Merge tag 'for-linus-5.9-1' of git://github.com/cminyard/linux-ipmi
[linux-2.6-microblaze.git] / mm / hmm.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Copyright 2013 Red Hat Inc.
4  *
5  * Authors: Jérôme Glisse <jglisse@redhat.com>
6  */
7 /*
8  * Refer to include/linux/hmm.h for information about heterogeneous memory
9  * management or HMM for short.
10  */
11 #include <linux/pagewalk.h>
12 #include <linux/hmm.h>
13 #include <linux/init.h>
14 #include <linux/rmap.h>
15 #include <linux/swap.h>
16 #include <linux/slab.h>
17 #include <linux/sched.h>
18 #include <linux/mmzone.h>
19 #include <linux/pagemap.h>
20 #include <linux/swapops.h>
21 #include <linux/hugetlb.h>
22 #include <linux/memremap.h>
23 #include <linux/sched/mm.h>
24 #include <linux/jump_label.h>
25 #include <linux/dma-mapping.h>
26 #include <linux/mmu_notifier.h>
27 #include <linux/memory_hotplug.h>
28
29 struct hmm_vma_walk {
30         struct hmm_range        *range;
31         unsigned long           last;
32 };
33
34 enum {
35         HMM_NEED_FAULT = 1 << 0,
36         HMM_NEED_WRITE_FAULT = 1 << 1,
37         HMM_NEED_ALL_BITS = HMM_NEED_FAULT | HMM_NEED_WRITE_FAULT,
38 };
39
40 static int hmm_pfns_fill(unsigned long addr, unsigned long end,
41                          struct hmm_range *range, unsigned long cpu_flags)
42 {
43         unsigned long i = (addr - range->start) >> PAGE_SHIFT;
44
45         for (; addr < end; addr += PAGE_SIZE, i++)
46                 range->hmm_pfns[i] = cpu_flags;
47         return 0;
48 }
49
50 /*
51  * hmm_vma_fault() - fault in a range lacking valid pmd or pte(s)
52  * @addr: range virtual start address (inclusive)
53  * @end: range virtual end address (exclusive)
54  * @required_fault: HMM_NEED_* flags
55  * @walk: mm_walk structure
56  * Return: -EBUSY after page fault, or page fault error
57  *
58  * This function will be called whenever pmd_none() or pte_none() returns true,
59  * or whenever there is no page directory covering the virtual address range.
60  */
61 static int hmm_vma_fault(unsigned long addr, unsigned long end,
62                          unsigned int required_fault, struct mm_walk *walk)
63 {
64         struct hmm_vma_walk *hmm_vma_walk = walk->private;
65         struct vm_area_struct *vma = walk->vma;
66         unsigned int fault_flags = FAULT_FLAG_REMOTE;
67
68         WARN_ON_ONCE(!required_fault);
69         hmm_vma_walk->last = addr;
70
71         if (required_fault & HMM_NEED_WRITE_FAULT) {
72                 if (!(vma->vm_flags & VM_WRITE))
73                         return -EPERM;
74                 fault_flags |= FAULT_FLAG_WRITE;
75         }
76
77         for (; addr < end; addr += PAGE_SIZE)
78                 if (handle_mm_fault(vma, addr, fault_flags) & VM_FAULT_ERROR)
79                         return -EFAULT;
80         return -EBUSY;
81 }
82
83 static unsigned int hmm_pte_need_fault(const struct hmm_vma_walk *hmm_vma_walk,
84                                        unsigned long pfn_req_flags,
85                                        unsigned long cpu_flags)
86 {
87         struct hmm_range *range = hmm_vma_walk->range;
88
89         /*
90          * So we not only consider the individual per page request we also
91          * consider the default flags requested for the range. The API can
92          * be used 2 ways. The first one where the HMM user coalesces
93          * multiple page faults into one request and sets flags per pfn for
94          * those faults. The second one where the HMM user wants to pre-
95          * fault a range with specific flags. For the latter one it is a
96          * waste to have the user pre-fill the pfn arrays with a default
97          * flags value.
98          */
99         pfn_req_flags &= range->pfn_flags_mask;
100         pfn_req_flags |= range->default_flags;
101
102         /* We aren't ask to do anything ... */
103         if (!(pfn_req_flags & HMM_PFN_REQ_FAULT))
104                 return 0;
105
106         /* Need to write fault ? */
107         if ((pfn_req_flags & HMM_PFN_REQ_WRITE) &&
108             !(cpu_flags & HMM_PFN_WRITE))
109                 return HMM_NEED_FAULT | HMM_NEED_WRITE_FAULT;
110
111         /* If CPU page table is not valid then we need to fault */
112         if (!(cpu_flags & HMM_PFN_VALID))
113                 return HMM_NEED_FAULT;
114         return 0;
115 }
116
117 static unsigned int
118 hmm_range_need_fault(const struct hmm_vma_walk *hmm_vma_walk,
119                      const unsigned long hmm_pfns[], unsigned long npages,
120                      unsigned long cpu_flags)
121 {
122         struct hmm_range *range = hmm_vma_walk->range;
123         unsigned int required_fault = 0;
124         unsigned long i;
125
126         /*
127          * If the default flags do not request to fault pages, and the mask does
128          * not allow for individual pages to be faulted, then
129          * hmm_pte_need_fault() will always return 0.
130          */
131         if (!((range->default_flags | range->pfn_flags_mask) &
132               HMM_PFN_REQ_FAULT))
133                 return 0;
134
135         for (i = 0; i < npages; ++i) {
136                 required_fault |= hmm_pte_need_fault(hmm_vma_walk, hmm_pfns[i],
137                                                      cpu_flags);
138                 if (required_fault == HMM_NEED_ALL_BITS)
139                         return required_fault;
140         }
141         return required_fault;
142 }
143
144 static int hmm_vma_walk_hole(unsigned long addr, unsigned long end,
145                              __always_unused int depth, struct mm_walk *walk)
146 {
147         struct hmm_vma_walk *hmm_vma_walk = walk->private;
148         struct hmm_range *range = hmm_vma_walk->range;
149         unsigned int required_fault;
150         unsigned long i, npages;
151         unsigned long *hmm_pfns;
152
153         i = (addr - range->start) >> PAGE_SHIFT;
154         npages = (end - addr) >> PAGE_SHIFT;
155         hmm_pfns = &range->hmm_pfns[i];
156         required_fault =
157                 hmm_range_need_fault(hmm_vma_walk, hmm_pfns, npages, 0);
158         if (!walk->vma) {
159                 if (required_fault)
160                         return -EFAULT;
161                 return hmm_pfns_fill(addr, end, range, HMM_PFN_ERROR);
162         }
163         if (required_fault)
164                 return hmm_vma_fault(addr, end, required_fault, walk);
165         return hmm_pfns_fill(addr, end, range, 0);
166 }
167
168 static inline unsigned long hmm_pfn_flags_order(unsigned long order)
169 {
170         return order << HMM_PFN_ORDER_SHIFT;
171 }
172
173 static inline unsigned long pmd_to_hmm_pfn_flags(struct hmm_range *range,
174                                                  pmd_t pmd)
175 {
176         if (pmd_protnone(pmd))
177                 return 0;
178         return (pmd_write(pmd) ? (HMM_PFN_VALID | HMM_PFN_WRITE) :
179                                  HMM_PFN_VALID) |
180                hmm_pfn_flags_order(PMD_SHIFT - PAGE_SHIFT);
181 }
182
183 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
184 static int hmm_vma_handle_pmd(struct mm_walk *walk, unsigned long addr,
185                               unsigned long end, unsigned long hmm_pfns[],
186                               pmd_t pmd)
187 {
188         struct hmm_vma_walk *hmm_vma_walk = walk->private;
189         struct hmm_range *range = hmm_vma_walk->range;
190         unsigned long pfn, npages, i;
191         unsigned int required_fault;
192         unsigned long cpu_flags;
193
194         npages = (end - addr) >> PAGE_SHIFT;
195         cpu_flags = pmd_to_hmm_pfn_flags(range, pmd);
196         required_fault =
197                 hmm_range_need_fault(hmm_vma_walk, hmm_pfns, npages, cpu_flags);
198         if (required_fault)
199                 return hmm_vma_fault(addr, end, required_fault, walk);
200
201         pfn = pmd_pfn(pmd) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
202         for (i = 0; addr < end; addr += PAGE_SIZE, i++, pfn++)
203                 hmm_pfns[i] = pfn | cpu_flags;
204         return 0;
205 }
206 #else /* CONFIG_TRANSPARENT_HUGEPAGE */
207 /* stub to allow the code below to compile */
208 int hmm_vma_handle_pmd(struct mm_walk *walk, unsigned long addr,
209                 unsigned long end, unsigned long hmm_pfns[], pmd_t pmd);
210 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
211
212 static inline bool hmm_is_device_private_entry(struct hmm_range *range,
213                 swp_entry_t entry)
214 {
215         return is_device_private_entry(entry) &&
216                 device_private_entry_to_page(entry)->pgmap->owner ==
217                 range->dev_private_owner;
218 }
219
220 static inline unsigned long pte_to_hmm_pfn_flags(struct hmm_range *range,
221                                                  pte_t pte)
222 {
223         if (pte_none(pte) || !pte_present(pte) || pte_protnone(pte))
224                 return 0;
225         return pte_write(pte) ? (HMM_PFN_VALID | HMM_PFN_WRITE) : HMM_PFN_VALID;
226 }
227
228 static int hmm_vma_handle_pte(struct mm_walk *walk, unsigned long addr,
229                               unsigned long end, pmd_t *pmdp, pte_t *ptep,
230                               unsigned long *hmm_pfn)
231 {
232         struct hmm_vma_walk *hmm_vma_walk = walk->private;
233         struct hmm_range *range = hmm_vma_walk->range;
234         unsigned int required_fault;
235         unsigned long cpu_flags;
236         pte_t pte = *ptep;
237         uint64_t pfn_req_flags = *hmm_pfn;
238
239         if (pte_none(pte)) {
240                 required_fault =
241                         hmm_pte_need_fault(hmm_vma_walk, pfn_req_flags, 0);
242                 if (required_fault)
243                         goto fault;
244                 *hmm_pfn = 0;
245                 return 0;
246         }
247
248         if (!pte_present(pte)) {
249                 swp_entry_t entry = pte_to_swp_entry(pte);
250
251                 /*
252                  * Never fault in device private pages pages, but just report
253                  * the PFN even if not present.
254                  */
255                 if (hmm_is_device_private_entry(range, entry)) {
256                         cpu_flags = HMM_PFN_VALID;
257                         if (is_write_device_private_entry(entry))
258                                 cpu_flags |= HMM_PFN_WRITE;
259                         *hmm_pfn = device_private_entry_to_pfn(entry) |
260                                         cpu_flags;
261                         return 0;
262                 }
263
264                 required_fault =
265                         hmm_pte_need_fault(hmm_vma_walk, pfn_req_flags, 0);
266                 if (!required_fault) {
267                         *hmm_pfn = 0;
268                         return 0;
269                 }
270
271                 if (!non_swap_entry(entry))
272                         goto fault;
273
274                 if (is_migration_entry(entry)) {
275                         pte_unmap(ptep);
276                         hmm_vma_walk->last = addr;
277                         migration_entry_wait(walk->mm, pmdp, addr);
278                         return -EBUSY;
279                 }
280
281                 /* Report error for everything else */
282                 pte_unmap(ptep);
283                 return -EFAULT;
284         }
285
286         cpu_flags = pte_to_hmm_pfn_flags(range, pte);
287         required_fault =
288                 hmm_pte_need_fault(hmm_vma_walk, pfn_req_flags, cpu_flags);
289         if (required_fault)
290                 goto fault;
291
292         /*
293          * Since each architecture defines a struct page for the zero page, just
294          * fall through and treat it like a normal page.
295          */
296         if (pte_special(pte) && !is_zero_pfn(pte_pfn(pte))) {
297                 if (hmm_pte_need_fault(hmm_vma_walk, pfn_req_flags, 0)) {
298                         pte_unmap(ptep);
299                         return -EFAULT;
300                 }
301                 *hmm_pfn = HMM_PFN_ERROR;
302                 return 0;
303         }
304
305         *hmm_pfn = pte_pfn(pte) | cpu_flags;
306         return 0;
307
308 fault:
309         pte_unmap(ptep);
310         /* Fault any virtual address we were asked to fault */
311         return hmm_vma_fault(addr, end, required_fault, walk);
312 }
313
314 static int hmm_vma_walk_pmd(pmd_t *pmdp,
315                             unsigned long start,
316                             unsigned long end,
317                             struct mm_walk *walk)
318 {
319         struct hmm_vma_walk *hmm_vma_walk = walk->private;
320         struct hmm_range *range = hmm_vma_walk->range;
321         unsigned long *hmm_pfns =
322                 &range->hmm_pfns[(start - range->start) >> PAGE_SHIFT];
323         unsigned long npages = (end - start) >> PAGE_SHIFT;
324         unsigned long addr = start;
325         pte_t *ptep;
326         pmd_t pmd;
327
328 again:
329         pmd = READ_ONCE(*pmdp);
330         if (pmd_none(pmd))
331                 return hmm_vma_walk_hole(start, end, -1, walk);
332
333         if (thp_migration_supported() && is_pmd_migration_entry(pmd)) {
334                 if (hmm_range_need_fault(hmm_vma_walk, hmm_pfns, npages, 0)) {
335                         hmm_vma_walk->last = addr;
336                         pmd_migration_entry_wait(walk->mm, pmdp);
337                         return -EBUSY;
338                 }
339                 return hmm_pfns_fill(start, end, range, 0);
340         }
341
342         if (!pmd_present(pmd)) {
343                 if (hmm_range_need_fault(hmm_vma_walk, hmm_pfns, npages, 0))
344                         return -EFAULT;
345                 return hmm_pfns_fill(start, end, range, HMM_PFN_ERROR);
346         }
347
348         if (pmd_devmap(pmd) || pmd_trans_huge(pmd)) {
349                 /*
350                  * No need to take pmd_lock here, even if some other thread
351                  * is splitting the huge pmd we will get that event through
352                  * mmu_notifier callback.
353                  *
354                  * So just read pmd value and check again it's a transparent
355                  * huge or device mapping one and compute corresponding pfn
356                  * values.
357                  */
358                 pmd = pmd_read_atomic(pmdp);
359                 barrier();
360                 if (!pmd_devmap(pmd) && !pmd_trans_huge(pmd))
361                         goto again;
362
363                 return hmm_vma_handle_pmd(walk, addr, end, hmm_pfns, pmd);
364         }
365
366         /*
367          * We have handled all the valid cases above ie either none, migration,
368          * huge or transparent huge. At this point either it is a valid pmd
369          * entry pointing to pte directory or it is a bad pmd that will not
370          * recover.
371          */
372         if (pmd_bad(pmd)) {
373                 if (hmm_range_need_fault(hmm_vma_walk, hmm_pfns, npages, 0))
374                         return -EFAULT;
375                 return hmm_pfns_fill(start, end, range, HMM_PFN_ERROR);
376         }
377
378         ptep = pte_offset_map(pmdp, addr);
379         for (; addr < end; addr += PAGE_SIZE, ptep++, hmm_pfns++) {
380                 int r;
381
382                 r = hmm_vma_handle_pte(walk, addr, end, pmdp, ptep, hmm_pfns);
383                 if (r) {
384                         /* hmm_vma_handle_pte() did pte_unmap() */
385                         return r;
386                 }
387         }
388         pte_unmap(ptep - 1);
389         return 0;
390 }
391
392 #if defined(CONFIG_ARCH_HAS_PTE_DEVMAP) && \
393     defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
394 static inline unsigned long pud_to_hmm_pfn_flags(struct hmm_range *range,
395                                                  pud_t pud)
396 {
397         if (!pud_present(pud))
398                 return 0;
399         return (pud_write(pud) ? (HMM_PFN_VALID | HMM_PFN_WRITE) :
400                                  HMM_PFN_VALID) |
401                hmm_pfn_flags_order(PUD_SHIFT - PAGE_SHIFT);
402 }
403
404 static int hmm_vma_walk_pud(pud_t *pudp, unsigned long start, unsigned long end,
405                 struct mm_walk *walk)
406 {
407         struct hmm_vma_walk *hmm_vma_walk = walk->private;
408         struct hmm_range *range = hmm_vma_walk->range;
409         unsigned long addr = start;
410         pud_t pud;
411         int ret = 0;
412         spinlock_t *ptl = pud_trans_huge_lock(pudp, walk->vma);
413
414         if (!ptl)
415                 return 0;
416
417         /* Normally we don't want to split the huge page */
418         walk->action = ACTION_CONTINUE;
419
420         pud = READ_ONCE(*pudp);
421         if (pud_none(pud)) {
422                 spin_unlock(ptl);
423                 return hmm_vma_walk_hole(start, end, -1, walk);
424         }
425
426         if (pud_huge(pud) && pud_devmap(pud)) {
427                 unsigned long i, npages, pfn;
428                 unsigned int required_fault;
429                 unsigned long *hmm_pfns;
430                 unsigned long cpu_flags;
431
432                 if (!pud_present(pud)) {
433                         spin_unlock(ptl);
434                         return hmm_vma_walk_hole(start, end, -1, walk);
435                 }
436
437                 i = (addr - range->start) >> PAGE_SHIFT;
438                 npages = (end - addr) >> PAGE_SHIFT;
439                 hmm_pfns = &range->hmm_pfns[i];
440
441                 cpu_flags = pud_to_hmm_pfn_flags(range, pud);
442                 required_fault = hmm_range_need_fault(hmm_vma_walk, hmm_pfns,
443                                                       npages, cpu_flags);
444                 if (required_fault) {
445                         spin_unlock(ptl);
446                         return hmm_vma_fault(addr, end, required_fault, walk);
447                 }
448
449                 pfn = pud_pfn(pud) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
450                 for (i = 0; i < npages; ++i, ++pfn)
451                         hmm_pfns[i] = pfn | cpu_flags;
452                 goto out_unlock;
453         }
454
455         /* Ask for the PUD to be split */
456         walk->action = ACTION_SUBTREE;
457
458 out_unlock:
459         spin_unlock(ptl);
460         return ret;
461 }
462 #else
463 #define hmm_vma_walk_pud        NULL
464 #endif
465
466 #ifdef CONFIG_HUGETLB_PAGE
467 static int hmm_vma_walk_hugetlb_entry(pte_t *pte, unsigned long hmask,
468                                       unsigned long start, unsigned long end,
469                                       struct mm_walk *walk)
470 {
471         unsigned long addr = start, i, pfn;
472         struct hmm_vma_walk *hmm_vma_walk = walk->private;
473         struct hmm_range *range = hmm_vma_walk->range;
474         struct vm_area_struct *vma = walk->vma;
475         unsigned int required_fault;
476         unsigned long pfn_req_flags;
477         unsigned long cpu_flags;
478         spinlock_t *ptl;
479         pte_t entry;
480
481         ptl = huge_pte_lock(hstate_vma(vma), walk->mm, pte);
482         entry = huge_ptep_get(pte);
483
484         i = (start - range->start) >> PAGE_SHIFT;
485         pfn_req_flags = range->hmm_pfns[i];
486         cpu_flags = pte_to_hmm_pfn_flags(range, entry) |
487                     hmm_pfn_flags_order(huge_page_order(hstate_vma(vma)));
488         required_fault =
489                 hmm_pte_need_fault(hmm_vma_walk, pfn_req_flags, cpu_flags);
490         if (required_fault) {
491                 spin_unlock(ptl);
492                 return hmm_vma_fault(addr, end, required_fault, walk);
493         }
494
495         pfn = pte_pfn(entry) + ((start & ~hmask) >> PAGE_SHIFT);
496         for (; addr < end; addr += PAGE_SIZE, i++, pfn++)
497                 range->hmm_pfns[i] = pfn | cpu_flags;
498
499         spin_unlock(ptl);
500         return 0;
501 }
502 #else
503 #define hmm_vma_walk_hugetlb_entry NULL
504 #endif /* CONFIG_HUGETLB_PAGE */
505
506 static int hmm_vma_walk_test(unsigned long start, unsigned long end,
507                              struct mm_walk *walk)
508 {
509         struct hmm_vma_walk *hmm_vma_walk = walk->private;
510         struct hmm_range *range = hmm_vma_walk->range;
511         struct vm_area_struct *vma = walk->vma;
512
513         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP | VM_MIXEDMAP)) &&
514             vma->vm_flags & VM_READ)
515                 return 0;
516
517         /*
518          * vma ranges that don't have struct page backing them or map I/O
519          * devices directly cannot be handled by hmm_range_fault().
520          *
521          * If the vma does not allow read access, then assume that it does not
522          * allow write access either. HMM does not support architectures that
523          * allow write without read.
524          *
525          * If a fault is requested for an unsupported range then it is a hard
526          * failure.
527          */
528         if (hmm_range_need_fault(hmm_vma_walk,
529                                  range->hmm_pfns +
530                                          ((start - range->start) >> PAGE_SHIFT),
531                                  (end - start) >> PAGE_SHIFT, 0))
532                 return -EFAULT;
533
534         hmm_pfns_fill(start, end, range, HMM_PFN_ERROR);
535
536         /* Skip this vma and continue processing the next vma. */
537         return 1;
538 }
539
540 static const struct mm_walk_ops hmm_walk_ops = {
541         .pud_entry      = hmm_vma_walk_pud,
542         .pmd_entry      = hmm_vma_walk_pmd,
543         .pte_hole       = hmm_vma_walk_hole,
544         .hugetlb_entry  = hmm_vma_walk_hugetlb_entry,
545         .test_walk      = hmm_vma_walk_test,
546 };
547
548 /**
549  * hmm_range_fault - try to fault some address in a virtual address range
550  * @range:      argument structure
551  *
552  * Returns 0 on success or one of the following error codes:
553  *
554  * -EINVAL:     Invalid arguments or mm or virtual address is in an invalid vma
555  *              (e.g., device file vma).
556  * -ENOMEM:     Out of memory.
557  * -EPERM:      Invalid permission (e.g., asking for write and range is read
558  *              only).
559  * -EBUSY:      The range has been invalidated and the caller needs to wait for
560  *              the invalidation to finish.
561  * -EFAULT:     A page was requested to be valid and could not be made valid
562  *              ie it has no backing VMA or it is illegal to access
563  *
564  * This is similar to get_user_pages(), except that it can read the page tables
565  * without mutating them (ie causing faults).
566  */
567 int hmm_range_fault(struct hmm_range *range)
568 {
569         struct hmm_vma_walk hmm_vma_walk = {
570                 .range = range,
571                 .last = range->start,
572         };
573         struct mm_struct *mm = range->notifier->mm;
574         int ret;
575
576         mmap_assert_locked(mm);
577
578         do {
579                 /* If range is no longer valid force retry. */
580                 if (mmu_interval_check_retry(range->notifier,
581                                              range->notifier_seq))
582                         return -EBUSY;
583                 ret = walk_page_range(mm, hmm_vma_walk.last, range->end,
584                                       &hmm_walk_ops, &hmm_vma_walk);
585                 /*
586                  * When -EBUSY is returned the loop restarts with
587                  * hmm_vma_walk.last set to an address that has not been stored
588                  * in pfns. All entries < last in the pfn array are set to their
589                  * output, and all >= are still at their input values.
590                  */
591         } while (ret == -EBUSY);
592         return ret;
593 }
594 EXPORT_SYMBOL(hmm_range_fault);