma(mm, addr);
5351         struct address_space *mapping = vma->vm_file->f_mapping;
5352         pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
5353                         vma->vm_pgoff;
5354         struct vm_area_struct *svma;
5355         unsigned long saddr;
5356         pte_t *spte = NULL;
5357         pte_t *pte;
5358         spinlock_t *ptl;
5359
5360         if (!vma_shareable(vma, addr))
5361                 return (pte_t *)pmd_alloc(mm, pud, addr);
5362
5363         vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
5364                 if (svma == vma)
5365                         continue;
5366
5367                 saddr = page_table_shareable(svma, vma, addr, idx);
5368                 if (saddr) {
5369                         spte = huge_pte_offset(svma->vm_mm, saddr,
5370                                                vma_mmu_pagesize(svma));
5371                         if (spte) {
5372                                 get_page(virt_to_page(spte));
5373                                 break;
5374                         }
5375                 }
5376         }
5377
5378         if (!spte)
5379                 goto out;
5380
5381         ptl = huge_pte_lock(hstate_vma(vma), mm, spte);
5382         if (pud_none(*pud)) {
5383                 pud_populate(mm, pud,
5384                                 (pmd_t *)((unsigned long)spte & PAGE_MASK));
5385                 mm_inc_nr_pmds(mm);
5386         } else {
5387                 put_page(virt_to_page(spte));
5388         }
5389         spin_unlock(ptl);
5390 out:
5391         pte = (pte_t *)pmd_alloc(mm, pud, addr);
5392         return pte;
5393 }
5394
5395 /*
5396  * unmap huge page backed by shared pte.
5397  *
5398  * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
5399  * indicated by page_count > 1, unmap is achieved by clearing pud and
5400  * decrementing the ref count. If count == 1, the pte page is not shared.
5401  *
5402  * Called with page table lock held and i_mmap_rwsem held in write mode.
5403  *
5404  * returns: 1 successfully unmapped a shared pte page
5405  *          0 the underlying pte page is not shared, or it is the last user
5406  */
5407 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
5408 {
5409         pgd_t *pgd = pgd_offset(mm, *addr);
5410         p4d_t *p4d = p4d_offset(pgd, *addr);
5411         pud_t *pud = pud_offset(p4d, *addr);
5412
5413         BUG_ON(page_count(virt_to_page(ptep)) == 0);
5414         if (page_count(virt_to_page(ptep)) == 1)
5415                 return 0;
5416
5417         pud_clear(pud);
5418         put_page(virt_to_page(ptep));
5419         mm_dec_nr_pmds(mm);
5420         *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
5421         return 1;
5422 }
5423 #define want_pmd_share()        (1)
5424 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
5425 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
5426 {
5427         return NULL;
5428 }
5429
5430 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
5431 {
5432         return 0;
5433 }
5434
5435 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
5436                                 unsigned long *start, unsigned long *end)
5437 {
5438 }
5439 #define want_pmd_share()        (0)
5440 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
5441
5442 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
5443 pte_t *huge_pte_alloc(struct mm_struct *mm,
5444                         unsigned long addr, unsigned long sz)
5445 {
5446         pgd_t *pgd;
5447         p4d_t *p4d;
5448         pud_t *pud;
5449         pte_t *pte = NULL;
5450
5451         pgd = pgd_offset(mm, addr);
5452         p4d = p4d_alloc(mm, pgd, addr);
5453         if (!p4d)
5454                 return NULL;
5455         pud = pud_alloc(mm, p4d, addr);
5456         if (pud) {
5457                 if (sz == PUD_SIZE) {
5458                         pte = (pte_t *)pud;
5459                 } else {
5460                         BUG_ON(sz != PMD_SIZE);
5461                         if (want_pmd_share() && pud_none(*pud))
5462                                 pte = huge_pmd_share(mm, addr, pud);
5463                         else
5464                                 pte = (pte_t *)pmd_alloc(mm, pud, addr);
5465                 }
5466         }
5467         BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte));
5468
5469         return pte;
5470 }
5471
5472 /*
5473  * huge_pte_offset() - Walk the page table to resolve the hugepage
5474  * entry at address @addr
5475  *
5476  * Return: Pointer to page table entry (PUD or PMD) for
5477  * address @addr, or NULL if a !p*d_present() entry is encountered and the
5478  * size @sz doesn't match the hugepage size at this level of the page
5479  * table.
5480  */
5481 pte_t *huge_pte_offset(struct mm_struct *mm,
5482                        unsigned long addr, unsigned long sz)
5483 {
5484         pgd_t *pgd;
5485         p4d_t *p4d;
5486         pud_t *pud;
5487         pmd_t *pmd;
5488
5489         pgd = pgd_offset(mm, addr);
5490         if (!pgd_present(*pgd))
5491                 return NULL;
5492         p4d = p4d_offset(pgd, addr);
5493         if (!p4d_present(*p4d))
5494                 return NULL;
5495
5496         pud = pud_offset(p4d, addr);
5497         if (sz == PUD_SIZE)
5498                 /* must be pud huge, non-present or none */
5499                 return (pte_t *)pud;
5500         if (!pud_present(*pud))
5501                 return NULL;
5502         /* must have a valid entry and size to go further */
5503
5504         pmd = pmd_offset(pud, addr);
5505         /* must be pmd huge, non-present or none */
5506         return (pte_t *)pmd;
5507 }
5508
5509 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
5510
5511 /*
5512  * These functions are overwritable if your architecture needs its own
5513  * behavior.
5514  */
5515 struct page * __weak
5516 follow_huge_addr(struct mm_struct *mm, unsigned long address,
5517                               int write)
5518 {
5519         return ERR_PTR(-EINVAL);
5520 }
5521
5522 struct page * __weak
5523 follow_huge_pd(struct vm_area_struct *vma,
5524                unsigned long address, hugepd_t hpd, int flags, int pdshift)
5525 {
5526         WARN(1, "hugepd follow called with no support for hugepage directory format\n");
5527         return NULL;
5528 }
5529
5530 struct page * __weak
5531 follow_huge_pmd(struct mm_struct *mm, unsigned long address,
5532                 pmd_t *pmd, int flags)
5533 {
5534         struct page *page = NULL;
5535         spinlock_t *ptl;
5536         pte_t pte;
5537
5538         /* FOLL_GET and FOLL_PIN are mutually exclusive. */
5539         if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
5540                          (FOLL_PIN | FOLL_GET)))
5541                 return NULL;
5542
5543 retry:
5544         ptl = pmd_lockptr(mm, pmd);
5545         spin_lock(ptl);
5546         /*
5547          * make sure that the address range covered by this pmd is not
5548          * unmapped from other threads.
5549          */
5550         if (!pmd_huge(*pmd))
5551                 goto out;
5552         pte = huge_ptep_get((pte_t *)pmd);
5553         if (pte_present(pte)) {
5554                 page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
5555                 /*
5556                  * try_grab_page() should always succeed here, because: a) we
5557                  * hold the pmd (ptl) lock, and b) we've just checked that the
5558                  * huge pmd (head) page is present in the page tables. The ptl
5559                  * prevents the head page and tail pages from being rearranged
5560                  * in any way. So this page must be available at this point,
5561                  * unless the page refcount overflowed:
5562                  */
5563                 if (WARN_ON_ONCE(!try_grab_page(page, flags))) {
5564                         page = NULL;
5565                         goto out;
5566                 }
5567         } else {
5568                 if (is_hugetlb_entry_migration(pte)) {
5569                         spin_unlock(ptl);
5570                         __migration_entry_wait(mm, (pte_t *)pmd, ptl);
5571                         goto retry;
5572                 }
5573                 /*
5574                  * hwpoisoned entry is treated as no_page_table in
5575                  * follow_page_mask().
5576                  */
5577         }
5578 out:
5579         spin_unlock(ptl);
5580         return page;
5581 }
5582
5583 struct page * __weak
5584 follow_huge_pud(struct mm_struct *mm, unsigned long address,
5585                 pud_t *pud, int flags)
5586 {
5587         if (flags & (FOLL_GET | FOLL_PIN))
5588                 return NULL;
5589
5590         return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
5591 }
5592
5593 struct page * __weak
5594 follow_huge_pgd(struct mm_struct *mm, unsigned long address, pgd_t *pgd, int flags)
5595 {
5596         if (flags & (FOLL_GET | FOLL_PIN))
5597                 return NULL;
5598
5599         return pte_page(*(pte_t *)pgd) + ((address & ~PGDIR_MASK) >> PAGE_SHIFT);
5600 }
5601
5602 bool isolate_huge_page(struct page *page, struct list_head *list)
5603 {
5604         bool ret = true;
5605
5606         VM_BUG_ON_PAGE(!PageHead(page), page);
5607         spin_lock(&hugetlb_lock);
5608         if (!page_huge_active(page) || !get_page_unless_zero(page)) {
5609                 ret = false;
5610                 goto unlock;
5611         }
5612         clear_page_huge_active(page);
5613         list_move_tail(&page->lru, list);
5614 unlock:
5615         spin_unlock(&hugetlb_lock);
5616         return ret;
5617 }
5618
5619 void putback_active_hugepage(struct page *page)
5620 {
5621         VM_BUG_ON_PAGE(!PageHead(page), page);
5622         spin_lock(&hugetlb_lock);
5623         set_page_huge_active(page);
5624         list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
5625         spin_unlock(&hugetlb_lock);
5626         put_page(page);
5627 }
5628
5629 void move_hugetlb_state(struct page *oldpage, struct page *newpage, int reason)
5630 {
5631         struct hstate *h = page_hstate(oldpage);
5632
5633         hugetlb_cgroup_migrate(oldpage, newpage);
5634         set_page_owner_migrate_reason(newpage, reason);
5635
5636         /*
5637          * transfer temporary state of the new huge page. This is
5638          * reverse to other transitions because the newpage is going to
5639          * be final while the old one will be freed so it takes over
5640          * the temporary status.
5641          *
5642          * Also note that we have to transfer the per-node surplus state
5643          * here as well otherwise the global surplus count will not match
5644          * the per-node's.
5645          */
5646         if (PageHugeTemporary(newpage)) {
5647                 int old_nid = page_to_nid(oldpage);
5648                 int new_nid = page_to_nid(newpage);
5649
5650                 SetPageHugeTemporary(oldpage);
5651                 ClearPageHugeTemporary(newpage);
5652
5653                 spin_lock(&hugetlb_lock);
5654                 if (h->surplus_huge_pages_node[old_nid]) {
5655                         h->surplus_huge_pages_node[old_nid]--;
5656                         h->surplus_huge_pages_node[new_nid]++;
5657                 }
5658                 spin_unlock(&hugetlb_lock);
5659         }
5660 }
5661
5662 #ifdef CONFIG_CMA
5663 static bool cma_reserve_called __initdata;
5664
5665 static int __init cmdline_parse_hugetlb_cma(char *p)
5666 {
5667         hugetlb_cma_size = memparse(p, &p);
5668         return 0;
5669 }
5670
5671 early_param("hugetlb_cma", cmdline_parse_hugetlb_cma);
5672
5673 void __init hugetlb_cma_reserve(int order)
5674 {
5675         unsigned long size, reserved, per_node;
5676         int nid;
5677
5678         cma_reserve_called = true;
5679
5680         if (!hugetlb_cma_size)
5681                 return;
5682
5683         if (hugetlb_cma_size < (PAGE_SIZE << order)) {
5684                 pr_warn("hugetlb_cma: cma area should be at least %lu MiB\n",
5685                         (PAGE_SIZE << order) / SZ_1M);
5686                 return;
5687         }
5688
5689         /*
5690          * If 3 GB area is requested on a machine with 4 numa nodes,
5691          * let's allocate 1 GB on first three nodes and ignore the last one.
5692          */
5693         per_node = DIV_ROUND_UP(hugetlb_cma_size, nr_online_nodes);
5694         pr_info("hugetlb_cma: reserve %lu MiB, up to %lu MiB per node\n",
5695                 hugetlb_cma_size / SZ_1M, per_node / SZ_1M);
5696
5697         reserved = 0;
5698         for_each_node_state(nid, N_ONLINE) {
5699                 int res;
5700
5701                 size = min(per_node, hugetlb_cma_size - reserved);
5702                 size = round_up(size, PAGE_SIZE << order);
5703
5704                 res = cma_declare_contiguous_nid(0, size, 0, PAGE_SIZE << order,
5705                                                  0, false, "hugetlb",
5706                                                  &hugetlb_cma[nid], nid);
5707                 if (res) {
5708                         pr_warn("hugetlb_cma: reservation failed: err %d, node %d",
5709                                 res, nid);
5710                         continue;
5711                 }
5712
5713                 reserved += size;
5714                 pr_info("hugetlb_cma: reserved %lu MiB on node %d\n",
5715                         size / SZ_1M, nid);
5716
5717                 if (reserved >= hugetlb_cma_size)
5718                         break;
5719         }
5720 }
5721
5722 void __init hugetlb_cma_check(void)
5723 {
5724         if (!hugetlb_cma_size || cma_reserve_called)
5725                 return;
5726
5727         pr_warn("hugetlb_cma: the option isn't supported by current arch\n");
5728 }
5729
5730 #endif /* CONFIG_CMA */