mm/huge_memory.c: remove redundant PageCompound() check
[linux-2.6-microblaze.git] / mm / huge_memory.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  Copyright (C) 2009  Red Hat, Inc.
4  */
5
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7
8 #include <linux/mm.h>
9 #include <linux/sched.h>
10 #include <linux/sched/coredump.h>
11 #include <linux/sched/numa_balancing.h>
12 #include <linux/highmem.h>
13 #include <linux/hugetlb.h>
14 #include <linux/mmu_notifier.h>
15 #include <linux/rmap.h>
16 #include <linux/swap.h>
17 #include <linux/shrinker.h>
18 #include <linux/mm_inline.h>
19 #include <linux/swapops.h>
20 #include <linux/dax.h>
21 #include <linux/khugepaged.h>
22 #include <linux/freezer.h>
23 #include <linux/pfn_t.h>
24 #include <linux/mman.h>
25 #include <linux/memremap.h>
26 #include <linux/pagemap.h>
27 #include <linux/debugfs.h>
28 #include <linux/migrate.h>
29 #include <linux/hashtable.h>
30 #include <linux/userfaultfd_k.h>
31 #include <linux/page_idle.h>
32 #include <linux/shmem_fs.h>
33 #include <linux/oom.h>
34 #include <linux/numa.h>
35 #include <linux/page_owner.h>
36
37 #include <asm/tlb.h>
38 #include <asm/pgalloc.h>
39 #include "internal.h"
40
41 /*
42  * By default, transparent hugepage support is disabled in order to avoid
43  * risking an increased memory footprint for applications that are not
44  * guaranteed to benefit from it. When transparent hugepage support is
45  * enabled, it is for all mappings, and khugepaged scans all mappings.
46  * Defrag is invoked by khugepaged hugepage allocations and by page faults
47  * for all hugepage allocations.
48  */
49 unsigned long transparent_hugepage_flags __read_mostly =
50 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
51         (1<<TRANSPARENT_HUGEPAGE_FLAG)|
52 #endif
53 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
54         (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
55 #endif
56         (1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)|
57         (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
58         (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
59
60 static struct shrinker deferred_split_shrinker;
61
62 static atomic_t huge_zero_refcount;
63 struct page *huge_zero_page __read_mostly;
64
65 bool transparent_hugepage_enabled(struct vm_area_struct *vma)
66 {
67         /* The addr is used to check if the vma size fits */
68         unsigned long addr = (vma->vm_end & HPAGE_PMD_MASK) - HPAGE_PMD_SIZE;
69
70         if (!transhuge_vma_suitable(vma, addr))
71                 return false;
72         if (vma_is_anonymous(vma))
73                 return __transparent_hugepage_enabled(vma);
74         if (vma_is_shmem(vma))
75                 return shmem_huge_enabled(vma);
76
77         return false;
78 }
79
80 static bool get_huge_zero_page(void)
81 {
82         struct page *zero_page;
83 retry:
84         if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
85                 return true;
86
87         zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
88                         HPAGE_PMD_ORDER);
89         if (!zero_page) {
90                 count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
91                 return false;
92         }
93         count_vm_event(THP_ZERO_PAGE_ALLOC);
94         preempt_disable();
95         if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
96                 preempt_enable();
97                 __free_pages(zero_page, compound_order(zero_page));
98                 goto retry;
99         }
100
101         /* We take additional reference here. It will be put back by shrinker */
102         atomic_set(&huge_zero_refcount, 2);
103         preempt_enable();
104         return true;
105 }
106
107 static void put_huge_zero_page(void)
108 {
109         /*
110          * Counter should never go to zero here. Only shrinker can put
111          * last reference.
112          */
113         BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
114 }
115
116 struct page *mm_get_huge_zero_page(struct mm_struct *mm)
117 {
118         if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
119                 return READ_ONCE(huge_zero_page);
120
121         if (!get_huge_zero_page())
122                 return NULL;
123
124         if (test_and_set_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
125                 put_huge_zero_page();
126
127         return READ_ONCE(huge_zero_page);
128 }
129
130 void mm_put_huge_zero_page(struct mm_struct *mm)
131 {
132         if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
133                 put_huge_zero_page();
134 }
135
136 static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
137                                         struct shrink_control *sc)
138 {
139         /* we can free zero page only if last reference remains */
140         return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
141 }
142
143 static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
144                                        struct shrink_control *sc)
145 {
146         if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
147                 struct page *zero_page = xchg(&huge_zero_page, NULL);
148                 BUG_ON(zero_page == NULL);
149                 __free_pages(zero_page, compound_order(zero_page));
150                 return HPAGE_PMD_NR;
151         }
152
153         return 0;
154 }
155
156 static struct shrinker huge_zero_page_shrinker = {
157         .count_objects = shrink_huge_zero_page_count,
158         .scan_objects = shrink_huge_zero_page_scan,
159         .seeks = DEFAULT_SEEKS,
160 };
161
162 #ifdef CONFIG_SYSFS
163 static ssize_t enabled_show(struct kobject *kobj,
164                             struct kobj_attribute *attr, char *buf)
165 {
166         const char *output;
167
168         if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags))
169                 output = "[always] madvise never";
170         else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
171                           &transparent_hugepage_flags))
172                 output = "always [madvise] never";
173         else
174                 output = "always madvise [never]";
175
176         return sysfs_emit(buf, "%s\n", output);
177 }
178
179 static ssize_t enabled_store(struct kobject *kobj,
180                              struct kobj_attribute *attr,
181                              const char *buf, size_t count)
182 {
183         ssize_t ret = count;
184
185         if (sysfs_streq(buf, "always")) {
186                 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
187                 set_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
188         } else if (sysfs_streq(buf, "madvise")) {
189                 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
190                 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
191         } else if (sysfs_streq(buf, "never")) {
192                 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
193                 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
194         } else
195                 ret = -EINVAL;
196
197         if (ret > 0) {
198                 int err = start_stop_khugepaged();
199                 if (err)
200                         ret = err;
201         }
202         return ret;
203 }
204 static struct kobj_attribute enabled_attr =
205         __ATTR(enabled, 0644, enabled_show, enabled_store);
206
207 ssize_t single_hugepage_flag_show(struct kobject *kobj,
208                                   struct kobj_attribute *attr, char *buf,
209                                   enum transparent_hugepage_flag flag)
210 {
211         return sysfs_emit(buf, "%d\n",
212                           !!test_bit(flag, &transparent_hugepage_flags));
213 }
214
215 ssize_t single_hugepage_flag_store(struct kobject *kobj,
216                                  struct kobj_attribute *attr,
217                                  const char *buf, size_t count,
218                                  enum transparent_hugepage_flag flag)
219 {
220         unsigned long value;
221         int ret;
222
223         ret = kstrtoul(buf, 10, &value);
224         if (ret < 0)
225                 return ret;
226         if (value > 1)
227                 return -EINVAL;
228
229         if (value)
230                 set_bit(flag, &transparent_hugepage_flags);
231         else
232                 clear_bit(flag, &transparent_hugepage_flags);
233
234         return count;
235 }
236
237 static ssize_t defrag_show(struct kobject *kobj,
238                            struct kobj_attribute *attr, char *buf)
239 {
240         const char *output;
241
242         if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG,
243                      &transparent_hugepage_flags))
244                 output = "[always] defer defer+madvise madvise never";
245         else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG,
246                           &transparent_hugepage_flags))
247                 output = "always [defer] defer+madvise madvise never";
248         else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG,
249                           &transparent_hugepage_flags))
250                 output = "always defer [defer+madvise] madvise never";
251         else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG,
252                           &transparent_hugepage_flags))
253                 output = "always defer defer+madvise [madvise] never";
254         else
255                 output = "always defer defer+madvise madvise [never]";
256
257         return sysfs_emit(buf, "%s\n", output);
258 }
259
260 static ssize_t defrag_store(struct kobject *kobj,
261                             struct kobj_attribute *attr,
262                             const char *buf, size_t count)
263 {
264         if (sysfs_streq(buf, "always")) {
265                 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
266                 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
267                 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
268                 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
269         } else if (sysfs_streq(buf, "defer+madvise")) {
270                 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
271                 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
272                 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
273                 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
274         } else if (sysfs_streq(buf, "defer")) {
275                 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
276                 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
277                 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
278                 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
279         } else if (sysfs_streq(buf, "madvise")) {
280                 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
281                 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
282                 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
283                 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
284         } else if (sysfs_streq(buf, "never")) {
285                 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
286                 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
287                 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
288                 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
289         } else
290                 return -EINVAL;
291
292         return count;
293 }
294 static struct kobj_attribute defrag_attr =
295         __ATTR(defrag, 0644, defrag_show, defrag_store);
296
297 static ssize_t use_zero_page_show(struct kobject *kobj,
298                                   struct kobj_attribute *attr, char *buf)
299 {
300         return single_hugepage_flag_show(kobj, attr, buf,
301                                          TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
302 }
303 static ssize_t use_zero_page_store(struct kobject *kobj,
304                 struct kobj_attribute *attr, const char *buf, size_t count)
305 {
306         return single_hugepage_flag_store(kobj, attr, buf, count,
307                                  TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
308 }
309 static struct kobj_attribute use_zero_page_attr =
310         __ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
311
312 static ssize_t hpage_pmd_size_show(struct kobject *kobj,
313                                    struct kobj_attribute *attr, char *buf)
314 {
315         return sysfs_emit(buf, "%lu\n", HPAGE_PMD_SIZE);
316 }
317 static struct kobj_attribute hpage_pmd_size_attr =
318         __ATTR_RO(hpage_pmd_size);
319
320 static struct attribute *hugepage_attr[] = {
321         &enabled_attr.attr,
322         &defrag_attr.attr,
323         &use_zero_page_attr.attr,
324         &hpage_pmd_size_attr.attr,
325 #ifdef CONFIG_SHMEM
326         &shmem_enabled_attr.attr,
327 #endif
328         NULL,
329 };
330
331 static const struct attribute_group hugepage_attr_group = {
332         .attrs = hugepage_attr,
333 };
334
335 static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
336 {
337         int err;
338
339         *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
340         if (unlikely(!*hugepage_kobj)) {
341                 pr_err("failed to create transparent hugepage kobject\n");
342                 return -ENOMEM;
343         }
344
345         err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
346         if (err) {
347                 pr_err("failed to register transparent hugepage group\n");
348                 goto delete_obj;
349         }
350
351         err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
352         if (err) {
353                 pr_err("failed to register transparent hugepage group\n");
354                 goto remove_hp_group;
355         }
356
357         return 0;
358
359 remove_hp_group:
360         sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
361 delete_obj:
362         kobject_put(*hugepage_kobj);
363         return err;
364 }
365
366 static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
367 {
368         sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
369         sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
370         kobject_put(hugepage_kobj);
371 }
372 #else
373 static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
374 {
375         return 0;
376 }
377
378 static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
379 {
380 }
381 #endif /* CONFIG_SYSFS */
382
383 static int __init hugepage_init(void)
384 {
385         int err;
386         struct kobject *hugepage_kobj;
387
388         if (!has_transparent_hugepage()) {
389                 /*
390                  * Hardware doesn't support hugepages, hence disable
391                  * DAX PMD support.
392                  */
393                 transparent_hugepage_flags = 1 << TRANSPARENT_HUGEPAGE_NEVER_DAX;
394                 return -EINVAL;
395         }
396
397         /*
398          * hugepages can't be allocated by the buddy allocator
399          */
400         MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER >= MAX_ORDER);
401         /*
402          * we use page->mapping and page->index in second tail page
403          * as list_head: assuming THP order >= 2
404          */
405         MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER < 2);
406
407         err = hugepage_init_sysfs(&hugepage_kobj);
408         if (err)
409                 goto err_sysfs;
410
411         err = khugepaged_init();
412         if (err)
413                 goto err_slab;
414
415         err = register_shrinker(&huge_zero_page_shrinker);
416         if (err)
417                 goto err_hzp_shrinker;
418         err = register_shrinker(&deferred_split_shrinker);
419         if (err)
420                 goto err_split_shrinker;
421
422         /*
423          * By default disable transparent hugepages on smaller systems,
424          * where the extra memory used could hurt more than TLB overhead
425          * is likely to save.  The admin can still enable it through /sys.
426          */
427         if (totalram_pages() < (512 << (20 - PAGE_SHIFT))) {
428                 transparent_hugepage_flags = 0;
429                 return 0;
430         }
431
432         err = start_stop_khugepaged();
433         if (err)
434                 goto err_khugepaged;
435
436         return 0;
437 err_khugepaged:
438         unregister_shrinker(&deferred_split_shrinker);
439 err_split_shrinker:
440         unregister_shrinker(&huge_zero_page_shrinker);
441 err_hzp_shrinker:
442         khugepaged_destroy();
443 err_slab:
444         hugepage_exit_sysfs(hugepage_kobj);
445 err_sysfs:
446         return err;
447 }
448 subsys_initcall(hugepage_init);
449
450 static int __init setup_transparent_hugepage(char *str)
451 {
452         int ret = 0;
453         if (!str)
454                 goto out;
455         if (!strcmp(str, "always")) {
456                 set_bit(TRANSPARENT_HUGEPAGE_FLAG,
457                         &transparent_hugepage_flags);
458                 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
459                           &transparent_hugepage_flags);
460                 ret = 1;
461         } else if (!strcmp(str, "madvise")) {
462                 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
463                           &transparent_hugepage_flags);
464                 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
465                         &transparent_hugepage_flags);
466                 ret = 1;
467         } else if (!strcmp(str, "never")) {
468                 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
469                           &transparent_hugepage_flags);
470                 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
471                           &transparent_hugepage_flags);
472                 ret = 1;
473         }
474 out:
475         if (!ret)
476                 pr_warn("transparent_hugepage= cannot parse, ignored\n");
477         return ret;
478 }
479 __setup("transparent_hugepage=", setup_transparent_hugepage);
480
481 pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
482 {
483         if (likely(vma->vm_flags & VM_WRITE))
484                 pmd = pmd_mkwrite(pmd);
485         return pmd;
486 }
487
488 #ifdef CONFIG_MEMCG
489 static inline struct deferred_split *get_deferred_split_queue(struct page *page)
490 {
491         struct mem_cgroup *memcg = page_memcg(compound_head(page));
492         struct pglist_data *pgdat = NODE_DATA(page_to_nid(page));
493
494         if (memcg)
495                 return &memcg->deferred_split_queue;
496         else
497                 return &pgdat->deferred_split_queue;
498 }
499 #else
500 static inline struct deferred_split *get_deferred_split_queue(struct page *page)
501 {
502         struct pglist_data *pgdat = NODE_DATA(page_to_nid(page));
503
504         return &pgdat->deferred_split_queue;
505 }
506 #endif
507
508 void prep_transhuge_page(struct page *page)
509 {
510         /*
511          * we use page->mapping and page->indexlru in second tail page
512          * as list_head: assuming THP order >= 2
513          */
514
515         INIT_LIST_HEAD(page_deferred_list(page));
516         set_compound_page_dtor(page, TRANSHUGE_PAGE_DTOR);
517 }
518
519 bool is_transparent_hugepage(struct page *page)
520 {
521         if (!PageCompound(page))
522                 return false;
523
524         page = compound_head(page);
525         return is_huge_zero_page(page) ||
526                page[1].compound_dtor == TRANSHUGE_PAGE_DTOR;
527 }
528 EXPORT_SYMBOL_GPL(is_transparent_hugepage);
529
530 static unsigned long __thp_get_unmapped_area(struct file *filp,
531                 unsigned long addr, unsigned long len,
532                 loff_t off, unsigned long flags, unsigned long size)
533 {
534         loff_t off_end = off + len;
535         loff_t off_align = round_up(off, size);
536         unsigned long len_pad, ret;
537
538         if (off_end <= off_align || (off_end - off_align) < size)
539                 return 0;
540
541         len_pad = len + size;
542         if (len_pad < len || (off + len_pad) < off)
543                 return 0;
544
545         ret = current->mm->get_unmapped_area(filp, addr, len_pad,
546                                               off >> PAGE_SHIFT, flags);
547
548         /*
549          * The failure might be due to length padding. The caller will retry
550          * without the padding.
551          */
552         if (IS_ERR_VALUE(ret))
553                 return 0;
554
555         /*
556          * Do not try to align to THP boundary if allocation at the address
557          * hint succeeds.
558          */
559         if (ret == addr)
560                 return addr;
561
562         ret += (off - ret) & (size - 1);
563         return ret;
564 }
565
566 unsigned long thp_get_unmapped_area(struct file *filp, unsigned long addr,
567                 unsigned long len, unsigned long pgoff, unsigned long flags)
568 {
569         unsigned long ret;
570         loff_t off = (loff_t)pgoff << PAGE_SHIFT;
571
572         if (!IS_DAX(filp->f_mapping->host) || !IS_ENABLED(CONFIG_FS_DAX_PMD))
573                 goto out;
574
575         ret = __thp_get_unmapped_area(filp, addr, len, off, flags, PMD_SIZE);
576         if (ret)
577                 return ret;
578 out:
579         return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags);
580 }
581 EXPORT_SYMBOL_GPL(thp_get_unmapped_area);
582
583 static vm_fault_t __do_huge_pmd_anonymous_page(struct vm_fault *vmf,
584                         struct page *page, gfp_t gfp)
585 {
586         struct vm_area_struct *vma = vmf->vma;
587         pgtable_t pgtable;
588         unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
589         vm_fault_t ret = 0;
590
591         VM_BUG_ON_PAGE(!PageCompound(page), page);
592
593         if (mem_cgroup_charge(page, vma->vm_mm, gfp)) {
594                 put_page(page);
595                 count_vm_event(THP_FAULT_FALLBACK);
596                 count_vm_event(THP_FAULT_FALLBACK_CHARGE);
597                 return VM_FAULT_FALLBACK;
598         }
599         cgroup_throttle_swaprate(page, gfp);
600
601         pgtable = pte_alloc_one(vma->vm_mm);
602         if (unlikely(!pgtable)) {
603                 ret = VM_FAULT_OOM;
604                 goto release;
605         }
606
607         clear_huge_page(page, vmf->address, HPAGE_PMD_NR);
608         /*
609          * The memory barrier inside __SetPageUptodate makes sure that
610          * clear_huge_page writes become visible before the set_pmd_at()
611          * write.
612          */
613         __SetPageUptodate(page);
614
615         vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
616         if (unlikely(!pmd_none(*vmf->pmd))) {
617                 goto unlock_release;
618         } else {
619                 pmd_t entry;
620
621                 ret = check_stable_address_space(vma->vm_mm);
622                 if (ret)
623                         goto unlock_release;
624
625                 /* Deliver the page fault to userland */
626                 if (userfaultfd_missing(vma)) {
627                         spin_unlock(vmf->ptl);
628                         put_page(page);
629                         pte_free(vma->vm_mm, pgtable);
630                         ret = handle_userfault(vmf, VM_UFFD_MISSING);
631                         VM_BUG_ON(ret & VM_FAULT_FALLBACK);
632                         return ret;
633                 }
634
635                 entry = mk_huge_pmd(page, vma->vm_page_prot);
636                 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
637                 page_add_new_anon_rmap(page, vma, haddr, true);
638                 lru_cache_add_inactive_or_unevictable(page, vma);
639                 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable);
640                 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
641                 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
642                 add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
643                 mm_inc_nr_ptes(vma->vm_mm);
644                 spin_unlock(vmf->ptl);
645                 count_vm_event(THP_FAULT_ALLOC);
646                 count_memcg_event_mm(vma->vm_mm, THP_FAULT_ALLOC);
647         }
648
649         return 0;
650 unlock_release:
651         spin_unlock(vmf->ptl);
652 release:
653         if (pgtable)
654                 pte_free(vma->vm_mm, pgtable);
655         put_page(page);
656         return ret;
657
658 }
659
660 /*
661  * always: directly stall for all thp allocations
662  * defer: wake kswapd and fail if not immediately available
663  * defer+madvise: wake kswapd and directly stall for MADV_HUGEPAGE, otherwise
664  *                fail if not immediately available
665  * madvise: directly stall for MADV_HUGEPAGE, otherwise fail if not immediately
666  *          available
667  * never: never stall for any thp allocation
668  */
669 gfp_t vma_thp_gfp_mask(struct vm_area_struct *vma)
670 {
671         const bool vma_madvised = vma && (vma->vm_flags & VM_HUGEPAGE);
672
673         /* Always do synchronous compaction */
674         if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
675                 return GFP_TRANSHUGE | (vma_madvised ? 0 : __GFP_NORETRY);
676
677         /* Kick kcompactd and fail quickly */
678         if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
679                 return GFP_TRANSHUGE_LIGHT | __GFP_KSWAPD_RECLAIM;
680
681         /* Synchronous compaction if madvised, otherwise kick kcompactd */
682         if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
683                 return GFP_TRANSHUGE_LIGHT |
684                         (vma_madvised ? __GFP_DIRECT_RECLAIM :
685                                         __GFP_KSWAPD_RECLAIM);
686
687         /* Only do synchronous compaction if madvised */
688         if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
689                 return GFP_TRANSHUGE_LIGHT |
690                        (vma_madvised ? __GFP_DIRECT_RECLAIM : 0);
691
692         return GFP_TRANSHUGE_LIGHT;
693 }
694
695 /* Caller must hold page table lock. */
696 static void set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
697                 struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
698                 struct page *zero_page)
699 {
700         pmd_t entry;
701         if (!pmd_none(*pmd))
702                 return;
703         entry = mk_pmd(zero_page, vma->vm_page_prot);
704         entry = pmd_mkhuge(entry);
705         if (pgtable)
706                 pgtable_trans_huge_deposit(mm, pmd, pgtable);
707         set_pmd_at(mm, haddr, pmd, entry);
708         mm_inc_nr_ptes(mm);
709 }
710
711 vm_fault_t do_huge_pmd_anonymous_page(struct vm_fault *vmf)
712 {
713         struct vm_area_struct *vma = vmf->vma;
714         gfp_t gfp;
715         struct page *page;
716         unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
717
718         if (!transhuge_vma_suitable(vma, haddr))
719                 return VM_FAULT_FALLBACK;
720         if (unlikely(anon_vma_prepare(vma)))
721                 return VM_FAULT_OOM;
722         if (unlikely(khugepaged_enter(vma, vma->vm_flags)))
723                 return VM_FAULT_OOM;
724         if (!(vmf->flags & FAULT_FLAG_WRITE) &&
725                         !mm_forbids_zeropage(vma->vm_mm) &&
726                         transparent_hugepage_use_zero_page()) {
727                 pgtable_t pgtable;
728                 struct page *zero_page;
729                 vm_fault_t ret;
730                 pgtable = pte_alloc_one(vma->vm_mm);
731                 if (unlikely(!pgtable))
732                         return VM_FAULT_OOM;
733                 zero_page = mm_get_huge_zero_page(vma->vm_mm);
734                 if (unlikely(!zero_page)) {
735                         pte_free(vma->vm_mm, pgtable);
736                         count_vm_event(THP_FAULT_FALLBACK);
737                         return VM_FAULT_FALLBACK;
738                 }
739                 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
740                 ret = 0;
741                 if (pmd_none(*vmf->pmd)) {
742                         ret = check_stable_address_space(vma->vm_mm);
743                         if (ret) {
744                                 spin_unlock(vmf->ptl);
745                                 pte_free(vma->vm_mm, pgtable);
746                         } else if (userfaultfd_missing(vma)) {
747                                 spin_unlock(vmf->ptl);
748                                 pte_free(vma->vm_mm, pgtable);
749                                 ret = handle_userfault(vmf, VM_UFFD_MISSING);
750                                 VM_BUG_ON(ret & VM_FAULT_FALLBACK);
751                         } else {
752                                 set_huge_zero_page(pgtable, vma->vm_mm, vma,
753                                                    haddr, vmf->pmd, zero_page);
754                                 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
755                                 spin_unlock(vmf->ptl);
756                         }
757                 } else {
758                         spin_unlock(vmf->ptl);
759                         pte_free(vma->vm_mm, pgtable);
760                 }
761                 return ret;
762         }
763         gfp = vma_thp_gfp_mask(vma);
764         page = alloc_hugepage_vma(gfp, vma, haddr, HPAGE_PMD_ORDER);
765         if (unlikely(!page)) {
766                 count_vm_event(THP_FAULT_FALLBACK);
767                 return VM_FAULT_FALLBACK;
768         }
769         prep_transhuge_page(page);
770         return __do_huge_pmd_anonymous_page(vmf, page, gfp);
771 }
772
773 static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
774                 pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write,
775                 pgtable_t pgtable)
776 {
777         struct mm_struct *mm = vma->vm_mm;
778         pmd_t entry;
779         spinlock_t *ptl;
780
781         ptl = pmd_lock(mm, pmd);
782         if (!pmd_none(*pmd)) {
783                 if (write) {
784                         if (pmd_pfn(*pmd) != pfn_t_to_pfn(pfn)) {
785                                 WARN_ON_ONCE(!is_huge_zero_pmd(*pmd));
786                                 goto out_unlock;
787                         }
788                         entry = pmd_mkyoung(*pmd);
789                         entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
790                         if (pmdp_set_access_flags(vma, addr, pmd, entry, 1))
791                                 update_mmu_cache_pmd(vma, addr, pmd);
792                 }
793
794                 goto out_unlock;
795         }
796
797         entry = pmd_mkhuge(pfn_t_pmd(pfn, prot));
798         if (pfn_t_devmap(pfn))
799                 entry = pmd_mkdevmap(entry);
800         if (write) {
801                 entry = pmd_mkyoung(pmd_mkdirty(entry));
802                 entry = maybe_pmd_mkwrite(entry, vma);
803         }
804
805         if (pgtable) {
806                 pgtable_trans_huge_deposit(mm, pmd, pgtable);
807                 mm_inc_nr_ptes(mm);
808                 pgtable = NULL;
809         }
810
811         set_pmd_at(mm, addr, pmd, entry);
812         update_mmu_cache_pmd(vma, addr, pmd);
813
814 out_unlock:
815         spin_unlock(ptl);
816         if (pgtable)
817                 pte_free(mm, pgtable);
818 }
819
820 /**
821  * vmf_insert_pfn_pmd_prot - insert a pmd size pfn
822  * @vmf: Structure describing the fault
823  * @pfn: pfn to insert
824  * @pgprot: page protection to use
825  * @write: whether it's a write fault
826  *
827  * Insert a pmd size pfn. See vmf_insert_pfn() for additional info and
828  * also consult the vmf_insert_mixed_prot() documentation when
829  * @pgprot != @vmf->vma->vm_page_prot.
830  *
831  * Return: vm_fault_t value.
832  */
833 vm_fault_t vmf_insert_pfn_pmd_prot(struct vm_fault *vmf, pfn_t pfn,
834                                    pgprot_t pgprot, bool write)
835 {
836         unsigned long addr = vmf->address & PMD_MASK;
837         struct vm_area_struct *vma = vmf->vma;
838         pgtable_t pgtable = NULL;
839
840         /*
841          * If we had pmd_special, we could avoid all these restrictions,
842          * but we need to be consistent with PTEs and architectures that
843          * can't support a 'special' bit.
844          */
845         BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
846                         !pfn_t_devmap(pfn));
847         BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
848                                                 (VM_PFNMAP|VM_MIXEDMAP));
849         BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
850
851         if (addr < vma->vm_start || addr >= vma->vm_end)
852                 return VM_FAULT_SIGBUS;
853
854         if (arch_needs_pgtable_deposit()) {
855                 pgtable = pte_alloc_one(vma->vm_mm);
856                 if (!pgtable)
857                         return VM_FAULT_OOM;
858         }
859
860         track_pfn_insert(vma, &pgprot, pfn);
861
862         insert_pfn_pmd(vma, addr, vmf->pmd, pfn, pgprot, write, pgtable);
863         return VM_FAULT_NOPAGE;
864 }
865 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd_prot);
866
867 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
868 static pud_t maybe_pud_mkwrite(pud_t pud, struct vm_area_struct *vma)
869 {
870         if (likely(vma->vm_flags & VM_WRITE))
871                 pud = pud_mkwrite(pud);
872         return pud;
873 }
874
875 static void insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr,
876                 pud_t *pud, pfn_t pfn, pgprot_t prot, bool write)
877 {
878         struct mm_struct *mm = vma->vm_mm;
879         pud_t entry;
880         spinlock_t *ptl;
881
882         ptl = pud_lock(mm, pud);
883         if (!pud_none(*pud)) {
884                 if (write) {
885                         if (pud_pfn(*pud) != pfn_t_to_pfn(pfn)) {
886                                 WARN_ON_ONCE(!is_huge_zero_pud(*pud));
887                                 goto out_unlock;
888                         }
889                         entry = pud_mkyoung(*pud);
890                         entry = maybe_pud_mkwrite(pud_mkdirty(entry), vma);
891                         if (pudp_set_access_flags(vma, addr, pud, entry, 1))
892                                 update_mmu_cache_pud(vma, addr, pud);
893                 }
894                 goto out_unlock;
895         }
896
897         entry = pud_mkhuge(pfn_t_pud(pfn, prot));
898         if (pfn_t_devmap(pfn))
899                 entry = pud_mkdevmap(entry);
900         if (write) {
901                 entry = pud_mkyoung(pud_mkdirty(entry));
902                 entry = maybe_pud_mkwrite(entry, vma);
903         }
904         set_pud_at(mm, addr, pud, entry);
905         update_mmu_cache_pud(vma, addr, pud);
906
907 out_unlock:
908         spin_unlock(ptl);
909 }
910
911 /**
912  * vmf_insert_pfn_pud_prot - insert a pud size pfn
913  * @vmf: Structure describing the fault
914  * @pfn: pfn to insert
915  * @pgprot: page protection to use
916  * @write: whether it's a write fault
917  *
918  * Insert a pud size pfn. See vmf_insert_pfn() for additional info and
919  * also consult the vmf_insert_mixed_prot() documentation when
920  * @pgprot != @vmf->vma->vm_page_prot.
921  *
922  * Return: vm_fault_t value.
923  */
924 vm_fault_t vmf_insert_pfn_pud_prot(struct vm_fault *vmf, pfn_t pfn,
925                                    pgprot_t pgprot, bool write)
926 {
927         unsigned long addr = vmf->address & PUD_MASK;
928         struct vm_area_struct *vma = vmf->vma;
929
930         /*
931          * If we had pud_special, we could avoid all these restrictions,
932          * but we need to be consistent with PTEs and architectures that
933          * can't support a 'special' bit.
934          */
935         BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
936                         !pfn_t_devmap(pfn));
937         BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
938                                                 (VM_PFNMAP|VM_MIXEDMAP));
939         BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
940
941         if (addr < vma->vm_start || addr >= vma->vm_end)
942                 return VM_FAULT_SIGBUS;
943
944         track_pfn_insert(vma, &pgprot, pfn);
945
946         insert_pfn_pud(vma, addr, vmf->pud, pfn, pgprot, write);
947         return VM_FAULT_NOPAGE;
948 }
949 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pud_prot);
950 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
951
952 static void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
953                 pmd_t *pmd, int flags)
954 {
955         pmd_t _pmd;
956
957         _pmd = pmd_mkyoung(*pmd);
958         if (flags & FOLL_WRITE)
959                 _pmd = pmd_mkdirty(_pmd);
960         if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
961                                 pmd, _pmd, flags & FOLL_WRITE))
962                 update_mmu_cache_pmd(vma, addr, pmd);
963 }
964
965 struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr,
966                 pmd_t *pmd, int flags, struct dev_pagemap **pgmap)
967 {
968         unsigned long pfn = pmd_pfn(*pmd);
969         struct mm_struct *mm = vma->vm_mm;
970         struct page *page;
971
972         assert_spin_locked(pmd_lockptr(mm, pmd));
973
974         /*
975          * When we COW a devmap PMD entry, we split it into PTEs, so we should
976          * not be in this function with `flags & FOLL_COW` set.
977          */
978         WARN_ONCE(flags & FOLL_COW, "mm: In follow_devmap_pmd with FOLL_COW set");
979
980         /* FOLL_GET and FOLL_PIN are mutually exclusive. */
981         if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
982                          (FOLL_PIN | FOLL_GET)))
983                 return NULL;
984
985         if (flags & FOLL_WRITE && !pmd_write(*pmd))
986                 return NULL;
987
988         if (pmd_present(*pmd) && pmd_devmap(*pmd))
989                 /* pass */;
990         else
991                 return NULL;
992
993         if (flags & FOLL_TOUCH)
994                 touch_pmd(vma, addr, pmd, flags);
995
996         /*
997          * device mapped pages can only be returned if the
998          * caller will manage the page reference count.
999          */
1000         if (!(flags & (FOLL_GET | FOLL_PIN)))
1001                 return ERR_PTR(-EEXIST);
1002
1003         pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT;
1004         *pgmap = get_dev_pagemap(pfn, *pgmap);
1005         if (!*pgmap)
1006                 return ERR_PTR(-EFAULT);
1007         page = pfn_to_page(pfn);
1008         if (!try_grab_page(page, flags))
1009                 page = ERR_PTR(-ENOMEM);
1010
1011         return page;
1012 }
1013
1014 int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1015                   pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
1016                   struct vm_area_struct *vma)
1017 {
1018         spinlock_t *dst_ptl, *src_ptl;
1019         struct page *src_page;
1020         pmd_t pmd;
1021         pgtable_t pgtable = NULL;
1022         int ret = -ENOMEM;
1023
1024         /* Skip if can be re-fill on fault */
1025         if (!vma_is_anonymous(vma))
1026                 return 0;
1027
1028         pgtable = pte_alloc_one(dst_mm);
1029         if (unlikely(!pgtable))
1030                 goto out;
1031
1032         dst_ptl = pmd_lock(dst_mm, dst_pmd);
1033         src_ptl = pmd_lockptr(src_mm, src_pmd);
1034         spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1035
1036         ret = -EAGAIN;
1037         pmd = *src_pmd;
1038
1039         /*
1040          * Make sure the _PAGE_UFFD_WP bit is cleared if the new VMA
1041          * does not have the VM_UFFD_WP, which means that the uffd
1042          * fork event is not enabled.
1043          */
1044         if (!(vma->vm_flags & VM_UFFD_WP))
1045                 pmd = pmd_clear_uffd_wp(pmd);
1046
1047 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1048         if (unlikely(is_swap_pmd(pmd))) {
1049                 swp_entry_t entry = pmd_to_swp_entry(pmd);
1050
1051                 VM_BUG_ON(!is_pmd_migration_entry(pmd));
1052                 if (is_write_migration_entry(entry)) {
1053                         make_migration_entry_read(&entry);
1054                         pmd = swp_entry_to_pmd(entry);
1055                         if (pmd_swp_soft_dirty(*src_pmd))
1056                                 pmd = pmd_swp_mksoft_dirty(pmd);
1057                         set_pmd_at(src_mm, addr, src_pmd, pmd);
1058                 }
1059                 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1060                 mm_inc_nr_ptes(dst_mm);
1061                 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
1062                 set_pmd_at(dst_mm, addr, dst_pmd, pmd);
1063                 ret = 0;
1064                 goto out_unlock;
1065         }
1066 #endif
1067
1068         if (unlikely(!pmd_trans_huge(pmd))) {
1069                 pte_free(dst_mm, pgtable);
1070                 goto out_unlock;
1071         }
1072         /*
1073          * When page table lock is held, the huge zero pmd should not be
1074          * under splitting since we don't split the page itself, only pmd to
1075          * a page table.
1076          */
1077         if (is_huge_zero_pmd(pmd)) {
1078                 struct page *zero_page;
1079                 /*
1080                  * get_huge_zero_page() will never allocate a new page here,
1081                  * since we already have a zero page to copy. It just takes a
1082                  * reference.
1083                  */
1084                 zero_page = mm_get_huge_zero_page(dst_mm);
1085                 set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
1086                                 zero_page);
1087                 ret = 0;
1088                 goto out_unlock;
1089         }
1090
1091         src_page = pmd_page(pmd);
1092         VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
1093
1094         /*
1095          * If this page is a potentially pinned page, split and retry the fault
1096          * with smaller page size.  Normally this should not happen because the
1097          * userspace should use MADV_DONTFORK upon pinned regions.  This is a
1098          * best effort that the pinned pages won't be replaced by another
1099          * random page during the coming copy-on-write.
1100          */
1101         if (unlikely(page_needs_cow_for_dma(vma, src_page))) {
1102                 pte_free(dst_mm, pgtable);
1103                 spin_unlock(src_ptl);
1104                 spin_unlock(dst_ptl);
1105                 __split_huge_pmd(vma, src_pmd, addr, false, NULL);
1106                 return -EAGAIN;
1107         }
1108
1109         get_page(src_page);
1110         page_dup_rmap(src_page, true);
1111         add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1112         mm_inc_nr_ptes(dst_mm);
1113         pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
1114
1115         pmdp_set_wrprotect(src_mm, addr, src_pmd);
1116         pmd = pmd_mkold(pmd_wrprotect(pmd));
1117         set_pmd_at(dst_mm, addr, dst_pmd, pmd);
1118
1119         ret = 0;
1120 out_unlock:
1121         spin_unlock(src_ptl);
1122         spin_unlock(dst_ptl);
1123 out:
1124         return ret;
1125 }
1126
1127 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1128 static void touch_pud(struct vm_area_struct *vma, unsigned long addr,
1129                 pud_t *pud, int flags)
1130 {
1131         pud_t _pud;
1132
1133         _pud = pud_mkyoung(*pud);
1134         if (flags & FOLL_WRITE)
1135                 _pud = pud_mkdirty(_pud);
1136         if (pudp_set_access_flags(vma, addr & HPAGE_PUD_MASK,
1137                                 pud, _pud, flags & FOLL_WRITE))
1138                 update_mmu_cache_pud(vma, addr, pud);
1139 }
1140
1141 struct page *follow_devmap_pud(struct vm_area_struct *vma, unsigned long addr,
1142                 pud_t *pud, int flags, struct dev_pagemap **pgmap)
1143 {
1144         unsigned long pfn = pud_pfn(*pud);
1145         struct mm_struct *mm = vma->vm_mm;
1146         struct page *page;
1147
1148         assert_spin_locked(pud_lockptr(mm, pud));
1149
1150         if (flags & FOLL_WRITE && !pud_write(*pud))
1151                 return NULL;
1152
1153         /* FOLL_GET and FOLL_PIN are mutually exclusive. */
1154         if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
1155                          (FOLL_PIN | FOLL_GET)))
1156                 return NULL;
1157
1158         if (pud_present(*pud) && pud_devmap(*pud))
1159                 /* pass */;
1160         else
1161                 return NULL;
1162
1163         if (flags & FOLL_TOUCH)
1164                 touch_pud(vma, addr, pud, flags);
1165
1166         /*
1167          * device mapped pages can only be returned if the
1168          * caller will manage the page reference count.
1169          *
1170          * At least one of FOLL_GET | FOLL_PIN must be set, so assert that here:
1171          */
1172         if (!(flags & (FOLL_GET | FOLL_PIN)))
1173                 return ERR_PTR(-EEXIST);
1174
1175         pfn += (addr & ~PUD_MASK) >> PAGE_SHIFT;
1176         *pgmap = get_dev_pagemap(pfn, *pgmap);
1177         if (!*pgmap)
1178                 return ERR_PTR(-EFAULT);
1179         page = pfn_to_page(pfn);
1180         if (!try_grab_page(page, flags))
1181                 page = ERR_PTR(-ENOMEM);
1182
1183         return page;
1184 }
1185
1186 int copy_huge_pud(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1187                   pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1188                   struct vm_area_struct *vma)
1189 {
1190         spinlock_t *dst_ptl, *src_ptl;
1191         pud_t pud;
1192         int ret;
1193
1194         dst_ptl = pud_lock(dst_mm, dst_pud);
1195         src_ptl = pud_lockptr(src_mm, src_pud);
1196         spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1197
1198         ret = -EAGAIN;
1199         pud = *src_pud;
1200         if (unlikely(!pud_trans_huge(pud) && !pud_devmap(pud)))
1201                 goto out_unlock;
1202
1203         /*
1204          * When page table lock is held, the huge zero pud should not be
1205          * under splitting since we don't split the page itself, only pud to
1206          * a page table.
1207          */
1208         if (is_huge_zero_pud(pud)) {
1209                 /* No huge zero pud yet */
1210         }
1211
1212         /* Please refer to comments in copy_huge_pmd() */
1213         if (unlikely(page_needs_cow_for_dma(vma, pud_page(pud)))) {
1214                 spin_unlock(src_ptl);
1215                 spin_unlock(dst_ptl);
1216                 __split_huge_pud(vma, src_pud, addr);
1217                 return -EAGAIN;
1218         }
1219
1220         pudp_set_wrprotect(src_mm, addr, src_pud);
1221         pud = pud_mkold(pud_wrprotect(pud));
1222         set_pud_at(dst_mm, addr, dst_pud, pud);
1223
1224         ret = 0;
1225 out_unlock:
1226         spin_unlock(src_ptl);
1227         spin_unlock(dst_ptl);
1228         return ret;
1229 }
1230
1231 void huge_pud_set_accessed(struct vm_fault *vmf, pud_t orig_pud)
1232 {
1233         pud_t entry;
1234         unsigned long haddr;
1235         bool write = vmf->flags & FAULT_FLAG_WRITE;
1236
1237         vmf->ptl = pud_lock(vmf->vma->vm_mm, vmf->pud);
1238         if (unlikely(!pud_same(*vmf->pud, orig_pud)))
1239                 goto unlock;
1240
1241         entry = pud_mkyoung(orig_pud);
1242         if (write)
1243                 entry = pud_mkdirty(entry);
1244         haddr = vmf->address & HPAGE_PUD_MASK;
1245         if (pudp_set_access_flags(vmf->vma, haddr, vmf->pud, entry, write))
1246                 update_mmu_cache_pud(vmf->vma, vmf->address, vmf->pud);
1247
1248 unlock:
1249         spin_unlock(vmf->ptl);
1250 }
1251 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1252
1253 void huge_pmd_set_accessed(struct vm_fault *vmf, pmd_t orig_pmd)
1254 {
1255         pmd_t entry;
1256         unsigned long haddr;
1257         bool write = vmf->flags & FAULT_FLAG_WRITE;
1258
1259         vmf->ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
1260         if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
1261                 goto unlock;
1262
1263         entry = pmd_mkyoung(orig_pmd);
1264         if (write)
1265                 entry = pmd_mkdirty(entry);
1266         haddr = vmf->address & HPAGE_PMD_MASK;
1267         if (pmdp_set_access_flags(vmf->vma, haddr, vmf->pmd, entry, write))
1268                 update_mmu_cache_pmd(vmf->vma, vmf->address, vmf->pmd);
1269
1270 unlock:
1271         spin_unlock(vmf->ptl);
1272 }
1273
1274 vm_fault_t do_huge_pmd_wp_page(struct vm_fault *vmf, pmd_t orig_pmd)
1275 {
1276         struct vm_area_struct *vma = vmf->vma;
1277         struct page *page;
1278         unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1279
1280         vmf->ptl = pmd_lockptr(vma->vm_mm, vmf->pmd);
1281         VM_BUG_ON_VMA(!vma->anon_vma, vma);
1282
1283         if (is_huge_zero_pmd(orig_pmd))
1284                 goto fallback;
1285
1286         spin_lock(vmf->ptl);
1287
1288         if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1289                 spin_unlock(vmf->ptl);
1290                 return 0;
1291         }
1292
1293         page = pmd_page(orig_pmd);
1294         VM_BUG_ON_PAGE(!PageHead(page), page);
1295
1296         /* Lock page for reuse_swap_page() */
1297         if (!trylock_page(page)) {
1298                 get_page(page);
1299                 spin_unlock(vmf->ptl);
1300                 lock_page(page);
1301                 spin_lock(vmf->ptl);
1302                 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1303                         spin_unlock(vmf->ptl);
1304                         unlock_page(page);
1305                         put_page(page);
1306                         return 0;
1307                 }
1308                 put_page(page);
1309         }
1310
1311         /*
1312          * We can only reuse the page if nobody else maps the huge page or it's
1313          * part.
1314          */
1315         if (reuse_swap_page(page, NULL)) {
1316                 pmd_t entry;
1317                 entry = pmd_mkyoung(orig_pmd);
1318                 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1319                 if (pmdp_set_access_flags(vma, haddr, vmf->pmd, entry, 1))
1320                         update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1321                 unlock_page(page);
1322                 spin_unlock(vmf->ptl);
1323                 return VM_FAULT_WRITE;
1324         }
1325
1326         unlock_page(page);
1327         spin_unlock(vmf->ptl);
1328 fallback:
1329         __split_huge_pmd(vma, vmf->pmd, vmf->address, false, NULL);
1330         return VM_FAULT_FALLBACK;
1331 }
1332
1333 /*
1334  * FOLL_FORCE can write to even unwritable pmd's, but only
1335  * after we've gone through a COW cycle and they are dirty.
1336  */
1337 static inline bool can_follow_write_pmd(pmd_t pmd, unsigned int flags)
1338 {
1339         return pmd_write(pmd) ||
1340                ((flags & FOLL_FORCE) && (flags & FOLL_COW) && pmd_dirty(pmd));
1341 }
1342
1343 struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
1344                                    unsigned long addr,
1345                                    pmd_t *pmd,
1346                                    unsigned int flags)
1347 {
1348         struct mm_struct *mm = vma->vm_mm;
1349         struct page *page = NULL;
1350
1351         assert_spin_locked(pmd_lockptr(mm, pmd));
1352
1353         if (flags & FOLL_WRITE && !can_follow_write_pmd(*pmd, flags))
1354                 goto out;
1355
1356         /* Avoid dumping huge zero page */
1357         if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
1358                 return ERR_PTR(-EFAULT);
1359
1360         /* Full NUMA hinting faults to serialise migration in fault paths */
1361         if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
1362                 goto out;
1363
1364         page = pmd_page(*pmd);
1365         VM_BUG_ON_PAGE(!PageHead(page) && !is_zone_device_page(page), page);
1366
1367         if (!try_grab_page(page, flags))
1368                 return ERR_PTR(-ENOMEM);
1369
1370         if (flags & FOLL_TOUCH)
1371                 touch_pmd(vma, addr, pmd, flags);
1372
1373         if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1374                 /*
1375                  * We don't mlock() pte-mapped THPs. This way we can avoid
1376                  * leaking mlocked pages into non-VM_LOCKED VMAs.
1377                  *
1378                  * For anon THP:
1379                  *
1380                  * In most cases the pmd is the only mapping of the page as we
1381                  * break COW for the mlock() -- see gup_flags |= FOLL_WRITE for
1382                  * writable private mappings in populate_vma_page_range().
1383                  *
1384                  * The only scenario when we have the page shared here is if we
1385                  * mlocking read-only mapping shared over fork(). We skip
1386                  * mlocking such pages.
1387                  *
1388                  * For file THP:
1389                  *
1390                  * We can expect PageDoubleMap() to be stable under page lock:
1391                  * for file pages we set it in page_add_file_rmap(), which
1392                  * requires page to be locked.
1393                  */
1394
1395                 if (PageAnon(page) && compound_mapcount(page) != 1)
1396                         goto skip_mlock;
1397                 if (PageDoubleMap(page) || !page->mapping)
1398                         goto skip_mlock;
1399                 if (!trylock_page(page))
1400                         goto skip_mlock;
1401                 if (page->mapping && !PageDoubleMap(page))
1402                         mlock_vma_page(page);
1403                 unlock_page(page);
1404         }
1405 skip_mlock:
1406         page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
1407         VM_BUG_ON_PAGE(!PageCompound(page) && !is_zone_device_page(page), page);
1408
1409 out:
1410         return page;
1411 }
1412
1413 /* NUMA hinting page fault entry point for trans huge pmds */
1414 vm_fault_t do_huge_pmd_numa_page(struct vm_fault *vmf, pmd_t pmd)
1415 {
1416         struct vm_area_struct *vma = vmf->vma;
1417         struct anon_vma *anon_vma = NULL;
1418         struct page *page;
1419         unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1420         int page_nid = NUMA_NO_NODE, this_nid = numa_node_id();
1421         int target_nid, last_cpupid = -1;
1422         bool page_locked;
1423         bool migrated = false;
1424         bool was_writable;
1425         int flags = 0;
1426
1427         vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1428         if (unlikely(!pmd_same(pmd, *vmf->pmd)))
1429                 goto out_unlock;
1430
1431         /*
1432          * If there are potential migrations, wait for completion and retry
1433          * without disrupting NUMA hinting information. Do not relock and
1434          * check_same as the page may no longer be mapped.
1435          */
1436         if (unlikely(pmd_trans_migrating(*vmf->pmd))) {
1437                 page = pmd_page(*vmf->pmd);
1438                 if (!get_page_unless_zero(page))
1439                         goto out_unlock;
1440                 spin_unlock(vmf->ptl);
1441                 put_and_wait_on_page_locked(page, TASK_UNINTERRUPTIBLE);
1442                 goto out;
1443         }
1444
1445         page = pmd_page(pmd);
1446         BUG_ON(is_huge_zero_page(page));
1447         page_nid = page_to_nid(page);
1448         last_cpupid = page_cpupid_last(page);
1449         count_vm_numa_event(NUMA_HINT_FAULTS);
1450         if (page_nid == this_nid) {
1451                 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
1452                 flags |= TNF_FAULT_LOCAL;
1453         }
1454
1455         /* See similar comment in do_numa_page for explanation */
1456         if (!pmd_savedwrite(pmd))
1457                 flags |= TNF_NO_GROUP;
1458
1459         /*
1460          * Acquire the page lock to serialise THP migrations but avoid dropping
1461          * page_table_lock if at all possible
1462          */
1463         page_locked = trylock_page(page);
1464         target_nid = mpol_misplaced(page, vma, haddr);
1465         /* Migration could have started since the pmd_trans_migrating check */
1466         if (!page_locked) {
1467                 page_nid = NUMA_NO_NODE;
1468                 if (!get_page_unless_zero(page))
1469                         goto out_unlock;
1470                 spin_unlock(vmf->ptl);
1471                 put_and_wait_on_page_locked(page, TASK_UNINTERRUPTIBLE);
1472                 goto out;
1473         } else if (target_nid == NUMA_NO_NODE) {
1474                 /* There are no parallel migrations and page is in the right
1475                  * node. Clear the numa hinting info in this pmd.
1476                  */
1477                 goto clear_pmdnuma;
1478         }
1479
1480         /*
1481          * Page is misplaced. Page lock serialises migrations. Acquire anon_vma
1482          * to serialises splits
1483          */
1484         get_page(page);
1485         spin_unlock(vmf->ptl);
1486         anon_vma = page_lock_anon_vma_read(page);
1487
1488         /* Confirm the PMD did not change while page_table_lock was released */
1489         spin_lock(vmf->ptl);
1490         if (unlikely(!pmd_same(pmd, *vmf->pmd))) {
1491                 unlock_page(page);
1492                 put_page(page);
1493                 page_nid = NUMA_NO_NODE;
1494                 goto out_unlock;
1495         }
1496
1497         /* Bail if we fail to protect against THP splits for any reason */
1498         if (unlikely(!anon_vma)) {
1499                 put_page(page);
1500                 page_nid = NUMA_NO_NODE;
1501                 goto clear_pmdnuma;
1502         }
1503
1504         /*
1505          * Since we took the NUMA fault, we must have observed the !accessible
1506          * bit. Make sure all other CPUs agree with that, to avoid them
1507          * modifying the page we're about to migrate.
1508          *
1509          * Must be done under PTL such that we'll observe the relevant
1510          * inc_tlb_flush_pending().
1511          *
1512          * We are not sure a pending tlb flush here is for a huge page
1513          * mapping or not. Hence use the tlb range variant
1514          */
1515         if (mm_tlb_flush_pending(vma->vm_mm)) {
1516                 flush_tlb_range(vma, haddr, haddr + HPAGE_PMD_SIZE);
1517                 /*
1518                  * change_huge_pmd() released the pmd lock before
1519                  * invalidating the secondary MMUs sharing the primary
1520                  * MMU pagetables (with ->invalidate_range()). The
1521                  * mmu_notifier_invalidate_range_end() (which
1522                  * internally calls ->invalidate_range()) in
1523                  * change_pmd_range() will run after us, so we can't
1524                  * rely on it here and we need an explicit invalidate.
1525                  */
1526                 mmu_notifier_invalidate_range(vma->vm_mm, haddr,
1527                                               haddr + HPAGE_PMD_SIZE);
1528         }
1529
1530         /*
1531          * Migrate the THP to the requested node, returns with page unlocked
1532          * and access rights restored.
1533          */
1534         spin_unlock(vmf->ptl);
1535
1536         migrated = migrate_misplaced_transhuge_page(vma->vm_mm, vma,
1537                                 vmf->pmd, pmd, vmf->address, page, target_nid);
1538         if (migrated) {
1539                 flags |= TNF_MIGRATED;
1540                 page_nid = target_nid;
1541         } else
1542                 flags |= TNF_MIGRATE_FAIL;
1543
1544         goto out;
1545 clear_pmdnuma:
1546         BUG_ON(!PageLocked(page));
1547         was_writable = pmd_savedwrite(pmd);
1548         pmd = pmd_modify(pmd, vma->vm_page_prot);
1549         pmd = pmd_mkyoung(pmd);
1550         if (was_writable)
1551                 pmd = pmd_mkwrite(pmd);
1552         set_pmd_at(vma->vm_mm, haddr, vmf->pmd, pmd);
1553         update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1554         unlock_page(page);
1555 out_unlock:
1556         spin_unlock(vmf->ptl);
1557
1558 out:
1559         if (anon_vma)
1560                 page_unlock_anon_vma_read(anon_vma);
1561
1562         if (page_nid != NUMA_NO_NODE)
1563                 task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR,
1564                                 flags);
1565
1566         return 0;
1567 }
1568
1569 /*
1570  * Return true if we do MADV_FREE successfully on entire pmd page.
1571  * Otherwise, return false.
1572  */
1573 bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1574                 pmd_t *pmd, unsigned long addr, unsigned long next)
1575 {
1576         spinlock_t *ptl;
1577         pmd_t orig_pmd;
1578         struct page *page;
1579         struct mm_struct *mm = tlb->mm;
1580         bool ret = false;
1581
1582         tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
1583
1584         ptl = pmd_trans_huge_lock(pmd, vma);
1585         if (!ptl)
1586                 goto out_unlocked;
1587
1588         orig_pmd = *pmd;
1589         if (is_huge_zero_pmd(orig_pmd))
1590                 goto out;
1591
1592         if (unlikely(!pmd_present(orig_pmd))) {
1593                 VM_BUG_ON(thp_migration_supported() &&
1594                                   !is_pmd_migration_entry(orig_pmd));
1595                 goto out;
1596         }
1597
1598         page = pmd_page(orig_pmd);
1599         /*
1600          * If other processes are mapping this page, we couldn't discard
1601          * the page unless they all do MADV_FREE so let's skip the page.
1602          */
1603         if (page_mapcount(page) != 1)
1604                 goto out;
1605
1606         if (!trylock_page(page))
1607                 goto out;
1608
1609         /*
1610          * If user want to discard part-pages of THP, split it so MADV_FREE
1611          * will deactivate only them.
1612          */
1613         if (next - addr != HPAGE_PMD_SIZE) {
1614                 get_page(page);
1615                 spin_unlock(ptl);
1616                 split_huge_page(page);
1617                 unlock_page(page);
1618                 put_page(page);
1619                 goto out_unlocked;
1620         }
1621
1622         if (PageDirty(page))
1623                 ClearPageDirty(page);
1624         unlock_page(page);
1625
1626         if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) {
1627                 pmdp_invalidate(vma, addr, pmd);
1628                 orig_pmd = pmd_mkold(orig_pmd);
1629                 orig_pmd = pmd_mkclean(orig_pmd);
1630
1631                 set_pmd_at(mm, addr, pmd, orig_pmd);
1632                 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1633         }
1634
1635         mark_page_lazyfree(page);
1636         ret = true;
1637 out:
1638         spin_unlock(ptl);
1639 out_unlocked:
1640         return ret;
1641 }
1642
1643 static inline void zap_deposited_table(struct mm_struct *mm, pmd_t *pmd)
1644 {
1645         pgtable_t pgtable;
1646
1647         pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1648         pte_free(mm, pgtable);
1649         mm_dec_nr_ptes(mm);
1650 }
1651
1652 int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1653                  pmd_t *pmd, unsigned long addr)
1654 {
1655         pmd_t orig_pmd;
1656         spinlock_t *ptl;
1657
1658         tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
1659
1660         ptl = __pmd_trans_huge_lock(pmd, vma);
1661         if (!ptl)
1662                 return 0;
1663         /*
1664          * For architectures like ppc64 we look at deposited pgtable
1665          * when calling pmdp_huge_get_and_clear. So do the
1666          * pgtable_trans_huge_withdraw after finishing pmdp related
1667          * operations.
1668          */
1669         orig_pmd = pmdp_huge_get_and_clear_full(vma, addr, pmd,
1670                                                 tlb->fullmm);
1671         tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1672         if (vma_is_special_huge(vma)) {
1673                 if (arch_needs_pgtable_deposit())
1674                         zap_deposited_table(tlb->mm, pmd);
1675                 spin_unlock(ptl);
1676                 if (is_huge_zero_pmd(orig_pmd))
1677                         tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
1678         } else if (is_huge_zero_pmd(orig_pmd)) {
1679                 zap_deposited_table(tlb->mm, pmd);
1680                 spin_unlock(ptl);
1681                 tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
1682         } else {
1683                 struct page *page = NULL;
1684                 int flush_needed = 1;
1685
1686                 if (pmd_present(orig_pmd)) {
1687                         page = pmd_page(orig_pmd);
1688                         page_remove_rmap(page, true);
1689                         VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
1690                         VM_BUG_ON_PAGE(!PageHead(page), page);
1691                 } else if (thp_migration_supported()) {
1692                         swp_entry_t entry;
1693
1694                         VM_BUG_ON(!is_pmd_migration_entry(orig_pmd));
1695                         entry = pmd_to_swp_entry(orig_pmd);
1696                         page = pfn_to_page(swp_offset(entry));
1697                         flush_needed = 0;
1698                 } else
1699                         WARN_ONCE(1, "Non present huge pmd without pmd migration enabled!");
1700
1701                 if (PageAnon(page)) {
1702                         zap_deposited_table(tlb->mm, pmd);
1703                         add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1704                 } else {
1705                         if (arch_needs_pgtable_deposit())
1706                                 zap_deposited_table(tlb->mm, pmd);
1707                         add_mm_counter(tlb->mm, mm_counter_file(page), -HPAGE_PMD_NR);
1708                 }
1709
1710                 spin_unlock(ptl);
1711                 if (flush_needed)
1712                         tlb_remove_page_size(tlb, page, HPAGE_PMD_SIZE);
1713         }
1714         return 1;
1715 }
1716
1717 #ifndef pmd_move_must_withdraw
1718 static inline int pmd_move_must_withdraw(spinlock_t *new_pmd_ptl,
1719                                          spinlock_t *old_pmd_ptl,
1720                                          struct vm_area_struct *vma)
1721 {
1722         /*
1723          * With split pmd lock we also need to move preallocated
1724          * PTE page table if new_pmd is on different PMD page table.
1725          *
1726          * We also don't deposit and withdraw tables for file pages.
1727          */
1728         return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma);
1729 }
1730 #endif
1731
1732 static pmd_t move_soft_dirty_pmd(pmd_t pmd)
1733 {
1734 #ifdef CONFIG_MEM_SOFT_DIRTY
1735         if (unlikely(is_pmd_migration_entry(pmd)))
1736                 pmd = pmd_swp_mksoft_dirty(pmd);
1737         else if (pmd_present(pmd))
1738                 pmd = pmd_mksoft_dirty(pmd);
1739 #endif
1740         return pmd;
1741 }
1742
1743 bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr,
1744                   unsigned long new_addr, pmd_t *old_pmd, pmd_t *new_pmd)
1745 {
1746         spinlock_t *old_ptl, *new_ptl;
1747         pmd_t pmd;
1748         struct mm_struct *mm = vma->vm_mm;
1749         bool force_flush = false;
1750
1751         /*
1752          * The destination pmd shouldn't be established, free_pgtables()
1753          * should have release it.
1754          */
1755         if (WARN_ON(!pmd_none(*new_pmd))) {
1756                 VM_BUG_ON(pmd_trans_huge(*new_pmd));
1757                 return false;
1758         }
1759
1760         /*
1761          * We don't have to worry about the ordering of src and dst
1762          * ptlocks because exclusive mmap_lock prevents deadlock.
1763          */
1764         old_ptl = __pmd_trans_huge_lock(old_pmd, vma);
1765         if (old_ptl) {
1766                 new_ptl = pmd_lockptr(mm, new_pmd);
1767                 if (new_ptl != old_ptl)
1768                         spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
1769                 pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
1770                 if (pmd_present(pmd))
1771                         force_flush = true;
1772                 VM_BUG_ON(!pmd_none(*new_pmd));
1773
1774                 if (pmd_move_must_withdraw(new_ptl, old_ptl, vma)) {
1775                         pgtable_t pgtable;
1776                         pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
1777                         pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
1778                 }
1779                 pmd = move_soft_dirty_pmd(pmd);
1780                 set_pmd_at(mm, new_addr, new_pmd, pmd);
1781                 if (force_flush)
1782                         flush_tlb_range(vma, old_addr, old_addr + PMD_SIZE);
1783                 if (new_ptl != old_ptl)
1784                         spin_unlock(new_ptl);
1785                 spin_unlock(old_ptl);
1786                 return true;
1787         }
1788         return false;
1789 }
1790
1791 /*
1792  * Returns
1793  *  - 0 if PMD could not be locked
1794  *  - 1 if PMD was locked but protections unchange and TLB flush unnecessary
1795  *  - HPAGE_PMD_NR is protections changed and TLB flush necessary
1796  */
1797 int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1798                 unsigned long addr, pgprot_t newprot, unsigned long cp_flags)
1799 {
1800         struct mm_struct *mm = vma->vm_mm;
1801         spinlock_t *ptl;
1802         pmd_t entry;
1803         bool preserve_write;
1804         int ret;
1805         bool prot_numa = cp_flags & MM_CP_PROT_NUMA;
1806         bool uffd_wp = cp_flags & MM_CP_UFFD_WP;
1807         bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE;
1808
1809         ptl = __pmd_trans_huge_lock(pmd, vma);
1810         if (!ptl)
1811                 return 0;
1812
1813         preserve_write = prot_numa && pmd_write(*pmd);
1814         ret = 1;
1815
1816 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1817         if (is_swap_pmd(*pmd)) {
1818                 swp_entry_t entry = pmd_to_swp_entry(*pmd);
1819
1820                 VM_BUG_ON(!is_pmd_migration_entry(*pmd));
1821                 if (is_write_migration_entry(entry)) {
1822                         pmd_t newpmd;
1823                         /*
1824                          * A protection check is difficult so
1825                          * just be safe and disable write
1826                          */
1827                         make_migration_entry_read(&entry);
1828                         newpmd = swp_entry_to_pmd(entry);
1829                         if (pmd_swp_soft_dirty(*pmd))
1830                                 newpmd = pmd_swp_mksoft_dirty(newpmd);
1831                         set_pmd_at(mm, addr, pmd, newpmd);
1832                 }
1833                 goto unlock;
1834         }
1835 #endif
1836
1837         /*
1838          * Avoid trapping faults against the zero page. The read-only
1839          * data is likely to be read-cached on the local CPU and
1840          * local/remote hits to the zero page are not interesting.
1841          */
1842         if (prot_numa && is_huge_zero_pmd(*pmd))
1843                 goto unlock;
1844
1845         if (prot_numa && pmd_protnone(*pmd))
1846                 goto unlock;
1847
1848         /*
1849          * In case prot_numa, we are under mmap_read_lock(mm). It's critical
1850          * to not clear pmd intermittently to avoid race with MADV_DONTNEED
1851          * which is also under mmap_read_lock(mm):
1852          *
1853          *      CPU0:                           CPU1:
1854          *                              change_huge_pmd(prot_numa=1)
1855          *                               pmdp_huge_get_and_clear_notify()
1856          * madvise_dontneed()
1857          *  zap_pmd_range()
1858          *   pmd_trans_huge(*pmd) == 0 (without ptl)
1859          *   // skip the pmd
1860          *                               set_pmd_at();
1861          *                               // pmd is re-established
1862          *
1863          * The race makes MADV_DONTNEED miss the huge pmd and don't clear it
1864          * which may break userspace.
1865          *
1866          * pmdp_invalidate() is required to make sure we don't miss
1867          * dirty/young flags set by hardware.
1868          */
1869         entry = pmdp_invalidate(vma, addr, pmd);
1870
1871         entry = pmd_modify(entry, newprot);
1872         if (preserve_write)
1873                 entry = pmd_mk_savedwrite(entry);
1874         if (uffd_wp) {
1875                 entry = pmd_wrprotect(entry);
1876                 entry = pmd_mkuffd_wp(entry);
1877         } else if (uffd_wp_resolve) {
1878                 /*
1879                  * Leave the write bit to be handled by PF interrupt
1880                  * handler, then things like COW could be properly
1881                  * handled.
1882                  */
1883                 entry = pmd_clear_uffd_wp(entry);
1884         }
1885         ret = HPAGE_PMD_NR;
1886         set_pmd_at(mm, addr, pmd, entry);
1887         BUG_ON(vma_is_anonymous(vma) && !preserve_write && pmd_write(entry));
1888 unlock:
1889         spin_unlock(ptl);
1890         return ret;
1891 }
1892
1893 /*
1894  * Returns page table lock pointer if a given pmd maps a thp, NULL otherwise.
1895  *
1896  * Note that if it returns page table lock pointer, this routine returns without
1897  * unlocking page table lock. So callers must unlock it.
1898  */
1899 spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
1900 {
1901         spinlock_t *ptl;
1902         ptl = pmd_lock(vma->vm_mm, pmd);
1903         if (likely(is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) ||
1904                         pmd_devmap(*pmd)))
1905                 return ptl;
1906         spin_unlock(ptl);
1907         return NULL;
1908 }
1909
1910 /*
1911  * Returns true if a given pud maps a thp, false otherwise.
1912  *
1913  * Note that if it returns true, this routine returns without unlocking page
1914  * table lock. So callers must unlock it.
1915  */
1916 spinlock_t *__pud_trans_huge_lock(pud_t *pud, struct vm_area_struct *vma)
1917 {
1918         spinlock_t *ptl;
1919
1920         ptl = pud_lock(vma->vm_mm, pud);
1921         if (likely(pud_trans_huge(*pud) || pud_devmap(*pud)))
1922                 return ptl;
1923         spin_unlock(ptl);
1924         return NULL;
1925 }
1926
1927 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1928 int zap_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma,
1929                  pud_t *pud, unsigned long addr)
1930 {
1931         spinlock_t *ptl;
1932
1933         ptl = __pud_trans_huge_lock(pud, vma);
1934         if (!ptl)
1935                 return 0;
1936         /*
1937          * For architectures like ppc64 we look at deposited pgtable
1938          * when calling pudp_huge_get_and_clear. So do the
1939          * pgtable_trans_huge_withdraw after finishing pudp related
1940          * operations.
1941          */
1942         pudp_huge_get_and_clear_full(tlb->mm, addr, pud, tlb->fullmm);
1943         tlb_remove_pud_tlb_entry(tlb, pud, addr);
1944         if (vma_is_special_huge(vma)) {
1945                 spin_unlock(ptl);
1946                 /* No zero page support yet */
1947         } else {
1948                 /* No support for anonymous PUD pages yet */
1949                 BUG();
1950         }
1951         return 1;
1952 }
1953
1954 static void __split_huge_pud_locked(struct vm_area_struct *vma, pud_t *pud,
1955                 unsigned long haddr)
1956 {
1957         VM_BUG_ON(haddr & ~HPAGE_PUD_MASK);
1958         VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
1959         VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PUD_SIZE, vma);
1960         VM_BUG_ON(!pud_trans_huge(*pud) && !pud_devmap(*pud));
1961
1962         count_vm_event(THP_SPLIT_PUD);
1963
1964         pudp_huge_clear_flush_notify(vma, haddr, pud);
1965 }
1966
1967 void __split_huge_pud(struct vm_area_struct *vma, pud_t *pud,
1968                 unsigned long address)
1969 {
1970         spinlock_t *ptl;
1971         struct mmu_notifier_range range;
1972
1973         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1974                                 address & HPAGE_PUD_MASK,
1975                                 (address & HPAGE_PUD_MASK) + HPAGE_PUD_SIZE);
1976         mmu_notifier_invalidate_range_start(&range);
1977         ptl = pud_lock(vma->vm_mm, pud);
1978         if (unlikely(!pud_trans_huge(*pud) && !pud_devmap(*pud)))
1979                 goto out;
1980         __split_huge_pud_locked(vma, pud, range.start);
1981
1982 out:
1983         spin_unlock(ptl);
1984         /*
1985          * No need to double call mmu_notifier->invalidate_range() callback as
1986          * the above pudp_huge_clear_flush_notify() did already call it.
1987          */
1988         mmu_notifier_invalidate_range_only_end(&range);
1989 }
1990 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1991
1992 static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
1993                 unsigned long haddr, pmd_t *pmd)
1994 {
1995         struct mm_struct *mm = vma->vm_mm;
1996         pgtable_t pgtable;
1997         pmd_t _pmd;
1998         int i;
1999
2000         /*
2001          * Leave pmd empty until pte is filled note that it is fine to delay
2002          * notification until mmu_notifier_invalidate_range_end() as we are
2003          * replacing a zero pmd write protected page with a zero pte write
2004          * protected page.
2005          *
2006          * See Documentation/vm/mmu_notifier.rst
2007          */
2008         pmdp_huge_clear_flush(vma, haddr, pmd);
2009
2010         pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2011         pmd_populate(mm, &_pmd, pgtable);
2012
2013         for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
2014                 pte_t *pte, entry;
2015                 entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
2016                 entry = pte_mkspecial(entry);
2017                 pte = pte_offset_map(&_pmd, haddr);
2018                 VM_BUG_ON(!pte_none(*pte));
2019                 set_pte_at(mm, haddr, pte, entry);
2020                 pte_unmap(pte);
2021         }
2022         smp_wmb(); /* make pte visible before pmd */
2023         pmd_populate(mm, pmd, pgtable);
2024 }
2025
2026 static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd,
2027                 unsigned long haddr, bool freeze)
2028 {
2029         struct mm_struct *mm = vma->vm_mm;
2030         struct page *page;
2031         pgtable_t pgtable;
2032         pmd_t old_pmd, _pmd;
2033         bool young, write, soft_dirty, pmd_migration = false, uffd_wp = false;
2034         unsigned long addr;
2035         int i;
2036
2037         VM_BUG_ON(haddr & ~HPAGE_PMD_MASK);
2038         VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
2039         VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma);
2040         VM_BUG_ON(!is_pmd_migration_entry(*pmd) && !pmd_trans_huge(*pmd)
2041                                 && !pmd_devmap(*pmd));
2042
2043         count_vm_event(THP_SPLIT_PMD);
2044
2045         if (!vma_is_anonymous(vma)) {
2046                 _pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd);
2047                 /*
2048                  * We are going to unmap this huge page. So
2049                  * just go ahead and zap it
2050                  */
2051                 if (arch_needs_pgtable_deposit())
2052                         zap_deposited_table(mm, pmd);
2053                 if (vma_is_special_huge(vma))
2054                         return;
2055                 page = pmd_page(_pmd);
2056                 if (!PageDirty(page) && pmd_dirty(_pmd))
2057                         set_page_dirty(page);
2058                 if (!PageReferenced(page) && pmd_young(_pmd))
2059                         SetPageReferenced(page);
2060                 page_remove_rmap(page, true);
2061                 put_page(page);
2062                 add_mm_counter(mm, mm_counter_file(page), -HPAGE_PMD_NR);
2063                 return;
2064         } else if (pmd_trans_huge(*pmd) && is_huge_zero_pmd(*pmd)) {
2065                 /*
2066                  * FIXME: Do we want to invalidate secondary mmu by calling
2067                  * mmu_notifier_invalidate_range() see comments below inside
2068                  * __split_huge_pmd() ?
2069                  *
2070                  * We are going from a zero huge page write protected to zero
2071                  * small page also write protected so it does not seems useful
2072                  * to invalidate secondary mmu at this time.
2073                  */
2074                 return __split_huge_zero_page_pmd(vma, haddr, pmd);
2075         }
2076
2077         /*
2078          * Up to this point the pmd is present and huge and userland has the
2079          * whole access to the hugepage during the split (which happens in
2080          * place). If we overwrite the pmd with the not-huge version pointing
2081          * to the pte here (which of course we could if all CPUs were bug
2082          * free), userland could trigger a small page size TLB miss on the
2083          * small sized TLB while the hugepage TLB entry is still established in
2084          * the huge TLB. Some CPU doesn't like that.
2085          * See http://support.amd.com/TechDocs/41322_10h_Rev_Gd.pdf, Erratum
2086          * 383 on page 105. Intel should be safe but is also warns that it's
2087          * only safe if the permission and cache attributes of the two entries
2088          * loaded in the two TLB is identical (which should be the case here).
2089          * But it is generally safer to never allow small and huge TLB entries
2090          * for the same virtual address to be loaded simultaneously. So instead
2091          * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the
2092          * current pmd notpresent (atomically because here the pmd_trans_huge
2093          * must remain set at all times on the pmd until the split is complete
2094          * for this pmd), then we flush the SMP TLB and finally we write the
2095          * non-huge version of the pmd entry with pmd_populate.
2096          */
2097         old_pmd = pmdp_invalidate(vma, haddr, pmd);
2098
2099         pmd_migration = is_pmd_migration_entry(old_pmd);
2100         if (unlikely(pmd_migration)) {
2101                 swp_entry_t entry;
2102
2103                 entry = pmd_to_swp_entry(old_pmd);
2104                 page = pfn_to_page(swp_offset(entry));
2105                 write = is_write_migration_entry(entry);
2106                 young = false;
2107                 soft_dirty = pmd_swp_soft_dirty(old_pmd);
2108                 uffd_wp = pmd_swp_uffd_wp(old_pmd);
2109         } else {
2110                 page = pmd_page(old_pmd);
2111                 if (pmd_dirty(old_pmd))
2112                         SetPageDirty(page);
2113                 write = pmd_write(old_pmd);
2114                 young = pmd_young(old_pmd);
2115                 soft_dirty = pmd_soft_dirty(old_pmd);
2116                 uffd_wp = pmd_uffd_wp(old_pmd);
2117         }
2118         VM_BUG_ON_PAGE(!page_count(page), page);
2119         page_ref_add(page, HPAGE_PMD_NR - 1);
2120
2121         /*
2122          * Withdraw the table only after we mark the pmd entry invalid.
2123          * This's critical for some architectures (Power).
2124          */
2125         pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2126         pmd_populate(mm, &_pmd, pgtable);
2127
2128         for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
2129                 pte_t entry, *pte;
2130                 /*
2131                  * Note that NUMA hinting access restrictions are not
2132                  * transferred to avoid any possibility of altering
2133                  * permissions across VMAs.
2134                  */
2135                 if (freeze || pmd_migration) {
2136                         swp_entry_t swp_entry;
2137                         swp_entry = make_migration_entry(page + i, write);
2138                         entry = swp_entry_to_pte(swp_entry);
2139                         if (soft_dirty)
2140                                 entry = pte_swp_mksoft_dirty(entry);
2141                         if (uffd_wp)
2142                                 entry = pte_swp_mkuffd_wp(entry);
2143                 } else {
2144                         entry = mk_pte(page + i, READ_ONCE(vma->vm_page_prot));
2145                         entry = maybe_mkwrite(entry, vma);
2146                         if (!write)
2147                                 entry = pte_wrprotect(entry);
2148                         if (!young)
2149                                 entry = pte_mkold(entry);
2150                         if (soft_dirty)
2151                                 entry = pte_mksoft_dirty(entry);
2152                         if (uffd_wp)
2153                                 entry = pte_mkuffd_wp(entry);
2154                 }
2155                 pte = pte_offset_map(&_pmd, addr);
2156                 BUG_ON(!pte_none(*pte));
2157                 set_pte_at(mm, addr, pte, entry);
2158                 if (!pmd_migration)
2159                         atomic_inc(&page[i]._mapcount);
2160                 pte_unmap(pte);
2161         }
2162
2163         if (!pmd_migration) {
2164                 /*
2165                  * Set PG_double_map before dropping compound_mapcount to avoid
2166                  * false-negative page_mapped().
2167                  */
2168                 if (compound_mapcount(page) > 1 &&
2169                     !TestSetPageDoubleMap(page)) {
2170                         for (i = 0; i < HPAGE_PMD_NR; i++)
2171                                 atomic_inc(&page[i]._mapcount);
2172                 }
2173
2174                 lock_page_memcg(page);
2175                 if (atomic_add_negative(-1, compound_mapcount_ptr(page))) {
2176                         /* Last compound_mapcount is gone. */
2177                         __mod_lruvec_page_state(page, NR_ANON_THPS,
2178                                                 -HPAGE_PMD_NR);
2179                         if (TestClearPageDoubleMap(page)) {
2180                                 /* No need in mapcount reference anymore */
2181                                 for (i = 0; i < HPAGE_PMD_NR; i++)
2182                                         atomic_dec(&page[i]._mapcount);
2183                         }
2184                 }
2185                 unlock_page_memcg(page);
2186         }
2187
2188         smp_wmb(); /* make pte visible before pmd */
2189         pmd_populate(mm, pmd, pgtable);
2190
2191         if (freeze) {
2192                 for (i = 0; i < HPAGE_PMD_NR; i++) {
2193                         page_remove_rmap(page + i, false);
2194                         put_page(page + i);
2195                 }
2196         }
2197 }
2198
2199 void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
2200                 unsigned long address, bool freeze, struct page *page)
2201 {
2202         spinlock_t *ptl;
2203         struct mmu_notifier_range range;
2204         bool do_unlock_page = false;
2205         pmd_t _pmd;
2206
2207         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
2208                                 address & HPAGE_PMD_MASK,
2209                                 (address & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE);
2210         mmu_notifier_invalidate_range_start(&range);
2211         ptl = pmd_lock(vma->vm_mm, pmd);
2212
2213         /*
2214          * If caller asks to setup a migration entries, we need a page to check
2215          * pmd against. Otherwise we can end up replacing wrong page.
2216          */
2217         VM_BUG_ON(freeze && !page);
2218         if (page) {
2219                 VM_WARN_ON_ONCE(!PageLocked(page));
2220                 if (page != pmd_page(*pmd))
2221                         goto out;
2222         }
2223
2224 repeat:
2225         if (pmd_trans_huge(*pmd)) {
2226                 if (!page) {
2227                         page = pmd_page(*pmd);
2228                         /*
2229                          * An anonymous page must be locked, to ensure that a
2230                          * concurrent reuse_swap_page() sees stable mapcount;
2231                          * but reuse_swap_page() is not used on shmem or file,
2232                          * and page lock must not be taken when zap_pmd_range()
2233                          * calls __split_huge_pmd() while i_mmap_lock is held.
2234                          */
2235                         if (PageAnon(page)) {
2236                                 if (unlikely(!trylock_page(page))) {
2237                                         get_page(page);
2238                                         _pmd = *pmd;
2239                                         spin_unlock(ptl);
2240                                         lock_page(page);
2241                                         spin_lock(ptl);
2242                                         if (unlikely(!pmd_same(*pmd, _pmd))) {
2243                                                 unlock_page(page);
2244                                                 put_page(page);
2245                                                 page = NULL;
2246                                                 goto repeat;
2247                                         }
2248                                         put_page(page);
2249                                 }
2250                                 do_unlock_page = true;
2251                         }
2252                 }
2253                 if (PageMlocked(page))
2254                         clear_page_mlock(page);
2255         } else if (!(pmd_devmap(*pmd) || is_pmd_migration_entry(*pmd)))
2256                 goto out;
2257         __split_huge_pmd_locked(vma, pmd, range.start, freeze);
2258 out:
2259         spin_unlock(ptl);
2260         if (do_unlock_page)
2261                 unlock_page(page);
2262         /*
2263          * No need to double call mmu_notifier->invalidate_range() callback.
2264          * They are 3 cases to consider inside __split_huge_pmd_locked():
2265          *  1) pmdp_huge_clear_flush_notify() call invalidate_range() obvious
2266          *  2) __split_huge_zero_page_pmd() read only zero page and any write
2267          *    fault will trigger a flush_notify before pointing to a new page
2268          *    (it is fine if the secondary mmu keeps pointing to the old zero
2269          *    page in the meantime)
2270          *  3) Split a huge pmd into pte pointing to the same page. No need
2271          *     to invalidate secondary tlb entry they are all still valid.
2272          *     any further changes to individual pte will notify. So no need
2273          *     to call mmu_notifier->invalidate_range()
2274          */
2275         mmu_notifier_invalidate_range_only_end(&range);
2276 }
2277
2278 void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address,
2279                 bool freeze, struct page *page)
2280 {
2281         pgd_t *pgd;
2282         p4d_t *p4d;
2283         pud_t *pud;
2284         pmd_t *pmd;
2285
2286         pgd = pgd_offset(vma->vm_mm, address);
2287         if (!pgd_present(*pgd))
2288                 return;
2289
2290         p4d = p4d_offset(pgd, address);
2291         if (!p4d_present(*p4d))
2292                 return;
2293
2294         pud = pud_offset(p4d, address);
2295         if (!pud_present(*pud))
2296                 return;
2297
2298         pmd = pmd_offset(pud, address);
2299
2300         __split_huge_pmd(vma, pmd, address, freeze, page);
2301 }
2302
2303 static inline void split_huge_pmd_if_needed(struct vm_area_struct *vma, unsigned long address)
2304 {
2305         /*
2306          * If the new address isn't hpage aligned and it could previously
2307          * contain an hugepage: check if we need to split an huge pmd.
2308          */
2309         if (!IS_ALIGNED(address, HPAGE_PMD_SIZE) &&
2310             range_in_vma(vma, ALIGN_DOWN(address, HPAGE_PMD_SIZE),
2311                          ALIGN(address, HPAGE_PMD_SIZE)))
2312                 split_huge_pmd_address(vma, address, false, NULL);
2313 }
2314
2315 void vma_adjust_trans_huge(struct vm_area_struct *vma,
2316                              unsigned long start,
2317                              unsigned long end,
2318                              long adjust_next)
2319 {
2320         /* Check if we need to split start first. */
2321         split_huge_pmd_if_needed(vma, start);
2322
2323         /* Check if we need to split end next. */
2324         split_huge_pmd_if_needed(vma, end);
2325
2326         /*
2327          * If we're also updating the vma->vm_next->vm_start,
2328          * check if we need to split it.
2329          */
2330         if (adjust_next > 0) {
2331                 struct vm_area_struct *next = vma->vm_next;
2332                 unsigned long nstart = next->vm_start;
2333                 nstart += adjust_next;
2334                 split_huge_pmd_if_needed(next, nstart);
2335         }
2336 }
2337
2338 static void unmap_page(struct page *page)
2339 {
2340         enum ttu_flags ttu_flags = TTU_IGNORE_MLOCK |
2341                 TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD;
2342         bool unmap_success;
2343
2344         VM_BUG_ON_PAGE(!PageHead(page), page);
2345
2346         if (PageAnon(page))
2347                 ttu_flags |= TTU_SPLIT_FREEZE;
2348
2349         unmap_success = try_to_unmap(page, ttu_flags);
2350         VM_BUG_ON_PAGE(!unmap_success, page);
2351 }
2352
2353 static void remap_page(struct page *page, unsigned int nr)
2354 {
2355         int i;
2356         if (PageTransHuge(page)) {
2357                 remove_migration_ptes(page, page, true);
2358         } else {
2359                 for (i = 0; i < nr; i++)
2360                         remove_migration_ptes(page + i, page + i, true);
2361         }
2362 }
2363
2364 static void lru_add_page_tail(struct page *head, struct page *tail,
2365                 struct lruvec *lruvec, struct list_head *list)
2366 {
2367         VM_BUG_ON_PAGE(!PageHead(head), head);
2368         VM_BUG_ON_PAGE(PageCompound(tail), head);
2369         VM_BUG_ON_PAGE(PageLRU(tail), head);
2370         lockdep_assert_held(&lruvec->lru_lock);
2371
2372         if (list) {
2373                 /* page reclaim is reclaiming a huge page */
2374                 VM_WARN_ON(PageLRU(head));
2375                 get_page(tail);
2376                 list_add_tail(&tail->lru, list);
2377         } else {
2378                 /* head is still on lru (and we have it frozen) */
2379                 VM_WARN_ON(!PageLRU(head));
2380                 SetPageLRU(tail);
2381                 list_add_tail(&tail->lru, &head->lru);
2382         }
2383 }
2384
2385 static void __split_huge_page_tail(struct page *head, int tail,
2386                 struct lruvec *lruvec, struct list_head *list)
2387 {
2388         struct page *page_tail = head + tail;
2389
2390         VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail);
2391
2392         /*
2393          * Clone page flags before unfreezing refcount.
2394          *
2395          * After successful get_page_unless_zero() might follow flags change,
2396          * for example lock_page() which set PG_waiters.
2397          */
2398         page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
2399         page_tail->flags |= (head->flags &
2400                         ((1L << PG_referenced) |
2401                          (1L << PG_swapbacked) |
2402                          (1L << PG_swapcache) |
2403                          (1L << PG_mlocked) |
2404                          (1L << PG_uptodate) |
2405                          (1L << PG_active) |
2406                          (1L << PG_workingset) |
2407                          (1L << PG_locked) |
2408                          (1L << PG_unevictable) |
2409 #ifdef CONFIG_64BIT
2410                          (1L << PG_arch_2) |
2411 #endif
2412                          (1L << PG_dirty)));
2413
2414         /* ->mapping in first tail page is compound_mapcount */
2415         VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING,
2416                         page_tail);
2417         page_tail->mapping = head->mapping;
2418         page_tail->index = head->index + tail;
2419
2420         /* Page flags must be visible before we make the page non-compound. */
2421         smp_wmb();
2422
2423         /*
2424          * Clear PageTail before unfreezing page refcount.
2425          *
2426          * After successful get_page_unless_zero() might follow put_page()
2427          * which needs correct compound_head().
2428          */
2429         clear_compound_head(page_tail);
2430
2431         /* Finally unfreeze refcount. Additional reference from page cache. */
2432         page_ref_unfreeze(page_tail, 1 + (!PageAnon(head) ||
2433                                           PageSwapCache(head)));
2434
2435         if (page_is_young(head))
2436                 set_page_young(page_tail);
2437         if (page_is_idle(head))
2438                 set_page_idle(page_tail);
2439
2440         page_cpupid_xchg_last(page_tail, page_cpupid_last(head));
2441
2442         /*
2443          * always add to the tail because some iterators expect new
2444          * pages to show after the currently processed elements - e.g.
2445          * migrate_pages
2446          */
2447         lru_add_page_tail(head, page_tail, lruvec, list);
2448 }
2449
2450 static void __split_huge_page(struct page *page, struct list_head *list,
2451                 pgoff_t end)
2452 {
2453         struct page *head = compound_head(page);
2454         struct lruvec *lruvec;
2455         struct address_space *swap_cache = NULL;
2456         unsigned long offset = 0;
2457         unsigned int nr = thp_nr_pages(head);
2458         int i;
2459
2460         /* complete memcg works before add pages to LRU */
2461         split_page_memcg(head, nr);
2462
2463         if (PageAnon(head) && PageSwapCache(head)) {
2464                 swp_entry_t entry = { .val = page_private(head) };
2465
2466                 offset = swp_offset(entry);
2467                 swap_cache = swap_address_space(entry);
2468                 xa_lock(&swap_cache->i_pages);
2469         }
2470
2471         /* lock lru list/PageCompound, ref freezed by page_ref_freeze */
2472         lruvec = lock_page_lruvec(head);
2473
2474         for (i = nr - 1; i >= 1; i--) {
2475                 __split_huge_page_tail(head, i, lruvec, list);
2476                 /* Some pages can be beyond i_size: drop them from page cache */
2477                 if (head[i].index >= end) {
2478                         ClearPageDirty(head + i);
2479                         __delete_from_page_cache(head + i, NULL);
2480                         if (IS_ENABLED(CONFIG_SHMEM) && PageSwapBacked(head))
2481                                 shmem_uncharge(head->mapping->host, 1);
2482                         put_page(head + i);
2483                 } else if (!PageAnon(page)) {
2484                         __xa_store(&head->mapping->i_pages, head[i].index,
2485                                         head + i, 0);
2486                 } else if (swap_cache) {
2487                         __xa_store(&swap_cache->i_pages, offset + i,
2488                                         head + i, 0);
2489                 }
2490         }
2491
2492         ClearPageCompound(head);
2493         unlock_page_lruvec(lruvec);
2494         /* Caller disabled irqs, so they are still disabled here */
2495
2496         split_page_owner(head, nr);
2497
2498         /* See comment in __split_huge_page_tail() */
2499         if (PageAnon(head)) {
2500                 /* Additional pin to swap cache */
2501                 if (PageSwapCache(head)) {
2502                         page_ref_add(head, 2);
2503                         xa_unlock(&swap_cache->i_pages);
2504                 } else {
2505                         page_ref_inc(head);
2506                 }
2507         } else {
2508                 /* Additional pin to page cache */
2509                 page_ref_add(head, 2);
2510                 xa_unlock(&head->mapping->i_pages);
2511         }
2512         local_irq_enable();
2513
2514         remap_page(head, nr);
2515
2516         if (PageSwapCache(head)) {
2517                 swp_entry_t entry = { .val = page_private(head) };
2518
2519                 split_swap_cluster(entry);
2520         }
2521
2522         for (i = 0; i < nr; i++) {
2523                 struct page *subpage = head + i;
2524                 if (subpage == page)
2525                         continue;
2526                 unlock_page(subpage);
2527
2528                 /*
2529                  * Subpages may be freed if there wasn't any mapping
2530                  * like if add_to_swap() is running on a lru page that
2531                  * had its mapping zapped. And freeing these pages
2532                  * requires taking the lru_lock so we do the put_page
2533                  * of the tail pages after the split is complete.
2534                  */
2535                 put_page(subpage);
2536         }
2537 }
2538
2539 int total_mapcount(struct page *page)
2540 {
2541         int i, compound, nr, ret;
2542
2543         VM_BUG_ON_PAGE(PageTail(page), page);
2544
2545         if (likely(!PageCompound(page)))
2546                 return atomic_read(&page->_mapcount) + 1;
2547
2548         compound = compound_mapcount(page);
2549         nr = compound_nr(page);
2550         if (PageHuge(page))
2551                 return compound;
2552         ret = compound;
2553         for (i = 0; i < nr; i++)
2554                 ret += atomic_read(&page[i]._mapcount) + 1;
2555         /* File pages has compound_mapcount included in _mapcount */
2556         if (!PageAnon(page))
2557                 return ret - compound * nr;
2558         if (PageDoubleMap(page))
2559                 ret -= nr;
2560         return ret;
2561 }
2562
2563 /*
2564  * This calculates accurately how many mappings a transparent hugepage
2565  * has (unlike page_mapcount() which isn't fully accurate). This full
2566  * accuracy is primarily needed to know if copy-on-write faults can
2567  * reuse the page and change the mapping to read-write instead of
2568  * copying them. At the same time this returns the total_mapcount too.
2569  *
2570  * The function returns the highest mapcount any one of the subpages
2571  * has. If the return value is one, even if different processes are
2572  * mapping different subpages of the transparent hugepage, they can
2573  * all reuse it, because each process is reusing a different subpage.
2574  *
2575  * The total_mapcount is instead counting all virtual mappings of the
2576  * subpages. If the total_mapcount is equal to "one", it tells the
2577  * caller all mappings belong to the same "mm" and in turn the
2578  * anon_vma of the transparent hugepage can become the vma->anon_vma
2579  * local one as no other process may be mapping any of the subpages.
2580  *
2581  * It would be more accurate to replace page_mapcount() with
2582  * page_trans_huge_mapcount(), however we only use
2583  * page_trans_huge_mapcount() in the copy-on-write faults where we
2584  * need full accuracy to avoid breaking page pinning, because
2585  * page_trans_huge_mapcount() is slower than page_mapcount().
2586  */
2587 int page_trans_huge_mapcount(struct page *page, int *total_mapcount)
2588 {
2589         int i, ret, _total_mapcount, mapcount;
2590
2591         /* hugetlbfs shouldn't call it */
2592         VM_BUG_ON_PAGE(PageHuge(page), page);
2593
2594         if (likely(!PageTransCompound(page))) {
2595                 mapcount = atomic_read(&page->_mapcount) + 1;
2596                 if (total_mapcount)
2597                         *total_mapcount = mapcount;
2598                 return mapcount;
2599         }
2600
2601         page = compound_head(page);
2602
2603         _total_mapcount = ret = 0;
2604         for (i = 0; i < thp_nr_pages(page); i++) {
2605                 mapcount = atomic_read(&page[i]._mapcount) + 1;
2606                 ret = max(ret, mapcount);
2607                 _total_mapcount += mapcount;
2608         }
2609         if (PageDoubleMap(page)) {
2610                 ret -= 1;
2611                 _total_mapcount -= thp_nr_pages(page);
2612         }
2613         mapcount = compound_mapcount(page);
2614         ret += mapcount;
2615         _total_mapcount += mapcount;
2616         if (total_mapcount)
2617                 *total_mapcount = _total_mapcount;
2618         return ret;
2619 }
2620
2621 /* Racy check whether the huge page can be split */
2622 bool can_split_huge_page(struct page *page, int *pextra_pins)
2623 {
2624         int extra_pins;
2625
2626         /* Additional pins from page cache */
2627         if (PageAnon(page))
2628                 extra_pins = PageSwapCache(page) ? thp_nr_pages(page) : 0;
2629         else
2630                 extra_pins = thp_nr_pages(page);
2631         if (pextra_pins)
2632                 *pextra_pins = extra_pins;
2633         return total_mapcount(page) == page_count(page) - extra_pins - 1;
2634 }
2635
2636 /*
2637  * This function splits huge page into normal pages. @page can point to any
2638  * subpage of huge page to split. Split doesn't change the position of @page.
2639  *
2640  * Only caller must hold pin on the @page, otherwise split fails with -EBUSY.
2641  * The huge page must be locked.
2642  *
2643  * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
2644  *
2645  * Both head page and tail pages will inherit mapping, flags, and so on from
2646  * the hugepage.
2647  *
2648  * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if
2649  * they are not mapped.
2650  *
2651  * Returns 0 if the hugepage is split successfully.
2652  * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under
2653  * us.
2654  */
2655 int split_huge_page_to_list(struct page *page, struct list_head *list)
2656 {
2657         struct page *head = compound_head(page);
2658         struct deferred_split *ds_queue = get_deferred_split_queue(head);
2659         struct anon_vma *anon_vma = NULL;
2660         struct address_space *mapping = NULL;
2661         int count, mapcount, extra_pins, ret;
2662         pgoff_t end;
2663
2664         VM_BUG_ON_PAGE(is_huge_zero_page(head), head);
2665         VM_BUG_ON_PAGE(!PageLocked(head), head);
2666         VM_BUG_ON_PAGE(!PageCompound(head), head);
2667
2668         if (PageWriteback(head))
2669                 return -EBUSY;
2670
2671         if (PageAnon(head)) {
2672                 /*
2673                  * The caller does not necessarily hold an mmap_lock that would
2674                  * prevent the anon_vma disappearing so we first we take a
2675                  * reference to it and then lock the anon_vma for write. This
2676                  * is similar to page_lock_anon_vma_read except the write lock
2677                  * is taken to serialise against parallel split or collapse
2678                  * operations.
2679                  */
2680                 anon_vma = page_get_anon_vma(head);
2681                 if (!anon_vma) {
2682                         ret = -EBUSY;
2683                         goto out;
2684                 }
2685                 end = -1;
2686                 mapping = NULL;
2687                 anon_vma_lock_write(anon_vma);
2688         } else {
2689                 mapping = head->mapping;
2690
2691                 /* Truncated ? */
2692                 if (!mapping) {
2693                         ret = -EBUSY;
2694                         goto out;
2695                 }
2696
2697                 anon_vma = NULL;
2698                 i_mmap_lock_read(mapping);
2699
2700                 /*
2701                  *__split_huge_page() may need to trim off pages beyond EOF:
2702                  * but on 32-bit, i_size_read() takes an irq-unsafe seqlock,
2703                  * which cannot be nested inside the page tree lock. So note
2704                  * end now: i_size itself may be changed at any moment, but
2705                  * head page lock is good enough to serialize the trimming.
2706                  */
2707                 end = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
2708         }
2709
2710         /*
2711          * Racy check if we can split the page, before unmap_page() will
2712          * split PMDs
2713          */
2714         if (!can_split_huge_page(head, &extra_pins)) {
2715                 ret = -EBUSY;
2716                 goto out_unlock;
2717         }
2718
2719         unmap_page(head);
2720         VM_BUG_ON_PAGE(compound_mapcount(head), head);
2721
2722         /* block interrupt reentry in xa_lock and spinlock */
2723         local_irq_disable();
2724         if (mapping) {
2725                 XA_STATE(xas, &mapping->i_pages, page_index(head));
2726
2727                 /*
2728                  * Check if the head page is present in page cache.
2729                  * We assume all tail are present too, if head is there.
2730                  */
2731                 xa_lock(&mapping->i_pages);
2732                 if (xas_load(&xas) != head)
2733                         goto fail;
2734         }
2735
2736         /* Prevent deferred_split_scan() touching ->_refcount */
2737         spin_lock(&ds_queue->split_queue_lock);
2738         count = page_count(head);
2739         mapcount = total_mapcount(head);
2740         if (!mapcount && page_ref_freeze(head, 1 + extra_pins)) {
2741                 if (!list_empty(page_deferred_list(head))) {
2742                         ds_queue->split_queue_len--;
2743                         list_del(page_deferred_list(head));
2744                 }
2745                 spin_unlock(&ds_queue->split_queue_lock);
2746                 if (mapping) {
2747                         int nr = thp_nr_pages(head);
2748
2749                         if (PageSwapBacked(head))
2750                                 __mod_lruvec_page_state(head, NR_SHMEM_THPS,
2751                                                         -nr);
2752                         else
2753                                 __mod_lruvec_page_state(head, NR_FILE_THPS,
2754                                                         -nr);
2755                 }
2756
2757                 __split_huge_page(page, list, end);
2758                 ret = 0;
2759         } else {
2760                 if (IS_ENABLED(CONFIG_DEBUG_VM) && mapcount) {
2761                         pr_alert("total_mapcount: %u, page_count(): %u\n",
2762                                         mapcount, count);
2763                         if (PageTail(page))
2764                                 dump_page(head, NULL);
2765                         dump_page(page, "total_mapcount(head) > 0");
2766                         BUG();
2767                 }
2768                 spin_unlock(&ds_queue->split_queue_lock);
2769 fail:           if (mapping)
2770                         xa_unlock(&mapping->i_pages);
2771                 local_irq_enable();
2772                 remap_page(head, thp_nr_pages(head));
2773                 ret = -EBUSY;
2774         }
2775
2776 out_unlock:
2777         if (anon_vma) {
2778                 anon_vma_unlock_write(anon_vma);
2779                 put_anon_vma(anon_vma);
2780         }
2781         if (mapping)
2782                 i_mmap_unlock_read(mapping);
2783 out:
2784         count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED);
2785         return ret;
2786 }
2787
2788 void free_transhuge_page(struct page *page)
2789 {
2790         struct deferred_split *ds_queue = get_deferred_split_queue(page);
2791         unsigned long flags;
2792
2793         spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2794         if (!list_empty(page_deferred_list(page))) {
2795                 ds_queue->split_queue_len--;
2796                 list_del(page_deferred_list(page));
2797         }
2798         spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2799         free_compound_page(page);
2800 }
2801
2802 void deferred_split_huge_page(struct page *page)
2803 {
2804         struct deferred_split *ds_queue = get_deferred_split_queue(page);
2805 #ifdef CONFIG_MEMCG
2806         struct mem_cgroup *memcg = page_memcg(compound_head(page));
2807 #endif
2808         unsigned long flags;
2809
2810         VM_BUG_ON_PAGE(!PageTransHuge(page), page);
2811
2812         /*
2813          * The try_to_unmap() in page reclaim path might reach here too,
2814          * this may cause a race condition to corrupt deferred split queue.
2815          * And, if page reclaim is already handling the same page, it is
2816          * unnecessary to handle it again in shrinker.
2817          *
2818          * Check PageSwapCache to determine if the page is being
2819          * handled by page reclaim since THP swap would add the page into
2820          * swap cache before calling try_to_unmap().
2821          */
2822         if (PageSwapCache(page))
2823                 return;
2824
2825         spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2826         if (list_empty(page_deferred_list(page))) {
2827                 count_vm_event(THP_DEFERRED_SPLIT_PAGE);
2828                 list_add_tail(page_deferred_list(page), &ds_queue->split_queue);
2829                 ds_queue->split_queue_len++;
2830 #ifdef CONFIG_MEMCG
2831                 if (memcg)
2832                         memcg_set_shrinker_bit(memcg, page_to_nid(page),
2833                                                deferred_split_shrinker.id);
2834 #endif
2835         }
2836         spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2837 }
2838
2839 static unsigned long deferred_split_count(struct shrinker *shrink,
2840                 struct shrink_control *sc)
2841 {
2842         struct pglist_data *pgdata = NODE_DATA(sc->nid);
2843         struct deferred_split *ds_queue = &pgdata->deferred_split_queue;
2844
2845 #ifdef CONFIG_MEMCG
2846         if (sc->memcg)
2847                 ds_queue = &sc->memcg->deferred_split_queue;
2848 #endif
2849         return READ_ONCE(ds_queue->split_queue_len);
2850 }
2851
2852 static unsigned long deferred_split_scan(struct shrinker *shrink,
2853                 struct shrink_control *sc)
2854 {
2855         struct pglist_data *pgdata = NODE_DATA(sc->nid);
2856         struct deferred_split *ds_queue = &pgdata->deferred_split_queue;
2857         unsigned long flags;
2858         LIST_HEAD(list), *pos, *next;
2859         struct page *page;
2860         int split = 0;
2861
2862 #ifdef CONFIG_MEMCG
2863         if (sc->memcg)
2864                 ds_queue = &sc->memcg->deferred_split_queue;
2865 #endif
2866
2867         spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2868         /* Take pin on all head pages to avoid freeing them under us */
2869         list_for_each_safe(pos, next, &ds_queue->split_queue) {
2870                 page = list_entry((void *)pos, struct page, mapping);
2871                 page = compound_head(page);
2872                 if (get_page_unless_zero(page)) {
2873                         list_move(page_deferred_list(page), &list);
2874                 } else {
2875                         /* We lost race with put_compound_page() */
2876                         list_del_init(page_deferred_list(page));
2877                         ds_queue->split_queue_len--;
2878                 }
2879                 if (!--sc->nr_to_scan)
2880                         break;
2881         }
2882         spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2883
2884         list_for_each_safe(pos, next, &list) {
2885                 page = list_entry((void *)pos, struct page, mapping);
2886                 if (!trylock_page(page))
2887                         goto next;
2888                 /* split_huge_page() removes page from list on success */
2889                 if (!split_huge_page(page))
2890                         split++;
2891                 unlock_page(page);
2892 next:
2893                 put_page(page);
2894         }
2895
2896         spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2897         list_splice_tail(&list, &ds_queue->split_queue);
2898         spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2899
2900         /*
2901          * Stop shrinker if we didn't split any page, but the queue is empty.
2902          * This can happen if pages were freed under us.
2903          */
2904         if (!split && list_empty(&ds_queue->split_queue))
2905                 return SHRINK_STOP;
2906         return split;
2907 }
2908
2909 static struct shrinker deferred_split_shrinker = {
2910         .count_objects = deferred_split_count,
2911         .scan_objects = deferred_split_scan,
2912         .seeks = DEFAULT_SEEKS,
2913         .flags = SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE |
2914                  SHRINKER_NONSLAB,
2915 };
2916
2917 #ifdef CONFIG_DEBUG_FS
2918 static int split_huge_pages_set(void *data, u64 val)
2919 {
2920         struct zone *zone;
2921         struct page *page;
2922         unsigned long pfn, max_zone_pfn;
2923         unsigned long total = 0, split = 0;
2924
2925         if (val != 1)
2926                 return -EINVAL;
2927
2928         for_each_populated_zone(zone) {
2929                 max_zone_pfn = zone_end_pfn(zone);
2930                 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
2931                         if (!pfn_valid(pfn))
2932                                 continue;
2933
2934                         page = pfn_to_page(pfn);
2935                         if (!get_page_unless_zero(page))
2936                                 continue;
2937
2938                         if (zone != page_zone(page))
2939                                 goto next;
2940
2941                         if (!PageHead(page) || PageHuge(page) || !PageLRU(page))
2942                                 goto next;
2943
2944                         total++;
2945                         lock_page(page);
2946                         if (!split_huge_page(page))
2947                                 split++;
2948                         unlock_page(page);
2949 next:
2950                         put_page(page);
2951                 }
2952         }
2953
2954         pr_info("%lu of %lu THP split\n", split, total);
2955
2956         return 0;
2957 }
2958 DEFINE_DEBUGFS_ATTRIBUTE(split_huge_pages_fops, NULL, split_huge_pages_set,
2959                 "%llu\n");
2960
2961 static int __init split_huge_pages_debugfs(void)
2962 {
2963         debugfs_create_file("split_huge_pages", 0200, NULL, NULL,
2964                             &split_huge_pages_fops);
2965         return 0;
2966 }
2967 late_initcall(split_huge_pages_debugfs);
2968 #endif
2969
2970 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
2971 void set_pmd_migration_entry(struct page_vma_mapped_walk *pvmw,
2972                 struct page *page)
2973 {
2974         struct vm_area_struct *vma = pvmw->vma;
2975         struct mm_struct *mm = vma->vm_mm;
2976         unsigned long address = pvmw->address;
2977         pmd_t pmdval;
2978         swp_entry_t entry;
2979         pmd_t pmdswp;
2980
2981         if (!(pvmw->pmd && !pvmw->pte))
2982                 return;
2983
2984         flush_cache_range(vma, address, address + HPAGE_PMD_SIZE);
2985         pmdval = pmdp_invalidate(vma, address, pvmw->pmd);
2986         if (pmd_dirty(pmdval))
2987                 set_page_dirty(page);
2988         entry = make_migration_entry(page, pmd_write(pmdval));
2989         pmdswp = swp_entry_to_pmd(entry);
2990         if (pmd_soft_dirty(pmdval))
2991                 pmdswp = pmd_swp_mksoft_dirty(pmdswp);
2992         set_pmd_at(mm, address, pvmw->pmd, pmdswp);
2993         page_remove_rmap(page, true);
2994         put_page(page);
2995 }
2996
2997 void remove_migration_pmd(struct page_vma_mapped_walk *pvmw, struct page *new)
2998 {
2999         struct vm_area_struct *vma = pvmw->vma;
3000         struct mm_struct *mm = vma->vm_mm;
3001         unsigned long address = pvmw->address;
3002         unsigned long mmun_start = address & HPAGE_PMD_MASK;
3003         pmd_t pmde;
3004         swp_entry_t entry;
3005
3006         if (!(pvmw->pmd && !pvmw->pte))
3007                 return;
3008
3009         entry = pmd_to_swp_entry(*pvmw->pmd);
3010         get_page(new);
3011         pmde = pmd_mkold(mk_huge_pmd(new, vma->vm_page_prot));
3012         if (pmd_swp_soft_dirty(*pvmw->pmd))
3013                 pmde = pmd_mksoft_dirty(pmde);
3014         if (is_write_migration_entry(entry))
3015                 pmde = maybe_pmd_mkwrite(pmde, vma);
3016
3017         flush_cache_range(vma, mmun_start, mmun_start + HPAGE_PMD_SIZE);
3018         if (PageAnon(new))
3019                 page_add_anon_rmap(new, vma, mmun_start, true);
3020         else
3021                 page_add_file_rmap(new, true);
3022         set_pmd_at(mm, mmun_start, pvmw->pmd, pmde);
3023         if ((vma->vm_flags & VM_LOCKED) && !PageDoubleMap(new))
3024                 mlock_vma_page(new);
3025         update_mmu_cache_pmd(vma, address, pvmw->pmd);
3026 }
3027 #endif