hugetlb: fix copy_huge_page_from_user contig page struct assumption
[linux-2.6-microblaze.git] / mm / hugetlb.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Generic hugetlb support.
4  * (C) Nadia Yvette Chambers, April 2004
5  */
6 #include <linux/list.h>
7 #include <linux/init.h>
8 #include <linux/mm.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/compiler.h>
17 #include <linux/cpuset.h>
18 #include <linux/mutex.h>
19 #include <linux/memblock.h>
20 #include <linux/sysfs.h>
21 #include <linux/slab.h>
22 #include <linux/sched/mm.h>
23 #include <linux/mmdebug.h>
24 #include <linux/sched/signal.h>
25 #include <linux/rmap.h>
26 #include <linux/string_helpers.h>
27 #include <linux/swap.h>
28 #include <linux/swapops.h>
29 #include <linux/jhash.h>
30 #include <linux/numa.h>
31 #include <linux/llist.h>
32 #include <linux/cma.h>
33
34 #include <asm/page.h>
35 #include <asm/pgalloc.h>
36 #include <asm/tlb.h>
37
38 #include <linux/io.h>
39 #include <linux/hugetlb.h>
40 #include <linux/hugetlb_cgroup.h>
41 #include <linux/node.h>
42 #include <linux/userfaultfd_k.h>
43 #include <linux/page_owner.h>
44 #include "internal.h"
45
46 int hugetlb_max_hstate __read_mostly;
47 unsigned int default_hstate_idx;
48 struct hstate hstates[HUGE_MAX_HSTATE];
49
50 #ifdef CONFIG_CMA
51 static struct cma *hugetlb_cma[MAX_NUMNODES];
52 #endif
53 static unsigned long hugetlb_cma_size __initdata;
54
55 /*
56  * Minimum page order among possible hugepage sizes, set to a proper value
57  * at boot time.
58  */
59 static unsigned int minimum_order __read_mostly = UINT_MAX;
60
61 __initdata LIST_HEAD(huge_boot_pages);
62
63 /* for command line parsing */
64 static struct hstate * __initdata parsed_hstate;
65 static unsigned long __initdata default_hstate_max_huge_pages;
66 static bool __initdata parsed_valid_hugepagesz = true;
67 static bool __initdata parsed_default_hugepagesz;
68
69 /*
70  * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
71  * free_huge_pages, and surplus_huge_pages.
72  */
73 DEFINE_SPINLOCK(hugetlb_lock);
74
75 /*
76  * Serializes faults on the same logical page.  This is used to
77  * prevent spurious OOMs when the hugepage pool is fully utilized.
78  */
79 static int num_fault_mutexes;
80 struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
81
82 static inline bool PageHugeFreed(struct page *head)
83 {
84         return page_private(head + 4) == -1UL;
85 }
86
87 static inline void SetPageHugeFreed(struct page *head)
88 {
89         set_page_private(head + 4, -1UL);
90 }
91
92 static inline void ClearPageHugeFreed(struct page *head)
93 {
94         set_page_private(head + 4, 0);
95 }
96
97 /* Forward declaration */
98 static int hugetlb_acct_memory(struct hstate *h, long delta);
99
100 static inline bool subpool_is_free(struct hugepage_subpool *spool)
101 {
102         if (spool->count)
103                 return false;
104         if (spool->max_hpages != -1)
105                 return spool->used_hpages == 0;
106         if (spool->min_hpages != -1)
107                 return spool->rsv_hpages == spool->min_hpages;
108
109         return true;
110 }
111
112 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
113 {
114         spin_unlock(&spool->lock);
115
116         /* If no pages are used, and no other handles to the subpool
117          * remain, give up any reservations based on minimum size and
118          * free the subpool */
119         if (subpool_is_free(spool)) {
120                 if (spool->min_hpages != -1)
121                         hugetlb_acct_memory(spool->hstate,
122                                                 -spool->min_hpages);
123                 kfree(spool);
124         }
125 }
126
127 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
128                                                 long min_hpages)
129 {
130         struct hugepage_subpool *spool;
131
132         spool = kzalloc(sizeof(*spool), GFP_KERNEL);
133         if (!spool)
134                 return NULL;
135
136         spin_lock_init(&spool->lock);
137         spool->count = 1;
138         spool->max_hpages = max_hpages;
139         spool->hstate = h;
140         spool->min_hpages = min_hpages;
141
142         if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
143                 kfree(spool);
144                 return NULL;
145         }
146         spool->rsv_hpages = min_hpages;
147
148         return spool;
149 }
150
151 void hugepage_put_subpool(struct hugepage_subpool *spool)
152 {
153         spin_lock(&spool->lock);
154         BUG_ON(!spool->count);
155         spool->count--;
156         unlock_or_release_subpool(spool);
157 }
158
159 /*
160  * Subpool accounting for allocating and reserving pages.
161  * Return -ENOMEM if there are not enough resources to satisfy the
162  * request.  Otherwise, return the number of pages by which the
163  * global pools must be adjusted (upward).  The returned value may
164  * only be different than the passed value (delta) in the case where
165  * a subpool minimum size must be maintained.
166  */
167 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
168                                       long delta)
169 {
170         long ret = delta;
171
172         if (!spool)
173                 return ret;
174
175         spin_lock(&spool->lock);
176
177         if (spool->max_hpages != -1) {          /* maximum size accounting */
178                 if ((spool->used_hpages + delta) <= spool->max_hpages)
179                         spool->used_hpages += delta;
180                 else {
181                         ret = -ENOMEM;
182                         goto unlock_ret;
183                 }
184         }
185
186         /* minimum size accounting */
187         if (spool->min_hpages != -1 && spool->rsv_hpages) {
188                 if (delta > spool->rsv_hpages) {
189                         /*
190                          * Asking for more reserves than those already taken on
191                          * behalf of subpool.  Return difference.
192                          */
193                         ret = delta - spool->rsv_hpages;
194                         spool->rsv_hpages = 0;
195                 } else {
196                         ret = 0;        /* reserves already accounted for */
197                         spool->rsv_hpages -= delta;
198                 }
199         }
200
201 unlock_ret:
202         spin_unlock(&spool->lock);
203         return ret;
204 }
205
206 /*
207  * Subpool accounting for freeing and unreserving pages.
208  * Return the number of global page reservations that must be dropped.
209  * The return value may only be different than the passed value (delta)
210  * in the case where a subpool minimum size must be maintained.
211  */
212 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
213                                        long delta)
214 {
215         long ret = delta;
216
217         if (!spool)
218                 return delta;
219
220         spin_lock(&spool->lock);
221
222         if (spool->max_hpages != -1)            /* maximum size accounting */
223                 spool->used_hpages -= delta;
224
225          /* minimum size accounting */
226         if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
227                 if (spool->rsv_hpages + delta <= spool->min_hpages)
228                         ret = 0;
229                 else
230                         ret = spool->rsv_hpages + delta - spool->min_hpages;
231
232                 spool->rsv_hpages += delta;
233                 if (spool->rsv_hpages > spool->min_hpages)
234                         spool->rsv_hpages = spool->min_hpages;
235         }
236
237         /*
238          * If hugetlbfs_put_super couldn't free spool due to an outstanding
239          * quota reference, free it now.
240          */
241         unlock_or_release_subpool(spool);
242
243         return ret;
244 }
245
246 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
247 {
248         return HUGETLBFS_SB(inode->i_sb)->spool;
249 }
250
251 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
252 {
253         return subpool_inode(file_inode(vma->vm_file));
254 }
255
256 /* Helper that removes a struct file_region from the resv_map cache and returns
257  * it for use.
258  */
259 static struct file_region *
260 get_file_region_entry_from_cache(struct resv_map *resv, long from, long to)
261 {
262         struct file_region *nrg = NULL;
263
264         VM_BUG_ON(resv->region_cache_count <= 0);
265
266         resv->region_cache_count--;
267         nrg = list_first_entry(&resv->region_cache, struct file_region, link);
268         list_del(&nrg->link);
269
270         nrg->from = from;
271         nrg->to = to;
272
273         return nrg;
274 }
275
276 static void copy_hugetlb_cgroup_uncharge_info(struct file_region *nrg,
277                                               struct file_region *rg)
278 {
279 #ifdef CONFIG_CGROUP_HUGETLB
280         nrg->reservation_counter = rg->reservation_counter;
281         nrg->css = rg->css;
282         if (rg->css)
283                 css_get(rg->css);
284 #endif
285 }
286
287 /* Helper that records hugetlb_cgroup uncharge info. */
288 static void record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup *h_cg,
289                                                 struct hstate *h,
290                                                 struct resv_map *resv,
291                                                 struct file_region *nrg)
292 {
293 #ifdef CONFIG_CGROUP_HUGETLB
294         if (h_cg) {
295                 nrg->reservation_counter =
296                         &h_cg->rsvd_hugepage[hstate_index(h)];
297                 nrg->css = &h_cg->css;
298                 if (!resv->pages_per_hpage)
299                         resv->pages_per_hpage = pages_per_huge_page(h);
300                 /* pages_per_hpage should be the same for all entries in
301                  * a resv_map.
302                  */
303                 VM_BUG_ON(resv->pages_per_hpage != pages_per_huge_page(h));
304         } else {
305                 nrg->reservation_counter = NULL;
306                 nrg->css = NULL;
307         }
308 #endif
309 }
310
311 static bool has_same_uncharge_info(struct file_region *rg,
312                                    struct file_region *org)
313 {
314 #ifdef CONFIG_CGROUP_HUGETLB
315         return rg && org &&
316                rg->reservation_counter == org->reservation_counter &&
317                rg->css == org->css;
318
319 #else
320         return true;
321 #endif
322 }
323
324 static void coalesce_file_region(struct resv_map *resv, struct file_region *rg)
325 {
326         struct file_region *nrg = NULL, *prg = NULL;
327
328         prg = list_prev_entry(rg, link);
329         if (&prg->link != &resv->regions && prg->to == rg->from &&
330             has_same_uncharge_info(prg, rg)) {
331                 prg->to = rg->to;
332
333                 list_del(&rg->link);
334                 kfree(rg);
335
336                 rg = prg;
337         }
338
339         nrg = list_next_entry(rg, link);
340         if (&nrg->link != &resv->regions && nrg->from == rg->to &&
341             has_same_uncharge_info(nrg, rg)) {
342                 nrg->from = rg->from;
343
344                 list_del(&rg->link);
345                 kfree(rg);
346         }
347 }
348
349 /*
350  * Must be called with resv->lock held.
351  *
352  * Calling this with regions_needed != NULL will count the number of pages
353  * to be added but will not modify the linked list. And regions_needed will
354  * indicate the number of file_regions needed in the cache to carry out to add
355  * the regions for this range.
356  */
357 static long add_reservation_in_range(struct resv_map *resv, long f, long t,
358                                      struct hugetlb_cgroup *h_cg,
359                                      struct hstate *h, long *regions_needed)
360 {
361         long add = 0;
362         struct list_head *head = &resv->regions;
363         long last_accounted_offset = f;
364         struct file_region *rg = NULL, *trg = NULL, *nrg = NULL;
365
366         if (regions_needed)
367                 *regions_needed = 0;
368
369         /* In this loop, we essentially handle an entry for the range
370          * [last_accounted_offset, rg->from), at every iteration, with some
371          * bounds checking.
372          */
373         list_for_each_entry_safe(rg, trg, head, link) {
374                 /* Skip irrelevant regions that start before our range. */
375                 if (rg->from < f) {
376                         /* If this region ends after the last accounted offset,
377                          * then we need to update last_accounted_offset.
378                          */
379                         if (rg->to > last_accounted_offset)
380                                 last_accounted_offset = rg->to;
381                         continue;
382                 }
383
384                 /* When we find a region that starts beyond our range, we've
385                  * finished.
386                  */
387                 if (rg->from > t)
388                         break;
389
390                 /* Add an entry for last_accounted_offset -> rg->from, and
391                  * update last_accounted_offset.
392                  */
393                 if (rg->from > last_accounted_offset) {
394                         add += rg->from - last_accounted_offset;
395                         if (!regions_needed) {
396                                 nrg = get_file_region_entry_from_cache(
397                                         resv, last_accounted_offset, rg->from);
398                                 record_hugetlb_cgroup_uncharge_info(h_cg, h,
399                                                                     resv, nrg);
400                                 list_add(&nrg->link, rg->link.prev);
401                                 coalesce_file_region(resv, nrg);
402                         } else
403                                 *regions_needed += 1;
404                 }
405
406                 last_accounted_offset = rg->to;
407         }
408
409         /* Handle the case where our range extends beyond
410          * last_accounted_offset.
411          */
412         if (last_accounted_offset < t) {
413                 add += t - last_accounted_offset;
414                 if (!regions_needed) {
415                         nrg = get_file_region_entry_from_cache(
416                                 resv, last_accounted_offset, t);
417                         record_hugetlb_cgroup_uncharge_info(h_cg, h, resv, nrg);
418                         list_add(&nrg->link, rg->link.prev);
419                         coalesce_file_region(resv, nrg);
420                 } else
421                         *regions_needed += 1;
422         }
423
424         VM_BUG_ON(add < 0);
425         return add;
426 }
427
428 /* Must be called with resv->lock acquired. Will drop lock to allocate entries.
429  */
430 static int allocate_file_region_entries(struct resv_map *resv,
431                                         int regions_needed)
432         __must_hold(&resv->lock)
433 {
434         struct list_head allocated_regions;
435         int to_allocate = 0, i = 0;
436         struct file_region *trg = NULL, *rg = NULL;
437
438         VM_BUG_ON(regions_needed < 0);
439
440         INIT_LIST_HEAD(&allocated_regions);
441
442         /*
443          * Check for sufficient descriptors in the cache to accommodate
444          * the number of in progress add operations plus regions_needed.
445          *
446          * This is a while loop because when we drop the lock, some other call
447          * to region_add or region_del may have consumed some region_entries,
448          * so we keep looping here until we finally have enough entries for
449          * (adds_in_progress + regions_needed).
450          */
451         while (resv->region_cache_count <
452                (resv->adds_in_progress + regions_needed)) {
453                 to_allocate = resv->adds_in_progress + regions_needed -
454                               resv->region_cache_count;
455
456                 /* At this point, we should have enough entries in the cache
457                  * for all the existings adds_in_progress. We should only be
458                  * needing to allocate for regions_needed.
459                  */
460                 VM_BUG_ON(resv->region_cache_count < resv->adds_in_progress);
461
462                 spin_unlock(&resv->lock);
463                 for (i = 0; i < to_allocate; i++) {
464                         trg = kmalloc(sizeof(*trg), GFP_KERNEL);
465                         if (!trg)
466                                 goto out_of_memory;
467                         list_add(&trg->link, &allocated_regions);
468                 }
469
470                 spin_lock(&resv->lock);
471
472                 list_splice(&allocated_regions, &resv->region_cache);
473                 resv->region_cache_count += to_allocate;
474         }
475
476         return 0;
477
478 out_of_memory:
479         list_for_each_entry_safe(rg, trg, &allocated_regions, link) {
480                 list_del(&rg->link);
481                 kfree(rg);
482         }
483         return -ENOMEM;
484 }
485
486 /*
487  * Add the huge page range represented by [f, t) to the reserve
488  * map.  Regions will be taken from the cache to fill in this range.
489  * Sufficient regions should exist in the cache due to the previous
490  * call to region_chg with the same range, but in some cases the cache will not
491  * have sufficient entries due to races with other code doing region_add or
492  * region_del.  The extra needed entries will be allocated.
493  *
494  * regions_needed is the out value provided by a previous call to region_chg.
495  *
496  * Return the number of new huge pages added to the map.  This number is greater
497  * than or equal to zero.  If file_region entries needed to be allocated for
498  * this operation and we were not able to allocate, it returns -ENOMEM.
499  * region_add of regions of length 1 never allocate file_regions and cannot
500  * fail; region_chg will always allocate at least 1 entry and a region_add for
501  * 1 page will only require at most 1 entry.
502  */
503 static long region_add(struct resv_map *resv, long f, long t,
504                        long in_regions_needed, struct hstate *h,
505                        struct hugetlb_cgroup *h_cg)
506 {
507         long add = 0, actual_regions_needed = 0;
508
509         spin_lock(&resv->lock);
510 retry:
511
512         /* Count how many regions are actually needed to execute this add. */
513         add_reservation_in_range(resv, f, t, NULL, NULL,
514                                  &actual_regions_needed);
515
516         /*
517          * Check for sufficient descriptors in the cache to accommodate
518          * this add operation. Note that actual_regions_needed may be greater
519          * than in_regions_needed, as the resv_map may have been modified since
520          * the region_chg call. In this case, we need to make sure that we
521          * allocate extra entries, such that we have enough for all the
522          * existing adds_in_progress, plus the excess needed for this
523          * operation.
524          */
525         if (actual_regions_needed > in_regions_needed &&
526             resv->region_cache_count <
527                     resv->adds_in_progress +
528                             (actual_regions_needed - in_regions_needed)) {
529                 /* region_add operation of range 1 should never need to
530                  * allocate file_region entries.
531                  */
532                 VM_BUG_ON(t - f <= 1);
533
534                 if (allocate_file_region_entries(
535                             resv, actual_regions_needed - in_regions_needed)) {
536                         return -ENOMEM;
537                 }
538
539                 goto retry;
540         }
541
542         add = add_reservation_in_range(resv, f, t, h_cg, h, NULL);
543
544         resv->adds_in_progress -= in_regions_needed;
545
546         spin_unlock(&resv->lock);
547         VM_BUG_ON(add < 0);
548         return add;
549 }
550
551 /*
552  * Examine the existing reserve map and determine how many
553  * huge pages in the specified range [f, t) are NOT currently
554  * represented.  This routine is called before a subsequent
555  * call to region_add that will actually modify the reserve
556  * map to add the specified range [f, t).  region_chg does
557  * not change the number of huge pages represented by the
558  * map.  A number of new file_region structures is added to the cache as a
559  * placeholder, for the subsequent region_add call to use. At least 1
560  * file_region structure is added.
561  *
562  * out_regions_needed is the number of regions added to the
563  * resv->adds_in_progress.  This value needs to be provided to a follow up call
564  * to region_add or region_abort for proper accounting.
565  *
566  * Returns the number of huge pages that need to be added to the existing
567  * reservation map for the range [f, t).  This number is greater or equal to
568  * zero.  -ENOMEM is returned if a new file_region structure or cache entry
569  * is needed and can not be allocated.
570  */
571 static long region_chg(struct resv_map *resv, long f, long t,
572                        long *out_regions_needed)
573 {
574         long chg = 0;
575
576         spin_lock(&resv->lock);
577
578         /* Count how many hugepages in this range are NOT represented. */
579         chg = add_reservation_in_range(resv, f, t, NULL, NULL,
580                                        out_regions_needed);
581
582         if (*out_regions_needed == 0)
583                 *out_regions_needed = 1;
584
585         if (allocate_file_region_entries(resv, *out_regions_needed))
586                 return -ENOMEM;
587
588         resv->adds_in_progress += *out_regions_needed;
589
590         spin_unlock(&resv->lock);
591         return chg;
592 }
593
594 /*
595  * Abort the in progress add operation.  The adds_in_progress field
596  * of the resv_map keeps track of the operations in progress between
597  * calls to region_chg and region_add.  Operations are sometimes
598  * aborted after the call to region_chg.  In such cases, region_abort
599  * is called to decrement the adds_in_progress counter. regions_needed
600  * is the value returned by the region_chg call, it is used to decrement
601  * the adds_in_progress counter.
602  *
603  * NOTE: The range arguments [f, t) are not needed or used in this
604  * routine.  They are kept to make reading the calling code easier as
605  * arguments will match the associated region_chg call.
606  */
607 static void region_abort(struct resv_map *resv, long f, long t,
608                          long regions_needed)
609 {
610         spin_lock(&resv->lock);
611         VM_BUG_ON(!resv->region_cache_count);
612         resv->adds_in_progress -= regions_needed;
613         spin_unlock(&resv->lock);
614 }
615
616 /*
617  * Delete the specified range [f, t) from the reserve map.  If the
618  * t parameter is LONG_MAX, this indicates that ALL regions after f
619  * should be deleted.  Locate the regions which intersect [f, t)
620  * and either trim, delete or split the existing regions.
621  *
622  * Returns the number of huge pages deleted from the reserve map.
623  * In the normal case, the return value is zero or more.  In the
624  * case where a region must be split, a new region descriptor must
625  * be allocated.  If the allocation fails, -ENOMEM will be returned.
626  * NOTE: If the parameter t == LONG_MAX, then we will never split
627  * a region and possibly return -ENOMEM.  Callers specifying
628  * t == LONG_MAX do not need to check for -ENOMEM error.
629  */
630 static long region_del(struct resv_map *resv, long f, long t)
631 {
632         struct list_head *head = &resv->regions;
633         struct file_region *rg, *trg;
634         struct file_region *nrg = NULL;
635         long del = 0;
636
637 retry:
638         spin_lock(&resv->lock);
639         list_for_each_entry_safe(rg, trg, head, link) {
640                 /*
641                  * Skip regions before the range to be deleted.  file_region
642                  * ranges are normally of the form [from, to).  However, there
643                  * may be a "placeholder" entry in the map which is of the form
644                  * (from, to) with from == to.  Check for placeholder entries
645                  * at the beginning of the range to be deleted.
646                  */
647                 if (rg->to <= f && (rg->to != rg->from || rg->to != f))
648                         continue;
649
650                 if (rg->from >= t)
651                         break;
652
653                 if (f > rg->from && t < rg->to) { /* Must split region */
654                         /*
655                          * Check for an entry in the cache before dropping
656                          * lock and attempting allocation.
657                          */
658                         if (!nrg &&
659                             resv->region_cache_count > resv->adds_in_progress) {
660                                 nrg = list_first_entry(&resv->region_cache,
661                                                         struct file_region,
662                                                         link);
663                                 list_del(&nrg->link);
664                                 resv->region_cache_count--;
665                         }
666
667                         if (!nrg) {
668                                 spin_unlock(&resv->lock);
669                                 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
670                                 if (!nrg)
671                                         return -ENOMEM;
672                                 goto retry;
673                         }
674
675                         del += t - f;
676                         hugetlb_cgroup_uncharge_file_region(
677                                 resv, rg, t - f);
678
679                         /* New entry for end of split region */
680                         nrg->from = t;
681                         nrg->to = rg->to;
682
683                         copy_hugetlb_cgroup_uncharge_info(nrg, rg);
684
685                         INIT_LIST_HEAD(&nrg->link);
686
687                         /* Original entry is trimmed */
688                         rg->to = f;
689
690                         list_add(&nrg->link, &rg->link);
691                         nrg = NULL;
692                         break;
693                 }
694
695                 if (f <= rg->from && t >= rg->to) { /* Remove entire region */
696                         del += rg->to - rg->from;
697                         hugetlb_cgroup_uncharge_file_region(resv, rg,
698                                                             rg->to - rg->from);
699                         list_del(&rg->link);
700                         kfree(rg);
701                         continue;
702                 }
703
704                 if (f <= rg->from) {    /* Trim beginning of region */
705                         hugetlb_cgroup_uncharge_file_region(resv, rg,
706                                                             t - rg->from);
707
708                         del += t - rg->from;
709                         rg->from = t;
710                 } else {                /* Trim end of region */
711                         hugetlb_cgroup_uncharge_file_region(resv, rg,
712                                                             rg->to - f);
713
714                         del += rg->to - f;
715                         rg->to = f;
716                 }
717         }
718
719         spin_unlock(&resv->lock);
720         kfree(nrg);
721         return del;
722 }
723
724 /*
725  * A rare out of memory error was encountered which prevented removal of
726  * the reserve map region for a page.  The huge page itself was free'ed
727  * and removed from the page cache.  This routine will adjust the subpool
728  * usage count, and the global reserve count if needed.  By incrementing
729  * these counts, the reserve map entry which could not be deleted will
730  * appear as a "reserved" entry instead of simply dangling with incorrect
731  * counts.
732  */
733 void hugetlb_fix_reserve_counts(struct inode *inode)
734 {
735         struct hugepage_subpool *spool = subpool_inode(inode);
736         long rsv_adjust;
737
738         rsv_adjust = hugepage_subpool_get_pages(spool, 1);
739         if (rsv_adjust) {
740                 struct hstate *h = hstate_inode(inode);
741
742                 hugetlb_acct_memory(h, 1);
743         }
744 }
745
746 /*
747  * Count and return the number of huge pages in the reserve map
748  * that intersect with the range [f, t).
749  */
750 static long region_count(struct resv_map *resv, long f, long t)
751 {
752         struct list_head *head = &resv->regions;
753         struct file_region *rg;
754         long chg = 0;
755
756         spin_lock(&resv->lock);
757         /* Locate each segment we overlap with, and count that overlap. */
758         list_for_each_entry(rg, head, link) {
759                 long seg_from;
760                 long seg_to;
761
762                 if (rg->to <= f)
763                         continue;
764                 if (rg->from >= t)
765                         break;
766
767                 seg_from = max(rg->from, f);
768                 seg_to = min(rg->to, t);
769
770                 chg += seg_to - seg_from;
771         }
772         spin_unlock(&resv->lock);
773
774         return chg;
775 }
776
777 /*
778  * Convert the address within this vma to the page offset within
779  * the mapping, in pagecache page units; huge pages here.
780  */
781 static pgoff_t vma_hugecache_offset(struct hstate *h,
782                         struct vm_area_struct *vma, unsigned long address)
783 {
784         return ((address - vma->vm_start) >> huge_page_shift(h)) +
785                         (vma->vm_pgoff >> huge_page_order(h));
786 }
787
788 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
789                                      unsigned long address)
790 {
791         return vma_hugecache_offset(hstate_vma(vma), vma, address);
792 }
793 EXPORT_SYMBOL_GPL(linear_hugepage_index);
794
795 /*
796  * Return the size of the pages allocated when backing a VMA. In the majority
797  * cases this will be same size as used by the page table entries.
798  */
799 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
800 {
801         if (vma->vm_ops && vma->vm_ops->pagesize)
802                 return vma->vm_ops->pagesize(vma);
803         return PAGE_SIZE;
804 }
805 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
806
807 /*
808  * Return the page size being used by the MMU to back a VMA. In the majority
809  * of cases, the page size used by the kernel matches the MMU size. On
810  * architectures where it differs, an architecture-specific 'strong'
811  * version of this symbol is required.
812  */
813 __weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
814 {
815         return vma_kernel_pagesize(vma);
816 }
817
818 /*
819  * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
820  * bits of the reservation map pointer, which are always clear due to
821  * alignment.
822  */
823 #define HPAGE_RESV_OWNER    (1UL << 0)
824 #define HPAGE_RESV_UNMAPPED (1UL << 1)
825 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
826
827 /*
828  * These helpers are used to track how many pages are reserved for
829  * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
830  * is guaranteed to have their future faults succeed.
831  *
832  * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
833  * the reserve counters are updated with the hugetlb_lock held. It is safe
834  * to reset the VMA at fork() time as it is not in use yet and there is no
835  * chance of the global counters getting corrupted as a result of the values.
836  *
837  * The private mapping reservation is represented in a subtly different
838  * manner to a shared mapping.  A shared mapping has a region map associated
839  * with the underlying file, this region map represents the backing file
840  * pages which have ever had a reservation assigned which this persists even
841  * after the page is instantiated.  A private mapping has a region map
842  * associated with the original mmap which is attached to all VMAs which
843  * reference it, this region map represents those offsets which have consumed
844  * reservation ie. where pages have been instantiated.
845  */
846 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
847 {
848         return (unsigned long)vma->vm_private_data;
849 }
850
851 static void set_vma_private_data(struct vm_area_struct *vma,
852                                                         unsigned long value)
853 {
854         vma->vm_private_data = (void *)value;
855 }
856
857 static void
858 resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map *resv_map,
859                                           struct hugetlb_cgroup *h_cg,
860                                           struct hstate *h)
861 {
862 #ifdef CONFIG_CGROUP_HUGETLB
863         if (!h_cg || !h) {
864                 resv_map->reservation_counter = NULL;
865                 resv_map->pages_per_hpage = 0;
866                 resv_map->css = NULL;
867         } else {
868                 resv_map->reservation_counter =
869                         &h_cg->rsvd_hugepage[hstate_index(h)];
870                 resv_map->pages_per_hpage = pages_per_huge_page(h);
871                 resv_map->css = &h_cg->css;
872         }
873 #endif
874 }
875
876 struct resv_map *resv_map_alloc(void)
877 {
878         struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
879         struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
880
881         if (!resv_map || !rg) {
882                 kfree(resv_map);
883                 kfree(rg);
884                 return NULL;
885         }
886
887         kref_init(&resv_map->refs);
888         spin_lock_init(&resv_map->lock);
889         INIT_LIST_HEAD(&resv_map->regions);
890
891         resv_map->adds_in_progress = 0;
892         /*
893          * Initialize these to 0. On shared mappings, 0's here indicate these
894          * fields don't do cgroup accounting. On private mappings, these will be
895          * re-initialized to the proper values, to indicate that hugetlb cgroup
896          * reservations are to be un-charged from here.
897          */
898         resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, NULL, NULL);
899
900         INIT_LIST_HEAD(&resv_map->region_cache);
901         list_add(&rg->link, &resv_map->region_cache);
902         resv_map->region_cache_count = 1;
903
904         return resv_map;
905 }
906
907 void resv_map_release(struct kref *ref)
908 {
909         struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
910         struct list_head *head = &resv_map->region_cache;
911         struct file_region *rg, *trg;
912
913         /* Clear out any active regions before we release the map. */
914         region_del(resv_map, 0, LONG_MAX);
915
916         /* ... and any entries left in the cache */
917         list_for_each_entry_safe(rg, trg, head, link) {
918                 list_del(&rg->link);
919                 kfree(rg);
920         }
921
922         VM_BUG_ON(resv_map->adds_in_progress);
923
924         kfree(resv_map);
925 }
926
927 static inline struct resv_map *inode_resv_map(struct inode *inode)
928 {
929         /*
930          * At inode evict time, i_mapping may not point to the original
931          * address space within the inode.  This original address space
932          * contains the pointer to the resv_map.  So, always use the
933          * address space embedded within the inode.
934          * The VERY common case is inode->mapping == &inode->i_data but,
935          * this may not be true for device special inodes.
936          */
937         return (struct resv_map *)(&inode->i_data)->private_data;
938 }
939
940 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
941 {
942         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
943         if (vma->vm_flags & VM_MAYSHARE) {
944                 struct address_space *mapping = vma->vm_file->f_mapping;
945                 struct inode *inode = mapping->host;
946
947                 return inode_resv_map(inode);
948
949         } else {
950                 return (struct resv_map *)(get_vma_private_data(vma) &
951                                                         ~HPAGE_RESV_MASK);
952         }
953 }
954
955 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
956 {
957         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
958         VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
959
960         set_vma_private_data(vma, (get_vma_private_data(vma) &
961                                 HPAGE_RESV_MASK) | (unsigned long)map);
962 }
963
964 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
965 {
966         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
967         VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
968
969         set_vma_private_data(vma, get_vma_private_data(vma) | flags);
970 }
971
972 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
973 {
974         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
975
976         return (get_vma_private_data(vma) & flag) != 0;
977 }
978
979 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
980 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
981 {
982         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
983         if (!(vma->vm_flags & VM_MAYSHARE))
984                 vma->vm_private_data = (void *)0;
985 }
986
987 /* Returns true if the VMA has associated reserve pages */
988 static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
989 {
990         if (vma->vm_flags & VM_NORESERVE) {
991                 /*
992                  * This address is already reserved by other process(chg == 0),
993                  * so, we should decrement reserved count. Without decrementing,
994                  * reserve count remains after releasing inode, because this
995                  * allocated page will go into page cache and is regarded as
996                  * coming from reserved pool in releasing step.  Currently, we
997                  * don't have any other solution to deal with this situation
998                  * properly, so add work-around here.
999                  */
1000                 if (vma->vm_flags & VM_MAYSHARE && chg == 0)
1001                         return true;
1002                 else
1003                         return false;
1004         }
1005
1006         /* Shared mappings always use reserves */
1007         if (vma->vm_flags & VM_MAYSHARE) {
1008                 /*
1009                  * We know VM_NORESERVE is not set.  Therefore, there SHOULD
1010                  * be a region map for all pages.  The only situation where
1011                  * there is no region map is if a hole was punched via
1012                  * fallocate.  In this case, there really are no reserves to
1013                  * use.  This situation is indicated if chg != 0.
1014                  */
1015                 if (chg)
1016                         return false;
1017                 else
1018                         return true;
1019         }
1020
1021         /*
1022          * Only the process that called mmap() has reserves for
1023          * private mappings.
1024          */
1025         if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1026                 /*
1027                  * Like the shared case above, a hole punch or truncate
1028                  * could have been performed on the private mapping.
1029                  * Examine the value of chg to determine if reserves
1030                  * actually exist or were previously consumed.
1031                  * Very Subtle - The value of chg comes from a previous
1032                  * call to vma_needs_reserves().  The reserve map for
1033                  * private mappings has different (opposite) semantics
1034                  * than that of shared mappings.  vma_needs_reserves()
1035                  * has already taken this difference in semantics into
1036                  * account.  Therefore, the meaning of chg is the same
1037                  * as in the shared case above.  Code could easily be
1038                  * combined, but keeping it separate draws attention to
1039                  * subtle differences.
1040                  */
1041                 if (chg)
1042                         return false;
1043                 else
1044                         return true;
1045         }
1046
1047         return false;
1048 }
1049
1050 static void enqueue_huge_page(struct hstate *h, struct page *page)
1051 {
1052         int nid = page_to_nid(page);
1053         list_move(&page->lru, &h->hugepage_freelists[nid]);
1054         h->free_huge_pages++;
1055         h->free_huge_pages_node[nid]++;
1056         SetPageHugeFreed(page);
1057 }
1058
1059 static struct page *dequeue_huge_page_node_exact(struct hstate *h, int nid)
1060 {
1061         struct page *page;
1062         bool nocma = !!(current->flags & PF_MEMALLOC_NOCMA);
1063
1064         list_for_each_entry(page, &h->hugepage_freelists[nid], lru) {
1065                 if (nocma && is_migrate_cma_page(page))
1066                         continue;
1067
1068                 if (PageHWPoison(page))
1069                         continue;
1070
1071                 list_move(&page->lru, &h->hugepage_activelist);
1072                 set_page_refcounted(page);
1073                 ClearPageHugeFreed(page);
1074                 h->free_huge_pages--;
1075                 h->free_huge_pages_node[nid]--;
1076                 return page;
1077         }
1078
1079         return NULL;
1080 }
1081
1082 static struct page *dequeue_huge_page_nodemask(struct hstate *h, gfp_t gfp_mask, int nid,
1083                 nodemask_t *nmask)
1084 {
1085         unsigned int cpuset_mems_cookie;
1086         struct zonelist *zonelist;
1087         struct zone *zone;
1088         struct zoneref *z;
1089         int node = NUMA_NO_NODE;
1090
1091         zonelist = node_zonelist(nid, gfp_mask);
1092
1093 retry_cpuset:
1094         cpuset_mems_cookie = read_mems_allowed_begin();
1095         for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
1096                 struct page *page;
1097
1098                 if (!cpuset_zone_allowed(zone, gfp_mask))
1099                         continue;
1100                 /*
1101                  * no need to ask again on the same node. Pool is node rather than
1102                  * zone aware
1103                  */
1104                 if (zone_to_nid(zone) == node)
1105                         continue;
1106                 node = zone_to_nid(zone);
1107
1108                 page = dequeue_huge_page_node_exact(h, node);
1109                 if (page)
1110                         return page;
1111         }
1112         if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
1113                 goto retry_cpuset;
1114
1115         return NULL;
1116 }
1117
1118 static struct page *dequeue_huge_page_vma(struct hstate *h,
1119                                 struct vm_area_struct *vma,
1120                                 unsigned long address, int avoid_reserve,
1121                                 long chg)
1122 {
1123         struct page *page;
1124         struct mempolicy *mpol;
1125         gfp_t gfp_mask;
1126         nodemask_t *nodemask;
1127         int nid;
1128
1129         /*
1130          * A child process with MAP_PRIVATE mappings created by their parent
1131          * have no page reserves. This check ensures that reservations are
1132          * not "stolen". The child may still get SIGKILLed
1133          */
1134         if (!vma_has_reserves(vma, chg) &&
1135                         h->free_huge_pages - h->resv_huge_pages == 0)
1136                 goto err;
1137
1138         /* If reserves cannot be used, ensure enough pages are in the pool */
1139         if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
1140                 goto err;
1141
1142         gfp_mask = htlb_alloc_mask(h);
1143         nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
1144         page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
1145         if (page && !avoid_reserve && vma_has_reserves(vma, chg)) {
1146                 SetPagePrivate(page);
1147                 h->resv_huge_pages--;
1148         }
1149
1150         mpol_cond_put(mpol);
1151         return page;
1152
1153 err:
1154         return NULL;
1155 }
1156
1157 /*
1158  * common helper functions for hstate_next_node_to_{alloc|free}.
1159  * We may have allocated or freed a huge page based on a different
1160  * nodes_allowed previously, so h->next_node_to_{alloc|free} might
1161  * be outside of *nodes_allowed.  Ensure that we use an allowed
1162  * node for alloc or free.
1163  */
1164 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
1165 {
1166         nid = next_node_in(nid, *nodes_allowed);
1167         VM_BUG_ON(nid >= MAX_NUMNODES);
1168
1169         return nid;
1170 }
1171
1172 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
1173 {
1174         if (!node_isset(nid, *nodes_allowed))
1175                 nid = next_node_allowed(nid, nodes_allowed);
1176         return nid;
1177 }
1178
1179 /*
1180  * returns the previously saved node ["this node"] from which to
1181  * allocate a persistent huge page for the pool and advance the
1182  * next node from which to allocate, handling wrap at end of node
1183  * mask.
1184  */
1185 static int hstate_next_node_to_alloc(struct hstate *h,
1186                                         nodemask_t *nodes_allowed)
1187 {
1188         int nid;
1189
1190         VM_BUG_ON(!nodes_allowed);
1191
1192         nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
1193         h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
1194
1195         return nid;
1196 }
1197
1198 /*
1199  * helper for free_pool_huge_page() - return the previously saved
1200  * node ["this node"] from which to free a huge page.  Advance the
1201  * next node id whether or not we find a free huge page to free so
1202  * that the next attempt to free addresses the next node.
1203  */
1204 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1205 {
1206         int nid;
1207
1208         VM_BUG_ON(!nodes_allowed);
1209
1210         nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1211         h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1212
1213         return nid;
1214 }
1215
1216 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask)           \
1217         for (nr_nodes = nodes_weight(*mask);                            \
1218                 nr_nodes > 0 &&                                         \
1219                 ((node = hstate_next_node_to_alloc(hs, mask)) || 1);    \
1220                 nr_nodes--)
1221
1222 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask)            \
1223         for (nr_nodes = nodes_weight(*mask);                            \
1224                 nr_nodes > 0 &&                                         \
1225                 ((node = hstate_next_node_to_free(hs, mask)) || 1);     \
1226                 nr_nodes--)
1227
1228 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
1229 static void destroy_compound_gigantic_page(struct page *page,
1230                                         unsigned int order)
1231 {
1232         int i;
1233         int nr_pages = 1 << order;
1234         struct page *p = page + 1;
1235
1236         atomic_set(compound_mapcount_ptr(page), 0);
1237         atomic_set(compound_pincount_ptr(page), 0);
1238
1239         for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1240                 clear_compound_head(p);
1241                 set_page_refcounted(p);
1242         }
1243
1244         set_compound_order(page, 0);
1245         page[1].compound_nr = 0;
1246         __ClearPageHead(page);
1247 }
1248
1249 static void free_gigantic_page(struct page *page, unsigned int order)
1250 {
1251         /*
1252          * If the page isn't allocated using the cma allocator,
1253          * cma_release() returns false.
1254          */
1255 #ifdef CONFIG_CMA
1256         if (cma_release(hugetlb_cma[page_to_nid(page)], page, 1 << order))
1257                 return;
1258 #endif
1259
1260         free_contig_range(page_to_pfn(page), 1 << order);
1261 }
1262
1263 #ifdef CONFIG_CONTIG_ALLOC
1264 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1265                 int nid, nodemask_t *nodemask)
1266 {
1267         unsigned long nr_pages = 1UL << huge_page_order(h);
1268         if (nid == NUMA_NO_NODE)
1269                 nid = numa_mem_id();
1270
1271 #ifdef CONFIG_CMA
1272         {
1273                 struct page *page;
1274                 int node;
1275
1276                 if (hugetlb_cma[nid]) {
1277                         page = cma_alloc(hugetlb_cma[nid], nr_pages,
1278                                         huge_page_order(h), true);
1279                         if (page)
1280                                 return page;
1281                 }
1282
1283                 if (!(gfp_mask & __GFP_THISNODE)) {
1284                         for_each_node_mask(node, *nodemask) {
1285                                 if (node == nid || !hugetlb_cma[node])
1286                                         continue;
1287
1288                                 page = cma_alloc(hugetlb_cma[node], nr_pages,
1289                                                 huge_page_order(h), true);
1290                                 if (page)
1291                                         return page;
1292                         }
1293                 }
1294         }
1295 #endif
1296
1297         return alloc_contig_pages(nr_pages, gfp_mask, nid, nodemask);
1298 }
1299
1300 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid);
1301 static void prep_compound_gigantic_page(struct page *page, unsigned int order);
1302 #else /* !CONFIG_CONTIG_ALLOC */
1303 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1304                                         int nid, nodemask_t *nodemask)
1305 {
1306         return NULL;
1307 }
1308 #endif /* CONFIG_CONTIG_ALLOC */
1309
1310 #else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
1311 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1312                                         int nid, nodemask_t *nodemask)
1313 {
1314         return NULL;
1315 }
1316 static inline void free_gigantic_page(struct page *page, unsigned int order) { }
1317 static inline void destroy_compound_gigantic_page(struct page *page,
1318                                                 unsigned int order) { }
1319 #endif
1320
1321 static void update_and_free_page(struct hstate *h, struct page *page)
1322 {
1323         int i;
1324         struct page *subpage = page;
1325
1326         if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1327                 return;
1328
1329         h->nr_huge_pages--;
1330         h->nr_huge_pages_node[page_to_nid(page)]--;
1331         for (i = 0; i < pages_per_huge_page(h);
1332              i++, subpage = mem_map_next(subpage, page, i)) {
1333                 subpage->flags &= ~(1 << PG_locked | 1 << PG_error |
1334                                 1 << PG_referenced | 1 << PG_dirty |
1335                                 1 << PG_active | 1 << PG_private |
1336                                 1 << PG_writeback);
1337         }
1338         VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
1339         VM_BUG_ON_PAGE(hugetlb_cgroup_from_page_rsvd(page), page);
1340         set_compound_page_dtor(page, NULL_COMPOUND_DTOR);
1341         set_page_refcounted(page);
1342         if (hstate_is_gigantic(h)) {
1343                 /*
1344                  * Temporarily drop the hugetlb_lock, because
1345                  * we might block in free_gigantic_page().
1346                  */
1347                 spin_unlock(&hugetlb_lock);
1348                 destroy_compound_gigantic_page(page, huge_page_order(h));
1349                 free_gigantic_page(page, huge_page_order(h));
1350                 spin_lock(&hugetlb_lock);
1351         } else {
1352                 __free_pages(page, huge_page_order(h));
1353         }
1354 }
1355
1356 struct hstate *size_to_hstate(unsigned long size)
1357 {
1358         struct hstate *h;
1359
1360         for_each_hstate(h) {
1361                 if (huge_page_size(h) == size)
1362                         return h;
1363         }
1364         return NULL;
1365 }
1366
1367 /*
1368  * Test to determine whether the hugepage is "active/in-use" (i.e. being linked
1369  * to hstate->hugepage_activelist.)
1370  *
1371  * This function can be called for tail pages, but never returns true for them.
1372  */
1373 bool page_huge_active(struct page *page)
1374 {
1375         return PageHeadHuge(page) && PagePrivate(&page[1]);
1376 }
1377
1378 /* never called for tail page */
1379 void set_page_huge_active(struct page *page)
1380 {
1381         VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1382         SetPagePrivate(&page[1]);
1383 }
1384
1385 static void clear_page_huge_active(struct page *page)
1386 {
1387         VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1388         ClearPagePrivate(&page[1]);
1389 }
1390
1391 /*
1392  * Internal hugetlb specific page flag. Do not use outside of the hugetlb
1393  * code
1394  */
1395 static inline bool PageHugeTemporary(struct page *page)
1396 {
1397         if (!PageHuge(page))
1398                 return false;
1399
1400         return (unsigned long)page[2].mapping == -1U;
1401 }
1402
1403 static inline void SetPageHugeTemporary(struct page *page)
1404 {
1405         page[2].mapping = (void *)-1U;
1406 }
1407
1408 static inline void ClearPageHugeTemporary(struct page *page)
1409 {
1410         page[2].mapping = NULL;
1411 }
1412
1413 static void __free_huge_page(struct page *page)
1414 {
1415         /*
1416          * Can't pass hstate in here because it is called from the
1417          * compound page destructor.
1418          */
1419         struct hstate *h = page_hstate(page);
1420         int nid = page_to_nid(page);
1421         struct hugepage_subpool *spool =
1422                 (struct hugepage_subpool *)page_private(page);
1423         bool restore_reserve;
1424
1425         VM_BUG_ON_PAGE(page_count(page), page);
1426         VM_BUG_ON_PAGE(page_mapcount(page), page);
1427
1428         set_page_private(page, 0);
1429         page->mapping = NULL;
1430         restore_reserve = PagePrivate(page);
1431         ClearPagePrivate(page);
1432
1433         /*
1434          * If PagePrivate() was set on page, page allocation consumed a
1435          * reservation.  If the page was associated with a subpool, there
1436          * would have been a page reserved in the subpool before allocation
1437          * via hugepage_subpool_get_pages().  Since we are 'restoring' the
1438          * reservation, do not call hugepage_subpool_put_pages() as this will
1439          * remove the reserved page from the subpool.
1440          */
1441         if (!restore_reserve) {
1442                 /*
1443                  * A return code of zero implies that the subpool will be
1444                  * under its minimum size if the reservation is not restored
1445                  * after page is free.  Therefore, force restore_reserve
1446                  * operation.
1447                  */
1448                 if (hugepage_subpool_put_pages(spool, 1) == 0)
1449                         restore_reserve = true;
1450         }
1451
1452         spin_lock(&hugetlb_lock);
1453         clear_page_huge_active(page);
1454         hugetlb_cgroup_uncharge_page(hstate_index(h),
1455                                      pages_per_huge_page(h), page);
1456         hugetlb_cgroup_uncharge_page_rsvd(hstate_index(h),
1457                                           pages_per_huge_page(h), page);
1458         if (restore_reserve)
1459                 h->resv_huge_pages++;
1460
1461         if (PageHugeTemporary(page)) {
1462                 list_del(&page->lru);
1463                 ClearPageHugeTemporary(page);
1464                 update_and_free_page(h, page);
1465         } else if (h->surplus_huge_pages_node[nid]) {
1466                 /* remove the page from active list */
1467                 list_del(&page->lru);
1468                 update_and_free_page(h, page);
1469                 h->surplus_huge_pages--;
1470                 h->surplus_huge_pages_node[nid]--;
1471         } else {
1472                 arch_clear_hugepage_flags(page);
1473                 enqueue_huge_page(h, page);
1474         }
1475         spin_unlock(&hugetlb_lock);
1476 }
1477
1478 /*
1479  * As free_huge_page() can be called from a non-task context, we have
1480  * to defer the actual freeing in a workqueue to prevent potential
1481  * hugetlb_lock deadlock.
1482  *
1483  * free_hpage_workfn() locklessly retrieves the linked list of pages to
1484  * be freed and frees them one-by-one. As the page->mapping pointer is
1485  * going to be cleared in __free_huge_page() anyway, it is reused as the
1486  * llist_node structure of a lockless linked list of huge pages to be freed.
1487  */
1488 static LLIST_HEAD(hpage_freelist);
1489
1490 static void free_hpage_workfn(struct work_struct *work)
1491 {
1492         struct llist_node *node;
1493         struct page *page;
1494
1495         node = llist_del_all(&hpage_freelist);
1496
1497         while (node) {
1498                 page = container_of((struct address_space **)node,
1499                                      struct page, mapping);
1500                 node = node->next;
1501                 __free_huge_page(page);
1502         }
1503 }
1504 static DECLARE_WORK(free_hpage_work, free_hpage_workfn);
1505
1506 void free_huge_page(struct page *page)
1507 {
1508         /*
1509          * Defer freeing if in non-task context to avoid hugetlb_lock deadlock.
1510          */
1511         if (!in_task()) {
1512                 /*
1513                  * Only call schedule_work() if hpage_freelist is previously
1514                  * empty. Otherwise, schedule_work() had been called but the
1515                  * workfn hasn't retrieved the list yet.
1516                  */
1517                 if (llist_add((struct llist_node *)&page->mapping,
1518                               &hpage_freelist))
1519                         schedule_work(&free_hpage_work);
1520                 return;
1521         }
1522
1523         __free_huge_page(page);
1524 }
1525
1526 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
1527 {
1528         INIT_LIST_HEAD(&page->lru);
1529         set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1530         set_hugetlb_cgroup(page, NULL);
1531         set_hugetlb_cgroup_rsvd(page, NULL);
1532         spin_lock(&hugetlb_lock);
1533         h->nr_huge_pages++;
1534         h->nr_huge_pages_node[nid]++;
1535         ClearPageHugeFreed(page);
1536         spin_unlock(&hugetlb_lock);
1537 }
1538
1539 static void prep_compound_gigantic_page(struct page *page, unsigned int order)
1540 {
1541         int i;
1542         int nr_pages = 1 << order;
1543         struct page *p = page + 1;
1544
1545         /* we rely on prep_new_huge_page to set the destructor */
1546         set_compound_order(page, order);
1547         __ClearPageReserved(page);
1548         __SetPageHead(page);
1549         for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1550                 /*
1551                  * For gigantic hugepages allocated through bootmem at
1552                  * boot, it's safer to be consistent with the not-gigantic
1553                  * hugepages and clear the PG_reserved bit from all tail pages
1554                  * too.  Otherwise drivers using get_user_pages() to access tail
1555                  * pages may get the reference counting wrong if they see
1556                  * PG_reserved set on a tail page (despite the head page not
1557                  * having PG_reserved set).  Enforcing this consistency between
1558                  * head and tail pages allows drivers to optimize away a check
1559                  * on the head page when they need know if put_page() is needed
1560                  * after get_user_pages().
1561                  */
1562                 __ClearPageReserved(p);
1563                 set_page_count(p, 0);
1564                 set_compound_head(p, page);
1565         }
1566         atomic_set(compound_mapcount_ptr(page), -1);
1567         atomic_set(compound_pincount_ptr(page), 0);
1568 }
1569
1570 /*
1571  * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1572  * transparent huge pages.  See the PageTransHuge() documentation for more
1573  * details.
1574  */
1575 int PageHuge(struct page *page)
1576 {
1577         if (!PageCompound(page))
1578                 return 0;
1579
1580         page = compound_head(page);
1581         return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
1582 }
1583 EXPORT_SYMBOL_GPL(PageHuge);
1584
1585 /*
1586  * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1587  * normal or transparent huge pages.
1588  */
1589 int PageHeadHuge(struct page *page_head)
1590 {
1591         if (!PageHead(page_head))
1592                 return 0;
1593
1594         return page_head[1].compound_dtor == HUGETLB_PAGE_DTOR;
1595 }
1596
1597 /*
1598  * Find and lock address space (mapping) in write mode.
1599  *
1600  * Upon entry, the page is locked which means that page_mapping() is
1601  * stable.  Due to locking order, we can only trylock_write.  If we can
1602  * not get the lock, simply return NULL to caller.
1603  */
1604 struct address_space *hugetlb_page_mapping_lock_write(struct page *hpage)
1605 {
1606         struct address_space *mapping = page_mapping(hpage);
1607
1608         if (!mapping)
1609                 return mapping;
1610
1611         if (i_mmap_trylock_write(mapping))
1612                 return mapping;
1613
1614         return NULL;
1615 }
1616
1617 pgoff_t __basepage_index(struct page *page)
1618 {
1619         struct page *page_head = compound_head(page);
1620         pgoff_t index = page_index(page_head);
1621         unsigned long compound_idx;
1622
1623         if (!PageHuge(page_head))
1624                 return page_index(page);
1625
1626         if (compound_order(page_head) >= MAX_ORDER)
1627                 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
1628         else
1629                 compound_idx = page - page_head;
1630
1631         return (index << compound_order(page_head)) + compound_idx;
1632 }
1633
1634 static struct page *alloc_buddy_huge_page(struct hstate *h,
1635                 gfp_t gfp_mask, int nid, nodemask_t *nmask,
1636                 nodemask_t *node_alloc_noretry)
1637 {
1638         int order = huge_page_order(h);
1639         struct page *page;
1640         bool alloc_try_hard = true;
1641
1642         /*
1643          * By default we always try hard to allocate the page with
1644          * __GFP_RETRY_MAYFAIL flag.  However, if we are allocating pages in
1645          * a loop (to adjust global huge page counts) and previous allocation
1646          * failed, do not continue to try hard on the same node.  Use the
1647          * node_alloc_noretry bitmap to manage this state information.
1648          */
1649         if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry))
1650                 alloc_try_hard = false;
1651         gfp_mask |= __GFP_COMP|__GFP_NOWARN;
1652         if (alloc_try_hard)
1653                 gfp_mask |= __GFP_RETRY_MAYFAIL;
1654         if (nid == NUMA_NO_NODE)
1655                 nid = numa_mem_id();
1656         page = __alloc_pages_nodemask(gfp_mask, order, nid, nmask);
1657         if (page)
1658                 __count_vm_event(HTLB_BUDDY_PGALLOC);
1659         else
1660                 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1661
1662         /*
1663          * If we did not specify __GFP_RETRY_MAYFAIL, but still got a page this
1664          * indicates an overall state change.  Clear bit so that we resume
1665          * normal 'try hard' allocations.
1666          */
1667         if (node_alloc_noretry && page && !alloc_try_hard)
1668                 node_clear(nid, *node_alloc_noretry);
1669
1670         /*
1671          * If we tried hard to get a page but failed, set bit so that
1672          * subsequent attempts will not try as hard until there is an
1673          * overall state change.
1674          */
1675         if (node_alloc_noretry && !page && alloc_try_hard)
1676                 node_set(nid, *node_alloc_noretry);
1677
1678         return page;
1679 }
1680
1681 /*
1682  * Common helper to allocate a fresh hugetlb page. All specific allocators
1683  * should use this function to get new hugetlb pages
1684  */
1685 static struct page *alloc_fresh_huge_page(struct hstate *h,
1686                 gfp_t gfp_mask, int nid, nodemask_t *nmask,
1687                 nodemask_t *node_alloc_noretry)
1688 {
1689         struct page *page;
1690
1691         if (hstate_is_gigantic(h))
1692                 page = alloc_gigantic_page(h, gfp_mask, nid, nmask);
1693         else
1694                 page = alloc_buddy_huge_page(h, gfp_mask,
1695                                 nid, nmask, node_alloc_noretry);
1696         if (!page)
1697                 return NULL;
1698
1699         if (hstate_is_gigantic(h))
1700                 prep_compound_gigantic_page(page, huge_page_order(h));
1701         prep_new_huge_page(h, page, page_to_nid(page));
1702
1703         return page;
1704 }
1705
1706 /*
1707  * Allocates a fresh page to the hugetlb allocator pool in the node interleaved
1708  * manner.
1709  */
1710 static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1711                                 nodemask_t *node_alloc_noretry)
1712 {
1713         struct page *page;
1714         int nr_nodes, node;
1715         gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
1716
1717         for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1718                 page = alloc_fresh_huge_page(h, gfp_mask, node, nodes_allowed,
1719                                                 node_alloc_noretry);
1720                 if (page)
1721                         break;
1722         }
1723
1724         if (!page)
1725                 return 0;
1726
1727         put_page(page); /* free it into the hugepage allocator */
1728
1729         return 1;
1730 }
1731
1732 /*
1733  * Free huge page from pool from next node to free.
1734  * Attempt to keep persistent huge pages more or less
1735  * balanced over allowed nodes.
1736  * Called with hugetlb_lock locked.
1737  */
1738 static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1739                                                          bool acct_surplus)
1740 {
1741         int nr_nodes, node;
1742         int ret = 0;
1743
1744         for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1745                 /*
1746                  * If we're returning unused surplus pages, only examine
1747                  * nodes with surplus pages.
1748                  */
1749                 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
1750                     !list_empty(&h->hugepage_freelists[node])) {
1751                         struct page *page =
1752                                 list_entry(h->hugepage_freelists[node].next,
1753                                           struct page, lru);
1754                         list_del(&page->lru);
1755                         h->free_huge_pages--;
1756                         h->free_huge_pages_node[node]--;
1757                         if (acct_surplus) {
1758                                 h->surplus_huge_pages--;
1759                                 h->surplus_huge_pages_node[node]--;
1760                         }
1761                         update_and_free_page(h, page);
1762                         ret = 1;
1763                         break;
1764                 }
1765         }
1766
1767         return ret;
1768 }
1769
1770 /*
1771  * Dissolve a given free hugepage into free buddy pages. This function does
1772  * nothing for in-use hugepages and non-hugepages.
1773  * This function returns values like below:
1774  *
1775  *  -EBUSY: failed to dissolved free hugepages or the hugepage is in-use
1776  *          (allocated or reserved.)
1777  *       0: successfully dissolved free hugepages or the page is not a
1778  *          hugepage (considered as already dissolved)
1779  */
1780 int dissolve_free_huge_page(struct page *page)
1781 {
1782         int rc = -EBUSY;
1783
1784 retry:
1785         /* Not to disrupt normal path by vainly holding hugetlb_lock */
1786         if (!PageHuge(page))
1787                 return 0;
1788
1789         spin_lock(&hugetlb_lock);
1790         if (!PageHuge(page)) {
1791                 rc = 0;
1792                 goto out;
1793         }
1794
1795         if (!page_count(page)) {
1796                 struct page *head = compound_head(page);
1797                 struct hstate *h = page_hstate(head);
1798                 int nid = page_to_nid(head);
1799                 if (h->free_huge_pages - h->resv_huge_pages == 0)
1800                         goto out;
1801
1802                 /*
1803                  * We should make sure that the page is already on the free list
1804                  * when it is dissolved.
1805                  */
1806                 if (unlikely(!PageHugeFreed(head))) {
1807                         spin_unlock(&hugetlb_lock);
1808                         cond_resched();
1809
1810                         /*
1811                          * Theoretically, we should return -EBUSY when we
1812                          * encounter this race. In fact, we have a chance
1813                          * to successfully dissolve the page if we do a
1814                          * retry. Because the race window is quite small.
1815                          * If we seize this opportunity, it is an optimization
1816                          * for increasing the success rate of dissolving page.
1817                          */
1818                         goto retry;
1819                 }
1820
1821                 /*
1822                  * Move PageHWPoison flag from head page to the raw error page,
1823                  * which makes any subpages rather than the error page reusable.
1824                  */
1825                 if (PageHWPoison(head) && page != head) {
1826                         SetPageHWPoison(page);
1827                         ClearPageHWPoison(head);
1828                 }
1829                 list_del(&head->lru);
1830                 h->free_huge_pages--;
1831                 h->free_huge_pages_node[nid]--;
1832                 h->max_huge_pages--;
1833                 update_and_free_page(h, head);
1834                 rc = 0;
1835         }
1836 out:
1837         spin_unlock(&hugetlb_lock);
1838         return rc;
1839 }
1840
1841 /*
1842  * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
1843  * make specified memory blocks removable from the system.
1844  * Note that this will dissolve a free gigantic hugepage completely, if any
1845  * part of it lies within the given range.
1846  * Also note that if dissolve_free_huge_page() returns with an error, all
1847  * free hugepages that were dissolved before that error are lost.
1848  */
1849 int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
1850 {
1851         unsigned long pfn;
1852         struct page *page;
1853         int rc = 0;
1854
1855         if (!hugepages_supported())
1856                 return rc;
1857
1858         for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order) {
1859                 page = pfn_to_page(pfn);
1860                 rc = dissolve_free_huge_page(page);
1861                 if (rc)
1862                         break;
1863         }
1864
1865         return rc;
1866 }
1867
1868 /*
1869  * Allocates a fresh surplus page from the page allocator.
1870  */
1871 static struct page *alloc_surplus_huge_page(struct hstate *h, gfp_t gfp_mask,
1872                 int nid, nodemask_t *nmask)
1873 {
1874         struct page *page = NULL;
1875
1876         if (hstate_is_gigantic(h))
1877                 return NULL;
1878
1879         spin_lock(&hugetlb_lock);
1880         if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages)
1881                 goto out_unlock;
1882         spin_unlock(&hugetlb_lock);
1883
1884         page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
1885         if (!page)
1886                 return NULL;
1887
1888         spin_lock(&hugetlb_lock);
1889         /*
1890          * We could have raced with the pool size change.
1891          * Double check that and simply deallocate the new page
1892          * if we would end up overcommiting the surpluses. Abuse
1893          * temporary page to workaround the nasty free_huge_page
1894          * codeflow
1895          */
1896         if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
1897                 SetPageHugeTemporary(page);
1898                 spin_unlock(&hugetlb_lock);
1899                 put_page(page);
1900                 return NULL;
1901         } else {
1902                 h->surplus_huge_pages++;
1903                 h->surplus_huge_pages_node[page_to_nid(page)]++;
1904         }
1905
1906 out_unlock:
1907         spin_unlock(&hugetlb_lock);
1908
1909         return page;
1910 }
1911
1912 static struct page *alloc_migrate_huge_page(struct hstate *h, gfp_t gfp_mask,
1913                                      int nid, nodemask_t *nmask)
1914 {
1915         struct page *page;
1916
1917         if (hstate_is_gigantic(h))
1918                 return NULL;
1919
1920         page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
1921         if (!page)
1922                 return NULL;
1923
1924         /*
1925          * We do not account these pages as surplus because they are only
1926          * temporary and will be released properly on the last reference
1927          */
1928         SetPageHugeTemporary(page);
1929
1930         return page;
1931 }
1932
1933 /*
1934  * Use the VMA's mpolicy to allocate a huge page from the buddy.
1935  */
1936 static
1937 struct page *alloc_buddy_huge_page_with_mpol(struct hstate *h,
1938                 struct vm_area_struct *vma, unsigned long addr)
1939 {
1940         struct page *page;
1941         struct mempolicy *mpol;
1942         gfp_t gfp_mask = htlb_alloc_mask(h);
1943         int nid;
1944         nodemask_t *nodemask;
1945
1946         nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
1947         page = alloc_surplus_huge_page(h, gfp_mask, nid, nodemask);
1948         mpol_cond_put(mpol);
1949
1950         return page;
1951 }
1952
1953 /* page migration callback function */
1954 struct page *alloc_huge_page_nodemask(struct hstate *h, int preferred_nid,
1955                 nodemask_t *nmask, gfp_t gfp_mask)
1956 {
1957         spin_lock(&hugetlb_lock);
1958         if (h->free_huge_pages - h->resv_huge_pages > 0) {
1959                 struct page *page;
1960
1961                 page = dequeue_huge_page_nodemask(h, gfp_mask, preferred_nid, nmask);
1962                 if (page) {
1963                         spin_unlock(&hugetlb_lock);
1964                         return page;
1965                 }
1966         }
1967         spin_unlock(&hugetlb_lock);
1968
1969         return alloc_migrate_huge_page(h, gfp_mask, preferred_nid, nmask);
1970 }
1971
1972 /* mempolicy aware migration callback */
1973 struct page *alloc_huge_page_vma(struct hstate *h, struct vm_area_struct *vma,
1974                 unsigned long address)
1975 {
1976         struct mempolicy *mpol;
1977         nodemask_t *nodemask;
1978         struct page *page;
1979         gfp_t gfp_mask;
1980         int node;
1981
1982         gfp_mask = htlb_alloc_mask(h);
1983         node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
1984         page = alloc_huge_page_nodemask(h, node, nodemask, gfp_mask);
1985         mpol_cond_put(mpol);
1986
1987         return page;
1988 }
1989
1990 /*
1991  * Increase the hugetlb pool such that it can accommodate a reservation
1992  * of size 'delta'.
1993  */
1994 static int gather_surplus_pages(struct hstate *h, long delta)
1995         __must_hold(&hugetlb_lock)
1996 {
1997         struct list_head surplus_list;
1998         struct page *page, *tmp;
1999         int ret;
2000         long i;
2001         long needed, allocated;
2002         bool alloc_ok = true;
2003
2004         needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
2005         if (needed <= 0) {
2006                 h->resv_huge_pages += delta;
2007                 return 0;
2008         }
2009
2010         allocated = 0;
2011         INIT_LIST_HEAD(&surplus_list);
2012
2013         ret = -ENOMEM;
2014 retry:
2015         spin_unlock(&hugetlb_lock);
2016         for (i = 0; i < needed; i++) {
2017                 page = alloc_surplus_huge_page(h, htlb_alloc_mask(h),
2018                                 NUMA_NO_NODE, NULL);
2019                 if (!page) {
2020                         alloc_ok = false;
2021                         break;
2022                 }
2023                 list_add(&page->lru, &surplus_list);
2024                 cond_resched();
2025         }
2026         allocated += i;
2027
2028         /*
2029          * After retaking hugetlb_lock, we need to recalculate 'needed'
2030          * because either resv_huge_pages or free_huge_pages may have changed.
2031          */
2032         spin_lock(&hugetlb_lock);
2033         needed = (h->resv_huge_pages + delta) -
2034                         (h->free_huge_pages + allocated);
2035         if (needed > 0) {
2036                 if (alloc_ok)
2037                         goto retry;
2038                 /*
2039                  * We were not able to allocate enough pages to
2040                  * satisfy the entire reservation so we free what
2041                  * we've allocated so far.
2042                  */
2043                 goto free;
2044         }
2045         /*
2046          * The surplus_list now contains _at_least_ the number of extra pages
2047          * needed to accommodate the reservation.  Add the appropriate number
2048          * of pages to the hugetlb pool and free the extras back to the buddy
2049          * allocator.  Commit the entire reservation here to prevent another
2050          * process from stealing the pages as they are added to the pool but
2051          * before they are reserved.
2052          */
2053         needed += allocated;
2054         h->resv_huge_pages += delta;
2055         ret = 0;
2056
2057         /* Free the needed pages to the hugetlb pool */
2058         list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
2059                 int zeroed;
2060
2061                 if ((--needed) < 0)
2062                         break;
2063                 /*
2064                  * This page is now managed by the hugetlb allocator and has
2065                  * no users -- drop the buddy allocator's reference.
2066                  */
2067                 zeroed = put_page_testzero(page);
2068                 VM_BUG_ON_PAGE(!zeroed, page);
2069                 enqueue_huge_page(h, page);
2070         }
2071 free:
2072         spin_unlock(&hugetlb_lock);
2073
2074         /* Free unnecessary surplus pages to the buddy allocator */
2075         list_for_each_entry_safe(page, tmp, &surplus_list, lru)
2076                 put_page(page);
2077         spin_lock(&hugetlb_lock);
2078
2079         return ret;
2080 }
2081
2082 /*
2083  * This routine has two main purposes:
2084  * 1) Decrement the reservation count (resv_huge_pages) by the value passed
2085  *    in unused_resv_pages.  This corresponds to the prior adjustments made
2086  *    to the associated reservation map.
2087  * 2) Free any unused surplus pages that may have been allocated to satisfy
2088  *    the reservation.  As many as unused_resv_pages may be freed.
2089  *
2090  * Called with hugetlb_lock held.  However, the lock could be dropped (and
2091  * reacquired) during calls to cond_resched_lock.  Whenever dropping the lock,
2092  * we must make sure nobody else can claim pages we are in the process of
2093  * freeing.  Do this by ensuring resv_huge_page always is greater than the
2094  * number of huge pages we plan to free when dropping the lock.
2095  */
2096 static void return_unused_surplus_pages(struct hstate *h,
2097                                         unsigned long unused_resv_pages)
2098 {
2099         unsigned long nr_pages;
2100
2101         /* Cannot return gigantic pages currently */
2102         if (hstate_is_gigantic(h))
2103                 goto out;
2104
2105         /*
2106          * Part (or even all) of the reservation could have been backed
2107          * by pre-allocated pages. Only free surplus pages.
2108          */
2109         nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
2110
2111         /*
2112          * We want to release as many surplus pages as possible, spread
2113          * evenly across all nodes with memory. Iterate across these nodes
2114          * until we can no longer free unreserved surplus pages. This occurs
2115          * when the nodes with surplus pages have no free pages.
2116          * free_pool_huge_page() will balance the freed pages across the
2117          * on-line nodes with memory and will handle the hstate accounting.
2118          *
2119          * Note that we decrement resv_huge_pages as we free the pages.  If
2120          * we drop the lock, resv_huge_pages will still be sufficiently large
2121          * to cover subsequent pages we may free.
2122          */
2123         while (nr_pages--) {
2124                 h->resv_huge_pages--;
2125                 unused_resv_pages--;
2126                 if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
2127                         goto out;
2128                 cond_resched_lock(&hugetlb_lock);
2129         }
2130
2131 out:
2132         /* Fully uncommit the reservation */
2133         h->resv_huge_pages -= unused_resv_pages;
2134 }
2135
2136
2137 /*
2138  * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
2139  * are used by the huge page allocation routines to manage reservations.
2140  *
2141  * vma_needs_reservation is called to determine if the huge page at addr
2142  * within the vma has an associated reservation.  If a reservation is
2143  * needed, the value 1 is returned.  The caller is then responsible for
2144  * managing the global reservation and subpool usage counts.  After
2145  * the huge page has been allocated, vma_commit_reservation is called
2146  * to add the page to the reservation map.  If the page allocation fails,
2147  * the reservation must be ended instead of committed.  vma_end_reservation
2148  * is called in such cases.
2149  *
2150  * In the normal case, vma_commit_reservation returns the same value
2151  * as the preceding vma_needs_reservation call.  The only time this
2152  * is not the case is if a reserve map was changed between calls.  It
2153  * is the responsibility of the caller to notice the difference and
2154  * take appropriate action.
2155  *
2156  * vma_add_reservation is used in error paths where a reservation must
2157  * be restored when a newly allocated huge page must be freed.  It is
2158  * to be called after calling vma_needs_reservation to determine if a
2159  * reservation exists.
2160  */
2161 enum vma_resv_mode {
2162         VMA_NEEDS_RESV,
2163         VMA_COMMIT_RESV,
2164         VMA_END_RESV,
2165         VMA_ADD_RESV,
2166 };
2167 static long __vma_reservation_common(struct hstate *h,
2168                                 struct vm_area_struct *vma, unsigned long addr,
2169                                 enum vma_resv_mode mode)
2170 {
2171         struct resv_map *resv;
2172         pgoff_t idx;
2173         long ret;
2174         long dummy_out_regions_needed;
2175
2176         resv = vma_resv_map(vma);
2177         if (!resv)
2178                 return 1;
2179
2180         idx = vma_hugecache_offset(h, vma, addr);
2181         switch (mode) {
2182         case VMA_NEEDS_RESV:
2183                 ret = region_chg(resv, idx, idx + 1, &dummy_out_regions_needed);
2184                 /* We assume that vma_reservation_* routines always operate on
2185                  * 1 page, and that adding to resv map a 1 page entry can only
2186                  * ever require 1 region.
2187                  */
2188                 VM_BUG_ON(dummy_out_regions_needed != 1);
2189                 break;
2190         case VMA_COMMIT_RESV:
2191                 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2192                 /* region_add calls of range 1 should never fail. */
2193                 VM_BUG_ON(ret < 0);
2194                 break;
2195         case VMA_END_RESV:
2196                 region_abort(resv, idx, idx + 1, 1);
2197                 ret = 0;
2198                 break;
2199         case VMA_ADD_RESV:
2200                 if (vma->vm_flags & VM_MAYSHARE) {
2201                         ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2202                         /* region_add calls of range 1 should never fail. */
2203                         VM_BUG_ON(ret < 0);
2204                 } else {
2205                         region_abort(resv, idx, idx + 1, 1);
2206                         ret = region_del(resv, idx, idx + 1);
2207                 }
2208                 break;
2209         default:
2210                 BUG();
2211         }
2212
2213         if (vma->vm_flags & VM_MAYSHARE)
2214                 return ret;
2215         else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && ret >= 0) {
2216                 /*
2217                  * In most cases, reserves always exist for private mappings.
2218                  * However, a file associated with mapping could have been
2219                  * hole punched or truncated after reserves were consumed.
2220                  * As subsequent fault on such a range will not use reserves.
2221                  * Subtle - The reserve map for private mappings has the
2222                  * opposite meaning than that of shared mappings.  If NO
2223                  * entry is in the reserve map, it means a reservation exists.
2224                  * If an entry exists in the reserve map, it means the
2225                  * reservation has already been consumed.  As a result, the
2226                  * return value of this routine is the opposite of the
2227                  * value returned from reserve map manipulation routines above.
2228                  */
2229                 if (ret)
2230                         return 0;
2231                 else
2232                         return 1;
2233         }
2234         else
2235                 return ret < 0 ? ret : 0;
2236 }
2237
2238 static long vma_needs_reservation(struct hstate *h,
2239                         struct vm_area_struct *vma, unsigned long addr)
2240 {
2241         return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
2242 }
2243
2244 static long vma_commit_reservation(struct hstate *h,
2245                         struct vm_area_struct *vma, unsigned long addr)
2246 {
2247         return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
2248 }
2249
2250 static void vma_end_reservation(struct hstate *h,
2251                         struct vm_area_struct *vma, unsigned long addr)
2252 {
2253         (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
2254 }
2255
2256 static long vma_add_reservation(struct hstate *h,
2257                         struct vm_area_struct *vma, unsigned long addr)
2258 {
2259         return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
2260 }
2261
2262 /*
2263  * This routine is called to restore a reservation on error paths.  In the
2264  * specific error paths, a huge page was allocated (via alloc_huge_page)
2265  * and is about to be freed.  If a reservation for the page existed,
2266  * alloc_huge_page would have consumed the reservation and set PagePrivate
2267  * in the newly allocated page.  When the page is freed via free_huge_page,
2268  * the global reservation count will be incremented if PagePrivate is set.
2269  * However, free_huge_page can not adjust the reserve map.  Adjust the
2270  * reserve map here to be consistent with global reserve count adjustments
2271  * to be made by free_huge_page.
2272  */
2273 static void restore_reserve_on_error(struct hstate *h,
2274                         struct vm_area_struct *vma, unsigned long address,
2275                         struct page *page)
2276 {
2277         if (unlikely(PagePrivate(page))) {
2278                 long rc = vma_needs_reservation(h, vma, address);
2279
2280                 if (unlikely(rc < 0)) {
2281                         /*
2282                          * Rare out of memory condition in reserve map
2283                          * manipulation.  Clear PagePrivate so that
2284                          * global reserve count will not be incremented
2285                          * by free_huge_page.  This will make it appear
2286                          * as though the reservation for this page was
2287                          * consumed.  This may prevent the task from
2288                          * faulting in the page at a later time.  This
2289                          * is better than inconsistent global huge page
2290                          * accounting of reserve counts.
2291                          */
2292                         ClearPagePrivate(page);
2293                 } else if (rc) {
2294                         rc = vma_add_reservation(h, vma, address);
2295                         if (unlikely(rc < 0))
2296                                 /*
2297                                  * See above comment about rare out of
2298                                  * memory condition.
2299                                  */
2300                                 ClearPagePrivate(page);
2301                 } else
2302                         vma_end_reservation(h, vma, address);
2303         }
2304 }
2305
2306 struct page *alloc_huge_page(struct vm_area_struct *vma,
2307                                     unsigned long addr, int avoid_reserve)
2308 {
2309         struct hugepage_subpool *spool = subpool_vma(vma);
2310         struct hstate *h = hstate_vma(vma);
2311         struct page *page;
2312         long map_chg, map_commit;
2313         long gbl_chg;
2314         int ret, idx;
2315         struct hugetlb_cgroup *h_cg;
2316         bool deferred_reserve;
2317
2318         idx = hstate_index(h);
2319         /*
2320          * Examine the region/reserve map to determine if the process
2321          * has a reservation for the page to be allocated.  A return
2322          * code of zero indicates a reservation exists (no change).
2323          */
2324         map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
2325         if (map_chg < 0)
2326                 return ERR_PTR(-ENOMEM);
2327
2328         /*
2329          * Processes that did not create the mapping will have no
2330          * reserves as indicated by the region/reserve map. Check
2331          * that the allocation will not exceed the subpool limit.
2332          * Allocations for MAP_NORESERVE mappings also need to be
2333          * checked against any subpool limit.
2334          */
2335         if (map_chg || avoid_reserve) {
2336                 gbl_chg = hugepage_subpool_get_pages(spool, 1);
2337                 if (gbl_chg < 0) {
2338                         vma_end_reservation(h, vma, addr);
2339                         return ERR_PTR(-ENOSPC);
2340                 }
2341
2342                 /*
2343                  * Even though there was no reservation in the region/reserve
2344                  * map, there could be reservations associated with the
2345                  * subpool that can be used.  This would be indicated if the
2346                  * return value of hugepage_subpool_get_pages() is zero.
2347                  * However, if avoid_reserve is specified we still avoid even
2348                  * the subpool reservations.
2349                  */
2350                 if (avoid_reserve)
2351                         gbl_chg = 1;
2352         }
2353
2354         /* If this allocation is not consuming a reservation, charge it now.
2355          */
2356         deferred_reserve = map_chg || avoid_reserve || !vma_resv_map(vma);
2357         if (deferred_reserve) {
2358                 ret = hugetlb_cgroup_charge_cgroup_rsvd(
2359                         idx, pages_per_huge_page(h), &h_cg);
2360                 if (ret)
2361                         goto out_subpool_put;
2362         }
2363
2364         ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
2365         if (ret)
2366                 goto out_uncharge_cgroup_reservation;
2367
2368         spin_lock(&hugetlb_lock);
2369         /*
2370          * glb_chg is passed to indicate whether or not a page must be taken
2371          * from the global free pool (global change).  gbl_chg == 0 indicates
2372          * a reservation exists for the allocation.
2373          */
2374         page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
2375         if (!page) {
2376                 spin_unlock(&hugetlb_lock);
2377                 page = alloc_buddy_huge_page_with_mpol(h, vma, addr);
2378                 if (!page)
2379                         goto out_uncharge_cgroup;
2380                 if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
2381                         SetPagePrivate(page);
2382                         h->resv_huge_pages--;
2383                 }
2384                 spin_lock(&hugetlb_lock);
2385                 list_add(&page->lru, &h->hugepage_activelist);
2386                 /* Fall through */
2387         }
2388         hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
2389         /* If allocation is not consuming a reservation, also store the
2390          * hugetlb_cgroup pointer on the page.
2391          */
2392         if (deferred_reserve) {
2393                 hugetlb_cgroup_commit_charge_rsvd(idx, pages_per_huge_page(h),
2394                                                   h_cg, page);
2395         }
2396
2397         spin_unlock(&hugetlb_lock);
2398
2399         set_page_private(page, (unsigned long)spool);
2400
2401         map_commit = vma_commit_reservation(h, vma, addr);
2402         if (unlikely(map_chg > map_commit)) {
2403                 /*
2404                  * The page was added to the reservation map between
2405                  * vma_needs_reservation and vma_commit_reservation.
2406                  * This indicates a race with hugetlb_reserve_pages.
2407                  * Adjust for the subpool count incremented above AND
2408                  * in hugetlb_reserve_pages for the same page.  Also,
2409                  * the reservation count added in hugetlb_reserve_pages
2410                  * no longer applies.
2411                  */
2412                 long rsv_adjust;
2413
2414                 rsv_adjust = hugepage_subpool_put_pages(spool, 1);
2415                 hugetlb_acct_memory(h, -rsv_adjust);
2416                 if (deferred_reserve)
2417                         hugetlb_cgroup_uncharge_page_rsvd(hstate_index(h),
2418                                         pages_per_huge_page(h), page);
2419         }
2420         return page;
2421
2422 out_uncharge_cgroup:
2423         hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
2424 out_uncharge_cgroup_reservation:
2425         if (deferred_reserve)
2426                 hugetlb_cgroup_uncharge_cgroup_rsvd(idx, pages_per_huge_page(h),
2427                                                     h_cg);
2428 out_subpool_put:
2429         if (map_chg || avoid_reserve)
2430                 hugepage_subpool_put_pages(spool, 1);
2431         vma_end_reservation(h, vma, addr);
2432         return ERR_PTR(-ENOSPC);
2433 }
2434
2435 int alloc_bootmem_huge_page(struct hstate *h)
2436         __attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
2437 int __alloc_bootmem_huge_page(struct hstate *h)
2438 {
2439         struct huge_bootmem_page *m;
2440         int nr_nodes, node;
2441
2442         for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
2443                 void *addr;
2444
2445                 addr = memblock_alloc_try_nid_raw(
2446                                 huge_page_size(h), huge_page_size(h),
2447                                 0, MEMBLOCK_ALLOC_ACCESSIBLE, node);
2448                 if (addr) {
2449                         /*
2450                          * Use the beginning of the huge page to store the
2451                          * huge_bootmem_page struct (until gather_bootmem
2452                          * puts them into the mem_map).
2453                          */
2454                         m = addr;
2455                         goto found;
2456                 }
2457         }
2458         return 0;
2459
2460 found:
2461         BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h)));
2462         /* Put them into a private list first because mem_map is not up yet */
2463         INIT_LIST_HEAD(&m->list);
2464         list_add(&m->list, &huge_boot_pages);
2465         m->hstate = h;
2466         return 1;
2467 }
2468
2469 static void __init prep_compound_huge_page(struct page *page,
2470                 unsigned int order)
2471 {
2472         if (unlikely(order > (MAX_ORDER - 1)))
2473                 prep_compound_gigantic_page(page, order);
2474         else
2475                 prep_compound_page(page, order);
2476 }
2477
2478 /* Put bootmem huge pages into the standard lists after mem_map is up */
2479 static void __init gather_bootmem_prealloc(void)
2480 {
2481         struct huge_bootmem_page *m;
2482
2483         list_for_each_entry(m, &huge_boot_pages, list) {
2484                 struct page *page = virt_to_page(m);
2485                 struct hstate *h = m->hstate;
2486
2487                 WARN_ON(page_count(page) != 1);
2488                 prep_compound_huge_page(page, huge_page_order(h));
2489                 WARN_ON(PageReserved(page));
2490                 prep_new_huge_page(h, page, page_to_nid(page));
2491                 put_page(page); /* free it into the hugepage allocator */
2492
2493                 /*
2494                  * If we had gigantic hugepages allocated at boot time, we need
2495                  * to restore the 'stolen' pages to totalram_pages in order to
2496                  * fix confusing memory reports from free(1) and another
2497                  * side-effects, like CommitLimit going negative.
2498                  */
2499                 if (hstate_is_gigantic(h))
2500                         adjust_managed_page_count(page, pages_per_huge_page(h));
2501                 cond_resched();
2502         }
2503 }
2504
2505 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
2506 {
2507         unsigned long i;
2508         nodemask_t *node_alloc_noretry;
2509
2510         if (!hstate_is_gigantic(h)) {
2511                 /*
2512                  * Bit mask controlling how hard we retry per-node allocations.
2513                  * Ignore errors as lower level routines can deal with
2514                  * node_alloc_noretry == NULL.  If this kmalloc fails at boot
2515                  * time, we are likely in bigger trouble.
2516                  */
2517                 node_alloc_noretry = kmalloc(sizeof(*node_alloc_noretry),
2518                                                 GFP_KERNEL);
2519         } else {
2520                 /* allocations done at boot time */
2521                 node_alloc_noretry = NULL;
2522         }
2523
2524         /* bit mask controlling how hard we retry per-node allocations */
2525         if (node_alloc_noretry)
2526                 nodes_clear(*node_alloc_noretry);
2527
2528         for (i = 0; i < h->max_huge_pages; ++i) {
2529                 if (hstate_is_gigantic(h)) {
2530                         if (hugetlb_cma_size) {
2531                                 pr_warn_once("HugeTLB: hugetlb_cma is enabled, skip boot time allocation\n");
2532                                 break;
2533                         }
2534                         if (!alloc_bootmem_huge_page(h))
2535                                 break;
2536                 } else if (!alloc_pool_huge_page(h,
2537                                          &node_states[N_MEMORY],
2538                                          node_alloc_noretry))
2539                         break;
2540                 cond_resched();
2541         }
2542         if (i < h->max_huge_pages) {
2543                 char buf[32];
2544
2545                 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
2546                 pr_warn("HugeTLB: allocating %lu of page size %s failed.  Only allocated %lu hugepages.\n",
2547                         h->max_huge_pages, buf, i);
2548                 h->max_huge_pages = i;
2549         }
2550
2551         kfree(node_alloc_noretry);
2552 }
2553
2554 static void __init hugetlb_init_hstates(void)
2555 {
2556         struct hstate *h;
2557
2558         for_each_hstate(h) {
2559                 if (minimum_order > huge_page_order(h))
2560                         minimum_order = huge_page_order(h);
2561
2562                 /* oversize hugepages were init'ed in early boot */
2563                 if (!hstate_is_gigantic(h))
2564                         hugetlb_hstate_alloc_pages(h);
2565         }
2566         VM_BUG_ON(minimum_order == UINT_MAX);
2567 }
2568
2569 static void __init report_hugepages(void)
2570 {
2571         struct hstate *h;
2572
2573         for_each_hstate(h) {
2574                 char buf[32];
2575
2576                 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
2577                 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
2578                         buf, h->free_huge_pages);
2579         }
2580 }
2581
2582 #ifdef CONFIG_HIGHMEM
2583 static void try_to_free_low(struct hstate *h, unsigned long count,
2584                                                 nodemask_t *nodes_allowed)
2585 {
2586         int i;
2587
2588         if (hstate_is_gigantic(h))
2589                 return;
2590
2591         for_each_node_mask(i, *nodes_allowed) {
2592                 struct page *page, *next;
2593                 struct list_head *freel = &h->hugepage_freelists[i];
2594                 list_for_each_entry_safe(page, next, freel, lru) {
2595                         if (count >= h->nr_huge_pages)
2596                                 return;
2597                         if (PageHighMem(page))
2598                                 continue;
2599                         list_del(&page->lru);
2600                         update_and_free_page(h, page);
2601                         h->free_huge_pages--;
2602                         h->free_huge_pages_node[page_to_nid(page)]--;
2603                 }
2604         }
2605 }
2606 #else
2607 static inline void try_to_free_low(struct hstate *h, unsigned long count,
2608                                                 nodemask_t *nodes_allowed)
2609 {
2610 }
2611 #endif
2612
2613 /*
2614  * Increment or decrement surplus_huge_pages.  Keep node-specific counters
2615  * balanced by operating on them in a round-robin fashion.
2616  * Returns 1 if an adjustment was made.
2617  */
2618 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
2619                                 int delta)
2620 {
2621         int nr_nodes, node;
2622
2623         VM_BUG_ON(delta != -1 && delta != 1);
2624
2625         if (delta < 0) {
2626                 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
2627                         if (h->surplus_huge_pages_node[node])
2628                                 goto found;
2629                 }
2630         } else {
2631                 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2632                         if (h->surplus_huge_pages_node[node] <
2633                                         h->nr_huge_pages_node[node])
2634                                 goto found;
2635                 }
2636         }
2637         return 0;
2638
2639 found:
2640         h->surplus_huge_pages += delta;
2641         h->surplus_huge_pages_node[node] += delta;
2642         return 1;
2643 }
2644
2645 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
2646 static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid,
2647                               nodemask_t *nodes_allowed)
2648 {
2649         unsigned long min_count, ret;
2650         NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL);
2651
2652         /*
2653          * Bit mask controlling how hard we retry per-node allocations.
2654          * If we can not allocate the bit mask, do not attempt to allocate
2655          * the requested huge pages.
2656          */
2657         if (node_alloc_noretry)
2658                 nodes_clear(*node_alloc_noretry);
2659         else
2660                 return -ENOMEM;
2661
2662         spin_lock(&hugetlb_lock);
2663
2664         /*
2665          * Check for a node specific request.
2666          * Changing node specific huge page count may require a corresponding
2667          * change to the global count.  In any case, the passed node mask
2668          * (nodes_allowed) will restrict alloc/free to the specified node.
2669          */
2670         if (nid != NUMA_NO_NODE) {
2671                 unsigned long old_count = count;
2672
2673                 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
2674                 /*
2675                  * User may have specified a large count value which caused the
2676                  * above calculation to overflow.  In this case, they wanted
2677                  * to allocate as many huge pages as possible.  Set count to
2678                  * largest possible value to align with their intention.
2679                  */
2680                 if (count < old_count)
2681                         count = ULONG_MAX;
2682         }
2683
2684         /*
2685          * Gigantic pages runtime allocation depend on the capability for large
2686          * page range allocation.
2687          * If the system does not provide this feature, return an error when
2688          * the user tries to allocate gigantic pages but let the user free the
2689          * boottime allocated gigantic pages.
2690          */
2691         if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) {
2692                 if (count > persistent_huge_pages(h)) {
2693                         spin_unlock(&hugetlb_lock);
2694                         NODEMASK_FREE(node_alloc_noretry);
2695                         return -EINVAL;
2696                 }
2697                 /* Fall through to decrease pool */
2698         }
2699
2700         /*
2701          * Increase the pool size
2702          * First take pages out of surplus state.  Then make up the
2703          * remaining difference by allocating fresh huge pages.
2704          *
2705          * We might race with alloc_surplus_huge_page() here and be unable
2706          * to convert a surplus huge page to a normal huge page. That is
2707          * not critical, though, it just means the overall size of the
2708          * pool might be one hugepage larger than it needs to be, but
2709          * within all the constraints specified by the sysctls.
2710          */
2711         while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
2712                 if (!adjust_pool_surplus(h, nodes_allowed, -1))
2713                         break;
2714         }
2715
2716         while (count > persistent_huge_pages(h)) {
2717                 /*
2718                  * If this allocation races such that we no longer need the
2719                  * page, free_huge_page will handle it by freeing the page
2720                  * and reducing the surplus.
2721                  */
2722                 spin_unlock(&hugetlb_lock);
2723
2724                 /* yield cpu to avoid soft lockup */
2725                 cond_resched();
2726
2727                 ret = alloc_pool_huge_page(h, nodes_allowed,
2728                                                 node_alloc_noretry);
2729                 spin_lock(&hugetlb_lock);
2730                 if (!ret)
2731                         goto out;
2732
2733                 /* Bail for signals. Probably ctrl-c from user */
2734                 if (signal_pending(current))
2735                         goto out;
2736         }
2737
2738         /*
2739          * Decrease the pool size
2740          * First return free pages to the buddy allocator (being careful
2741          * to keep enough around to satisfy reservations).  Then place
2742          * pages into surplus state as needed so the pool will shrink
2743          * to the desired size as pages become free.
2744          *
2745          * By placing pages into the surplus state independent of the
2746          * overcommit value, we are allowing the surplus pool size to
2747          * exceed overcommit. There are few sane options here. Since
2748          * alloc_surplus_huge_page() is checking the global counter,
2749          * though, we'll note that we're not allowed to exceed surplus
2750          * and won't grow the pool anywhere else. Not until one of the
2751          * sysctls are changed, or the surplus pages go out of use.
2752          */
2753         min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
2754         min_count = max(count, min_count);
2755         try_to_free_low(h, min_count, nodes_allowed);
2756         while (min_count < persistent_huge_pages(h)) {
2757                 if (!free_pool_huge_page(h, nodes_allowed, 0))
2758                         break;
2759                 cond_resched_lock(&hugetlb_lock);
2760         }
2761         while (count < persistent_huge_pages(h)) {
2762                 if (!adjust_pool_surplus(h, nodes_allowed, 1))
2763                         break;
2764         }
2765 out:
2766         h->max_huge_pages = persistent_huge_pages(h);
2767         spin_unlock(&hugetlb_lock);
2768
2769         NODEMASK_FREE(node_alloc_noretry);
2770
2771         return 0;
2772 }
2773
2774 #define HSTATE_ATTR_RO(_name) \
2775         static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2776
2777 #define HSTATE_ATTR(_name) \
2778         static struct kobj_attribute _name##_attr = \
2779                 __ATTR(_name, 0644, _name##_show, _name##_store)
2780
2781 static struct kobject *hugepages_kobj;
2782 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2783
2784 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
2785
2786 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
2787 {
2788         int i;
2789
2790         for (i = 0; i < HUGE_MAX_HSTATE; i++)
2791                 if (hstate_kobjs[i] == kobj) {
2792                         if (nidp)
2793                                 *nidp = NUMA_NO_NODE;
2794                         return &hstates[i];
2795                 }
2796
2797         return kobj_to_node_hstate(kobj, nidp);
2798 }
2799
2800 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
2801                                         struct kobj_attribute *attr, char *buf)
2802 {
2803         struct hstate *h;
2804         unsigned long nr_huge_pages;
2805         int nid;
2806
2807         h = kobj_to_hstate(kobj, &nid);
2808         if (nid == NUMA_NO_NODE)
2809                 nr_huge_pages = h->nr_huge_pages;
2810         else
2811                 nr_huge_pages = h->nr_huge_pages_node[nid];
2812
2813         return sysfs_emit(buf, "%lu\n", nr_huge_pages);
2814 }
2815
2816 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
2817                                            struct hstate *h, int nid,
2818                                            unsigned long count, size_t len)
2819 {
2820         int err;
2821         nodemask_t nodes_allowed, *n_mask;
2822
2823         if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
2824                 return -EINVAL;
2825
2826         if (nid == NUMA_NO_NODE) {
2827                 /*
2828                  * global hstate attribute
2829                  */
2830                 if (!(obey_mempolicy &&
2831                                 init_nodemask_of_mempolicy(&nodes_allowed)))
2832                         n_mask = &node_states[N_MEMORY];
2833                 else
2834                         n_mask = &nodes_allowed;
2835         } else {
2836                 /*
2837                  * Node specific request.  count adjustment happens in
2838                  * set_max_huge_pages() after acquiring hugetlb_lock.
2839                  */
2840                 init_nodemask_of_node(&nodes_allowed, nid);
2841                 n_mask = &nodes_allowed;
2842         }
2843
2844         err = set_max_huge_pages(h, count, nid, n_mask);
2845
2846         return err ? err : len;
2847 }
2848
2849 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
2850                                          struct kobject *kobj, const char *buf,
2851                                          size_t len)
2852 {
2853         struct hstate *h;
2854         unsigned long count;
2855         int nid;
2856         int err;
2857
2858         err = kstrtoul(buf, 10, &count);
2859         if (err)
2860                 return err;
2861
2862         h = kobj_to_hstate(kobj, &nid);
2863         return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
2864 }
2865
2866 static ssize_t nr_hugepages_show(struct kobject *kobj,
2867                                        struct kobj_attribute *attr, char *buf)
2868 {
2869         return nr_hugepages_show_common(kobj, attr, buf);
2870 }
2871
2872 static ssize_t nr_hugepages_store(struct kobject *kobj,
2873                struct kobj_attribute *attr, const char *buf, size_t len)
2874 {
2875         return nr_hugepages_store_common(false, kobj, buf, len);
2876 }
2877 HSTATE_ATTR(nr_hugepages);
2878
2879 #ifdef CONFIG_NUMA
2880
2881 /*
2882  * hstate attribute for optionally mempolicy-based constraint on persistent
2883  * huge page alloc/free.
2884  */
2885 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
2886                                            struct kobj_attribute *attr,
2887                                            char *buf)
2888 {
2889         return nr_hugepages_show_common(kobj, attr, buf);
2890 }
2891
2892 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
2893                struct kobj_attribute *attr, const char *buf, size_t len)
2894 {
2895         return nr_hugepages_store_common(true, kobj, buf, len);
2896 }
2897 HSTATE_ATTR(nr_hugepages_mempolicy);
2898 #endif
2899
2900
2901 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
2902                                         struct kobj_attribute *attr, char *buf)
2903 {
2904         struct hstate *h = kobj_to_hstate(kobj, NULL);
2905         return sysfs_emit(buf, "%lu\n", h->nr_overcommit_huge_pages);
2906 }
2907
2908 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
2909                 struct kobj_attribute *attr, const char *buf, size_t count)
2910 {
2911         int err;
2912         unsigned long input;
2913         struct hstate *h = kobj_to_hstate(kobj, NULL);
2914
2915         if (hstate_is_gigantic(h))
2916                 return -EINVAL;
2917
2918         err = kstrtoul(buf, 10, &input);
2919         if (err)
2920                 return err;
2921
2922         spin_lock(&hugetlb_lock);
2923         h->nr_overcommit_huge_pages = input;
2924         spin_unlock(&hugetlb_lock);
2925
2926         return count;
2927 }
2928 HSTATE_ATTR(nr_overcommit_hugepages);
2929
2930 static ssize_t free_hugepages_show(struct kobject *kobj,
2931                                         struct kobj_attribute *attr, char *buf)
2932 {
2933         struct hstate *h;
2934         unsigned long free_huge_pages;
2935         int nid;
2936
2937         h = kobj_to_hstate(kobj, &nid);
2938         if (nid == NUMA_NO_NODE)
2939                 free_huge_pages = h->free_huge_pages;
2940         else
2941                 free_huge_pages = h->free_huge_pages_node[nid];
2942
2943         return sysfs_emit(buf, "%lu\n", free_huge_pages);
2944 }
2945 HSTATE_ATTR_RO(free_hugepages);
2946
2947 static ssize_t resv_hugepages_show(struct kobject *kobj,
2948                                         struct kobj_attribute *attr, char *buf)
2949 {
2950         struct hstate *h = kobj_to_hstate(kobj, NULL);
2951         return sysfs_emit(buf, "%lu\n", h->resv_huge_pages);
2952 }
2953 HSTATE_ATTR_RO(resv_hugepages);
2954
2955 static ssize_t surplus_hugepages_show(struct kobject *kobj,
2956                                         struct kobj_attribute *attr, char *buf)
2957 {
2958         struct hstate *h;
2959         unsigned long surplus_huge_pages;
2960         int nid;
2961
2962         h = kobj_to_hstate(kobj, &nid);
2963         if (nid == NUMA_NO_NODE)
2964                 surplus_huge_pages = h->surplus_huge_pages;
2965         else
2966                 surplus_huge_pages = h->surplus_huge_pages_node[nid];
2967
2968         return sysfs_emit(buf, "%lu\n", surplus_huge_pages);
2969 }
2970 HSTATE_ATTR_RO(surplus_hugepages);
2971
2972 static struct attribute *hstate_attrs[] = {
2973         &nr_hugepages_attr.attr,
2974         &nr_overcommit_hugepages_attr.attr,
2975         &free_hugepages_attr.attr,
2976         &resv_hugepages_attr.attr,
2977         &surplus_hugepages_attr.attr,
2978 #ifdef CONFIG_NUMA
2979         &nr_hugepages_mempolicy_attr.attr,
2980 #endif
2981         NULL,
2982 };
2983
2984 static const struct attribute_group hstate_attr_group = {
2985         .attrs = hstate_attrs,
2986 };
2987
2988 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
2989                                     struct kobject **hstate_kobjs,
2990                                     const struct attribute_group *hstate_attr_group)
2991 {
2992         int retval;
2993         int hi = hstate_index(h);
2994
2995         hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
2996         if (!hstate_kobjs[hi])
2997                 return -ENOMEM;
2998
2999         retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
3000         if (retval) {
3001                 kobject_put(hstate_kobjs[hi]);
3002                 hstate_kobjs[hi] = NULL;
3003         }
3004
3005         return retval;
3006 }
3007
3008 static void __init hugetlb_sysfs_init(void)
3009 {
3010         struct hstate *h;
3011         int err;
3012
3013         hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
3014         if (!hugepages_kobj)
3015                 return;
3016
3017         for_each_hstate(h) {
3018                 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
3019                                          hstate_kobjs, &hstate_attr_group);
3020                 if (err)
3021                         pr_err("HugeTLB: Unable to add hstate %s", h->name);
3022         }
3023 }
3024
3025 #ifdef CONFIG_NUMA
3026
3027 /*
3028  * node_hstate/s - associate per node hstate attributes, via their kobjects,
3029  * with node devices in node_devices[] using a parallel array.  The array
3030  * index of a node device or _hstate == node id.
3031  * This is here to avoid any static dependency of the node device driver, in
3032  * the base kernel, on the hugetlb module.
3033  */
3034 struct node_hstate {
3035         struct kobject          *hugepages_kobj;
3036         struct kobject          *hstate_kobjs[HUGE_MAX_HSTATE];
3037 };
3038 static struct node_hstate node_hstates[MAX_NUMNODES];
3039
3040 /*
3041  * A subset of global hstate attributes for node devices
3042  */
3043 static struct attribute *per_node_hstate_attrs[] = {
3044         &nr_hugepages_attr.attr,
3045         &free_hugepages_attr.attr,
3046         &surplus_hugepages_attr.attr,
3047         NULL,
3048 };
3049
3050 static const struct attribute_group per_node_hstate_attr_group = {
3051         .attrs = per_node_hstate_attrs,
3052 };
3053
3054 /*
3055  * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
3056  * Returns node id via non-NULL nidp.
3057  */
3058 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
3059 {
3060         int nid;
3061
3062         for (nid = 0; nid < nr_node_ids; nid++) {
3063                 struct node_hstate *nhs = &node_hstates[nid];
3064                 int i;
3065                 for (i = 0; i < HUGE_MAX_HSTATE; i++)
3066                         if (nhs->hstate_kobjs[i] == kobj) {
3067                                 if (nidp)
3068                                         *nidp = nid;
3069                                 return &hstates[i];
3070                         }
3071         }
3072
3073         BUG();
3074         return NULL;
3075 }
3076
3077 /*
3078  * Unregister hstate attributes from a single node device.
3079  * No-op if no hstate attributes attached.
3080  */
3081 static void hugetlb_unregister_node(struct node *node)
3082 {
3083         struct hstate *h;
3084         struct node_hstate *nhs = &node_hstates[node->dev.id];
3085
3086         if (!nhs->hugepages_kobj)
3087                 return;         /* no hstate attributes */
3088
3089         for_each_hstate(h) {
3090                 int idx = hstate_index(h);
3091                 if (nhs->hstate_kobjs[idx]) {
3092                         kobject_put(nhs->hstate_kobjs[idx]);
3093                         nhs->hstate_kobjs[idx] = NULL;
3094                 }
3095         }
3096
3097         kobject_put(nhs->hugepages_kobj);
3098         nhs->hugepages_kobj = NULL;
3099 }
3100
3101
3102 /*
3103  * Register hstate attributes for a single node device.
3104  * No-op if attributes already registered.
3105  */
3106 static void hugetlb_register_node(struct node *node)
3107 {
3108         struct hstate *h;
3109         struct node_hstate *nhs = &node_hstates[node->dev.id];
3110         int err;
3111
3112         if (nhs->hugepages_kobj)
3113                 return;         /* already allocated */
3114
3115         nhs->hugepages_kobj = kobject_create_and_add("hugepages",
3116                                                         &node->dev.kobj);
3117         if (!nhs->hugepages_kobj)
3118                 return;
3119
3120         for_each_hstate(h) {
3121                 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
3122                                                 nhs->hstate_kobjs,
3123                                                 &per_node_hstate_attr_group);
3124                 if (err) {
3125                         pr_err("HugeTLB: Unable to add hstate %s for node %d\n",
3126                                 h->name, node->dev.id);
3127                         hugetlb_unregister_node(node);
3128                         break;
3129                 }
3130         }
3131 }
3132
3133 /*
3134  * hugetlb init time:  register hstate attributes for all registered node
3135  * devices of nodes that have memory.  All on-line nodes should have
3136  * registered their associated device by this time.
3137  */
3138 static void __init hugetlb_register_all_nodes(void)
3139 {
3140         int nid;
3141
3142         for_each_node_state(nid, N_MEMORY) {
3143                 struct node *node = node_devices[nid];
3144                 if (node->dev.id == nid)
3145                         hugetlb_register_node(node);
3146         }
3147
3148         /*
3149          * Let the node device driver know we're here so it can
3150          * [un]register hstate attributes on node hotplug.
3151          */
3152         register_hugetlbfs_with_node(hugetlb_register_node,
3153                                      hugetlb_unregister_node);
3154 }
3155 #else   /* !CONFIG_NUMA */
3156
3157 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
3158 {
3159         BUG();
3160         if (nidp)
3161                 *nidp = -1;
3162         return NULL;
3163 }
3164
3165 static void hugetlb_register_all_nodes(void) { }
3166
3167 #endif
3168
3169 static int __init hugetlb_init(void)
3170 {
3171         int i;
3172
3173         if (!hugepages_supported()) {
3174                 if (hugetlb_max_hstate || default_hstate_max_huge_pages)
3175                         pr_warn("HugeTLB: huge pages not supported, ignoring associated command-line parameters\n");
3176                 return 0;
3177         }
3178
3179         /*
3180          * Make sure HPAGE_SIZE (HUGETLB_PAGE_ORDER) hstate exists.  Some
3181          * architectures depend on setup being done here.
3182          */
3183         hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
3184         if (!parsed_default_hugepagesz) {
3185                 /*
3186                  * If we did not parse a default huge page size, set
3187                  * default_hstate_idx to HPAGE_SIZE hstate. And, if the
3188                  * number of huge pages for this default size was implicitly
3189                  * specified, set that here as well.
3190                  * Note that the implicit setting will overwrite an explicit
3191                  * setting.  A warning will be printed in this case.
3192                  */
3193                 default_hstate_idx = hstate_index(size_to_hstate(HPAGE_SIZE));
3194                 if (default_hstate_max_huge_pages) {
3195                         if (default_hstate.max_huge_pages) {
3196                                 char buf[32];
3197
3198                                 string_get_size(huge_page_size(&default_hstate),
3199                                         1, STRING_UNITS_2, buf, 32);
3200                                 pr_warn("HugeTLB: Ignoring hugepages=%lu associated with %s page size\n",
3201                                         default_hstate.max_huge_pages, buf);
3202                                 pr_warn("HugeTLB: Using hugepages=%lu for number of default huge pages\n",
3203                                         default_hstate_max_huge_pages);
3204                         }
3205                         default_hstate.max_huge_pages =
3206                                 default_hstate_max_huge_pages;
3207                 }
3208         }
3209
3210         hugetlb_cma_check();
3211         hugetlb_init_hstates();
3212         gather_bootmem_prealloc();
3213         report_hugepages();
3214
3215         hugetlb_sysfs_init();
3216         hugetlb_register_all_nodes();
3217         hugetlb_cgroup_file_init();
3218
3219 #ifdef CONFIG_SMP
3220         num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
3221 #else
3222         num_fault_mutexes = 1;
3223 #endif
3224         hugetlb_fault_mutex_table =
3225                 kmalloc_array(num_fault_mutexes, sizeof(struct mutex),
3226                               GFP_KERNEL);
3227         BUG_ON(!hugetlb_fault_mutex_table);
3228
3229         for (i = 0; i < num_fault_mutexes; i++)
3230                 mutex_init(&hugetlb_fault_mutex_table[i]);
3231         return 0;
3232 }
3233 subsys_initcall(hugetlb_init);
3234
3235 /* Overwritten by architectures with more huge page sizes */
3236 bool __init __attribute((weak)) arch_hugetlb_valid_size(unsigned long size)
3237 {
3238         return size == HPAGE_SIZE;
3239 }
3240
3241 void __init hugetlb_add_hstate(unsigned int order)
3242 {
3243         struct hstate *h;
3244         unsigned long i;
3245
3246         if (size_to_hstate(PAGE_SIZE << order)) {
3247                 return;
3248         }
3249         BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
3250         BUG_ON(order == 0);
3251         h = &hstates[hugetlb_max_hstate++];
3252         h->order = order;
3253         h->mask = ~(huge_page_size(h) - 1);
3254         for (i = 0; i < MAX_NUMNODES; ++i)
3255                 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
3256         INIT_LIST_HEAD(&h->hugepage_activelist);
3257         h->next_nid_to_alloc = first_memory_node;
3258         h->next_nid_to_free = first_memory_node;
3259         snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
3260                                         huge_page_size(h)/1024);
3261
3262         parsed_hstate = h;
3263 }
3264
3265 /*
3266  * hugepages command line processing
3267  * hugepages normally follows a valid hugepagsz or default_hugepagsz
3268  * specification.  If not, ignore the hugepages value.  hugepages can also
3269  * be the first huge page command line  option in which case it implicitly
3270  * specifies the number of huge pages for the default size.
3271  */
3272 static int __init hugepages_setup(char *s)
3273 {
3274         unsigned long *mhp;
3275         static unsigned long *last_mhp;
3276
3277         if (!parsed_valid_hugepagesz) {
3278                 pr_warn("HugeTLB: hugepages=%s does not follow a valid hugepagesz, ignoring\n", s);
3279                 parsed_valid_hugepagesz = true;
3280                 return 0;
3281         }
3282
3283         /*
3284          * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter
3285          * yet, so this hugepages= parameter goes to the "default hstate".
3286          * Otherwise, it goes with the previously parsed hugepagesz or
3287          * default_hugepagesz.
3288          */
3289         else if (!hugetlb_max_hstate)
3290                 mhp = &default_hstate_max_huge_pages;
3291         else
3292                 mhp = &parsed_hstate->max_huge_pages;
3293
3294         if (mhp == last_mhp) {
3295                 pr_warn("HugeTLB: hugepages= specified twice without interleaving hugepagesz=, ignoring hugepages=%s\n", s);
3296                 return 0;
3297         }
3298
3299         if (sscanf(s, "%lu", mhp) <= 0)
3300                 *mhp = 0;
3301
3302         /*
3303          * Global state is always initialized later in hugetlb_init.
3304          * But we need to allocate >= MAX_ORDER hstates here early to still
3305          * use the bootmem allocator.
3306          */
3307         if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
3308                 hugetlb_hstate_alloc_pages(parsed_hstate);
3309
3310         last_mhp = mhp;
3311
3312         return 1;
3313 }
3314 __setup("hugepages=", hugepages_setup);
3315
3316 /*
3317  * hugepagesz command line processing
3318  * A specific huge page size can only be specified once with hugepagesz.
3319  * hugepagesz is followed by hugepages on the command line.  The global
3320  * variable 'parsed_valid_hugepagesz' is used to determine if prior
3321  * hugepagesz argument was valid.
3322  */
3323 static int __init hugepagesz_setup(char *s)
3324 {
3325         unsigned long size;
3326         struct hstate *h;
3327
3328         parsed_valid_hugepagesz = false;
3329         size = (unsigned long)memparse(s, NULL);
3330
3331         if (!arch_hugetlb_valid_size(size)) {
3332                 pr_err("HugeTLB: unsupported hugepagesz=%s\n", s);
3333                 return 0;
3334         }
3335
3336         h = size_to_hstate(size);
3337         if (h) {
3338                 /*
3339                  * hstate for this size already exists.  This is normally
3340                  * an error, but is allowed if the existing hstate is the
3341                  * default hstate.  More specifically, it is only allowed if
3342                  * the number of huge pages for the default hstate was not
3343                  * previously specified.
3344                  */
3345                 if (!parsed_default_hugepagesz ||  h != &default_hstate ||
3346                     default_hstate.max_huge_pages) {
3347                         pr_warn("HugeTLB: hugepagesz=%s specified twice, ignoring\n", s);
3348                         return 0;
3349                 }
3350
3351                 /*
3352                  * No need to call hugetlb_add_hstate() as hstate already
3353                  * exists.  But, do set parsed_hstate so that a following
3354                  * hugepages= parameter will be applied to this hstate.
3355                  */
3356                 parsed_hstate = h;
3357                 parsed_valid_hugepagesz = true;
3358                 return 1;
3359         }
3360
3361         hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
3362         parsed_valid_hugepagesz = true;
3363         return 1;
3364 }
3365 __setup("hugepagesz=", hugepagesz_setup);
3366
3367 /*
3368  * default_hugepagesz command line input
3369  * Only one instance of default_hugepagesz allowed on command line.
3370  */
3371 static int __init default_hugepagesz_setup(char *s)
3372 {
3373         unsigned long size;
3374
3375         parsed_valid_hugepagesz = false;
3376         if (parsed_default_hugepagesz) {
3377                 pr_err("HugeTLB: default_hugepagesz previously specified, ignoring %s\n", s);
3378                 return 0;
3379         }
3380
3381         size = (unsigned long)memparse(s, NULL);
3382
3383         if (!arch_hugetlb_valid_size(size)) {
3384                 pr_err("HugeTLB: unsupported default_hugepagesz=%s\n", s);
3385                 return 0;
3386         }
3387
3388         hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
3389         parsed_valid_hugepagesz = true;
3390         parsed_default_hugepagesz = true;
3391         default_hstate_idx = hstate_index(size_to_hstate(size));
3392
3393         /*
3394          * The number of default huge pages (for this size) could have been
3395          * specified as the first hugetlb parameter: hugepages=X.  If so,
3396          * then default_hstate_max_huge_pages is set.  If the default huge
3397          * page size is gigantic (>= MAX_ORDER), then the pages must be
3398          * allocated here from bootmem allocator.
3399          */
3400         if (default_hstate_max_huge_pages) {
3401                 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
3402                 if (hstate_is_gigantic(&default_hstate))
3403                         hugetlb_hstate_alloc_pages(&default_hstate);
3404                 default_hstate_max_huge_pages = 0;
3405         }
3406
3407         return 1;
3408 }
3409 __setup("default_hugepagesz=", default_hugepagesz_setup);
3410
3411 static unsigned int allowed_mems_nr(struct hstate *h)
3412 {
3413         int node;
3414         unsigned int nr = 0;
3415         nodemask_t *mpol_allowed;
3416         unsigned int *array = h->free_huge_pages_node;
3417         gfp_t gfp_mask = htlb_alloc_mask(h);
3418
3419         mpol_allowed = policy_nodemask_current(gfp_mask);
3420
3421         for_each_node_mask(node, cpuset_current_mems_allowed) {
3422                 if (!mpol_allowed || node_isset(node, *mpol_allowed))
3423                         nr += array[node];
3424         }
3425
3426         return nr;
3427 }
3428
3429 #ifdef CONFIG_SYSCTL
3430 static int proc_hugetlb_doulongvec_minmax(struct ctl_table *table, int write,
3431                                           void *buffer, size_t *length,
3432                                           loff_t *ppos, unsigned long *out)
3433 {
3434         struct ctl_table dup_table;
3435
3436         /*
3437          * In order to avoid races with __do_proc_doulongvec_minmax(), we
3438          * can duplicate the @table and alter the duplicate of it.
3439          */
3440         dup_table = *table;
3441         dup_table.data = out;
3442
3443         return proc_doulongvec_minmax(&dup_table, write, buffer, length, ppos);
3444 }
3445
3446 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
3447                          struct ctl_table *table, int write,
3448                          void *buffer, size_t *length, loff_t *ppos)
3449 {
3450         struct hstate *h = &default_hstate;
3451         unsigned long tmp = h->max_huge_pages;
3452         int ret;
3453
3454         if (!hugepages_supported())
3455                 return -EOPNOTSUPP;
3456
3457         ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
3458                                              &tmp);
3459         if (ret)
3460                 goto out;
3461
3462         if (write)
3463                 ret = __nr_hugepages_store_common(obey_mempolicy, h,
3464                                                   NUMA_NO_NODE, tmp, *length);
3465 out:
3466         return ret;
3467 }
3468
3469 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
3470                           void *buffer, size_t *length, loff_t *ppos)
3471 {
3472
3473         return hugetlb_sysctl_handler_common(false, table, write,
3474                                                         buffer, length, ppos);
3475 }
3476
3477 #ifdef CONFIG_NUMA
3478 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
3479                           void *buffer, size_t *length, loff_t *ppos)
3480 {
3481         return hugetlb_sysctl_handler_common(true, table, write,
3482                                                         buffer, length, ppos);
3483 }
3484 #endif /* CONFIG_NUMA */
3485
3486 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
3487                 void *buffer, size_t *length, loff_t *ppos)
3488 {
3489         struct hstate *h = &default_hstate;
3490         unsigned long tmp;
3491         int ret;
3492
3493         if (!hugepages_supported())
3494                 return -EOPNOTSUPP;
3495
3496         tmp = h->nr_overcommit_huge_pages;
3497
3498         if (write && hstate_is_gigantic(h))
3499                 return -EINVAL;
3500
3501         ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
3502                                              &tmp);
3503         if (ret)
3504                 goto out;
3505
3506         if (write) {
3507                 spin_lock(&hugetlb_lock);
3508                 h->nr_overcommit_huge_pages = tmp;
3509                 spin_unlock(&hugetlb_lock);
3510         }
3511 out:
3512         return ret;
3513 }
3514
3515 #endif /* CONFIG_SYSCTL */
3516
3517 void hugetlb_report_meminfo(struct seq_file *m)
3518 {
3519         struct hstate *h;
3520         unsigned long total = 0;
3521
3522         if (!hugepages_supported())
3523                 return;
3524
3525         for_each_hstate(h) {
3526                 unsigned long count = h->nr_huge_pages;
3527
3528                 total += huge_page_size(h) * count;
3529
3530                 if (h == &default_hstate)
3531                         seq_printf(m,
3532                                    "HugePages_Total:   %5lu\n"
3533                                    "HugePages_Free:    %5lu\n"
3534                                    "HugePages_Rsvd:    %5lu\n"
3535                                    "HugePages_Surp:    %5lu\n"
3536                                    "Hugepagesize:   %8lu kB\n",
3537                                    count,
3538                                    h->free_huge_pages,
3539                                    h->resv_huge_pages,
3540                                    h->surplus_huge_pages,
3541                                    huge_page_size(h) / SZ_1K);
3542         }
3543
3544         seq_printf(m, "Hugetlb:        %8lu kB\n", total / SZ_1K);
3545 }
3546
3547 int hugetlb_report_node_meminfo(char *buf, int len, int nid)
3548 {
3549         struct hstate *h = &default_hstate;
3550
3551         if (!hugepages_supported())
3552                 return 0;
3553
3554         return sysfs_emit_at(buf, len,
3555                              "Node %d HugePages_Total: %5u\n"
3556                              "Node %d HugePages_Free:  %5u\n"
3557                              "Node %d HugePages_Surp:  %5u\n",
3558                              nid, h->nr_huge_pages_node[nid],
3559                              nid, h->free_huge_pages_node[nid],
3560                              nid, h->surplus_huge_pages_node[nid]);
3561 }
3562
3563 void hugetlb_show_meminfo(void)
3564 {
3565         struct hstate *h;
3566         int nid;
3567
3568         if (!hugepages_supported())
3569                 return;
3570
3571         for_each_node_state(nid, N_MEMORY)
3572                 for_each_hstate(h)
3573                         pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
3574                                 nid,
3575                                 h->nr_huge_pages_node[nid],
3576                                 h->free_huge_pages_node[nid],
3577                                 h->surplus_huge_pages_node[nid],
3578                                 huge_page_size(h) / SZ_1K);
3579 }
3580
3581 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
3582 {
3583         seq_printf(m, "HugetlbPages:\t%8lu kB\n",
3584                    atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
3585 }
3586
3587 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
3588 unsigned long hugetlb_total_pages(void)
3589 {
3590         struct hstate *h;
3591         unsigned long nr_total_pages = 0;
3592
3593         for_each_hstate(h)
3594                 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
3595         return nr_total_pages;
3596 }
3597
3598 static int hugetlb_acct_memory(struct hstate *h, long delta)
3599 {
3600         int ret = -ENOMEM;
3601
3602         if (!delta)
3603                 return 0;
3604
3605         spin_lock(&hugetlb_lock);
3606         /*
3607          * When cpuset is configured, it breaks the strict hugetlb page
3608          * reservation as the accounting is done on a global variable. Such
3609          * reservation is completely rubbish in the presence of cpuset because
3610          * the reservation is not checked against page availability for the
3611          * current cpuset. Application can still potentially OOM'ed by kernel
3612          * with lack of free htlb page in cpuset that the task is in.
3613          * Attempt to enforce strict accounting with cpuset is almost
3614          * impossible (or too ugly) because cpuset is too fluid that
3615          * task or memory node can be dynamically moved between cpusets.
3616          *
3617          * The change of semantics for shared hugetlb mapping with cpuset is
3618          * undesirable. However, in order to preserve some of the semantics,
3619          * we fall back to check against current free page availability as
3620          * a best attempt and hopefully to minimize the impact of changing
3621          * semantics that cpuset has.
3622          *
3623          * Apart from cpuset, we also have memory policy mechanism that
3624          * also determines from which node the kernel will allocate memory
3625          * in a NUMA system. So similar to cpuset, we also should consider
3626          * the memory policy of the current task. Similar to the description
3627          * above.
3628          */
3629         if (delta > 0) {
3630                 if (gather_surplus_pages(h, delta) < 0)
3631                         goto out;
3632
3633                 if (delta > allowed_mems_nr(h)) {
3634                         return_unused_surplus_pages(h, delta);
3635                         goto out;
3636                 }
3637         }
3638
3639         ret = 0;
3640         if (delta < 0)
3641                 return_unused_surplus_pages(h, (unsigned long) -delta);
3642
3643 out:
3644         spin_unlock(&hugetlb_lock);
3645         return ret;
3646 }
3647
3648 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
3649 {
3650         struct resv_map *resv = vma_resv_map(vma);
3651
3652         /*
3653          * This new VMA should share its siblings reservation map if present.
3654          * The VMA will only ever have a valid reservation map pointer where
3655          * it is being copied for another still existing VMA.  As that VMA
3656          * has a reference to the reservation map it cannot disappear until
3657          * after this open call completes.  It is therefore safe to take a
3658          * new reference here without additional locking.
3659          */
3660         if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3661                 kref_get(&resv->refs);
3662 }
3663
3664 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
3665 {
3666         struct hstate *h = hstate_vma(vma);
3667         struct resv_map *resv = vma_resv_map(vma);
3668         struct hugepage_subpool *spool = subpool_vma(vma);
3669         unsigned long reserve, start, end;
3670         long gbl_reserve;
3671
3672         if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3673                 return;
3674
3675         start = vma_hugecache_offset(h, vma, vma->vm_start);
3676         end = vma_hugecache_offset(h, vma, vma->vm_end);
3677
3678         reserve = (end - start) - region_count(resv, start, end);
3679         hugetlb_cgroup_uncharge_counter(resv, start, end);
3680         if (reserve) {
3681                 /*
3682                  * Decrement reserve counts.  The global reserve count may be
3683                  * adjusted if the subpool has a minimum size.
3684                  */
3685                 gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
3686                 hugetlb_acct_memory(h, -gbl_reserve);
3687         }
3688
3689         kref_put(&resv->refs, resv_map_release);
3690 }
3691
3692 static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
3693 {
3694         if (addr & ~(huge_page_mask(hstate_vma(vma))))
3695                 return -EINVAL;
3696         return 0;
3697 }
3698
3699 static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma)
3700 {
3701         return huge_page_size(hstate_vma(vma));
3702 }
3703
3704 /*
3705  * We cannot handle pagefaults against hugetlb pages at all.  They cause
3706  * handle_mm_fault() to try to instantiate regular-sized pages in the
3707  * hugepage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
3708  * this far.
3709  */
3710 static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf)
3711 {
3712         BUG();
3713         return 0;
3714 }
3715
3716 /*
3717  * When a new function is introduced to vm_operations_struct and added
3718  * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops.
3719  * This is because under System V memory model, mappings created via
3720  * shmget/shmat with "huge page" specified are backed by hugetlbfs files,
3721  * their original vm_ops are overwritten with shm_vm_ops.
3722  */
3723 const struct vm_operations_struct hugetlb_vm_ops = {
3724         .fault = hugetlb_vm_op_fault,
3725         .open = hugetlb_vm_op_open,
3726         .close = hugetlb_vm_op_close,
3727         .may_split = hugetlb_vm_op_split,
3728         .pagesize = hugetlb_vm_op_pagesize,
3729 };
3730
3731 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
3732                                 int writable)
3733 {
3734         pte_t entry;
3735
3736         if (writable) {
3737                 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
3738                                          vma->vm_page_prot)));
3739         } else {
3740                 entry = huge_pte_wrprotect(mk_huge_pte(page,
3741                                            vma->vm_page_prot));
3742         }
3743         entry = pte_mkyoung(entry);
3744         entry = pte_mkhuge(entry);
3745         entry = arch_make_huge_pte(entry, vma, page, writable);
3746
3747         return entry;
3748 }
3749
3750 static void set_huge_ptep_writable(struct vm_area_struct *vma,
3751                                    unsigned long address, pte_t *ptep)
3752 {
3753         pte_t entry;
3754
3755         entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
3756         if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
3757                 update_mmu_cache(vma, address, ptep);
3758 }
3759
3760 bool is_hugetlb_entry_migration(pte_t pte)
3761 {
3762         swp_entry_t swp;
3763
3764         if (huge_pte_none(pte) || pte_present(pte))
3765                 return false;
3766         swp = pte_to_swp_entry(pte);
3767         if (is_migration_entry(swp))
3768                 return true;
3769         else
3770                 return false;
3771 }
3772
3773 static bool is_hugetlb_entry_hwpoisoned(pte_t pte)
3774 {
3775         swp_entry_t swp;
3776
3777         if (huge_pte_none(pte) || pte_present(pte))
3778                 return false;
3779         swp = pte_to_swp_entry(pte);
3780         if (is_hwpoison_entry(swp))
3781                 return true;
3782         else
3783                 return false;
3784 }
3785
3786 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
3787                             struct vm_area_struct *vma)
3788 {
3789         pte_t *src_pte, *dst_pte, entry, dst_entry;
3790         struct page *ptepage;
3791         unsigned long addr;
3792         int cow;
3793         struct hstate *h = hstate_vma(vma);
3794         unsigned long sz = huge_page_size(h);
3795         struct address_space *mapping = vma->vm_file->f_mapping;
3796         struct mmu_notifier_range range;
3797         int ret = 0;
3798
3799         cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
3800
3801         if (cow) {
3802                 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, src,
3803                                         vma->vm_start,
3804                                         vma->vm_end);
3805                 mmu_notifier_invalidate_range_start(&range);
3806         } else {
3807                 /*
3808                  * For shared mappings i_mmap_rwsem must be held to call
3809                  * huge_pte_alloc, otherwise the returned ptep could go
3810                  * away if part of a shared pmd and another thread calls
3811                  * huge_pmd_unshare.
3812                  */
3813                 i_mmap_lock_read(mapping);
3814         }
3815
3816         for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
3817                 spinlock_t *src_ptl, *dst_ptl;
3818                 src_pte = huge_pte_offset(src, addr, sz);
3819                 if (!src_pte)
3820                         continue;
3821                 dst_pte = huge_pte_alloc(dst, addr, sz);
3822                 if (!dst_pte) {
3823                         ret = -ENOMEM;
3824                         break;
3825                 }
3826
3827                 /*
3828                  * If the pagetables are shared don't copy or take references.
3829                  * dst_pte == src_pte is the common case of src/dest sharing.
3830                  *
3831                  * However, src could have 'unshared' and dst shares with
3832                  * another vma.  If dst_pte !none, this implies sharing.
3833                  * Check here before taking page table lock, and once again
3834                  * after taking the lock below.
3835                  */
3836                 dst_entry = huge_ptep_get(dst_pte);
3837                 if ((dst_pte == src_pte) || !huge_pte_none(dst_entry))
3838                         continue;
3839
3840                 dst_ptl = huge_pte_lock(h, dst, dst_pte);
3841                 src_ptl = huge_pte_lockptr(h, src, src_pte);
3842                 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
3843                 entry = huge_ptep_get(src_pte);
3844                 dst_entry = huge_ptep_get(dst_pte);
3845                 if (huge_pte_none(entry) || !huge_pte_none(dst_entry)) {
3846                         /*
3847                          * Skip if src entry none.  Also, skip in the
3848                          * unlikely case dst entry !none as this implies
3849                          * sharing with another vma.
3850                          */
3851                         ;
3852                 } else if (unlikely(is_hugetlb_entry_migration(entry) ||
3853                                     is_hugetlb_entry_hwpoisoned(entry))) {
3854                         swp_entry_t swp_entry = pte_to_swp_entry(entry);
3855
3856                         if (is_write_migration_entry(swp_entry) && cow) {
3857                                 /*
3858                                  * COW mappings require pages in both
3859                                  * parent and child to be set to read.
3860                                  */
3861                                 make_migration_entry_read(&swp_entry);
3862                                 entry = swp_entry_to_pte(swp_entry);
3863                                 set_huge_swap_pte_at(src, addr, src_pte,
3864                                                      entry, sz);
3865                         }
3866                         set_huge_swap_pte_at(dst, addr, dst_pte, entry, sz);
3867                 } else {
3868                         if (cow) {
3869                                 /*
3870                                  * No need to notify as we are downgrading page
3871                                  * table protection not changing it to point
3872                                  * to a new page.
3873                                  *
3874                                  * See Documentation/vm/mmu_notifier.rst
3875                                  */
3876                                 huge_ptep_set_wrprotect(src, addr, src_pte);
3877                         }
3878                         entry = huge_ptep_get(src_pte);
3879                         ptepage = pte_page(entry);
3880                         get_page(ptepage);
3881                         page_dup_rmap(ptepage, true);
3882                         set_huge_pte_at(dst, addr, dst_pte, entry);
3883                         hugetlb_count_add(pages_per_huge_page(h), dst);
3884                 }
3885                 spin_unlock(src_ptl);
3886                 spin_unlock(dst_ptl);
3887         }
3888
3889         if (cow)
3890                 mmu_notifier_invalidate_range_end(&range);
3891         else
3892                 i_mmap_unlock_read(mapping);
3893
3894         return ret;
3895 }
3896
3897 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
3898                             unsigned long start, unsigned long end,
3899                             struct page *ref_page)
3900 {
3901         struct mm_struct *mm = vma->vm_mm;
3902         unsigned long address;
3903         pte_t *ptep;
3904         pte_t pte;
3905         spinlock_t *ptl;
3906         struct page *page;
3907         struct hstate *h = hstate_vma(vma);
3908         unsigned long sz = huge_page_size(h);
3909         struct mmu_notifier_range range;
3910
3911         WARN_ON(!is_vm_hugetlb_page(vma));
3912         BUG_ON(start & ~huge_page_mask(h));
3913         BUG_ON(end & ~huge_page_mask(h));
3914
3915         /*
3916          * This is a hugetlb vma, all the pte entries should point
3917          * to huge page.
3918          */
3919         tlb_change_page_size(tlb, sz);
3920         tlb_start_vma(tlb, vma);
3921
3922         /*
3923          * If sharing possible, alert mmu notifiers of worst case.
3924          */
3925         mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, mm, start,
3926                                 end);
3927         adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
3928         mmu_notifier_invalidate_range_start(&range);
3929         address = start;
3930         for (; address < end; address += sz) {
3931                 ptep = huge_pte_offset(mm, address, sz);
3932                 if (!ptep)
3933                         continue;
3934
3935                 ptl = huge_pte_lock(h, mm, ptep);
3936                 if (huge_pmd_unshare(mm, vma, &address, ptep)) {
3937                         spin_unlock(ptl);
3938                         /*
3939                          * We just unmapped a page of PMDs by clearing a PUD.
3940                          * The caller's TLB flush range should cover this area.
3941                          */
3942                         continue;
3943                 }
3944
3945                 pte = huge_ptep_get(ptep);
3946                 if (huge_pte_none(pte)) {
3947                         spin_unlock(ptl);
3948                         continue;
3949                 }
3950
3951                 /*
3952                  * Migrating hugepage or HWPoisoned hugepage is already
3953                  * unmapped and its refcount is dropped, so just clear pte here.
3954                  */
3955                 if (unlikely(!pte_present(pte))) {
3956                         huge_pte_clear(mm, address, ptep, sz);
3957                         spin_unlock(ptl);
3958                         continue;
3959                 }
3960
3961                 page = pte_page(pte);
3962                 /*
3963                  * If a reference page is supplied, it is because a specific
3964                  * page is being unmapped, not a range. Ensure the page we
3965                  * are about to unmap is the actual page of interest.
3966                  */
3967                 if (ref_page) {
3968                         if (page != ref_page) {
3969                                 spin_unlock(ptl);
3970                                 continue;
3971                         }
3972                         /*
3973                          * Mark the VMA as having unmapped its page so that
3974                          * future faults in this VMA will fail rather than
3975                          * looking like data was lost
3976                          */
3977                         set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
3978                 }
3979
3980                 pte = huge_ptep_get_and_clear(mm, address, ptep);
3981                 tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
3982                 if (huge_pte_dirty(pte))
3983                         set_page_dirty(page);
3984
3985                 hugetlb_count_sub(pages_per_huge_page(h), mm);
3986                 page_remove_rmap(page, true);
3987
3988                 spin_unlock(ptl);
3989                 tlb_remove_page_size(tlb, page, huge_page_size(h));
3990                 /*
3991                  * Bail out after unmapping reference page if supplied
3992                  */
3993                 if (ref_page)
3994                         break;
3995         }
3996         mmu_notifier_invalidate_range_end(&range);
3997         tlb_end_vma(tlb, vma);
3998 }
3999
4000 void __unmap_hugepage_range_final(struct mmu_gather *tlb,
4001                           struct vm_area_struct *vma, unsigned long start,
4002                           unsigned long end, struct page *ref_page)
4003 {
4004         __unmap_hugepage_range(tlb, vma, start, end, ref_page);
4005
4006         /*
4007          * Clear this flag so that x86's huge_pmd_share page_table_shareable
4008          * test will fail on a vma being torn down, and not grab a page table
4009          * on its way out.  We're lucky that the flag has such an appropriate
4010          * name, and can in fact be safely cleared here. We could clear it
4011          * before the __unmap_hugepage_range above, but all that's necessary
4012          * is to clear it before releasing the i_mmap_rwsem. This works
4013          * because in the context this is called, the VMA is about to be
4014          * destroyed and the i_mmap_rwsem is held.
4015          */
4016         vma->vm_flags &= ~VM_MAYSHARE;
4017 }
4018
4019 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
4020                           unsigned long end, struct page *ref_page)
4021 {
4022         struct mmu_gather tlb;
4023
4024         tlb_gather_mmu(&tlb, vma->vm_mm);
4025         __unmap_hugepage_range(&tlb, vma, start, end, ref_page);
4026         tlb_finish_mmu(&tlb);
4027 }
4028
4029 /*
4030  * This is called when the original mapper is failing to COW a MAP_PRIVATE
4031  * mapping it owns the reserve page for. The intention is to unmap the page
4032  * from other VMAs and let the children be SIGKILLed if they are faulting the
4033  * same region.
4034  */
4035 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
4036                               struct page *page, unsigned long address)
4037 {
4038         struct hstate *h = hstate_vma(vma);
4039         struct vm_area_struct *iter_vma;
4040         struct address_space *mapping;
4041         pgoff_t pgoff;
4042
4043         /*
4044          * vm_pgoff is in PAGE_SIZE units, hence the different calculation
4045          * from page cache lookup which is in HPAGE_SIZE units.
4046          */
4047         address = address & huge_page_mask(h);
4048         pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
4049                         vma->vm_pgoff;
4050         mapping = vma->vm_file->f_mapping;
4051
4052         /*
4053          * Take the mapping lock for the duration of the table walk. As
4054          * this mapping should be shared between all the VMAs,
4055          * __unmap_hugepage_range() is called as the lock is already held
4056          */
4057         i_mmap_lock_write(mapping);
4058         vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
4059                 /* Do not unmap the current VMA */
4060                 if (iter_vma == vma)
4061                         continue;
4062
4063                 /*
4064                  * Shared VMAs have their own reserves and do not affect
4065                  * MAP_PRIVATE accounting but it is possible that a shared
4066                  * VMA is using the same page so check and skip such VMAs.
4067                  */
4068                 if (iter_vma->vm_flags & VM_MAYSHARE)
4069                         continue;
4070
4071                 /*
4072                  * Unmap the page from other VMAs without their own reserves.
4073                  * They get marked to be SIGKILLed if they fault in these
4074                  * areas. This is because a future no-page fault on this VMA
4075                  * could insert a zeroed page instead of the data existing
4076                  * from the time of fork. This would look like data corruption
4077                  */
4078                 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
4079                         unmap_hugepage_range(iter_vma, address,
4080                                              address + huge_page_size(h), page);
4081         }
4082         i_mmap_unlock_write(mapping);
4083 }
4084
4085 /*
4086  * Hugetlb_cow() should be called with page lock of the original hugepage held.
4087  * Called with hugetlb_instantiation_mutex held and pte_page locked so we
4088  * cannot race with other handlers or page migration.
4089  * Keep the pte_same checks anyway to make transition from the mutex easier.
4090  */
4091 static vm_fault_t hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
4092                        unsigned long address, pte_t *ptep,
4093                        struct page *pagecache_page, spinlock_t *ptl)
4094 {
4095         pte_t pte;
4096         struct hstate *h = hstate_vma(vma);
4097         struct page *old_page, *new_page;
4098         int outside_reserve = 0;
4099         vm_fault_t ret = 0;
4100         unsigned long haddr = address & huge_page_mask(h);
4101         struct mmu_notifier_range range;
4102
4103         pte = huge_ptep_get(ptep);
4104         old_page = pte_page(pte);
4105
4106 retry_avoidcopy:
4107         /* If no-one else is actually using this page, avoid the copy
4108          * and just make the page writable */
4109         if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
4110                 page_move_anon_rmap(old_page, vma);
4111                 set_huge_ptep_writable(vma, haddr, ptep);
4112                 return 0;
4113         }
4114
4115         /*
4116          * If the process that created a MAP_PRIVATE mapping is about to
4117          * perform a COW due to a shared page count, attempt to satisfy
4118          * the allocation without using the existing reserves. The pagecache
4119          * page is used to determine if the reserve at this address was
4120          * consumed or not. If reserves were used, a partial faulted mapping
4121          * at the time of fork() could consume its reserves on COW instead
4122          * of the full address range.
4123          */
4124         if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
4125                         old_page != pagecache_page)
4126                 outside_reserve = 1;
4127
4128         get_page(old_page);
4129
4130         /*
4131          * Drop page table lock as buddy allocator may be called. It will
4132          * be acquired again before returning to the caller, as expected.
4133          */
4134         spin_unlock(ptl);
4135         new_page = alloc_huge_page(vma, haddr, outside_reserve);
4136
4137         if (IS_ERR(new_page)) {
4138                 /*
4139                  * If a process owning a MAP_PRIVATE mapping fails to COW,
4140                  * it is due to references held by a child and an insufficient
4141                  * huge page pool. To guarantee the original mappers
4142                  * reliability, unmap the page from child processes. The child
4143                  * may get SIGKILLed if it later faults.
4144                  */
4145                 if (outside_reserve) {
4146                         struct address_space *mapping = vma->vm_file->f_mapping;
4147                         pgoff_t idx;
4148                         u32 hash;
4149
4150                         put_page(old_page);
4151                         BUG_ON(huge_pte_none(pte));
4152                         /*
4153                          * Drop hugetlb_fault_mutex and i_mmap_rwsem before
4154                          * unmapping.  unmapping needs to hold i_mmap_rwsem
4155                          * in write mode.  Dropping i_mmap_rwsem in read mode
4156                          * here is OK as COW mappings do not interact with
4157                          * PMD sharing.
4158                          *
4159                          * Reacquire both after unmap operation.
4160                          */
4161                         idx = vma_hugecache_offset(h, vma, haddr);
4162                         hash = hugetlb_fault_mutex_hash(mapping, idx);
4163                         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
4164                         i_mmap_unlock_read(mapping);
4165
4166                         unmap_ref_private(mm, vma, old_page, haddr);
4167
4168                         i_mmap_lock_read(mapping);
4169                         mutex_lock(&hugetlb_fault_mutex_table[hash]);
4170                         spin_lock(ptl);
4171                         ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
4172                         if (likely(ptep &&
4173                                    pte_same(huge_ptep_get(ptep), pte)))
4174                                 goto retry_avoidcopy;
4175                         /*
4176                          * race occurs while re-acquiring page table
4177                          * lock, and our job is done.
4178                          */
4179                         return 0;
4180                 }
4181
4182                 ret = vmf_error(PTR_ERR(new_page));
4183                 goto out_release_old;
4184         }
4185
4186         /*
4187          * When the original hugepage is shared one, it does not have
4188          * anon_vma prepared.
4189          */
4190         if (unlikely(anon_vma_prepare(vma))) {
4191                 ret = VM_FAULT_OOM;
4192                 goto out_release_all;
4193         }
4194
4195         copy_user_huge_page(new_page, old_page, address, vma,
4196                             pages_per_huge_page(h));
4197         __SetPageUptodate(new_page);
4198
4199         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, haddr,
4200                                 haddr + huge_page_size(h));
4201         mmu_notifier_invalidate_range_start(&range);
4202
4203         /*
4204          * Retake the page table lock to check for racing updates
4205          * before the page tables are altered
4206          */
4207         spin_lock(ptl);
4208         ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
4209         if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
4210                 ClearPagePrivate(new_page);
4211
4212                 /* Break COW */
4213                 huge_ptep_clear_flush(vma, haddr, ptep);
4214                 mmu_notifier_invalidate_range(mm, range.start, range.end);
4215                 set_huge_pte_at(mm, haddr, ptep,
4216                                 make_huge_pte(vma, new_page, 1));
4217                 page_remove_rmap(old_page, true);
4218                 hugepage_add_new_anon_rmap(new_page, vma, haddr);
4219                 set_page_huge_active(new_page);
4220                 /* Make the old page be freed below */
4221                 new_page = old_page;
4222         }
4223         spin_unlock(ptl);
4224         mmu_notifier_invalidate_range_end(&range);
4225 out_release_all:
4226         restore_reserve_on_error(h, vma, haddr, new_page);
4227         put_page(new_page);
4228 out_release_old:
4229         put_page(old_page);
4230
4231         spin_lock(ptl); /* Caller expects lock to be held */
4232         return ret;
4233 }
4234
4235 /* Return the pagecache page at a given address within a VMA */
4236 static struct page *hugetlbfs_pagecache_page(struct hstate *h,
4237                         struct vm_area_struct *vma, unsigned long address)
4238 {
4239         struct address_space *mapping;
4240         pgoff_t idx;
4241
4242         mapping = vma->vm_file->f_mapping;
4243         idx = vma_hugecache_offset(h, vma, address);
4244
4245         return find_lock_page(mapping, idx);
4246 }
4247
4248 /*
4249  * Return whether there is a pagecache page to back given address within VMA.
4250  * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
4251  */
4252 static bool hugetlbfs_pagecache_present(struct hstate *h,
4253                         struct vm_area_struct *vma, unsigned long address)
4254 {
4255         struct address_space *mapping;
4256         pgoff_t idx;
4257         struct page *page;
4258
4259         mapping = vma->vm_file->f_mapping;
4260         idx = vma_hugecache_offset(h, vma, address);
4261
4262         page = find_get_page(mapping, idx);
4263         if (page)
4264                 put_page(page);
4265         return page != NULL;
4266 }
4267
4268 int huge_add_to_page_cache(struct page *page, struct address_space *mapping,
4269                            pgoff_t idx)
4270 {
4271         struct inode *inode = mapping->host;
4272         struct hstate *h = hstate_inode(inode);
4273         int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
4274
4275         if (err)
4276                 return err;
4277         ClearPagePrivate(page);
4278
4279         /*
4280          * set page dirty so that it will not be removed from cache/file
4281          * by non-hugetlbfs specific code paths.
4282          */
4283         set_page_dirty(page);
4284
4285         spin_lock(&inode->i_lock);
4286         inode->i_blocks += blocks_per_huge_page(h);
4287         spin_unlock(&inode->i_lock);
4288         return 0;
4289 }
4290
4291 static vm_fault_t hugetlb_no_page(struct mm_struct *mm,
4292                         struct vm_area_struct *vma,
4293                         struct address_space *mapping, pgoff_t idx,
4294                         unsigned long address, pte_t *ptep, unsigned int flags)
4295 {
4296         struct hstate *h = hstate_vma(vma);
4297         vm_fault_t ret = VM_FAULT_SIGBUS;
4298         int anon_rmap = 0;
4299         unsigned long size;
4300         struct page *page;
4301         pte_t new_pte;
4302         spinlock_t *ptl;
4303         unsigned long haddr = address & huge_page_mask(h);
4304         bool new_page = false;
4305
4306         /*
4307          * Currently, we are forced to kill the process in the event the
4308          * original mapper has unmapped pages from the child due to a failed
4309          * COW. Warn that such a situation has occurred as it may not be obvious
4310          */
4311         if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
4312                 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
4313                            current->pid);
4314                 return ret;
4315         }
4316
4317         /*
4318          * We can not race with truncation due to holding i_mmap_rwsem.
4319          * i_size is modified when holding i_mmap_rwsem, so check here
4320          * once for faults beyond end of file.
4321          */
4322         size = i_size_read(mapping->host) >> huge_page_shift(h);
4323         if (idx >= size)
4324                 goto out;
4325
4326 retry:
4327         page = find_lock_page(mapping, idx);
4328         if (!page) {
4329                 /*
4330                  * Check for page in userfault range
4331                  */
4332                 if (userfaultfd_missing(vma)) {
4333                         u32 hash;
4334                         struct vm_fault vmf = {
4335                                 .vma = vma,
4336                                 .address = haddr,
4337                                 .flags = flags,
4338                                 /*
4339                                  * Hard to debug if it ends up being
4340                                  * used by a callee that assumes
4341                                  * something about the other
4342                                  * uninitialized fields... same as in
4343                                  * memory.c
4344                                  */
4345                         };
4346
4347                         /*
4348                          * hugetlb_fault_mutex and i_mmap_rwsem must be
4349                          * dropped before handling userfault.  Reacquire
4350                          * after handling fault to make calling code simpler.
4351                          */
4352                         hash = hugetlb_fault_mutex_hash(mapping, idx);
4353                         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
4354                         i_mmap_unlock_read(mapping);
4355                         ret = handle_userfault(&vmf, VM_UFFD_MISSING);
4356                         i_mmap_lock_read(mapping);
4357                         mutex_lock(&hugetlb_fault_mutex_table[hash]);
4358                         goto out;
4359                 }
4360
4361                 page = alloc_huge_page(vma, haddr, 0);
4362                 if (IS_ERR(page)) {
4363                         /*
4364                          * Returning error will result in faulting task being
4365                          * sent SIGBUS.  The hugetlb fault mutex prevents two
4366                          * tasks from racing to fault in the same page which
4367                          * could result in false unable to allocate errors.
4368                          * Page migration does not take the fault mutex, but
4369                          * does a clear then write of pte's under page table
4370                          * lock.  Page fault code could race with migration,
4371                          * notice the clear pte and try to allocate a page
4372                          * here.  Before returning error, get ptl and make
4373                          * sure there really is no pte entry.
4374                          */
4375                         ptl = huge_pte_lock(h, mm, ptep);
4376                         if (!huge_pte_none(huge_ptep_get(ptep))) {
4377                                 ret = 0;
4378                                 spin_unlock(ptl);
4379                                 goto out;
4380                         }
4381                         spin_unlock(ptl);
4382                         ret = vmf_error(PTR_ERR(page));
4383                         goto out;
4384                 }
4385                 clear_huge_page(page, address, pages_per_huge_page(h));
4386                 __SetPageUptodate(page);
4387                 new_page = true;
4388
4389                 if (vma->vm_flags & VM_MAYSHARE) {
4390                         int err = huge_add_to_page_cache(page, mapping, idx);
4391                         if (err) {
4392                                 put_page(page);
4393                                 if (err == -EEXIST)
4394                                         goto retry;
4395                                 goto out;
4396                         }
4397                 } else {
4398                         lock_page(page);
4399                         if (unlikely(anon_vma_prepare(vma))) {
4400                                 ret = VM_FAULT_OOM;
4401                                 goto backout_unlocked;
4402                         }
4403                         anon_rmap = 1;
4404                 }
4405         } else {
4406                 /*
4407                  * If memory error occurs between mmap() and fault, some process
4408                  * don't have hwpoisoned swap entry for errored virtual address.
4409                  * So we need to block hugepage fault by PG_hwpoison bit check.
4410                  */
4411                 if (unlikely(PageHWPoison(page))) {
4412                         ret = VM_FAULT_HWPOISON_LARGE |
4413                                 VM_FAULT_SET_HINDEX(hstate_index(h));
4414                         goto backout_unlocked;
4415                 }
4416         }
4417
4418         /*
4419          * If we are going to COW a private mapping later, we examine the
4420          * pending reservations for this page now. This will ensure that
4421          * any allocations necessary to record that reservation occur outside
4422          * the spinlock.
4423          */
4424         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
4425                 if (vma_needs_reservation(h, vma, haddr) < 0) {
4426                         ret = VM_FAULT_OOM;
4427                         goto backout_unlocked;
4428                 }
4429                 /* Just decrements count, does not deallocate */
4430                 vma_end_reservation(h, vma, haddr);
4431         }
4432
4433         ptl = huge_pte_lock(h, mm, ptep);
4434         ret = 0;
4435         if (!huge_pte_none(huge_ptep_get(ptep)))
4436                 goto backout;
4437
4438         if (anon_rmap) {
4439                 ClearPagePrivate(page);
4440                 hugepage_add_new_anon_rmap(page, vma, haddr);
4441         } else
4442                 page_dup_rmap(page, true);
4443         new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
4444                                 && (vma->vm_flags & VM_SHARED)));
4445         set_huge_pte_at(mm, haddr, ptep, new_pte);
4446
4447         hugetlb_count_add(pages_per_huge_page(h), mm);
4448         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
4449                 /* Optimization, do the COW without a second fault */
4450                 ret = hugetlb_cow(mm, vma, address, ptep, page, ptl);
4451         }
4452
4453         spin_unlock(ptl);
4454
4455         /*
4456          * Only make newly allocated pages active.  Existing pages found
4457          * in the pagecache could be !page_huge_active() if they have been
4458          * isolated for migration.
4459          */
4460         if (new_page)
4461                 set_page_huge_active(page);
4462
4463         unlock_page(page);
4464 out:
4465         return ret;
4466
4467 backout:
4468         spin_unlock(ptl);
4469 backout_unlocked:
4470         unlock_page(page);
4471         restore_reserve_on_error(h, vma, haddr, page);
4472         put_page(page);
4473         goto out;
4474 }
4475
4476 #ifdef CONFIG_SMP
4477 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
4478 {
4479         unsigned long key[2];
4480         u32 hash;
4481
4482         key[0] = (unsigned long) mapping;
4483         key[1] = idx;
4484
4485         hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0);
4486
4487         return hash & (num_fault_mutexes - 1);
4488 }
4489 #else
4490 /*
4491  * For uniprocessor systems we always use a single mutex, so just
4492  * return 0 and avoid the hashing overhead.
4493  */
4494 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
4495 {
4496         return 0;
4497 }
4498 #endif
4499
4500 vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
4501                         unsigned long address, unsigned int flags)
4502 {
4503         pte_t *ptep, entry;
4504         spinlock_t *ptl;
4505         vm_fault_t ret;
4506         u32 hash;
4507         pgoff_t idx;
4508         struct page *page = NULL;
4509         struct page *pagecache_page = NULL;
4510         struct hstate *h = hstate_vma(vma);
4511         struct address_space *mapping;
4512         int need_wait_lock = 0;
4513         unsigned long haddr = address & huge_page_mask(h);
4514
4515         ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
4516         if (ptep) {
4517                 /*
4518                  * Since we hold no locks, ptep could be stale.  That is
4519                  * OK as we are only making decisions based on content and
4520                  * not actually modifying content here.
4521                  */
4522                 entry = huge_ptep_get(ptep);
4523                 if (unlikely(is_hugetlb_entry_migration(entry))) {
4524                         migration_entry_wait_huge(vma, mm, ptep);
4525                         return 0;
4526                 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
4527                         return VM_FAULT_HWPOISON_LARGE |
4528                                 VM_FAULT_SET_HINDEX(hstate_index(h));
4529         }
4530
4531         /*
4532          * Acquire i_mmap_rwsem before calling huge_pte_alloc and hold
4533          * until finished with ptep.  This serves two purposes:
4534          * 1) It prevents huge_pmd_unshare from being called elsewhere
4535          *    and making the ptep no longer valid.
4536          * 2) It synchronizes us with i_size modifications during truncation.
4537          *
4538          * ptep could have already be assigned via huge_pte_offset.  That
4539          * is OK, as huge_pte_alloc will return the same value unless
4540          * something has changed.
4541          */
4542         mapping = vma->vm_file->f_mapping;
4543         i_mmap_lock_read(mapping);
4544         ptep = huge_pte_alloc(mm, haddr, huge_page_size(h));
4545         if (!ptep) {
4546                 i_mmap_unlock_read(mapping);
4547                 return VM_FAULT_OOM;
4548         }
4549
4550         /*
4551          * Serialize hugepage allocation and instantiation, so that we don't
4552          * get spurious allocation failures if two CPUs race to instantiate
4553          * the same page in the page cache.
4554          */
4555         idx = vma_hugecache_offset(h, vma, haddr);
4556         hash = hugetlb_fault_mutex_hash(mapping, idx);
4557         mutex_lock(&hugetlb_fault_mutex_table[hash]);
4558
4559         entry = huge_ptep_get(ptep);
4560         if (huge_pte_none(entry)) {
4561                 ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
4562                 goto out_mutex;
4563         }
4564
4565         ret = 0;
4566
4567         /*
4568          * entry could be a migration/hwpoison entry at this point, so this
4569          * check prevents the kernel from going below assuming that we have
4570          * an active hugepage in pagecache. This goto expects the 2nd page
4571          * fault, and is_hugetlb_entry_(migration|hwpoisoned) check will
4572          * properly handle it.
4573          */
4574         if (!pte_present(entry))
4575                 goto out_mutex;
4576
4577         /*
4578          * If we are going to COW the mapping later, we examine the pending
4579          * reservations for this page now. This will ensure that any
4580          * allocations necessary to record that reservation occur outside the
4581          * spinlock. For private mappings, we also lookup the pagecache
4582          * page now as it is used to determine if a reservation has been
4583          * consumed.
4584          */
4585         if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
4586                 if (vma_needs_reservation(h, vma, haddr) < 0) {
4587                         ret = VM_FAULT_OOM;
4588                         goto out_mutex;
4589                 }
4590                 /* Just decrements count, does not deallocate */
4591                 vma_end_reservation(h, vma, haddr);
4592
4593                 if (!(vma->vm_flags & VM_MAYSHARE))
4594                         pagecache_page = hugetlbfs_pagecache_page(h,
4595                                                                 vma, haddr);
4596         }
4597
4598         ptl = huge_pte_lock(h, mm, ptep);
4599
4600         /* Check for a racing update before calling hugetlb_cow */
4601         if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
4602                 goto out_ptl;
4603
4604         /*
4605          * hugetlb_cow() requires page locks of pte_page(entry) and
4606          * pagecache_page, so here we need take the former one
4607          * when page != pagecache_page or !pagecache_page.
4608          */
4609         page = pte_page(entry);
4610         if (page != pagecache_page)
4611                 if (!trylock_page(page)) {
4612                         need_wait_lock = 1;
4613                         goto out_ptl;
4614                 }
4615
4616         get_page(page);
4617
4618         if (flags & FAULT_FLAG_WRITE) {
4619                 if (!huge_pte_write(entry)) {
4620                         ret = hugetlb_cow(mm, vma, address, ptep,
4621                                           pagecache_page, ptl);
4622                         goto out_put_page;
4623                 }
4624                 entry = huge_pte_mkdirty(entry);
4625         }
4626         entry = pte_mkyoung(entry);
4627         if (huge_ptep_set_access_flags(vma, haddr, ptep, entry,
4628                                                 flags & FAULT_FLAG_WRITE))
4629                 update_mmu_cache(vma, haddr, ptep);
4630 out_put_page:
4631         if (page != pagecache_page)
4632                 unlock_page(page);
4633         put_page(page);
4634 out_ptl:
4635         spin_unlock(ptl);
4636
4637         if (pagecache_page) {
4638                 unlock_page(pagecache_page);
4639                 put_page(pagecache_page);
4640         }
4641 out_mutex:
4642         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
4643         i_mmap_unlock_read(mapping);
4644         /*
4645          * Generally it's safe to hold refcount during waiting page lock. But
4646          * here we just wait to defer the next page fault to avoid busy loop and
4647          * the page is not used after unlocked before returning from the current
4648          * page fault. So we are safe from accessing freed page, even if we wait
4649          * here without taking refcount.
4650          */
4651         if (need_wait_lock)
4652                 wait_on_page_locked(page);
4653         return ret;
4654 }
4655
4656 /*
4657  * Used by userfaultfd UFFDIO_COPY.  Based on mcopy_atomic_pte with
4658  * modifications for huge pages.
4659  */
4660 int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm,
4661                             pte_t *dst_pte,
4662                             struct vm_area_struct *dst_vma,
4663                             unsigned long dst_addr,
4664                             unsigned long src_addr,
4665                             struct page **pagep)
4666 {
4667         struct address_space *mapping;
4668         pgoff_t idx;
4669         unsigned long size;
4670         int vm_shared = dst_vma->vm_flags & VM_SHARED;
4671         struct hstate *h = hstate_vma(dst_vma);
4672         pte_t _dst_pte;
4673         spinlock_t *ptl;
4674         int ret;
4675         struct page *page;
4676
4677         if (!*pagep) {
4678                 ret = -ENOMEM;
4679                 page = alloc_huge_page(dst_vma, dst_addr, 0);
4680                 if (IS_ERR(page))
4681                         goto out;
4682
4683                 ret = copy_huge_page_from_user(page,
4684                                                 (const void __user *) src_addr,
4685                                                 pages_per_huge_page(h), false);
4686
4687                 /* fallback to copy_from_user outside mmap_lock */
4688                 if (unlikely(ret)) {
4689                         ret = -ENOENT;
4690                         *pagep = page;
4691                         /* don't free the page */
4692                         goto out;
4693                 }
4694         } else {
4695                 page = *pagep;
4696                 *pagep = NULL;
4697         }
4698
4699         /*
4700          * The memory barrier inside __SetPageUptodate makes sure that
4701          * preceding stores to the page contents become visible before
4702          * the set_pte_at() write.
4703          */
4704         __SetPageUptodate(page);
4705
4706         mapping = dst_vma->vm_file->f_mapping;
4707         idx = vma_hugecache_offset(h, dst_vma, dst_addr);
4708
4709         /*
4710          * If shared, add to page cache
4711          */
4712         if (vm_shared) {
4713                 size = i_size_read(mapping->host) >> huge_page_shift(h);
4714                 ret = -EFAULT;
4715                 if (idx >= size)
4716                         goto out_release_nounlock;
4717
4718                 /*
4719                  * Serialization between remove_inode_hugepages() and
4720                  * huge_add_to_page_cache() below happens through the
4721                  * hugetlb_fault_mutex_table that here must be hold by
4722                  * the caller.
4723                  */
4724                 ret = huge_add_to_page_cache(page, mapping, idx);
4725                 if (ret)
4726                         goto out_release_nounlock;
4727         }
4728
4729         ptl = huge_pte_lockptr(h, dst_mm, dst_pte);
4730         spin_lock(ptl);
4731
4732         /*
4733          * Recheck the i_size after holding PT lock to make sure not
4734          * to leave any page mapped (as page_mapped()) beyond the end
4735          * of the i_size (remove_inode_hugepages() is strict about
4736          * enforcing that). If we bail out here, we'll also leave a
4737          * page in the radix tree in the vm_shared case beyond the end
4738          * of the i_size, but remove_inode_hugepages() will take care
4739          * of it as soon as we drop the hugetlb_fault_mutex_table.
4740          */
4741         size = i_size_read(mapping->host) >> huge_page_shift(h);
4742         ret = -EFAULT;
4743         if (idx >= size)
4744                 goto out_release_unlock;
4745
4746         ret = -EEXIST;
4747         if (!huge_pte_none(huge_ptep_get(dst_pte)))
4748                 goto out_release_unlock;
4749
4750         if (vm_shared) {
4751                 page_dup_rmap(page, true);
4752         } else {
4753                 ClearPagePrivate(page);
4754                 hugepage_add_new_anon_rmap(page, dst_vma, dst_addr);
4755         }
4756
4757         _dst_pte = make_huge_pte(dst_vma, page, dst_vma->vm_flags & VM_WRITE);
4758         if (dst_vma->vm_flags & VM_WRITE)
4759                 _dst_pte = huge_pte_mkdirty(_dst_pte);
4760         _dst_pte = pte_mkyoung(_dst_pte);
4761
4762         set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
4763
4764         (void)huge_ptep_set_access_flags(dst_vma, dst_addr, dst_pte, _dst_pte,
4765                                         dst_vma->vm_flags & VM_WRITE);
4766         hugetlb_count_add(pages_per_huge_page(h), dst_mm);
4767
4768         /* No need to invalidate - it was non-present before */
4769         update_mmu_cache(dst_vma, dst_addr, dst_pte);
4770
4771         spin_unlock(ptl);
4772         set_page_huge_active(page);
4773         if (vm_shared)
4774                 unlock_page(page);
4775         ret = 0;
4776 out:
4777         return ret;
4778 out_release_unlock:
4779         spin_unlock(ptl);
4780         if (vm_shared)
4781                 unlock_page(page);
4782 out_release_nounlock:
4783         put_page(page);
4784         goto out;
4785 }
4786
4787 static void record_subpages_vmas(struct page *page, struct vm_area_struct *vma,
4788                                  int refs, struct page **pages,
4789                                  struct vm_area_struct **vmas)
4790 {
4791         int nr;
4792
4793         for (nr = 0; nr < refs; nr++) {
4794                 if (likely(pages))
4795                         pages[nr] = mem_map_offset(page, nr);
4796                 if (vmas)
4797                         vmas[nr] = vma;
4798         }
4799 }
4800
4801 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
4802                          struct page **pages, struct vm_area_struct **vmas,
4803                          unsigned long *position, unsigned long *nr_pages,
4804                          long i, unsigned int flags, int *locked)
4805 {
4806         unsigned long pfn_offset;
4807         unsigned long vaddr = *position;
4808         unsigned long remainder = *nr_pages;
4809         struct hstate *h = hstate_vma(vma);
4810         int err = -EFAULT, refs;
4811
4812         while (vaddr < vma->vm_end && remainder) {
4813                 pte_t *pte;
4814                 spinlock_t *ptl = NULL;
4815                 int absent;
4816                 struct page *page;
4817
4818                 /*
4819                  * If we have a pending SIGKILL, don't keep faulting pages and
4820                  * potentially allocating memory.
4821                  */
4822                 if (fatal_signal_pending(current)) {
4823                         remainder = 0;
4824                         break;
4825                 }
4826
4827                 /*
4828                  * Some archs (sparc64, sh*) have multiple pte_ts to
4829                  * each hugepage.  We have to make sure we get the
4830                  * first, for the page indexing below to work.
4831                  *
4832                  * Note that page table lock is not held when pte is null.
4833                  */
4834                 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h),
4835                                       huge_page_size(h));
4836                 if (pte)
4837                         ptl = huge_pte_lock(h, mm, pte);
4838                 absent = !pte || huge_pte_none(huge_ptep_get(pte));
4839
4840                 /*
4841                  * When coredumping, it suits get_dump_page if we just return
4842                  * an error where there's an empty slot with no huge pagecache
4843                  * to back it.  This way, we avoid allocating a hugepage, and
4844                  * the sparse dumpfile avoids allocating disk blocks, but its
4845                  * huge holes still show up with zeroes where they need to be.
4846                  */
4847                 if (absent && (flags & FOLL_DUMP) &&
4848                     !hugetlbfs_pagecache_present(h, vma, vaddr)) {
4849                         if (pte)
4850                                 spin_unlock(ptl);
4851                         remainder = 0;
4852                         break;
4853                 }
4854
4855                 /*
4856                  * We need call hugetlb_fault for both hugepages under migration
4857                  * (in which case hugetlb_fault waits for the migration,) and
4858                  * hwpoisoned hugepages (in which case we need to prevent the
4859                  * caller from accessing to them.) In order to do this, we use
4860                  * here is_swap_pte instead of is_hugetlb_entry_migration and
4861                  * is_hugetlb_entry_hwpoisoned. This is because it simply covers
4862                  * both cases, and because we can't follow correct pages
4863                  * directly from any kind of swap entries.
4864                  */
4865                 if (absent || is_swap_pte(huge_ptep_get(pte)) ||
4866                     ((flags & FOLL_WRITE) &&
4867                       !huge_pte_write(huge_ptep_get(pte)))) {
4868                         vm_fault_t ret;
4869                         unsigned int fault_flags = 0;
4870
4871                         if (pte)
4872                                 spin_unlock(ptl);
4873                         if (flags & FOLL_WRITE)
4874                                 fault_flags |= FAULT_FLAG_WRITE;
4875                         if (locked)
4876                                 fault_flags |= FAULT_FLAG_ALLOW_RETRY |
4877                                         FAULT_FLAG_KILLABLE;
4878                         if (flags & FOLL_NOWAIT)
4879                                 fault_flags |= FAULT_FLAG_ALLOW_RETRY |
4880                                         FAULT_FLAG_RETRY_NOWAIT;
4881                         if (flags & FOLL_TRIED) {
4882                                 /*
4883                                  * Note: FAULT_FLAG_ALLOW_RETRY and
4884                                  * FAULT_FLAG_TRIED can co-exist
4885                                  */
4886                                 fault_flags |= FAULT_FLAG_TRIED;
4887                         }
4888                         ret = hugetlb_fault(mm, vma, vaddr, fault_flags);
4889                         if (ret & VM_FAULT_ERROR) {
4890                                 err = vm_fault_to_errno(ret, flags);
4891                                 remainder = 0;
4892                                 break;
4893                         }
4894                         if (ret & VM_FAULT_RETRY) {
4895                                 if (locked &&
4896                                     !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
4897                                         *locked = 0;
4898                                 *nr_pages = 0;
4899                                 /*
4900                                  * VM_FAULT_RETRY must not return an
4901                                  * error, it will return zero
4902                                  * instead.
4903                                  *
4904                                  * No need to update "position" as the
4905                                  * caller will not check it after
4906                                  * *nr_pages is set to 0.
4907                                  */
4908                                 return i;
4909                         }
4910                         continue;
4911                 }
4912
4913                 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
4914                 page = pte_page(huge_ptep_get(pte));
4915
4916                 /*
4917                  * If subpage information not requested, update counters
4918                  * and skip the same_page loop below.
4919                  */
4920                 if (!pages && !vmas && !pfn_offset &&
4921                     (vaddr + huge_page_size(h) < vma->vm_end) &&
4922                     (remainder >= pages_per_huge_page(h))) {
4923                         vaddr += huge_page_size(h);
4924                         remainder -= pages_per_huge_page(h);
4925                         i += pages_per_huge_page(h);
4926                         spin_unlock(ptl);
4927                         continue;
4928                 }
4929
4930                 refs = min3(pages_per_huge_page(h) - pfn_offset,
4931                             (vma->vm_end - vaddr) >> PAGE_SHIFT, remainder);
4932
4933                 if (pages || vmas)
4934                         record_subpages_vmas(mem_map_offset(page, pfn_offset),
4935                                              vma, refs,
4936                                              likely(pages) ? pages + i : NULL,
4937                                              vmas ? vmas + i : NULL);
4938
4939                 if (pages) {
4940                         /*
4941                          * try_grab_compound_head() should always succeed here,
4942                          * because: a) we hold the ptl lock, and b) we've just
4943                          * checked that the huge page is present in the page
4944                          * tables. If the huge page is present, then the tail
4945                          * pages must also be present. The ptl prevents the
4946                          * head page and tail pages from being rearranged in
4947                          * any way. So this page must be available at this
4948                          * point, unless the page refcount overflowed:
4949                          */
4950                         if (WARN_ON_ONCE(!try_grab_compound_head(pages[i],
4951                                                                  refs,
4952                                                                  flags))) {
4953                                 spin_unlock(ptl);
4954                                 remainder = 0;
4955                                 err = -ENOMEM;
4956                                 break;
4957                         }
4958                 }
4959
4960                 vaddr += (refs << PAGE_SHIFT);
4961                 remainder -= refs;
4962                 i += refs;
4963
4964                 spin_unlock(ptl);
4965         }
4966         *nr_pages = remainder;
4967         /*
4968          * setting position is actually required only if remainder is
4969          * not zero but it's faster not to add a "if (remainder)"
4970          * branch.
4971          */
4972         *position = vaddr;
4973
4974         return i ? i : err;
4975 }
4976
4977 #ifndef __HAVE_ARCH_FLUSH_HUGETLB_TLB_RANGE
4978 /*
4979  * ARCHes with special requirements for evicting HUGETLB backing TLB entries can
4980  * implement this.
4981  */
4982 #define flush_hugetlb_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end)
4983 #endif
4984
4985 unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
4986                 unsigned long address, unsigned long end, pgprot_t newprot)
4987 {
4988         struct mm_struct *mm = vma->vm_mm;
4989         unsigned long start = address;
4990         pte_t *ptep;
4991         pte_t pte;
4992         struct hstate *h = hstate_vma(vma);
4993         unsigned long pages = 0;
4994         bool shared_pmd = false;
4995         struct mmu_notifier_range range;
4996
4997         /*
4998          * In the case of shared PMDs, the area to flush could be beyond
4999          * start/end.  Set range.start/range.end to cover the maximum possible
5000          * range if PMD sharing is possible.
5001          */
5002         mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA,
5003                                 0, vma, mm, start, end);
5004         adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
5005
5006         BUG_ON(address >= end);
5007         flush_cache_range(vma, range.start, range.end);
5008
5009         mmu_notifier_invalidate_range_start(&range);
5010         i_mmap_lock_write(vma->vm_file->f_mapping);
5011         for (; address < end; address += huge_page_size(h)) {
5012                 spinlock_t *ptl;
5013                 ptep = huge_pte_offset(mm, address, huge_page_size(h));
5014                 if (!ptep)
5015                         continue;
5016                 ptl = huge_pte_lock(h, mm, ptep);
5017                 if (huge_pmd_unshare(mm, vma, &address, ptep)) {
5018                         pages++;
5019                         spin_unlock(ptl);
5020                         shared_pmd = true;
5021                         continue;
5022                 }
5023                 pte = huge_ptep_get(ptep);
5024                 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
5025                         spin_unlock(ptl);
5026                         continue;
5027                 }
5028                 if (unlikely(is_hugetlb_entry_migration(pte))) {
5029                         swp_entry_t entry = pte_to_swp_entry(pte);
5030
5031                         if (is_write_migration_entry(entry)) {
5032                                 pte_t newpte;
5033
5034                                 make_migration_entry_read(&entry);
5035                                 newpte = swp_entry_to_pte(entry);
5036                                 set_huge_swap_pte_at(mm, address, ptep,
5037                                                      newpte, huge_page_size(h));
5038                                 pages++;
5039                         }
5040                         spin_unlock(ptl);
5041                         continue;
5042                 }
5043                 if (!huge_pte_none(pte)) {
5044                         pte_t old_pte;
5045
5046                         old_pte = huge_ptep_modify_prot_start(vma, address, ptep);
5047                         pte = pte_mkhuge(huge_pte_modify(old_pte, newprot));
5048                         pte = arch_make_huge_pte(pte, vma, NULL, 0);
5049                         huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte);
5050                         pages++;
5051                 }
5052                 spin_unlock(ptl);
5053         }
5054         /*
5055          * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
5056          * may have cleared our pud entry and done put_page on the page table:
5057          * once we release i_mmap_rwsem, another task can do the final put_page
5058          * and that page table be reused and filled with junk.  If we actually
5059          * did unshare a page of pmds, flush the range corresponding to the pud.
5060          */
5061         if (shared_pmd)
5062                 flush_hugetlb_tlb_range(vma, range.start, range.end);
5063         else
5064                 flush_hugetlb_tlb_range(vma, start, end);
5065         /*
5066          * No need to call mmu_notifier_invalidate_range() we are downgrading
5067          * page table protection not changing it to point to a new page.
5068          *
5069          * See Documentation/vm/mmu_notifier.rst
5070          */
5071         i_mmap_unlock_write(vma->vm_file->f_mapping);
5072         mmu_notifier_invalidate_range_end(&range);
5073
5074         return pages << h->order;
5075 }
5076
5077 int hugetlb_reserve_pages(struct inode *inode,
5078                                         long from, long to,
5079                                         struct vm_area_struct *vma,
5080                                         vm_flags_t vm_flags)
5081 {
5082         long ret, chg, add = -1;
5083         struct hstate *h = hstate_inode(inode);
5084         struct hugepage_subpool *spool = subpool_inode(inode);
5085         struct resv_map *resv_map;
5086         struct hugetlb_cgroup *h_cg = NULL;
5087         long gbl_reserve, regions_needed = 0;
5088
5089         /* This should never happen */
5090         if (from > to) {
5091                 VM_WARN(1, "%s called with a negative range\n", __func__);
5092                 return -EINVAL;
5093         }
5094
5095         /*
5096          * Only apply hugepage reservation if asked. At fault time, an
5097          * attempt will be made for VM_NORESERVE to allocate a page
5098          * without using reserves
5099          */
5100         if (vm_flags & VM_NORESERVE)
5101                 return 0;
5102
5103         /*
5104          * Shared mappings base their reservation on the number of pages that
5105          * are already allocated on behalf of the file. Private mappings need
5106          * to reserve the full area even if read-only as mprotect() may be
5107          * called to make the mapping read-write. Assume !vma is a shm mapping
5108          */
5109         if (!vma || vma->vm_flags & VM_MAYSHARE) {
5110                 /*
5111                  * resv_map can not be NULL as hugetlb_reserve_pages is only
5112                  * called for inodes for which resv_maps were created (see
5113                  * hugetlbfs_get_inode).
5114                  */
5115                 resv_map = inode_resv_map(inode);
5116
5117                 chg = region_chg(resv_map, from, to, &regions_needed);
5118
5119         } else {
5120                 /* Private mapping. */
5121                 resv_map = resv_map_alloc();
5122                 if (!resv_map)
5123                         return -ENOMEM;
5124
5125                 chg = to - from;
5126
5127                 set_vma_resv_map(vma, resv_map);
5128                 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
5129         }
5130
5131         if (chg < 0) {
5132                 ret = chg;
5133                 goto out_err;
5134         }
5135
5136         ret = hugetlb_cgroup_charge_cgroup_rsvd(
5137                 hstate_index(h), chg * pages_per_huge_page(h), &h_cg);
5138
5139         if (ret < 0) {
5140                 ret = -ENOMEM;
5141                 goto out_err;
5142         }
5143
5144         if (vma && !(vma->vm_flags & VM_MAYSHARE) && h_cg) {
5145                 /* For private mappings, the hugetlb_cgroup uncharge info hangs
5146                  * of the resv_map.
5147                  */
5148                 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, h_cg, h);
5149         }
5150
5151         /*
5152          * There must be enough pages in the subpool for the mapping. If
5153          * the subpool has a minimum size, there may be some global
5154          * reservations already in place (gbl_reserve).
5155          */
5156         gbl_reserve = hugepage_subpool_get_pages(spool, chg);
5157         if (gbl_reserve < 0) {
5158                 ret = -ENOSPC;
5159                 goto out_uncharge_cgroup;
5160         }
5161
5162         /*
5163          * Check enough hugepages are available for the reservation.
5164          * Hand the pages back to the subpool if there are not
5165          */
5166         ret = hugetlb_acct_memory(h, gbl_reserve);
5167         if (ret < 0) {
5168                 goto out_put_pages;
5169         }
5170
5171         /*
5172          * Account for the reservations made. Shared mappings record regions
5173          * that have reservations as they are shared by multiple VMAs.
5174          * When the last VMA disappears, the region map says how much
5175          * the reservation was and the page cache tells how much of
5176          * the reservation was consumed. Private mappings are per-VMA and
5177          * only the consumed reservations are tracked. When the VMA
5178          * disappears, the original reservation is the VMA size and the
5179          * consumed reservations are stored in the map. Hence, nothing
5180          * else has to be done for private mappings here
5181          */
5182         if (!vma || vma->vm_flags & VM_MAYSHARE) {
5183                 add = region_add(resv_map, from, to, regions_needed, h, h_cg);
5184
5185                 if (unlikely(add < 0)) {
5186                         hugetlb_acct_memory(h, -gbl_reserve);
5187                         ret = add;
5188                         goto out_put_pages;
5189                 } else if (unlikely(chg > add)) {
5190                         /*
5191                          * pages in this range were added to the reserve
5192                          * map between region_chg and region_add.  This
5193                          * indicates a race with alloc_huge_page.  Adjust
5194                          * the subpool and reserve counts modified above
5195                          * based on the difference.
5196                          */
5197                         long rsv_adjust;
5198
5199                         hugetlb_cgroup_uncharge_cgroup_rsvd(
5200                                 hstate_index(h),
5201                                 (chg - add) * pages_per_huge_page(h), h_cg);
5202
5203                         rsv_adjust = hugepage_subpool_put_pages(spool,
5204                                                                 chg - add);
5205                         hugetlb_acct_memory(h, -rsv_adjust);
5206                 }
5207         }
5208         return 0;
5209 out_put_pages:
5210         /* put back original number of pages, chg */
5211         (void)hugepage_subpool_put_pages(spool, chg);
5212 out_uncharge_cgroup:
5213         hugetlb_cgroup_uncharge_cgroup_rsvd(hstate_index(h),
5214                                             chg * pages_per_huge_page(h), h_cg);
5215 out_err:
5216         if (!vma || vma->vm_flags & VM_MAYSHARE)
5217                 /* Only call region_abort if the region_chg succeeded but the
5218                  * region_add failed or didn't run.
5219                  */
5220                 if (chg >= 0 && add < 0)
5221                         region_abort(resv_map, from, to, regions_needed);
5222         if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
5223                 kref_put(&resv_map->refs, resv_map_release);
5224         return ret;
5225 }
5226
5227 long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
5228                                                                 long freed)
5229 {
5230         struct hstate *h = hstate_inode(inode);
5231         struct resv_map *resv_map = inode_resv_map(inode);
5232         long chg = 0;
5233         struct hugepage_subpool *spool = subpool_inode(inode);
5234         long gbl_reserve;
5235
5236         /*
5237          * Since this routine can be called in the evict inode path for all
5238          * hugetlbfs inodes, resv_map could be NULL.
5239          */
5240         if (resv_map) {
5241                 chg = region_del(resv_map, start, end);
5242                 /*
5243                  * region_del() can fail in the rare case where a region
5244                  * must be split and another region descriptor can not be
5245                  * allocated.  If end == LONG_MAX, it will not fail.
5246                  */
5247                 if (chg < 0)
5248                         return chg;
5249         }
5250
5251         spin_lock(&inode->i_lock);
5252         inode->i_blocks -= (blocks_per_huge_page(h) * freed);
5253         spin_unlock(&inode->i_lock);
5254
5255         /*
5256          * If the subpool has a minimum size, the number of global
5257          * reservations to be released may be adjusted.
5258          */
5259         gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
5260         hugetlb_acct_memory(h, -gbl_reserve);
5261
5262         return 0;
5263 }
5264
5265 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
5266 static unsigned long page_table_shareable(struct vm_area_struct *svma,
5267                                 struct vm_area_struct *vma,
5268                                 unsigned long addr, pgoff_t idx)
5269 {
5270         unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
5271                                 svma->vm_start;
5272         unsigned long sbase = saddr & PUD_MASK;
5273         unsigned long s_end = sbase + PUD_SIZE;
5274
5275         /* Allow segments to share if only one is marked locked */
5276         unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
5277         unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
5278
5279         /*
5280          * match the virtual addresses, permission and the alignment of the
5281          * page table page.
5282          */
5283         if (pmd_index(addr) != pmd_index(saddr) ||
5284             vm_flags != svm_flags ||
5285             !range_in_vma(svma, sbase, s_end))
5286                 return 0;
5287
5288         return saddr;
5289 }
5290
5291 static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr)
5292 {
5293         unsigned long base = addr & PUD_MASK;
5294         unsigned long end = base + PUD_SIZE;
5295
5296         /*
5297          * check on proper vm_flags and page table alignment
5298          */
5299         if (vma->vm_flags & VM_MAYSHARE && range_in_vma(vma, base, end))
5300                 return true;
5301         return false;
5302 }
5303
5304 /*
5305  * Determine if start,end range within vma could be mapped by shared pmd.
5306  * If yes, adjust start and end to cover range associated with possible
5307  * shared pmd mappings.
5308  */
5309 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
5310                                 unsigned long *start, unsigned long *end)
5311 {
5312         unsigned long v_start = ALIGN(vma->vm_start, PUD_SIZE),
5313                 v_end = ALIGN_DOWN(vma->vm_end, PUD_SIZE);
5314
5315         /*
5316          * vma need span at least one aligned PUD size and the start,end range
5317          * must at least partialy within it.
5318          */
5319         if (!(vma->vm_flags & VM_MAYSHARE) || !(v_end > v_start) ||
5320                 (*end <= v_start) || (*start >= v_end))
5321                 return;
5322
5323         /* Extend the range to be PUD aligned for a worst case scenario */
5324         if (*start > v_start)
5325                 *start = ALIGN_DOWN(*start, PUD_SIZE);
5326
5327         if (*end < v_end)
5328                 *end = ALIGN(*end, PUD_SIZE);
5329 }
5330
5331 /*
5332  * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
5333  * and returns the corresponding pte. While this is not necessary for the
5334  * !shared pmd case because we can allocate the pmd later as well, it makes the
5335  * code much cleaner.
5336  *
5337  * This routine must be called with i_mmap_rwsem held in at least read mode if
5338  * sharing is possible.  For hugetlbfs, this prevents removal of any page
5339  * table entries associated with the address space.  This is important as we
5340  * are setting up sharing based on existing page table entries (mappings).
5341  *
5342  * NOTE: This routine is only called from huge_pte_alloc.  Some callers of
5343  * huge_pte_alloc know that sharing is not possible and do not take
5344  * i_mmap_rwsem as a performance optimization.  This is handled by the
5345  * if !vma_shareable check at the beginning of the routine. i_mmap_rwsem is
5346  * only required for subsequent processing.
5347  */
5348 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
5349 {
5350         struct vm_area_struct *vma = find_vma(mm, addr);
5351         struct address_space *mapping = vma->vm_file->f_mapping;
5352         pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
5353                         vma->vm_pgoff;
5354         struct vm_area_struct *svma;
5355         unsigned long saddr;
5356         pte_t *spte = NULL;
5357         pte_t *pte;
5358         spinlock_t *ptl;
5359
5360         if (!vma_shareable(vma, addr))
5361                 return (pte_t *)pmd_alloc(mm, pud, addr);
5362
5363         i_mmap_assert_locked(mapping);
5364         vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
5365                 if (svma == vma)
5366                         continue;
5367
5368                 saddr = page_table_shareable(svma, vma, addr, idx);
5369                 if (saddr) {
5370                         spte = huge_pte_offset(svma->vm_mm, saddr,
5371                                                vma_mmu_pagesize(svma));
5372                         if (spte) {
5373                                 get_page(virt_to_page(spte));
5374                                 break;
5375                         }
5376                 }
5377         }
5378
5379         if (!spte)
5380                 goto out;
5381
5382         ptl = huge_pte_lock(hstate_vma(vma), mm, spte);
5383         if (pud_none(*pud)) {
5384                 pud_populate(mm, pud,
5385                                 (pmd_t *)((unsigned long)spte & PAGE_MASK));
5386                 mm_inc_nr_pmds(mm);
5387         } else {
5388                 put_page(virt_to_page(spte));
5389         }
5390         spin_unlock(ptl);
5391 out:
5392         pte = (pte_t *)pmd_alloc(mm, pud, addr);
5393         return pte;
5394 }
5395
5396 /*
5397  * unmap huge page backed by shared pte.
5398  *
5399  * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
5400  * indicated by page_count > 1, unmap is achieved by clearing pud and
5401  * decrementing the ref count. If count == 1, the pte page is not shared.
5402  *
5403  * Called with page table lock held and i_mmap_rwsem held in write mode.
5404  *
5405  * returns: 1 successfully unmapped a shared pte page
5406  *          0 the underlying pte page is not shared, or it is the last user
5407  */
5408 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
5409                                         unsigned long *addr, pte_t *ptep)
5410 {
5411         pgd_t *pgd = pgd_offset(mm, *addr);
5412         p4d_t *p4d = p4d_offset(pgd, *addr);
5413         pud_t *pud = pud_offset(p4d, *addr);
5414
5415         i_mmap_assert_write_locked(vma->vm_file->f_mapping);
5416         BUG_ON(page_count(virt_to_page(ptep)) == 0);
5417         if (page_count(virt_to_page(ptep)) == 1)
5418                 return 0;
5419
5420         pud_clear(pud);
5421         put_page(virt_to_page(ptep));
5422         mm_dec_nr_pmds(mm);
5423         *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
5424         return 1;
5425 }
5426 #define want_pmd_share()        (1)
5427 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
5428 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
5429 {
5430         return NULL;
5431 }
5432
5433 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
5434                                 unsigned long *addr, pte_t *ptep)
5435 {
5436         return 0;
5437 }
5438
5439 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
5440                                 unsigned long *start, unsigned long *end)
5441 {
5442 }
5443 #define want_pmd_share()        (0)
5444 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
5445
5446 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
5447 pte_t *huge_pte_alloc(struct mm_struct *mm,
5448                         unsigned long addr, unsigned long sz)
5449 {
5450         pgd_t *pgd;
5451         p4d_t *p4d;
5452         pud_t *pud;
5453         pte_t *pte = NULL;
5454
5455         pgd = pgd_offset(mm, addr);
5456         p4d = p4d_alloc(mm, pgd, addr);
5457         if (!p4d)
5458                 return NULL;
5459         pud = pud_alloc(mm, p4d, addr);
5460         if (pud) {
5461                 if (sz == PUD_SIZE) {
5462                         pte = (pte_t *)pud;
5463                 } else {
5464                         BUG_ON(sz != PMD_SIZE);
5465                         if (want_pmd_share() && pud_none(*pud))
5466                                 pte = huge_pmd_share(mm, addr, pud);
5467                         else
5468                                 pte = (pte_t *)pmd_alloc(mm, pud, addr);
5469                 }
5470         }
5471         BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte));
5472
5473         return pte;
5474 }
5475
5476 /*
5477  * huge_pte_offset() - Walk the page table to resolve the hugepage
5478  * entry at address @addr
5479  *
5480  * Return: Pointer to page table entry (PUD or PMD) for
5481  * address @addr, or NULL if a !p*d_present() entry is encountered and the
5482  * size @sz doesn't match the hugepage size at this level of the page
5483  * table.
5484  */
5485 pte_t *huge_pte_offset(struct mm_struct *mm,
5486                        unsigned long addr, unsigned long sz)
5487 {
5488         pgd_t *pgd;
5489         p4d_t *p4d;
5490         pud_t *pud;
5491         pmd_t *pmd;
5492
5493         pgd = pgd_offset(mm, addr);
5494         if (!pgd_present(*pgd))
5495                 return NULL;
5496         p4d = p4d_offset(pgd, addr);
5497         if (!p4d_present(*p4d))
5498                 return NULL;
5499
5500         pud = pud_offset(p4d, addr);
5501         if (sz == PUD_SIZE)
5502                 /* must be pud huge, non-present or none */
5503                 return (pte_t *)pud;
5504         if (!pud_present(*pud))
5505                 return NULL;
5506         /* must have a valid entry and size to go further */
5507
5508         pmd = pmd_offset(pud, addr);
5509         /* must be pmd huge, non-present or none */
5510         return (pte_t *)pmd;
5511 }
5512
5513 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
5514
5515 /*
5516  * These functions are overwritable if your architecture needs its own
5517  * behavior.
5518  */
5519 struct page * __weak
5520 follow_huge_addr(struct mm_struct *mm, unsigned long address,
5521                               int write)
5522 {
5523         return ERR_PTR(-EINVAL);
5524 }
5525
5526 struct page * __weak
5527 follow_huge_pd(struct vm_area_struct *vma,
5528                unsigned long address, hugepd_t hpd, int flags, int pdshift)
5529 {
5530         WARN(1, "hugepd follow called with no support for hugepage directory format\n");
5531         return NULL;
5532 }
5533
5534 struct page * __weak
5535 follow_huge_pmd(struct mm_struct *mm, unsigned long address,
5536                 pmd_t *pmd, int flags)
5537 {
5538         struct page *page = NULL;
5539         spinlock_t *ptl;
5540         pte_t pte;
5541
5542         /* FOLL_GET and FOLL_PIN are mutually exclusive. */
5543         if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
5544                          (FOLL_PIN | FOLL_GET)))
5545                 return NULL;
5546
5547 retry:
5548         ptl = pmd_lockptr(mm, pmd);
5549         spin_lock(ptl);
5550         /*
5551          * make sure that the address range covered by this pmd is not
5552          * unmapped from other threads.
5553          */
5554         if (!pmd_huge(*pmd))
5555                 goto out;
5556         pte = huge_ptep_get((pte_t *)pmd);
5557         if (pte_present(pte)) {
5558                 page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
5559                 /*
5560                  * try_grab_page() should always succeed here, because: a) we
5561                  * hold the pmd (ptl) lock, and b) we've just checked that the
5562                  * huge pmd (head) page is present in the page tables. The ptl
5563                  * prevents the head page and tail pages from being rearranged
5564                  * in any way. So this page must be available at this point,
5565                  * unless the page refcount overflowed:
5566                  */
5567                 if (WARN_ON_ONCE(!try_grab_page(page, flags))) {
5568                         page = NULL;
5569                         goto out;
5570                 }
5571         } else {
5572                 if (is_hugetlb_entry_migration(pte)) {
5573                         spin_unlock(ptl);
5574                         __migration_entry_wait(mm, (pte_t *)pmd, ptl);
5575                         goto retry;
5576                 }
5577                 /*
5578                  * hwpoisoned entry is treated as no_page_table in
5579                  * follow_page_mask().
5580                  */
5581         }
5582 out:
5583         spin_unlock(ptl);
5584         return page;
5585 }
5586
5587 struct page * __weak
5588 follow_huge_pud(struct mm_struct *mm, unsigned long address,
5589                 pud_t *pud, int flags)
5590 {
5591         if (flags & (FOLL_GET | FOLL_PIN))
5592                 return NULL;
5593
5594         return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
5595 }
5596
5597 struct page * __weak
5598 follow_huge_pgd(struct mm_struct *mm, unsigned long address, pgd_t *pgd, int flags)
5599 {
5600         if (flags & (FOLL_GET | FOLL_PIN))
5601                 return NULL;
5602
5603         return pte_page(*(pte_t *)pgd) + ((address & ~PGDIR_MASK) >> PAGE_SHIFT);
5604 }
5605
5606 bool isolate_huge_page(struct page *page, struct list_head *list)
5607 {
5608         bool ret = true;
5609
5610         spin_lock(&hugetlb_lock);
5611         if (!PageHeadHuge(page) || !page_huge_active(page) ||
5612             !get_page_unless_zero(page)) {
5613                 ret = false;
5614                 goto unlock;
5615         }
5616         clear_page_huge_active(page);
5617         list_move_tail(&page->lru, list);
5618 unlock:
5619         spin_unlock(&hugetlb_lock);
5620         return ret;
5621 }
5622
5623 void putback_active_hugepage(struct page *page)
5624 {
5625         spin_lock(&hugetlb_lock);
5626         set_page_huge_active(page);
5627         list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
5628         spin_unlock(&hugetlb_lock);
5629         put_page(page);
5630 }
5631
5632 void move_hugetlb_state(struct page *oldpage, struct page *newpage, int reason)
5633 {
5634         struct hstate *h = page_hstate(oldpage);
5635
5636         hugetlb_cgroup_migrate(oldpage, newpage);
5637         set_page_owner_migrate_reason(newpage, reason);
5638
5639         /*
5640          * transfer temporary state of the new huge page. This is
5641          * reverse to other transitions because the newpage is going to
5642          * be final while the old one will be freed so it takes over
5643          * the temporary status.
5644          *
5645          * Also note that we have to transfer the per-node surplus state
5646          * here as well otherwise the global surplus count will not match
5647          * the per-node's.
5648          */
5649         if (PageHugeTemporary(newpage)) {
5650                 int old_nid = page_to_nid(oldpage);
5651                 int new_nid = page_to_nid(newpage);
5652
5653                 SetPageHugeTemporary(oldpage);
5654                 ClearPageHugeTemporary(newpage);
5655
5656                 spin_lock(&hugetlb_lock);
5657                 if (h->surplus_huge_pages_node[old_nid]) {
5658                         h->surplus_huge_pages_node[old_nid]--;
5659                         h->surplus_huge_pages_node[new_nid]++;
5660                 }
5661                 spin_unlock(&hugetlb_lock);
5662         }
5663 }
5664
5665 #ifdef CONFIG_CMA
5666 static bool cma_reserve_called __initdata;
5667
5668 static int __init cmdline_parse_hugetlb_cma(char *p)
5669 {
5670         hugetlb_cma_size = memparse(p, &p);
5671         return 0;
5672 }
5673
5674 early_param("hugetlb_cma", cmdline_parse_hugetlb_cma);
5675
5676 void __init hugetlb_cma_reserve(int order)
5677 {
5678         unsigned long size, reserved, per_node;
5679         int nid;
5680
5681         cma_reserve_called = true;
5682
5683         if (!hugetlb_cma_size)
5684                 return;
5685
5686         if (hugetlb_cma_size < (PAGE_SIZE << order)) {
5687                 pr_warn("hugetlb_cma: cma area should be at least %lu MiB\n",
5688                         (PAGE_SIZE << order) / SZ_1M);
5689                 return;
5690         }
5691
5692         /*
5693          * If 3 GB area is requested on a machine with 4 numa nodes,
5694          * let's allocate 1 GB on first three nodes and ignore the last one.
5695          */
5696         per_node = DIV_ROUND_UP(hugetlb_cma_size, nr_online_nodes);
5697         pr_info("hugetlb_cma: reserve %lu MiB, up to %lu MiB per node\n",
5698                 hugetlb_cma_size / SZ_1M, per_node / SZ_1M);
5699
5700         reserved = 0;
5701         for_each_node_state(nid, N_ONLINE) {
5702                 int res;
5703                 char name[CMA_MAX_NAME];
5704
5705                 size = min(per_node, hugetlb_cma_size - reserved);
5706                 size = round_up(size, PAGE_SIZE << order);
5707
5708                 snprintf(name, sizeof(name), "hugetlb%d", nid);
5709                 res = cma_declare_contiguous_nid(0, size, 0, PAGE_SIZE << order,
5710                                                  0, false, name,
5711                                                  &hugetlb_cma[nid], nid);
5712                 if (res) {
5713                         pr_warn("hugetlb_cma: reservation failed: err %d, node %d",
5714                                 res, nid);
5715                         continue;
5716                 }
5717
5718                 reserved += size;
5719                 pr_info("hugetlb_cma: reserved %lu MiB on node %d\n",
5720                         size / SZ_1M, nid);
5721
5722                 if (reserved >= hugetlb_cma_size)
5723                         break;
5724         }
5725 }
5726
5727 void __init hugetlb_cma_check(void)
5728 {
5729         if (!hugetlb_cma_size || cma_reserve_called)
5730                 return;
5731
5732         pr_warn("hugetlb_cma: the option isn't supported by current arch\n");
5733 }
5734
5735 #endif /* CONFIG_CMA */