Merge tag 'for-5.18/fbdev-2' of git://git.kernel.org/pub/scm/linux/kernel/git/deller...
[linux-2.6-microblaze.git] / mm / hugetlb.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Generic hugetlb support.
4  * (C) Nadia Yvette Chambers, April 2004
5  */
6 #include <linux/list.h>
7 #include <linux/init.h>
8 #include <linux/mm.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/compiler.h>
17 #include <linux/cpuset.h>
18 #include <linux/mutex.h>
19 #include <linux/memblock.h>
20 #include <linux/sysfs.h>
21 #include <linux/slab.h>
22 #include <linux/sched/mm.h>
23 #include <linux/mmdebug.h>
24 #include <linux/sched/signal.h>
25 #include <linux/rmap.h>
26 #include <linux/string_helpers.h>
27 #include <linux/swap.h>
28 #include <linux/swapops.h>
29 #include <linux/jhash.h>
30 #include <linux/numa.h>
31 #include <linux/llist.h>
32 #include <linux/cma.h>
33 #include <linux/migrate.h>
34 #include <linux/nospec.h>
35
36 #include <asm/page.h>
37 #include <asm/pgalloc.h>
38 #include <asm/tlb.h>
39
40 #include <linux/io.h>
41 #include <linux/hugetlb.h>
42 #include <linux/hugetlb_cgroup.h>
43 #include <linux/node.h>
44 #include <linux/page_owner.h>
45 #include "internal.h"
46 #include "hugetlb_vmemmap.h"
47
48 int hugetlb_max_hstate __read_mostly;
49 unsigned int default_hstate_idx;
50 struct hstate hstates[HUGE_MAX_HSTATE];
51
52 #ifdef CONFIG_CMA
53 static struct cma *hugetlb_cma[MAX_NUMNODES];
54 static unsigned long hugetlb_cma_size_in_node[MAX_NUMNODES] __initdata;
55 static bool hugetlb_cma_page(struct page *page, unsigned int order)
56 {
57         return cma_pages_valid(hugetlb_cma[page_to_nid(page)], page,
58                                 1 << order);
59 }
60 #else
61 static bool hugetlb_cma_page(struct page *page, unsigned int order)
62 {
63         return false;
64 }
65 #endif
66 static unsigned long hugetlb_cma_size __initdata;
67
68 /*
69  * Minimum page order among possible hugepage sizes, set to a proper value
70  * at boot time.
71  */
72 static unsigned int minimum_order __read_mostly = UINT_MAX;
73
74 __initdata LIST_HEAD(huge_boot_pages);
75
76 /* for command line parsing */
77 static struct hstate * __initdata parsed_hstate;
78 static unsigned long __initdata default_hstate_max_huge_pages;
79 static bool __initdata parsed_valid_hugepagesz = true;
80 static bool __initdata parsed_default_hugepagesz;
81 static unsigned int default_hugepages_in_node[MAX_NUMNODES] __initdata;
82
83 /*
84  * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
85  * free_huge_pages, and surplus_huge_pages.
86  */
87 DEFINE_SPINLOCK(hugetlb_lock);
88
89 /*
90  * Serializes faults on the same logical page.  This is used to
91  * prevent spurious OOMs when the hugepage pool is fully utilized.
92  */
93 static int num_fault_mutexes;
94 struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
95
96 /* Forward declaration */
97 static int hugetlb_acct_memory(struct hstate *h, long delta);
98
99 static inline bool subpool_is_free(struct hugepage_subpool *spool)
100 {
101         if (spool->count)
102                 return false;
103         if (spool->max_hpages != -1)
104                 return spool->used_hpages == 0;
105         if (spool->min_hpages != -1)
106                 return spool->rsv_hpages == spool->min_hpages;
107
108         return true;
109 }
110
111 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool,
112                                                 unsigned long irq_flags)
113 {
114         spin_unlock_irqrestore(&spool->lock, irq_flags);
115
116         /* If no pages are used, and no other handles to the subpool
117          * remain, give up any reservations based on minimum size and
118          * free the subpool */
119         if (subpool_is_free(spool)) {
120                 if (spool->min_hpages != -1)
121                         hugetlb_acct_memory(spool->hstate,
122                                                 -spool->min_hpages);
123                 kfree(spool);
124         }
125 }
126
127 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
128                                                 long min_hpages)
129 {
130         struct hugepage_subpool *spool;
131
132         spool = kzalloc(sizeof(*spool), GFP_KERNEL);
133         if (!spool)
134                 return NULL;
135
136         spin_lock_init(&spool->lock);
137         spool->count = 1;
138         spool->max_hpages = max_hpages;
139         spool->hstate = h;
140         spool->min_hpages = min_hpages;
141
142         if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
143                 kfree(spool);
144                 return NULL;
145         }
146         spool->rsv_hpages = min_hpages;
147
148         return spool;
149 }
150
151 void hugepage_put_subpool(struct hugepage_subpool *spool)
152 {
153         unsigned long flags;
154
155         spin_lock_irqsave(&spool->lock, flags);
156         BUG_ON(!spool->count);
157         spool->count--;
158         unlock_or_release_subpool(spool, flags);
159 }
160
161 /*
162  * Subpool accounting for allocating and reserving pages.
163  * Return -ENOMEM if there are not enough resources to satisfy the
164  * request.  Otherwise, return the number of pages by which the
165  * global pools must be adjusted (upward).  The returned value may
166  * only be different than the passed value (delta) in the case where
167  * a subpool minimum size must be maintained.
168  */
169 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
170                                       long delta)
171 {
172         long ret = delta;
173
174         if (!spool)
175                 return ret;
176
177         spin_lock_irq(&spool->lock);
178
179         if (spool->max_hpages != -1) {          /* maximum size accounting */
180                 if ((spool->used_hpages + delta) <= spool->max_hpages)
181                         spool->used_hpages += delta;
182                 else {
183                         ret = -ENOMEM;
184                         goto unlock_ret;
185                 }
186         }
187
188         /* minimum size accounting */
189         if (spool->min_hpages != -1 && spool->rsv_hpages) {
190                 if (delta > spool->rsv_hpages) {
191                         /*
192                          * Asking for more reserves than those already taken on
193                          * behalf of subpool.  Return difference.
194                          */
195                         ret = delta - spool->rsv_hpages;
196                         spool->rsv_hpages = 0;
197                 } else {
198                         ret = 0;        /* reserves already accounted for */
199                         spool->rsv_hpages -= delta;
200                 }
201         }
202
203 unlock_ret:
204         spin_unlock_irq(&spool->lock);
205         return ret;
206 }
207
208 /*
209  * Subpool accounting for freeing and unreserving pages.
210  * Return the number of global page reservations that must be dropped.
211  * The return value may only be different than the passed value (delta)
212  * in the case where a subpool minimum size must be maintained.
213  */
214 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
215                                        long delta)
216 {
217         long ret = delta;
218         unsigned long flags;
219
220         if (!spool)
221                 return delta;
222
223         spin_lock_irqsave(&spool->lock, flags);
224
225         if (spool->max_hpages != -1)            /* maximum size accounting */
226                 spool->used_hpages -= delta;
227
228          /* minimum size accounting */
229         if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
230                 if (spool->rsv_hpages + delta <= spool->min_hpages)
231                         ret = 0;
232                 else
233                         ret = spool->rsv_hpages + delta - spool->min_hpages;
234
235                 spool->rsv_hpages += delta;
236                 if (spool->rsv_hpages > spool->min_hpages)
237                         spool->rsv_hpages = spool->min_hpages;
238         }
239
240         /*
241          * If hugetlbfs_put_super couldn't free spool due to an outstanding
242          * quota reference, free it now.
243          */
244         unlock_or_release_subpool(spool, flags);
245
246         return ret;
247 }
248
249 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
250 {
251         return HUGETLBFS_SB(inode->i_sb)->spool;
252 }
253
254 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
255 {
256         return subpool_inode(file_inode(vma->vm_file));
257 }
258
259 /* Helper that removes a struct file_region from the resv_map cache and returns
260  * it for use.
261  */
262 static struct file_region *
263 get_file_region_entry_from_cache(struct resv_map *resv, long from, long to)
264 {
265         struct file_region *nrg = NULL;
266
267         VM_BUG_ON(resv->region_cache_count <= 0);
268
269         resv->region_cache_count--;
270         nrg = list_first_entry(&resv->region_cache, struct file_region, link);
271         list_del(&nrg->link);
272
273         nrg->from = from;
274         nrg->to = to;
275
276         return nrg;
277 }
278
279 static void copy_hugetlb_cgroup_uncharge_info(struct file_region *nrg,
280                                               struct file_region *rg)
281 {
282 #ifdef CONFIG_CGROUP_HUGETLB
283         nrg->reservation_counter = rg->reservation_counter;
284         nrg->css = rg->css;
285         if (rg->css)
286                 css_get(rg->css);
287 #endif
288 }
289
290 /* Helper that records hugetlb_cgroup uncharge info. */
291 static void record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup *h_cg,
292                                                 struct hstate *h,
293                                                 struct resv_map *resv,
294                                                 struct file_region *nrg)
295 {
296 #ifdef CONFIG_CGROUP_HUGETLB
297         if (h_cg) {
298                 nrg->reservation_counter =
299                         &h_cg->rsvd_hugepage[hstate_index(h)];
300                 nrg->css = &h_cg->css;
301                 /*
302                  * The caller will hold exactly one h_cg->css reference for the
303                  * whole contiguous reservation region. But this area might be
304                  * scattered when there are already some file_regions reside in
305                  * it. As a result, many file_regions may share only one css
306                  * reference. In order to ensure that one file_region must hold
307                  * exactly one h_cg->css reference, we should do css_get for
308                  * each file_region and leave the reference held by caller
309                  * untouched.
310                  */
311                 css_get(&h_cg->css);
312                 if (!resv->pages_per_hpage)
313                         resv->pages_per_hpage = pages_per_huge_page(h);
314                 /* pages_per_hpage should be the same for all entries in
315                  * a resv_map.
316                  */
317                 VM_BUG_ON(resv->pages_per_hpage != pages_per_huge_page(h));
318         } else {
319                 nrg->reservation_counter = NULL;
320                 nrg->css = NULL;
321         }
322 #endif
323 }
324
325 static void put_uncharge_info(struct file_region *rg)
326 {
327 #ifdef CONFIG_CGROUP_HUGETLB
328         if (rg->css)
329                 css_put(rg->css);
330 #endif
331 }
332
333 static bool has_same_uncharge_info(struct file_region *rg,
334                                    struct file_region *org)
335 {
336 #ifdef CONFIG_CGROUP_HUGETLB
337         return rg->reservation_counter == org->reservation_counter &&
338                rg->css == org->css;
339
340 #else
341         return true;
342 #endif
343 }
344
345 static void coalesce_file_region(struct resv_map *resv, struct file_region *rg)
346 {
347         struct file_region *nrg = NULL, *prg = NULL;
348
349         prg = list_prev_entry(rg, link);
350         if (&prg->link != &resv->regions && prg->to == rg->from &&
351             has_same_uncharge_info(prg, rg)) {
352                 prg->to = rg->to;
353
354                 list_del(&rg->link);
355                 put_uncharge_info(rg);
356                 kfree(rg);
357
358                 rg = prg;
359         }
360
361         nrg = list_next_entry(rg, link);
362         if (&nrg->link != &resv->regions && nrg->from == rg->to &&
363             has_same_uncharge_info(nrg, rg)) {
364                 nrg->from = rg->from;
365
366                 list_del(&rg->link);
367                 put_uncharge_info(rg);
368                 kfree(rg);
369         }
370 }
371
372 static inline long
373 hugetlb_resv_map_add(struct resv_map *map, struct file_region *rg, long from,
374                      long to, struct hstate *h, struct hugetlb_cgroup *cg,
375                      long *regions_needed)
376 {
377         struct file_region *nrg;
378
379         if (!regions_needed) {
380                 nrg = get_file_region_entry_from_cache(map, from, to);
381                 record_hugetlb_cgroup_uncharge_info(cg, h, map, nrg);
382                 list_add(&nrg->link, rg->link.prev);
383                 coalesce_file_region(map, nrg);
384         } else
385                 *regions_needed += 1;
386
387         return to - from;
388 }
389
390 /*
391  * Must be called with resv->lock held.
392  *
393  * Calling this with regions_needed != NULL will count the number of pages
394  * to be added but will not modify the linked list. And regions_needed will
395  * indicate the number of file_regions needed in the cache to carry out to add
396  * the regions for this range.
397  */
398 static long add_reservation_in_range(struct resv_map *resv, long f, long t,
399                                      struct hugetlb_cgroup *h_cg,
400                                      struct hstate *h, long *regions_needed)
401 {
402         long add = 0;
403         struct list_head *head = &resv->regions;
404         long last_accounted_offset = f;
405         struct file_region *rg = NULL, *trg = NULL;
406
407         if (regions_needed)
408                 *regions_needed = 0;
409
410         /* In this loop, we essentially handle an entry for the range
411          * [last_accounted_offset, rg->from), at every iteration, with some
412          * bounds checking.
413          */
414         list_for_each_entry_safe(rg, trg, head, link) {
415                 /* Skip irrelevant regions that start before our range. */
416                 if (rg->from < f) {
417                         /* If this region ends after the last accounted offset,
418                          * then we need to update last_accounted_offset.
419                          */
420                         if (rg->to > last_accounted_offset)
421                                 last_accounted_offset = rg->to;
422                         continue;
423                 }
424
425                 /* When we find a region that starts beyond our range, we've
426                  * finished.
427                  */
428                 if (rg->from >= t)
429                         break;
430
431                 /* Add an entry for last_accounted_offset -> rg->from, and
432                  * update last_accounted_offset.
433                  */
434                 if (rg->from > last_accounted_offset)
435                         add += hugetlb_resv_map_add(resv, rg,
436                                                     last_accounted_offset,
437                                                     rg->from, h, h_cg,
438                                                     regions_needed);
439
440                 last_accounted_offset = rg->to;
441         }
442
443         /* Handle the case where our range extends beyond
444          * last_accounted_offset.
445          */
446         if (last_accounted_offset < t)
447                 add += hugetlb_resv_map_add(resv, rg, last_accounted_offset,
448                                             t, h, h_cg, regions_needed);
449
450         return add;
451 }
452
453 /* Must be called with resv->lock acquired. Will drop lock to allocate entries.
454  */
455 static int allocate_file_region_entries(struct resv_map *resv,
456                                         int regions_needed)
457         __must_hold(&resv->lock)
458 {
459         struct list_head allocated_regions;
460         int to_allocate = 0, i = 0;
461         struct file_region *trg = NULL, *rg = NULL;
462
463         VM_BUG_ON(regions_needed < 0);
464
465         INIT_LIST_HEAD(&allocated_regions);
466
467         /*
468          * Check for sufficient descriptors in the cache to accommodate
469          * the number of in progress add operations plus regions_needed.
470          *
471          * This is a while loop because when we drop the lock, some other call
472          * to region_add or region_del may have consumed some region_entries,
473          * so we keep looping here until we finally have enough entries for
474          * (adds_in_progress + regions_needed).
475          */
476         while (resv->region_cache_count <
477                (resv->adds_in_progress + regions_needed)) {
478                 to_allocate = resv->adds_in_progress + regions_needed -
479                               resv->region_cache_count;
480
481                 /* At this point, we should have enough entries in the cache
482                  * for all the existing adds_in_progress. We should only be
483                  * needing to allocate for regions_needed.
484                  */
485                 VM_BUG_ON(resv->region_cache_count < resv->adds_in_progress);
486
487                 spin_unlock(&resv->lock);
488                 for (i = 0; i < to_allocate; i++) {
489                         trg = kmalloc(sizeof(*trg), GFP_KERNEL);
490                         if (!trg)
491                                 goto out_of_memory;
492                         list_add(&trg->link, &allocated_regions);
493                 }
494
495                 spin_lock(&resv->lock);
496
497                 list_splice(&allocated_regions, &resv->region_cache);
498                 resv->region_cache_count += to_allocate;
499         }
500
501         return 0;
502
503 out_of_memory:
504         list_for_each_entry_safe(rg, trg, &allocated_regions, link) {
505                 list_del(&rg->link);
506                 kfree(rg);
507         }
508         return -ENOMEM;
509 }
510
511 /*
512  * Add the huge page range represented by [f, t) to the reserve
513  * map.  Regions will be taken from the cache to fill in this range.
514  * Sufficient regions should exist in the cache due to the previous
515  * call to region_chg with the same range, but in some cases the cache will not
516  * have sufficient entries due to races with other code doing region_add or
517  * region_del.  The extra needed entries will be allocated.
518  *
519  * regions_needed is the out value provided by a previous call to region_chg.
520  *
521  * Return the number of new huge pages added to the map.  This number is greater
522  * than or equal to zero.  If file_region entries needed to be allocated for
523  * this operation and we were not able to allocate, it returns -ENOMEM.
524  * region_add of regions of length 1 never allocate file_regions and cannot
525  * fail; region_chg will always allocate at least 1 entry and a region_add for
526  * 1 page will only require at most 1 entry.
527  */
528 static long region_add(struct resv_map *resv, long f, long t,
529                        long in_regions_needed, struct hstate *h,
530                        struct hugetlb_cgroup *h_cg)
531 {
532         long add = 0, actual_regions_needed = 0;
533
534         spin_lock(&resv->lock);
535 retry:
536
537         /* Count how many regions are actually needed to execute this add. */
538         add_reservation_in_range(resv, f, t, NULL, NULL,
539                                  &actual_regions_needed);
540
541         /*
542          * Check for sufficient descriptors in the cache to accommodate
543          * this add operation. Note that actual_regions_needed may be greater
544          * than in_regions_needed, as the resv_map may have been modified since
545          * the region_chg call. In this case, we need to make sure that we
546          * allocate extra entries, such that we have enough for all the
547          * existing adds_in_progress, plus the excess needed for this
548          * operation.
549          */
550         if (actual_regions_needed > in_regions_needed &&
551             resv->region_cache_count <
552                     resv->adds_in_progress +
553                             (actual_regions_needed - in_regions_needed)) {
554                 /* region_add operation of range 1 should never need to
555                  * allocate file_region entries.
556                  */
557                 VM_BUG_ON(t - f <= 1);
558
559                 if (allocate_file_region_entries(
560                             resv, actual_regions_needed - in_regions_needed)) {
561                         return -ENOMEM;
562                 }
563
564                 goto retry;
565         }
566
567         add = add_reservation_in_range(resv, f, t, h_cg, h, NULL);
568
569         resv->adds_in_progress -= in_regions_needed;
570
571         spin_unlock(&resv->lock);
572         return add;
573 }
574
575 /*
576  * Examine the existing reserve map and determine how many
577  * huge pages in the specified range [f, t) are NOT currently
578  * represented.  This routine is called before a subsequent
579  * call to region_add that will actually modify the reserve
580  * map to add the specified range [f, t).  region_chg does
581  * not change the number of huge pages represented by the
582  * map.  A number of new file_region structures is added to the cache as a
583  * placeholder, for the subsequent region_add call to use. At least 1
584  * file_region structure is added.
585  *
586  * out_regions_needed is the number of regions added to the
587  * resv->adds_in_progress.  This value needs to be provided to a follow up call
588  * to region_add or region_abort for proper accounting.
589  *
590  * Returns the number of huge pages that need to be added to the existing
591  * reservation map for the range [f, t).  This number is greater or equal to
592  * zero.  -ENOMEM is returned if a new file_region structure or cache entry
593  * is needed and can not be allocated.
594  */
595 static long region_chg(struct resv_map *resv, long f, long t,
596                        long *out_regions_needed)
597 {
598         long chg = 0;
599
600         spin_lock(&resv->lock);
601
602         /* Count how many hugepages in this range are NOT represented. */
603         chg = add_reservation_in_range(resv, f, t, NULL, NULL,
604                                        out_regions_needed);
605
606         if (*out_regions_needed == 0)
607                 *out_regions_needed = 1;
608
609         if (allocate_file_region_entries(resv, *out_regions_needed))
610                 return -ENOMEM;
611
612         resv->adds_in_progress += *out_regions_needed;
613
614         spin_unlock(&resv->lock);
615         return chg;
616 }
617
618 /*
619  * Abort the in progress add operation.  The adds_in_progress field
620  * of the resv_map keeps track of the operations in progress between
621  * calls to region_chg and region_add.  Operations are sometimes
622  * aborted after the call to region_chg.  In such cases, region_abort
623  * is called to decrement the adds_in_progress counter. regions_needed
624  * is the value returned by the region_chg call, it is used to decrement
625  * the adds_in_progress counter.
626  *
627  * NOTE: The range arguments [f, t) are not needed or used in this
628  * routine.  They are kept to make reading the calling code easier as
629  * arguments will match the associated region_chg call.
630  */
631 static void region_abort(struct resv_map *resv, long f, long t,
632                          long regions_needed)
633 {
634         spin_lock(&resv->lock);
635         VM_BUG_ON(!resv->region_cache_count);
636         resv->adds_in_progress -= regions_needed;
637         spin_unlock(&resv->lock);
638 }
639
640 /*
641  * Delete the specified range [f, t) from the reserve map.  If the
642  * t parameter is LONG_MAX, this indicates that ALL regions after f
643  * should be deleted.  Locate the regions which intersect [f, t)
644  * and either trim, delete or split the existing regions.
645  *
646  * Returns the number of huge pages deleted from the reserve map.
647  * In the normal case, the return value is zero or more.  In the
648  * case where a region must be split, a new region descriptor must
649  * be allocated.  If the allocation fails, -ENOMEM will be returned.
650  * NOTE: If the parameter t == LONG_MAX, then we will never split
651  * a region and possibly return -ENOMEM.  Callers specifying
652  * t == LONG_MAX do not need to check for -ENOMEM error.
653  */
654 static long region_del(struct resv_map *resv, long f, long t)
655 {
656         struct list_head *head = &resv->regions;
657         struct file_region *rg, *trg;
658         struct file_region *nrg = NULL;
659         long del = 0;
660
661 retry:
662         spin_lock(&resv->lock);
663         list_for_each_entry_safe(rg, trg, head, link) {
664                 /*
665                  * Skip regions before the range to be deleted.  file_region
666                  * ranges are normally of the form [from, to).  However, there
667                  * may be a "placeholder" entry in the map which is of the form
668                  * (from, to) with from == to.  Check for placeholder entries
669                  * at the beginning of the range to be deleted.
670                  */
671                 if (rg->to <= f && (rg->to != rg->from || rg->to != f))
672                         continue;
673
674                 if (rg->from >= t)
675                         break;
676
677                 if (f > rg->from && t < rg->to) { /* Must split region */
678                         /*
679                          * Check for an entry in the cache before dropping
680                          * lock and attempting allocation.
681                          */
682                         if (!nrg &&
683                             resv->region_cache_count > resv->adds_in_progress) {
684                                 nrg = list_first_entry(&resv->region_cache,
685                                                         struct file_region,
686                                                         link);
687                                 list_del(&nrg->link);
688                                 resv->region_cache_count--;
689                         }
690
691                         if (!nrg) {
692                                 spin_unlock(&resv->lock);
693                                 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
694                                 if (!nrg)
695                                         return -ENOMEM;
696                                 goto retry;
697                         }
698
699                         del += t - f;
700                         hugetlb_cgroup_uncharge_file_region(
701                                 resv, rg, t - f, false);
702
703                         /* New entry for end of split region */
704                         nrg->from = t;
705                         nrg->to = rg->to;
706
707                         copy_hugetlb_cgroup_uncharge_info(nrg, rg);
708
709                         INIT_LIST_HEAD(&nrg->link);
710
711                         /* Original entry is trimmed */
712                         rg->to = f;
713
714                         list_add(&nrg->link, &rg->link);
715                         nrg = NULL;
716                         break;
717                 }
718
719                 if (f <= rg->from && t >= rg->to) { /* Remove entire region */
720                         del += rg->to - rg->from;
721                         hugetlb_cgroup_uncharge_file_region(resv, rg,
722                                                             rg->to - rg->from, true);
723                         list_del(&rg->link);
724                         kfree(rg);
725                         continue;
726                 }
727
728                 if (f <= rg->from) {    /* Trim beginning of region */
729                         hugetlb_cgroup_uncharge_file_region(resv, rg,
730                                                             t - rg->from, false);
731
732                         del += t - rg->from;
733                         rg->from = t;
734                 } else {                /* Trim end of region */
735                         hugetlb_cgroup_uncharge_file_region(resv, rg,
736                                                             rg->to - f, false);
737
738                         del += rg->to - f;
739                         rg->to = f;
740                 }
741         }
742
743         spin_unlock(&resv->lock);
744         kfree(nrg);
745         return del;
746 }
747
748 /*
749  * A rare out of memory error was encountered which prevented removal of
750  * the reserve map region for a page.  The huge page itself was free'ed
751  * and removed from the page cache.  This routine will adjust the subpool
752  * usage count, and the global reserve count if needed.  By incrementing
753  * these counts, the reserve map entry which could not be deleted will
754  * appear as a "reserved" entry instead of simply dangling with incorrect
755  * counts.
756  */
757 void hugetlb_fix_reserve_counts(struct inode *inode)
758 {
759         struct hugepage_subpool *spool = subpool_inode(inode);
760         long rsv_adjust;
761         bool reserved = false;
762
763         rsv_adjust = hugepage_subpool_get_pages(spool, 1);
764         if (rsv_adjust > 0) {
765                 struct hstate *h = hstate_inode(inode);
766
767                 if (!hugetlb_acct_memory(h, 1))
768                         reserved = true;
769         } else if (!rsv_adjust) {
770                 reserved = true;
771         }
772
773         if (!reserved)
774                 pr_warn("hugetlb: Huge Page Reserved count may go negative.\n");
775 }
776
777 /*
778  * Count and return the number of huge pages in the reserve map
779  * that intersect with the range [f, t).
780  */
781 static long region_count(struct resv_map *resv, long f, long t)
782 {
783         struct list_head *head = &resv->regions;
784         struct file_region *rg;
785         long chg = 0;
786
787         spin_lock(&resv->lock);
788         /* Locate each segment we overlap with, and count that overlap. */
789         list_for_each_entry(rg, head, link) {
790                 long seg_from;
791                 long seg_to;
792
793                 if (rg->to <= f)
794                         continue;
795                 if (rg->from >= t)
796                         break;
797
798                 seg_from = max(rg->from, f);
799                 seg_to = min(rg->to, t);
800
801                 chg += seg_to - seg_from;
802         }
803         spin_unlock(&resv->lock);
804
805         return chg;
806 }
807
808 /*
809  * Convert the address within this vma to the page offset within
810  * the mapping, in pagecache page units; huge pages here.
811  */
812 static pgoff_t vma_hugecache_offset(struct hstate *h,
813                         struct vm_area_struct *vma, unsigned long address)
814 {
815         return ((address - vma->vm_start) >> huge_page_shift(h)) +
816                         (vma->vm_pgoff >> huge_page_order(h));
817 }
818
819 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
820                                      unsigned long address)
821 {
822         return vma_hugecache_offset(hstate_vma(vma), vma, address);
823 }
824 EXPORT_SYMBOL_GPL(linear_hugepage_index);
825
826 /*
827  * Return the size of the pages allocated when backing a VMA. In the majority
828  * cases this will be same size as used by the page table entries.
829  */
830 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
831 {
832         if (vma->vm_ops && vma->vm_ops->pagesize)
833                 return vma->vm_ops->pagesize(vma);
834         return PAGE_SIZE;
835 }
836 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
837
838 /*
839  * Return the page size being used by the MMU to back a VMA. In the majority
840  * of cases, the page size used by the kernel matches the MMU size. On
841  * architectures where it differs, an architecture-specific 'strong'
842  * version of this symbol is required.
843  */
844 __weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
845 {
846         return vma_kernel_pagesize(vma);
847 }
848
849 /*
850  * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
851  * bits of the reservation map pointer, which are always clear due to
852  * alignment.
853  */
854 #define HPAGE_RESV_OWNER    (1UL << 0)
855 #define HPAGE_RESV_UNMAPPED (1UL << 1)
856 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
857
858 /*
859  * These helpers are used to track how many pages are reserved for
860  * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
861  * is guaranteed to have their future faults succeed.
862  *
863  * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
864  * the reserve counters are updated with the hugetlb_lock held. It is safe
865  * to reset the VMA at fork() time as it is not in use yet and there is no
866  * chance of the global counters getting corrupted as a result of the values.
867  *
868  * The private mapping reservation is represented in a subtly different
869  * manner to a shared mapping.  A shared mapping has a region map associated
870  * with the underlying file, this region map represents the backing file
871  * pages which have ever had a reservation assigned which this persists even
872  * after the page is instantiated.  A private mapping has a region map
873  * associated with the original mmap which is attached to all VMAs which
874  * reference it, this region map represents those offsets which have consumed
875  * reservation ie. where pages have been instantiated.
876  */
877 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
878 {
879         return (unsigned long)vma->vm_private_data;
880 }
881
882 static void set_vma_private_data(struct vm_area_struct *vma,
883                                                         unsigned long value)
884 {
885         vma->vm_private_data = (void *)value;
886 }
887
888 static void
889 resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map *resv_map,
890                                           struct hugetlb_cgroup *h_cg,
891                                           struct hstate *h)
892 {
893 #ifdef CONFIG_CGROUP_HUGETLB
894         if (!h_cg || !h) {
895                 resv_map->reservation_counter = NULL;
896                 resv_map->pages_per_hpage = 0;
897                 resv_map->css = NULL;
898         } else {
899                 resv_map->reservation_counter =
900                         &h_cg->rsvd_hugepage[hstate_index(h)];
901                 resv_map->pages_per_hpage = pages_per_huge_page(h);
902                 resv_map->css = &h_cg->css;
903         }
904 #endif
905 }
906
907 struct resv_map *resv_map_alloc(void)
908 {
909         struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
910         struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
911
912         if (!resv_map || !rg) {
913                 kfree(resv_map);
914                 kfree(rg);
915                 return NULL;
916         }
917
918         kref_init(&resv_map->refs);
919         spin_lock_init(&resv_map->lock);
920         INIT_LIST_HEAD(&resv_map->regions);
921
922         resv_map->adds_in_progress = 0;
923         /*
924          * Initialize these to 0. On shared mappings, 0's here indicate these
925          * fields don't do cgroup accounting. On private mappings, these will be
926          * re-initialized to the proper values, to indicate that hugetlb cgroup
927          * reservations are to be un-charged from here.
928          */
929         resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, NULL, NULL);
930
931         INIT_LIST_HEAD(&resv_map->region_cache);
932         list_add(&rg->link, &resv_map->region_cache);
933         resv_map->region_cache_count = 1;
934
935         return resv_map;
936 }
937
938 void resv_map_release(struct kref *ref)
939 {
940         struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
941         struct list_head *head = &resv_map->region_cache;
942         struct file_region *rg, *trg;
943
944         /* Clear out any active regions before we release the map. */
945         region_del(resv_map, 0, LONG_MAX);
946
947         /* ... and any entries left in the cache */
948         list_for_each_entry_safe(rg, trg, head, link) {
949                 list_del(&rg->link);
950                 kfree(rg);
951         }
952
953         VM_BUG_ON(resv_map->adds_in_progress);
954
955         kfree(resv_map);
956 }
957
958 static inline struct resv_map *inode_resv_map(struct inode *inode)
959 {
960         /*
961          * At inode evict time, i_mapping may not point to the original
962          * address space within the inode.  This original address space
963          * contains the pointer to the resv_map.  So, always use the
964          * address space embedded within the inode.
965          * The VERY common case is inode->mapping == &inode->i_data but,
966          * this may not be true for device special inodes.
967          */
968         return (struct resv_map *)(&inode->i_data)->private_data;
969 }
970
971 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
972 {
973         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
974         if (vma->vm_flags & VM_MAYSHARE) {
975                 struct address_space *mapping = vma->vm_file->f_mapping;
976                 struct inode *inode = mapping->host;
977
978                 return inode_resv_map(inode);
979
980         } else {
981                 return (struct resv_map *)(get_vma_private_data(vma) &
982                                                         ~HPAGE_RESV_MASK);
983         }
984 }
985
986 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
987 {
988         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
989         VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
990
991         set_vma_private_data(vma, (get_vma_private_data(vma) &
992                                 HPAGE_RESV_MASK) | (unsigned long)map);
993 }
994
995 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
996 {
997         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
998         VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
999
1000         set_vma_private_data(vma, get_vma_private_data(vma) | flags);
1001 }
1002
1003 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
1004 {
1005         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1006
1007         return (get_vma_private_data(vma) & flag) != 0;
1008 }
1009
1010 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
1011 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
1012 {
1013         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1014         if (!(vma->vm_flags & VM_MAYSHARE))
1015                 vma->vm_private_data = (void *)0;
1016 }
1017
1018 /*
1019  * Reset and decrement one ref on hugepage private reservation.
1020  * Called with mm->mmap_sem writer semaphore held.
1021  * This function should be only used by move_vma() and operate on
1022  * same sized vma. It should never come here with last ref on the
1023  * reservation.
1024  */
1025 void clear_vma_resv_huge_pages(struct vm_area_struct *vma)
1026 {
1027         /*
1028          * Clear the old hugetlb private page reservation.
1029          * It has already been transferred to new_vma.
1030          *
1031          * During a mremap() operation of a hugetlb vma we call move_vma()
1032          * which copies vma into new_vma and unmaps vma. After the copy
1033          * operation both new_vma and vma share a reference to the resv_map
1034          * struct, and at that point vma is about to be unmapped. We don't
1035          * want to return the reservation to the pool at unmap of vma because
1036          * the reservation still lives on in new_vma, so simply decrement the
1037          * ref here and remove the resv_map reference from this vma.
1038          */
1039         struct resv_map *reservations = vma_resv_map(vma);
1040
1041         if (reservations && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1042                 resv_map_put_hugetlb_cgroup_uncharge_info(reservations);
1043                 kref_put(&reservations->refs, resv_map_release);
1044         }
1045
1046         reset_vma_resv_huge_pages(vma);
1047 }
1048
1049 /* Returns true if the VMA has associated reserve pages */
1050 static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
1051 {
1052         if (vma->vm_flags & VM_NORESERVE) {
1053                 /*
1054                  * This address is already reserved by other process(chg == 0),
1055                  * so, we should decrement reserved count. Without decrementing,
1056                  * reserve count remains after releasing inode, because this
1057                  * allocated page will go into page cache and is regarded as
1058                  * coming from reserved pool in releasing step.  Currently, we
1059                  * don't have any other solution to deal with this situation
1060                  * properly, so add work-around here.
1061                  */
1062                 if (vma->vm_flags & VM_MAYSHARE && chg == 0)
1063                         return true;
1064                 else
1065                         return false;
1066         }
1067
1068         /* Shared mappings always use reserves */
1069         if (vma->vm_flags & VM_MAYSHARE) {
1070                 /*
1071                  * We know VM_NORESERVE is not set.  Therefore, there SHOULD
1072                  * be a region map for all pages.  The only situation where
1073                  * there is no region map is if a hole was punched via
1074                  * fallocate.  In this case, there really are no reserves to
1075                  * use.  This situation is indicated if chg != 0.
1076                  */
1077                 if (chg)
1078                         return false;
1079                 else
1080                         return true;
1081         }
1082
1083         /*
1084          * Only the process that called mmap() has reserves for
1085          * private mappings.
1086          */
1087         if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1088                 /*
1089                  * Like the shared case above, a hole punch or truncate
1090                  * could have been performed on the private mapping.
1091                  * Examine the value of chg to determine if reserves
1092                  * actually exist or were previously consumed.
1093                  * Very Subtle - The value of chg comes from a previous
1094                  * call to vma_needs_reserves().  The reserve map for
1095                  * private mappings has different (opposite) semantics
1096                  * than that of shared mappings.  vma_needs_reserves()
1097                  * has already taken this difference in semantics into
1098                  * account.  Therefore, the meaning of chg is the same
1099                  * as in the shared case above.  Code could easily be
1100                  * combined, but keeping it separate draws attention to
1101                  * subtle differences.
1102                  */
1103                 if (chg)
1104                         return false;
1105                 else
1106                         return true;
1107         }
1108
1109         return false;
1110 }
1111
1112 static void enqueue_huge_page(struct hstate *h, struct page *page)
1113 {
1114         int nid = page_to_nid(page);
1115
1116         lockdep_assert_held(&hugetlb_lock);
1117         VM_BUG_ON_PAGE(page_count(page), page);
1118
1119         list_move(&page->lru, &h->hugepage_freelists[nid]);
1120         h->free_huge_pages++;
1121         h->free_huge_pages_node[nid]++;
1122         SetHPageFreed(page);
1123 }
1124
1125 static struct page *dequeue_huge_page_node_exact(struct hstate *h, int nid)
1126 {
1127         struct page *page;
1128         bool pin = !!(current->flags & PF_MEMALLOC_PIN);
1129
1130         lockdep_assert_held(&hugetlb_lock);
1131         list_for_each_entry(page, &h->hugepage_freelists[nid], lru) {
1132                 if (pin && !is_pinnable_page(page))
1133                         continue;
1134
1135                 if (PageHWPoison(page))
1136                         continue;
1137
1138                 list_move(&page->lru, &h->hugepage_activelist);
1139                 set_page_refcounted(page);
1140                 ClearHPageFreed(page);
1141                 h->free_huge_pages--;
1142                 h->free_huge_pages_node[nid]--;
1143                 return page;
1144         }
1145
1146         return NULL;
1147 }
1148
1149 static struct page *dequeue_huge_page_nodemask(struct hstate *h, gfp_t gfp_mask, int nid,
1150                 nodemask_t *nmask)
1151 {
1152         unsigned int cpuset_mems_cookie;
1153         struct zonelist *zonelist;
1154         struct zone *zone;
1155         struct zoneref *z;
1156         int node = NUMA_NO_NODE;
1157
1158         zonelist = node_zonelist(nid, gfp_mask);
1159
1160 retry_cpuset:
1161         cpuset_mems_cookie = read_mems_allowed_begin();
1162         for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
1163                 struct page *page;
1164
1165                 if (!cpuset_zone_allowed(zone, gfp_mask))
1166                         continue;
1167                 /*
1168                  * no need to ask again on the same node. Pool is node rather than
1169                  * zone aware
1170                  */
1171                 if (zone_to_nid(zone) == node)
1172                         continue;
1173                 node = zone_to_nid(zone);
1174
1175                 page = dequeue_huge_page_node_exact(h, node);
1176                 if (page)
1177                         return page;
1178         }
1179         if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
1180                 goto retry_cpuset;
1181
1182         return NULL;
1183 }
1184
1185 static struct page *dequeue_huge_page_vma(struct hstate *h,
1186                                 struct vm_area_struct *vma,
1187                                 unsigned long address, int avoid_reserve,
1188                                 long chg)
1189 {
1190         struct page *page = NULL;
1191         struct mempolicy *mpol;
1192         gfp_t gfp_mask;
1193         nodemask_t *nodemask;
1194         int nid;
1195
1196         /*
1197          * A child process with MAP_PRIVATE mappings created by their parent
1198          * have no page reserves. This check ensures that reservations are
1199          * not "stolen". The child may still get SIGKILLed
1200          */
1201         if (!vma_has_reserves(vma, chg) &&
1202                         h->free_huge_pages - h->resv_huge_pages == 0)
1203                 goto err;
1204
1205         /* If reserves cannot be used, ensure enough pages are in the pool */
1206         if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
1207                 goto err;
1208
1209         gfp_mask = htlb_alloc_mask(h);
1210         nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
1211
1212         if (mpol_is_preferred_many(mpol)) {
1213                 page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
1214
1215                 /* Fallback to all nodes if page==NULL */
1216                 nodemask = NULL;
1217         }
1218
1219         if (!page)
1220                 page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
1221
1222         if (page && !avoid_reserve && vma_has_reserves(vma, chg)) {
1223                 SetHPageRestoreReserve(page);
1224                 h->resv_huge_pages--;
1225         }
1226
1227         mpol_cond_put(mpol);
1228         return page;
1229
1230 err:
1231         return NULL;
1232 }
1233
1234 /*
1235  * common helper functions for hstate_next_node_to_{alloc|free}.
1236  * We may have allocated or freed a huge page based on a different
1237  * nodes_allowed previously, so h->next_node_to_{alloc|free} might
1238  * be outside of *nodes_allowed.  Ensure that we use an allowed
1239  * node for alloc or free.
1240  */
1241 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
1242 {
1243         nid = next_node_in(nid, *nodes_allowed);
1244         VM_BUG_ON(nid >= MAX_NUMNODES);
1245
1246         return nid;
1247 }
1248
1249 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
1250 {
1251         if (!node_isset(nid, *nodes_allowed))
1252                 nid = next_node_allowed(nid, nodes_allowed);
1253         return nid;
1254 }
1255
1256 /*
1257  * returns the previously saved node ["this node"] from which to
1258  * allocate a persistent huge page for the pool and advance the
1259  * next node from which to allocate, handling wrap at end of node
1260  * mask.
1261  */
1262 static int hstate_next_node_to_alloc(struct hstate *h,
1263                                         nodemask_t *nodes_allowed)
1264 {
1265         int nid;
1266
1267         VM_BUG_ON(!nodes_allowed);
1268
1269         nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
1270         h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
1271
1272         return nid;
1273 }
1274
1275 /*
1276  * helper for remove_pool_huge_page() - return the previously saved
1277  * node ["this node"] from which to free a huge page.  Advance the
1278  * next node id whether or not we find a free huge page to free so
1279  * that the next attempt to free addresses the next node.
1280  */
1281 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1282 {
1283         int nid;
1284
1285         VM_BUG_ON(!nodes_allowed);
1286
1287         nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1288         h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1289
1290         return nid;
1291 }
1292
1293 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask)           \
1294         for (nr_nodes = nodes_weight(*mask);                            \
1295                 nr_nodes > 0 &&                                         \
1296                 ((node = hstate_next_node_to_alloc(hs, mask)) || 1);    \
1297                 nr_nodes--)
1298
1299 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask)            \
1300         for (nr_nodes = nodes_weight(*mask);                            \
1301                 nr_nodes > 0 &&                                         \
1302                 ((node = hstate_next_node_to_free(hs, mask)) || 1);     \
1303                 nr_nodes--)
1304
1305 /* used to demote non-gigantic_huge pages as well */
1306 static void __destroy_compound_gigantic_page(struct page *page,
1307                                         unsigned int order, bool demote)
1308 {
1309         int i;
1310         int nr_pages = 1 << order;
1311         struct page *p = page + 1;
1312
1313         atomic_set(compound_mapcount_ptr(page), 0);
1314         atomic_set(compound_pincount_ptr(page), 0);
1315
1316         for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1317                 p->mapping = NULL;
1318                 clear_compound_head(p);
1319                 if (!demote)
1320                         set_page_refcounted(p);
1321         }
1322
1323         set_compound_order(page, 0);
1324 #ifdef CONFIG_64BIT
1325         page[1].compound_nr = 0;
1326 #endif
1327         __ClearPageHead(page);
1328 }
1329
1330 static void destroy_compound_hugetlb_page_for_demote(struct page *page,
1331                                         unsigned int order)
1332 {
1333         __destroy_compound_gigantic_page(page, order, true);
1334 }
1335
1336 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
1337 static void destroy_compound_gigantic_page(struct page *page,
1338                                         unsigned int order)
1339 {
1340         __destroy_compound_gigantic_page(page, order, false);
1341 }
1342
1343 static void free_gigantic_page(struct page *page, unsigned int order)
1344 {
1345         /*
1346          * If the page isn't allocated using the cma allocator,
1347          * cma_release() returns false.
1348          */
1349 #ifdef CONFIG_CMA
1350         if (cma_release(hugetlb_cma[page_to_nid(page)], page, 1 << order))
1351                 return;
1352 #endif
1353
1354         free_contig_range(page_to_pfn(page), 1 << order);
1355 }
1356
1357 #ifdef CONFIG_CONTIG_ALLOC
1358 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1359                 int nid, nodemask_t *nodemask)
1360 {
1361         unsigned long nr_pages = pages_per_huge_page(h);
1362         if (nid == NUMA_NO_NODE)
1363                 nid = numa_mem_id();
1364
1365 #ifdef CONFIG_CMA
1366         {
1367                 struct page *page;
1368                 int node;
1369
1370                 if (hugetlb_cma[nid]) {
1371                         page = cma_alloc(hugetlb_cma[nid], nr_pages,
1372                                         huge_page_order(h), true);
1373                         if (page)
1374                                 return page;
1375                 }
1376
1377                 if (!(gfp_mask & __GFP_THISNODE)) {
1378                         for_each_node_mask(node, *nodemask) {
1379                                 if (node == nid || !hugetlb_cma[node])
1380                                         continue;
1381
1382                                 page = cma_alloc(hugetlb_cma[node], nr_pages,
1383                                                 huge_page_order(h), true);
1384                                 if (page)
1385                                         return page;
1386                         }
1387                 }
1388         }
1389 #endif
1390
1391         return alloc_contig_pages(nr_pages, gfp_mask, nid, nodemask);
1392 }
1393
1394 #else /* !CONFIG_CONTIG_ALLOC */
1395 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1396                                         int nid, nodemask_t *nodemask)
1397 {
1398         return NULL;
1399 }
1400 #endif /* CONFIG_CONTIG_ALLOC */
1401
1402 #else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
1403 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1404                                         int nid, nodemask_t *nodemask)
1405 {
1406         return NULL;
1407 }
1408 static inline void free_gigantic_page(struct page *page, unsigned int order) { }
1409 static inline void destroy_compound_gigantic_page(struct page *page,
1410                                                 unsigned int order) { }
1411 #endif
1412
1413 /*
1414  * Remove hugetlb page from lists, and update dtor so that page appears
1415  * as just a compound page.
1416  *
1417  * A reference is held on the page, except in the case of demote.
1418  *
1419  * Must be called with hugetlb lock held.
1420  */
1421 static void __remove_hugetlb_page(struct hstate *h, struct page *page,
1422                                                         bool adjust_surplus,
1423                                                         bool demote)
1424 {
1425         int nid = page_to_nid(page);
1426
1427         VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
1428         VM_BUG_ON_PAGE(hugetlb_cgroup_from_page_rsvd(page), page);
1429
1430         lockdep_assert_held(&hugetlb_lock);
1431         if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1432                 return;
1433
1434         list_del(&page->lru);
1435
1436         if (HPageFreed(page)) {
1437                 h->free_huge_pages--;
1438                 h->free_huge_pages_node[nid]--;
1439         }
1440         if (adjust_surplus) {
1441                 h->surplus_huge_pages--;
1442                 h->surplus_huge_pages_node[nid]--;
1443         }
1444
1445         /*
1446          * Very subtle
1447          *
1448          * For non-gigantic pages set the destructor to the normal compound
1449          * page dtor.  This is needed in case someone takes an additional
1450          * temporary ref to the page, and freeing is delayed until they drop
1451          * their reference.
1452          *
1453          * For gigantic pages set the destructor to the null dtor.  This
1454          * destructor will never be called.  Before freeing the gigantic
1455          * page destroy_compound_gigantic_page will turn the compound page
1456          * into a simple group of pages.  After this the destructor does not
1457          * apply.
1458          *
1459          * This handles the case where more than one ref is held when and
1460          * after update_and_free_page is called.
1461          *
1462          * In the case of demote we do not ref count the page as it will soon
1463          * be turned into a page of smaller size.
1464          */
1465         if (!demote)
1466                 set_page_refcounted(page);
1467         if (hstate_is_gigantic(h))
1468                 set_compound_page_dtor(page, NULL_COMPOUND_DTOR);
1469         else
1470                 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
1471
1472         h->nr_huge_pages--;
1473         h->nr_huge_pages_node[nid]--;
1474 }
1475
1476 static void remove_hugetlb_page(struct hstate *h, struct page *page,
1477                                                         bool adjust_surplus)
1478 {
1479         __remove_hugetlb_page(h, page, adjust_surplus, false);
1480 }
1481
1482 static void remove_hugetlb_page_for_demote(struct hstate *h, struct page *page,
1483                                                         bool adjust_surplus)
1484 {
1485         __remove_hugetlb_page(h, page, adjust_surplus, true);
1486 }
1487
1488 static void add_hugetlb_page(struct hstate *h, struct page *page,
1489                              bool adjust_surplus)
1490 {
1491         int zeroed;
1492         int nid = page_to_nid(page);
1493
1494         VM_BUG_ON_PAGE(!HPageVmemmapOptimized(page), page);
1495
1496         lockdep_assert_held(&hugetlb_lock);
1497
1498         INIT_LIST_HEAD(&page->lru);
1499         h->nr_huge_pages++;
1500         h->nr_huge_pages_node[nid]++;
1501
1502         if (adjust_surplus) {
1503                 h->surplus_huge_pages++;
1504                 h->surplus_huge_pages_node[nid]++;
1505         }
1506
1507         set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1508         set_page_private(page, 0);
1509         SetHPageVmemmapOptimized(page);
1510
1511         /*
1512          * This page is about to be managed by the hugetlb allocator and
1513          * should have no users.  Drop our reference, and check for others
1514          * just in case.
1515          */
1516         zeroed = put_page_testzero(page);
1517         if (!zeroed)
1518                 /*
1519                  * It is VERY unlikely soneone else has taken a ref on
1520                  * the page.  In this case, we simply return as the
1521                  * hugetlb destructor (free_huge_page) will be called
1522                  * when this other ref is dropped.
1523                  */
1524                 return;
1525
1526         arch_clear_hugepage_flags(page);
1527         enqueue_huge_page(h, page);
1528 }
1529
1530 static void __update_and_free_page(struct hstate *h, struct page *page)
1531 {
1532         int i;
1533         struct page *subpage = page;
1534
1535         if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1536                 return;
1537
1538         if (alloc_huge_page_vmemmap(h, page)) {
1539                 spin_lock_irq(&hugetlb_lock);
1540                 /*
1541                  * If we cannot allocate vmemmap pages, just refuse to free the
1542                  * page and put the page back on the hugetlb free list and treat
1543                  * as a surplus page.
1544                  */
1545                 add_hugetlb_page(h, page, true);
1546                 spin_unlock_irq(&hugetlb_lock);
1547                 return;
1548         }
1549
1550         for (i = 0; i < pages_per_huge_page(h);
1551              i++, subpage = mem_map_next(subpage, page, i)) {
1552                 subpage->flags &= ~(1 << PG_locked | 1 << PG_error |
1553                                 1 << PG_referenced | 1 << PG_dirty |
1554                                 1 << PG_active | 1 << PG_private |
1555                                 1 << PG_writeback);
1556         }
1557
1558         /*
1559          * Non-gigantic pages demoted from CMA allocated gigantic pages
1560          * need to be given back to CMA in free_gigantic_page.
1561          */
1562         if (hstate_is_gigantic(h) ||
1563             hugetlb_cma_page(page, huge_page_order(h))) {
1564                 destroy_compound_gigantic_page(page, huge_page_order(h));
1565                 free_gigantic_page(page, huge_page_order(h));
1566         } else {
1567                 __free_pages(page, huge_page_order(h));
1568         }
1569 }
1570
1571 /*
1572  * As update_and_free_page() can be called under any context, so we cannot
1573  * use GFP_KERNEL to allocate vmemmap pages. However, we can defer the
1574  * actual freeing in a workqueue to prevent from using GFP_ATOMIC to allocate
1575  * the vmemmap pages.
1576  *
1577  * free_hpage_workfn() locklessly retrieves the linked list of pages to be
1578  * freed and frees them one-by-one. As the page->mapping pointer is going
1579  * to be cleared in free_hpage_workfn() anyway, it is reused as the llist_node
1580  * structure of a lockless linked list of huge pages to be freed.
1581  */
1582 static LLIST_HEAD(hpage_freelist);
1583
1584 static void free_hpage_workfn(struct work_struct *work)
1585 {
1586         struct llist_node *node;
1587
1588         node = llist_del_all(&hpage_freelist);
1589
1590         while (node) {
1591                 struct page *page;
1592                 struct hstate *h;
1593
1594                 page = container_of((struct address_space **)node,
1595                                      struct page, mapping);
1596                 node = node->next;
1597                 page->mapping = NULL;
1598                 /*
1599                  * The VM_BUG_ON_PAGE(!PageHuge(page), page) in page_hstate()
1600                  * is going to trigger because a previous call to
1601                  * remove_hugetlb_page() will set_compound_page_dtor(page,
1602                  * NULL_COMPOUND_DTOR), so do not use page_hstate() directly.
1603                  */
1604                 h = size_to_hstate(page_size(page));
1605
1606                 __update_and_free_page(h, page);
1607
1608                 cond_resched();
1609         }
1610 }
1611 static DECLARE_WORK(free_hpage_work, free_hpage_workfn);
1612
1613 static inline void flush_free_hpage_work(struct hstate *h)
1614 {
1615         if (free_vmemmap_pages_per_hpage(h))
1616                 flush_work(&free_hpage_work);
1617 }
1618
1619 static void update_and_free_page(struct hstate *h, struct page *page,
1620                                  bool atomic)
1621 {
1622         if (!HPageVmemmapOptimized(page) || !atomic) {
1623                 __update_and_free_page(h, page);
1624                 return;
1625         }
1626
1627         /*
1628          * Defer freeing to avoid using GFP_ATOMIC to allocate vmemmap pages.
1629          *
1630          * Only call schedule_work() if hpage_freelist is previously
1631          * empty. Otherwise, schedule_work() had been called but the workfn
1632          * hasn't retrieved the list yet.
1633          */
1634         if (llist_add((struct llist_node *)&page->mapping, &hpage_freelist))
1635                 schedule_work(&free_hpage_work);
1636 }
1637
1638 static void update_and_free_pages_bulk(struct hstate *h, struct list_head *list)
1639 {
1640         struct page *page, *t_page;
1641
1642         list_for_each_entry_safe(page, t_page, list, lru) {
1643                 update_and_free_page(h, page, false);
1644                 cond_resched();
1645         }
1646 }
1647
1648 struct hstate *size_to_hstate(unsigned long size)
1649 {
1650         struct hstate *h;
1651
1652         for_each_hstate(h) {
1653                 if (huge_page_size(h) == size)
1654                         return h;
1655         }
1656         return NULL;
1657 }
1658
1659 void free_huge_page(struct page *page)
1660 {
1661         /*
1662          * Can't pass hstate in here because it is called from the
1663          * compound page destructor.
1664          */
1665         struct hstate *h = page_hstate(page);
1666         int nid = page_to_nid(page);
1667         struct hugepage_subpool *spool = hugetlb_page_subpool(page);
1668         bool restore_reserve;
1669         unsigned long flags;
1670
1671         VM_BUG_ON_PAGE(page_count(page), page);
1672         VM_BUG_ON_PAGE(page_mapcount(page), page);
1673
1674         hugetlb_set_page_subpool(page, NULL);
1675         page->mapping = NULL;
1676         restore_reserve = HPageRestoreReserve(page);
1677         ClearHPageRestoreReserve(page);
1678
1679         /*
1680          * If HPageRestoreReserve was set on page, page allocation consumed a
1681          * reservation.  If the page was associated with a subpool, there
1682          * would have been a page reserved in the subpool before allocation
1683          * via hugepage_subpool_get_pages().  Since we are 'restoring' the
1684          * reservation, do not call hugepage_subpool_put_pages() as this will
1685          * remove the reserved page from the subpool.
1686          */
1687         if (!restore_reserve) {
1688                 /*
1689                  * A return code of zero implies that the subpool will be
1690                  * under its minimum size if the reservation is not restored
1691                  * after page is free.  Therefore, force restore_reserve
1692                  * operation.
1693                  */
1694                 if (hugepage_subpool_put_pages(spool, 1) == 0)
1695                         restore_reserve = true;
1696         }
1697
1698         spin_lock_irqsave(&hugetlb_lock, flags);
1699         ClearHPageMigratable(page);
1700         hugetlb_cgroup_uncharge_page(hstate_index(h),
1701                                      pages_per_huge_page(h), page);
1702         hugetlb_cgroup_uncharge_page_rsvd(hstate_index(h),
1703                                           pages_per_huge_page(h), page);
1704         if (restore_reserve)
1705                 h->resv_huge_pages++;
1706
1707         if (HPageTemporary(page)) {
1708                 remove_hugetlb_page(h, page, false);
1709                 spin_unlock_irqrestore(&hugetlb_lock, flags);
1710                 update_and_free_page(h, page, true);
1711         } else if (h->surplus_huge_pages_node[nid]) {
1712                 /* remove the page from active list */
1713                 remove_hugetlb_page(h, page, true);
1714                 spin_unlock_irqrestore(&hugetlb_lock, flags);
1715                 update_and_free_page(h, page, true);
1716         } else {
1717                 arch_clear_hugepage_flags(page);
1718                 enqueue_huge_page(h, page);
1719                 spin_unlock_irqrestore(&hugetlb_lock, flags);
1720         }
1721 }
1722
1723 /*
1724  * Must be called with the hugetlb lock held
1725  */
1726 static void __prep_account_new_huge_page(struct hstate *h, int nid)
1727 {
1728         lockdep_assert_held(&hugetlb_lock);
1729         h->nr_huge_pages++;
1730         h->nr_huge_pages_node[nid]++;
1731 }
1732
1733 static void __prep_new_huge_page(struct hstate *h, struct page *page)
1734 {
1735         free_huge_page_vmemmap(h, page);
1736         INIT_LIST_HEAD(&page->lru);
1737         set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1738         hugetlb_set_page_subpool(page, NULL);
1739         set_hugetlb_cgroup(page, NULL);
1740         set_hugetlb_cgroup_rsvd(page, NULL);
1741 }
1742
1743 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
1744 {
1745         __prep_new_huge_page(h, page);
1746         spin_lock_irq(&hugetlb_lock);
1747         __prep_account_new_huge_page(h, nid);
1748         spin_unlock_irq(&hugetlb_lock);
1749 }
1750
1751 static bool __prep_compound_gigantic_page(struct page *page, unsigned int order,
1752                                                                 bool demote)
1753 {
1754         int i, j;
1755         int nr_pages = 1 << order;
1756         struct page *p = page + 1;
1757
1758         /* we rely on prep_new_huge_page to set the destructor */
1759         set_compound_order(page, order);
1760         __ClearPageReserved(page);
1761         __SetPageHead(page);
1762         for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1763                 /*
1764                  * For gigantic hugepages allocated through bootmem at
1765                  * boot, it's safer to be consistent with the not-gigantic
1766                  * hugepages and clear the PG_reserved bit from all tail pages
1767                  * too.  Otherwise drivers using get_user_pages() to access tail
1768                  * pages may get the reference counting wrong if they see
1769                  * PG_reserved set on a tail page (despite the head page not
1770                  * having PG_reserved set).  Enforcing this consistency between
1771                  * head and tail pages allows drivers to optimize away a check
1772                  * on the head page when they need know if put_page() is needed
1773                  * after get_user_pages().
1774                  */
1775                 __ClearPageReserved(p);
1776                 /*
1777                  * Subtle and very unlikely
1778                  *
1779                  * Gigantic 'page allocators' such as memblock or cma will
1780                  * return a set of pages with each page ref counted.  We need
1781                  * to turn this set of pages into a compound page with tail
1782                  * page ref counts set to zero.  Code such as speculative page
1783                  * cache adding could take a ref on a 'to be' tail page.
1784                  * We need to respect any increased ref count, and only set
1785                  * the ref count to zero if count is currently 1.  If count
1786                  * is not 1, we return an error.  An error return indicates
1787                  * the set of pages can not be converted to a gigantic page.
1788                  * The caller who allocated the pages should then discard the
1789                  * pages using the appropriate free interface.
1790                  *
1791                  * In the case of demote, the ref count will be zero.
1792                  */
1793                 if (!demote) {
1794                         if (!page_ref_freeze(p, 1)) {
1795                                 pr_warn("HugeTLB page can not be used due to unexpected inflated ref count\n");
1796                                 goto out_error;
1797                         }
1798                 } else {
1799                         VM_BUG_ON_PAGE(page_count(p), p);
1800                 }
1801                 set_compound_head(p, page);
1802         }
1803         atomic_set(compound_mapcount_ptr(page), -1);
1804         atomic_set(compound_pincount_ptr(page), 0);
1805         return true;
1806
1807 out_error:
1808         /* undo tail page modifications made above */
1809         p = page + 1;
1810         for (j = 1; j < i; j++, p = mem_map_next(p, page, j)) {
1811                 clear_compound_head(p);
1812                 set_page_refcounted(p);
1813         }
1814         /* need to clear PG_reserved on remaining tail pages  */
1815         for (; j < nr_pages; j++, p = mem_map_next(p, page, j))
1816                 __ClearPageReserved(p);
1817         set_compound_order(page, 0);
1818 #ifdef CONFIG_64BIT
1819         page[1].compound_nr = 0;
1820 #endif
1821         __ClearPageHead(page);
1822         return false;
1823 }
1824
1825 static bool prep_compound_gigantic_page(struct page *page, unsigned int order)
1826 {
1827         return __prep_compound_gigantic_page(page, order, false);
1828 }
1829
1830 static bool prep_compound_gigantic_page_for_demote(struct page *page,
1831                                                         unsigned int order)
1832 {
1833         return __prep_compound_gigantic_page(page, order, true);
1834 }
1835
1836 /*
1837  * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1838  * transparent huge pages.  See the PageTransHuge() documentation for more
1839  * details.
1840  */
1841 int PageHuge(struct page *page)
1842 {
1843         if (!PageCompound(page))
1844                 return 0;
1845
1846         page = compound_head(page);
1847         return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
1848 }
1849 EXPORT_SYMBOL_GPL(PageHuge);
1850
1851 /*
1852  * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1853  * normal or transparent huge pages.
1854  */
1855 int PageHeadHuge(struct page *page_head)
1856 {
1857         if (!PageHead(page_head))
1858                 return 0;
1859
1860         return page_head[1].compound_dtor == HUGETLB_PAGE_DTOR;
1861 }
1862 EXPORT_SYMBOL_GPL(PageHeadHuge);
1863
1864 /*
1865  * Find and lock address space (mapping) in write mode.
1866  *
1867  * Upon entry, the page is locked which means that page_mapping() is
1868  * stable.  Due to locking order, we can only trylock_write.  If we can
1869  * not get the lock, simply return NULL to caller.
1870  */
1871 struct address_space *hugetlb_page_mapping_lock_write(struct page *hpage)
1872 {
1873         struct address_space *mapping = page_mapping(hpage);
1874
1875         if (!mapping)
1876                 return mapping;
1877
1878         if (i_mmap_trylock_write(mapping))
1879                 return mapping;
1880
1881         return NULL;
1882 }
1883
1884 pgoff_t hugetlb_basepage_index(struct page *page)
1885 {
1886         struct page *page_head = compound_head(page);
1887         pgoff_t index = page_index(page_head);
1888         unsigned long compound_idx;
1889
1890         if (compound_order(page_head) >= MAX_ORDER)
1891                 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
1892         else
1893                 compound_idx = page - page_head;
1894
1895         return (index << compound_order(page_head)) + compound_idx;
1896 }
1897
1898 static struct page *alloc_buddy_huge_page(struct hstate *h,
1899                 gfp_t gfp_mask, int nid, nodemask_t *nmask,
1900                 nodemask_t *node_alloc_noretry)
1901 {
1902         int order = huge_page_order(h);
1903         struct page *page;
1904         bool alloc_try_hard = true;
1905
1906         /*
1907          * By default we always try hard to allocate the page with
1908          * __GFP_RETRY_MAYFAIL flag.  However, if we are allocating pages in
1909          * a loop (to adjust global huge page counts) and previous allocation
1910          * failed, do not continue to try hard on the same node.  Use the
1911          * node_alloc_noretry bitmap to manage this state information.
1912          */
1913         if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry))
1914                 alloc_try_hard = false;
1915         gfp_mask |= __GFP_COMP|__GFP_NOWARN;
1916         if (alloc_try_hard)
1917                 gfp_mask |= __GFP_RETRY_MAYFAIL;
1918         if (nid == NUMA_NO_NODE)
1919                 nid = numa_mem_id();
1920         page = __alloc_pages(gfp_mask, order, nid, nmask);
1921         if (page)
1922                 __count_vm_event(HTLB_BUDDY_PGALLOC);
1923         else
1924                 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1925
1926         /*
1927          * If we did not specify __GFP_RETRY_MAYFAIL, but still got a page this
1928          * indicates an overall state change.  Clear bit so that we resume
1929          * normal 'try hard' allocations.
1930          */
1931         if (node_alloc_noretry && page && !alloc_try_hard)
1932                 node_clear(nid, *node_alloc_noretry);
1933
1934         /*
1935          * If we tried hard to get a page but failed, set bit so that
1936          * subsequent attempts will not try as hard until there is an
1937          * overall state change.
1938          */
1939         if (node_alloc_noretry && !page && alloc_try_hard)
1940                 node_set(nid, *node_alloc_noretry);
1941
1942         return page;
1943 }
1944
1945 /*
1946  * Common helper to allocate a fresh hugetlb page. All specific allocators
1947  * should use this function to get new hugetlb pages
1948  */
1949 static struct page *alloc_fresh_huge_page(struct hstate *h,
1950                 gfp_t gfp_mask, int nid, nodemask_t *nmask,
1951                 nodemask_t *node_alloc_noretry)
1952 {
1953         struct page *page;
1954         bool retry = false;
1955
1956 retry:
1957         if (hstate_is_gigantic(h))
1958                 page = alloc_gigantic_page(h, gfp_mask, nid, nmask);
1959         else
1960                 page = alloc_buddy_huge_page(h, gfp_mask,
1961                                 nid, nmask, node_alloc_noretry);
1962         if (!page)
1963                 return NULL;
1964
1965         if (hstate_is_gigantic(h)) {
1966                 if (!prep_compound_gigantic_page(page, huge_page_order(h))) {
1967                         /*
1968                          * Rare failure to convert pages to compound page.
1969                          * Free pages and try again - ONCE!
1970                          */
1971                         free_gigantic_page(page, huge_page_order(h));
1972                         if (!retry) {
1973                                 retry = true;
1974                                 goto retry;
1975                         }
1976                         return NULL;
1977                 }
1978         }
1979         prep_new_huge_page(h, page, page_to_nid(page));
1980
1981         return page;
1982 }
1983
1984 /*
1985  * Allocates a fresh page to the hugetlb allocator pool in the node interleaved
1986  * manner.
1987  */
1988 static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1989                                 nodemask_t *node_alloc_noretry)
1990 {
1991         struct page *page;
1992         int nr_nodes, node;
1993         gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
1994
1995         for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1996                 page = alloc_fresh_huge_page(h, gfp_mask, node, nodes_allowed,
1997                                                 node_alloc_noretry);
1998                 if (page)
1999                         break;
2000         }
2001
2002         if (!page)
2003                 return 0;
2004
2005         put_page(page); /* free it into the hugepage allocator */
2006
2007         return 1;
2008 }
2009
2010 /*
2011  * Remove huge page from pool from next node to free.  Attempt to keep
2012  * persistent huge pages more or less balanced over allowed nodes.
2013  * This routine only 'removes' the hugetlb page.  The caller must make
2014  * an additional call to free the page to low level allocators.
2015  * Called with hugetlb_lock locked.
2016  */
2017 static struct page *remove_pool_huge_page(struct hstate *h,
2018                                                 nodemask_t *nodes_allowed,
2019                                                  bool acct_surplus)
2020 {
2021         int nr_nodes, node;
2022         struct page *page = NULL;
2023
2024         lockdep_assert_held(&hugetlb_lock);
2025         for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2026                 /*
2027                  * If we're returning unused surplus pages, only examine
2028                  * nodes with surplus pages.
2029                  */
2030                 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
2031                     !list_empty(&h->hugepage_freelists[node])) {
2032                         page = list_entry(h->hugepage_freelists[node].next,
2033                                           struct page, lru);
2034                         remove_hugetlb_page(h, page, acct_surplus);
2035                         break;
2036                 }
2037         }
2038
2039         return page;
2040 }
2041
2042 /*
2043  * Dissolve a given free hugepage into free buddy pages. This function does
2044  * nothing for in-use hugepages and non-hugepages.
2045  * This function returns values like below:
2046  *
2047  *  -ENOMEM: failed to allocate vmemmap pages to free the freed hugepages
2048  *           when the system is under memory pressure and the feature of
2049  *           freeing unused vmemmap pages associated with each hugetlb page
2050  *           is enabled.
2051  *  -EBUSY:  failed to dissolved free hugepages or the hugepage is in-use
2052  *           (allocated or reserved.)
2053  *       0:  successfully dissolved free hugepages or the page is not a
2054  *           hugepage (considered as already dissolved)
2055  */
2056 int dissolve_free_huge_page(struct page *page)
2057 {
2058         int rc = -EBUSY;
2059
2060 retry:
2061         /* Not to disrupt normal path by vainly holding hugetlb_lock */
2062         if (!PageHuge(page))
2063                 return 0;
2064
2065         spin_lock_irq(&hugetlb_lock);
2066         if (!PageHuge(page)) {
2067                 rc = 0;
2068                 goto out;
2069         }
2070
2071         if (!page_count(page)) {
2072                 struct page *head = compound_head(page);
2073                 struct hstate *h = page_hstate(head);
2074                 if (h->free_huge_pages - h->resv_huge_pages == 0)
2075                         goto out;
2076
2077                 /*
2078                  * We should make sure that the page is already on the free list
2079                  * when it is dissolved.
2080                  */
2081                 if (unlikely(!HPageFreed(head))) {
2082                         spin_unlock_irq(&hugetlb_lock);
2083                         cond_resched();
2084
2085                         /*
2086                          * Theoretically, we should return -EBUSY when we
2087                          * encounter this race. In fact, we have a chance
2088                          * to successfully dissolve the page if we do a
2089                          * retry. Because the race window is quite small.
2090                          * If we seize this opportunity, it is an optimization
2091                          * for increasing the success rate of dissolving page.
2092                          */
2093                         goto retry;
2094                 }
2095
2096                 remove_hugetlb_page(h, head, false);
2097                 h->max_huge_pages--;
2098                 spin_unlock_irq(&hugetlb_lock);
2099
2100                 /*
2101                  * Normally update_and_free_page will allocate required vmemmmap
2102                  * before freeing the page.  update_and_free_page will fail to
2103                  * free the page if it can not allocate required vmemmap.  We
2104                  * need to adjust max_huge_pages if the page is not freed.
2105                  * Attempt to allocate vmemmmap here so that we can take
2106                  * appropriate action on failure.
2107                  */
2108                 rc = alloc_huge_page_vmemmap(h, head);
2109                 if (!rc) {
2110                         /*
2111                          * Move PageHWPoison flag from head page to the raw
2112                          * error page, which makes any subpages rather than
2113                          * the error page reusable.
2114                          */
2115                         if (PageHWPoison(head) && page != head) {
2116                                 SetPageHWPoison(page);
2117                                 ClearPageHWPoison(head);
2118                         }
2119                         update_and_free_page(h, head, false);
2120                 } else {
2121                         spin_lock_irq(&hugetlb_lock);
2122                         add_hugetlb_page(h, head, false);
2123                         h->max_huge_pages++;
2124                         spin_unlock_irq(&hugetlb_lock);
2125                 }
2126
2127                 return rc;
2128         }
2129 out:
2130         spin_unlock_irq(&hugetlb_lock);
2131         return rc;
2132 }
2133
2134 /*
2135  * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
2136  * make specified memory blocks removable from the system.
2137  * Note that this will dissolve a free gigantic hugepage completely, if any
2138  * part of it lies within the given range.
2139  * Also note that if dissolve_free_huge_page() returns with an error, all
2140  * free hugepages that were dissolved before that error are lost.
2141  */
2142 int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
2143 {
2144         unsigned long pfn;
2145         struct page *page;
2146         int rc = 0;
2147
2148         if (!hugepages_supported())
2149                 return rc;
2150
2151         for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order) {
2152                 page = pfn_to_page(pfn);
2153                 rc = dissolve_free_huge_page(page);
2154                 if (rc)
2155                         break;
2156         }
2157
2158         return rc;
2159 }
2160
2161 /*
2162  * Allocates a fresh surplus page from the page allocator.
2163  */
2164 static struct page *alloc_surplus_huge_page(struct hstate *h, gfp_t gfp_mask,
2165                 int nid, nodemask_t *nmask, bool zero_ref)
2166 {
2167         struct page *page = NULL;
2168         bool retry = false;
2169
2170         if (hstate_is_gigantic(h))
2171                 return NULL;
2172
2173         spin_lock_irq(&hugetlb_lock);
2174         if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages)
2175                 goto out_unlock;
2176         spin_unlock_irq(&hugetlb_lock);
2177
2178 retry:
2179         page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
2180         if (!page)
2181                 return NULL;
2182
2183         spin_lock_irq(&hugetlb_lock);
2184         /*
2185          * We could have raced with the pool size change.
2186          * Double check that and simply deallocate the new page
2187          * if we would end up overcommiting the surpluses. Abuse
2188          * temporary page to workaround the nasty free_huge_page
2189          * codeflow
2190          */
2191         if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
2192                 SetHPageTemporary(page);
2193                 spin_unlock_irq(&hugetlb_lock);
2194                 put_page(page);
2195                 return NULL;
2196         }
2197
2198         if (zero_ref) {
2199                 /*
2200                  * Caller requires a page with zero ref count.
2201                  * We will drop ref count here.  If someone else is holding
2202                  * a ref, the page will be freed when they drop it.  Abuse
2203                  * temporary page flag to accomplish this.
2204                  */
2205                 SetHPageTemporary(page);
2206                 if (!put_page_testzero(page)) {
2207                         /*
2208                          * Unexpected inflated ref count on freshly allocated
2209                          * huge.  Retry once.
2210                          */
2211                         pr_info("HugeTLB unexpected inflated ref count on freshly allocated page\n");
2212                         spin_unlock_irq(&hugetlb_lock);
2213                         if (retry)
2214                                 return NULL;
2215
2216                         retry = true;
2217                         goto retry;
2218                 }
2219                 ClearHPageTemporary(page);
2220         }
2221
2222         h->surplus_huge_pages++;
2223         h->surplus_huge_pages_node[page_to_nid(page)]++;
2224
2225 out_unlock:
2226         spin_unlock_irq(&hugetlb_lock);
2227
2228         return page;
2229 }
2230
2231 static struct page *alloc_migrate_huge_page(struct hstate *h, gfp_t gfp_mask,
2232                                      int nid, nodemask_t *nmask)
2233 {
2234         struct page *page;
2235
2236         if (hstate_is_gigantic(h))
2237                 return NULL;
2238
2239         page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
2240         if (!page)
2241                 return NULL;
2242
2243         /*
2244          * We do not account these pages as surplus because they are only
2245          * temporary and will be released properly on the last reference
2246          */
2247         SetHPageTemporary(page);
2248
2249         return page;
2250 }
2251
2252 /*
2253  * Use the VMA's mpolicy to allocate a huge page from the buddy.
2254  */
2255 static
2256 struct page *alloc_buddy_huge_page_with_mpol(struct hstate *h,
2257                 struct vm_area_struct *vma, unsigned long addr)
2258 {
2259         struct page *page = NULL;
2260         struct mempolicy *mpol;
2261         gfp_t gfp_mask = htlb_alloc_mask(h);
2262         int nid;
2263         nodemask_t *nodemask;
2264
2265         nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
2266         if (mpol_is_preferred_many(mpol)) {
2267                 gfp_t gfp = gfp_mask | __GFP_NOWARN;
2268
2269                 gfp &=  ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL);
2270                 page = alloc_surplus_huge_page(h, gfp, nid, nodemask, false);
2271
2272                 /* Fallback to all nodes if page==NULL */
2273                 nodemask = NULL;
2274         }
2275
2276         if (!page)
2277                 page = alloc_surplus_huge_page(h, gfp_mask, nid, nodemask, false);
2278         mpol_cond_put(mpol);
2279         return page;
2280 }
2281
2282 /* page migration callback function */
2283 struct page *alloc_huge_page_nodemask(struct hstate *h, int preferred_nid,
2284                 nodemask_t *nmask, gfp_t gfp_mask)
2285 {
2286         spin_lock_irq(&hugetlb_lock);
2287         if (h->free_huge_pages - h->resv_huge_pages > 0) {
2288                 struct page *page;
2289
2290                 page = dequeue_huge_page_nodemask(h, gfp_mask, preferred_nid, nmask);
2291                 if (page) {
2292                         spin_unlock_irq(&hugetlb_lock);
2293                         return page;
2294                 }
2295         }
2296         spin_unlock_irq(&hugetlb_lock);
2297
2298         return alloc_migrate_huge_page(h, gfp_mask, preferred_nid, nmask);
2299 }
2300
2301 /* mempolicy aware migration callback */
2302 struct page *alloc_huge_page_vma(struct hstate *h, struct vm_area_struct *vma,
2303                 unsigned long address)
2304 {
2305         struct mempolicy *mpol;
2306         nodemask_t *nodemask;
2307         struct page *page;
2308         gfp_t gfp_mask;
2309         int node;
2310
2311         gfp_mask = htlb_alloc_mask(h);
2312         node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
2313         page = alloc_huge_page_nodemask(h, node, nodemask, gfp_mask);
2314         mpol_cond_put(mpol);
2315
2316         return page;
2317 }
2318
2319 /*
2320  * Increase the hugetlb pool such that it can accommodate a reservation
2321  * of size 'delta'.
2322  */
2323 static int gather_surplus_pages(struct hstate *h, long delta)
2324         __must_hold(&hugetlb_lock)
2325 {
2326         struct list_head surplus_list;
2327         struct page *page, *tmp;
2328         int ret;
2329         long i;
2330         long needed, allocated;
2331         bool alloc_ok = true;
2332
2333         lockdep_assert_held(&hugetlb_lock);
2334         needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
2335         if (needed <= 0) {
2336                 h->resv_huge_pages += delta;
2337                 return 0;
2338         }
2339
2340         allocated = 0;
2341         INIT_LIST_HEAD(&surplus_list);
2342
2343         ret = -ENOMEM;
2344 retry:
2345         spin_unlock_irq(&hugetlb_lock);
2346         for (i = 0; i < needed; i++) {
2347                 page = alloc_surplus_huge_page(h, htlb_alloc_mask(h),
2348                                 NUMA_NO_NODE, NULL, true);
2349                 if (!page) {
2350                         alloc_ok = false;
2351                         break;
2352                 }
2353                 list_add(&page->lru, &surplus_list);
2354                 cond_resched();
2355         }
2356         allocated += i;
2357
2358         /*
2359          * After retaking hugetlb_lock, we need to recalculate 'needed'
2360          * because either resv_huge_pages or free_huge_pages may have changed.
2361          */
2362         spin_lock_irq(&hugetlb_lock);
2363         needed = (h->resv_huge_pages + delta) -
2364                         (h->free_huge_pages + allocated);
2365         if (needed > 0) {
2366                 if (alloc_ok)
2367                         goto retry;
2368                 /*
2369                  * We were not able to allocate enough pages to
2370                  * satisfy the entire reservation so we free what
2371                  * we've allocated so far.
2372                  */
2373                 goto free;
2374         }
2375         /*
2376          * The surplus_list now contains _at_least_ the number of extra pages
2377          * needed to accommodate the reservation.  Add the appropriate number
2378          * of pages to the hugetlb pool and free the extras back to the buddy
2379          * allocator.  Commit the entire reservation here to prevent another
2380          * process from stealing the pages as they are added to the pool but
2381          * before they are reserved.
2382          */
2383         needed += allocated;
2384         h->resv_huge_pages += delta;
2385         ret = 0;
2386
2387         /* Free the needed pages to the hugetlb pool */
2388         list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
2389                 if ((--needed) < 0)
2390                         break;
2391                 /* Add the page to the hugetlb allocator */
2392                 enqueue_huge_page(h, page);
2393         }
2394 free:
2395         spin_unlock_irq(&hugetlb_lock);
2396
2397         /*
2398          * Free unnecessary surplus pages to the buddy allocator.
2399          * Pages have no ref count, call free_huge_page directly.
2400          */
2401         list_for_each_entry_safe(page, tmp, &surplus_list, lru)
2402                 free_huge_page(page);
2403         spin_lock_irq(&hugetlb_lock);
2404
2405         return ret;
2406 }
2407
2408 /*
2409  * This routine has two main purposes:
2410  * 1) Decrement the reservation count (resv_huge_pages) by the value passed
2411  *    in unused_resv_pages.  This corresponds to the prior adjustments made
2412  *    to the associated reservation map.
2413  * 2) Free any unused surplus pages that may have been allocated to satisfy
2414  *    the reservation.  As many as unused_resv_pages may be freed.
2415  */
2416 static void return_unused_surplus_pages(struct hstate *h,
2417                                         unsigned long unused_resv_pages)
2418 {
2419         unsigned long nr_pages;
2420         struct page *page;
2421         LIST_HEAD(page_list);
2422
2423         lockdep_assert_held(&hugetlb_lock);
2424         /* Uncommit the reservation */
2425         h->resv_huge_pages -= unused_resv_pages;
2426
2427         /* Cannot return gigantic pages currently */
2428         if (hstate_is_gigantic(h))
2429                 goto out;
2430
2431         /*
2432          * Part (or even all) of the reservation could have been backed
2433          * by pre-allocated pages. Only free surplus pages.
2434          */
2435         nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
2436
2437         /*
2438          * We want to release as many surplus pages as possible, spread
2439          * evenly across all nodes with memory. Iterate across these nodes
2440          * until we can no longer free unreserved surplus pages. This occurs
2441          * when the nodes with surplus pages have no free pages.
2442          * remove_pool_huge_page() will balance the freed pages across the
2443          * on-line nodes with memory and will handle the hstate accounting.
2444          */
2445         while (nr_pages--) {
2446                 page = remove_pool_huge_page(h, &node_states[N_MEMORY], 1);
2447                 if (!page)
2448                         goto out;
2449
2450                 list_add(&page->lru, &page_list);
2451         }
2452
2453 out:
2454         spin_unlock_irq(&hugetlb_lock);
2455         update_and_free_pages_bulk(h, &page_list);
2456         spin_lock_irq(&hugetlb_lock);
2457 }
2458
2459
2460 /*
2461  * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
2462  * are used by the huge page allocation routines to manage reservations.
2463  *
2464  * vma_needs_reservation is called to determine if the huge page at addr
2465  * within the vma has an associated reservation.  If a reservation is
2466  * needed, the value 1 is returned.  The caller is then responsible for
2467  * managing the global reservation and subpool usage counts.  After
2468  * the huge page has been allocated, vma_commit_reservation is called
2469  * to add the page to the reservation map.  If the page allocation fails,
2470  * the reservation must be ended instead of committed.  vma_end_reservation
2471  * is called in such cases.
2472  *
2473  * In the normal case, vma_commit_reservation returns the same value
2474  * as the preceding vma_needs_reservation call.  The only time this
2475  * is not the case is if a reserve map was changed between calls.  It
2476  * is the responsibility of the caller to notice the difference and
2477  * take appropriate action.
2478  *
2479  * vma_add_reservation is used in error paths where a reservation must
2480  * be restored when a newly allocated huge page must be freed.  It is
2481  * to be called after calling vma_needs_reservation to determine if a
2482  * reservation exists.
2483  *
2484  * vma_del_reservation is used in error paths where an entry in the reserve
2485  * map was created during huge page allocation and must be removed.  It is to
2486  * be called after calling vma_needs_reservation to determine if a reservation
2487  * exists.
2488  */
2489 enum vma_resv_mode {
2490         VMA_NEEDS_RESV,
2491         VMA_COMMIT_RESV,
2492         VMA_END_RESV,
2493         VMA_ADD_RESV,
2494         VMA_DEL_RESV,
2495 };
2496 static long __vma_reservation_common(struct hstate *h,
2497                                 struct vm_area_struct *vma, unsigned long addr,
2498                                 enum vma_resv_mode mode)
2499 {
2500         struct resv_map *resv;
2501         pgoff_t idx;
2502         long ret;
2503         long dummy_out_regions_needed;
2504
2505         resv = vma_resv_map(vma);
2506         if (!resv)
2507                 return 1;
2508
2509         idx = vma_hugecache_offset(h, vma, addr);
2510         switch (mode) {
2511         case VMA_NEEDS_RESV:
2512                 ret = region_chg(resv, idx, idx + 1, &dummy_out_regions_needed);
2513                 /* We assume that vma_reservation_* routines always operate on
2514                  * 1 page, and that adding to resv map a 1 page entry can only
2515                  * ever require 1 region.
2516                  */
2517                 VM_BUG_ON(dummy_out_regions_needed != 1);
2518                 break;
2519         case VMA_COMMIT_RESV:
2520                 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2521                 /* region_add calls of range 1 should never fail. */
2522                 VM_BUG_ON(ret < 0);
2523                 break;
2524         case VMA_END_RESV:
2525                 region_abort(resv, idx, idx + 1, 1);
2526                 ret = 0;
2527                 break;
2528         case VMA_ADD_RESV:
2529                 if (vma->vm_flags & VM_MAYSHARE) {
2530                         ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2531                         /* region_add calls of range 1 should never fail. */
2532                         VM_BUG_ON(ret < 0);
2533                 } else {
2534                         region_abort(resv, idx, idx + 1, 1);
2535                         ret = region_del(resv, idx, idx + 1);
2536                 }
2537                 break;
2538         case VMA_DEL_RESV:
2539                 if (vma->vm_flags & VM_MAYSHARE) {
2540                         region_abort(resv, idx, idx + 1, 1);
2541                         ret = region_del(resv, idx, idx + 1);
2542                 } else {
2543                         ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2544                         /* region_add calls of range 1 should never fail. */
2545                         VM_BUG_ON(ret < 0);
2546                 }
2547                 break;
2548         default:
2549                 BUG();
2550         }
2551
2552         if (vma->vm_flags & VM_MAYSHARE || mode == VMA_DEL_RESV)
2553                 return ret;
2554         /*
2555          * We know private mapping must have HPAGE_RESV_OWNER set.
2556          *
2557          * In most cases, reserves always exist for private mappings.
2558          * However, a file associated with mapping could have been
2559          * hole punched or truncated after reserves were consumed.
2560          * As subsequent fault on such a range will not use reserves.
2561          * Subtle - The reserve map for private mappings has the
2562          * opposite meaning than that of shared mappings.  If NO
2563          * entry is in the reserve map, it means a reservation exists.
2564          * If an entry exists in the reserve map, it means the
2565          * reservation has already been consumed.  As a result, the
2566          * return value of this routine is the opposite of the
2567          * value returned from reserve map manipulation routines above.
2568          */
2569         if (ret > 0)
2570                 return 0;
2571         if (ret == 0)
2572                 return 1;
2573         return ret;
2574 }
2575
2576 static long vma_needs_reservation(struct hstate *h,
2577                         struct vm_area_struct *vma, unsigned long addr)
2578 {
2579         return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
2580 }
2581
2582 static long vma_commit_reservation(struct hstate *h,
2583                         struct vm_area_struct *vma, unsigned long addr)
2584 {
2585         return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
2586 }
2587
2588 static void vma_end_reservation(struct hstate *h,
2589                         struct vm_area_struct *vma, unsigned long addr)
2590 {
2591         (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
2592 }
2593
2594 static long vma_add_reservation(struct hstate *h,
2595                         struct vm_area_struct *vma, unsigned long addr)
2596 {
2597         return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
2598 }
2599
2600 static long vma_del_reservation(struct hstate *h,
2601                         struct vm_area_struct *vma, unsigned long addr)
2602 {
2603         return __vma_reservation_common(h, vma, addr, VMA_DEL_RESV);
2604 }
2605
2606 /*
2607  * This routine is called to restore reservation information on error paths.
2608  * It should ONLY be called for pages allocated via alloc_huge_page(), and
2609  * the hugetlb mutex should remain held when calling this routine.
2610  *
2611  * It handles two specific cases:
2612  * 1) A reservation was in place and the page consumed the reservation.
2613  *    HPageRestoreReserve is set in the page.
2614  * 2) No reservation was in place for the page, so HPageRestoreReserve is
2615  *    not set.  However, alloc_huge_page always updates the reserve map.
2616  *
2617  * In case 1, free_huge_page later in the error path will increment the
2618  * global reserve count.  But, free_huge_page does not have enough context
2619  * to adjust the reservation map.  This case deals primarily with private
2620  * mappings.  Adjust the reserve map here to be consistent with global
2621  * reserve count adjustments to be made by free_huge_page.  Make sure the
2622  * reserve map indicates there is a reservation present.
2623  *
2624  * In case 2, simply undo reserve map modifications done by alloc_huge_page.
2625  */
2626 void restore_reserve_on_error(struct hstate *h, struct vm_area_struct *vma,
2627                         unsigned long address, struct page *page)
2628 {
2629         long rc = vma_needs_reservation(h, vma, address);
2630
2631         if (HPageRestoreReserve(page)) {
2632                 if (unlikely(rc < 0))
2633                         /*
2634                          * Rare out of memory condition in reserve map
2635                          * manipulation.  Clear HPageRestoreReserve so that
2636                          * global reserve count will not be incremented
2637                          * by free_huge_page.  This will make it appear
2638                          * as though the reservation for this page was
2639                          * consumed.  This may prevent the task from
2640                          * faulting in the page at a later time.  This
2641                          * is better than inconsistent global huge page
2642                          * accounting of reserve counts.
2643                          */
2644                         ClearHPageRestoreReserve(page);
2645                 else if (rc)
2646                         (void)vma_add_reservation(h, vma, address);
2647                 else
2648                         vma_end_reservation(h, vma, address);
2649         } else {
2650                 if (!rc) {
2651                         /*
2652                          * This indicates there is an entry in the reserve map
2653                          * not added by alloc_huge_page.  We know it was added
2654                          * before the alloc_huge_page call, otherwise
2655                          * HPageRestoreReserve would be set on the page.
2656                          * Remove the entry so that a subsequent allocation
2657                          * does not consume a reservation.
2658                          */
2659                         rc = vma_del_reservation(h, vma, address);
2660                         if (rc < 0)
2661                                 /*
2662                                  * VERY rare out of memory condition.  Since
2663                                  * we can not delete the entry, set
2664                                  * HPageRestoreReserve so that the reserve
2665                                  * count will be incremented when the page
2666                                  * is freed.  This reserve will be consumed
2667                                  * on a subsequent allocation.
2668                                  */
2669                                 SetHPageRestoreReserve(page);
2670                 } else if (rc < 0) {
2671                         /*
2672                          * Rare out of memory condition from
2673                          * vma_needs_reservation call.  Memory allocation is
2674                          * only attempted if a new entry is needed.  Therefore,
2675                          * this implies there is not an entry in the
2676                          * reserve map.
2677                          *
2678                          * For shared mappings, no entry in the map indicates
2679                          * no reservation.  We are done.
2680                          */
2681                         if (!(vma->vm_flags & VM_MAYSHARE))
2682                                 /*
2683                                  * For private mappings, no entry indicates
2684                                  * a reservation is present.  Since we can
2685                                  * not add an entry, set SetHPageRestoreReserve
2686                                  * on the page so reserve count will be
2687                                  * incremented when freed.  This reserve will
2688                                  * be consumed on a subsequent allocation.
2689                                  */
2690                                 SetHPageRestoreReserve(page);
2691                 } else
2692                         /*
2693                          * No reservation present, do nothing
2694                          */
2695                          vma_end_reservation(h, vma, address);
2696         }
2697 }
2698
2699 /*
2700  * alloc_and_dissolve_huge_page - Allocate a new page and dissolve the old one
2701  * @h: struct hstate old page belongs to
2702  * @old_page: Old page to dissolve
2703  * @list: List to isolate the page in case we need to
2704  * Returns 0 on success, otherwise negated error.
2705  */
2706 static int alloc_and_dissolve_huge_page(struct hstate *h, struct page *old_page,
2707                                         struct list_head *list)
2708 {
2709         gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
2710         int nid = page_to_nid(old_page);
2711         bool alloc_retry = false;
2712         struct page *new_page;
2713         int ret = 0;
2714
2715         /*
2716          * Before dissolving the page, we need to allocate a new one for the
2717          * pool to remain stable.  Here, we allocate the page and 'prep' it
2718          * by doing everything but actually updating counters and adding to
2719          * the pool.  This simplifies and let us do most of the processing
2720          * under the lock.
2721          */
2722 alloc_retry:
2723         new_page = alloc_buddy_huge_page(h, gfp_mask, nid, NULL, NULL);
2724         if (!new_page)
2725                 return -ENOMEM;
2726         /*
2727          * If all goes well, this page will be directly added to the free
2728          * list in the pool.  For this the ref count needs to be zero.
2729          * Attempt to drop now, and retry once if needed.  It is VERY
2730          * unlikely there is another ref on the page.
2731          *
2732          * If someone else has a reference to the page, it will be freed
2733          * when they drop their ref.  Abuse temporary page flag to accomplish
2734          * this.  Retry once if there is an inflated ref count.
2735          */
2736         SetHPageTemporary(new_page);
2737         if (!put_page_testzero(new_page)) {
2738                 if (alloc_retry)
2739                         return -EBUSY;
2740
2741                 alloc_retry = true;
2742                 goto alloc_retry;
2743         }
2744         ClearHPageTemporary(new_page);
2745
2746         __prep_new_huge_page(h, new_page);
2747
2748 retry:
2749         spin_lock_irq(&hugetlb_lock);
2750         if (!PageHuge(old_page)) {
2751                 /*
2752                  * Freed from under us. Drop new_page too.
2753                  */
2754                 goto free_new;
2755         } else if (page_count(old_page)) {
2756                 /*
2757                  * Someone has grabbed the page, try to isolate it here.
2758                  * Fail with -EBUSY if not possible.
2759                  */
2760                 spin_unlock_irq(&hugetlb_lock);
2761                 if (!isolate_huge_page(old_page, list))
2762                         ret = -EBUSY;
2763                 spin_lock_irq(&hugetlb_lock);
2764                 goto free_new;
2765         } else if (!HPageFreed(old_page)) {
2766                 /*
2767                  * Page's refcount is 0 but it has not been enqueued in the
2768                  * freelist yet. Race window is small, so we can succeed here if
2769                  * we retry.
2770                  */
2771                 spin_unlock_irq(&hugetlb_lock);
2772                 cond_resched();
2773                 goto retry;
2774         } else {
2775                 /*
2776                  * Ok, old_page is still a genuine free hugepage. Remove it from
2777                  * the freelist and decrease the counters. These will be
2778                  * incremented again when calling __prep_account_new_huge_page()
2779                  * and enqueue_huge_page() for new_page. The counters will remain
2780                  * stable since this happens under the lock.
2781                  */
2782                 remove_hugetlb_page(h, old_page, false);
2783
2784                 /*
2785                  * Ref count on new page is already zero as it was dropped
2786                  * earlier.  It can be directly added to the pool free list.
2787                  */
2788                 __prep_account_new_huge_page(h, nid);
2789                 enqueue_huge_page(h, new_page);
2790
2791                 /*
2792                  * Pages have been replaced, we can safely free the old one.
2793                  */
2794                 spin_unlock_irq(&hugetlb_lock);
2795                 update_and_free_page(h, old_page, false);
2796         }
2797
2798         return ret;
2799
2800 free_new:
2801         spin_unlock_irq(&hugetlb_lock);
2802         /* Page has a zero ref count, but needs a ref to be freed */
2803         set_page_refcounted(new_page);
2804         update_and_free_page(h, new_page, false);
2805
2806         return ret;
2807 }
2808
2809 int isolate_or_dissolve_huge_page(struct page *page, struct list_head *list)
2810 {
2811         struct hstate *h;
2812         struct page *head;
2813         int ret = -EBUSY;
2814
2815         /*
2816          * The page might have been dissolved from under our feet, so make sure
2817          * to carefully check the state under the lock.
2818          * Return success when racing as if we dissolved the page ourselves.
2819          */
2820         spin_lock_irq(&hugetlb_lock);
2821         if (PageHuge(page)) {
2822                 head = compound_head(page);
2823                 h = page_hstate(head);
2824         } else {
2825                 spin_unlock_irq(&hugetlb_lock);
2826                 return 0;
2827         }
2828         spin_unlock_irq(&hugetlb_lock);
2829
2830         /*
2831          * Fence off gigantic pages as there is a cyclic dependency between
2832          * alloc_contig_range and them. Return -ENOMEM as this has the effect
2833          * of bailing out right away without further retrying.
2834          */
2835         if (hstate_is_gigantic(h))
2836                 return -ENOMEM;
2837
2838         if (page_count(head) && isolate_huge_page(head, list))
2839                 ret = 0;
2840         else if (!page_count(head))
2841                 ret = alloc_and_dissolve_huge_page(h, head, list);
2842
2843         return ret;
2844 }
2845
2846 struct page *alloc_huge_page(struct vm_area_struct *vma,
2847                                     unsigned long addr, int avoid_reserve)
2848 {
2849         struct hugepage_subpool *spool = subpool_vma(vma);
2850         struct hstate *h = hstate_vma(vma);
2851         struct page *page;
2852         long map_chg, map_commit;
2853         long gbl_chg;
2854         int ret, idx;
2855         struct hugetlb_cgroup *h_cg;
2856         bool deferred_reserve;
2857
2858         idx = hstate_index(h);
2859         /*
2860          * Examine the region/reserve map to determine if the process
2861          * has a reservation for the page to be allocated.  A return
2862          * code of zero indicates a reservation exists (no change).
2863          */
2864         map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
2865         if (map_chg < 0)
2866                 return ERR_PTR(-ENOMEM);
2867
2868         /*
2869          * Processes that did not create the mapping will have no
2870          * reserves as indicated by the region/reserve map. Check
2871          * that the allocation will not exceed the subpool limit.
2872          * Allocations for MAP_NORESERVE mappings also need to be
2873          * checked against any subpool limit.
2874          */
2875         if (map_chg || avoid_reserve) {
2876                 gbl_chg = hugepage_subpool_get_pages(spool, 1);
2877                 if (gbl_chg < 0) {
2878                         vma_end_reservation(h, vma, addr);
2879                         return ERR_PTR(-ENOSPC);
2880                 }
2881
2882                 /*
2883                  * Even though there was no reservation in the region/reserve
2884                  * map, there could be reservations associated with the
2885                  * subpool that can be used.  This would be indicated if the
2886                  * return value of hugepage_subpool_get_pages() is zero.
2887                  * However, if avoid_reserve is specified we still avoid even
2888                  * the subpool reservations.
2889                  */
2890                 if (avoid_reserve)
2891                         gbl_chg = 1;
2892         }
2893
2894         /* If this allocation is not consuming a reservation, charge it now.
2895          */
2896         deferred_reserve = map_chg || avoid_reserve;
2897         if (deferred_reserve) {
2898                 ret = hugetlb_cgroup_charge_cgroup_rsvd(
2899                         idx, pages_per_huge_page(h), &h_cg);
2900                 if (ret)
2901                         goto out_subpool_put;
2902         }
2903
2904         ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
2905         if (ret)
2906                 goto out_uncharge_cgroup_reservation;
2907
2908         spin_lock_irq(&hugetlb_lock);
2909         /*
2910          * glb_chg is passed to indicate whether or not a page must be taken
2911          * from the global free pool (global change).  gbl_chg == 0 indicates
2912          * a reservation exists for the allocation.
2913          */
2914         page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
2915         if (!page) {
2916                 spin_unlock_irq(&hugetlb_lock);
2917                 page = alloc_buddy_huge_page_with_mpol(h, vma, addr);
2918                 if (!page)
2919                         goto out_uncharge_cgroup;
2920                 if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
2921                         SetHPageRestoreReserve(page);
2922                         h->resv_huge_pages--;
2923                 }
2924                 spin_lock_irq(&hugetlb_lock);
2925                 list_add(&page->lru, &h->hugepage_activelist);
2926                 /* Fall through */
2927         }
2928         hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
2929         /* If allocation is not consuming a reservation, also store the
2930          * hugetlb_cgroup pointer on the page.
2931          */
2932         if (deferred_reserve) {
2933                 hugetlb_cgroup_commit_charge_rsvd(idx, pages_per_huge_page(h),
2934                                                   h_cg, page);
2935         }
2936
2937         spin_unlock_irq(&hugetlb_lock);
2938
2939         hugetlb_set_page_subpool(page, spool);
2940
2941         map_commit = vma_commit_reservation(h, vma, addr);
2942         if (unlikely(map_chg > map_commit)) {
2943                 /*
2944                  * The page was added to the reservation map between
2945                  * vma_needs_reservation and vma_commit_reservation.
2946                  * This indicates a race with hugetlb_reserve_pages.
2947                  * Adjust for the subpool count incremented above AND
2948                  * in hugetlb_reserve_pages for the same page.  Also,
2949                  * the reservation count added in hugetlb_reserve_pages
2950                  * no longer applies.
2951                  */
2952                 long rsv_adjust;
2953
2954                 rsv_adjust = hugepage_subpool_put_pages(spool, 1);
2955                 hugetlb_acct_memory(h, -rsv_adjust);
2956                 if (deferred_reserve)
2957                         hugetlb_cgroup_uncharge_page_rsvd(hstate_index(h),
2958                                         pages_per_huge_page(h), page);
2959         }
2960         return page;
2961
2962 out_uncharge_cgroup:
2963         hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
2964 out_uncharge_cgroup_reservation:
2965         if (deferred_reserve)
2966                 hugetlb_cgroup_uncharge_cgroup_rsvd(idx, pages_per_huge_page(h),
2967                                                     h_cg);
2968 out_subpool_put:
2969         if (map_chg || avoid_reserve)
2970                 hugepage_subpool_put_pages(spool, 1);
2971         vma_end_reservation(h, vma, addr);
2972         return ERR_PTR(-ENOSPC);
2973 }
2974
2975 int alloc_bootmem_huge_page(struct hstate *h, int nid)
2976         __attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
2977 int __alloc_bootmem_huge_page(struct hstate *h, int nid)
2978 {
2979         struct huge_bootmem_page *m = NULL; /* initialize for clang */
2980         int nr_nodes, node;
2981
2982         if (nid != NUMA_NO_NODE && nid >= nr_online_nodes)
2983                 return 0;
2984         /* do node specific alloc */
2985         if (nid != NUMA_NO_NODE) {
2986                 m = memblock_alloc_try_nid_raw(huge_page_size(h), huge_page_size(h),
2987                                 0, MEMBLOCK_ALLOC_ACCESSIBLE, nid);
2988                 if (!m)
2989                         return 0;
2990                 goto found;
2991         }
2992         /* allocate from next node when distributing huge pages */
2993         for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
2994                 m = memblock_alloc_try_nid_raw(
2995                                 huge_page_size(h), huge_page_size(h),
2996                                 0, MEMBLOCK_ALLOC_ACCESSIBLE, node);
2997                 /*
2998                  * Use the beginning of the huge page to store the
2999                  * huge_bootmem_page struct (until gather_bootmem
3000                  * puts them into the mem_map).
3001                  */
3002                 if (!m)
3003                         return 0;
3004                 goto found;
3005         }
3006
3007 found:
3008         /* Put them into a private list first because mem_map is not up yet */
3009         INIT_LIST_HEAD(&m->list);
3010         list_add(&m->list, &huge_boot_pages);
3011         m->hstate = h;
3012         return 1;
3013 }
3014
3015 /*
3016  * Put bootmem huge pages into the standard lists after mem_map is up.
3017  * Note: This only applies to gigantic (order > MAX_ORDER) pages.
3018  */
3019 static void __init gather_bootmem_prealloc(void)
3020 {
3021         struct huge_bootmem_page *m;
3022
3023         list_for_each_entry(m, &huge_boot_pages, list) {
3024                 struct page *page = virt_to_page(m);
3025                 struct hstate *h = m->hstate;
3026
3027                 VM_BUG_ON(!hstate_is_gigantic(h));
3028                 WARN_ON(page_count(page) != 1);
3029                 if (prep_compound_gigantic_page(page, huge_page_order(h))) {
3030                         WARN_ON(PageReserved(page));
3031                         prep_new_huge_page(h, page, page_to_nid(page));
3032                         put_page(page); /* add to the hugepage allocator */
3033                 } else {
3034                         /* VERY unlikely inflated ref count on a tail page */
3035                         free_gigantic_page(page, huge_page_order(h));
3036                 }
3037
3038                 /*
3039                  * We need to restore the 'stolen' pages to totalram_pages
3040                  * in order to fix confusing memory reports from free(1) and
3041                  * other side-effects, like CommitLimit going negative.
3042                  */
3043                 adjust_managed_page_count(page, pages_per_huge_page(h));
3044                 cond_resched();
3045         }
3046 }
3047 static void __init hugetlb_hstate_alloc_pages_onenode(struct hstate *h, int nid)
3048 {
3049         unsigned long i;
3050         char buf[32];
3051
3052         for (i = 0; i < h->max_huge_pages_node[nid]; ++i) {
3053                 if (hstate_is_gigantic(h)) {
3054                         if (!alloc_bootmem_huge_page(h, nid))
3055                                 break;
3056                 } else {
3057                         struct page *page;
3058                         gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
3059
3060                         page = alloc_fresh_huge_page(h, gfp_mask, nid,
3061                                         &node_states[N_MEMORY], NULL);
3062                         if (!page)
3063                                 break;
3064                         put_page(page); /* free it into the hugepage allocator */
3065                 }
3066                 cond_resched();
3067         }
3068         if (i == h->max_huge_pages_node[nid])
3069                 return;
3070
3071         string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3072         pr_warn("HugeTLB: allocating %u of page size %s failed node%d.  Only allocated %lu hugepages.\n",
3073                 h->max_huge_pages_node[nid], buf, nid, i);
3074         h->max_huge_pages -= (h->max_huge_pages_node[nid] - i);
3075         h->max_huge_pages_node[nid] = i;
3076 }
3077
3078 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
3079 {
3080         unsigned long i;
3081         nodemask_t *node_alloc_noretry;
3082         bool node_specific_alloc = false;
3083
3084         /* skip gigantic hugepages allocation if hugetlb_cma enabled */
3085         if (hstate_is_gigantic(h) && hugetlb_cma_size) {
3086                 pr_warn_once("HugeTLB: hugetlb_cma is enabled, skip boot time allocation\n");
3087                 return;
3088         }
3089
3090         /* do node specific alloc */
3091         for (i = 0; i < nr_online_nodes; i++) {
3092                 if (h->max_huge_pages_node[i] > 0) {
3093                         hugetlb_hstate_alloc_pages_onenode(h, i);
3094                         node_specific_alloc = true;
3095                 }
3096         }
3097
3098         if (node_specific_alloc)
3099                 return;
3100
3101         /* below will do all node balanced alloc */
3102         if (!hstate_is_gigantic(h)) {
3103                 /*
3104                  * Bit mask controlling how hard we retry per-node allocations.
3105                  * Ignore errors as lower level routines can deal with
3106                  * node_alloc_noretry == NULL.  If this kmalloc fails at boot
3107                  * time, we are likely in bigger trouble.
3108                  */
3109                 node_alloc_noretry = kmalloc(sizeof(*node_alloc_noretry),
3110                                                 GFP_KERNEL);
3111         } else {
3112                 /* allocations done at boot time */
3113                 node_alloc_noretry = NULL;
3114         }
3115
3116         /* bit mask controlling how hard we retry per-node allocations */
3117         if (node_alloc_noretry)
3118                 nodes_clear(*node_alloc_noretry);
3119
3120         for (i = 0; i < h->max_huge_pages; ++i) {
3121                 if (hstate_is_gigantic(h)) {
3122                         if (!alloc_bootmem_huge_page(h, NUMA_NO_NODE))
3123                                 break;
3124                 } else if (!alloc_pool_huge_page(h,
3125                                          &node_states[N_MEMORY],
3126                                          node_alloc_noretry))
3127                         break;
3128                 cond_resched();
3129         }
3130         if (i < h->max_huge_pages) {
3131                 char buf[32];
3132
3133                 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3134                 pr_warn("HugeTLB: allocating %lu of page size %s failed.  Only allocated %lu hugepages.\n",
3135                         h->max_huge_pages, buf, i);
3136                 h->max_huge_pages = i;
3137         }
3138         kfree(node_alloc_noretry);
3139 }
3140
3141 static void __init hugetlb_init_hstates(void)
3142 {
3143         struct hstate *h, *h2;
3144
3145         for_each_hstate(h) {
3146                 if (minimum_order > huge_page_order(h))
3147                         minimum_order = huge_page_order(h);
3148
3149                 /* oversize hugepages were init'ed in early boot */
3150                 if (!hstate_is_gigantic(h))
3151                         hugetlb_hstate_alloc_pages(h);
3152
3153                 /*
3154                  * Set demote order for each hstate.  Note that
3155                  * h->demote_order is initially 0.
3156                  * - We can not demote gigantic pages if runtime freeing
3157                  *   is not supported, so skip this.
3158                  * - If CMA allocation is possible, we can not demote
3159                  *   HUGETLB_PAGE_ORDER or smaller size pages.
3160                  */
3161                 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
3162                         continue;
3163                 if (hugetlb_cma_size && h->order <= HUGETLB_PAGE_ORDER)
3164                         continue;
3165                 for_each_hstate(h2) {
3166                         if (h2 == h)
3167                                 continue;
3168                         if (h2->order < h->order &&
3169                             h2->order > h->demote_order)
3170                                 h->demote_order = h2->order;
3171                 }
3172         }
3173         VM_BUG_ON(minimum_order == UINT_MAX);
3174 }
3175
3176 static void __init report_hugepages(void)
3177 {
3178         struct hstate *h;
3179
3180         for_each_hstate(h) {
3181                 char buf[32];
3182
3183                 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3184                 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
3185                         buf, h->free_huge_pages);
3186         }
3187 }
3188
3189 #ifdef CONFIG_HIGHMEM
3190 static void try_to_free_low(struct hstate *h, unsigned long count,
3191                                                 nodemask_t *nodes_allowed)
3192 {
3193         int i;
3194         LIST_HEAD(page_list);
3195
3196         lockdep_assert_held(&hugetlb_lock);
3197         if (hstate_is_gigantic(h))
3198                 return;
3199
3200         /*
3201          * Collect pages to be freed on a list, and free after dropping lock
3202          */
3203         for_each_node_mask(i, *nodes_allowed) {
3204                 struct page *page, *next;
3205                 struct list_head *freel = &h->hugepage_freelists[i];
3206                 list_for_each_entry_safe(page, next, freel, lru) {
3207                         if (count >= h->nr_huge_pages)
3208                                 goto out;
3209                         if (PageHighMem(page))
3210                                 continue;
3211                         remove_hugetlb_page(h, page, false);
3212                         list_add(&page->lru, &page_list);
3213                 }
3214         }
3215
3216 out:
3217         spin_unlock_irq(&hugetlb_lock);
3218         update_and_free_pages_bulk(h, &page_list);
3219         spin_lock_irq(&hugetlb_lock);
3220 }
3221 #else
3222 static inline void try_to_free_low(struct hstate *h, unsigned long count,
3223                                                 nodemask_t *nodes_allowed)
3224 {
3225 }
3226 #endif
3227
3228 /*
3229  * Increment or decrement surplus_huge_pages.  Keep node-specific counters
3230  * balanced by operating on them in a round-robin fashion.
3231  * Returns 1 if an adjustment was made.
3232  */
3233 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
3234                                 int delta)
3235 {
3236         int nr_nodes, node;
3237
3238         lockdep_assert_held(&hugetlb_lock);
3239         VM_BUG_ON(delta != -1 && delta != 1);
3240
3241         if (delta < 0) {
3242                 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
3243                         if (h->surplus_huge_pages_node[node])
3244                                 goto found;
3245                 }
3246         } else {
3247                 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
3248                         if (h->surplus_huge_pages_node[node] <
3249                                         h->nr_huge_pages_node[node])
3250                                 goto found;
3251                 }
3252         }
3253         return 0;
3254
3255 found:
3256         h->surplus_huge_pages += delta;
3257         h->surplus_huge_pages_node[node] += delta;
3258         return 1;
3259 }
3260
3261 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
3262 static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid,
3263                               nodemask_t *nodes_allowed)
3264 {
3265         unsigned long min_count, ret;
3266         struct page *page;
3267         LIST_HEAD(page_list);
3268         NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL);
3269
3270         /*
3271          * Bit mask controlling how hard we retry per-node allocations.
3272          * If we can not allocate the bit mask, do not attempt to allocate
3273          * the requested huge pages.
3274          */
3275         if (node_alloc_noretry)
3276                 nodes_clear(*node_alloc_noretry);
3277         else
3278                 return -ENOMEM;
3279
3280         /*
3281          * resize_lock mutex prevents concurrent adjustments to number of
3282          * pages in hstate via the proc/sysfs interfaces.
3283          */
3284         mutex_lock(&h->resize_lock);
3285         flush_free_hpage_work(h);
3286         spin_lock_irq(&hugetlb_lock);
3287
3288         /*
3289          * Check for a node specific request.
3290          * Changing node specific huge page count may require a corresponding
3291          * change to the global count.  In any case, the passed node mask
3292          * (nodes_allowed) will restrict alloc/free to the specified node.
3293          */
3294         if (nid != NUMA_NO_NODE) {
3295                 unsigned long old_count = count;
3296
3297                 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
3298                 /*
3299                  * User may have specified a large count value which caused the
3300                  * above calculation to overflow.  In this case, they wanted
3301                  * to allocate as many huge pages as possible.  Set count to
3302                  * largest possible value to align with their intention.
3303                  */
3304                 if (count < old_count)
3305                         count = ULONG_MAX;
3306         }
3307
3308         /*
3309          * Gigantic pages runtime allocation depend on the capability for large
3310          * page range allocation.
3311          * If the system does not provide this feature, return an error when
3312          * the user tries to allocate gigantic pages but let the user free the
3313          * boottime allocated gigantic pages.
3314          */
3315         if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) {
3316                 if (count > persistent_huge_pages(h)) {
3317                         spin_unlock_irq(&hugetlb_lock);
3318                         mutex_unlock(&h->resize_lock);
3319                         NODEMASK_FREE(node_alloc_noretry);
3320                         return -EINVAL;
3321                 }
3322                 /* Fall through to decrease pool */
3323         }
3324
3325         /*
3326          * Increase the pool size
3327          * First take pages out of surplus state.  Then make up the
3328          * remaining difference by allocating fresh huge pages.
3329          *
3330          * We might race with alloc_surplus_huge_page() here and be unable
3331          * to convert a surplus huge page to a normal huge page. That is
3332          * not critical, though, it just means the overall size of the
3333          * pool might be one hugepage larger than it needs to be, but
3334          * within all the constraints specified by the sysctls.
3335          */
3336         while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
3337                 if (!adjust_pool_surplus(h, nodes_allowed, -1))
3338                         break;
3339         }
3340
3341         while (count > persistent_huge_pages(h)) {
3342                 /*
3343                  * If this allocation races such that we no longer need the
3344                  * page, free_huge_page will handle it by freeing the page
3345                  * and reducing the surplus.
3346                  */
3347                 spin_unlock_irq(&hugetlb_lock);
3348
3349                 /* yield cpu to avoid soft lockup */
3350                 cond_resched();
3351
3352                 ret = alloc_pool_huge_page(h, nodes_allowed,
3353                                                 node_alloc_noretry);
3354                 spin_lock_irq(&hugetlb_lock);
3355                 if (!ret)
3356                         goto out;
3357
3358                 /* Bail for signals. Probably ctrl-c from user */
3359                 if (signal_pending(current))
3360                         goto out;
3361         }
3362
3363         /*
3364          * Decrease the pool size
3365          * First return free pages to the buddy allocator (being careful
3366          * to keep enough around to satisfy reservations).  Then place
3367          * pages into surplus state as needed so the pool will shrink
3368          * to the desired size as pages become free.
3369          *
3370          * By placing pages into the surplus state independent of the
3371          * overcommit value, we are allowing the surplus pool size to
3372          * exceed overcommit. There are few sane options here. Since
3373          * alloc_surplus_huge_page() is checking the global counter,
3374          * though, we'll note that we're not allowed to exceed surplus
3375          * and won't grow the pool anywhere else. Not until one of the
3376          * sysctls are changed, or the surplus pages go out of use.
3377          */
3378         min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
3379         min_count = max(count, min_count);
3380         try_to_free_low(h, min_count, nodes_allowed);
3381
3382         /*
3383          * Collect pages to be removed on list without dropping lock
3384          */
3385         while (min_count < persistent_huge_pages(h)) {
3386                 page = remove_pool_huge_page(h, nodes_allowed, 0);
3387                 if (!page)
3388                         break;
3389
3390                 list_add(&page->lru, &page_list);
3391         }
3392         /* free the pages after dropping lock */
3393         spin_unlock_irq(&hugetlb_lock);
3394         update_and_free_pages_bulk(h, &page_list);
3395         flush_free_hpage_work(h);
3396         spin_lock_irq(&hugetlb_lock);
3397
3398         while (count < persistent_huge_pages(h)) {
3399                 if (!adjust_pool_surplus(h, nodes_allowed, 1))
3400                         break;
3401         }
3402 out:
3403         h->max_huge_pages = persistent_huge_pages(h);
3404         spin_unlock_irq(&hugetlb_lock);
3405         mutex_unlock(&h->resize_lock);
3406
3407         NODEMASK_FREE(node_alloc_noretry);
3408
3409         return 0;
3410 }
3411
3412 static int demote_free_huge_page(struct hstate *h, struct page *page)
3413 {
3414         int i, nid = page_to_nid(page);
3415         struct hstate *target_hstate;
3416         int rc = 0;
3417
3418         target_hstate = size_to_hstate(PAGE_SIZE << h->demote_order);
3419
3420         remove_hugetlb_page_for_demote(h, page, false);
3421         spin_unlock_irq(&hugetlb_lock);
3422
3423         rc = alloc_huge_page_vmemmap(h, page);
3424         if (rc) {
3425                 /* Allocation of vmemmmap failed, we can not demote page */
3426                 spin_lock_irq(&hugetlb_lock);
3427                 set_page_refcounted(page);
3428                 add_hugetlb_page(h, page, false);
3429                 return rc;
3430         }
3431
3432         /*
3433          * Use destroy_compound_hugetlb_page_for_demote for all huge page
3434          * sizes as it will not ref count pages.
3435          */
3436         destroy_compound_hugetlb_page_for_demote(page, huge_page_order(h));
3437
3438         /*
3439          * Taking target hstate mutex synchronizes with set_max_huge_pages.
3440          * Without the mutex, pages added to target hstate could be marked
3441          * as surplus.
3442          *
3443          * Note that we already hold h->resize_lock.  To prevent deadlock,
3444          * use the convention of always taking larger size hstate mutex first.
3445          */
3446         mutex_lock(&target_hstate->resize_lock);
3447         for (i = 0; i < pages_per_huge_page(h);
3448                                 i += pages_per_huge_page(target_hstate)) {
3449                 if (hstate_is_gigantic(target_hstate))
3450                         prep_compound_gigantic_page_for_demote(page + i,
3451                                                         target_hstate->order);
3452                 else
3453                         prep_compound_page(page + i, target_hstate->order);
3454                 set_page_private(page + i, 0);
3455                 set_page_refcounted(page + i);
3456                 prep_new_huge_page(target_hstate, page + i, nid);
3457                 put_page(page + i);
3458         }
3459         mutex_unlock(&target_hstate->resize_lock);
3460
3461         spin_lock_irq(&hugetlb_lock);
3462
3463         /*
3464          * Not absolutely necessary, but for consistency update max_huge_pages
3465          * based on pool changes for the demoted page.
3466          */
3467         h->max_huge_pages--;
3468         target_hstate->max_huge_pages += pages_per_huge_page(h);
3469
3470         return rc;
3471 }
3472
3473 static int demote_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
3474         __must_hold(&hugetlb_lock)
3475 {
3476         int nr_nodes, node;
3477         struct page *page;
3478
3479         lockdep_assert_held(&hugetlb_lock);
3480
3481         /* We should never get here if no demote order */
3482         if (!h->demote_order) {
3483                 pr_warn("HugeTLB: NULL demote order passed to demote_pool_huge_page.\n");
3484                 return -EINVAL;         /* internal error */
3485         }
3486
3487         for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
3488                 list_for_each_entry(page, &h->hugepage_freelists[node], lru) {
3489                         if (PageHWPoison(page))
3490                                 continue;
3491
3492                         return demote_free_huge_page(h, page);
3493                 }
3494         }
3495
3496         /*
3497          * Only way to get here is if all pages on free lists are poisoned.
3498          * Return -EBUSY so that caller will not retry.
3499          */
3500         return -EBUSY;
3501 }
3502
3503 #define HSTATE_ATTR_RO(_name) \
3504         static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
3505
3506 #define HSTATE_ATTR_WO(_name) \
3507         static struct kobj_attribute _name##_attr = __ATTR_WO(_name)
3508
3509 #define HSTATE_ATTR(_name) \
3510         static struct kobj_attribute _name##_attr = __ATTR_RW(_name)
3511
3512 static struct kobject *hugepages_kobj;
3513 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
3514
3515 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
3516
3517 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
3518 {
3519         int i;
3520
3521         for (i = 0; i < HUGE_MAX_HSTATE; i++)
3522                 if (hstate_kobjs[i] == kobj) {
3523                         if (nidp)
3524                                 *nidp = NUMA_NO_NODE;
3525                         return &hstates[i];
3526                 }
3527
3528         return kobj_to_node_hstate(kobj, nidp);
3529 }
3530
3531 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
3532                                         struct kobj_attribute *attr, char *buf)
3533 {
3534         struct hstate *h;
3535         unsigned long nr_huge_pages;
3536         int nid;
3537
3538         h = kobj_to_hstate(kobj, &nid);
3539         if (nid == NUMA_NO_NODE)
3540                 nr_huge_pages = h->nr_huge_pages;
3541         else
3542                 nr_huge_pages = h->nr_huge_pages_node[nid];
3543
3544         return sysfs_emit(buf, "%lu\n", nr_huge_pages);
3545 }
3546
3547 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
3548                                            struct hstate *h, int nid,
3549                                            unsigned long count, size_t len)
3550 {
3551         int err;
3552         nodemask_t nodes_allowed, *n_mask;
3553
3554         if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
3555                 return -EINVAL;
3556
3557         if (nid == NUMA_NO_NODE) {
3558                 /*
3559                  * global hstate attribute
3560                  */
3561                 if (!(obey_mempolicy &&
3562                                 init_nodemask_of_mempolicy(&nodes_allowed)))
3563                         n_mask = &node_states[N_MEMORY];
3564                 else
3565                         n_mask = &nodes_allowed;
3566         } else {
3567                 /*
3568                  * Node specific request.  count adjustment happens in
3569                  * set_max_huge_pages() after acquiring hugetlb_lock.
3570                  */
3571                 init_nodemask_of_node(&nodes_allowed, nid);
3572                 n_mask = &nodes_allowed;
3573         }
3574
3575         err = set_max_huge_pages(h, count, nid, n_mask);
3576
3577         return err ? err : len;
3578 }
3579
3580 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
3581                                          struct kobject *kobj, const char *buf,
3582                                          size_t len)
3583 {
3584         struct hstate *h;
3585         unsigned long count;
3586         int nid;
3587         int err;
3588
3589         err = kstrtoul(buf, 10, &count);
3590         if (err)
3591                 return err;
3592
3593         h = kobj_to_hstate(kobj, &nid);
3594         return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
3595 }
3596
3597 static ssize_t nr_hugepages_show(struct kobject *kobj,
3598                                        struct kobj_attribute *attr, char *buf)
3599 {
3600         return nr_hugepages_show_common(kobj, attr, buf);
3601 }
3602
3603 static ssize_t nr_hugepages_store(struct kobject *kobj,
3604                struct kobj_attribute *attr, const char *buf, size_t len)
3605 {
3606         return nr_hugepages_store_common(false, kobj, buf, len);
3607 }
3608 HSTATE_ATTR(nr_hugepages);
3609
3610 #ifdef CONFIG_NUMA
3611
3612 /*
3613  * hstate attribute for optionally mempolicy-based constraint on persistent
3614  * huge page alloc/free.
3615  */
3616 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
3617                                            struct kobj_attribute *attr,
3618                                            char *buf)
3619 {
3620         return nr_hugepages_show_common(kobj, attr, buf);
3621 }
3622
3623 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
3624                struct kobj_attribute *attr, const char *buf, size_t len)
3625 {
3626         return nr_hugepages_store_common(true, kobj, buf, len);
3627 }
3628 HSTATE_ATTR(nr_hugepages_mempolicy);
3629 #endif
3630
3631
3632 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
3633                                         struct kobj_attribute *attr, char *buf)
3634 {
3635         struct hstate *h = kobj_to_hstate(kobj, NULL);
3636         return sysfs_emit(buf, "%lu\n", h->nr_overcommit_huge_pages);
3637 }
3638
3639 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
3640                 struct kobj_attribute *attr, const char *buf, size_t count)
3641 {
3642         int err;
3643         unsigned long input;
3644         struct hstate *h = kobj_to_hstate(kobj, NULL);
3645
3646         if (hstate_is_gigantic(h))
3647                 return -EINVAL;
3648
3649         err = kstrtoul(buf, 10, &input);
3650         if (err)
3651                 return err;
3652
3653         spin_lock_irq(&hugetlb_lock);
3654         h->nr_overcommit_huge_pages = input;
3655         spin_unlock_irq(&hugetlb_lock);
3656
3657         return count;
3658 }
3659 HSTATE_ATTR(nr_overcommit_hugepages);
3660
3661 static ssize_t free_hugepages_show(struct kobject *kobj,
3662                                         struct kobj_attribute *attr, char *buf)
3663 {
3664         struct hstate *h;
3665         unsigned long free_huge_pages;
3666         int nid;
3667
3668         h = kobj_to_hstate(kobj, &nid);
3669         if (nid == NUMA_NO_NODE)
3670                 free_huge_pages = h->free_huge_pages;
3671         else
3672                 free_huge_pages = h->free_huge_pages_node[nid];
3673
3674         return sysfs_emit(buf, "%lu\n", free_huge_pages);
3675 }
3676 HSTATE_ATTR_RO(free_hugepages);
3677
3678 static ssize_t resv_hugepages_show(struct kobject *kobj,
3679                                         struct kobj_attribute *attr, char *buf)
3680 {
3681         struct hstate *h = kobj_to_hstate(kobj, NULL);
3682         return sysfs_emit(buf, "%lu\n", h->resv_huge_pages);
3683 }
3684 HSTATE_ATTR_RO(resv_hugepages);
3685
3686 static ssize_t surplus_hugepages_show(struct kobject *kobj,
3687                                         struct kobj_attribute *attr, char *buf)
3688 {
3689         struct hstate *h;
3690         unsigned long surplus_huge_pages;
3691         int nid;
3692
3693         h = kobj_to_hstate(kobj, &nid);
3694         if (nid == NUMA_NO_NODE)
3695                 surplus_huge_pages = h->surplus_huge_pages;
3696         else
3697                 surplus_huge_pages = h->surplus_huge_pages_node[nid];
3698
3699         return sysfs_emit(buf, "%lu\n", surplus_huge_pages);
3700 }
3701 HSTATE_ATTR_RO(surplus_hugepages);
3702
3703 static ssize_t demote_store(struct kobject *kobj,
3704                struct kobj_attribute *attr, const char *buf, size_t len)
3705 {
3706         unsigned long nr_demote;
3707         unsigned long nr_available;
3708         nodemask_t nodes_allowed, *n_mask;
3709         struct hstate *h;
3710         int err = 0;
3711         int nid;
3712
3713         err = kstrtoul(buf, 10, &nr_demote);
3714         if (err)
3715                 return err;
3716         h = kobj_to_hstate(kobj, &nid);
3717
3718         if (nid != NUMA_NO_NODE) {
3719                 init_nodemask_of_node(&nodes_allowed, nid);
3720                 n_mask = &nodes_allowed;
3721         } else {
3722                 n_mask = &node_states[N_MEMORY];
3723         }
3724
3725         /* Synchronize with other sysfs operations modifying huge pages */
3726         mutex_lock(&h->resize_lock);
3727         spin_lock_irq(&hugetlb_lock);
3728
3729         while (nr_demote) {
3730                 /*
3731                  * Check for available pages to demote each time thorough the
3732                  * loop as demote_pool_huge_page will drop hugetlb_lock.
3733                  */
3734                 if (nid != NUMA_NO_NODE)
3735                         nr_available = h->free_huge_pages_node[nid];
3736                 else
3737                         nr_available = h->free_huge_pages;
3738                 nr_available -= h->resv_huge_pages;
3739                 if (!nr_available)
3740                         break;
3741
3742                 err = demote_pool_huge_page(h, n_mask);
3743                 if (err)
3744                         break;
3745
3746                 nr_demote--;
3747         }
3748
3749         spin_unlock_irq(&hugetlb_lock);
3750         mutex_unlock(&h->resize_lock);
3751
3752         if (err)
3753                 return err;
3754         return len;
3755 }
3756 HSTATE_ATTR_WO(demote);
3757
3758 static ssize_t demote_size_show(struct kobject *kobj,
3759                                         struct kobj_attribute *attr, char *buf)
3760 {
3761         int nid;
3762         struct hstate *h = kobj_to_hstate(kobj, &nid);
3763         unsigned long demote_size = (PAGE_SIZE << h->demote_order) / SZ_1K;
3764
3765         return sysfs_emit(buf, "%lukB\n", demote_size);
3766 }
3767
3768 static ssize_t demote_size_store(struct kobject *kobj,
3769                                         struct kobj_attribute *attr,
3770                                         const char *buf, size_t count)
3771 {
3772         struct hstate *h, *demote_hstate;
3773         unsigned long demote_size;
3774         unsigned int demote_order;
3775         int nid;
3776
3777         demote_size = (unsigned long)memparse(buf, NULL);
3778
3779         demote_hstate = size_to_hstate(demote_size);
3780         if (!demote_hstate)
3781                 return -EINVAL;
3782         demote_order = demote_hstate->order;
3783         if (demote_order < HUGETLB_PAGE_ORDER)
3784                 return -EINVAL;
3785
3786         /* demote order must be smaller than hstate order */
3787         h = kobj_to_hstate(kobj, &nid);
3788         if (demote_order >= h->order)
3789                 return -EINVAL;
3790
3791         /* resize_lock synchronizes access to demote size and writes */
3792         mutex_lock(&h->resize_lock);
3793         h->demote_order = demote_order;
3794         mutex_unlock(&h->resize_lock);
3795
3796         return count;
3797 }
3798 HSTATE_ATTR(demote_size);
3799
3800 static struct attribute *hstate_attrs[] = {
3801         &nr_hugepages_attr.attr,
3802         &nr_overcommit_hugepages_attr.attr,
3803         &free_hugepages_attr.attr,
3804         &resv_hugepages_attr.attr,
3805         &surplus_hugepages_attr.attr,
3806 #ifdef CONFIG_NUMA
3807         &nr_hugepages_mempolicy_attr.attr,
3808 #endif
3809         NULL,
3810 };
3811
3812 static const struct attribute_group hstate_attr_group = {
3813         .attrs = hstate_attrs,
3814 };
3815
3816 static struct attribute *hstate_demote_attrs[] = {
3817         &demote_size_attr.attr,
3818         &demote_attr.attr,
3819         NULL,
3820 };
3821
3822 static const struct attribute_group hstate_demote_attr_group = {
3823         .attrs = hstate_demote_attrs,
3824 };
3825
3826 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
3827                                     struct kobject **hstate_kobjs,
3828                                     const struct attribute_group *hstate_attr_group)
3829 {
3830         int retval;
3831         int hi = hstate_index(h);
3832
3833         hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
3834         if (!hstate_kobjs[hi])
3835                 return -ENOMEM;
3836
3837         retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
3838         if (retval) {
3839                 kobject_put(hstate_kobjs[hi]);
3840                 hstate_kobjs[hi] = NULL;
3841         }
3842
3843         if (h->demote_order) {
3844                 if (sysfs_create_group(hstate_kobjs[hi],
3845                                         &hstate_demote_attr_group))
3846                         pr_warn("HugeTLB unable to create demote interfaces for %s\n", h->name);
3847         }
3848
3849         return retval;
3850 }
3851
3852 static void __init hugetlb_sysfs_init(void)
3853 {
3854         struct hstate *h;
3855         int err;
3856
3857         hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
3858         if (!hugepages_kobj)
3859                 return;
3860
3861         for_each_hstate(h) {
3862                 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
3863                                          hstate_kobjs, &hstate_attr_group);
3864                 if (err)
3865                         pr_err("HugeTLB: Unable to add hstate %s", h->name);
3866         }
3867 }
3868
3869 #ifdef CONFIG_NUMA
3870
3871 /*
3872  * node_hstate/s - associate per node hstate attributes, via their kobjects,
3873  * with node devices in node_devices[] using a parallel array.  The array
3874  * index of a node device or _hstate == node id.
3875  * This is here to avoid any static dependency of the node device driver, in
3876  * the base kernel, on the hugetlb module.
3877  */
3878 struct node_hstate {
3879         struct kobject          *hugepages_kobj;
3880         struct kobject          *hstate_kobjs[HUGE_MAX_HSTATE];
3881 };
3882 static struct node_hstate node_hstates[MAX_NUMNODES];
3883
3884 /*
3885  * A subset of global hstate attributes for node devices
3886  */
3887 static struct attribute *per_node_hstate_attrs[] = {
3888         &nr_hugepages_attr.attr,
3889         &free_hugepages_attr.attr,
3890         &surplus_hugepages_attr.attr,
3891         NULL,
3892 };
3893
3894 static const struct attribute_group per_node_hstate_attr_group = {
3895         .attrs = per_node_hstate_attrs,
3896 };
3897
3898 /*
3899  * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
3900  * Returns node id via non-NULL nidp.
3901  */
3902 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
3903 {
3904         int nid;
3905
3906         for (nid = 0; nid < nr_node_ids; nid++) {
3907                 struct node_hstate *nhs = &node_hstates[nid];
3908                 int i;
3909                 for (i = 0; i < HUGE_MAX_HSTATE; i++)
3910                         if (nhs->hstate_kobjs[i] == kobj) {
3911                                 if (nidp)
3912                                         *nidp = nid;
3913                                 return &hstates[i];
3914                         }
3915         }
3916
3917         BUG();
3918         return NULL;
3919 }
3920
3921 /*
3922  * Unregister hstate attributes from a single node device.
3923  * No-op if no hstate attributes attached.
3924  */
3925 static void hugetlb_unregister_node(struct node *node)
3926 {
3927         struct hstate *h;
3928         struct node_hstate *nhs = &node_hstates[node->dev.id];
3929
3930         if (!nhs->hugepages_kobj)
3931                 return;         /* no hstate attributes */
3932
3933         for_each_hstate(h) {
3934                 int idx = hstate_index(h);
3935                 if (nhs->hstate_kobjs[idx]) {
3936                         kobject_put(nhs->hstate_kobjs[idx]);
3937                         nhs->hstate_kobjs[idx] = NULL;
3938                 }
3939         }
3940
3941         kobject_put(nhs->hugepages_kobj);
3942         nhs->hugepages_kobj = NULL;
3943 }
3944
3945
3946 /*
3947  * Register hstate attributes for a single node device.
3948  * No-op if attributes already registered.
3949  */
3950 static void hugetlb_register_node(struct node *node)
3951 {
3952         struct hstate *h;
3953         struct node_hstate *nhs = &node_hstates[node->dev.id];
3954         int err;
3955
3956         if (nhs->hugepages_kobj)
3957                 return;         /* already allocated */
3958
3959         nhs->hugepages_kobj = kobject_create_and_add("hugepages",
3960                                                         &node->dev.kobj);
3961         if (!nhs->hugepages_kobj)
3962                 return;
3963
3964         for_each_hstate(h) {
3965                 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
3966                                                 nhs->hstate_kobjs,
3967                                                 &per_node_hstate_attr_group);
3968                 if (err) {
3969                         pr_err("HugeTLB: Unable to add hstate %s for node %d\n",
3970                                 h->name, node->dev.id);
3971                         hugetlb_unregister_node(node);
3972                         break;
3973                 }
3974         }
3975 }
3976
3977 /*
3978  * hugetlb init time:  register hstate attributes for all registered node
3979  * devices of nodes that have memory.  All on-line nodes should have
3980  * registered their associated device by this time.
3981  */
3982 static void __init hugetlb_register_all_nodes(void)
3983 {
3984         int nid;
3985
3986         for_each_node_state(nid, N_MEMORY) {
3987                 struct node *node = node_devices[nid];
3988                 if (node->dev.id == nid)
3989                         hugetlb_register_node(node);
3990         }
3991
3992         /*
3993          * Let the node device driver know we're here so it can
3994          * [un]register hstate attributes on node hotplug.
3995          */
3996         register_hugetlbfs_with_node(hugetlb_register_node,
3997                                      hugetlb_unregister_node);
3998 }
3999 #else   /* !CONFIG_NUMA */
4000
4001 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
4002 {
4003         BUG();
4004         if (nidp)
4005                 *nidp = -1;
4006         return NULL;
4007 }
4008
4009 static void hugetlb_register_all_nodes(void) { }
4010
4011 #endif
4012
4013 static int __init hugetlb_init(void)
4014 {
4015         int i;
4016
4017         BUILD_BUG_ON(sizeof_field(struct page, private) * BITS_PER_BYTE <
4018                         __NR_HPAGEFLAGS);
4019
4020         if (!hugepages_supported()) {
4021                 if (hugetlb_max_hstate || default_hstate_max_huge_pages)
4022                         pr_warn("HugeTLB: huge pages not supported, ignoring associated command-line parameters\n");
4023                 return 0;
4024         }
4025
4026         /*
4027          * Make sure HPAGE_SIZE (HUGETLB_PAGE_ORDER) hstate exists.  Some
4028          * architectures depend on setup being done here.
4029          */
4030         hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
4031         if (!parsed_default_hugepagesz) {
4032                 /*
4033                  * If we did not parse a default huge page size, set
4034                  * default_hstate_idx to HPAGE_SIZE hstate. And, if the
4035                  * number of huge pages for this default size was implicitly
4036                  * specified, set that here as well.
4037                  * Note that the implicit setting will overwrite an explicit
4038                  * setting.  A warning will be printed in this case.
4039                  */
4040                 default_hstate_idx = hstate_index(size_to_hstate(HPAGE_SIZE));
4041                 if (default_hstate_max_huge_pages) {
4042                         if (default_hstate.max_huge_pages) {
4043                                 char buf[32];
4044
4045                                 string_get_size(huge_page_size(&default_hstate),
4046                                         1, STRING_UNITS_2, buf, 32);
4047                                 pr_warn("HugeTLB: Ignoring hugepages=%lu associated with %s page size\n",
4048                                         default_hstate.max_huge_pages, buf);
4049                                 pr_warn("HugeTLB: Using hugepages=%lu for number of default huge pages\n",
4050                                         default_hstate_max_huge_pages);
4051                         }
4052                         default_hstate.max_huge_pages =
4053                                 default_hstate_max_huge_pages;
4054
4055                         for (i = 0; i < nr_online_nodes; i++)
4056                                 default_hstate.max_huge_pages_node[i] =
4057                                         default_hugepages_in_node[i];
4058                 }
4059         }
4060
4061         hugetlb_cma_check();
4062         hugetlb_init_hstates();
4063         gather_bootmem_prealloc();
4064         report_hugepages();
4065
4066         hugetlb_sysfs_init();
4067         hugetlb_register_all_nodes();
4068         hugetlb_cgroup_file_init();
4069
4070 #ifdef CONFIG_SMP
4071         num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
4072 #else
4073         num_fault_mutexes = 1;
4074 #endif
4075         hugetlb_fault_mutex_table =
4076                 kmalloc_array(num_fault_mutexes, sizeof(struct mutex),
4077                               GFP_KERNEL);
4078         BUG_ON(!hugetlb_fault_mutex_table);
4079
4080         for (i = 0; i < num_fault_mutexes; i++)
4081                 mutex_init(&hugetlb_fault_mutex_table[i]);
4082         return 0;
4083 }
4084 subsys_initcall(hugetlb_init);
4085
4086 /* Overwritten by architectures with more huge page sizes */
4087 bool __init __attribute((weak)) arch_hugetlb_valid_size(unsigned long size)
4088 {
4089         return size == HPAGE_SIZE;
4090 }
4091
4092 void __init hugetlb_add_hstate(unsigned int order)
4093 {
4094         struct hstate *h;
4095         unsigned long i;
4096
4097         if (size_to_hstate(PAGE_SIZE << order)) {
4098                 return;
4099         }
4100         BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
4101         BUG_ON(order == 0);
4102         h = &hstates[hugetlb_max_hstate++];
4103         mutex_init(&h->resize_lock);
4104         h->order = order;
4105         h->mask = ~(huge_page_size(h) - 1);
4106         for (i = 0; i < MAX_NUMNODES; ++i)
4107                 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
4108         INIT_LIST_HEAD(&h->hugepage_activelist);
4109         h->next_nid_to_alloc = first_memory_node;
4110         h->next_nid_to_free = first_memory_node;
4111         snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
4112                                         huge_page_size(h)/1024);
4113         hugetlb_vmemmap_init(h);
4114
4115         parsed_hstate = h;
4116 }
4117
4118 bool __init __weak hugetlb_node_alloc_supported(void)
4119 {
4120         return true;
4121 }
4122 /*
4123  * hugepages command line processing
4124  * hugepages normally follows a valid hugepagsz or default_hugepagsz
4125  * specification.  If not, ignore the hugepages value.  hugepages can also
4126  * be the first huge page command line  option in which case it implicitly
4127  * specifies the number of huge pages for the default size.
4128  */
4129 static int __init hugepages_setup(char *s)
4130 {
4131         unsigned long *mhp;
4132         static unsigned long *last_mhp;
4133         int node = NUMA_NO_NODE;
4134         int count;
4135         unsigned long tmp;
4136         char *p = s;
4137
4138         if (!parsed_valid_hugepagesz) {
4139                 pr_warn("HugeTLB: hugepages=%s does not follow a valid hugepagesz, ignoring\n", s);
4140                 parsed_valid_hugepagesz = true;
4141                 return 0;
4142         }
4143
4144         /*
4145          * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter
4146          * yet, so this hugepages= parameter goes to the "default hstate".
4147          * Otherwise, it goes with the previously parsed hugepagesz or
4148          * default_hugepagesz.
4149          */
4150         else if (!hugetlb_max_hstate)
4151                 mhp = &default_hstate_max_huge_pages;
4152         else
4153                 mhp = &parsed_hstate->max_huge_pages;
4154
4155         if (mhp == last_mhp) {
4156                 pr_warn("HugeTLB: hugepages= specified twice without interleaving hugepagesz=, ignoring hugepages=%s\n", s);
4157                 return 0;
4158         }
4159
4160         while (*p) {
4161                 count = 0;
4162                 if (sscanf(p, "%lu%n", &tmp, &count) != 1)
4163                         goto invalid;
4164                 /* Parameter is node format */
4165                 if (p[count] == ':') {
4166                         if (!hugetlb_node_alloc_supported()) {
4167                                 pr_warn("HugeTLB: architecture can't support node specific alloc, ignoring!\n");
4168                                 return 0;
4169                         }
4170                         if (tmp >= nr_online_nodes)
4171                                 goto invalid;
4172                         node = array_index_nospec(tmp, nr_online_nodes);
4173                         p += count + 1;
4174                         /* Parse hugepages */
4175                         if (sscanf(p, "%lu%n", &tmp, &count) != 1)
4176                                 goto invalid;
4177                         if (!hugetlb_max_hstate)
4178                                 default_hugepages_in_node[node] = tmp;
4179                         else
4180                                 parsed_hstate->max_huge_pages_node[node] = tmp;
4181                         *mhp += tmp;
4182                         /* Go to parse next node*/
4183                         if (p[count] == ',')
4184                                 p += count + 1;
4185                         else
4186                                 break;
4187                 } else {
4188                         if (p != s)
4189                                 goto invalid;
4190                         *mhp = tmp;
4191                         break;
4192                 }
4193         }
4194
4195         /*
4196          * Global state is always initialized later in hugetlb_init.
4197          * But we need to allocate gigantic hstates here early to still
4198          * use the bootmem allocator.
4199          */
4200         if (hugetlb_max_hstate && hstate_is_gigantic(parsed_hstate))
4201                 hugetlb_hstate_alloc_pages(parsed_hstate);
4202
4203         last_mhp = mhp;
4204
4205         return 1;
4206
4207 invalid:
4208         pr_warn("HugeTLB: Invalid hugepages parameter %s\n", p);
4209         return 0;
4210 }
4211 __setup("hugepages=", hugepages_setup);
4212
4213 /*
4214  * hugepagesz command line processing
4215  * A specific huge page size can only be specified once with hugepagesz.
4216  * hugepagesz is followed by hugepages on the command line.  The global
4217  * variable 'parsed_valid_hugepagesz' is used to determine if prior
4218  * hugepagesz argument was valid.
4219  */
4220 static int __init hugepagesz_setup(char *s)
4221 {
4222         unsigned long size;
4223         struct hstate *h;
4224
4225         parsed_valid_hugepagesz = false;
4226         size = (unsigned long)memparse(s, NULL);
4227
4228         if (!arch_hugetlb_valid_size(size)) {
4229                 pr_err("HugeTLB: unsupported hugepagesz=%s\n", s);
4230                 return 0;
4231         }
4232
4233         h = size_to_hstate(size);
4234         if (h) {
4235                 /*
4236                  * hstate for this size already exists.  This is normally
4237                  * an error, but is allowed if the existing hstate is the
4238                  * default hstate.  More specifically, it is only allowed if
4239                  * the number of huge pages for the default hstate was not
4240                  * previously specified.
4241                  */
4242                 if (!parsed_default_hugepagesz ||  h != &default_hstate ||
4243                     default_hstate.max_huge_pages) {
4244                         pr_warn("HugeTLB: hugepagesz=%s specified twice, ignoring\n", s);
4245                         return 0;
4246                 }
4247
4248                 /*
4249                  * No need to call hugetlb_add_hstate() as hstate already
4250                  * exists.  But, do set parsed_hstate so that a following
4251                  * hugepages= parameter will be applied to this hstate.
4252                  */
4253                 parsed_hstate = h;
4254                 parsed_valid_hugepagesz = true;
4255                 return 1;
4256         }
4257
4258         hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
4259         parsed_valid_hugepagesz = true;
4260         return 1;
4261 }
4262 __setup("hugepagesz=", hugepagesz_setup);
4263
4264 /*
4265  * default_hugepagesz command line input
4266  * Only one instance of default_hugepagesz allowed on command line.
4267  */
4268 static int __init default_hugepagesz_setup(char *s)
4269 {
4270         unsigned long size;
4271         int i;
4272
4273         parsed_valid_hugepagesz = false;
4274         if (parsed_default_hugepagesz) {
4275                 pr_err("HugeTLB: default_hugepagesz previously specified, ignoring %s\n", s);
4276                 return 0;
4277         }
4278
4279         size = (unsigned long)memparse(s, NULL);
4280
4281         if (!arch_hugetlb_valid_size(size)) {
4282                 pr_err("HugeTLB: unsupported default_hugepagesz=%s\n", s);
4283                 return 0;
4284         }
4285
4286         hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
4287         parsed_valid_hugepagesz = true;
4288         parsed_default_hugepagesz = true;
4289         default_hstate_idx = hstate_index(size_to_hstate(size));
4290
4291         /*
4292          * The number of default huge pages (for this size) could have been
4293          * specified as the first hugetlb parameter: hugepages=X.  If so,
4294          * then default_hstate_max_huge_pages is set.  If the default huge
4295          * page size is gigantic (>= MAX_ORDER), then the pages must be
4296          * allocated here from bootmem allocator.
4297          */
4298         if (default_hstate_max_huge_pages) {
4299                 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
4300                 for (i = 0; i < nr_online_nodes; i++)
4301                         default_hstate.max_huge_pages_node[i] =
4302                                 default_hugepages_in_node[i];
4303                 if (hstate_is_gigantic(&default_hstate))
4304                         hugetlb_hstate_alloc_pages(&default_hstate);
4305                 default_hstate_max_huge_pages = 0;
4306         }
4307
4308         return 1;
4309 }
4310 __setup("default_hugepagesz=", default_hugepagesz_setup);
4311
4312 static unsigned int allowed_mems_nr(struct hstate *h)
4313 {
4314         int node;
4315         unsigned int nr = 0;
4316         nodemask_t *mpol_allowed;
4317         unsigned int *array = h->free_huge_pages_node;
4318         gfp_t gfp_mask = htlb_alloc_mask(h);
4319
4320         mpol_allowed = policy_nodemask_current(gfp_mask);
4321
4322         for_each_node_mask(node, cpuset_current_mems_allowed) {
4323                 if (!mpol_allowed || node_isset(node, *mpol_allowed))
4324                         nr += array[node];
4325         }
4326
4327         return nr;
4328 }
4329
4330 #ifdef CONFIG_SYSCTL
4331 static int proc_hugetlb_doulongvec_minmax(struct ctl_table *table, int write,
4332                                           void *buffer, size_t *length,
4333                                           loff_t *ppos, unsigned long *out)
4334 {
4335         struct ctl_table dup_table;
4336
4337         /*
4338          * In order to avoid races with __do_proc_doulongvec_minmax(), we
4339          * can duplicate the @table and alter the duplicate of it.
4340          */
4341         dup_table = *table;
4342         dup_table.data = out;
4343
4344         return proc_doulongvec_minmax(&dup_table, write, buffer, length, ppos);
4345 }
4346
4347 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
4348                          struct ctl_table *table, int write,
4349                          void *buffer, size_t *length, loff_t *ppos)
4350 {
4351         struct hstate *h = &default_hstate;
4352         unsigned long tmp = h->max_huge_pages;
4353         int ret;
4354
4355         if (!hugepages_supported())
4356                 return -EOPNOTSUPP;
4357
4358         ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
4359                                              &tmp);
4360         if (ret)
4361                 goto out;
4362
4363         if (write)
4364                 ret = __nr_hugepages_store_common(obey_mempolicy, h,
4365                                                   NUMA_NO_NODE, tmp, *length);
4366 out:
4367         return ret;
4368 }
4369
4370 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
4371                           void *buffer, size_t *length, loff_t *ppos)
4372 {
4373
4374         return hugetlb_sysctl_handler_common(false, table, write,
4375                                                         buffer, length, ppos);
4376 }
4377
4378 #ifdef CONFIG_NUMA
4379 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
4380                           void *buffer, size_t *length, loff_t *ppos)
4381 {
4382         return hugetlb_sysctl_handler_common(true, table, write,
4383                                                         buffer, length, ppos);
4384 }
4385 #endif /* CONFIG_NUMA */
4386
4387 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
4388                 void *buffer, size_t *length, loff_t *ppos)
4389 {
4390         struct hstate *h = &default_hstate;
4391         unsigned long tmp;
4392         int ret;
4393
4394         if (!hugepages_supported())
4395                 return -EOPNOTSUPP;
4396
4397         tmp = h->nr_overcommit_huge_pages;
4398
4399         if (write && hstate_is_gigantic(h))
4400                 return -EINVAL;
4401
4402         ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
4403                                              &tmp);
4404         if (ret)
4405                 goto out;
4406
4407         if (write) {
4408                 spin_lock_irq(&hugetlb_lock);
4409                 h->nr_overcommit_huge_pages = tmp;
4410                 spin_unlock_irq(&hugetlb_lock);
4411         }
4412 out:
4413         return ret;
4414 }
4415
4416 #endif /* CONFIG_SYSCTL */
4417
4418 void hugetlb_report_meminfo(struct seq_file *m)
4419 {
4420         struct hstate *h;
4421         unsigned long total = 0;
4422
4423         if (!hugepages_supported())
4424                 return;
4425
4426         for_each_hstate(h) {
4427                 unsigned long count = h->nr_huge_pages;
4428
4429                 total += huge_page_size(h) * count;
4430
4431                 if (h == &default_hstate)
4432                         seq_printf(m,
4433                                    "HugePages_Total:   %5lu\n"
4434                                    "HugePages_Free:    %5lu\n"
4435                                    "HugePages_Rsvd:    %5lu\n"
4436                                    "HugePages_Surp:    %5lu\n"
4437                                    "Hugepagesize:   %8lu kB\n",
4438                                    count,
4439                                    h->free_huge_pages,
4440                                    h->resv_huge_pages,
4441                                    h->surplus_huge_pages,
4442                                    huge_page_size(h) / SZ_1K);
4443         }
4444
4445         seq_printf(m, "Hugetlb:        %8lu kB\n", total / SZ_1K);
4446 }
4447
4448 int hugetlb_report_node_meminfo(char *buf, int len, int nid)
4449 {
4450         struct hstate *h = &default_hstate;
4451
4452         if (!hugepages_supported())
4453                 return 0;
4454
4455         return sysfs_emit_at(buf, len,
4456                              "Node %d HugePages_Total: %5u\n"
4457                              "Node %d HugePages_Free:  %5u\n"
4458                              "Node %d HugePages_Surp:  %5u\n",
4459                              nid, h->nr_huge_pages_node[nid],
4460                              nid, h->free_huge_pages_node[nid],
4461                              nid, h->surplus_huge_pages_node[nid]);
4462 }
4463
4464 void hugetlb_show_meminfo(void)
4465 {
4466         struct hstate *h;
4467         int nid;
4468
4469         if (!hugepages_supported())
4470                 return;
4471
4472         for_each_node_state(nid, N_MEMORY)
4473                 for_each_hstate(h)
4474                         pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
4475                                 nid,
4476                                 h->nr_huge_pages_node[nid],
4477                                 h->free_huge_pages_node[nid],
4478                                 h->surplus_huge_pages_node[nid],
4479                                 huge_page_size(h) / SZ_1K);
4480 }
4481
4482 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
4483 {
4484         seq_printf(m, "HugetlbPages:\t%8lu kB\n",
4485                    atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
4486 }
4487
4488 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
4489 unsigned long hugetlb_total_pages(void)
4490 {
4491         struct hstate *h;
4492         unsigned long nr_total_pages = 0;
4493
4494         for_each_hstate(h)
4495                 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
4496         return nr_total_pages;
4497 }
4498
4499 static int hugetlb_acct_memory(struct hstate *h, long delta)
4500 {
4501         int ret = -ENOMEM;
4502
4503         if (!delta)
4504                 return 0;
4505
4506         spin_lock_irq(&hugetlb_lock);
4507         /*
4508          * When cpuset is configured, it breaks the strict hugetlb page
4509          * reservation as the accounting is done on a global variable. Such
4510          * reservation is completely rubbish in the presence of cpuset because
4511          * the reservation is not checked against page availability for the
4512          * current cpuset. Application can still potentially OOM'ed by kernel
4513          * with lack of free htlb page in cpuset that the task is in.
4514          * Attempt to enforce strict accounting with cpuset is almost
4515          * impossible (or too ugly) because cpuset is too fluid that
4516          * task or memory node can be dynamically moved between cpusets.
4517          *
4518          * The change of semantics for shared hugetlb mapping with cpuset is
4519          * undesirable. However, in order to preserve some of the semantics,
4520          * we fall back to check against current free page availability as
4521          * a best attempt and hopefully to minimize the impact of changing
4522          * semantics that cpuset has.
4523          *
4524          * Apart from cpuset, we also have memory policy mechanism that
4525          * also determines from which node the kernel will allocate memory
4526          * in a NUMA system. So similar to cpuset, we also should consider
4527          * the memory policy of the current task. Similar to the description
4528          * above.
4529          */
4530         if (delta > 0) {
4531                 if (gather_surplus_pages(h, delta) < 0)
4532                         goto out;
4533
4534                 if (delta > allowed_mems_nr(h)) {
4535                         return_unused_surplus_pages(h, delta);
4536                         goto out;
4537                 }
4538         }
4539
4540         ret = 0;
4541         if (delta < 0)
4542                 return_unused_surplus_pages(h, (unsigned long) -delta);
4543
4544 out:
4545         spin_unlock_irq(&hugetlb_lock);
4546         return ret;
4547 }
4548
4549 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
4550 {
4551         struct resv_map *resv = vma_resv_map(vma);
4552
4553         /*
4554          * This new VMA should share its siblings reservation map if present.
4555          * The VMA will only ever have a valid reservation map pointer where
4556          * it is being copied for another still existing VMA.  As that VMA
4557          * has a reference to the reservation map it cannot disappear until
4558          * after this open call completes.  It is therefore safe to take a
4559          * new reference here without additional locking.
4560          */
4561         if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
4562                 resv_map_dup_hugetlb_cgroup_uncharge_info(resv);
4563                 kref_get(&resv->refs);
4564         }
4565 }
4566
4567 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
4568 {
4569         struct hstate *h = hstate_vma(vma);
4570         struct resv_map *resv = vma_resv_map(vma);
4571         struct hugepage_subpool *spool = subpool_vma(vma);
4572         unsigned long reserve, start, end;
4573         long gbl_reserve;
4574
4575         if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
4576                 return;
4577
4578         start = vma_hugecache_offset(h, vma, vma->vm_start);
4579         end = vma_hugecache_offset(h, vma, vma->vm_end);
4580
4581         reserve = (end - start) - region_count(resv, start, end);
4582         hugetlb_cgroup_uncharge_counter(resv, start, end);
4583         if (reserve) {
4584                 /*
4585                  * Decrement reserve counts.  The global reserve count may be
4586                  * adjusted if the subpool has a minimum size.
4587                  */
4588                 gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
4589                 hugetlb_acct_memory(h, -gbl_reserve);
4590         }
4591
4592         kref_put(&resv->refs, resv_map_release);
4593 }
4594
4595 static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
4596 {
4597         if (addr & ~(huge_page_mask(hstate_vma(vma))))
4598                 return -EINVAL;
4599         return 0;
4600 }
4601
4602 static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma)
4603 {
4604         return huge_page_size(hstate_vma(vma));
4605 }
4606
4607 /*
4608  * We cannot handle pagefaults against hugetlb pages at all.  They cause
4609  * handle_mm_fault() to try to instantiate regular-sized pages in the
4610  * hugepage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
4611  * this far.
4612  */
4613 static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf)
4614 {
4615         BUG();
4616         return 0;
4617 }
4618
4619 /*
4620  * When a new function is introduced to vm_operations_struct and added
4621  * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops.
4622  * This is because under System V memory model, mappings created via
4623  * shmget/shmat with "huge page" specified are backed by hugetlbfs files,
4624  * their original vm_ops are overwritten with shm_vm_ops.
4625  */
4626 const struct vm_operations_struct hugetlb_vm_ops = {
4627         .fault = hugetlb_vm_op_fault,
4628         .open = hugetlb_vm_op_open,
4629         .close = hugetlb_vm_op_close,
4630         .may_split = hugetlb_vm_op_split,
4631         .pagesize = hugetlb_vm_op_pagesize,
4632 };
4633
4634 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
4635                                 int writable)
4636 {
4637         pte_t entry;
4638         unsigned int shift = huge_page_shift(hstate_vma(vma));
4639
4640         if (writable) {
4641                 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
4642                                          vma->vm_page_prot)));
4643         } else {
4644                 entry = huge_pte_wrprotect(mk_huge_pte(page,
4645                                            vma->vm_page_prot));
4646         }
4647         entry = pte_mkyoung(entry);
4648         entry = arch_make_huge_pte(entry, shift, vma->vm_flags);
4649
4650         return entry;
4651 }
4652
4653 static void set_huge_ptep_writable(struct vm_area_struct *vma,
4654                                    unsigned long address, pte_t *ptep)
4655 {
4656         pte_t entry;
4657
4658         entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
4659         if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
4660                 update_mmu_cache(vma, address, ptep);
4661 }
4662
4663 bool is_hugetlb_entry_migration(pte_t pte)
4664 {
4665         swp_entry_t swp;
4666
4667         if (huge_pte_none(pte) || pte_present(pte))
4668                 return false;
4669         swp = pte_to_swp_entry(pte);
4670         if (is_migration_entry(swp))
4671                 return true;
4672         else
4673                 return false;
4674 }
4675
4676 static bool is_hugetlb_entry_hwpoisoned(pte_t pte)
4677 {
4678         swp_entry_t swp;
4679
4680         if (huge_pte_none(pte) || pte_present(pte))
4681                 return false;
4682         swp = pte_to_swp_entry(pte);
4683         if (is_hwpoison_entry(swp))
4684                 return true;
4685         else
4686                 return false;
4687 }
4688
4689 static void
4690 hugetlb_install_page(struct vm_area_struct *vma, pte_t *ptep, unsigned long addr,
4691                      struct page *new_page)
4692 {
4693         __SetPageUptodate(new_page);
4694         hugepage_add_new_anon_rmap(new_page, vma, addr);
4695         set_huge_pte_at(vma->vm_mm, addr, ptep, make_huge_pte(vma, new_page, 1));
4696         hugetlb_count_add(pages_per_huge_page(hstate_vma(vma)), vma->vm_mm);
4697         ClearHPageRestoreReserve(new_page);
4698         SetHPageMigratable(new_page);
4699 }
4700
4701 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
4702                             struct vm_area_struct *vma)
4703 {
4704         pte_t *src_pte, *dst_pte, entry, dst_entry;
4705         struct page *ptepage;
4706         unsigned long addr;
4707         bool cow = is_cow_mapping(vma->vm_flags);
4708         struct hstate *h = hstate_vma(vma);
4709         unsigned long sz = huge_page_size(h);
4710         unsigned long npages = pages_per_huge_page(h);
4711         struct address_space *mapping = vma->vm_file->f_mapping;
4712         struct mmu_notifier_range range;
4713         int ret = 0;
4714
4715         if (cow) {
4716                 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, src,
4717                                         vma->vm_start,
4718                                         vma->vm_end);
4719                 mmu_notifier_invalidate_range_start(&range);
4720         } else {
4721                 /*
4722                  * For shared mappings i_mmap_rwsem must be held to call
4723                  * huge_pte_alloc, otherwise the returned ptep could go
4724                  * away if part of a shared pmd and another thread calls
4725                  * huge_pmd_unshare.
4726                  */
4727                 i_mmap_lock_read(mapping);
4728         }
4729
4730         for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
4731                 spinlock_t *src_ptl, *dst_ptl;
4732                 src_pte = huge_pte_offset(src, addr, sz);
4733                 if (!src_pte)
4734                         continue;
4735                 dst_pte = huge_pte_alloc(dst, vma, addr, sz);
4736                 if (!dst_pte) {
4737                         ret = -ENOMEM;
4738                         break;
4739                 }
4740
4741                 /*
4742                  * If the pagetables are shared don't copy or take references.
4743                  * dst_pte == src_pte is the common case of src/dest sharing.
4744                  *
4745                  * However, src could have 'unshared' and dst shares with
4746                  * another vma.  If dst_pte !none, this implies sharing.
4747                  * Check here before taking page table lock, and once again
4748                  * after taking the lock below.
4749                  */
4750                 dst_entry = huge_ptep_get(dst_pte);
4751                 if ((dst_pte == src_pte) || !huge_pte_none(dst_entry))
4752                         continue;
4753
4754                 dst_ptl = huge_pte_lock(h, dst, dst_pte);
4755                 src_ptl = huge_pte_lockptr(h, src, src_pte);
4756                 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
4757                 entry = huge_ptep_get(src_pte);
4758                 dst_entry = huge_ptep_get(dst_pte);
4759 again:
4760                 if (huge_pte_none(entry) || !huge_pte_none(dst_entry)) {
4761                         /*
4762                          * Skip if src entry none.  Also, skip in the
4763                          * unlikely case dst entry !none as this implies
4764                          * sharing with another vma.
4765                          */
4766                         ;
4767                 } else if (unlikely(is_hugetlb_entry_migration(entry) ||
4768                                     is_hugetlb_entry_hwpoisoned(entry))) {
4769                         swp_entry_t swp_entry = pte_to_swp_entry(entry);
4770
4771                         if (is_writable_migration_entry(swp_entry) && cow) {
4772                                 /*
4773                                  * COW mappings require pages in both
4774                                  * parent and child to be set to read.
4775                                  */
4776                                 swp_entry = make_readable_migration_entry(
4777                                                         swp_offset(swp_entry));
4778                                 entry = swp_entry_to_pte(swp_entry);
4779                                 set_huge_swap_pte_at(src, addr, src_pte,
4780                                                      entry, sz);
4781                         }
4782                         set_huge_swap_pte_at(dst, addr, dst_pte, entry, sz);
4783                 } else {
4784                         entry = huge_ptep_get(src_pte);
4785                         ptepage = pte_page(entry);
4786                         get_page(ptepage);
4787
4788                         /*
4789                          * This is a rare case where we see pinned hugetlb
4790                          * pages while they're prone to COW.  We need to do the
4791                          * COW earlier during fork.
4792                          *
4793                          * When pre-allocating the page or copying data, we
4794                          * need to be without the pgtable locks since we could
4795                          * sleep during the process.
4796                          */
4797                         if (unlikely(page_needs_cow_for_dma(vma, ptepage))) {
4798                                 pte_t src_pte_old = entry;
4799                                 struct page *new;
4800
4801                                 spin_unlock(src_ptl);
4802                                 spin_unlock(dst_ptl);
4803                                 /* Do not use reserve as it's private owned */
4804                                 new = alloc_huge_page(vma, addr, 1);
4805                                 if (IS_ERR(new)) {
4806                                         put_page(ptepage);
4807                                         ret = PTR_ERR(new);
4808                                         break;
4809                                 }
4810                                 copy_user_huge_page(new, ptepage, addr, vma,
4811                                                     npages);
4812                                 put_page(ptepage);
4813
4814                                 /* Install the new huge page if src pte stable */
4815                                 dst_ptl = huge_pte_lock(h, dst, dst_pte);
4816                                 src_ptl = huge_pte_lockptr(h, src, src_pte);
4817                                 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
4818                                 entry = huge_ptep_get(src_pte);
4819                                 if (!pte_same(src_pte_old, entry)) {
4820                                         restore_reserve_on_error(h, vma, addr,
4821                                                                 new);
4822                                         put_page(new);
4823                                         /* dst_entry won't change as in child */
4824                                         goto again;
4825                                 }
4826                                 hugetlb_install_page(vma, dst_pte, addr, new);
4827                                 spin_unlock(src_ptl);
4828                                 spin_unlock(dst_ptl);
4829                                 continue;
4830                         }
4831
4832                         if (cow) {
4833                                 /*
4834                                  * No need to notify as we are downgrading page
4835                                  * table protection not changing it to point
4836                                  * to a new page.
4837                                  *
4838                                  * See Documentation/vm/mmu_notifier.rst
4839                                  */
4840                                 huge_ptep_set_wrprotect(src, addr, src_pte);
4841                                 entry = huge_pte_wrprotect(entry);
4842                         }
4843
4844                         page_dup_rmap(ptepage, true);
4845                         set_huge_pte_at(dst, addr, dst_pte, entry);
4846                         hugetlb_count_add(npages, dst);
4847                 }
4848                 spin_unlock(src_ptl);
4849                 spin_unlock(dst_ptl);
4850         }
4851
4852         if (cow)
4853                 mmu_notifier_invalidate_range_end(&range);
4854         else
4855                 i_mmap_unlock_read(mapping);
4856
4857         return ret;
4858 }
4859
4860 static void move_huge_pte(struct vm_area_struct *vma, unsigned long old_addr,
4861                           unsigned long new_addr, pte_t *src_pte, pte_t *dst_pte)
4862 {
4863         struct hstate *h = hstate_vma(vma);
4864         struct mm_struct *mm = vma->vm_mm;
4865         spinlock_t *src_ptl, *dst_ptl;
4866         pte_t pte;
4867
4868         dst_ptl = huge_pte_lock(h, mm, dst_pte);
4869         src_ptl = huge_pte_lockptr(h, mm, src_pte);
4870
4871         /*
4872          * We don't have to worry about the ordering of src and dst ptlocks
4873          * because exclusive mmap_sem (or the i_mmap_lock) prevents deadlock.
4874          */
4875         if (src_ptl != dst_ptl)
4876                 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
4877
4878         pte = huge_ptep_get_and_clear(mm, old_addr, src_pte);
4879         set_huge_pte_at(mm, new_addr, dst_pte, pte);
4880
4881         if (src_ptl != dst_ptl)
4882                 spin_unlock(src_ptl);
4883         spin_unlock(dst_ptl);
4884 }
4885
4886 int move_hugetlb_page_tables(struct vm_area_struct *vma,
4887                              struct vm_area_struct *new_vma,
4888                              unsigned long old_addr, unsigned long new_addr,
4889                              unsigned long len)
4890 {
4891         struct hstate *h = hstate_vma(vma);
4892         struct address_space *mapping = vma->vm_file->f_mapping;
4893         unsigned long sz = huge_page_size(h);
4894         struct mm_struct *mm = vma->vm_mm;
4895         unsigned long old_end = old_addr + len;
4896         unsigned long old_addr_copy;
4897         pte_t *src_pte, *dst_pte;
4898         struct mmu_notifier_range range;
4899
4900         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, old_addr,
4901                                 old_end);
4902         adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
4903         mmu_notifier_invalidate_range_start(&range);
4904         /* Prevent race with file truncation */
4905         i_mmap_lock_write(mapping);
4906         for (; old_addr < old_end; old_addr += sz, new_addr += sz) {
4907                 src_pte = huge_pte_offset(mm, old_addr, sz);
4908                 if (!src_pte)
4909                         continue;
4910                 if (huge_pte_none(huge_ptep_get(src_pte)))
4911                         continue;
4912
4913                 /* old_addr arg to huge_pmd_unshare() is a pointer and so the
4914                  * arg may be modified. Pass a copy instead to preserve the
4915                  * value in old_addr.
4916                  */
4917                 old_addr_copy = old_addr;
4918
4919                 if (huge_pmd_unshare(mm, vma, &old_addr_copy, src_pte))
4920                         continue;
4921
4922                 dst_pte = huge_pte_alloc(mm, new_vma, new_addr, sz);
4923                 if (!dst_pte)
4924                         break;
4925
4926                 move_huge_pte(vma, old_addr, new_addr, src_pte, dst_pte);
4927         }
4928         flush_tlb_range(vma, old_end - len, old_end);
4929         mmu_notifier_invalidate_range_end(&range);
4930         i_mmap_unlock_write(mapping);
4931
4932         return len + old_addr - old_end;
4933 }
4934
4935 static void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
4936                                    unsigned long start, unsigned long end,
4937                                    struct page *ref_page)
4938 {
4939         struct mm_struct *mm = vma->vm_mm;
4940         unsigned long address;
4941         pte_t *ptep;
4942         pte_t pte;
4943         spinlock_t *ptl;
4944         struct page *page;
4945         struct hstate *h = hstate_vma(vma);
4946         unsigned long sz = huge_page_size(h);
4947         struct mmu_notifier_range range;
4948         bool force_flush = false;
4949
4950         WARN_ON(!is_vm_hugetlb_page(vma));
4951         BUG_ON(start & ~huge_page_mask(h));
4952         BUG_ON(end & ~huge_page_mask(h));
4953
4954         /*
4955          * This is a hugetlb vma, all the pte entries should point
4956          * to huge page.
4957          */
4958         tlb_change_page_size(tlb, sz);
4959         tlb_start_vma(tlb, vma);
4960
4961         /*
4962          * If sharing possible, alert mmu notifiers of worst case.
4963          */
4964         mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, mm, start,
4965                                 end);
4966         adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
4967         mmu_notifier_invalidate_range_start(&range);
4968         address = start;
4969         for (; address < end; address += sz) {
4970                 ptep = huge_pte_offset(mm, address, sz);
4971                 if (!ptep)
4972                         continue;
4973
4974                 ptl = huge_pte_lock(h, mm, ptep);
4975                 if (huge_pmd_unshare(mm, vma, &address, ptep)) {
4976                         spin_unlock(ptl);
4977                         tlb_flush_pmd_range(tlb, address & PUD_MASK, PUD_SIZE);
4978                         force_flush = true;
4979                         continue;
4980                 }
4981
4982                 pte = huge_ptep_get(ptep);
4983                 if (huge_pte_none(pte)) {
4984                         spin_unlock(ptl);
4985                         continue;
4986                 }
4987
4988                 /*
4989                  * Migrating hugepage or HWPoisoned hugepage is already
4990                  * unmapped and its refcount is dropped, so just clear pte here.
4991                  */
4992                 if (unlikely(!pte_present(pte))) {
4993                         huge_pte_clear(mm, address, ptep, sz);
4994                         spin_unlock(ptl);
4995                         continue;
4996                 }
4997
4998                 page = pte_page(pte);
4999                 /*
5000                  * If a reference page is supplied, it is because a specific
5001                  * page is being unmapped, not a range. Ensure the page we
5002                  * are about to unmap is the actual page of interest.
5003                  */
5004                 if (ref_page) {
5005                         if (page != ref_page) {
5006                                 spin_unlock(ptl);
5007                                 continue;
5008                         }
5009                         /*
5010                          * Mark the VMA as having unmapped its page so that
5011                          * future faults in this VMA will fail rather than
5012                          * looking like data was lost
5013                          */
5014                         set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
5015                 }
5016
5017                 pte = huge_ptep_get_and_clear(mm, address, ptep);
5018                 tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
5019                 if (huge_pte_dirty(pte))
5020                         set_page_dirty(page);
5021
5022                 hugetlb_count_sub(pages_per_huge_page(h), mm);
5023                 page_remove_rmap(page, vma, true);
5024
5025                 spin_unlock(ptl);
5026                 tlb_remove_page_size(tlb, page, huge_page_size(h));
5027                 /*
5028                  * Bail out after unmapping reference page if supplied
5029                  */
5030                 if (ref_page)
5031                         break;
5032         }
5033         mmu_notifier_invalidate_range_end(&range);
5034         tlb_end_vma(tlb, vma);
5035
5036         /*
5037          * If we unshared PMDs, the TLB flush was not recorded in mmu_gather. We
5038          * could defer the flush until now, since by holding i_mmap_rwsem we
5039          * guaranteed that the last refernece would not be dropped. But we must
5040          * do the flushing before we return, as otherwise i_mmap_rwsem will be
5041          * dropped and the last reference to the shared PMDs page might be
5042          * dropped as well.
5043          *
5044          * In theory we could defer the freeing of the PMD pages as well, but
5045          * huge_pmd_unshare() relies on the exact page_count for the PMD page to
5046          * detect sharing, so we cannot defer the release of the page either.
5047          * Instead, do flush now.
5048          */
5049         if (force_flush)
5050                 tlb_flush_mmu_tlbonly(tlb);
5051 }
5052
5053 void __unmap_hugepage_range_final(struct mmu_gather *tlb,
5054                           struct vm_area_struct *vma, unsigned long start,
5055                           unsigned long end, struct page *ref_page)
5056 {
5057         __unmap_hugepage_range(tlb, vma, start, end, ref_page);
5058
5059         /*
5060          * Clear this flag so that x86's huge_pmd_share page_table_shareable
5061          * test will fail on a vma being torn down, and not grab a page table
5062          * on its way out.  We're lucky that the flag has such an appropriate
5063          * name, and can in fact be safely cleared here. We could clear it
5064          * before the __unmap_hugepage_range above, but all that's necessary
5065          * is to clear it before releasing the i_mmap_rwsem. This works
5066          * because in the context this is called, the VMA is about to be
5067          * destroyed and the i_mmap_rwsem is held.
5068          */
5069         vma->vm_flags &= ~VM_MAYSHARE;
5070 }
5071
5072 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
5073                           unsigned long end, struct page *ref_page)
5074 {
5075         struct mmu_gather tlb;
5076
5077         tlb_gather_mmu(&tlb, vma->vm_mm);
5078         __unmap_hugepage_range(&tlb, vma, start, end, ref_page);
5079         tlb_finish_mmu(&tlb);
5080 }
5081
5082 /*
5083  * This is called when the original mapper is failing to COW a MAP_PRIVATE
5084  * mapping it owns the reserve page for. The intention is to unmap the page
5085  * from other VMAs and let the children be SIGKILLed if they are faulting the
5086  * same region.
5087  */
5088 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
5089                               struct page *page, unsigned long address)
5090 {
5091         struct hstate *h = hstate_vma(vma);
5092         struct vm_area_struct *iter_vma;
5093         struct address_space *mapping;
5094         pgoff_t pgoff;
5095
5096         /*
5097          * vm_pgoff is in PAGE_SIZE units, hence the different calculation
5098          * from page cache lookup which is in HPAGE_SIZE units.
5099          */
5100         address = address & huge_page_mask(h);
5101         pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
5102                         vma->vm_pgoff;
5103         mapping = vma->vm_file->f_mapping;
5104
5105         /*
5106          * Take the mapping lock for the duration of the table walk. As
5107          * this mapping should be shared between all the VMAs,
5108          * __unmap_hugepage_range() is called as the lock is already held
5109          */
5110         i_mmap_lock_write(mapping);
5111         vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
5112                 /* Do not unmap the current VMA */
5113                 if (iter_vma == vma)
5114                         continue;
5115
5116                 /*
5117                  * Shared VMAs have their own reserves and do not affect
5118                  * MAP_PRIVATE accounting but it is possible that a shared
5119                  * VMA is using the same page so check and skip such VMAs.
5120                  */
5121                 if (iter_vma->vm_flags & VM_MAYSHARE)
5122                         continue;
5123
5124                 /*
5125                  * Unmap the page from other VMAs without their own reserves.
5126                  * They get marked to be SIGKILLed if they fault in these
5127                  * areas. This is because a future no-page fault on this VMA
5128                  * could insert a zeroed page instead of the data existing
5129                  * from the time of fork. This would look like data corruption
5130                  */
5131                 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
5132                         unmap_hugepage_range(iter_vma, address,
5133                                              address + huge_page_size(h), page);
5134         }
5135         i_mmap_unlock_write(mapping);
5136 }
5137
5138 /*
5139  * Hugetlb_cow() should be called with page lock of the original hugepage held.
5140  * Called with hugetlb_fault_mutex_table held and pte_page locked so we
5141  * cannot race with other handlers or page migration.
5142  * Keep the pte_same checks anyway to make transition from the mutex easier.
5143  */
5144 static vm_fault_t hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
5145                        unsigned long address, pte_t *ptep,
5146                        struct page *pagecache_page, spinlock_t *ptl)
5147 {
5148         pte_t pte;
5149         struct hstate *h = hstate_vma(vma);
5150         struct page *old_page, *new_page;
5151         int outside_reserve = 0;
5152         vm_fault_t ret = 0;
5153         unsigned long haddr = address & huge_page_mask(h);
5154         struct mmu_notifier_range range;
5155
5156         pte = huge_ptep_get(ptep);
5157         old_page = pte_page(pte);
5158
5159 retry_avoidcopy:
5160         /* If no-one else is actually using this page, avoid the copy
5161          * and just make the page writable */
5162         if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
5163                 page_move_anon_rmap(old_page, vma);
5164                 set_huge_ptep_writable(vma, haddr, ptep);
5165                 return 0;
5166         }
5167
5168         /*
5169          * If the process that created a MAP_PRIVATE mapping is about to
5170          * perform a COW due to a shared page count, attempt to satisfy
5171          * the allocation without using the existing reserves. The pagecache
5172          * page is used to determine if the reserve at this address was
5173          * consumed or not. If reserves were used, a partial faulted mapping
5174          * at the time of fork() could consume its reserves on COW instead
5175          * of the full address range.
5176          */
5177         if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
5178                         old_page != pagecache_page)
5179                 outside_reserve = 1;
5180
5181         get_page(old_page);
5182
5183         /*
5184          * Drop page table lock as buddy allocator may be called. It will
5185          * be acquired again before returning to the caller, as expected.
5186          */
5187         spin_unlock(ptl);
5188         new_page = alloc_huge_page(vma, haddr, outside_reserve);
5189
5190         if (IS_ERR(new_page)) {
5191                 /*
5192                  * If a process owning a MAP_PRIVATE mapping fails to COW,
5193                  * it is due to references held by a child and an insufficient
5194                  * huge page pool. To guarantee the original mappers
5195                  * reliability, unmap the page from child processes. The child
5196                  * may get SIGKILLed if it later faults.
5197                  */
5198                 if (outside_reserve) {
5199                         struct address_space *mapping = vma->vm_file->f_mapping;
5200                         pgoff_t idx;
5201                         u32 hash;
5202
5203                         put_page(old_page);
5204                         BUG_ON(huge_pte_none(pte));
5205                         /*
5206                          * Drop hugetlb_fault_mutex and i_mmap_rwsem before
5207                          * unmapping.  unmapping needs to hold i_mmap_rwsem
5208                          * in write mode.  Dropping i_mmap_rwsem in read mode
5209                          * here is OK as COW mappings do not interact with
5210                          * PMD sharing.
5211                          *
5212                          * Reacquire both after unmap operation.
5213                          */
5214                         idx = vma_hugecache_offset(h, vma, haddr);
5215                         hash = hugetlb_fault_mutex_hash(mapping, idx);
5216                         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5217                         i_mmap_unlock_read(mapping);
5218
5219                         unmap_ref_private(mm, vma, old_page, haddr);
5220
5221                         i_mmap_lock_read(mapping);
5222                         mutex_lock(&hugetlb_fault_mutex_table[hash]);
5223                         spin_lock(ptl);
5224                         ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
5225                         if (likely(ptep &&
5226                                    pte_same(huge_ptep_get(ptep), pte)))
5227                                 goto retry_avoidcopy;
5228                         /*
5229                          * race occurs while re-acquiring page table
5230                          * lock, and our job is done.
5231                          */
5232                         return 0;
5233                 }
5234
5235                 ret = vmf_error(PTR_ERR(new_page));
5236                 goto out_release_old;
5237         }
5238
5239         /*
5240          * When the original hugepage is shared one, it does not have
5241          * anon_vma prepared.
5242          */
5243         if (unlikely(anon_vma_prepare(vma))) {
5244                 ret = VM_FAULT_OOM;
5245                 goto out_release_all;
5246         }
5247
5248         copy_user_huge_page(new_page, old_page, address, vma,
5249                             pages_per_huge_page(h));
5250         __SetPageUptodate(new_page);
5251
5252         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, haddr,
5253                                 haddr + huge_page_size(h));
5254         mmu_notifier_invalidate_range_start(&range);
5255
5256         /*
5257          * Retake the page table lock to check for racing updates
5258          * before the page tables are altered
5259          */
5260         spin_lock(ptl);
5261         ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
5262         if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
5263                 ClearHPageRestoreReserve(new_page);
5264
5265                 /* Break COW */
5266                 huge_ptep_clear_flush(vma, haddr, ptep);
5267                 mmu_notifier_invalidate_range(mm, range.start, range.end);
5268                 page_remove_rmap(old_page, vma, true);
5269                 hugepage_add_new_anon_rmap(new_page, vma, haddr);
5270                 set_huge_pte_at(mm, haddr, ptep,
5271                                 make_huge_pte(vma, new_page, 1));
5272                 SetHPageMigratable(new_page);
5273                 /* Make the old page be freed below */
5274                 new_page = old_page;
5275         }
5276         spin_unlock(ptl);
5277         mmu_notifier_invalidate_range_end(&range);
5278 out_release_all:
5279         /* No restore in case of successful pagetable update (Break COW) */
5280         if (new_page != old_page)
5281                 restore_reserve_on_error(h, vma, haddr, new_page);
5282         put_page(new_page);
5283 out_release_old:
5284         put_page(old_page);
5285
5286         spin_lock(ptl); /* Caller expects lock to be held */
5287         return ret;
5288 }
5289
5290 /* Return the pagecache page at a given address within a VMA */
5291 static struct page *hugetlbfs_pagecache_page(struct hstate *h,
5292                         struct vm_area_struct *vma, unsigned long address)
5293 {
5294         struct address_space *mapping;
5295         pgoff_t idx;
5296
5297         mapping = vma->vm_file->f_mapping;
5298         idx = vma_hugecache_offset(h, vma, address);
5299
5300         return find_lock_page(mapping, idx);
5301 }
5302
5303 /*
5304  * Return whether there is a pagecache page to back given address within VMA.
5305  * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
5306  */
5307 static bool hugetlbfs_pagecache_present(struct hstate *h,
5308                         struct vm_area_struct *vma, unsigned long address)
5309 {
5310         struct address_space *mapping;
5311         pgoff_t idx;
5312         struct page *page;
5313
5314         mapping = vma->vm_file->f_mapping;
5315         idx = vma_hugecache_offset(h, vma, address);
5316
5317         page = find_get_page(mapping, idx);
5318         if (page)
5319                 put_page(page);
5320         return page != NULL;
5321 }
5322
5323 int huge_add_to_page_cache(struct page *page, struct address_space *mapping,
5324                            pgoff_t idx)
5325 {
5326         struct inode *inode = mapping->host;
5327         struct hstate *h = hstate_inode(inode);
5328         int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
5329
5330         if (err)
5331                 return err;
5332         ClearHPageRestoreReserve(page);
5333
5334         /*
5335          * set page dirty so that it will not be removed from cache/file
5336          * by non-hugetlbfs specific code paths.
5337          */
5338         set_page_dirty(page);
5339
5340         spin_lock(&inode->i_lock);
5341         inode->i_blocks += blocks_per_huge_page(h);
5342         spin_unlock(&inode->i_lock);
5343         return 0;
5344 }
5345
5346 static inline vm_fault_t hugetlb_handle_userfault(struct vm_area_struct *vma,
5347                                                   struct address_space *mapping,
5348                                                   pgoff_t idx,
5349                                                   unsigned int flags,
5350                                                   unsigned long haddr,
5351                                                   unsigned long addr,
5352                                                   unsigned long reason)
5353 {
5354         vm_fault_t ret;
5355         u32 hash;
5356         struct vm_fault vmf = {
5357                 .vma = vma,
5358                 .address = haddr,
5359                 .real_address = addr,
5360                 .flags = flags,
5361
5362                 /*
5363                  * Hard to debug if it ends up being
5364                  * used by a callee that assumes
5365                  * something about the other
5366                  * uninitialized fields... same as in
5367                  * memory.c
5368                  */
5369         };
5370
5371         /*
5372          * hugetlb_fault_mutex and i_mmap_rwsem must be
5373          * dropped before handling userfault.  Reacquire
5374          * after handling fault to make calling code simpler.
5375          */
5376         hash = hugetlb_fault_mutex_hash(mapping, idx);
5377         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5378         i_mmap_unlock_read(mapping);
5379         ret = handle_userfault(&vmf, reason);
5380         i_mmap_lock_read(mapping);
5381         mutex_lock(&hugetlb_fault_mutex_table[hash]);
5382
5383         return ret;
5384 }
5385
5386 static vm_fault_t hugetlb_no_page(struct mm_struct *mm,
5387                         struct vm_area_struct *vma,
5388                         struct address_space *mapping, pgoff_t idx,
5389                         unsigned long address, pte_t *ptep, unsigned int flags)
5390 {
5391         struct hstate *h = hstate_vma(vma);
5392         vm_fault_t ret = VM_FAULT_SIGBUS;
5393         int anon_rmap = 0;
5394         unsigned long size;
5395         struct page *page;
5396         pte_t new_pte;
5397         spinlock_t *ptl;
5398         unsigned long haddr = address & huge_page_mask(h);
5399         bool new_page, new_pagecache_page = false;
5400
5401         /*
5402          * Currently, we are forced to kill the process in the event the
5403          * original mapper has unmapped pages from the child due to a failed
5404          * COW. Warn that such a situation has occurred as it may not be obvious
5405          */
5406         if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
5407                 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
5408                            current->pid);
5409                 return ret;
5410         }
5411
5412         /*
5413          * We can not race with truncation due to holding i_mmap_rwsem.
5414          * i_size is modified when holding i_mmap_rwsem, so check here
5415          * once for faults beyond end of file.
5416          */
5417         size = i_size_read(mapping->host) >> huge_page_shift(h);
5418         if (idx >= size)
5419                 goto out;
5420
5421 retry:
5422         new_page = false;
5423         page = find_lock_page(mapping, idx);
5424         if (!page) {
5425                 /* Check for page in userfault range */
5426                 if (userfaultfd_missing(vma)) {
5427                         ret = hugetlb_handle_userfault(vma, mapping, idx,
5428                                                        flags, haddr, address,
5429                                                        VM_UFFD_MISSING);
5430                         goto out;
5431                 }
5432
5433                 page = alloc_huge_page(vma, haddr, 0);
5434                 if (IS_ERR(page)) {
5435                         /*
5436                          * Returning error will result in faulting task being
5437                          * sent SIGBUS.  The hugetlb fault mutex prevents two
5438                          * tasks from racing to fault in the same page which
5439                          * could result in false unable to allocate errors.
5440                          * Page migration does not take the fault mutex, but
5441                          * does a clear then write of pte's under page table
5442                          * lock.  Page fault code could race with migration,
5443                          * notice the clear pte and try to allocate a page
5444                          * here.  Before returning error, get ptl and make
5445                          * sure there really is no pte entry.
5446                          */
5447                         ptl = huge_pte_lock(h, mm, ptep);
5448                         ret = 0;
5449                         if (huge_pte_none(huge_ptep_get(ptep)))
5450                                 ret = vmf_error(PTR_ERR(page));
5451                         spin_unlock(ptl);
5452                         goto out;
5453                 }
5454                 clear_huge_page(page, address, pages_per_huge_page(h));
5455                 __SetPageUptodate(page);
5456                 new_page = true;
5457
5458                 if (vma->vm_flags & VM_MAYSHARE) {
5459                         int err = huge_add_to_page_cache(page, mapping, idx);
5460                         if (err) {
5461                                 put_page(page);
5462                                 if (err == -EEXIST)
5463                                         goto retry;
5464                                 goto out;
5465                         }
5466                         new_pagecache_page = true;
5467                 } else {
5468                         lock_page(page);
5469                         if (unlikely(anon_vma_prepare(vma))) {
5470                                 ret = VM_FAULT_OOM;
5471                                 goto backout_unlocked;
5472                         }
5473                         anon_rmap = 1;
5474                 }
5475         } else {
5476                 /*
5477                  * If memory error occurs between mmap() and fault, some process
5478                  * don't have hwpoisoned swap entry for errored virtual address.
5479                  * So we need to block hugepage fault by PG_hwpoison bit check.
5480                  */
5481                 if (unlikely(PageHWPoison(page))) {
5482                         ret = VM_FAULT_HWPOISON_LARGE |
5483                                 VM_FAULT_SET_HINDEX(hstate_index(h));
5484                         goto backout_unlocked;
5485                 }
5486
5487                 /* Check for page in userfault range. */
5488                 if (userfaultfd_minor(vma)) {
5489                         unlock_page(page);
5490                         put_page(page);
5491                         ret = hugetlb_handle_userfault(vma, mapping, idx,
5492                                                        flags, haddr, address,
5493                                                        VM_UFFD_MINOR);
5494                         goto out;
5495                 }
5496         }
5497
5498         /*
5499          * If we are going to COW a private mapping later, we examine the
5500          * pending reservations for this page now. This will ensure that
5501          * any allocations necessary to record that reservation occur outside
5502          * the spinlock.
5503          */
5504         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
5505                 if (vma_needs_reservation(h, vma, haddr) < 0) {
5506                         ret = VM_FAULT_OOM;
5507                         goto backout_unlocked;
5508                 }
5509                 /* Just decrements count, does not deallocate */
5510                 vma_end_reservation(h, vma, haddr);
5511         }
5512
5513         ptl = huge_pte_lock(h, mm, ptep);
5514         ret = 0;
5515         if (!huge_pte_none(huge_ptep_get(ptep)))
5516                 goto backout;
5517
5518         if (anon_rmap) {
5519                 ClearHPageRestoreReserve(page);
5520                 hugepage_add_new_anon_rmap(page, vma, haddr);
5521         } else
5522                 page_dup_rmap(page, true);
5523         new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
5524                                 && (vma->vm_flags & VM_SHARED)));
5525         set_huge_pte_at(mm, haddr, ptep, new_pte);
5526
5527         hugetlb_count_add(pages_per_huge_page(h), mm);
5528         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
5529                 /* Optimization, do the COW without a second fault */
5530                 ret = hugetlb_cow(mm, vma, address, ptep, page, ptl);
5531         }
5532
5533         spin_unlock(ptl);
5534
5535         /*
5536          * Only set HPageMigratable in newly allocated pages.  Existing pages
5537          * found in the pagecache may not have HPageMigratableset if they have
5538          * been isolated for migration.
5539          */
5540         if (new_page)
5541                 SetHPageMigratable(page);
5542
5543         unlock_page(page);
5544 out:
5545         return ret;
5546
5547 backout:
5548         spin_unlock(ptl);
5549 backout_unlocked:
5550         unlock_page(page);
5551         /* restore reserve for newly allocated pages not in page cache */
5552         if (new_page && !new_pagecache_page)
5553                 restore_reserve_on_error(h, vma, haddr, page);
5554         put_page(page);
5555         goto out;
5556 }
5557
5558 #ifdef CONFIG_SMP
5559 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
5560 {
5561         unsigned long key[2];
5562         u32 hash;
5563
5564         key[0] = (unsigned long) mapping;
5565         key[1] = idx;
5566
5567         hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0);
5568
5569         return hash & (num_fault_mutexes - 1);
5570 }
5571 #else
5572 /*
5573  * For uniprocessor systems we always use a single mutex, so just
5574  * return 0 and avoid the hashing overhead.
5575  */
5576 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
5577 {
5578         return 0;
5579 }
5580 #endif
5581
5582 vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
5583                         unsigned long address, unsigned int flags)
5584 {
5585         pte_t *ptep, entry;
5586         spinlock_t *ptl;
5587         vm_fault_t ret;
5588         u32 hash;
5589         pgoff_t idx;
5590         struct page *page = NULL;
5591         struct page *pagecache_page = NULL;
5592         struct hstate *h = hstate_vma(vma);
5593         struct address_space *mapping;
5594         int need_wait_lock = 0;
5595         unsigned long haddr = address & huge_page_mask(h);
5596
5597         ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
5598         if (ptep) {
5599                 /*
5600                  * Since we hold no locks, ptep could be stale.  That is
5601                  * OK as we are only making decisions based on content and
5602                  * not actually modifying content here.
5603                  */
5604                 entry = huge_ptep_get(ptep);
5605                 if (unlikely(is_hugetlb_entry_migration(entry))) {
5606                         migration_entry_wait_huge(vma, mm, ptep);
5607                         return 0;
5608                 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
5609                         return VM_FAULT_HWPOISON_LARGE |
5610                                 VM_FAULT_SET_HINDEX(hstate_index(h));
5611         }
5612
5613         /*
5614          * Acquire i_mmap_rwsem before calling huge_pte_alloc and hold
5615          * until finished with ptep.  This serves two purposes:
5616          * 1) It prevents huge_pmd_unshare from being called elsewhere
5617          *    and making the ptep no longer valid.
5618          * 2) It synchronizes us with i_size modifications during truncation.
5619          *
5620          * ptep could have already be assigned via huge_pte_offset.  That
5621          * is OK, as huge_pte_alloc will return the same value unless
5622          * something has changed.
5623          */
5624         mapping = vma->vm_file->f_mapping;
5625         i_mmap_lock_read(mapping);
5626         ptep = huge_pte_alloc(mm, vma, haddr, huge_page_size(h));
5627         if (!ptep) {
5628                 i_mmap_unlock_read(mapping);
5629                 return VM_FAULT_OOM;
5630         }
5631
5632         /*
5633          * Serialize hugepage allocation and instantiation, so that we don't
5634          * get spurious allocation failures if two CPUs race to instantiate
5635          * the same page in the page cache.
5636          */
5637         idx = vma_hugecache_offset(h, vma, haddr);
5638         hash = hugetlb_fault_mutex_hash(mapping, idx);
5639         mutex_lock(&hugetlb_fault_mutex_table[hash]);
5640
5641         entry = huge_ptep_get(ptep);
5642         if (huge_pte_none(entry)) {
5643                 ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
5644                 goto out_mutex;
5645         }
5646
5647         ret = 0;
5648
5649         /*
5650          * entry could be a migration/hwpoison entry at this point, so this
5651          * check prevents the kernel from going below assuming that we have
5652          * an active hugepage in pagecache. This goto expects the 2nd page
5653          * fault, and is_hugetlb_entry_(migration|hwpoisoned) check will
5654          * properly handle it.
5655          */
5656         if (!pte_present(entry))
5657                 goto out_mutex;
5658
5659         /*
5660          * If we are going to COW the mapping later, we examine the pending
5661          * reservations for this page now. This will ensure that any
5662          * allocations necessary to record that reservation occur outside the
5663          * spinlock. For private mappings, we also lookup the pagecache
5664          * page now as it is used to determine if a reservation has been
5665          * consumed.
5666          */
5667         if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
5668                 if (vma_needs_reservation(h, vma, haddr) < 0) {
5669                         ret = VM_FAULT_OOM;
5670                         goto out_mutex;
5671                 }
5672                 /* Just decrements count, does not deallocate */
5673                 vma_end_reservation(h, vma, haddr);
5674
5675                 if (!(vma->vm_flags & VM_MAYSHARE))
5676                         pagecache_page = hugetlbfs_pagecache_page(h,
5677                                                                 vma, haddr);
5678         }
5679
5680         ptl = huge_pte_lock(h, mm, ptep);
5681
5682         /* Check for a racing update before calling hugetlb_cow */
5683         if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
5684                 goto out_ptl;
5685
5686         /*
5687          * hugetlb_cow() requires page locks of pte_page(entry) and
5688          * pagecache_page, so here we need take the former one
5689          * when page != pagecache_page or !pagecache_page.
5690          */
5691         page = pte_page(entry);
5692         if (page != pagecache_page)
5693                 if (!trylock_page(page)) {
5694                         need_wait_lock = 1;
5695                         goto out_ptl;
5696                 }
5697
5698         get_page(page);
5699
5700         if (flags & FAULT_FLAG_WRITE) {
5701                 if (!huge_pte_write(entry)) {
5702                         ret = hugetlb_cow(mm, vma, address, ptep,
5703                                           pagecache_page, ptl);
5704                         goto out_put_page;
5705                 }
5706                 entry = huge_pte_mkdirty(entry);
5707         }
5708         entry = pte_mkyoung(entry);
5709         if (huge_ptep_set_access_flags(vma, haddr, ptep, entry,
5710                                                 flags & FAULT_FLAG_WRITE))
5711                 update_mmu_cache(vma, haddr, ptep);
5712 out_put_page:
5713         if (page != pagecache_page)
5714                 unlock_page(page);
5715         put_page(page);
5716 out_ptl:
5717         spin_unlock(ptl);
5718
5719         if (pagecache_page) {
5720                 unlock_page(pagecache_page);
5721                 put_page(pagecache_page);
5722         }
5723 out_mutex:
5724         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5725         i_mmap_unlock_read(mapping);
5726         /*
5727          * Generally it's safe to hold refcount during waiting page lock. But
5728          * here we just wait to defer the next page fault to avoid busy loop and
5729          * the page is not used after unlocked before returning from the current
5730          * page fault. So we are safe from accessing freed page, even if we wait
5731          * here without taking refcount.
5732          */
5733         if (need_wait_lock)
5734                 wait_on_page_locked(page);
5735         return ret;
5736 }
5737
5738 #ifdef CONFIG_USERFAULTFD
5739 /*
5740  * Used by userfaultfd UFFDIO_COPY.  Based on mcopy_atomic_pte with
5741  * modifications for huge pages.
5742  */
5743 int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm,
5744                             pte_t *dst_pte,
5745                             struct vm_area_struct *dst_vma,
5746                             unsigned long dst_addr,
5747                             unsigned long src_addr,
5748                             enum mcopy_atomic_mode mode,
5749                             struct page **pagep)
5750 {
5751         bool is_continue = (mode == MCOPY_ATOMIC_CONTINUE);
5752         struct hstate *h = hstate_vma(dst_vma);
5753         struct address_space *mapping = dst_vma->vm_file->f_mapping;
5754         pgoff_t idx = vma_hugecache_offset(h, dst_vma, dst_addr);
5755         unsigned long size;
5756         int vm_shared = dst_vma->vm_flags & VM_SHARED;
5757         pte_t _dst_pte;
5758         spinlock_t *ptl;
5759         int ret = -ENOMEM;
5760         struct page *page;
5761         int writable;
5762         bool page_in_pagecache = false;
5763
5764         if (is_continue) {
5765                 ret = -EFAULT;
5766                 page = find_lock_page(mapping, idx);
5767                 if (!page)
5768                         goto out;
5769                 page_in_pagecache = true;
5770         } else if (!*pagep) {
5771                 /* If a page already exists, then it's UFFDIO_COPY for
5772                  * a non-missing case. Return -EEXIST.
5773                  */
5774                 if (vm_shared &&
5775                     hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
5776                         ret = -EEXIST;
5777                         goto out;
5778                 }
5779
5780                 page = alloc_huge_page(dst_vma, dst_addr, 0);
5781                 if (IS_ERR(page)) {
5782                         ret = -ENOMEM;
5783                         goto out;
5784                 }
5785
5786                 ret = copy_huge_page_from_user(page,
5787                                                 (const void __user *) src_addr,
5788                                                 pages_per_huge_page(h), false);
5789
5790                 /* fallback to copy_from_user outside mmap_lock */
5791                 if (unlikely(ret)) {
5792                         ret = -ENOENT;
5793                         /* Free the allocated page which may have
5794                          * consumed a reservation.
5795                          */
5796                         restore_reserve_on_error(h, dst_vma, dst_addr, page);
5797                         put_page(page);
5798
5799                         /* Allocate a temporary page to hold the copied
5800                          * contents.
5801                          */
5802                         page = alloc_huge_page_vma(h, dst_vma, dst_addr);
5803                         if (!page) {
5804                                 ret = -ENOMEM;
5805                                 goto out;
5806                         }
5807                         *pagep = page;
5808                         /* Set the outparam pagep and return to the caller to
5809                          * copy the contents outside the lock. Don't free the
5810                          * page.
5811                          */
5812                         goto out;
5813                 }
5814         } else {
5815                 if (vm_shared &&
5816                     hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
5817                         put_page(*pagep);
5818                         ret = -EEXIST;
5819                         *pagep = NULL;
5820                         goto out;
5821                 }
5822
5823                 page = alloc_huge_page(dst_vma, dst_addr, 0);
5824                 if (IS_ERR(page)) {
5825                         ret = -ENOMEM;
5826                         *pagep = NULL;
5827                         goto out;
5828                 }
5829                 copy_user_huge_page(page, *pagep, dst_addr, dst_vma,
5830                                     pages_per_huge_page(h));
5831                 put_page(*pagep);
5832                 *pagep = NULL;
5833         }
5834
5835         /*
5836          * The memory barrier inside __SetPageUptodate makes sure that
5837          * preceding stores to the page contents become visible before
5838          * the set_pte_at() write.
5839          */
5840         __SetPageUptodate(page);
5841
5842         /* Add shared, newly allocated pages to the page cache. */
5843         if (vm_shared && !is_continue) {
5844                 size = i_size_read(mapping->host) >> huge_page_shift(h);
5845                 ret = -EFAULT;
5846                 if (idx >= size)
5847                         goto out_release_nounlock;
5848
5849                 /*
5850                  * Serialization between remove_inode_hugepages() and
5851                  * huge_add_to_page_cache() below happens through the
5852                  * hugetlb_fault_mutex_table that here must be hold by
5853                  * the caller.
5854                  */
5855                 ret = huge_add_to_page_cache(page, mapping, idx);
5856                 if (ret)
5857                         goto out_release_nounlock;
5858                 page_in_pagecache = true;
5859         }
5860
5861         ptl = huge_pte_lockptr(h, dst_mm, dst_pte);
5862         spin_lock(ptl);
5863
5864         /*
5865          * Recheck the i_size after holding PT lock to make sure not
5866          * to leave any page mapped (as page_mapped()) beyond the end
5867          * of the i_size (remove_inode_hugepages() is strict about
5868          * enforcing that). If we bail out here, we'll also leave a
5869          * page in the radix tree in the vm_shared case beyond the end
5870          * of the i_size, but remove_inode_hugepages() will take care
5871          * of it as soon as we drop the hugetlb_fault_mutex_table.
5872          */
5873         size = i_size_read(mapping->host) >> huge_page_shift(h);
5874         ret = -EFAULT;
5875         if (idx >= size)
5876                 goto out_release_unlock;
5877
5878         ret = -EEXIST;
5879         if (!huge_pte_none(huge_ptep_get(dst_pte)))
5880                 goto out_release_unlock;
5881
5882         if (vm_shared) {
5883                 page_dup_rmap(page, true);
5884         } else {
5885                 ClearHPageRestoreReserve(page);
5886                 hugepage_add_new_anon_rmap(page, dst_vma, dst_addr);
5887         }
5888
5889         /* For CONTINUE on a non-shared VMA, don't set VM_WRITE for CoW. */
5890         if (is_continue && !vm_shared)
5891                 writable = 0;
5892         else
5893                 writable = dst_vma->vm_flags & VM_WRITE;
5894
5895         _dst_pte = make_huge_pte(dst_vma, page, writable);
5896         if (writable)
5897                 _dst_pte = huge_pte_mkdirty(_dst_pte);
5898         _dst_pte = pte_mkyoung(_dst_pte);
5899
5900         set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
5901
5902         (void)huge_ptep_set_access_flags(dst_vma, dst_addr, dst_pte, _dst_pte,
5903                                         dst_vma->vm_flags & VM_WRITE);
5904         hugetlb_count_add(pages_per_huge_page(h), dst_mm);
5905
5906         /* No need to invalidate - it was non-present before */
5907         update_mmu_cache(dst_vma, dst_addr, dst_pte);
5908
5909         spin_unlock(ptl);
5910         if (!is_continue)
5911                 SetHPageMigratable(page);
5912         if (vm_shared || is_continue)
5913                 unlock_page(page);
5914         ret = 0;
5915 out:
5916         return ret;
5917 out_release_unlock:
5918         spin_unlock(ptl);
5919         if (vm_shared || is_continue)
5920                 unlock_page(page);
5921 out_release_nounlock:
5922         if (!page_in_pagecache)
5923                 restore_reserve_on_error(h, dst_vma, dst_addr, page);
5924         put_page(page);
5925         goto out;
5926 }
5927 #endif /* CONFIG_USERFAULTFD */
5928
5929 static void record_subpages_vmas(struct page *page, struct vm_area_struct *vma,
5930                                  int refs, struct page **pages,
5931                                  struct vm_area_struct **vmas)
5932 {
5933         int nr;
5934
5935         for (nr = 0; nr < refs; nr++) {
5936                 if (likely(pages))
5937                         pages[nr] = mem_map_offset(page, nr);
5938                 if (vmas)
5939                         vmas[nr] = vma;
5940         }
5941 }
5942
5943 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
5944                          struct page **pages, struct vm_area_struct **vmas,
5945                          unsigned long *position, unsigned long *nr_pages,
5946                          long i, unsigned int flags, int *locked)
5947 {
5948         unsigned long pfn_offset;
5949         unsigned long vaddr = *position;
5950         unsigned long remainder = *nr_pages;
5951         struct hstate *h = hstate_vma(vma);
5952         int err = -EFAULT, refs;
5953
5954         while (vaddr < vma->vm_end && remainder) {
5955                 pte_t *pte;
5956                 spinlock_t *ptl = NULL;
5957                 int absent;
5958                 struct page *page;
5959
5960                 /*
5961                  * If we have a pending SIGKILL, don't keep faulting pages and
5962                  * potentially allocating memory.
5963                  */
5964                 if (fatal_signal_pending(current)) {
5965                         remainder = 0;
5966                         break;
5967                 }
5968
5969                 /*
5970                  * Some archs (sparc64, sh*) have multiple pte_ts to
5971                  * each hugepage.  We have to make sure we get the
5972                  * first, for the page indexing below to work.
5973                  *
5974                  * Note that page table lock is not held when pte is null.
5975                  */
5976                 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h),
5977                                       huge_page_size(h));
5978                 if (pte)
5979                         ptl = huge_pte_lock(h, mm, pte);
5980                 absent = !pte || huge_pte_none(huge_ptep_get(pte));
5981
5982                 /*
5983                  * When coredumping, it suits get_dump_page if we just return
5984                  * an error where there's an empty slot with no huge pagecache
5985                  * to back it.  This way, we avoid allocating a hugepage, and
5986                  * the sparse dumpfile avoids allocating disk blocks, but its
5987                  * huge holes still show up with zeroes where they need to be.
5988                  */
5989                 if (absent && (flags & FOLL_DUMP) &&
5990                     !hugetlbfs_pagecache_present(h, vma, vaddr)) {
5991                         if (pte)
5992                                 spin_unlock(ptl);
5993                         remainder = 0;
5994                         break;
5995                 }
5996
5997                 /*
5998                  * We need call hugetlb_fault for both hugepages under migration
5999                  * (in which case hugetlb_fault waits for the migration,) and
6000                  * hwpoisoned hugepages (in which case we need to prevent the
6001                  * caller from accessing to them.) In order to do this, we use
6002                  * here is_swap_pte instead of is_hugetlb_entry_migration and
6003                  * is_hugetlb_entry_hwpoisoned. This is because it simply covers
6004                  * both cases, and because we can't follow correct pages
6005                  * directly from any kind of swap entries.
6006                  */
6007                 if (absent || is_swap_pte(huge_ptep_get(pte)) ||
6008                     ((flags & FOLL_WRITE) &&
6009                       !huge_pte_write(huge_ptep_get(pte)))) {
6010                         vm_fault_t ret;
6011                         unsigned int fault_flags = 0;
6012
6013                         if (pte)
6014                                 spin_unlock(ptl);
6015                         if (flags & FOLL_WRITE)
6016                                 fault_flags |= FAULT_FLAG_WRITE;
6017                         if (locked)
6018                                 fault_flags |= FAULT_FLAG_ALLOW_RETRY |
6019                                         FAULT_FLAG_KILLABLE;
6020                         if (flags & FOLL_NOWAIT)
6021                                 fault_flags |= FAULT_FLAG_ALLOW_RETRY |
6022                                         FAULT_FLAG_RETRY_NOWAIT;
6023                         if (flags & FOLL_TRIED) {
6024                                 /*
6025                                  * Note: FAULT_FLAG_ALLOW_RETRY and
6026                                  * FAULT_FLAG_TRIED can co-exist
6027                                  */
6028                                 fault_flags |= FAULT_FLAG_TRIED;
6029                         }
6030                         ret = hugetlb_fault(mm, vma, vaddr, fault_flags);
6031                         if (ret & VM_FAULT_ERROR) {
6032                                 err = vm_fault_to_errno(ret, flags);
6033                                 remainder = 0;
6034                                 break;
6035                         }
6036                         if (ret & VM_FAULT_RETRY) {
6037                                 if (locked &&
6038                                     !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
6039                                         *locked = 0;
6040                                 *nr_pages = 0;
6041                                 /*
6042                                  * VM_FAULT_RETRY must not return an
6043                                  * error, it will return zero
6044                                  * instead.
6045                                  *
6046                                  * No need to update "position" as the
6047                                  * caller will not check it after
6048                                  * *nr_pages is set to 0.
6049                                  */
6050                                 return i;
6051                         }
6052                         continue;
6053                 }
6054
6055                 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
6056                 page = pte_page(huge_ptep_get(pte));
6057
6058                 /*
6059                  * If subpage information not requested, update counters
6060                  * and skip the same_page loop below.
6061                  */
6062                 if (!pages && !vmas && !pfn_offset &&
6063                     (vaddr + huge_page_size(h) < vma->vm_end) &&
6064                     (remainder >= pages_per_huge_page(h))) {
6065                         vaddr += huge_page_size(h);
6066                         remainder -= pages_per_huge_page(h);
6067                         i += pages_per_huge_page(h);
6068                         spin_unlock(ptl);
6069                         continue;
6070                 }
6071
6072                 /* vaddr may not be aligned to PAGE_SIZE */
6073                 refs = min3(pages_per_huge_page(h) - pfn_offset, remainder,
6074                     (vma->vm_end - ALIGN_DOWN(vaddr, PAGE_SIZE)) >> PAGE_SHIFT);
6075
6076                 if (pages || vmas)
6077                         record_subpages_vmas(mem_map_offset(page, pfn_offset),
6078                                              vma, refs,
6079                                              likely(pages) ? pages + i : NULL,
6080                                              vmas ? vmas + i : NULL);
6081
6082                 if (pages) {
6083                         /*
6084                          * try_grab_folio() should always succeed here,
6085                          * because: a) we hold the ptl lock, and b) we've just
6086                          * checked that the huge page is present in the page
6087                          * tables. If the huge page is present, then the tail
6088                          * pages must also be present. The ptl prevents the
6089                          * head page and tail pages from being rearranged in
6090                          * any way. So this page must be available at this
6091                          * point, unless the page refcount overflowed:
6092                          */
6093                         if (WARN_ON_ONCE(!try_grab_folio(pages[i], refs,
6094                                                          flags))) {
6095                                 spin_unlock(ptl);
6096                                 remainder = 0;
6097                                 err = -ENOMEM;
6098                                 break;
6099                         }
6100                 }
6101
6102                 vaddr += (refs << PAGE_SHIFT);
6103                 remainder -= refs;
6104                 i += refs;
6105
6106                 spin_unlock(ptl);
6107         }
6108         *nr_pages = remainder;
6109         /*
6110          * setting position is actually required only if remainder is
6111          * not zero but it's faster not to add a "if (remainder)"
6112          * branch.
6113          */
6114         *position = vaddr;
6115
6116         return i ? i : err;
6117 }
6118
6119 unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
6120                 unsigned long address, unsigned long end, pgprot_t newprot)
6121 {
6122         struct mm_struct *mm = vma->vm_mm;
6123         unsigned long start = address;
6124         pte_t *ptep;
6125         pte_t pte;
6126         struct hstate *h = hstate_vma(vma);
6127         unsigned long pages = 0;
6128         bool shared_pmd = false;
6129         struct mmu_notifier_range range;
6130
6131         /*
6132          * In the case of shared PMDs, the area to flush could be beyond
6133          * start/end.  Set range.start/range.end to cover the maximum possible
6134          * range if PMD sharing is possible.
6135          */
6136         mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA,
6137                                 0, vma, mm, start, end);
6138         adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
6139
6140         BUG_ON(address >= end);
6141         flush_cache_range(vma, range.start, range.end);
6142
6143         mmu_notifier_invalidate_range_start(&range);
6144         i_mmap_lock_write(vma->vm_file->f_mapping);
6145         for (; address < end; address += huge_page_size(h)) {
6146                 spinlock_t *ptl;
6147                 ptep = huge_pte_offset(mm, address, huge_page_size(h));
6148                 if (!ptep)
6149                         continue;
6150                 ptl = huge_pte_lock(h, mm, ptep);
6151                 if (huge_pmd_unshare(mm, vma, &address, ptep)) {
6152                         pages++;
6153                         spin_unlock(ptl);
6154                         shared_pmd = true;
6155                         continue;
6156                 }
6157                 pte = huge_ptep_get(ptep);
6158                 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
6159                         spin_unlock(ptl);
6160                         continue;
6161                 }
6162                 if (unlikely(is_hugetlb_entry_migration(pte))) {
6163                         swp_entry_t entry = pte_to_swp_entry(pte);
6164
6165                         if (is_writable_migration_entry(entry)) {
6166                                 pte_t newpte;
6167
6168                                 entry = make_readable_migration_entry(
6169                                                         swp_offset(entry));
6170                                 newpte = swp_entry_to_pte(entry);
6171                                 set_huge_swap_pte_at(mm, address, ptep,
6172                                                      newpte, huge_page_size(h));
6173                                 pages++;
6174                         }
6175                         spin_unlock(ptl);
6176                         continue;
6177                 }
6178                 if (!huge_pte_none(pte)) {
6179                         pte_t old_pte;
6180                         unsigned int shift = huge_page_shift(hstate_vma(vma));
6181
6182                         old_pte = huge_ptep_modify_prot_start(vma, address, ptep);
6183                         pte = huge_pte_modify(old_pte, newprot);
6184                         pte = arch_make_huge_pte(pte, shift, vma->vm_flags);
6185                         huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte);
6186                         pages++;
6187                 }
6188                 spin_unlock(ptl);
6189         }
6190         /*
6191          * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
6192          * may have cleared our pud entry and done put_page on the page table:
6193          * once we release i_mmap_rwsem, another task can do the final put_page
6194          * and that page table be reused and filled with junk.  If we actually
6195          * did unshare a page of pmds, flush the range corresponding to the pud.
6196          */
6197         if (shared_pmd)
6198                 flush_hugetlb_tlb_range(vma, range.start, range.end);
6199         else
6200                 flush_hugetlb_tlb_range(vma, start, end);
6201         /*
6202          * No need to call mmu_notifier_invalidate_range() we are downgrading
6203          * page table protection not changing it to point to a new page.
6204          *
6205          * See Documentation/vm/mmu_notifier.rst
6206          */
6207         i_mmap_unlock_write(vma->vm_file->f_mapping);
6208         mmu_notifier_invalidate_range_end(&range);
6209
6210         return pages << h->order;
6211 }
6212
6213 /* Return true if reservation was successful, false otherwise.  */
6214 bool hugetlb_reserve_pages(struct inode *inode,
6215                                         long from, long to,
6216                                         struct vm_area_struct *vma,
6217                                         vm_flags_t vm_flags)
6218 {
6219         long chg, add = -1;
6220         struct hstate *h = hstate_inode(inode);
6221         struct hugepage_subpool *spool = subpool_inode(inode);
6222         struct resv_map *resv_map;
6223         struct hugetlb_cgroup *h_cg = NULL;
6224         long gbl_reserve, regions_needed = 0;
6225
6226         /* This should never happen */
6227         if (from > to) {
6228                 VM_WARN(1, "%s called with a negative range\n", __func__);
6229                 return false;
6230         }
6231
6232         /*
6233          * Only apply hugepage reservation if asked. At fault time, an
6234          * attempt will be made for VM_NORESERVE to allocate a page
6235          * without using reserves
6236          */
6237         if (vm_flags & VM_NORESERVE)
6238                 return true;
6239
6240         /*
6241          * Shared mappings base their reservation on the number of pages that
6242          * are already allocated on behalf of the file. Private mappings need
6243          * to reserve the full area even if read-only as mprotect() may be
6244          * called to make the mapping read-write. Assume !vma is a shm mapping
6245          */
6246         if (!vma || vma->vm_flags & VM_MAYSHARE) {
6247                 /*
6248                  * resv_map can not be NULL as hugetlb_reserve_pages is only
6249                  * called for inodes for which resv_maps were created (see
6250                  * hugetlbfs_get_inode).
6251                  */
6252                 resv_map = inode_resv_map(inode);
6253
6254                 chg = region_chg(resv_map, from, to, &regions_needed);
6255
6256         } else {
6257                 /* Private mapping. */
6258                 resv_map = resv_map_alloc();
6259                 if (!resv_map)
6260                         return false;
6261
6262                 chg = to - from;
6263
6264                 set_vma_resv_map(vma, resv_map);
6265                 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
6266         }
6267
6268         if (chg < 0)
6269                 goto out_err;
6270
6271         if (hugetlb_cgroup_charge_cgroup_rsvd(hstate_index(h),
6272                                 chg * pages_per_huge_page(h), &h_cg) < 0)
6273                 goto out_err;
6274
6275         if (vma && !(vma->vm_flags & VM_MAYSHARE) && h_cg) {
6276                 /* For private mappings, the hugetlb_cgroup uncharge info hangs
6277                  * of the resv_map.
6278                  */
6279                 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, h_cg, h);
6280         }
6281
6282         /*
6283          * There must be enough pages in the subpool for the mapping. If
6284          * the subpool has a minimum size, there may be some global
6285          * reservations already in place (gbl_reserve).
6286          */
6287         gbl_reserve = hugepage_subpool_get_pages(spool, chg);
6288         if (gbl_reserve < 0)
6289                 goto out_uncharge_cgroup;
6290
6291         /*
6292          * Check enough hugepages are available for the reservation.
6293          * Hand the pages back to the subpool if there are not
6294          */
6295         if (hugetlb_acct_memory(h, gbl_reserve) < 0)
6296                 goto out_put_pages;
6297
6298         /*
6299          * Account for the reservations made. Shared mappings record regions
6300          * that have reservations as they are shared by multiple VMAs.
6301          * When the last VMA disappears, the region map says how much
6302          * the reservation was and the page cache tells how much of
6303          * the reservation was consumed. Private mappings are per-VMA and
6304          * only the consumed reservations are tracked. When the VMA
6305          * disappears, the original reservation is the VMA size and the
6306          * consumed reservations are stored in the map. Hence, nothing
6307          * else has to be done for private mappings here
6308          */
6309         if (!vma || vma->vm_flags & VM_MAYSHARE) {
6310                 add = region_add(resv_map, from, to, regions_needed, h, h_cg);
6311
6312                 if (unlikely(add < 0)) {
6313                         hugetlb_acct_memory(h, -gbl_reserve);
6314                         goto out_put_pages;
6315                 } else if (unlikely(chg > add)) {
6316                         /*
6317                          * pages in this range were added to the reserve
6318                          * map between region_chg and region_add.  This
6319                          * indicates a race with alloc_huge_page.  Adjust
6320                          * the subpool and reserve counts modified above
6321                          * based on the difference.
6322                          */
6323                         long rsv_adjust;
6324
6325                         /*
6326                          * hugetlb_cgroup_uncharge_cgroup_rsvd() will put the
6327                          * reference to h_cg->css. See comment below for detail.
6328                          */
6329                         hugetlb_cgroup_uncharge_cgroup_rsvd(
6330                                 hstate_index(h),
6331                                 (chg - add) * pages_per_huge_page(h), h_cg);
6332
6333                         rsv_adjust = hugepage_subpool_put_pages(spool,
6334                                                                 chg - add);
6335                         hugetlb_acct_memory(h, -rsv_adjust);
6336                 } else if (h_cg) {
6337                         /*
6338                          * The file_regions will hold their own reference to
6339                          * h_cg->css. So we should release the reference held
6340                          * via hugetlb_cgroup_charge_cgroup_rsvd() when we are
6341                          * done.
6342                          */
6343                         hugetlb_cgroup_put_rsvd_cgroup(h_cg);
6344                 }
6345         }
6346         return true;
6347
6348 out_put_pages:
6349         /* put back original number of pages, chg */
6350         (void)hugepage_subpool_put_pages(spool, chg);
6351 out_uncharge_cgroup:
6352         hugetlb_cgroup_uncharge_cgroup_rsvd(hstate_index(h),
6353                                             chg * pages_per_huge_page(h), h_cg);
6354 out_err:
6355         if (!vma || vma->vm_flags & VM_MAYSHARE)
6356                 /* Only call region_abort if the region_chg succeeded but the
6357                  * region_add failed or didn't run.
6358                  */
6359                 if (chg >= 0 && add < 0)
6360                         region_abort(resv_map, from, to, regions_needed);
6361         if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
6362                 kref_put(&resv_map->refs, resv_map_release);
6363         return false;
6364 }
6365
6366 long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
6367                                                                 long freed)
6368 {
6369         struct hstate *h = hstate_inode(inode);
6370         struct resv_map *resv_map = inode_resv_map(inode);
6371         long chg = 0;
6372         struct hugepage_subpool *spool = subpool_inode(inode);
6373         long gbl_reserve;
6374
6375         /*
6376          * Since this routine can be called in the evict inode path for all
6377          * hugetlbfs inodes, resv_map could be NULL.
6378          */
6379         if (resv_map) {
6380                 chg = region_del(resv_map, start, end);
6381                 /*
6382                  * region_del() can fail in the rare case where a region
6383                  * must be split and another region descriptor can not be
6384                  * allocated.  If end == LONG_MAX, it will not fail.
6385                  */
6386                 if (chg < 0)
6387                         return chg;
6388         }
6389
6390         spin_lock(&inode->i_lock);
6391         inode->i_blocks -= (blocks_per_huge_page(h) * freed);
6392         spin_unlock(&inode->i_lock);
6393
6394         /*
6395          * If the subpool has a minimum size, the number of global
6396          * reservations to be released may be adjusted.
6397          *
6398          * Note that !resv_map implies freed == 0. So (chg - freed)
6399          * won't go negative.
6400          */
6401         gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
6402         hugetlb_acct_memory(h, -gbl_reserve);
6403
6404         return 0;
6405 }
6406
6407 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
6408 static unsigned long page_table_shareable(struct vm_area_struct *svma,
6409                                 struct vm_area_struct *vma,
6410                                 unsigned long addr, pgoff_t idx)
6411 {
6412         unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
6413                                 svma->vm_start;
6414         unsigned long sbase = saddr & PUD_MASK;
6415         unsigned long s_end = sbase + PUD_SIZE;
6416
6417         /* Allow segments to share if only one is marked locked */
6418         unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
6419         unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
6420
6421         /*
6422          * match the virtual addresses, permission and the alignment of the
6423          * page table page.
6424          */
6425         if (pmd_index(addr) != pmd_index(saddr) ||
6426             vm_flags != svm_flags ||
6427             !range_in_vma(svma, sbase, s_end))
6428                 return 0;
6429
6430         return saddr;
6431 }
6432
6433 static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr)
6434 {
6435         unsigned long base = addr & PUD_MASK;
6436         unsigned long end = base + PUD_SIZE;
6437
6438         /*
6439          * check on proper vm_flags and page table alignment
6440          */
6441         if (vma->vm_flags & VM_MAYSHARE && range_in_vma(vma, base, end))
6442                 return true;
6443         return false;
6444 }
6445
6446 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
6447 {
6448 #ifdef CONFIG_USERFAULTFD
6449         if (uffd_disable_huge_pmd_share(vma))
6450                 return false;
6451 #endif
6452         return vma_shareable(vma, addr);
6453 }
6454
6455 /*
6456  * Determine if start,end range within vma could be mapped by shared pmd.
6457  * If yes, adjust start and end to cover range associated with possible
6458  * shared pmd mappings.
6459  */
6460 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
6461                                 unsigned long *start, unsigned long *end)
6462 {
6463         unsigned long v_start = ALIGN(vma->vm_start, PUD_SIZE),
6464                 v_end = ALIGN_DOWN(vma->vm_end, PUD_SIZE);
6465
6466         /*
6467          * vma needs to span at least one aligned PUD size, and the range
6468          * must be at least partially within in.
6469          */
6470         if (!(vma->vm_flags & VM_MAYSHARE) || !(v_end > v_start) ||
6471                 (*end <= v_start) || (*start >= v_end))
6472                 return;
6473
6474         /* Extend the range to be PUD aligned for a worst case scenario */
6475         if (*start > v_start)
6476                 *start = ALIGN_DOWN(*start, PUD_SIZE);
6477
6478         if (*end < v_end)
6479                 *end = ALIGN(*end, PUD_SIZE);
6480 }
6481
6482 /*
6483  * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
6484  * and returns the corresponding pte. While this is not necessary for the
6485  * !shared pmd case because we can allocate the pmd later as well, it makes the
6486  * code much cleaner.
6487  *
6488  * This routine must be called with i_mmap_rwsem held in at least read mode if
6489  * sharing is possible.  For hugetlbfs, this prevents removal of any page
6490  * table entries associated with the address space.  This is important as we
6491  * are setting up sharing based on existing page table entries (mappings).
6492  */
6493 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
6494                       unsigned long addr, pud_t *pud)
6495 {
6496         struct address_space *mapping = vma->vm_file->f_mapping;
6497         pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
6498                         vma->vm_pgoff;
6499         struct vm_area_struct *svma;
6500         unsigned long saddr;
6501         pte_t *spte = NULL;
6502         pte_t *pte;
6503         spinlock_t *ptl;
6504
6505         i_mmap_assert_locked(mapping);
6506         vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
6507                 if (svma == vma)
6508                         continue;
6509
6510                 saddr = page_table_shareable(svma, vma, addr, idx);
6511                 if (saddr) {
6512                         spte = huge_pte_offset(svma->vm_mm, saddr,
6513                                                vma_mmu_pagesize(svma));
6514                         if (spte) {
6515                                 get_page(virt_to_page(spte));
6516                                 break;
6517                         }
6518                 }
6519         }
6520
6521         if (!spte)
6522                 goto out;
6523
6524         ptl = huge_pte_lock(hstate_vma(vma), mm, spte);
6525         if (pud_none(*pud)) {
6526                 pud_populate(mm, pud,
6527                                 (pmd_t *)((unsigned long)spte & PAGE_MASK));
6528                 mm_inc_nr_pmds(mm);
6529         } else {
6530                 put_page(virt_to_page(spte));
6531         }
6532         spin_unlock(ptl);
6533 out:
6534         pte = (pte_t *)pmd_alloc(mm, pud, addr);
6535         return pte;
6536 }
6537
6538 /*
6539  * unmap huge page backed by shared pte.
6540  *
6541  * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
6542  * indicated by page_count > 1, unmap is achieved by clearing pud and
6543  * decrementing the ref count. If count == 1, the pte page is not shared.
6544  *
6545  * Called with page table lock held and i_mmap_rwsem held in write mode.
6546  *
6547  * returns: 1 successfully unmapped a shared pte page
6548  *          0 the underlying pte page is not shared, or it is the last user
6549  */
6550 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
6551                                         unsigned long *addr, pte_t *ptep)
6552 {
6553         pgd_t *pgd = pgd_offset(mm, *addr);
6554         p4d_t *p4d = p4d_offset(pgd, *addr);
6555         pud_t *pud = pud_offset(p4d, *addr);
6556
6557         i_mmap_assert_write_locked(vma->vm_file->f_mapping);
6558         BUG_ON(page_count(virt_to_page(ptep)) == 0);
6559         if (page_count(virt_to_page(ptep)) == 1)
6560                 return 0;
6561
6562         pud_clear(pud);
6563         put_page(virt_to_page(ptep));
6564         mm_dec_nr_pmds(mm);
6565         *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
6566         return 1;
6567 }
6568
6569 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
6570 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
6571                       unsigned long addr, pud_t *pud)
6572 {
6573         return NULL;
6574 }
6575
6576 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
6577                                 unsigned long *addr, pte_t *ptep)
6578 {
6579         return 0;
6580 }
6581
6582 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
6583                                 unsigned long *start, unsigned long *end)
6584 {
6585 }
6586
6587 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
6588 {
6589         return false;
6590 }
6591 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
6592
6593 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
6594 pte_t *huge_pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
6595                         unsigned long addr, unsigned long sz)
6596 {
6597         pgd_t *pgd;
6598         p4d_t *p4d;
6599         pud_t *pud;
6600         pte_t *pte = NULL;
6601
6602         pgd = pgd_offset(mm, addr);
6603         p4d = p4d_alloc(mm, pgd, addr);
6604         if (!p4d)
6605                 return NULL;
6606         pud = pud_alloc(mm, p4d, addr);
6607         if (pud) {
6608                 if (sz == PUD_SIZE) {
6609                         pte = (pte_t *)pud;
6610                 } else {
6611                         BUG_ON(sz != PMD_SIZE);
6612                         if (want_pmd_share(vma, addr) && pud_none(*pud))
6613                                 pte = huge_pmd_share(mm, vma, addr, pud);
6614                         else
6615                                 pte = (pte_t *)pmd_alloc(mm, pud, addr);
6616                 }
6617         }
6618         BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte));
6619
6620         return pte;
6621 }
6622
6623 /*
6624  * huge_pte_offset() - Walk the page table to resolve the hugepage
6625  * entry at address @addr
6626  *
6627  * Return: Pointer to page table entry (PUD or PMD) for
6628  * address @addr, or NULL if a !p*d_present() entry is encountered and the
6629  * size @sz doesn't match the hugepage size at this level of the page
6630  * table.
6631  */
6632 pte_t *huge_pte_offset(struct mm_struct *mm,
6633                        unsigned long addr, unsigned long sz)
6634 {
6635         pgd_t *pgd;
6636         p4d_t *p4d;
6637         pud_t *pud;
6638         pmd_t *pmd;
6639
6640         pgd = pgd_offset(mm, addr);
6641         if (!pgd_present(*pgd))
6642                 return NULL;
6643         p4d = p4d_offset(pgd, addr);
6644         if (!p4d_present(*p4d))
6645                 return NULL;
6646
6647         pud = pud_offset(p4d, addr);
6648         if (sz == PUD_SIZE)
6649                 /* must be pud huge, non-present or none */
6650                 return (pte_t *)pud;
6651         if (!pud_present(*pud))
6652                 return NULL;
6653         /* must have a valid entry and size to go further */
6654
6655         pmd = pmd_offset(pud, addr);
6656         /* must be pmd huge, non-present or none */
6657         return (pte_t *)pmd;
6658 }
6659
6660 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
6661
6662 /*
6663  * These functions are overwritable if your architecture needs its own
6664  * behavior.
6665  */
6666 struct page * __weak
6667 follow_huge_addr(struct mm_struct *mm, unsigned long address,
6668                               int write)
6669 {
6670         return ERR_PTR(-EINVAL);
6671 }
6672
6673 struct page * __weak
6674 follow_huge_pd(struct vm_area_struct *vma,
6675                unsigned long address, hugepd_t hpd, int flags, int pdshift)
6676 {
6677         WARN(1, "hugepd follow called with no support for hugepage directory format\n");
6678         return NULL;
6679 }
6680
6681 struct page * __weak
6682 follow_huge_pmd(struct mm_struct *mm, unsigned long address,
6683                 pmd_t *pmd, int flags)
6684 {
6685         struct page *page = NULL;
6686         spinlock_t *ptl;
6687         pte_t pte;
6688
6689         /* FOLL_GET and FOLL_PIN are mutually exclusive. */
6690         if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
6691                          (FOLL_PIN | FOLL_GET)))
6692                 return NULL;
6693
6694 retry:
6695         ptl = pmd_lockptr(mm, pmd);
6696         spin_lock(ptl);
6697         /*
6698          * make sure that the address range covered by this pmd is not
6699          * unmapped from other threads.
6700          */
6701         if (!pmd_huge(*pmd))
6702                 goto out;
6703         pte = huge_ptep_get((pte_t *)pmd);
6704         if (pte_present(pte)) {
6705                 page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
6706                 /*
6707                  * try_grab_page() should always succeed here, because: a) we
6708                  * hold the pmd (ptl) lock, and b) we've just checked that the
6709                  * huge pmd (head) page is present in the page tables. The ptl
6710                  * prevents the head page and tail pages from being rearranged
6711                  * in any way. So this page must be available at this point,
6712                  * unless the page refcount overflowed:
6713                  */
6714                 if (WARN_ON_ONCE(!try_grab_page(page, flags))) {
6715                         page = NULL;
6716                         goto out;
6717                 }
6718         } else {
6719                 if (is_hugetlb_entry_migration(pte)) {
6720                         spin_unlock(ptl);
6721                         __migration_entry_wait(mm, (pte_t *)pmd, ptl);
6722                         goto retry;
6723                 }
6724                 /*
6725                  * hwpoisoned entry is treated as no_page_table in
6726                  * follow_page_mask().
6727                  */
6728         }
6729 out:
6730         spin_unlock(ptl);
6731         return page;
6732 }
6733
6734 struct page * __weak
6735 follow_huge_pud(struct mm_struct *mm, unsigned long address,
6736                 pud_t *pud, int flags)
6737 {
6738         if (flags & (FOLL_GET | FOLL_PIN))
6739                 return NULL;
6740
6741         return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
6742 }
6743
6744 struct page * __weak
6745 follow_huge_pgd(struct mm_struct *mm, unsigned long address, pgd_t *pgd, int flags)
6746 {
6747         if (flags & (FOLL_GET | FOLL_PIN))
6748                 return NULL;
6749
6750         return pte_page(*(pte_t *)pgd) + ((address & ~PGDIR_MASK) >> PAGE_SHIFT);
6751 }
6752
6753 bool isolate_huge_page(struct page *page, struct list_head *list)
6754 {
6755         bool ret = true;
6756
6757         spin_lock_irq(&hugetlb_lock);
6758         if (!PageHeadHuge(page) ||
6759             !HPageMigratable(page) ||
6760             !get_page_unless_zero(page)) {
6761                 ret = false;
6762                 goto unlock;
6763         }
6764         ClearHPageMigratable(page);
6765         list_move_tail(&page->lru, list);
6766 unlock:
6767         spin_unlock_irq(&hugetlb_lock);
6768         return ret;
6769 }
6770
6771 int get_hwpoison_huge_page(struct page *page, bool *hugetlb)
6772 {
6773         int ret = 0;
6774
6775         *hugetlb = false;
6776         spin_lock_irq(&hugetlb_lock);
6777         if (PageHeadHuge(page)) {
6778                 *hugetlb = true;
6779                 if (HPageFreed(page) || HPageMigratable(page))
6780                         ret = get_page_unless_zero(page);
6781                 else
6782                         ret = -EBUSY;
6783         }
6784         spin_unlock_irq(&hugetlb_lock);
6785         return ret;
6786 }
6787
6788 int get_huge_page_for_hwpoison(unsigned long pfn, int flags)
6789 {
6790         int ret;
6791
6792         spin_lock_irq(&hugetlb_lock);
6793         ret = __get_huge_page_for_hwpoison(pfn, flags);
6794         spin_unlock_irq(&hugetlb_lock);
6795         return ret;
6796 }
6797
6798 void putback_active_hugepage(struct page *page)
6799 {
6800         spin_lock_irq(&hugetlb_lock);
6801         SetHPageMigratable(page);
6802         list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
6803         spin_unlock_irq(&hugetlb_lock);
6804         put_page(page);
6805 }
6806
6807 void move_hugetlb_state(struct page *oldpage, struct page *newpage, int reason)
6808 {
6809         struct hstate *h = page_hstate(oldpage);
6810
6811         hugetlb_cgroup_migrate(oldpage, newpage);
6812         set_page_owner_migrate_reason(newpage, reason);
6813
6814         /*
6815          * transfer temporary state of the new huge page. This is
6816          * reverse to other transitions because the newpage is going to
6817          * be final while the old one will be freed so it takes over
6818          * the temporary status.
6819          *
6820          * Also note that we have to transfer the per-node surplus state
6821          * here as well otherwise the global surplus count will not match
6822          * the per-node's.
6823          */
6824         if (HPageTemporary(newpage)) {
6825                 int old_nid = page_to_nid(oldpage);
6826                 int new_nid = page_to_nid(newpage);
6827
6828                 SetHPageTemporary(oldpage);
6829                 ClearHPageTemporary(newpage);
6830
6831                 /*
6832                  * There is no need to transfer the per-node surplus state
6833                  * when we do not cross the node.
6834                  */
6835                 if (new_nid == old_nid)
6836                         return;
6837                 spin_lock_irq(&hugetlb_lock);
6838                 if (h->surplus_huge_pages_node[old_nid]) {
6839                         h->surplus_huge_pages_node[old_nid]--;
6840                         h->surplus_huge_pages_node[new_nid]++;
6841                 }
6842                 spin_unlock_irq(&hugetlb_lock);
6843         }
6844 }
6845
6846 /*
6847  * This function will unconditionally remove all the shared pmd pgtable entries
6848  * within the specific vma for a hugetlbfs memory range.
6849  */
6850 void hugetlb_unshare_all_pmds(struct vm_area_struct *vma)
6851 {
6852         struct hstate *h = hstate_vma(vma);
6853         unsigned long sz = huge_page_size(h);
6854         struct mm_struct *mm = vma->vm_mm;
6855         struct mmu_notifier_range range;
6856         unsigned long address, start, end;
6857         spinlock_t *ptl;
6858         pte_t *ptep;
6859
6860         if (!(vma->vm_flags & VM_MAYSHARE))
6861                 return;
6862
6863         start = ALIGN(vma->vm_start, PUD_SIZE);
6864         end = ALIGN_DOWN(vma->vm_end, PUD_SIZE);
6865
6866         if (start >= end)
6867                 return;
6868
6869         /*
6870          * No need to call adjust_range_if_pmd_sharing_possible(), because
6871          * we have already done the PUD_SIZE alignment.
6872          */
6873         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
6874                                 start, end);
6875         mmu_notifier_invalidate_range_start(&range);
6876         i_mmap_lock_write(vma->vm_file->f_mapping);
6877         for (address = start; address < end; address += PUD_SIZE) {
6878                 unsigned long tmp = address;
6879
6880                 ptep = huge_pte_offset(mm, address, sz);
6881                 if (!ptep)
6882                         continue;
6883                 ptl = huge_pte_lock(h, mm, ptep);
6884                 /* We don't want 'address' to be changed */
6885                 huge_pmd_unshare(mm, vma, &tmp, ptep);
6886                 spin_unlock(ptl);
6887         }
6888         flush_hugetlb_tlb_range(vma, start, end);
6889         i_mmap_unlock_write(vma->vm_file->f_mapping);
6890         /*
6891          * No need to call mmu_notifier_invalidate_range(), see
6892          * Documentation/vm/mmu_notifier.rst.
6893          */
6894         mmu_notifier_invalidate_range_end(&range);
6895 }
6896
6897 #ifdef CONFIG_CMA
6898 static bool cma_reserve_called __initdata;
6899
6900 static int __init cmdline_parse_hugetlb_cma(char *p)
6901 {
6902         int nid, count = 0;
6903         unsigned long tmp;
6904         char *s = p;
6905
6906         while (*s) {
6907                 if (sscanf(s, "%lu%n", &tmp, &count) != 1)
6908                         break;
6909
6910                 if (s[count] == ':') {
6911                         if (tmp >= MAX_NUMNODES)
6912                                 break;
6913                         nid = array_index_nospec(tmp, MAX_NUMNODES);
6914
6915                         s += count + 1;
6916                         tmp = memparse(s, &s);
6917                         hugetlb_cma_size_in_node[nid] = tmp;
6918                         hugetlb_cma_size += tmp;
6919
6920                         /*
6921                          * Skip the separator if have one, otherwise
6922                          * break the parsing.
6923                          */
6924                         if (*s == ',')
6925                                 s++;
6926                         else
6927                                 break;
6928                 } else {
6929                         hugetlb_cma_size = memparse(p, &p);
6930                         break;
6931                 }
6932         }
6933
6934         return 0;
6935 }
6936
6937 early_param("hugetlb_cma", cmdline_parse_hugetlb_cma);
6938
6939 void __init hugetlb_cma_reserve(int order)
6940 {
6941         unsigned long size, reserved, per_node;
6942         bool node_specific_cma_alloc = false;
6943         int nid;
6944
6945         cma_reserve_called = true;
6946
6947         if (!hugetlb_cma_size)
6948                 return;
6949
6950         for (nid = 0; nid < MAX_NUMNODES; nid++) {
6951                 if (hugetlb_cma_size_in_node[nid] == 0)
6952                         continue;
6953
6954                 if (!node_state(nid, N_ONLINE)) {
6955                         pr_warn("hugetlb_cma: invalid node %d specified\n", nid);
6956                         hugetlb_cma_size -= hugetlb_cma_size_in_node[nid];
6957                         hugetlb_cma_size_in_node[nid] = 0;
6958                         continue;
6959                 }
6960
6961                 if (hugetlb_cma_size_in_node[nid] < (PAGE_SIZE << order)) {
6962                         pr_warn("hugetlb_cma: cma area of node %d should be at least %lu MiB\n",
6963                                 nid, (PAGE_SIZE << order) / SZ_1M);
6964                         hugetlb_cma_size -= hugetlb_cma_size_in_node[nid];
6965                         hugetlb_cma_size_in_node[nid] = 0;
6966                 } else {
6967                         node_specific_cma_alloc = true;
6968                 }
6969         }
6970
6971         /* Validate the CMA size again in case some invalid nodes specified. */
6972         if (!hugetlb_cma_size)
6973                 return;
6974
6975         if (hugetlb_cma_size < (PAGE_SIZE << order)) {
6976                 pr_warn("hugetlb_cma: cma area should be at least %lu MiB\n",
6977                         (PAGE_SIZE << order) / SZ_1M);
6978                 hugetlb_cma_size = 0;
6979                 return;
6980         }
6981
6982         if (!node_specific_cma_alloc) {
6983                 /*
6984                  * If 3 GB area is requested on a machine with 4 numa nodes,
6985                  * let's allocate 1 GB on first three nodes and ignore the last one.
6986                  */
6987                 per_node = DIV_ROUND_UP(hugetlb_cma_size, nr_online_nodes);
6988                 pr_info("hugetlb_cma: reserve %lu MiB, up to %lu MiB per node\n",
6989                         hugetlb_cma_size / SZ_1M, per_node / SZ_1M);
6990         }
6991
6992         reserved = 0;
6993         for_each_node_state(nid, N_ONLINE) {
6994                 int res;
6995                 char name[CMA_MAX_NAME];
6996
6997                 if (node_specific_cma_alloc) {
6998                         if (hugetlb_cma_size_in_node[nid] == 0)
6999                                 continue;
7000
7001                         size = hugetlb_cma_size_in_node[nid];
7002                 } else {
7003                         size = min(per_node, hugetlb_cma_size - reserved);
7004                 }
7005
7006                 size = round_up(size, PAGE_SIZE << order);
7007
7008                 snprintf(name, sizeof(name), "hugetlb%d", nid);
7009                 /*
7010                  * Note that 'order per bit' is based on smallest size that
7011                  * may be returned to CMA allocator in the case of
7012                  * huge page demotion.
7013                  */
7014                 res = cma_declare_contiguous_nid(0, size, 0,
7015                                                 PAGE_SIZE << HUGETLB_PAGE_ORDER,
7016                                                  0, false, name,
7017                                                  &hugetlb_cma[nid], nid);
7018                 if (res) {
7019                         pr_warn("hugetlb_cma: reservation failed: err %d, node %d",
7020                                 res, nid);
7021                         continue;
7022                 }
7023
7024                 reserved += size;
7025                 pr_info("hugetlb_cma: reserved %lu MiB on node %d\n",
7026                         size / SZ_1M, nid);
7027
7028                 if (reserved >= hugetlb_cma_size)
7029                         break;
7030         }
7031
7032         if (!reserved)
7033                 /*
7034                  * hugetlb_cma_size is used to determine if allocations from
7035                  * cma are possible.  Set to zero if no cma regions are set up.
7036                  */
7037                 hugetlb_cma_size = 0;
7038 }
7039
7040 void __init hugetlb_cma_check(void)
7041 {
7042         if (!hugetlb_cma_size || cma_reserve_called)
7043                 return;
7044
7045         pr_warn("hugetlb_cma: the option isn't supported by current arch\n");
7046 }
7047
7048 #endif /* CONFIG_CMA */