mm/hmm: mirror hugetlbfs (snapshoting, faulting and DMA mapping)
[linux-2.6-microblaze.git] / mm / hmm.c
1 /*
2  * Copyright 2013 Red Hat Inc.
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * Authors: Jérôme Glisse <jglisse@redhat.com>
15  */
16 /*
17  * Refer to include/linux/hmm.h for information about heterogeneous memory
18  * management or HMM for short.
19  */
20 #include <linux/mm.h>
21 #include <linux/hmm.h>
22 #include <linux/init.h>
23 #include <linux/rmap.h>
24 #include <linux/swap.h>
25 #include <linux/slab.h>
26 #include <linux/sched.h>
27 #include <linux/mmzone.h>
28 #include <linux/pagemap.h>
29 #include <linux/swapops.h>
30 #include <linux/hugetlb.h>
31 #include <linux/memremap.h>
32 #include <linux/jump_label.h>
33 #include <linux/mmu_notifier.h>
34 #include <linux/memory_hotplug.h>
35
36 #define PA_SECTION_SIZE (1UL << PA_SECTION_SHIFT)
37
38 #if IS_ENABLED(CONFIG_HMM_MIRROR)
39 static const struct mmu_notifier_ops hmm_mmu_notifier_ops;
40
41 static inline struct hmm *mm_get_hmm(struct mm_struct *mm)
42 {
43         struct hmm *hmm = READ_ONCE(mm->hmm);
44
45         if (hmm && kref_get_unless_zero(&hmm->kref))
46                 return hmm;
47
48         return NULL;
49 }
50
51 /**
52  * hmm_get_or_create - register HMM against an mm (HMM internal)
53  *
54  * @mm: mm struct to attach to
55  * Returns: returns an HMM object, either by referencing the existing
56  *          (per-process) object, or by creating a new one.
57  *
58  * This is not intended to be used directly by device drivers. If mm already
59  * has an HMM struct then it get a reference on it and returns it. Otherwise
60  * it allocates an HMM struct, initializes it, associate it with the mm and
61  * returns it.
62  */
63 static struct hmm *hmm_get_or_create(struct mm_struct *mm)
64 {
65         struct hmm *hmm = mm_get_hmm(mm);
66         bool cleanup = false;
67
68         if (hmm)
69                 return hmm;
70
71         hmm = kmalloc(sizeof(*hmm), GFP_KERNEL);
72         if (!hmm)
73                 return NULL;
74         init_waitqueue_head(&hmm->wq);
75         INIT_LIST_HEAD(&hmm->mirrors);
76         init_rwsem(&hmm->mirrors_sem);
77         hmm->mmu_notifier.ops = NULL;
78         INIT_LIST_HEAD(&hmm->ranges);
79         mutex_init(&hmm->lock);
80         kref_init(&hmm->kref);
81         hmm->notifiers = 0;
82         hmm->dead = false;
83         hmm->mm = mm;
84
85         spin_lock(&mm->page_table_lock);
86         if (!mm->hmm)
87                 mm->hmm = hmm;
88         else
89                 cleanup = true;
90         spin_unlock(&mm->page_table_lock);
91
92         if (cleanup)
93                 goto error;
94
95         /*
96          * We should only get here if hold the mmap_sem in write mode ie on
97          * registration of first mirror through hmm_mirror_register()
98          */
99         hmm->mmu_notifier.ops = &hmm_mmu_notifier_ops;
100         if (__mmu_notifier_register(&hmm->mmu_notifier, mm))
101                 goto error_mm;
102
103         return hmm;
104
105 error_mm:
106         spin_lock(&mm->page_table_lock);
107         if (mm->hmm == hmm)
108                 mm->hmm = NULL;
109         spin_unlock(&mm->page_table_lock);
110 error:
111         kfree(hmm);
112         return NULL;
113 }
114
115 static void hmm_free(struct kref *kref)
116 {
117         struct hmm *hmm = container_of(kref, struct hmm, kref);
118         struct mm_struct *mm = hmm->mm;
119
120         mmu_notifier_unregister_no_release(&hmm->mmu_notifier, mm);
121
122         spin_lock(&mm->page_table_lock);
123         if (mm->hmm == hmm)
124                 mm->hmm = NULL;
125         spin_unlock(&mm->page_table_lock);
126
127         kfree(hmm);
128 }
129
130 static inline void hmm_put(struct hmm *hmm)
131 {
132         kref_put(&hmm->kref, hmm_free);
133 }
134
135 void hmm_mm_destroy(struct mm_struct *mm)
136 {
137         struct hmm *hmm;
138
139         spin_lock(&mm->page_table_lock);
140         hmm = mm_get_hmm(mm);
141         mm->hmm = NULL;
142         if (hmm) {
143                 hmm->mm = NULL;
144                 hmm->dead = true;
145                 spin_unlock(&mm->page_table_lock);
146                 hmm_put(hmm);
147                 return;
148         }
149
150         spin_unlock(&mm->page_table_lock);
151 }
152
153 static void hmm_release(struct mmu_notifier *mn, struct mm_struct *mm)
154 {
155         struct hmm *hmm = mm_get_hmm(mm);
156         struct hmm_mirror *mirror;
157         struct hmm_range *range;
158
159         /* Report this HMM as dying. */
160         hmm->dead = true;
161
162         /* Wake-up everyone waiting on any range. */
163         mutex_lock(&hmm->lock);
164         list_for_each_entry(range, &hmm->ranges, list) {
165                 range->valid = false;
166         }
167         wake_up_all(&hmm->wq);
168         mutex_unlock(&hmm->lock);
169
170         down_write(&hmm->mirrors_sem);
171         mirror = list_first_entry_or_null(&hmm->mirrors, struct hmm_mirror,
172                                           list);
173         while (mirror) {
174                 list_del_init(&mirror->list);
175                 if (mirror->ops->release) {
176                         /*
177                          * Drop mirrors_sem so callback can wait on any pending
178                          * work that might itself trigger mmu_notifier callback
179                          * and thus would deadlock with us.
180                          */
181                         up_write(&hmm->mirrors_sem);
182                         mirror->ops->release(mirror);
183                         down_write(&hmm->mirrors_sem);
184                 }
185                 mirror = list_first_entry_or_null(&hmm->mirrors,
186                                                   struct hmm_mirror, list);
187         }
188         up_write(&hmm->mirrors_sem);
189
190         hmm_put(hmm);
191 }
192
193 static int hmm_invalidate_range_start(struct mmu_notifier *mn,
194                         const struct mmu_notifier_range *nrange)
195 {
196         struct hmm *hmm = mm_get_hmm(nrange->mm);
197         struct hmm_mirror *mirror;
198         struct hmm_update update;
199         struct hmm_range *range;
200         int ret = 0;
201
202         VM_BUG_ON(!hmm);
203
204         update.start = nrange->start;
205         update.end = nrange->end;
206         update.event = HMM_UPDATE_INVALIDATE;
207         update.blockable = nrange->blockable;
208
209         if (nrange->blockable)
210                 mutex_lock(&hmm->lock);
211         else if (!mutex_trylock(&hmm->lock)) {
212                 ret = -EAGAIN;
213                 goto out;
214         }
215         hmm->notifiers++;
216         list_for_each_entry(range, &hmm->ranges, list) {
217                 if (update.end < range->start || update.start >= range->end)
218                         continue;
219
220                 range->valid = false;
221         }
222         mutex_unlock(&hmm->lock);
223
224         if (nrange->blockable)
225                 down_read(&hmm->mirrors_sem);
226         else if (!down_read_trylock(&hmm->mirrors_sem)) {
227                 ret = -EAGAIN;
228                 goto out;
229         }
230         list_for_each_entry(mirror, &hmm->mirrors, list) {
231                 int ret;
232
233                 ret = mirror->ops->sync_cpu_device_pagetables(mirror, &update);
234                 if (!update.blockable && ret == -EAGAIN) {
235                         up_read(&hmm->mirrors_sem);
236                         ret = -EAGAIN;
237                         goto out;
238                 }
239         }
240         up_read(&hmm->mirrors_sem);
241
242 out:
243         hmm_put(hmm);
244         return ret;
245 }
246
247 static void hmm_invalidate_range_end(struct mmu_notifier *mn,
248                         const struct mmu_notifier_range *nrange)
249 {
250         struct hmm *hmm = mm_get_hmm(nrange->mm);
251
252         VM_BUG_ON(!hmm);
253
254         mutex_lock(&hmm->lock);
255         hmm->notifiers--;
256         if (!hmm->notifiers) {
257                 struct hmm_range *range;
258
259                 list_for_each_entry(range, &hmm->ranges, list) {
260                         if (range->valid)
261                                 continue;
262                         range->valid = true;
263                 }
264                 wake_up_all(&hmm->wq);
265         }
266         mutex_unlock(&hmm->lock);
267
268         hmm_put(hmm);
269 }
270
271 static const struct mmu_notifier_ops hmm_mmu_notifier_ops = {
272         .release                = hmm_release,
273         .invalidate_range_start = hmm_invalidate_range_start,
274         .invalidate_range_end   = hmm_invalidate_range_end,
275 };
276
277 /*
278  * hmm_mirror_register() - register a mirror against an mm
279  *
280  * @mirror: new mirror struct to register
281  * @mm: mm to register against
282  *
283  * To start mirroring a process address space, the device driver must register
284  * an HMM mirror struct.
285  *
286  * THE mm->mmap_sem MUST BE HELD IN WRITE MODE !
287  */
288 int hmm_mirror_register(struct hmm_mirror *mirror, struct mm_struct *mm)
289 {
290         /* Sanity check */
291         if (!mm || !mirror || !mirror->ops)
292                 return -EINVAL;
293
294         mirror->hmm = hmm_get_or_create(mm);
295         if (!mirror->hmm)
296                 return -ENOMEM;
297
298         down_write(&mirror->hmm->mirrors_sem);
299         list_add(&mirror->list, &mirror->hmm->mirrors);
300         up_write(&mirror->hmm->mirrors_sem);
301
302         return 0;
303 }
304 EXPORT_SYMBOL(hmm_mirror_register);
305
306 /*
307  * hmm_mirror_unregister() - unregister a mirror
308  *
309  * @mirror: new mirror struct to register
310  *
311  * Stop mirroring a process address space, and cleanup.
312  */
313 void hmm_mirror_unregister(struct hmm_mirror *mirror)
314 {
315         struct hmm *hmm = READ_ONCE(mirror->hmm);
316
317         if (hmm == NULL)
318                 return;
319
320         down_write(&hmm->mirrors_sem);
321         list_del_init(&mirror->list);
322         /* To protect us against double unregister ... */
323         mirror->hmm = NULL;
324         up_write(&hmm->mirrors_sem);
325
326         hmm_put(hmm);
327 }
328 EXPORT_SYMBOL(hmm_mirror_unregister);
329
330 struct hmm_vma_walk {
331         struct hmm_range        *range;
332         unsigned long           last;
333         bool                    fault;
334         bool                    block;
335 };
336
337 static int hmm_vma_do_fault(struct mm_walk *walk, unsigned long addr,
338                             bool write_fault, uint64_t *pfn)
339 {
340         unsigned int flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_REMOTE;
341         struct hmm_vma_walk *hmm_vma_walk = walk->private;
342         struct hmm_range *range = hmm_vma_walk->range;
343         struct vm_area_struct *vma = walk->vma;
344         vm_fault_t ret;
345
346         flags |= hmm_vma_walk->block ? 0 : FAULT_FLAG_ALLOW_RETRY;
347         flags |= write_fault ? FAULT_FLAG_WRITE : 0;
348         ret = handle_mm_fault(vma, addr, flags);
349         if (ret & VM_FAULT_RETRY)
350                 return -EAGAIN;
351         if (ret & VM_FAULT_ERROR) {
352                 *pfn = range->values[HMM_PFN_ERROR];
353                 return -EFAULT;
354         }
355
356         return -EBUSY;
357 }
358
359 static int hmm_pfns_bad(unsigned long addr,
360                         unsigned long end,
361                         struct mm_walk *walk)
362 {
363         struct hmm_vma_walk *hmm_vma_walk = walk->private;
364         struct hmm_range *range = hmm_vma_walk->range;
365         uint64_t *pfns = range->pfns;
366         unsigned long i;
367
368         i = (addr - range->start) >> PAGE_SHIFT;
369         for (; addr < end; addr += PAGE_SIZE, i++)
370                 pfns[i] = range->values[HMM_PFN_ERROR];
371
372         return 0;
373 }
374
375 /*
376  * hmm_vma_walk_hole() - handle a range lacking valid pmd or pte(s)
377  * @start: range virtual start address (inclusive)
378  * @end: range virtual end address (exclusive)
379  * @fault: should we fault or not ?
380  * @write_fault: write fault ?
381  * @walk: mm_walk structure
382  * Returns: 0 on success, -EBUSY after page fault, or page fault error
383  *
384  * This function will be called whenever pmd_none() or pte_none() returns true,
385  * or whenever there is no page directory covering the virtual address range.
386  */
387 static int hmm_vma_walk_hole_(unsigned long addr, unsigned long end,
388                               bool fault, bool write_fault,
389                               struct mm_walk *walk)
390 {
391         struct hmm_vma_walk *hmm_vma_walk = walk->private;
392         struct hmm_range *range = hmm_vma_walk->range;
393         uint64_t *pfns = range->pfns;
394         unsigned long i, page_size;
395
396         hmm_vma_walk->last = addr;
397         page_size = hmm_range_page_size(range);
398         i = (addr - range->start) >> range->page_shift;
399
400         for (; addr < end; addr += page_size, i++) {
401                 pfns[i] = range->values[HMM_PFN_NONE];
402                 if (fault || write_fault) {
403                         int ret;
404
405                         ret = hmm_vma_do_fault(walk, addr, write_fault,
406                                                &pfns[i]);
407                         if (ret != -EBUSY)
408                                 return ret;
409                 }
410         }
411
412         return (fault || write_fault) ? -EBUSY : 0;
413 }
414
415 static inline void hmm_pte_need_fault(const struct hmm_vma_walk *hmm_vma_walk,
416                                       uint64_t pfns, uint64_t cpu_flags,
417                                       bool *fault, bool *write_fault)
418 {
419         struct hmm_range *range = hmm_vma_walk->range;
420
421         if (!hmm_vma_walk->fault)
422                 return;
423
424         /*
425          * So we not only consider the individual per page request we also
426          * consider the default flags requested for the range. The API can
427          * be use in 2 fashions. The first one where the HMM user coalesce
428          * multiple page fault into one request and set flags per pfns for
429          * of those faults. The second one where the HMM user want to pre-
430          * fault a range with specific flags. For the latter one it is a
431          * waste to have the user pre-fill the pfn arrays with a default
432          * flags value.
433          */
434         pfns = (pfns & range->pfn_flags_mask) | range->default_flags;
435
436         /* We aren't ask to do anything ... */
437         if (!(pfns & range->flags[HMM_PFN_VALID]))
438                 return;
439         /* If this is device memory than only fault if explicitly requested */
440         if ((cpu_flags & range->flags[HMM_PFN_DEVICE_PRIVATE])) {
441                 /* Do we fault on device memory ? */
442                 if (pfns & range->flags[HMM_PFN_DEVICE_PRIVATE]) {
443                         *write_fault = pfns & range->flags[HMM_PFN_WRITE];
444                         *fault = true;
445                 }
446                 return;
447         }
448
449         /* If CPU page table is not valid then we need to fault */
450         *fault = !(cpu_flags & range->flags[HMM_PFN_VALID]);
451         /* Need to write fault ? */
452         if ((pfns & range->flags[HMM_PFN_WRITE]) &&
453             !(cpu_flags & range->flags[HMM_PFN_WRITE])) {
454                 *write_fault = true;
455                 *fault = true;
456         }
457 }
458
459 static void hmm_range_need_fault(const struct hmm_vma_walk *hmm_vma_walk,
460                                  const uint64_t *pfns, unsigned long npages,
461                                  uint64_t cpu_flags, bool *fault,
462                                  bool *write_fault)
463 {
464         unsigned long i;
465
466         if (!hmm_vma_walk->fault) {
467                 *fault = *write_fault = false;
468                 return;
469         }
470
471         *fault = *write_fault = false;
472         for (i = 0; i < npages; ++i) {
473                 hmm_pte_need_fault(hmm_vma_walk, pfns[i], cpu_flags,
474                                    fault, write_fault);
475                 if ((*write_fault))
476                         return;
477         }
478 }
479
480 static int hmm_vma_walk_hole(unsigned long addr, unsigned long end,
481                              struct mm_walk *walk)
482 {
483         struct hmm_vma_walk *hmm_vma_walk = walk->private;
484         struct hmm_range *range = hmm_vma_walk->range;
485         bool fault, write_fault;
486         unsigned long i, npages;
487         uint64_t *pfns;
488
489         i = (addr - range->start) >> PAGE_SHIFT;
490         npages = (end - addr) >> PAGE_SHIFT;
491         pfns = &range->pfns[i];
492         hmm_range_need_fault(hmm_vma_walk, pfns, npages,
493                              0, &fault, &write_fault);
494         return hmm_vma_walk_hole_(addr, end, fault, write_fault, walk);
495 }
496
497 static inline uint64_t pmd_to_hmm_pfn_flags(struct hmm_range *range, pmd_t pmd)
498 {
499         if (pmd_protnone(pmd))
500                 return 0;
501         return pmd_write(pmd) ? range->flags[HMM_PFN_VALID] |
502                                 range->flags[HMM_PFN_WRITE] :
503                                 range->flags[HMM_PFN_VALID];
504 }
505
506 static int hmm_vma_handle_pmd(struct mm_walk *walk,
507                               unsigned long addr,
508                               unsigned long end,
509                               uint64_t *pfns,
510                               pmd_t pmd)
511 {
512         struct hmm_vma_walk *hmm_vma_walk = walk->private;
513         struct hmm_range *range = hmm_vma_walk->range;
514         unsigned long pfn, npages, i;
515         bool fault, write_fault;
516         uint64_t cpu_flags;
517
518         npages = (end - addr) >> PAGE_SHIFT;
519         cpu_flags = pmd_to_hmm_pfn_flags(range, pmd);
520         hmm_range_need_fault(hmm_vma_walk, pfns, npages, cpu_flags,
521                              &fault, &write_fault);
522
523         if (pmd_protnone(pmd) || fault || write_fault)
524                 return hmm_vma_walk_hole_(addr, end, fault, write_fault, walk);
525
526         pfn = pmd_pfn(pmd) + pte_index(addr);
527         for (i = 0; addr < end; addr += PAGE_SIZE, i++, pfn++)
528                 pfns[i] = hmm_pfn_from_pfn(range, pfn) | cpu_flags;
529         hmm_vma_walk->last = end;
530         return 0;
531 }
532
533 static inline uint64_t pte_to_hmm_pfn_flags(struct hmm_range *range, pte_t pte)
534 {
535         if (pte_none(pte) || !pte_present(pte))
536                 return 0;
537         return pte_write(pte) ? range->flags[HMM_PFN_VALID] |
538                                 range->flags[HMM_PFN_WRITE] :
539                                 range->flags[HMM_PFN_VALID];
540 }
541
542 static int hmm_vma_handle_pte(struct mm_walk *walk, unsigned long addr,
543                               unsigned long end, pmd_t *pmdp, pte_t *ptep,
544                               uint64_t *pfn)
545 {
546         struct hmm_vma_walk *hmm_vma_walk = walk->private;
547         struct hmm_range *range = hmm_vma_walk->range;
548         struct vm_area_struct *vma = walk->vma;
549         bool fault, write_fault;
550         uint64_t cpu_flags;
551         pte_t pte = *ptep;
552         uint64_t orig_pfn = *pfn;
553
554         *pfn = range->values[HMM_PFN_NONE];
555         fault = write_fault = false;
556
557         if (pte_none(pte)) {
558                 hmm_pte_need_fault(hmm_vma_walk, orig_pfn, 0,
559                                    &fault, &write_fault);
560                 if (fault || write_fault)
561                         goto fault;
562                 return 0;
563         }
564
565         if (!pte_present(pte)) {
566                 swp_entry_t entry = pte_to_swp_entry(pte);
567
568                 if (!non_swap_entry(entry)) {
569                         if (fault || write_fault)
570                                 goto fault;
571                         return 0;
572                 }
573
574                 /*
575                  * This is a special swap entry, ignore migration, use
576                  * device and report anything else as error.
577                  */
578                 if (is_device_private_entry(entry)) {
579                         cpu_flags = range->flags[HMM_PFN_VALID] |
580                                 range->flags[HMM_PFN_DEVICE_PRIVATE];
581                         cpu_flags |= is_write_device_private_entry(entry) ?
582                                 range->flags[HMM_PFN_WRITE] : 0;
583                         hmm_pte_need_fault(hmm_vma_walk, orig_pfn, cpu_flags,
584                                            &fault, &write_fault);
585                         if (fault || write_fault)
586                                 goto fault;
587                         *pfn = hmm_pfn_from_pfn(range, swp_offset(entry));
588                         *pfn |= cpu_flags;
589                         return 0;
590                 }
591
592                 if (is_migration_entry(entry)) {
593                         if (fault || write_fault) {
594                                 pte_unmap(ptep);
595                                 hmm_vma_walk->last = addr;
596                                 migration_entry_wait(vma->vm_mm,
597                                                      pmdp, addr);
598                                 return -EBUSY;
599                         }
600                         return 0;
601                 }
602
603                 /* Report error for everything else */
604                 *pfn = range->values[HMM_PFN_ERROR];
605                 return -EFAULT;
606         } else {
607                 cpu_flags = pte_to_hmm_pfn_flags(range, pte);
608                 hmm_pte_need_fault(hmm_vma_walk, orig_pfn, cpu_flags,
609                                    &fault, &write_fault);
610         }
611
612         if (fault || write_fault)
613                 goto fault;
614
615         *pfn = hmm_pfn_from_pfn(range, pte_pfn(pte)) | cpu_flags;
616         return 0;
617
618 fault:
619         pte_unmap(ptep);
620         /* Fault any virtual address we were asked to fault */
621         return hmm_vma_walk_hole_(addr, end, fault, write_fault, walk);
622 }
623
624 static int hmm_vma_walk_pmd(pmd_t *pmdp,
625                             unsigned long start,
626                             unsigned long end,
627                             struct mm_walk *walk)
628 {
629         struct hmm_vma_walk *hmm_vma_walk = walk->private;
630         struct hmm_range *range = hmm_vma_walk->range;
631         struct vm_area_struct *vma = walk->vma;
632         uint64_t *pfns = range->pfns;
633         unsigned long addr = start, i;
634         pte_t *ptep;
635         pmd_t pmd;
636
637
638 again:
639         pmd = READ_ONCE(*pmdp);
640         if (pmd_none(pmd))
641                 return hmm_vma_walk_hole(start, end, walk);
642
643         if (pmd_huge(pmd) && (range->vma->vm_flags & VM_HUGETLB))
644                 return hmm_pfns_bad(start, end, walk);
645
646         if (thp_migration_supported() && is_pmd_migration_entry(pmd)) {
647                 bool fault, write_fault;
648                 unsigned long npages;
649                 uint64_t *pfns;
650
651                 i = (addr - range->start) >> PAGE_SHIFT;
652                 npages = (end - addr) >> PAGE_SHIFT;
653                 pfns = &range->pfns[i];
654
655                 hmm_range_need_fault(hmm_vma_walk, pfns, npages,
656                                      0, &fault, &write_fault);
657                 if (fault || write_fault) {
658                         hmm_vma_walk->last = addr;
659                         pmd_migration_entry_wait(vma->vm_mm, pmdp);
660                         return -EBUSY;
661                 }
662                 return 0;
663         } else if (!pmd_present(pmd))
664                 return hmm_pfns_bad(start, end, walk);
665
666         if (pmd_devmap(pmd) || pmd_trans_huge(pmd)) {
667                 /*
668                  * No need to take pmd_lock here, even if some other threads
669                  * is splitting the huge pmd we will get that event through
670                  * mmu_notifier callback.
671                  *
672                  * So just read pmd value and check again its a transparent
673                  * huge or device mapping one and compute corresponding pfn
674                  * values.
675                  */
676                 pmd = pmd_read_atomic(pmdp);
677                 barrier();
678                 if (!pmd_devmap(pmd) && !pmd_trans_huge(pmd))
679                         goto again;
680
681                 i = (addr - range->start) >> PAGE_SHIFT;
682                 return hmm_vma_handle_pmd(walk, addr, end, &pfns[i], pmd);
683         }
684
685         /*
686          * We have handled all the valid case above ie either none, migration,
687          * huge or transparent huge. At this point either it is a valid pmd
688          * entry pointing to pte directory or it is a bad pmd that will not
689          * recover.
690          */
691         if (pmd_bad(pmd))
692                 return hmm_pfns_bad(start, end, walk);
693
694         ptep = pte_offset_map(pmdp, addr);
695         i = (addr - range->start) >> PAGE_SHIFT;
696         for (; addr < end; addr += PAGE_SIZE, ptep++, i++) {
697                 int r;
698
699                 r = hmm_vma_handle_pte(walk, addr, end, pmdp, ptep, &pfns[i]);
700                 if (r) {
701                         /* hmm_vma_handle_pte() did unmap pte directory */
702                         hmm_vma_walk->last = addr;
703                         return r;
704                 }
705         }
706         pte_unmap(ptep - 1);
707
708         hmm_vma_walk->last = addr;
709         return 0;
710 }
711
712 static int hmm_vma_walk_hugetlb_entry(pte_t *pte, unsigned long hmask,
713                                       unsigned long start, unsigned long end,
714                                       struct mm_walk *walk)
715 {
716 #ifdef CONFIG_HUGETLB_PAGE
717         unsigned long addr = start, i, pfn, mask, size, pfn_inc;
718         struct hmm_vma_walk *hmm_vma_walk = walk->private;
719         struct hmm_range *range = hmm_vma_walk->range;
720         struct vm_area_struct *vma = walk->vma;
721         struct hstate *h = hstate_vma(vma);
722         uint64_t orig_pfn, cpu_flags;
723         bool fault, write_fault;
724         spinlock_t *ptl;
725         pte_t entry;
726         int ret = 0;
727
728         size = 1UL << huge_page_shift(h);
729         mask = size - 1;
730         if (range->page_shift != PAGE_SHIFT) {
731                 /* Make sure we are looking at full page. */
732                 if (start & mask)
733                         return -EINVAL;
734                 if (end < (start + size))
735                         return -EINVAL;
736                 pfn_inc = size >> PAGE_SHIFT;
737         } else {
738                 pfn_inc = 1;
739                 size = PAGE_SIZE;
740         }
741
742
743         ptl = huge_pte_lock(hstate_vma(walk->vma), walk->mm, pte);
744         entry = huge_ptep_get(pte);
745
746         i = (start - range->start) >> range->page_shift;
747         orig_pfn = range->pfns[i];
748         range->pfns[i] = range->values[HMM_PFN_NONE];
749         cpu_flags = pte_to_hmm_pfn_flags(range, entry);
750         fault = write_fault = false;
751         hmm_pte_need_fault(hmm_vma_walk, orig_pfn, cpu_flags,
752                            &fault, &write_fault);
753         if (fault || write_fault) {
754                 ret = -ENOENT;
755                 goto unlock;
756         }
757
758         pfn = pte_pfn(entry) + ((start & mask) >> range->page_shift);
759         for (; addr < end; addr += size, i++, pfn += pfn_inc)
760                 range->pfns[i] = hmm_pfn_from_pfn(range, pfn) | cpu_flags;
761         hmm_vma_walk->last = end;
762
763 unlock:
764         spin_unlock(ptl);
765
766         if (ret == -ENOENT)
767                 return hmm_vma_walk_hole_(addr, end, fault, write_fault, walk);
768
769         return ret;
770 #else /* CONFIG_HUGETLB_PAGE */
771         return -EINVAL;
772 #endif
773 }
774
775 static void hmm_pfns_clear(struct hmm_range *range,
776                            uint64_t *pfns,
777                            unsigned long addr,
778                            unsigned long end)
779 {
780         for (; addr < end; addr += PAGE_SIZE, pfns++)
781                 *pfns = range->values[HMM_PFN_NONE];
782 }
783
784 static void hmm_pfns_special(struct hmm_range *range)
785 {
786         unsigned long addr = range->start, i = 0;
787
788         for (; addr < range->end; addr += PAGE_SIZE, i++)
789                 range->pfns[i] = range->values[HMM_PFN_SPECIAL];
790 }
791
792 /*
793  * hmm_range_register() - start tracking change to CPU page table over a range
794  * @range: range
795  * @mm: the mm struct for the range of virtual address
796  * @start: start virtual address (inclusive)
797  * @end: end virtual address (exclusive)
798  * @page_shift: expect page shift for the range
799  * Returns 0 on success, -EFAULT if the address space is no longer valid
800  *
801  * Track updates to the CPU page table see include/linux/hmm.h
802  */
803 int hmm_range_register(struct hmm_range *range,
804                        struct mm_struct *mm,
805                        unsigned long start,
806                        unsigned long end,
807                        unsigned page_shift)
808 {
809         unsigned long mask = ((1UL << page_shift) - 1UL);
810
811         range->valid = false;
812         range->hmm = NULL;
813
814         if ((start & mask) || (end & mask))
815                 return -EINVAL;
816         if (start >= end)
817                 return -EINVAL;
818
819         range->page_shift = page_shift;
820         range->start = start;
821         range->end = end;
822
823         range->hmm = hmm_get_or_create(mm);
824         if (!range->hmm)
825                 return -EFAULT;
826
827         /* Check if hmm_mm_destroy() was call. */
828         if (range->hmm->mm == NULL || range->hmm->dead) {
829                 hmm_put(range->hmm);
830                 return -EFAULT;
831         }
832
833         /* Initialize range to track CPU page table update */
834         mutex_lock(&range->hmm->lock);
835
836         list_add_rcu(&range->list, &range->hmm->ranges);
837
838         /*
839          * If there are any concurrent notifiers we have to wait for them for
840          * the range to be valid (see hmm_range_wait_until_valid()).
841          */
842         if (!range->hmm->notifiers)
843                 range->valid = true;
844         mutex_unlock(&range->hmm->lock);
845
846         return 0;
847 }
848 EXPORT_SYMBOL(hmm_range_register);
849
850 /*
851  * hmm_range_unregister() - stop tracking change to CPU page table over a range
852  * @range: range
853  *
854  * Range struct is used to track updates to the CPU page table after a call to
855  * hmm_range_register(). See include/linux/hmm.h for how to use it.
856  */
857 void hmm_range_unregister(struct hmm_range *range)
858 {
859         /* Sanity check this really should not happen. */
860         if (range->hmm == NULL || range->end <= range->start)
861                 return;
862
863         mutex_lock(&range->hmm->lock);
864         list_del_rcu(&range->list);
865         mutex_unlock(&range->hmm->lock);
866
867         /* Drop reference taken by hmm_range_register() */
868         range->valid = false;
869         hmm_put(range->hmm);
870         range->hmm = NULL;
871 }
872 EXPORT_SYMBOL(hmm_range_unregister);
873
874 /*
875  * hmm_range_snapshot() - snapshot CPU page table for a range
876  * @range: range
877  * Returns: -EINVAL if invalid argument, -ENOMEM out of memory, -EPERM invalid
878  *          permission (for instance asking for write and range is read only),
879  *          -EAGAIN if you need to retry, -EFAULT invalid (ie either no valid
880  *          vma or it is illegal to access that range), number of valid pages
881  *          in range->pfns[] (from range start address).
882  *
883  * This snapshots the CPU page table for a range of virtual addresses. Snapshot
884  * validity is tracked by range struct. See in include/linux/hmm.h for example
885  * on how to use.
886  */
887 long hmm_range_snapshot(struct hmm_range *range)
888 {
889         const unsigned long device_vma = VM_IO | VM_PFNMAP | VM_MIXEDMAP;
890         unsigned long start = range->start, end;
891         struct hmm_vma_walk hmm_vma_walk;
892         struct hmm *hmm = range->hmm;
893         struct vm_area_struct *vma;
894         struct mm_walk mm_walk;
895
896         /* Check if hmm_mm_destroy() was call. */
897         if (hmm->mm == NULL || hmm->dead)
898                 return -EFAULT;
899
900         do {
901                 /* If range is no longer valid force retry. */
902                 if (!range->valid)
903                         return -EAGAIN;
904
905                 vma = find_vma(hmm->mm, start);
906                 if (vma == NULL || (vma->vm_flags & device_vma))
907                         return -EFAULT;
908
909                 /* FIXME support dax */
910                 if (vma_is_dax(vma)) {
911                         hmm_pfns_special(range);
912                         return -EINVAL;
913                 }
914
915                 if (is_vm_hugetlb_page(vma)) {
916                         struct hstate *h = hstate_vma(vma);
917
918                         if (huge_page_shift(h) != range->page_shift &&
919                             range->page_shift != PAGE_SHIFT)
920                                 return -EINVAL;
921                 } else {
922                         if (range->page_shift != PAGE_SHIFT)
923                                 return -EINVAL;
924                 }
925
926                 if (!(vma->vm_flags & VM_READ)) {
927                         /*
928                          * If vma do not allow read access, then assume that it
929                          * does not allow write access, either. HMM does not
930                          * support architecture that allow write without read.
931                          */
932                         hmm_pfns_clear(range, range->pfns,
933                                 range->start, range->end);
934                         return -EPERM;
935                 }
936
937                 range->vma = vma;
938                 hmm_vma_walk.last = start;
939                 hmm_vma_walk.fault = false;
940                 hmm_vma_walk.range = range;
941                 mm_walk.private = &hmm_vma_walk;
942                 end = min(range->end, vma->vm_end);
943
944                 mm_walk.vma = vma;
945                 mm_walk.mm = vma->vm_mm;
946                 mm_walk.pte_entry = NULL;
947                 mm_walk.test_walk = NULL;
948                 mm_walk.hugetlb_entry = NULL;
949                 mm_walk.pmd_entry = hmm_vma_walk_pmd;
950                 mm_walk.pte_hole = hmm_vma_walk_hole;
951                 mm_walk.hugetlb_entry = hmm_vma_walk_hugetlb_entry;
952
953                 walk_page_range(start, end, &mm_walk);
954                 start = end;
955         } while (start < range->end);
956
957         return (hmm_vma_walk.last - range->start) >> PAGE_SHIFT;
958 }
959 EXPORT_SYMBOL(hmm_range_snapshot);
960
961 /*
962  * hmm_range_fault() - try to fault some address in a virtual address range
963  * @range: range being faulted
964  * @block: allow blocking on fault (if true it sleeps and do not drop mmap_sem)
965  * Returns: number of valid pages in range->pfns[] (from range start
966  *          address). This may be zero. If the return value is negative,
967  *          then one of the following values may be returned:
968  *
969  *           -EINVAL  invalid arguments or mm or virtual address are in an
970  *                    invalid vma (for instance device file vma).
971  *           -ENOMEM: Out of memory.
972  *           -EPERM:  Invalid permission (for instance asking for write and
973  *                    range is read only).
974  *           -EAGAIN: If you need to retry and mmap_sem was drop. This can only
975  *                    happens if block argument is false.
976  *           -EBUSY:  If the the range is being invalidated and you should wait
977  *                    for invalidation to finish.
978  *           -EFAULT: Invalid (ie either no valid vma or it is illegal to access
979  *                    that range), number of valid pages in range->pfns[] (from
980  *                    range start address).
981  *
982  * This is similar to a regular CPU page fault except that it will not trigger
983  * any memory migration if the memory being faulted is not accessible by CPUs
984  * and caller does not ask for migration.
985  *
986  * On error, for one virtual address in the range, the function will mark the
987  * corresponding HMM pfn entry with an error flag.
988  */
989 long hmm_range_fault(struct hmm_range *range, bool block)
990 {
991         const unsigned long device_vma = VM_IO | VM_PFNMAP | VM_MIXEDMAP;
992         unsigned long start = range->start, end;
993         struct hmm_vma_walk hmm_vma_walk;
994         struct hmm *hmm = range->hmm;
995         struct vm_area_struct *vma;
996         struct mm_walk mm_walk;
997         int ret;
998
999         /* Check if hmm_mm_destroy() was call. */
1000         if (hmm->mm == NULL || hmm->dead)
1001                 return -EFAULT;
1002
1003         do {
1004                 /* If range is no longer valid force retry. */
1005                 if (!range->valid) {
1006                         up_read(&hmm->mm->mmap_sem);
1007                         return -EAGAIN;
1008                 }
1009
1010                 vma = find_vma(hmm->mm, start);
1011                 if (vma == NULL || (vma->vm_flags & device_vma))
1012                         return -EFAULT;
1013
1014                 /* FIXME support dax */
1015                 if (vma_is_dax(vma)) {
1016                         hmm_pfns_special(range);
1017                         return -EINVAL;
1018                 }
1019
1020                 if (is_vm_hugetlb_page(vma)) {
1021                         if (huge_page_shift(hstate_vma(vma)) !=
1022                             range->page_shift &&
1023                             range->page_shift != PAGE_SHIFT)
1024                                 return -EINVAL;
1025                 } else {
1026                         if (range->page_shift != PAGE_SHIFT)
1027                                 return -EINVAL;
1028                 }
1029
1030                 if (!(vma->vm_flags & VM_READ)) {
1031                         /*
1032                          * If vma do not allow read access, then assume that it
1033                          * does not allow write access, either. HMM does not
1034                          * support architecture that allow write without read.
1035                          */
1036                         hmm_pfns_clear(range, range->pfns,
1037                                 range->start, range->end);
1038                         return -EPERM;
1039                 }
1040
1041                 range->vma = vma;
1042                 hmm_vma_walk.last = start;
1043                 hmm_vma_walk.fault = true;
1044                 hmm_vma_walk.block = block;
1045                 hmm_vma_walk.range = range;
1046                 mm_walk.private = &hmm_vma_walk;
1047                 end = min(range->end, vma->vm_end);
1048
1049                 mm_walk.vma = vma;
1050                 mm_walk.mm = vma->vm_mm;
1051                 mm_walk.pte_entry = NULL;
1052                 mm_walk.test_walk = NULL;
1053                 mm_walk.hugetlb_entry = NULL;
1054                 mm_walk.pmd_entry = hmm_vma_walk_pmd;
1055                 mm_walk.pte_hole = hmm_vma_walk_hole;
1056                 mm_walk.hugetlb_entry = hmm_vma_walk_hugetlb_entry;
1057
1058                 do {
1059                         ret = walk_page_range(start, end, &mm_walk);
1060                         start = hmm_vma_walk.last;
1061
1062                         /* Keep trying while the range is valid. */
1063                 } while (ret == -EBUSY && range->valid);
1064
1065                 if (ret) {
1066                         unsigned long i;
1067
1068                         i = (hmm_vma_walk.last - range->start) >> PAGE_SHIFT;
1069                         hmm_pfns_clear(range, &range->pfns[i],
1070                                 hmm_vma_walk.last, range->end);
1071                         return ret;
1072                 }
1073                 start = end;
1074
1075         } while (start < range->end);
1076
1077         return (hmm_vma_walk.last - range->start) >> PAGE_SHIFT;
1078 }
1079 EXPORT_SYMBOL(hmm_range_fault);
1080 #endif /* IS_ENABLED(CONFIG_HMM_MIRROR) */
1081
1082
1083 #if IS_ENABLED(CONFIG_DEVICE_PRIVATE) ||  IS_ENABLED(CONFIG_DEVICE_PUBLIC)
1084 struct page *hmm_vma_alloc_locked_page(struct vm_area_struct *vma,
1085                                        unsigned long addr)
1086 {
1087         struct page *page;
1088
1089         page = alloc_page_vma(GFP_HIGHUSER, vma, addr);
1090         if (!page)
1091                 return NULL;
1092         lock_page(page);
1093         return page;
1094 }
1095 EXPORT_SYMBOL(hmm_vma_alloc_locked_page);
1096
1097
1098 static void hmm_devmem_ref_release(struct percpu_ref *ref)
1099 {
1100         struct hmm_devmem *devmem;
1101
1102         devmem = container_of(ref, struct hmm_devmem, ref);
1103         complete(&devmem->completion);
1104 }
1105
1106 static void hmm_devmem_ref_exit(void *data)
1107 {
1108         struct percpu_ref *ref = data;
1109         struct hmm_devmem *devmem;
1110
1111         devmem = container_of(ref, struct hmm_devmem, ref);
1112         wait_for_completion(&devmem->completion);
1113         percpu_ref_exit(ref);
1114 }
1115
1116 static void hmm_devmem_ref_kill(struct percpu_ref *ref)
1117 {
1118         percpu_ref_kill(ref);
1119 }
1120
1121 static vm_fault_t hmm_devmem_fault(struct vm_area_struct *vma,
1122                             unsigned long addr,
1123                             const struct page *page,
1124                             unsigned int flags,
1125                             pmd_t *pmdp)
1126 {
1127         struct hmm_devmem *devmem = page->pgmap->data;
1128
1129         return devmem->ops->fault(devmem, vma, addr, page, flags, pmdp);
1130 }
1131
1132 static void hmm_devmem_free(struct page *page, void *data)
1133 {
1134         struct hmm_devmem *devmem = data;
1135
1136         page->mapping = NULL;
1137
1138         devmem->ops->free(devmem, page);
1139 }
1140
1141 /*
1142  * hmm_devmem_add() - hotplug ZONE_DEVICE memory for device memory
1143  *
1144  * @ops: memory event device driver callback (see struct hmm_devmem_ops)
1145  * @device: device struct to bind the resource too
1146  * @size: size in bytes of the device memory to add
1147  * Returns: pointer to new hmm_devmem struct ERR_PTR otherwise
1148  *
1149  * This function first finds an empty range of physical address big enough to
1150  * contain the new resource, and then hotplugs it as ZONE_DEVICE memory, which
1151  * in turn allocates struct pages. It does not do anything beyond that; all
1152  * events affecting the memory will go through the various callbacks provided
1153  * by hmm_devmem_ops struct.
1154  *
1155  * Device driver should call this function during device initialization and
1156  * is then responsible of memory management. HMM only provides helpers.
1157  */
1158 struct hmm_devmem *hmm_devmem_add(const struct hmm_devmem_ops *ops,
1159                                   struct device *device,
1160                                   unsigned long size)
1161 {
1162         struct hmm_devmem *devmem;
1163         resource_size_t addr;
1164         void *result;
1165         int ret;
1166
1167         dev_pagemap_get_ops();
1168
1169         devmem = devm_kzalloc(device, sizeof(*devmem), GFP_KERNEL);
1170         if (!devmem)
1171                 return ERR_PTR(-ENOMEM);
1172
1173         init_completion(&devmem->completion);
1174         devmem->pfn_first = -1UL;
1175         devmem->pfn_last = -1UL;
1176         devmem->resource = NULL;
1177         devmem->device = device;
1178         devmem->ops = ops;
1179
1180         ret = percpu_ref_init(&devmem->ref, &hmm_devmem_ref_release,
1181                               0, GFP_KERNEL);
1182         if (ret)
1183                 return ERR_PTR(ret);
1184
1185         ret = devm_add_action_or_reset(device, hmm_devmem_ref_exit, &devmem->ref);
1186         if (ret)
1187                 return ERR_PTR(ret);
1188
1189         size = ALIGN(size, PA_SECTION_SIZE);
1190         addr = min((unsigned long)iomem_resource.end,
1191                    (1UL << MAX_PHYSMEM_BITS) - 1);
1192         addr = addr - size + 1UL;
1193
1194         /*
1195          * FIXME add a new helper to quickly walk resource tree and find free
1196          * range
1197          *
1198          * FIXME what about ioport_resource resource ?
1199          */
1200         for (; addr > size && addr >= iomem_resource.start; addr -= size) {
1201                 ret = region_intersects(addr, size, 0, IORES_DESC_NONE);
1202                 if (ret != REGION_DISJOINT)
1203                         continue;
1204
1205                 devmem->resource = devm_request_mem_region(device, addr, size,
1206                                                            dev_name(device));
1207                 if (!devmem->resource)
1208                         return ERR_PTR(-ENOMEM);
1209                 break;
1210         }
1211         if (!devmem->resource)
1212                 return ERR_PTR(-ERANGE);
1213
1214         devmem->resource->desc = IORES_DESC_DEVICE_PRIVATE_MEMORY;
1215         devmem->pfn_first = devmem->resource->start >> PAGE_SHIFT;
1216         devmem->pfn_last = devmem->pfn_first +
1217                            (resource_size(devmem->resource) >> PAGE_SHIFT);
1218         devmem->page_fault = hmm_devmem_fault;
1219
1220         devmem->pagemap.type = MEMORY_DEVICE_PRIVATE;
1221         devmem->pagemap.res = *devmem->resource;
1222         devmem->pagemap.page_free = hmm_devmem_free;
1223         devmem->pagemap.altmap_valid = false;
1224         devmem->pagemap.ref = &devmem->ref;
1225         devmem->pagemap.data = devmem;
1226         devmem->pagemap.kill = hmm_devmem_ref_kill;
1227
1228         result = devm_memremap_pages(devmem->device, &devmem->pagemap);
1229         if (IS_ERR(result))
1230                 return result;
1231         return devmem;
1232 }
1233 EXPORT_SYMBOL_GPL(hmm_devmem_add);
1234
1235 struct hmm_devmem *hmm_devmem_add_resource(const struct hmm_devmem_ops *ops,
1236                                            struct device *device,
1237                                            struct resource *res)
1238 {
1239         struct hmm_devmem *devmem;
1240         void *result;
1241         int ret;
1242
1243         if (res->desc != IORES_DESC_DEVICE_PUBLIC_MEMORY)
1244                 return ERR_PTR(-EINVAL);
1245
1246         dev_pagemap_get_ops();
1247
1248         devmem = devm_kzalloc(device, sizeof(*devmem), GFP_KERNEL);
1249         if (!devmem)
1250                 return ERR_PTR(-ENOMEM);
1251
1252         init_completion(&devmem->completion);
1253         devmem->pfn_first = -1UL;
1254         devmem->pfn_last = -1UL;
1255         devmem->resource = res;
1256         devmem->device = device;
1257         devmem->ops = ops;
1258
1259         ret = percpu_ref_init(&devmem->ref, &hmm_devmem_ref_release,
1260                               0, GFP_KERNEL);
1261         if (ret)
1262                 return ERR_PTR(ret);
1263
1264         ret = devm_add_action_or_reset(device, hmm_devmem_ref_exit,
1265                         &devmem->ref);
1266         if (ret)
1267                 return ERR_PTR(ret);
1268
1269         devmem->pfn_first = devmem->resource->start >> PAGE_SHIFT;
1270         devmem->pfn_last = devmem->pfn_first +
1271                            (resource_size(devmem->resource) >> PAGE_SHIFT);
1272         devmem->page_fault = hmm_devmem_fault;
1273
1274         devmem->pagemap.type = MEMORY_DEVICE_PUBLIC;
1275         devmem->pagemap.res = *devmem->resource;
1276         devmem->pagemap.page_free = hmm_devmem_free;
1277         devmem->pagemap.altmap_valid = false;
1278         devmem->pagemap.ref = &devmem->ref;
1279         devmem->pagemap.data = devmem;
1280         devmem->pagemap.kill = hmm_devmem_ref_kill;
1281
1282         result = devm_memremap_pages(devmem->device, &devmem->pagemap);
1283         if (IS_ERR(result))
1284                 return result;
1285         return devmem;
1286 }
1287 EXPORT_SYMBOL_GPL(hmm_devmem_add_resource);
1288
1289 /*
1290  * A device driver that wants to handle multiple devices memory through a
1291  * single fake device can use hmm_device to do so. This is purely a helper
1292  * and it is not needed to make use of any HMM functionality.
1293  */
1294 #define HMM_DEVICE_MAX 256
1295
1296 static DECLARE_BITMAP(hmm_device_mask, HMM_DEVICE_MAX);
1297 static DEFINE_SPINLOCK(hmm_device_lock);
1298 static struct class *hmm_device_class;
1299 static dev_t hmm_device_devt;
1300
1301 static void hmm_device_release(struct device *device)
1302 {
1303         struct hmm_device *hmm_device;
1304
1305         hmm_device = container_of(device, struct hmm_device, device);
1306         spin_lock(&hmm_device_lock);
1307         clear_bit(hmm_device->minor, hmm_device_mask);
1308         spin_unlock(&hmm_device_lock);
1309
1310         kfree(hmm_device);
1311 }
1312
1313 struct hmm_device *hmm_device_new(void *drvdata)
1314 {
1315         struct hmm_device *hmm_device;
1316
1317         hmm_device = kzalloc(sizeof(*hmm_device), GFP_KERNEL);
1318         if (!hmm_device)
1319                 return ERR_PTR(-ENOMEM);
1320
1321         spin_lock(&hmm_device_lock);
1322         hmm_device->minor = find_first_zero_bit(hmm_device_mask, HMM_DEVICE_MAX);
1323         if (hmm_device->minor >= HMM_DEVICE_MAX) {
1324                 spin_unlock(&hmm_device_lock);
1325                 kfree(hmm_device);
1326                 return ERR_PTR(-EBUSY);
1327         }
1328         set_bit(hmm_device->minor, hmm_device_mask);
1329         spin_unlock(&hmm_device_lock);
1330
1331         dev_set_name(&hmm_device->device, "hmm_device%d", hmm_device->minor);
1332         hmm_device->device.devt = MKDEV(MAJOR(hmm_device_devt),
1333                                         hmm_device->minor);
1334         hmm_device->device.release = hmm_device_release;
1335         dev_set_drvdata(&hmm_device->device, drvdata);
1336         hmm_device->device.class = hmm_device_class;
1337         device_initialize(&hmm_device->device);
1338
1339         return hmm_device;
1340 }
1341 EXPORT_SYMBOL(hmm_device_new);
1342
1343 void hmm_device_put(struct hmm_device *hmm_device)
1344 {
1345         put_device(&hmm_device->device);
1346 }
1347 EXPORT_SYMBOL(hmm_device_put);
1348
1349 static int __init hmm_init(void)
1350 {
1351         int ret;
1352
1353         ret = alloc_chrdev_region(&hmm_device_devt, 0,
1354                                   HMM_DEVICE_MAX,
1355                                   "hmm_device");
1356         if (ret)
1357                 return ret;
1358
1359         hmm_device_class = class_create(THIS_MODULE, "hmm_device");
1360         if (IS_ERR(hmm_device_class)) {
1361                 unregister_chrdev_region(hmm_device_devt, HMM_DEVICE_MAX);
1362                 return PTR_ERR(hmm_device_class);
1363         }
1364         return 0;
1365 }
1366
1367 device_initcall(hmm_init);
1368 #endif /* CONFIG_DEVICE_PRIVATE || CONFIG_DEVICE_PUBLIC */