Merge tag 'xfs-4.16-merge-5' of git://git.kernel.org/pub/scm/fs/xfs/xfs-linux
[linux-2.6-microblaze.git] / mm / hmm.c
1 /*
2  * Copyright 2013 Red Hat Inc.
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * Authors: Jérôme Glisse <jglisse@redhat.com>
15  */
16 /*
17  * Refer to include/linux/hmm.h for information about heterogeneous memory
18  * management or HMM for short.
19  */
20 #include <linux/mm.h>
21 #include <linux/hmm.h>
22 #include <linux/init.h>
23 #include <linux/rmap.h>
24 #include <linux/swap.h>
25 #include <linux/slab.h>
26 #include <linux/sched.h>
27 #include <linux/mmzone.h>
28 #include <linux/pagemap.h>
29 #include <linux/swapops.h>
30 #include <linux/hugetlb.h>
31 #include <linux/memremap.h>
32 #include <linux/jump_label.h>
33 #include <linux/mmu_notifier.h>
34 #include <linux/memory_hotplug.h>
35
36 #define PA_SECTION_SIZE (1UL << PA_SECTION_SHIFT)
37
38 #if defined(CONFIG_DEVICE_PRIVATE) || defined(CONFIG_DEVICE_PUBLIC)
39 /*
40  * Device private memory see HMM (Documentation/vm/hmm.txt) or hmm.h
41  */
42 DEFINE_STATIC_KEY_FALSE(device_private_key);
43 EXPORT_SYMBOL(device_private_key);
44 #endif /* CONFIG_DEVICE_PRIVATE || CONFIG_DEVICE_PUBLIC */
45
46
47 #if IS_ENABLED(CONFIG_HMM_MIRROR)
48 static const struct mmu_notifier_ops hmm_mmu_notifier_ops;
49
50 /*
51  * struct hmm - HMM per mm struct
52  *
53  * @mm: mm struct this HMM struct is bound to
54  * @lock: lock protecting ranges list
55  * @sequence: we track updates to the CPU page table with a sequence number
56  * @ranges: list of range being snapshotted
57  * @mirrors: list of mirrors for this mm
58  * @mmu_notifier: mmu notifier to track updates to CPU page table
59  * @mirrors_sem: read/write semaphore protecting the mirrors list
60  */
61 struct hmm {
62         struct mm_struct        *mm;
63         spinlock_t              lock;
64         atomic_t                sequence;
65         struct list_head        ranges;
66         struct list_head        mirrors;
67         struct mmu_notifier     mmu_notifier;
68         struct rw_semaphore     mirrors_sem;
69 };
70
71 /*
72  * hmm_register - register HMM against an mm (HMM internal)
73  *
74  * @mm: mm struct to attach to
75  *
76  * This is not intended to be used directly by device drivers. It allocates an
77  * HMM struct if mm does not have one, and initializes it.
78  */
79 static struct hmm *hmm_register(struct mm_struct *mm)
80 {
81         struct hmm *hmm = READ_ONCE(mm->hmm);
82         bool cleanup = false;
83
84         /*
85          * The hmm struct can only be freed once the mm_struct goes away,
86          * hence we should always have pre-allocated an new hmm struct
87          * above.
88          */
89         if (hmm)
90                 return hmm;
91
92         hmm = kmalloc(sizeof(*hmm), GFP_KERNEL);
93         if (!hmm)
94                 return NULL;
95         INIT_LIST_HEAD(&hmm->mirrors);
96         init_rwsem(&hmm->mirrors_sem);
97         atomic_set(&hmm->sequence, 0);
98         hmm->mmu_notifier.ops = NULL;
99         INIT_LIST_HEAD(&hmm->ranges);
100         spin_lock_init(&hmm->lock);
101         hmm->mm = mm;
102
103         /*
104          * We should only get here if hold the mmap_sem in write mode ie on
105          * registration of first mirror through hmm_mirror_register()
106          */
107         hmm->mmu_notifier.ops = &hmm_mmu_notifier_ops;
108         if (__mmu_notifier_register(&hmm->mmu_notifier, mm)) {
109                 kfree(hmm);
110                 return NULL;
111         }
112
113         spin_lock(&mm->page_table_lock);
114         if (!mm->hmm)
115                 mm->hmm = hmm;
116         else
117                 cleanup = true;
118         spin_unlock(&mm->page_table_lock);
119
120         if (cleanup) {
121                 mmu_notifier_unregister(&hmm->mmu_notifier, mm);
122                 kfree(hmm);
123         }
124
125         return mm->hmm;
126 }
127
128 void hmm_mm_destroy(struct mm_struct *mm)
129 {
130         kfree(mm->hmm);
131 }
132
133 static void hmm_invalidate_range(struct hmm *hmm,
134                                  enum hmm_update_type action,
135                                  unsigned long start,
136                                  unsigned long end)
137 {
138         struct hmm_mirror *mirror;
139         struct hmm_range *range;
140
141         spin_lock(&hmm->lock);
142         list_for_each_entry(range, &hmm->ranges, list) {
143                 unsigned long addr, idx, npages;
144
145                 if (end < range->start || start >= range->end)
146                         continue;
147
148                 range->valid = false;
149                 addr = max(start, range->start);
150                 idx = (addr - range->start) >> PAGE_SHIFT;
151                 npages = (min(range->end, end) - addr) >> PAGE_SHIFT;
152                 memset(&range->pfns[idx], 0, sizeof(*range->pfns) * npages);
153         }
154         spin_unlock(&hmm->lock);
155
156         down_read(&hmm->mirrors_sem);
157         list_for_each_entry(mirror, &hmm->mirrors, list)
158                 mirror->ops->sync_cpu_device_pagetables(mirror, action,
159                                                         start, end);
160         up_read(&hmm->mirrors_sem);
161 }
162
163 static void hmm_invalidate_range_start(struct mmu_notifier *mn,
164                                        struct mm_struct *mm,
165                                        unsigned long start,
166                                        unsigned long end)
167 {
168         struct hmm *hmm = mm->hmm;
169
170         VM_BUG_ON(!hmm);
171
172         atomic_inc(&hmm->sequence);
173 }
174
175 static void hmm_invalidate_range_end(struct mmu_notifier *mn,
176                                      struct mm_struct *mm,
177                                      unsigned long start,
178                                      unsigned long end)
179 {
180         struct hmm *hmm = mm->hmm;
181
182         VM_BUG_ON(!hmm);
183
184         hmm_invalidate_range(mm->hmm, HMM_UPDATE_INVALIDATE, start, end);
185 }
186
187 static const struct mmu_notifier_ops hmm_mmu_notifier_ops = {
188         .invalidate_range_start = hmm_invalidate_range_start,
189         .invalidate_range_end   = hmm_invalidate_range_end,
190 };
191
192 /*
193  * hmm_mirror_register() - register a mirror against an mm
194  *
195  * @mirror: new mirror struct to register
196  * @mm: mm to register against
197  *
198  * To start mirroring a process address space, the device driver must register
199  * an HMM mirror struct.
200  *
201  * THE mm->mmap_sem MUST BE HELD IN WRITE MODE !
202  */
203 int hmm_mirror_register(struct hmm_mirror *mirror, struct mm_struct *mm)
204 {
205         /* Sanity check */
206         if (!mm || !mirror || !mirror->ops)
207                 return -EINVAL;
208
209         mirror->hmm = hmm_register(mm);
210         if (!mirror->hmm)
211                 return -ENOMEM;
212
213         down_write(&mirror->hmm->mirrors_sem);
214         list_add(&mirror->list, &mirror->hmm->mirrors);
215         up_write(&mirror->hmm->mirrors_sem);
216
217         return 0;
218 }
219 EXPORT_SYMBOL(hmm_mirror_register);
220
221 /*
222  * hmm_mirror_unregister() - unregister a mirror
223  *
224  * @mirror: new mirror struct to register
225  *
226  * Stop mirroring a process address space, and cleanup.
227  */
228 void hmm_mirror_unregister(struct hmm_mirror *mirror)
229 {
230         struct hmm *hmm = mirror->hmm;
231
232         down_write(&hmm->mirrors_sem);
233         list_del(&mirror->list);
234         up_write(&hmm->mirrors_sem);
235 }
236 EXPORT_SYMBOL(hmm_mirror_unregister);
237
238 struct hmm_vma_walk {
239         struct hmm_range        *range;
240         unsigned long           last;
241         bool                    fault;
242         bool                    block;
243         bool                    write;
244 };
245
246 static int hmm_vma_do_fault(struct mm_walk *walk,
247                             unsigned long addr,
248                             hmm_pfn_t *pfn)
249 {
250         unsigned int flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_REMOTE;
251         struct hmm_vma_walk *hmm_vma_walk = walk->private;
252         struct vm_area_struct *vma = walk->vma;
253         int r;
254
255         flags |= hmm_vma_walk->block ? 0 : FAULT_FLAG_ALLOW_RETRY;
256         flags |= hmm_vma_walk->write ? FAULT_FLAG_WRITE : 0;
257         r = handle_mm_fault(vma, addr, flags);
258         if (r & VM_FAULT_RETRY)
259                 return -EBUSY;
260         if (r & VM_FAULT_ERROR) {
261                 *pfn = HMM_PFN_ERROR;
262                 return -EFAULT;
263         }
264
265         return -EAGAIN;
266 }
267
268 static void hmm_pfns_special(hmm_pfn_t *pfns,
269                              unsigned long addr,
270                              unsigned long end)
271 {
272         for (; addr < end; addr += PAGE_SIZE, pfns++)
273                 *pfns = HMM_PFN_SPECIAL;
274 }
275
276 static int hmm_pfns_bad(unsigned long addr,
277                         unsigned long end,
278                         struct mm_walk *walk)
279 {
280         struct hmm_range *range = walk->private;
281         hmm_pfn_t *pfns = range->pfns;
282         unsigned long i;
283
284         i = (addr - range->start) >> PAGE_SHIFT;
285         for (; addr < end; addr += PAGE_SIZE, i++)
286                 pfns[i] = HMM_PFN_ERROR;
287
288         return 0;
289 }
290
291 static void hmm_pfns_clear(hmm_pfn_t *pfns,
292                            unsigned long addr,
293                            unsigned long end)
294 {
295         for (; addr < end; addr += PAGE_SIZE, pfns++)
296                 *pfns = 0;
297 }
298
299 static int hmm_vma_walk_hole(unsigned long addr,
300                              unsigned long end,
301                              struct mm_walk *walk)
302 {
303         struct hmm_vma_walk *hmm_vma_walk = walk->private;
304         struct hmm_range *range = hmm_vma_walk->range;
305         hmm_pfn_t *pfns = range->pfns;
306         unsigned long i;
307
308         hmm_vma_walk->last = addr;
309         i = (addr - range->start) >> PAGE_SHIFT;
310         for (; addr < end; addr += PAGE_SIZE, i++) {
311                 pfns[i] = HMM_PFN_EMPTY;
312                 if (hmm_vma_walk->fault) {
313                         int ret;
314
315                         ret = hmm_vma_do_fault(walk, addr, &pfns[i]);
316                         if (ret != -EAGAIN)
317                                 return ret;
318                 }
319         }
320
321         return hmm_vma_walk->fault ? -EAGAIN : 0;
322 }
323
324 static int hmm_vma_walk_clear(unsigned long addr,
325                               unsigned long end,
326                               struct mm_walk *walk)
327 {
328         struct hmm_vma_walk *hmm_vma_walk = walk->private;
329         struct hmm_range *range = hmm_vma_walk->range;
330         hmm_pfn_t *pfns = range->pfns;
331         unsigned long i;
332
333         hmm_vma_walk->last = addr;
334         i = (addr - range->start) >> PAGE_SHIFT;
335         for (; addr < end; addr += PAGE_SIZE, i++) {
336                 pfns[i] = 0;
337                 if (hmm_vma_walk->fault) {
338                         int ret;
339
340                         ret = hmm_vma_do_fault(walk, addr, &pfns[i]);
341                         if (ret != -EAGAIN)
342                                 return ret;
343                 }
344         }
345
346         return hmm_vma_walk->fault ? -EAGAIN : 0;
347 }
348
349 static int hmm_vma_walk_pmd(pmd_t *pmdp,
350                             unsigned long start,
351                             unsigned long end,
352                             struct mm_walk *walk)
353 {
354         struct hmm_vma_walk *hmm_vma_walk = walk->private;
355         struct hmm_range *range = hmm_vma_walk->range;
356         struct vm_area_struct *vma = walk->vma;
357         hmm_pfn_t *pfns = range->pfns;
358         unsigned long addr = start, i;
359         bool write_fault;
360         hmm_pfn_t flag;
361         pte_t *ptep;
362
363         i = (addr - range->start) >> PAGE_SHIFT;
364         flag = vma->vm_flags & VM_READ ? HMM_PFN_READ : 0;
365         write_fault = hmm_vma_walk->fault & hmm_vma_walk->write;
366
367 again:
368         if (pmd_none(*pmdp))
369                 return hmm_vma_walk_hole(start, end, walk);
370
371         if (pmd_huge(*pmdp) && vma->vm_flags & VM_HUGETLB)
372                 return hmm_pfns_bad(start, end, walk);
373
374         if (pmd_devmap(*pmdp) || pmd_trans_huge(*pmdp)) {
375                 unsigned long pfn;
376                 pmd_t pmd;
377
378                 /*
379                  * No need to take pmd_lock here, even if some other threads
380                  * is splitting the huge pmd we will get that event through
381                  * mmu_notifier callback.
382                  *
383                  * So just read pmd value and check again its a transparent
384                  * huge or device mapping one and compute corresponding pfn
385                  * values.
386                  */
387                 pmd = pmd_read_atomic(pmdp);
388                 barrier();
389                 if (!pmd_devmap(pmd) && !pmd_trans_huge(pmd))
390                         goto again;
391                 if (pmd_protnone(pmd))
392                         return hmm_vma_walk_clear(start, end, walk);
393
394                 if (write_fault && !pmd_write(pmd))
395                         return hmm_vma_walk_clear(start, end, walk);
396
397                 pfn = pmd_pfn(pmd) + pte_index(addr);
398                 flag |= pmd_write(pmd) ? HMM_PFN_WRITE : 0;
399                 for (; addr < end; addr += PAGE_SIZE, i++, pfn++)
400                         pfns[i] = hmm_pfn_t_from_pfn(pfn) | flag;
401                 return 0;
402         }
403
404         if (pmd_bad(*pmdp))
405                 return hmm_pfns_bad(start, end, walk);
406
407         ptep = pte_offset_map(pmdp, addr);
408         for (; addr < end; addr += PAGE_SIZE, ptep++, i++) {
409                 pte_t pte = *ptep;
410
411                 pfns[i] = 0;
412
413                 if (pte_none(pte)) {
414                         pfns[i] = HMM_PFN_EMPTY;
415                         if (hmm_vma_walk->fault)
416                                 goto fault;
417                         continue;
418                 }
419
420                 if (!pte_present(pte)) {
421                         swp_entry_t entry = pte_to_swp_entry(pte);
422
423                         if (!non_swap_entry(entry)) {
424                                 if (hmm_vma_walk->fault)
425                                         goto fault;
426                                 continue;
427                         }
428
429                         /*
430                          * This is a special swap entry, ignore migration, use
431                          * device and report anything else as error.
432                          */
433                         if (is_device_private_entry(entry)) {
434                                 pfns[i] = hmm_pfn_t_from_pfn(swp_offset(entry));
435                                 if (is_write_device_private_entry(entry)) {
436                                         pfns[i] |= HMM_PFN_WRITE;
437                                 } else if (write_fault)
438                                         goto fault;
439                                 pfns[i] |= HMM_PFN_DEVICE_UNADDRESSABLE;
440                                 pfns[i] |= flag;
441                         } else if (is_migration_entry(entry)) {
442                                 if (hmm_vma_walk->fault) {
443                                         pte_unmap(ptep);
444                                         hmm_vma_walk->last = addr;
445                                         migration_entry_wait(vma->vm_mm,
446                                                              pmdp, addr);
447                                         return -EAGAIN;
448                                 }
449                                 continue;
450                         } else {
451                                 /* Report error for everything else */
452                                 pfns[i] = HMM_PFN_ERROR;
453                         }
454                         continue;
455                 }
456
457                 if (write_fault && !pte_write(pte))
458                         goto fault;
459
460                 pfns[i] = hmm_pfn_t_from_pfn(pte_pfn(pte)) | flag;
461                 pfns[i] |= pte_write(pte) ? HMM_PFN_WRITE : 0;
462                 continue;
463
464 fault:
465                 pte_unmap(ptep);
466                 /* Fault all pages in range */
467                 return hmm_vma_walk_clear(start, end, walk);
468         }
469         pte_unmap(ptep - 1);
470
471         return 0;
472 }
473
474 /*
475  * hmm_vma_get_pfns() - snapshot CPU page table for a range of virtual addresses
476  * @vma: virtual memory area containing the virtual address range
477  * @range: used to track snapshot validity
478  * @start: range virtual start address (inclusive)
479  * @end: range virtual end address (exclusive)
480  * @entries: array of hmm_pfn_t: provided by the caller, filled in by function
481  * Returns: -EINVAL if invalid argument, -ENOMEM out of memory, 0 success
482  *
483  * This snapshots the CPU page table for a range of virtual addresses. Snapshot
484  * validity is tracked by range struct. See hmm_vma_range_done() for further
485  * information.
486  *
487  * The range struct is initialized here. It tracks the CPU page table, but only
488  * if the function returns success (0), in which case the caller must then call
489  * hmm_vma_range_done() to stop CPU page table update tracking on this range.
490  *
491  * NOT CALLING hmm_vma_range_done() IF FUNCTION RETURNS 0 WILL LEAD TO SERIOUS
492  * MEMORY CORRUPTION ! YOU HAVE BEEN WARNED !
493  */
494 int hmm_vma_get_pfns(struct vm_area_struct *vma,
495                      struct hmm_range *range,
496                      unsigned long start,
497                      unsigned long end,
498                      hmm_pfn_t *pfns)
499 {
500         struct hmm_vma_walk hmm_vma_walk;
501         struct mm_walk mm_walk;
502         struct hmm *hmm;
503
504         /* FIXME support hugetlb fs */
505         if (is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_SPECIAL)) {
506                 hmm_pfns_special(pfns, start, end);
507                 return -EINVAL;
508         }
509
510         /* Sanity check, this really should not happen ! */
511         if (start < vma->vm_start || start >= vma->vm_end)
512                 return -EINVAL;
513         if (end < vma->vm_start || end > vma->vm_end)
514                 return -EINVAL;
515
516         hmm = hmm_register(vma->vm_mm);
517         if (!hmm)
518                 return -ENOMEM;
519         /* Caller must have registered a mirror, via hmm_mirror_register() ! */
520         if (!hmm->mmu_notifier.ops)
521                 return -EINVAL;
522
523         /* Initialize range to track CPU page table update */
524         range->start = start;
525         range->pfns = pfns;
526         range->end = end;
527         spin_lock(&hmm->lock);
528         range->valid = true;
529         list_add_rcu(&range->list, &hmm->ranges);
530         spin_unlock(&hmm->lock);
531
532         hmm_vma_walk.fault = false;
533         hmm_vma_walk.range = range;
534         mm_walk.private = &hmm_vma_walk;
535
536         mm_walk.vma = vma;
537         mm_walk.mm = vma->vm_mm;
538         mm_walk.pte_entry = NULL;
539         mm_walk.test_walk = NULL;
540         mm_walk.hugetlb_entry = NULL;
541         mm_walk.pmd_entry = hmm_vma_walk_pmd;
542         mm_walk.pte_hole = hmm_vma_walk_hole;
543
544         walk_page_range(start, end, &mm_walk);
545         return 0;
546 }
547 EXPORT_SYMBOL(hmm_vma_get_pfns);
548
549 /*
550  * hmm_vma_range_done() - stop tracking change to CPU page table over a range
551  * @vma: virtual memory area containing the virtual address range
552  * @range: range being tracked
553  * Returns: false if range data has been invalidated, true otherwise
554  *
555  * Range struct is used to track updates to the CPU page table after a call to
556  * either hmm_vma_get_pfns() or hmm_vma_fault(). Once the device driver is done
557  * using the data,  or wants to lock updates to the data it got from those
558  * functions, it must call the hmm_vma_range_done() function, which will then
559  * stop tracking CPU page table updates.
560  *
561  * Note that device driver must still implement general CPU page table update
562  * tracking either by using hmm_mirror (see hmm_mirror_register()) or by using
563  * the mmu_notifier API directly.
564  *
565  * CPU page table update tracking done through hmm_range is only temporary and
566  * to be used while trying to duplicate CPU page table contents for a range of
567  * virtual addresses.
568  *
569  * There are two ways to use this :
570  * again:
571  *   hmm_vma_get_pfns(vma, range, start, end, pfns); or hmm_vma_fault(...);
572  *   trans = device_build_page_table_update_transaction(pfns);
573  *   device_page_table_lock();
574  *   if (!hmm_vma_range_done(vma, range)) {
575  *     device_page_table_unlock();
576  *     goto again;
577  *   }
578  *   device_commit_transaction(trans);
579  *   device_page_table_unlock();
580  *
581  * Or:
582  *   hmm_vma_get_pfns(vma, range, start, end, pfns); or hmm_vma_fault(...);
583  *   device_page_table_lock();
584  *   hmm_vma_range_done(vma, range);
585  *   device_update_page_table(pfns);
586  *   device_page_table_unlock();
587  */
588 bool hmm_vma_range_done(struct vm_area_struct *vma, struct hmm_range *range)
589 {
590         unsigned long npages = (range->end - range->start) >> PAGE_SHIFT;
591         struct hmm *hmm;
592
593         if (range->end <= range->start) {
594                 BUG();
595                 return false;
596         }
597
598         hmm = hmm_register(vma->vm_mm);
599         if (!hmm) {
600                 memset(range->pfns, 0, sizeof(*range->pfns) * npages);
601                 return false;
602         }
603
604         spin_lock(&hmm->lock);
605         list_del_rcu(&range->list);
606         spin_unlock(&hmm->lock);
607
608         return range->valid;
609 }
610 EXPORT_SYMBOL(hmm_vma_range_done);
611
612 /*
613  * hmm_vma_fault() - try to fault some address in a virtual address range
614  * @vma: virtual memory area containing the virtual address range
615  * @range: use to track pfns array content validity
616  * @start: fault range virtual start address (inclusive)
617  * @end: fault range virtual end address (exclusive)
618  * @pfns: array of hmm_pfn_t, only entry with fault flag set will be faulted
619  * @write: is it a write fault
620  * @block: allow blocking on fault (if true it sleeps and do not drop mmap_sem)
621  * Returns: 0 success, error otherwise (-EAGAIN means mmap_sem have been drop)
622  *
623  * This is similar to a regular CPU page fault except that it will not trigger
624  * any memory migration if the memory being faulted is not accessible by CPUs.
625  *
626  * On error, for one virtual address in the range, the function will set the
627  * hmm_pfn_t error flag for the corresponding pfn entry.
628  *
629  * Expected use pattern:
630  * retry:
631  *   down_read(&mm->mmap_sem);
632  *   // Find vma and address device wants to fault, initialize hmm_pfn_t
633  *   // array accordingly
634  *   ret = hmm_vma_fault(vma, start, end, pfns, allow_retry);
635  *   switch (ret) {
636  *   case -EAGAIN:
637  *     hmm_vma_range_done(vma, range);
638  *     // You might want to rate limit or yield to play nicely, you may
639  *     // also commit any valid pfn in the array assuming that you are
640  *     // getting true from hmm_vma_range_monitor_end()
641  *     goto retry;
642  *   case 0:
643  *     break;
644  *   default:
645  *     // Handle error !
646  *     up_read(&mm->mmap_sem)
647  *     return;
648  *   }
649  *   // Take device driver lock that serialize device page table update
650  *   driver_lock_device_page_table_update();
651  *   hmm_vma_range_done(vma, range);
652  *   // Commit pfns we got from hmm_vma_fault()
653  *   driver_unlock_device_page_table_update();
654  *   up_read(&mm->mmap_sem)
655  *
656  * YOU MUST CALL hmm_vma_range_done() AFTER THIS FUNCTION RETURN SUCCESS (0)
657  * BEFORE FREEING THE range struct OR YOU WILL HAVE SERIOUS MEMORY CORRUPTION !
658  *
659  * YOU HAVE BEEN WARNED !
660  */
661 int hmm_vma_fault(struct vm_area_struct *vma,
662                   struct hmm_range *range,
663                   unsigned long start,
664                   unsigned long end,
665                   hmm_pfn_t *pfns,
666                   bool write,
667                   bool block)
668 {
669         struct hmm_vma_walk hmm_vma_walk;
670         struct mm_walk mm_walk;
671         struct hmm *hmm;
672         int ret;
673
674         /* Sanity check, this really should not happen ! */
675         if (start < vma->vm_start || start >= vma->vm_end)
676                 return -EINVAL;
677         if (end < vma->vm_start || end > vma->vm_end)
678                 return -EINVAL;
679
680         hmm = hmm_register(vma->vm_mm);
681         if (!hmm) {
682                 hmm_pfns_clear(pfns, start, end);
683                 return -ENOMEM;
684         }
685         /* Caller must have registered a mirror using hmm_mirror_register() */
686         if (!hmm->mmu_notifier.ops)
687                 return -EINVAL;
688
689         /* Initialize range to track CPU page table update */
690         range->start = start;
691         range->pfns = pfns;
692         range->end = end;
693         spin_lock(&hmm->lock);
694         range->valid = true;
695         list_add_rcu(&range->list, &hmm->ranges);
696         spin_unlock(&hmm->lock);
697
698         /* FIXME support hugetlb fs */
699         if (is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_SPECIAL)) {
700                 hmm_pfns_special(pfns, start, end);
701                 return 0;
702         }
703
704         hmm_vma_walk.fault = true;
705         hmm_vma_walk.write = write;
706         hmm_vma_walk.block = block;
707         hmm_vma_walk.range = range;
708         mm_walk.private = &hmm_vma_walk;
709         hmm_vma_walk.last = range->start;
710
711         mm_walk.vma = vma;
712         mm_walk.mm = vma->vm_mm;
713         mm_walk.pte_entry = NULL;
714         mm_walk.test_walk = NULL;
715         mm_walk.hugetlb_entry = NULL;
716         mm_walk.pmd_entry = hmm_vma_walk_pmd;
717         mm_walk.pte_hole = hmm_vma_walk_hole;
718
719         do {
720                 ret = walk_page_range(start, end, &mm_walk);
721                 start = hmm_vma_walk.last;
722         } while (ret == -EAGAIN);
723
724         if (ret) {
725                 unsigned long i;
726
727                 i = (hmm_vma_walk.last - range->start) >> PAGE_SHIFT;
728                 hmm_pfns_clear(&pfns[i], hmm_vma_walk.last, end);
729                 hmm_vma_range_done(vma, range);
730         }
731         return ret;
732 }
733 EXPORT_SYMBOL(hmm_vma_fault);
734 #endif /* IS_ENABLED(CONFIG_HMM_MIRROR) */
735
736
737 #if IS_ENABLED(CONFIG_DEVICE_PRIVATE) ||  IS_ENABLED(CONFIG_DEVICE_PUBLIC)
738 struct page *hmm_vma_alloc_locked_page(struct vm_area_struct *vma,
739                                        unsigned long addr)
740 {
741         struct page *page;
742
743         page = alloc_page_vma(GFP_HIGHUSER, vma, addr);
744         if (!page)
745                 return NULL;
746         lock_page(page);
747         return page;
748 }
749 EXPORT_SYMBOL(hmm_vma_alloc_locked_page);
750
751
752 static void hmm_devmem_ref_release(struct percpu_ref *ref)
753 {
754         struct hmm_devmem *devmem;
755
756         devmem = container_of(ref, struct hmm_devmem, ref);
757         complete(&devmem->completion);
758 }
759
760 static void hmm_devmem_ref_exit(void *data)
761 {
762         struct percpu_ref *ref = data;
763         struct hmm_devmem *devmem;
764
765         devmem = container_of(ref, struct hmm_devmem, ref);
766         percpu_ref_exit(ref);
767         devm_remove_action(devmem->device, &hmm_devmem_ref_exit, data);
768 }
769
770 static void hmm_devmem_ref_kill(void *data)
771 {
772         struct percpu_ref *ref = data;
773         struct hmm_devmem *devmem;
774
775         devmem = container_of(ref, struct hmm_devmem, ref);
776         percpu_ref_kill(ref);
777         wait_for_completion(&devmem->completion);
778         devm_remove_action(devmem->device, &hmm_devmem_ref_kill, data);
779 }
780
781 static int hmm_devmem_fault(struct vm_area_struct *vma,
782                             unsigned long addr,
783                             const struct page *page,
784                             unsigned int flags,
785                             pmd_t *pmdp)
786 {
787         struct hmm_devmem *devmem = page->pgmap->data;
788
789         return devmem->ops->fault(devmem, vma, addr, page, flags, pmdp);
790 }
791
792 static void hmm_devmem_free(struct page *page, void *data)
793 {
794         struct hmm_devmem *devmem = data;
795
796         devmem->ops->free(devmem, page);
797 }
798
799 static DEFINE_MUTEX(hmm_devmem_lock);
800 static RADIX_TREE(hmm_devmem_radix, GFP_KERNEL);
801
802 static void hmm_devmem_radix_release(struct resource *resource)
803 {
804         resource_size_t key, align_start, align_size;
805
806         align_start = resource->start & ~(PA_SECTION_SIZE - 1);
807         align_size = ALIGN(resource_size(resource), PA_SECTION_SIZE);
808
809         mutex_lock(&hmm_devmem_lock);
810         for (key = resource->start;
811              key <= resource->end;
812              key += PA_SECTION_SIZE)
813                 radix_tree_delete(&hmm_devmem_radix, key >> PA_SECTION_SHIFT);
814         mutex_unlock(&hmm_devmem_lock);
815 }
816
817 static void hmm_devmem_release(struct device *dev, void *data)
818 {
819         struct hmm_devmem *devmem = data;
820         struct resource *resource = devmem->resource;
821         unsigned long start_pfn, npages;
822         struct zone *zone;
823         struct page *page;
824
825         if (percpu_ref_tryget_live(&devmem->ref)) {
826                 dev_WARN(dev, "%s: page mapping is still live!\n", __func__);
827                 percpu_ref_put(&devmem->ref);
828         }
829
830         /* pages are dead and unused, undo the arch mapping */
831         start_pfn = (resource->start & ~(PA_SECTION_SIZE - 1)) >> PAGE_SHIFT;
832         npages = ALIGN(resource_size(resource), PA_SECTION_SIZE) >> PAGE_SHIFT;
833
834         page = pfn_to_page(start_pfn);
835         zone = page_zone(page);
836
837         mem_hotplug_begin();
838         if (resource->desc == IORES_DESC_DEVICE_PRIVATE_MEMORY)
839                 __remove_pages(zone, start_pfn, npages);
840         else
841                 arch_remove_memory(start_pfn << PAGE_SHIFT,
842                                    npages << PAGE_SHIFT);
843         mem_hotplug_done();
844
845         hmm_devmem_radix_release(resource);
846 }
847
848 static struct hmm_devmem *hmm_devmem_find(resource_size_t phys)
849 {
850         WARN_ON_ONCE(!rcu_read_lock_held());
851
852         return radix_tree_lookup(&hmm_devmem_radix, phys >> PA_SECTION_SHIFT);
853 }
854
855 static int hmm_devmem_pages_create(struct hmm_devmem *devmem)
856 {
857         resource_size_t key, align_start, align_size, align_end;
858         struct device *device = devmem->device;
859         int ret, nid, is_ram;
860         unsigned long pfn;
861
862         align_start = devmem->resource->start & ~(PA_SECTION_SIZE - 1);
863         align_size = ALIGN(devmem->resource->start +
864                            resource_size(devmem->resource),
865                            PA_SECTION_SIZE) - align_start;
866
867         is_ram = region_intersects(align_start, align_size,
868                                    IORESOURCE_SYSTEM_RAM,
869                                    IORES_DESC_NONE);
870         if (is_ram == REGION_MIXED) {
871                 WARN_ONCE(1, "%s attempted on mixed region %pr\n",
872                                 __func__, devmem->resource);
873                 return -ENXIO;
874         }
875         if (is_ram == REGION_INTERSECTS)
876                 return -ENXIO;
877
878         if (devmem->resource->desc == IORES_DESC_DEVICE_PUBLIC_MEMORY)
879                 devmem->pagemap.type = MEMORY_DEVICE_PUBLIC;
880         else
881                 devmem->pagemap.type = MEMORY_DEVICE_PRIVATE;
882
883         devmem->pagemap.res = devmem->resource;
884         devmem->pagemap.page_fault = hmm_devmem_fault;
885         devmem->pagemap.page_free = hmm_devmem_free;
886         devmem->pagemap.dev = devmem->device;
887         devmem->pagemap.ref = &devmem->ref;
888         devmem->pagemap.data = devmem;
889
890         mutex_lock(&hmm_devmem_lock);
891         align_end = align_start + align_size - 1;
892         for (key = align_start; key <= align_end; key += PA_SECTION_SIZE) {
893                 struct hmm_devmem *dup;
894
895                 rcu_read_lock();
896                 dup = hmm_devmem_find(key);
897                 rcu_read_unlock();
898                 if (dup) {
899                         dev_err(device, "%s: collides with mapping for %s\n",
900                                 __func__, dev_name(dup->device));
901                         mutex_unlock(&hmm_devmem_lock);
902                         ret = -EBUSY;
903                         goto error;
904                 }
905                 ret = radix_tree_insert(&hmm_devmem_radix,
906                                         key >> PA_SECTION_SHIFT,
907                                         devmem);
908                 if (ret) {
909                         dev_err(device, "%s: failed: %d\n", __func__, ret);
910                         mutex_unlock(&hmm_devmem_lock);
911                         goto error_radix;
912                 }
913         }
914         mutex_unlock(&hmm_devmem_lock);
915
916         nid = dev_to_node(device);
917         if (nid < 0)
918                 nid = numa_mem_id();
919
920         mem_hotplug_begin();
921         /*
922          * For device private memory we call add_pages() as we only need to
923          * allocate and initialize struct page for the device memory. More-
924          * over the device memory is un-accessible thus we do not want to
925          * create a linear mapping for the memory like arch_add_memory()
926          * would do.
927          *
928          * For device public memory, which is accesible by the CPU, we do
929          * want the linear mapping and thus use arch_add_memory().
930          */
931         if (devmem->pagemap.type == MEMORY_DEVICE_PUBLIC)
932                 ret = arch_add_memory(nid, align_start, align_size, false);
933         else
934                 ret = add_pages(nid, align_start >> PAGE_SHIFT,
935                                 align_size >> PAGE_SHIFT, false);
936         if (ret) {
937                 mem_hotplug_done();
938                 goto error_add_memory;
939         }
940         move_pfn_range_to_zone(&NODE_DATA(nid)->node_zones[ZONE_DEVICE],
941                                 align_start >> PAGE_SHIFT,
942                                 align_size >> PAGE_SHIFT);
943         mem_hotplug_done();
944
945         for (pfn = devmem->pfn_first; pfn < devmem->pfn_last; pfn++) {
946                 struct page *page = pfn_to_page(pfn);
947
948                 page->pgmap = &devmem->pagemap;
949         }
950         return 0;
951
952 error_add_memory:
953         untrack_pfn(NULL, PHYS_PFN(align_start), align_size);
954 error_radix:
955         hmm_devmem_radix_release(devmem->resource);
956 error:
957         return ret;
958 }
959
960 static int hmm_devmem_match(struct device *dev, void *data, void *match_data)
961 {
962         struct hmm_devmem *devmem = data;
963
964         return devmem->resource == match_data;
965 }
966
967 static void hmm_devmem_pages_remove(struct hmm_devmem *devmem)
968 {
969         devres_release(devmem->device, &hmm_devmem_release,
970                        &hmm_devmem_match, devmem->resource);
971 }
972
973 /*
974  * hmm_devmem_add() - hotplug ZONE_DEVICE memory for device memory
975  *
976  * @ops: memory event device driver callback (see struct hmm_devmem_ops)
977  * @device: device struct to bind the resource too
978  * @size: size in bytes of the device memory to add
979  * Returns: pointer to new hmm_devmem struct ERR_PTR otherwise
980  *
981  * This function first finds an empty range of physical address big enough to
982  * contain the new resource, and then hotplugs it as ZONE_DEVICE memory, which
983  * in turn allocates struct pages. It does not do anything beyond that; all
984  * events affecting the memory will go through the various callbacks provided
985  * by hmm_devmem_ops struct.
986  *
987  * Device driver should call this function during device initialization and
988  * is then responsible of memory management. HMM only provides helpers.
989  */
990 struct hmm_devmem *hmm_devmem_add(const struct hmm_devmem_ops *ops,
991                                   struct device *device,
992                                   unsigned long size)
993 {
994         struct hmm_devmem *devmem;
995         resource_size_t addr;
996         int ret;
997
998         static_branch_enable(&device_private_key);
999
1000         devmem = devres_alloc_node(&hmm_devmem_release, sizeof(*devmem),
1001                                    GFP_KERNEL, dev_to_node(device));
1002         if (!devmem)
1003                 return ERR_PTR(-ENOMEM);
1004
1005         init_completion(&devmem->completion);
1006         devmem->pfn_first = -1UL;
1007         devmem->pfn_last = -1UL;
1008         devmem->resource = NULL;
1009         devmem->device = device;
1010         devmem->ops = ops;
1011
1012         ret = percpu_ref_init(&devmem->ref, &hmm_devmem_ref_release,
1013                               0, GFP_KERNEL);
1014         if (ret)
1015                 goto error_percpu_ref;
1016
1017         ret = devm_add_action(device, hmm_devmem_ref_exit, &devmem->ref);
1018         if (ret)
1019                 goto error_devm_add_action;
1020
1021         size = ALIGN(size, PA_SECTION_SIZE);
1022         addr = min((unsigned long)iomem_resource.end,
1023                    (1UL << MAX_PHYSMEM_BITS) - 1);
1024         addr = addr - size + 1UL;
1025
1026         /*
1027          * FIXME add a new helper to quickly walk resource tree and find free
1028          * range
1029          *
1030          * FIXME what about ioport_resource resource ?
1031          */
1032         for (; addr > size && addr >= iomem_resource.start; addr -= size) {
1033                 ret = region_intersects(addr, size, 0, IORES_DESC_NONE);
1034                 if (ret != REGION_DISJOINT)
1035                         continue;
1036
1037                 devmem->resource = devm_request_mem_region(device, addr, size,
1038                                                            dev_name(device));
1039                 if (!devmem->resource) {
1040                         ret = -ENOMEM;
1041                         goto error_no_resource;
1042                 }
1043                 break;
1044         }
1045         if (!devmem->resource) {
1046                 ret = -ERANGE;
1047                 goto error_no_resource;
1048         }
1049
1050         devmem->resource->desc = IORES_DESC_DEVICE_PRIVATE_MEMORY;
1051         devmem->pfn_first = devmem->resource->start >> PAGE_SHIFT;
1052         devmem->pfn_last = devmem->pfn_first +
1053                            (resource_size(devmem->resource) >> PAGE_SHIFT);
1054
1055         ret = hmm_devmem_pages_create(devmem);
1056         if (ret)
1057                 goto error_pages;
1058
1059         devres_add(device, devmem);
1060
1061         ret = devm_add_action(device, hmm_devmem_ref_kill, &devmem->ref);
1062         if (ret) {
1063                 hmm_devmem_remove(devmem);
1064                 return ERR_PTR(ret);
1065         }
1066
1067         return devmem;
1068
1069 error_pages:
1070         devm_release_mem_region(device, devmem->resource->start,
1071                                 resource_size(devmem->resource));
1072 error_no_resource:
1073 error_devm_add_action:
1074         hmm_devmem_ref_kill(&devmem->ref);
1075         hmm_devmem_ref_exit(&devmem->ref);
1076 error_percpu_ref:
1077         devres_free(devmem);
1078         return ERR_PTR(ret);
1079 }
1080 EXPORT_SYMBOL(hmm_devmem_add);
1081
1082 struct hmm_devmem *hmm_devmem_add_resource(const struct hmm_devmem_ops *ops,
1083                                            struct device *device,
1084                                            struct resource *res)
1085 {
1086         struct hmm_devmem *devmem;
1087         int ret;
1088
1089         if (res->desc != IORES_DESC_DEVICE_PUBLIC_MEMORY)
1090                 return ERR_PTR(-EINVAL);
1091
1092         static_branch_enable(&device_private_key);
1093
1094         devmem = devres_alloc_node(&hmm_devmem_release, sizeof(*devmem),
1095                                    GFP_KERNEL, dev_to_node(device));
1096         if (!devmem)
1097                 return ERR_PTR(-ENOMEM);
1098
1099         init_completion(&devmem->completion);
1100         devmem->pfn_first = -1UL;
1101         devmem->pfn_last = -1UL;
1102         devmem->resource = res;
1103         devmem->device = device;
1104         devmem->ops = ops;
1105
1106         ret = percpu_ref_init(&devmem->ref, &hmm_devmem_ref_release,
1107                               0, GFP_KERNEL);
1108         if (ret)
1109                 goto error_percpu_ref;
1110
1111         ret = devm_add_action(device, hmm_devmem_ref_exit, &devmem->ref);
1112         if (ret)
1113                 goto error_devm_add_action;
1114
1115
1116         devmem->pfn_first = devmem->resource->start >> PAGE_SHIFT;
1117         devmem->pfn_last = devmem->pfn_first +
1118                            (resource_size(devmem->resource) >> PAGE_SHIFT);
1119
1120         ret = hmm_devmem_pages_create(devmem);
1121         if (ret)
1122                 goto error_devm_add_action;
1123
1124         devres_add(device, devmem);
1125
1126         ret = devm_add_action(device, hmm_devmem_ref_kill, &devmem->ref);
1127         if (ret) {
1128                 hmm_devmem_remove(devmem);
1129                 return ERR_PTR(ret);
1130         }
1131
1132         return devmem;
1133
1134 error_devm_add_action:
1135         hmm_devmem_ref_kill(&devmem->ref);
1136         hmm_devmem_ref_exit(&devmem->ref);
1137 error_percpu_ref:
1138         devres_free(devmem);
1139         return ERR_PTR(ret);
1140 }
1141 EXPORT_SYMBOL(hmm_devmem_add_resource);
1142
1143 /*
1144  * hmm_devmem_remove() - remove device memory (kill and free ZONE_DEVICE)
1145  *
1146  * @devmem: hmm_devmem struct use to track and manage the ZONE_DEVICE memory
1147  *
1148  * This will hot-unplug memory that was hotplugged by hmm_devmem_add on behalf
1149  * of the device driver. It will free struct page and remove the resource that
1150  * reserved the physical address range for this device memory.
1151  */
1152 void hmm_devmem_remove(struct hmm_devmem *devmem)
1153 {
1154         resource_size_t start, size;
1155         struct device *device;
1156         bool cdm = false;
1157
1158         if (!devmem)
1159                 return;
1160
1161         device = devmem->device;
1162         start = devmem->resource->start;
1163         size = resource_size(devmem->resource);
1164
1165         cdm = devmem->resource->desc == IORES_DESC_DEVICE_PUBLIC_MEMORY;
1166         hmm_devmem_ref_kill(&devmem->ref);
1167         hmm_devmem_ref_exit(&devmem->ref);
1168         hmm_devmem_pages_remove(devmem);
1169
1170         if (!cdm)
1171                 devm_release_mem_region(device, start, size);
1172 }
1173 EXPORT_SYMBOL(hmm_devmem_remove);
1174
1175 /*
1176  * A device driver that wants to handle multiple devices memory through a
1177  * single fake device can use hmm_device to do so. This is purely a helper
1178  * and it is not needed to make use of any HMM functionality.
1179  */
1180 #define HMM_DEVICE_MAX 256
1181
1182 static DECLARE_BITMAP(hmm_device_mask, HMM_DEVICE_MAX);
1183 static DEFINE_SPINLOCK(hmm_device_lock);
1184 static struct class *hmm_device_class;
1185 static dev_t hmm_device_devt;
1186
1187 static void hmm_device_release(struct device *device)
1188 {
1189         struct hmm_device *hmm_device;
1190
1191         hmm_device = container_of(device, struct hmm_device, device);
1192         spin_lock(&hmm_device_lock);
1193         clear_bit(hmm_device->minor, hmm_device_mask);
1194         spin_unlock(&hmm_device_lock);
1195
1196         kfree(hmm_device);
1197 }
1198
1199 struct hmm_device *hmm_device_new(void *drvdata)
1200 {
1201         struct hmm_device *hmm_device;
1202
1203         hmm_device = kzalloc(sizeof(*hmm_device), GFP_KERNEL);
1204         if (!hmm_device)
1205                 return ERR_PTR(-ENOMEM);
1206
1207         spin_lock(&hmm_device_lock);
1208         hmm_device->minor = find_first_zero_bit(hmm_device_mask, HMM_DEVICE_MAX);
1209         if (hmm_device->minor >= HMM_DEVICE_MAX) {
1210                 spin_unlock(&hmm_device_lock);
1211                 kfree(hmm_device);
1212                 return ERR_PTR(-EBUSY);
1213         }
1214         set_bit(hmm_device->minor, hmm_device_mask);
1215         spin_unlock(&hmm_device_lock);
1216
1217         dev_set_name(&hmm_device->device, "hmm_device%d", hmm_device->minor);
1218         hmm_device->device.devt = MKDEV(MAJOR(hmm_device_devt),
1219                                         hmm_device->minor);
1220         hmm_device->device.release = hmm_device_release;
1221         dev_set_drvdata(&hmm_device->device, drvdata);
1222         hmm_device->device.class = hmm_device_class;
1223         device_initialize(&hmm_device->device);
1224
1225         return hmm_device;
1226 }
1227 EXPORT_SYMBOL(hmm_device_new);
1228
1229 void hmm_device_put(struct hmm_device *hmm_device)
1230 {
1231         put_device(&hmm_device->device);
1232 }
1233 EXPORT_SYMBOL(hmm_device_put);
1234
1235 static int __init hmm_init(void)
1236 {
1237         int ret;
1238
1239         ret = alloc_chrdev_region(&hmm_device_devt, 0,
1240                                   HMM_DEVICE_MAX,
1241                                   "hmm_device");
1242         if (ret)
1243                 return ret;
1244
1245         hmm_device_class = class_create(THIS_MODULE, "hmm_device");
1246         if (IS_ERR(hmm_device_class)) {
1247                 unregister_chrdev_region(hmm_device_devt, HMM_DEVICE_MAX);
1248                 return PTR_ERR(hmm_device_class);
1249         }
1250         return 0;
1251 }
1252
1253 device_initcall(hmm_init);
1254 #endif /* CONFIG_DEVICE_PRIVATE || CONFIG_DEVICE_PUBLIC */