1 // SPDX-License-Identifier: GPL-2.0-only
2 #include <linux/kernel.h>
3 #include <linux/errno.h>
5 #include <linux/spinlock.h>
8 #include <linux/memremap.h>
9 #include <linux/pagemap.h>
10 #include <linux/rmap.h>
11 #include <linux/swap.h>
12 #include <linux/swapops.h>
13 #include <linux/secretmem.h>
15 #include <linux/sched/signal.h>
16 #include <linux/rwsem.h>
17 #include <linux/hugetlb.h>
18 #include <linux/migrate.h>
19 #include <linux/mm_inline.h>
20 #include <linux/sched/mm.h>
22 #include <asm/mmu_context.h>
23 #include <asm/tlbflush.h>
27 struct follow_page_context {
28 struct dev_pagemap *pgmap;
29 unsigned int page_mask;
32 static void hpage_pincount_add(struct page *page, int refs)
34 VM_BUG_ON_PAGE(!hpage_pincount_available(page), page);
35 VM_BUG_ON_PAGE(page != compound_head(page), page);
37 atomic_add(refs, compound_pincount_ptr(page));
40 static void hpage_pincount_sub(struct page *page, int refs)
42 VM_BUG_ON_PAGE(!hpage_pincount_available(page), page);
43 VM_BUG_ON_PAGE(page != compound_head(page), page);
45 atomic_sub(refs, compound_pincount_ptr(page));
48 /* Equivalent to calling put_page() @refs times. */
49 static void put_page_refs(struct page *page, int refs)
51 #ifdef CONFIG_DEBUG_VM
52 if (VM_WARN_ON_ONCE_PAGE(page_ref_count(page) < refs, page))
57 * Calling put_page() for each ref is unnecessarily slow. Only the last
58 * ref needs a put_page().
61 page_ref_sub(page, refs - 1);
66 * Return the compound head page with ref appropriately incremented,
67 * or NULL if that failed.
69 static inline struct page *try_get_compound_head(struct page *page, int refs)
71 struct page *head = compound_head(page);
73 if (WARN_ON_ONCE(page_ref_count(head) < 0))
75 if (unlikely(!page_cache_add_speculative(head, refs)))
79 * At this point we have a stable reference to the head page; but it
80 * could be that between the compound_head() lookup and the refcount
81 * increment, the compound page was split, in which case we'd end up
82 * holding a reference on a page that has nothing to do with the page
83 * we were given anymore.
84 * So now that the head page is stable, recheck that the pages still
87 if (unlikely(compound_head(page) != head)) {
88 put_page_refs(head, refs);
96 * try_grab_compound_head() - attempt to elevate a page's refcount, by a
97 * flags-dependent amount.
99 * Even though the name includes "compound_head", this function is still
100 * appropriate for callers that have a non-compound @page to get.
102 * @page: pointer to page to be grabbed
103 * @refs: the value to (effectively) add to the page's refcount
104 * @flags: gup flags: these are the FOLL_* flag values.
106 * "grab" names in this file mean, "look at flags to decide whether to use
107 * FOLL_PIN or FOLL_GET behavior, when incrementing the page's refcount.
109 * Either FOLL_PIN or FOLL_GET (or neither) must be set, but not both at the
110 * same time. (That's true throughout the get_user_pages*() and
111 * pin_user_pages*() APIs.) Cases:
113 * FOLL_GET: page's refcount will be incremented by @refs.
115 * FOLL_PIN on compound pages that are > two pages long: page's refcount will
116 * be incremented by @refs, and page[2].hpage_pinned_refcount will be
117 * incremented by @refs * GUP_PIN_COUNTING_BIAS.
119 * FOLL_PIN on normal pages, or compound pages that are two pages long:
120 * page's refcount will be incremented by @refs * GUP_PIN_COUNTING_BIAS.
122 * Return: head page (with refcount appropriately incremented) for success, or
123 * NULL upon failure. If neither FOLL_GET nor FOLL_PIN was set, that's
124 * considered failure, and furthermore, a likely bug in the caller, so a warning
127 __maybe_unused struct page *try_grab_compound_head(struct page *page,
128 int refs, unsigned int flags)
130 if (flags & FOLL_GET)
131 return try_get_compound_head(page, refs);
132 else if (flags & FOLL_PIN) {
134 * Can't do FOLL_LONGTERM + FOLL_PIN gup fast path if not in a
135 * right zone, so fail and let the caller fall back to the slow
138 if (unlikely((flags & FOLL_LONGTERM) &&
139 !is_pinnable_page(page)))
143 * CAUTION: Don't use compound_head() on the page before this
144 * point, the result won't be stable.
146 page = try_get_compound_head(page, refs);
151 * When pinning a compound page of order > 1 (which is what
152 * hpage_pincount_available() checks for), use an exact count to
153 * track it, via hpage_pincount_add/_sub().
155 * However, be sure to *also* increment the normal page refcount
156 * field at least once, so that the page really is pinned.
157 * That's why the refcount from the earlier
158 * try_get_compound_head() is left intact.
160 if (hpage_pincount_available(page))
161 hpage_pincount_add(page, refs);
163 page_ref_add(page, refs * (GUP_PIN_COUNTING_BIAS - 1));
165 mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_ACQUIRED,
175 static void put_compound_head(struct page *page, int refs, unsigned int flags)
177 if (flags & FOLL_PIN) {
178 mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_RELEASED,
181 if (hpage_pincount_available(page))
182 hpage_pincount_sub(page, refs);
184 refs *= GUP_PIN_COUNTING_BIAS;
187 put_page_refs(page, refs);
191 * try_grab_page() - elevate a page's refcount by a flag-dependent amount
193 * This might not do anything at all, depending on the flags argument.
195 * "grab" names in this file mean, "look at flags to decide whether to use
196 * FOLL_PIN or FOLL_GET behavior, when incrementing the page's refcount.
198 * @page: pointer to page to be grabbed
199 * @flags: gup flags: these are the FOLL_* flag values.
201 * Either FOLL_PIN or FOLL_GET (or neither) may be set, but not both at the same
202 * time. Cases: please see the try_grab_compound_head() documentation, with
205 * Return: true for success, or if no action was required (if neither FOLL_PIN
206 * nor FOLL_GET was set, nothing is done). False for failure: FOLL_GET or
207 * FOLL_PIN was set, but the page could not be grabbed.
209 bool __must_check try_grab_page(struct page *page, unsigned int flags)
211 WARN_ON_ONCE((flags & (FOLL_GET | FOLL_PIN)) == (FOLL_GET | FOLL_PIN));
213 if (flags & FOLL_GET)
214 return try_get_page(page);
215 else if (flags & FOLL_PIN) {
218 page = compound_head(page);
220 if (WARN_ON_ONCE(page_ref_count(page) <= 0))
223 if (hpage_pincount_available(page))
224 hpage_pincount_add(page, 1);
226 refs = GUP_PIN_COUNTING_BIAS;
229 * Similar to try_grab_compound_head(): even if using the
230 * hpage_pincount_add/_sub() routines, be sure to
231 * *also* increment the normal page refcount field at least
232 * once, so that the page really is pinned.
234 page_ref_add(page, refs);
236 mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_ACQUIRED, 1);
243 * unpin_user_page() - release a dma-pinned page
244 * @page: pointer to page to be released
246 * Pages that were pinned via pin_user_pages*() must be released via either
247 * unpin_user_page(), or one of the unpin_user_pages*() routines. This is so
248 * that such pages can be separately tracked and uniquely handled. In
249 * particular, interactions with RDMA and filesystems need special handling.
251 void unpin_user_page(struct page *page)
253 put_compound_head(compound_head(page), 1, FOLL_PIN);
255 EXPORT_SYMBOL(unpin_user_page);
257 static inline void compound_range_next(unsigned long i, unsigned long npages,
258 struct page **list, struct page **head,
259 unsigned int *ntails)
261 struct page *next, *page;
268 page = compound_head(next);
269 if (PageCompound(page) && compound_order(page) >= 1)
270 nr = min_t(unsigned int,
271 page + compound_nr(page) - next, npages - i);
277 #define for_each_compound_range(__i, __list, __npages, __head, __ntails) \
279 compound_range_next(__i, __npages, __list, &(__head), &(__ntails)); \
280 __i < __npages; __i += __ntails, \
281 compound_range_next(__i, __npages, __list, &(__head), &(__ntails)))
283 static inline void compound_next(unsigned long i, unsigned long npages,
284 struct page **list, struct page **head,
285 unsigned int *ntails)
293 page = compound_head(list[i]);
294 for (nr = i + 1; nr < npages; nr++) {
295 if (compound_head(list[nr]) != page)
303 #define for_each_compound_head(__i, __list, __npages, __head, __ntails) \
305 compound_next(__i, __npages, __list, &(__head), &(__ntails)); \
306 __i < __npages; __i += __ntails, \
307 compound_next(__i, __npages, __list, &(__head), &(__ntails)))
310 * unpin_user_pages_dirty_lock() - release and optionally dirty gup-pinned pages
311 * @pages: array of pages to be maybe marked dirty, and definitely released.
312 * @npages: number of pages in the @pages array.
313 * @make_dirty: whether to mark the pages dirty
315 * "gup-pinned page" refers to a page that has had one of the get_user_pages()
316 * variants called on that page.
318 * For each page in the @pages array, make that page (or its head page, if a
319 * compound page) dirty, if @make_dirty is true, and if the page was previously
320 * listed as clean. In any case, releases all pages using unpin_user_page(),
321 * possibly via unpin_user_pages(), for the non-dirty case.
323 * Please see the unpin_user_page() documentation for details.
325 * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is
326 * required, then the caller should a) verify that this is really correct,
327 * because _lock() is usually required, and b) hand code it:
328 * set_page_dirty_lock(), unpin_user_page().
331 void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
339 unpin_user_pages(pages, npages);
343 for_each_compound_head(index, pages, npages, head, ntails) {
345 * Checking PageDirty at this point may race with
346 * clear_page_dirty_for_io(), but that's OK. Two key
349 * 1) This code sees the page as already dirty, so it
350 * skips the call to set_page_dirty(). That could happen
351 * because clear_page_dirty_for_io() called
352 * page_mkclean(), followed by set_page_dirty().
353 * However, now the page is going to get written back,
354 * which meets the original intention of setting it
355 * dirty, so all is well: clear_page_dirty_for_io() goes
356 * on to call TestClearPageDirty(), and write the page
359 * 2) This code sees the page as clean, so it calls
360 * set_page_dirty(). The page stays dirty, despite being
361 * written back, so it gets written back again in the
362 * next writeback cycle. This is harmless.
364 if (!PageDirty(head))
365 set_page_dirty_lock(head);
366 put_compound_head(head, ntails, FOLL_PIN);
369 EXPORT_SYMBOL(unpin_user_pages_dirty_lock);
372 * unpin_user_page_range_dirty_lock() - release and optionally dirty
373 * gup-pinned page range
375 * @page: the starting page of a range maybe marked dirty, and definitely released.
376 * @npages: number of consecutive pages to release.
377 * @make_dirty: whether to mark the pages dirty
379 * "gup-pinned page range" refers to a range of pages that has had one of the
380 * pin_user_pages() variants called on that page.
382 * For the page ranges defined by [page .. page+npages], make that range (or
383 * its head pages, if a compound page) dirty, if @make_dirty is true, and if the
384 * page range was previously listed as clean.
386 * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is
387 * required, then the caller should a) verify that this is really correct,
388 * because _lock() is usually required, and b) hand code it:
389 * set_page_dirty_lock(), unpin_user_page().
392 void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages,
399 for_each_compound_range(index, &page, npages, head, ntails) {
400 if (make_dirty && !PageDirty(head))
401 set_page_dirty_lock(head);
402 put_compound_head(head, ntails, FOLL_PIN);
405 EXPORT_SYMBOL(unpin_user_page_range_dirty_lock);
408 * unpin_user_pages() - release an array of gup-pinned pages.
409 * @pages: array of pages to be marked dirty and released.
410 * @npages: number of pages in the @pages array.
412 * For each page in the @pages array, release the page using unpin_user_page().
414 * Please see the unpin_user_page() documentation for details.
416 void unpin_user_pages(struct page **pages, unsigned long npages)
423 * If this WARN_ON() fires, then the system *might* be leaking pages (by
424 * leaving them pinned), but probably not. More likely, gup/pup returned
425 * a hard -ERRNO error to the caller, who erroneously passed it here.
427 if (WARN_ON(IS_ERR_VALUE(npages)))
430 for_each_compound_head(index, pages, npages, head, ntails)
431 put_compound_head(head, ntails, FOLL_PIN);
433 EXPORT_SYMBOL(unpin_user_pages);
436 * Set the MMF_HAS_PINNED if not set yet; after set it'll be there for the mm's
437 * lifecycle. Avoid setting the bit unless necessary, or it might cause write
438 * cache bouncing on large SMP machines for concurrent pinned gups.
440 static inline void mm_set_has_pinned_flag(unsigned long *mm_flags)
442 if (!test_bit(MMF_HAS_PINNED, mm_flags))
443 set_bit(MMF_HAS_PINNED, mm_flags);
447 static struct page *no_page_table(struct vm_area_struct *vma,
451 * When core dumping an enormous anonymous area that nobody
452 * has touched so far, we don't want to allocate unnecessary pages or
453 * page tables. Return error instead of NULL to skip handle_mm_fault,
454 * then get_dump_page() will return NULL to leave a hole in the dump.
455 * But we can only make this optimization where a hole would surely
456 * be zero-filled if handle_mm_fault() actually did handle it.
458 if ((flags & FOLL_DUMP) &&
459 (vma_is_anonymous(vma) || !vma->vm_ops->fault))
460 return ERR_PTR(-EFAULT);
464 static int follow_pfn_pte(struct vm_area_struct *vma, unsigned long address,
465 pte_t *pte, unsigned int flags)
467 /* No page to get reference */
468 if (flags & FOLL_GET)
471 if (flags & FOLL_TOUCH) {
474 if (flags & FOLL_WRITE)
475 entry = pte_mkdirty(entry);
476 entry = pte_mkyoung(entry);
478 if (!pte_same(*pte, entry)) {
479 set_pte_at(vma->vm_mm, address, pte, entry);
480 update_mmu_cache(vma, address, pte);
484 /* Proper page table entry exists, but no corresponding struct page */
489 * FOLL_FORCE can write to even unwritable pte's, but only
490 * after we've gone through a COW cycle and they are dirty.
492 static inline bool can_follow_write_pte(pte_t pte, unsigned int flags)
494 return pte_write(pte) ||
495 ((flags & FOLL_FORCE) && (flags & FOLL_COW) && pte_dirty(pte));
498 static struct page *follow_page_pte(struct vm_area_struct *vma,
499 unsigned long address, pmd_t *pmd, unsigned int flags,
500 struct dev_pagemap **pgmap)
502 struct mm_struct *mm = vma->vm_mm;
508 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
509 if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
510 (FOLL_PIN | FOLL_GET)))
511 return ERR_PTR(-EINVAL);
513 if (unlikely(pmd_bad(*pmd)))
514 return no_page_table(vma, flags);
516 ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
518 if (!pte_present(pte)) {
521 * KSM's break_ksm() relies upon recognizing a ksm page
522 * even while it is being migrated, so for that case we
523 * need migration_entry_wait().
525 if (likely(!(flags & FOLL_MIGRATION)))
529 entry = pte_to_swp_entry(pte);
530 if (!is_migration_entry(entry))
532 pte_unmap_unlock(ptep, ptl);
533 migration_entry_wait(mm, pmd, address);
536 if ((flags & FOLL_NUMA) && pte_protnone(pte))
538 if ((flags & FOLL_WRITE) && !can_follow_write_pte(pte, flags)) {
539 pte_unmap_unlock(ptep, ptl);
543 page = vm_normal_page(vma, address, pte);
544 if (!page && pte_devmap(pte) && (flags & (FOLL_GET | FOLL_PIN))) {
546 * Only return device mapping pages in the FOLL_GET or FOLL_PIN
547 * case since they are only valid while holding the pgmap
550 *pgmap = get_dev_pagemap(pte_pfn(pte), *pgmap);
552 page = pte_page(pte);
555 } else if (unlikely(!page)) {
556 if (flags & FOLL_DUMP) {
557 /* Avoid special (like zero) pages in core dumps */
558 page = ERR_PTR(-EFAULT);
562 if (is_zero_pfn(pte_pfn(pte))) {
563 page = pte_page(pte);
565 ret = follow_pfn_pte(vma, address, ptep, flags);
571 /* try_grab_page() does nothing unless FOLL_GET or FOLL_PIN is set. */
572 if (unlikely(!try_grab_page(page, flags))) {
573 page = ERR_PTR(-ENOMEM);
577 * We need to make the page accessible if and only if we are going
578 * to access its content (the FOLL_PIN case). Please see
579 * Documentation/core-api/pin_user_pages.rst for details.
581 if (flags & FOLL_PIN) {
582 ret = arch_make_page_accessible(page);
584 unpin_user_page(page);
589 if (flags & FOLL_TOUCH) {
590 if ((flags & FOLL_WRITE) &&
591 !pte_dirty(pte) && !PageDirty(page))
592 set_page_dirty(page);
594 * pte_mkyoung() would be more correct here, but atomic care
595 * is needed to avoid losing the dirty bit: it is easier to use
596 * mark_page_accessed().
598 mark_page_accessed(page);
600 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
601 /* Do not mlock pte-mapped THP */
602 if (PageTransCompound(page))
606 * The preliminary mapping check is mainly to avoid the
607 * pointless overhead of lock_page on the ZERO_PAGE
608 * which might bounce very badly if there is contention.
610 * If the page is already locked, we don't need to
611 * handle it now - vmscan will handle it later if and
612 * when it attempts to reclaim the page.
614 if (page->mapping && trylock_page(page)) {
615 lru_add_drain(); /* push cached pages to LRU */
617 * Because we lock page here, and migration is
618 * blocked by the pte's page reference, and we
619 * know the page is still mapped, we don't even
620 * need to check for file-cache page truncation.
622 mlock_vma_page(page);
627 pte_unmap_unlock(ptep, ptl);
630 pte_unmap_unlock(ptep, ptl);
633 return no_page_table(vma, flags);
636 static struct page *follow_pmd_mask(struct vm_area_struct *vma,
637 unsigned long address, pud_t *pudp,
639 struct follow_page_context *ctx)
644 struct mm_struct *mm = vma->vm_mm;
646 pmd = pmd_offset(pudp, address);
648 * The READ_ONCE() will stabilize the pmdval in a register or
649 * on the stack so that it will stop changing under the code.
651 pmdval = READ_ONCE(*pmd);
652 if (pmd_none(pmdval))
653 return no_page_table(vma, flags);
654 if (pmd_huge(pmdval) && is_vm_hugetlb_page(vma)) {
655 page = follow_huge_pmd(mm, address, pmd, flags);
658 return no_page_table(vma, flags);
660 if (is_hugepd(__hugepd(pmd_val(pmdval)))) {
661 page = follow_huge_pd(vma, address,
662 __hugepd(pmd_val(pmdval)), flags,
666 return no_page_table(vma, flags);
669 if (!pmd_present(pmdval)) {
671 * Should never reach here, if thp migration is not supported;
672 * Otherwise, it must be a thp migration entry.
674 VM_BUG_ON(!thp_migration_supported() ||
675 !is_pmd_migration_entry(pmdval));
677 if (likely(!(flags & FOLL_MIGRATION)))
678 return no_page_table(vma, flags);
680 pmd_migration_entry_wait(mm, pmd);
681 pmdval = READ_ONCE(*pmd);
683 * MADV_DONTNEED may convert the pmd to null because
684 * mmap_lock is held in read mode
686 if (pmd_none(pmdval))
687 return no_page_table(vma, flags);
690 if (pmd_devmap(pmdval)) {
691 ptl = pmd_lock(mm, pmd);
692 page = follow_devmap_pmd(vma, address, pmd, flags, &ctx->pgmap);
697 if (likely(!pmd_trans_huge(pmdval)))
698 return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
700 if ((flags & FOLL_NUMA) && pmd_protnone(pmdval))
701 return no_page_table(vma, flags);
704 ptl = pmd_lock(mm, pmd);
705 if (unlikely(pmd_none(*pmd))) {
707 return no_page_table(vma, flags);
709 if (unlikely(!pmd_present(*pmd))) {
711 if (likely(!(flags & FOLL_MIGRATION)))
712 return no_page_table(vma, flags);
713 pmd_migration_entry_wait(mm, pmd);
716 if (unlikely(!pmd_trans_huge(*pmd))) {
718 return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
720 if (flags & FOLL_SPLIT_PMD) {
722 page = pmd_page(*pmd);
723 if (is_huge_zero_page(page)) {
726 split_huge_pmd(vma, pmd, address);
727 if (pmd_trans_unstable(pmd))
731 split_huge_pmd(vma, pmd, address);
732 ret = pte_alloc(mm, pmd) ? -ENOMEM : 0;
735 return ret ? ERR_PTR(ret) :
736 follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
738 page = follow_trans_huge_pmd(vma, address, pmd, flags);
740 ctx->page_mask = HPAGE_PMD_NR - 1;
744 static struct page *follow_pud_mask(struct vm_area_struct *vma,
745 unsigned long address, p4d_t *p4dp,
747 struct follow_page_context *ctx)
752 struct mm_struct *mm = vma->vm_mm;
754 pud = pud_offset(p4dp, address);
756 return no_page_table(vma, flags);
757 if (pud_huge(*pud) && is_vm_hugetlb_page(vma)) {
758 page = follow_huge_pud(mm, address, pud, flags);
761 return no_page_table(vma, flags);
763 if (is_hugepd(__hugepd(pud_val(*pud)))) {
764 page = follow_huge_pd(vma, address,
765 __hugepd(pud_val(*pud)), flags,
769 return no_page_table(vma, flags);
771 if (pud_devmap(*pud)) {
772 ptl = pud_lock(mm, pud);
773 page = follow_devmap_pud(vma, address, pud, flags, &ctx->pgmap);
778 if (unlikely(pud_bad(*pud)))
779 return no_page_table(vma, flags);
781 return follow_pmd_mask(vma, address, pud, flags, ctx);
784 static struct page *follow_p4d_mask(struct vm_area_struct *vma,
785 unsigned long address, pgd_t *pgdp,
787 struct follow_page_context *ctx)
792 p4d = p4d_offset(pgdp, address);
794 return no_page_table(vma, flags);
795 BUILD_BUG_ON(p4d_huge(*p4d));
796 if (unlikely(p4d_bad(*p4d)))
797 return no_page_table(vma, flags);
799 if (is_hugepd(__hugepd(p4d_val(*p4d)))) {
800 page = follow_huge_pd(vma, address,
801 __hugepd(p4d_val(*p4d)), flags,
805 return no_page_table(vma, flags);
807 return follow_pud_mask(vma, address, p4d, flags, ctx);
811 * follow_page_mask - look up a page descriptor from a user-virtual address
812 * @vma: vm_area_struct mapping @address
813 * @address: virtual address to look up
814 * @flags: flags modifying lookup behaviour
815 * @ctx: contains dev_pagemap for %ZONE_DEVICE memory pinning and a
816 * pointer to output page_mask
818 * @flags can have FOLL_ flags set, defined in <linux/mm.h>
820 * When getting pages from ZONE_DEVICE memory, the @ctx->pgmap caches
821 * the device's dev_pagemap metadata to avoid repeating expensive lookups.
823 * On output, the @ctx->page_mask is set according to the size of the page.
825 * Return: the mapped (struct page *), %NULL if no mapping exists, or
826 * an error pointer if there is a mapping to something not represented
827 * by a page descriptor (see also vm_normal_page()).
829 static struct page *follow_page_mask(struct vm_area_struct *vma,
830 unsigned long address, unsigned int flags,
831 struct follow_page_context *ctx)
835 struct mm_struct *mm = vma->vm_mm;
839 /* make this handle hugepd */
840 page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
842 WARN_ON_ONCE(flags & (FOLL_GET | FOLL_PIN));
846 pgd = pgd_offset(mm, address);
848 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
849 return no_page_table(vma, flags);
851 if (pgd_huge(*pgd)) {
852 page = follow_huge_pgd(mm, address, pgd, flags);
855 return no_page_table(vma, flags);
857 if (is_hugepd(__hugepd(pgd_val(*pgd)))) {
858 page = follow_huge_pd(vma, address,
859 __hugepd(pgd_val(*pgd)), flags,
863 return no_page_table(vma, flags);
866 return follow_p4d_mask(vma, address, pgd, flags, ctx);
869 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
870 unsigned int foll_flags)
872 struct follow_page_context ctx = { NULL };
875 if (vma_is_secretmem(vma))
878 page = follow_page_mask(vma, address, foll_flags, &ctx);
880 put_dev_pagemap(ctx.pgmap);
884 static int get_gate_page(struct mm_struct *mm, unsigned long address,
885 unsigned int gup_flags, struct vm_area_struct **vma,
895 /* user gate pages are read-only */
896 if (gup_flags & FOLL_WRITE)
898 if (address > TASK_SIZE)
899 pgd = pgd_offset_k(address);
901 pgd = pgd_offset_gate(mm, address);
904 p4d = p4d_offset(pgd, address);
907 pud = pud_offset(p4d, address);
910 pmd = pmd_offset(pud, address);
911 if (!pmd_present(*pmd))
913 VM_BUG_ON(pmd_trans_huge(*pmd));
914 pte = pte_offset_map(pmd, address);
917 *vma = get_gate_vma(mm);
920 *page = vm_normal_page(*vma, address, *pte);
922 if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(*pte)))
924 *page = pte_page(*pte);
926 if (unlikely(!try_grab_page(*page, gup_flags))) {
938 * mmap_lock must be held on entry. If @locked != NULL and *@flags
939 * does not include FOLL_NOWAIT, the mmap_lock may be released. If it
940 * is, *@locked will be set to 0 and -EBUSY returned.
942 static int faultin_page(struct vm_area_struct *vma,
943 unsigned long address, unsigned int *flags, int *locked)
945 unsigned int fault_flags = 0;
948 /* mlock all present pages, but do not fault in new pages */
949 if ((*flags & (FOLL_POPULATE | FOLL_MLOCK)) == FOLL_MLOCK)
951 if (*flags & FOLL_NOFAULT)
953 if (*flags & FOLL_WRITE)
954 fault_flags |= FAULT_FLAG_WRITE;
955 if (*flags & FOLL_REMOTE)
956 fault_flags |= FAULT_FLAG_REMOTE;
958 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
959 if (*flags & FOLL_NOWAIT)
960 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT;
961 if (*flags & FOLL_TRIED) {
963 * Note: FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_TRIED
966 fault_flags |= FAULT_FLAG_TRIED;
969 ret = handle_mm_fault(vma, address, fault_flags, NULL);
970 if (ret & VM_FAULT_ERROR) {
971 int err = vm_fault_to_errno(ret, *flags);
978 if (ret & VM_FAULT_RETRY) {
979 if (locked && !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
985 * The VM_FAULT_WRITE bit tells us that do_wp_page has broken COW when
986 * necessary, even if maybe_mkwrite decided not to set pte_write. We
987 * can thus safely do subsequent page lookups as if they were reads.
988 * But only do so when looping for pte_write is futile: in some cases
989 * userspace may also be wanting to write to the gotten user page,
990 * which a read fault here might prevent (a readonly page might get
991 * reCOWed by userspace write).
993 if ((ret & VM_FAULT_WRITE) && !(vma->vm_flags & VM_WRITE))
998 static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags)
1000 vm_flags_t vm_flags = vma->vm_flags;
1001 int write = (gup_flags & FOLL_WRITE);
1002 int foreign = (gup_flags & FOLL_REMOTE);
1004 if (vm_flags & (VM_IO | VM_PFNMAP))
1007 if (gup_flags & FOLL_ANON && !vma_is_anonymous(vma))
1010 if ((gup_flags & FOLL_LONGTERM) && vma_is_fsdax(vma))
1013 if (vma_is_secretmem(vma))
1017 if (!(vm_flags & VM_WRITE)) {
1018 if (!(gup_flags & FOLL_FORCE))
1021 * We used to let the write,force case do COW in a
1022 * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could
1023 * set a breakpoint in a read-only mapping of an
1024 * executable, without corrupting the file (yet only
1025 * when that file had been opened for writing!).
1026 * Anon pages in shared mappings are surprising: now
1029 if (!is_cow_mapping(vm_flags))
1032 } else if (!(vm_flags & VM_READ)) {
1033 if (!(gup_flags & FOLL_FORCE))
1036 * Is there actually any vma we can reach here which does not
1037 * have VM_MAYREAD set?
1039 if (!(vm_flags & VM_MAYREAD))
1043 * gups are always data accesses, not instruction
1044 * fetches, so execute=false here
1046 if (!arch_vma_access_permitted(vma, write, false, foreign))
1052 * __get_user_pages() - pin user pages in memory
1053 * @mm: mm_struct of target mm
1054 * @start: starting user address
1055 * @nr_pages: number of pages from start to pin
1056 * @gup_flags: flags modifying pin behaviour
1057 * @pages: array that receives pointers to the pages pinned.
1058 * Should be at least nr_pages long. Or NULL, if caller
1059 * only intends to ensure the pages are faulted in.
1060 * @vmas: array of pointers to vmas corresponding to each page.
1061 * Or NULL if the caller does not require them.
1062 * @locked: whether we're still with the mmap_lock held
1064 * Returns either number of pages pinned (which may be less than the
1065 * number requested), or an error. Details about the return value:
1067 * -- If nr_pages is 0, returns 0.
1068 * -- If nr_pages is >0, but no pages were pinned, returns -errno.
1069 * -- If nr_pages is >0, and some pages were pinned, returns the number of
1070 * pages pinned. Again, this may be less than nr_pages.
1071 * -- 0 return value is possible when the fault would need to be retried.
1073 * The caller is responsible for releasing returned @pages, via put_page().
1075 * @vmas are valid only as long as mmap_lock is held.
1077 * Must be called with mmap_lock held. It may be released. See below.
1079 * __get_user_pages walks a process's page tables and takes a reference to
1080 * each struct page that each user address corresponds to at a given
1081 * instant. That is, it takes the page that would be accessed if a user
1082 * thread accesses the given user virtual address at that instant.
1084 * This does not guarantee that the page exists in the user mappings when
1085 * __get_user_pages returns, and there may even be a completely different
1086 * page there in some cases (eg. if mmapped pagecache has been invalidated
1087 * and subsequently re faulted). However it does guarantee that the page
1088 * won't be freed completely. And mostly callers simply care that the page
1089 * contains data that was valid *at some point in time*. Typically, an IO
1090 * or similar operation cannot guarantee anything stronger anyway because
1091 * locks can't be held over the syscall boundary.
1093 * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
1094 * the page is written to, set_page_dirty (or set_page_dirty_lock, as
1095 * appropriate) must be called after the page is finished with, and
1096 * before put_page is called.
1098 * If @locked != NULL, *@locked will be set to 0 when mmap_lock is
1099 * released by an up_read(). That can happen if @gup_flags does not
1102 * A caller using such a combination of @locked and @gup_flags
1103 * must therefore hold the mmap_lock for reading only, and recognize
1104 * when it's been released. Otherwise, it must be held for either
1105 * reading or writing and will not be released.
1107 * In most cases, get_user_pages or get_user_pages_fast should be used
1108 * instead of __get_user_pages. __get_user_pages should be used only if
1109 * you need some special @gup_flags.
1111 static long __get_user_pages(struct mm_struct *mm,
1112 unsigned long start, unsigned long nr_pages,
1113 unsigned int gup_flags, struct page **pages,
1114 struct vm_area_struct **vmas, int *locked)
1116 long ret = 0, i = 0;
1117 struct vm_area_struct *vma = NULL;
1118 struct follow_page_context ctx = { NULL };
1123 start = untagged_addr(start);
1125 VM_BUG_ON(!!pages != !!(gup_flags & (FOLL_GET | FOLL_PIN)));
1128 * If FOLL_FORCE is set then do not force a full fault as the hinting
1129 * fault information is unrelated to the reference behaviour of a task
1130 * using the address space
1132 if (!(gup_flags & FOLL_FORCE))
1133 gup_flags |= FOLL_NUMA;
1137 unsigned int foll_flags = gup_flags;
1138 unsigned int page_increm;
1140 /* first iteration or cross vma bound */
1141 if (!vma || start >= vma->vm_end) {
1142 vma = find_extend_vma(mm, start);
1143 if (!vma && in_gate_area(mm, start)) {
1144 ret = get_gate_page(mm, start & PAGE_MASK,
1146 pages ? &pages[i] : NULL);
1157 ret = check_vma_flags(vma, gup_flags);
1161 if (is_vm_hugetlb_page(vma)) {
1162 i = follow_hugetlb_page(mm, vma, pages, vmas,
1163 &start, &nr_pages, i,
1165 if (locked && *locked == 0) {
1167 * We've got a VM_FAULT_RETRY
1168 * and we've lost mmap_lock.
1169 * We must stop here.
1171 BUG_ON(gup_flags & FOLL_NOWAIT);
1179 * If we have a pending SIGKILL, don't keep faulting pages and
1180 * potentially allocating memory.
1182 if (fatal_signal_pending(current)) {
1188 page = follow_page_mask(vma, start, foll_flags, &ctx);
1190 ret = faultin_page(vma, start, &foll_flags, locked);
1205 } else if (PTR_ERR(page) == -EEXIST) {
1207 * Proper page table entry exists, but no corresponding
1211 } else if (IS_ERR(page)) {
1212 ret = PTR_ERR(page);
1217 flush_anon_page(vma, page, start);
1218 flush_dcache_page(page);
1226 page_increm = 1 + (~(start >> PAGE_SHIFT) & ctx.page_mask);
1227 if (page_increm > nr_pages)
1228 page_increm = nr_pages;
1230 start += page_increm * PAGE_SIZE;
1231 nr_pages -= page_increm;
1235 put_dev_pagemap(ctx.pgmap);
1239 static bool vma_permits_fault(struct vm_area_struct *vma,
1240 unsigned int fault_flags)
1242 bool write = !!(fault_flags & FAULT_FLAG_WRITE);
1243 bool foreign = !!(fault_flags & FAULT_FLAG_REMOTE);
1244 vm_flags_t vm_flags = write ? VM_WRITE : VM_READ;
1246 if (!(vm_flags & vma->vm_flags))
1250 * The architecture might have a hardware protection
1251 * mechanism other than read/write that can deny access.
1253 * gup always represents data access, not instruction
1254 * fetches, so execute=false here:
1256 if (!arch_vma_access_permitted(vma, write, false, foreign))
1263 * fixup_user_fault() - manually resolve a user page fault
1264 * @mm: mm_struct of target mm
1265 * @address: user address
1266 * @fault_flags:flags to pass down to handle_mm_fault()
1267 * @unlocked: did we unlock the mmap_lock while retrying, maybe NULL if caller
1268 * does not allow retry. If NULL, the caller must guarantee
1269 * that fault_flags does not contain FAULT_FLAG_ALLOW_RETRY.
1271 * This is meant to be called in the specific scenario where for locking reasons
1272 * we try to access user memory in atomic context (within a pagefault_disable()
1273 * section), this returns -EFAULT, and we want to resolve the user fault before
1276 * Typically this is meant to be used by the futex code.
1278 * The main difference with get_user_pages() is that this function will
1279 * unconditionally call handle_mm_fault() which will in turn perform all the
1280 * necessary SW fixup of the dirty and young bits in the PTE, while
1281 * get_user_pages() only guarantees to update these in the struct page.
1283 * This is important for some architectures where those bits also gate the
1284 * access permission to the page because they are maintained in software. On
1285 * such architectures, gup() will not be enough to make a subsequent access
1288 * This function will not return with an unlocked mmap_lock. So it has not the
1289 * same semantics wrt the @mm->mmap_lock as does filemap_fault().
1291 int fixup_user_fault(struct mm_struct *mm,
1292 unsigned long address, unsigned int fault_flags,
1295 struct vm_area_struct *vma;
1298 address = untagged_addr(address);
1301 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
1304 vma = find_extend_vma(mm, address);
1305 if (!vma || address < vma->vm_start)
1308 if (!vma_permits_fault(vma, fault_flags))
1311 if ((fault_flags & FAULT_FLAG_KILLABLE) &&
1312 fatal_signal_pending(current))
1315 ret = handle_mm_fault(vma, address, fault_flags, NULL);
1316 if (ret & VM_FAULT_ERROR) {
1317 int err = vm_fault_to_errno(ret, 0);
1324 if (ret & VM_FAULT_RETRY) {
1327 fault_flags |= FAULT_FLAG_TRIED;
1333 EXPORT_SYMBOL_GPL(fixup_user_fault);
1336 * Please note that this function, unlike __get_user_pages will not
1337 * return 0 for nr_pages > 0 without FOLL_NOWAIT
1339 static __always_inline long __get_user_pages_locked(struct mm_struct *mm,
1340 unsigned long start,
1341 unsigned long nr_pages,
1342 struct page **pages,
1343 struct vm_area_struct **vmas,
1347 long ret, pages_done;
1351 /* if VM_FAULT_RETRY can be returned, vmas become invalid */
1353 /* check caller initialized locked */
1354 BUG_ON(*locked != 1);
1357 if (flags & FOLL_PIN)
1358 mm_set_has_pinned_flag(&mm->flags);
1361 * FOLL_PIN and FOLL_GET are mutually exclusive. Traditional behavior
1362 * is to set FOLL_GET if the caller wants pages[] filled in (but has
1363 * carelessly failed to specify FOLL_GET), so keep doing that, but only
1364 * for FOLL_GET, not for the newer FOLL_PIN.
1366 * FOLL_PIN always expects pages to be non-null, but no need to assert
1367 * that here, as any failures will be obvious enough.
1369 if (pages && !(flags & FOLL_PIN))
1373 lock_dropped = false;
1375 ret = __get_user_pages(mm, start, nr_pages, flags, pages,
1378 /* VM_FAULT_RETRY couldn't trigger, bypass */
1381 /* VM_FAULT_RETRY cannot return errors */
1384 BUG_ON(ret >= nr_pages);
1395 * VM_FAULT_RETRY didn't trigger or it was a
1403 * VM_FAULT_RETRY triggered, so seek to the faulting offset.
1404 * For the prefault case (!pages) we only update counts.
1408 start += ret << PAGE_SHIFT;
1409 lock_dropped = true;
1413 * Repeat on the address that fired VM_FAULT_RETRY
1414 * with both FAULT_FLAG_ALLOW_RETRY and
1415 * FAULT_FLAG_TRIED. Note that GUP can be interrupted
1416 * by fatal signals, so we need to check it before we
1417 * start trying again otherwise it can loop forever.
1420 if (fatal_signal_pending(current)) {
1422 pages_done = -EINTR;
1426 ret = mmap_read_lock_killable(mm);
1435 ret = __get_user_pages(mm, start, 1, flags | FOLL_TRIED,
1436 pages, NULL, locked);
1438 /* Continue to retry until we succeeded */
1456 if (lock_dropped && *locked) {
1458 * We must let the caller know we temporarily dropped the lock
1459 * and so the critical section protected by it was lost.
1461 mmap_read_unlock(mm);
1468 * populate_vma_page_range() - populate a range of pages in the vma.
1470 * @start: start address
1472 * @locked: whether the mmap_lock is still held
1474 * This takes care of mlocking the pages too if VM_LOCKED is set.
1476 * Return either number of pages pinned in the vma, or a negative error
1479 * vma->vm_mm->mmap_lock must be held.
1481 * If @locked is NULL, it may be held for read or write and will
1484 * If @locked is non-NULL, it must held for read only and may be
1485 * released. If it's released, *@locked will be set to 0.
1487 long populate_vma_page_range(struct vm_area_struct *vma,
1488 unsigned long start, unsigned long end, int *locked)
1490 struct mm_struct *mm = vma->vm_mm;
1491 unsigned long nr_pages = (end - start) / PAGE_SIZE;
1494 VM_BUG_ON(!PAGE_ALIGNED(start));
1495 VM_BUG_ON(!PAGE_ALIGNED(end));
1496 VM_BUG_ON_VMA(start < vma->vm_start, vma);
1497 VM_BUG_ON_VMA(end > vma->vm_end, vma);
1498 mmap_assert_locked(mm);
1500 gup_flags = FOLL_TOUCH | FOLL_POPULATE | FOLL_MLOCK;
1501 if (vma->vm_flags & VM_LOCKONFAULT)
1502 gup_flags &= ~FOLL_POPULATE;
1504 * We want to touch writable mappings with a write fault in order
1505 * to break COW, except for shared mappings because these don't COW
1506 * and we would not want to dirty them for nothing.
1508 if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE)
1509 gup_flags |= FOLL_WRITE;
1512 * We want mlock to succeed for regions that have any permissions
1513 * other than PROT_NONE.
1515 if (vma_is_accessible(vma))
1516 gup_flags |= FOLL_FORCE;
1519 * We made sure addr is within a VMA, so the following will
1520 * not result in a stack expansion that recurses back here.
1522 return __get_user_pages(mm, start, nr_pages, gup_flags,
1523 NULL, NULL, locked);
1527 * faultin_vma_page_range() - populate (prefault) page tables inside the
1528 * given VMA range readable/writable
1530 * This takes care of mlocking the pages, too, if VM_LOCKED is set.
1533 * @start: start address
1535 * @write: whether to prefault readable or writable
1536 * @locked: whether the mmap_lock is still held
1538 * Returns either number of processed pages in the vma, or a negative error
1539 * code on error (see __get_user_pages()).
1541 * vma->vm_mm->mmap_lock must be held. The range must be page-aligned and
1542 * covered by the VMA.
1544 * If @locked is NULL, it may be held for read or write and will be unperturbed.
1546 * If @locked is non-NULL, it must held for read only and may be released. If
1547 * it's released, *@locked will be set to 0.
1549 long faultin_vma_page_range(struct vm_area_struct *vma, unsigned long start,
1550 unsigned long end, bool write, int *locked)
1552 struct mm_struct *mm = vma->vm_mm;
1553 unsigned long nr_pages = (end - start) / PAGE_SIZE;
1556 VM_BUG_ON(!PAGE_ALIGNED(start));
1557 VM_BUG_ON(!PAGE_ALIGNED(end));
1558 VM_BUG_ON_VMA(start < vma->vm_start, vma);
1559 VM_BUG_ON_VMA(end > vma->vm_end, vma);
1560 mmap_assert_locked(mm);
1563 * FOLL_TOUCH: Mark page accessed and thereby young; will also mark
1564 * the page dirty with FOLL_WRITE -- which doesn't make a
1565 * difference with !FOLL_FORCE, because the page is writable
1566 * in the page table.
1567 * FOLL_HWPOISON: Return -EHWPOISON instead of -EFAULT when we hit
1569 * FOLL_POPULATE: Always populate memory with VM_LOCKONFAULT.
1570 * !FOLL_FORCE: Require proper access permissions.
1572 gup_flags = FOLL_TOUCH | FOLL_POPULATE | FOLL_MLOCK | FOLL_HWPOISON;
1574 gup_flags |= FOLL_WRITE;
1577 * We want to report -EINVAL instead of -EFAULT for any permission
1578 * problems or incompatible mappings.
1580 if (check_vma_flags(vma, gup_flags))
1583 return __get_user_pages(mm, start, nr_pages, gup_flags,
1584 NULL, NULL, locked);
1588 * __mm_populate - populate and/or mlock pages within a range of address space.
1590 * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap
1591 * flags. VMAs must be already marked with the desired vm_flags, and
1592 * mmap_lock must not be held.
1594 int __mm_populate(unsigned long start, unsigned long len, int ignore_errors)
1596 struct mm_struct *mm = current->mm;
1597 unsigned long end, nstart, nend;
1598 struct vm_area_struct *vma = NULL;
1604 for (nstart = start; nstart < end; nstart = nend) {
1606 * We want to fault in pages for [nstart; end) address range.
1607 * Find first corresponding VMA.
1612 vma = find_vma(mm, nstart);
1613 } else if (nstart >= vma->vm_end)
1615 if (!vma || vma->vm_start >= end)
1618 * Set [nstart; nend) to intersection of desired address
1619 * range with the first VMA. Also, skip undesirable VMA types.
1621 nend = min(end, vma->vm_end);
1622 if (vma->vm_flags & (VM_IO | VM_PFNMAP))
1624 if (nstart < vma->vm_start)
1625 nstart = vma->vm_start;
1627 * Now fault in a range of pages. populate_vma_page_range()
1628 * double checks the vma flags, so that it won't mlock pages
1629 * if the vma was already munlocked.
1631 ret = populate_vma_page_range(vma, nstart, nend, &locked);
1633 if (ignore_errors) {
1635 continue; /* continue at next VMA */
1639 nend = nstart + ret * PAGE_SIZE;
1643 mmap_read_unlock(mm);
1644 return ret; /* 0 or negative error code */
1646 #else /* CONFIG_MMU */
1647 static long __get_user_pages_locked(struct mm_struct *mm, unsigned long start,
1648 unsigned long nr_pages, struct page **pages,
1649 struct vm_area_struct **vmas, int *locked,
1650 unsigned int foll_flags)
1652 struct vm_area_struct *vma;
1653 unsigned long vm_flags;
1656 /* calculate required read or write permissions.
1657 * If FOLL_FORCE is set, we only require the "MAY" flags.
1659 vm_flags = (foll_flags & FOLL_WRITE) ?
1660 (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1661 vm_flags &= (foll_flags & FOLL_FORCE) ?
1662 (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1664 for (i = 0; i < nr_pages; i++) {
1665 vma = find_vma(mm, start);
1667 goto finish_or_fault;
1669 /* protect what we can, including chardevs */
1670 if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
1671 !(vm_flags & vma->vm_flags))
1672 goto finish_or_fault;
1675 pages[i] = virt_to_page(start);
1681 start = (start + PAGE_SIZE) & PAGE_MASK;
1687 return i ? : -EFAULT;
1689 #endif /* !CONFIG_MMU */
1692 * fault_in_writeable - fault in userspace address range for writing
1693 * @uaddr: start of address range
1694 * @size: size of address range
1696 * Returns the number of bytes not faulted in (like copy_to_user() and
1697 * copy_from_user()).
1699 size_t fault_in_writeable(char __user *uaddr, size_t size)
1701 char __user *start = uaddr, *end;
1703 if (unlikely(size == 0))
1705 if (!user_write_access_begin(uaddr, size))
1707 if (!PAGE_ALIGNED(uaddr)) {
1708 unsafe_put_user(0, uaddr, out);
1709 uaddr = (char __user *)PAGE_ALIGN((unsigned long)uaddr);
1711 end = (char __user *)PAGE_ALIGN((unsigned long)start + size);
1712 if (unlikely(end < start))
1714 while (uaddr != end) {
1715 unsafe_put_user(0, uaddr, out);
1720 user_write_access_end();
1721 if (size > uaddr - start)
1722 return size - (uaddr - start);
1725 EXPORT_SYMBOL(fault_in_writeable);
1728 * fault_in_safe_writeable - fault in an address range for writing
1729 * @uaddr: start of address range
1730 * @size: length of address range
1732 * Faults in an address range for writing. This is primarily useful when we
1733 * already know that some or all of the pages in the address range aren't in
1736 * Unlike fault_in_writeable(), this function is non-destructive.
1738 * Note that we don't pin or otherwise hold the pages referenced that we fault
1739 * in. There's no guarantee that they'll stay in memory for any duration of
1742 * Returns the number of bytes not faulted in, like copy_to_user() and
1745 size_t fault_in_safe_writeable(const char __user *uaddr, size_t size)
1747 unsigned long start = (unsigned long)uaddr, end;
1748 struct mm_struct *mm = current->mm;
1749 bool unlocked = false;
1751 if (unlikely(size == 0))
1753 end = PAGE_ALIGN(start + size);
1759 if (fixup_user_fault(mm, start, FAULT_FLAG_WRITE, &unlocked))
1761 start = (start + PAGE_SIZE) & PAGE_MASK;
1762 } while (start != end);
1763 mmap_read_unlock(mm);
1765 if (size > (unsigned long)uaddr - start)
1766 return size - ((unsigned long)uaddr - start);
1769 EXPORT_SYMBOL(fault_in_safe_writeable);
1772 * fault_in_readable - fault in userspace address range for reading
1773 * @uaddr: start of user address range
1774 * @size: size of user address range
1776 * Returns the number of bytes not faulted in (like copy_to_user() and
1777 * copy_from_user()).
1779 size_t fault_in_readable(const char __user *uaddr, size_t size)
1781 const char __user *start = uaddr, *end;
1784 if (unlikely(size == 0))
1786 if (!user_read_access_begin(uaddr, size))
1788 if (!PAGE_ALIGNED(uaddr)) {
1789 unsafe_get_user(c, uaddr, out);
1790 uaddr = (const char __user *)PAGE_ALIGN((unsigned long)uaddr);
1792 end = (const char __user *)PAGE_ALIGN((unsigned long)start + size);
1793 if (unlikely(end < start))
1795 while (uaddr != end) {
1796 unsafe_get_user(c, uaddr, out);
1801 user_read_access_end();
1803 if (size > uaddr - start)
1804 return size - (uaddr - start);
1807 EXPORT_SYMBOL(fault_in_readable);
1810 * get_dump_page() - pin user page in memory while writing it to core dump
1811 * @addr: user address
1813 * Returns struct page pointer of user page pinned for dump,
1814 * to be freed afterwards by put_page().
1816 * Returns NULL on any kind of failure - a hole must then be inserted into
1817 * the corefile, to preserve alignment with its headers; and also returns
1818 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
1819 * allowing a hole to be left in the corefile to save disk space.
1821 * Called without mmap_lock (takes and releases the mmap_lock by itself).
1823 #ifdef CONFIG_ELF_CORE
1824 struct page *get_dump_page(unsigned long addr)
1826 struct mm_struct *mm = current->mm;
1831 if (mmap_read_lock_killable(mm))
1833 ret = __get_user_pages_locked(mm, addr, 1, &page, NULL, &locked,
1834 FOLL_FORCE | FOLL_DUMP | FOLL_GET);
1836 mmap_read_unlock(mm);
1837 return (ret == 1) ? page : NULL;
1839 #endif /* CONFIG_ELF_CORE */
1841 #ifdef CONFIG_MIGRATION
1843 * Check whether all pages are pinnable, if so return number of pages. If some
1844 * pages are not pinnable, migrate them, and unpin all pages. Return zero if
1845 * pages were migrated, or if some pages were not successfully isolated.
1846 * Return negative error if migration fails.
1848 static long check_and_migrate_movable_pages(unsigned long nr_pages,
1849 struct page **pages,
1850 unsigned int gup_flags)
1853 unsigned long isolation_error_count = 0;
1854 bool drain_allow = true;
1855 LIST_HEAD(movable_page_list);
1857 struct page *prev_head = NULL;
1859 struct migration_target_control mtc = {
1860 .nid = NUMA_NO_NODE,
1861 .gfp_mask = GFP_USER | __GFP_NOWARN,
1864 for (i = 0; i < nr_pages; i++) {
1865 head = compound_head(pages[i]);
1866 if (head == prev_head)
1870 * If we get a movable page, since we are going to be pinning
1871 * these entries, try to move them out if possible.
1873 if (!is_pinnable_page(head)) {
1874 if (PageHuge(head)) {
1875 if (!isolate_huge_page(head, &movable_page_list))
1876 isolation_error_count++;
1878 if (!PageLRU(head) && drain_allow) {
1879 lru_add_drain_all();
1880 drain_allow = false;
1883 if (isolate_lru_page(head)) {
1884 isolation_error_count++;
1887 list_add_tail(&head->lru, &movable_page_list);
1888 mod_node_page_state(page_pgdat(head),
1890 page_is_file_lru(head),
1891 thp_nr_pages(head));
1897 * If list is empty, and no isolation errors, means that all pages are
1898 * in the correct zone.
1900 if (list_empty(&movable_page_list) && !isolation_error_count)
1903 if (gup_flags & FOLL_PIN) {
1904 unpin_user_pages(pages, nr_pages);
1906 for (i = 0; i < nr_pages; i++)
1909 if (!list_empty(&movable_page_list)) {
1910 ret = migrate_pages(&movable_page_list, alloc_migration_target,
1911 NULL, (unsigned long)&mtc, MIGRATE_SYNC,
1912 MR_LONGTERM_PIN, NULL);
1913 if (ret && !list_empty(&movable_page_list))
1914 putback_movable_pages(&movable_page_list);
1917 return ret > 0 ? -ENOMEM : ret;
1920 static long check_and_migrate_movable_pages(unsigned long nr_pages,
1921 struct page **pages,
1922 unsigned int gup_flags)
1926 #endif /* CONFIG_MIGRATION */
1929 * __gup_longterm_locked() is a wrapper for __get_user_pages_locked which
1930 * allows us to process the FOLL_LONGTERM flag.
1932 static long __gup_longterm_locked(struct mm_struct *mm,
1933 unsigned long start,
1934 unsigned long nr_pages,
1935 struct page **pages,
1936 struct vm_area_struct **vmas,
1937 unsigned int gup_flags)
1942 if (!(gup_flags & FOLL_LONGTERM))
1943 return __get_user_pages_locked(mm, start, nr_pages, pages, vmas,
1945 flags = memalloc_pin_save();
1947 rc = __get_user_pages_locked(mm, start, nr_pages, pages, vmas,
1951 rc = check_and_migrate_movable_pages(rc, pages, gup_flags);
1953 memalloc_pin_restore(flags);
1958 static bool is_valid_gup_flags(unsigned int gup_flags)
1961 * FOLL_PIN must only be set internally by the pin_user_pages*() APIs,
1962 * never directly by the caller, so enforce that with an assertion:
1964 if (WARN_ON_ONCE(gup_flags & FOLL_PIN))
1967 * FOLL_PIN is a prerequisite to FOLL_LONGTERM. Another way of saying
1968 * that is, FOLL_LONGTERM is a specific case, more restrictive case of
1971 if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
1978 static long __get_user_pages_remote(struct mm_struct *mm,
1979 unsigned long start, unsigned long nr_pages,
1980 unsigned int gup_flags, struct page **pages,
1981 struct vm_area_struct **vmas, int *locked)
1984 * Parts of FOLL_LONGTERM behavior are incompatible with
1985 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
1986 * vmas. However, this only comes up if locked is set, and there are
1987 * callers that do request FOLL_LONGTERM, but do not set locked. So,
1988 * allow what we can.
1990 if (gup_flags & FOLL_LONGTERM) {
1991 if (WARN_ON_ONCE(locked))
1994 * This will check the vmas (even if our vmas arg is NULL)
1995 * and return -ENOTSUPP if DAX isn't allowed in this case:
1997 return __gup_longterm_locked(mm, start, nr_pages, pages,
1998 vmas, gup_flags | FOLL_TOUCH |
2002 return __get_user_pages_locked(mm, start, nr_pages, pages, vmas,
2004 gup_flags | FOLL_TOUCH | FOLL_REMOTE);
2008 * get_user_pages_remote() - pin user pages in memory
2009 * @mm: mm_struct of target mm
2010 * @start: starting user address
2011 * @nr_pages: number of pages from start to pin
2012 * @gup_flags: flags modifying lookup behaviour
2013 * @pages: array that receives pointers to the pages pinned.
2014 * Should be at least nr_pages long. Or NULL, if caller
2015 * only intends to ensure the pages are faulted in.
2016 * @vmas: array of pointers to vmas corresponding to each page.
2017 * Or NULL if the caller does not require them.
2018 * @locked: pointer to lock flag indicating whether lock is held and
2019 * subsequently whether VM_FAULT_RETRY functionality can be
2020 * utilised. Lock must initially be held.
2022 * Returns either number of pages pinned (which may be less than the
2023 * number requested), or an error. Details about the return value:
2025 * -- If nr_pages is 0, returns 0.
2026 * -- If nr_pages is >0, but no pages were pinned, returns -errno.
2027 * -- If nr_pages is >0, and some pages were pinned, returns the number of
2028 * pages pinned. Again, this may be less than nr_pages.
2030 * The caller is responsible for releasing returned @pages, via put_page().
2032 * @vmas are valid only as long as mmap_lock is held.
2034 * Must be called with mmap_lock held for read or write.
2036 * get_user_pages_remote walks a process's page tables and takes a reference
2037 * to each struct page that each user address corresponds to at a given
2038 * instant. That is, it takes the page that would be accessed if a user
2039 * thread accesses the given user virtual address at that instant.
2041 * This does not guarantee that the page exists in the user mappings when
2042 * get_user_pages_remote returns, and there may even be a completely different
2043 * page there in some cases (eg. if mmapped pagecache has been invalidated
2044 * and subsequently re faulted). However it does guarantee that the page
2045 * won't be freed completely. And mostly callers simply care that the page
2046 * contains data that was valid *at some point in time*. Typically, an IO
2047 * or similar operation cannot guarantee anything stronger anyway because
2048 * locks can't be held over the syscall boundary.
2050 * If gup_flags & FOLL_WRITE == 0, the page must not be written to. If the page
2051 * is written to, set_page_dirty (or set_page_dirty_lock, as appropriate) must
2052 * be called after the page is finished with, and before put_page is called.
2054 * get_user_pages_remote is typically used for fewer-copy IO operations,
2055 * to get a handle on the memory by some means other than accesses
2056 * via the user virtual addresses. The pages may be submitted for
2057 * DMA to devices or accessed via their kernel linear mapping (via the
2058 * kmap APIs). Care should be taken to use the correct cache flushing APIs.
2060 * See also get_user_pages_fast, for performance critical applications.
2062 * get_user_pages_remote should be phased out in favor of
2063 * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing
2064 * should use get_user_pages_remote because it cannot pass
2065 * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault.
2067 long get_user_pages_remote(struct mm_struct *mm,
2068 unsigned long start, unsigned long nr_pages,
2069 unsigned int gup_flags, struct page **pages,
2070 struct vm_area_struct **vmas, int *locked)
2072 if (!is_valid_gup_flags(gup_flags))
2075 return __get_user_pages_remote(mm, start, nr_pages, gup_flags,
2076 pages, vmas, locked);
2078 EXPORT_SYMBOL(get_user_pages_remote);
2080 #else /* CONFIG_MMU */
2081 long get_user_pages_remote(struct mm_struct *mm,
2082 unsigned long start, unsigned long nr_pages,
2083 unsigned int gup_flags, struct page **pages,
2084 struct vm_area_struct **vmas, int *locked)
2089 static long __get_user_pages_remote(struct mm_struct *mm,
2090 unsigned long start, unsigned long nr_pages,
2091 unsigned int gup_flags, struct page **pages,
2092 struct vm_area_struct **vmas, int *locked)
2096 #endif /* !CONFIG_MMU */
2099 * get_user_pages() - pin user pages in memory
2100 * @start: starting user address
2101 * @nr_pages: number of pages from start to pin
2102 * @gup_flags: flags modifying lookup behaviour
2103 * @pages: array that receives pointers to the pages pinned.
2104 * Should be at least nr_pages long. Or NULL, if caller
2105 * only intends to ensure the pages are faulted in.
2106 * @vmas: array of pointers to vmas corresponding to each page.
2107 * Or NULL if the caller does not require them.
2109 * This is the same as get_user_pages_remote(), just with a less-flexible
2110 * calling convention where we assume that the mm being operated on belongs to
2111 * the current task, and doesn't allow passing of a locked parameter. We also
2112 * obviously don't pass FOLL_REMOTE in here.
2114 long get_user_pages(unsigned long start, unsigned long nr_pages,
2115 unsigned int gup_flags, struct page **pages,
2116 struct vm_area_struct **vmas)
2118 if (!is_valid_gup_flags(gup_flags))
2121 return __gup_longterm_locked(current->mm, start, nr_pages,
2122 pages, vmas, gup_flags | FOLL_TOUCH);
2124 EXPORT_SYMBOL(get_user_pages);
2127 * get_user_pages_locked() - variant of get_user_pages()
2129 * @start: starting user address
2130 * @nr_pages: number of pages from start to pin
2131 * @gup_flags: flags modifying lookup behaviour
2132 * @pages: array that receives pointers to the pages pinned.
2133 * Should be at least nr_pages long. Or NULL, if caller
2134 * only intends to ensure the pages are faulted in.
2135 * @locked: pointer to lock flag indicating whether lock is held and
2136 * subsequently whether VM_FAULT_RETRY functionality can be
2137 * utilised. Lock must initially be held.
2139 * It is suitable to replace the form:
2141 * mmap_read_lock(mm);
2143 * get_user_pages(mm, ..., pages, NULL);
2144 * mmap_read_unlock(mm);
2149 * mmap_read_lock(mm);
2151 * get_user_pages_locked(mm, ..., pages, &locked);
2153 * mmap_read_unlock(mm);
2155 * We can leverage the VM_FAULT_RETRY functionality in the page fault
2156 * paths better by using either get_user_pages_locked() or
2157 * get_user_pages_unlocked().
2160 long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
2161 unsigned int gup_flags, struct page **pages,
2165 * FIXME: Current FOLL_LONGTERM behavior is incompatible with
2166 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
2167 * vmas. As there are no users of this flag in this call we simply
2168 * disallow this option for now.
2170 if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
2173 * FOLL_PIN must only be set internally by the pin_user_pages*() APIs,
2174 * never directly by the caller, so enforce that:
2176 if (WARN_ON_ONCE(gup_flags & FOLL_PIN))
2179 return __get_user_pages_locked(current->mm, start, nr_pages,
2180 pages, NULL, locked,
2181 gup_flags | FOLL_TOUCH);
2183 EXPORT_SYMBOL(get_user_pages_locked);
2186 * get_user_pages_unlocked() is suitable to replace the form:
2188 * mmap_read_lock(mm);
2189 * get_user_pages(mm, ..., pages, NULL);
2190 * mmap_read_unlock(mm);
2194 * get_user_pages_unlocked(mm, ..., pages);
2196 * It is functionally equivalent to get_user_pages_fast so
2197 * get_user_pages_fast should be used instead if specific gup_flags
2198 * (e.g. FOLL_FORCE) are not required.
2200 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
2201 struct page **pages, unsigned int gup_flags)
2203 struct mm_struct *mm = current->mm;
2208 * FIXME: Current FOLL_LONGTERM behavior is incompatible with
2209 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
2210 * vmas. As there are no users of this flag in this call we simply
2211 * disallow this option for now.
2213 if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
2217 ret = __get_user_pages_locked(mm, start, nr_pages, pages, NULL,
2218 &locked, gup_flags | FOLL_TOUCH);
2220 mmap_read_unlock(mm);
2223 EXPORT_SYMBOL(get_user_pages_unlocked);
2228 * get_user_pages_fast attempts to pin user pages by walking the page
2229 * tables directly and avoids taking locks. Thus the walker needs to be
2230 * protected from page table pages being freed from under it, and should
2231 * block any THP splits.
2233 * One way to achieve this is to have the walker disable interrupts, and
2234 * rely on IPIs from the TLB flushing code blocking before the page table
2235 * pages are freed. This is unsuitable for architectures that do not need
2236 * to broadcast an IPI when invalidating TLBs.
2238 * Another way to achieve this is to batch up page table containing pages
2239 * belonging to more than one mm_user, then rcu_sched a callback to free those
2240 * pages. Disabling interrupts will allow the fast_gup walker to both block
2241 * the rcu_sched callback, and an IPI that we broadcast for splitting THPs
2242 * (which is a relatively rare event). The code below adopts this strategy.
2244 * Before activating this code, please be aware that the following assumptions
2245 * are currently made:
2247 * *) Either MMU_GATHER_RCU_TABLE_FREE is enabled, and tlb_remove_table() is used to
2248 * free pages containing page tables or TLB flushing requires IPI broadcast.
2250 * *) ptes can be read atomically by the architecture.
2252 * *) access_ok is sufficient to validate userspace address ranges.
2254 * The last two assumptions can be relaxed by the addition of helper functions.
2256 * This code is based heavily on the PowerPC implementation by Nick Piggin.
2258 #ifdef CONFIG_HAVE_FAST_GUP
2260 static void __maybe_unused undo_dev_pagemap(int *nr, int nr_start,
2262 struct page **pages)
2264 while ((*nr) - nr_start) {
2265 struct page *page = pages[--(*nr)];
2267 ClearPageReferenced(page);
2268 if (flags & FOLL_PIN)
2269 unpin_user_page(page);
2275 #ifdef CONFIG_ARCH_HAS_PTE_SPECIAL
2276 static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end,
2277 unsigned int flags, struct page **pages, int *nr)
2279 struct dev_pagemap *pgmap = NULL;
2280 int nr_start = *nr, ret = 0;
2283 ptem = ptep = pte_offset_map(&pmd, addr);
2285 pte_t pte = ptep_get_lockless(ptep);
2286 struct page *head, *page;
2289 * Similar to the PMD case below, NUMA hinting must take slow
2290 * path using the pte_protnone check.
2292 if (pte_protnone(pte))
2295 if (!pte_access_permitted(pte, flags & FOLL_WRITE))
2298 if (pte_devmap(pte)) {
2299 if (unlikely(flags & FOLL_LONGTERM))
2302 pgmap = get_dev_pagemap(pte_pfn(pte), pgmap);
2303 if (unlikely(!pgmap)) {
2304 undo_dev_pagemap(nr, nr_start, flags, pages);
2307 } else if (pte_special(pte))
2310 VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
2311 page = pte_page(pte);
2313 head = try_grab_compound_head(page, 1, flags);
2317 if (unlikely(page_is_secretmem(page))) {
2318 put_compound_head(head, 1, flags);
2322 if (unlikely(pte_val(pte) != pte_val(*ptep))) {
2323 put_compound_head(head, 1, flags);
2327 VM_BUG_ON_PAGE(compound_head(page) != head, page);
2330 * We need to make the page accessible if and only if we are
2331 * going to access its content (the FOLL_PIN case). Please
2332 * see Documentation/core-api/pin_user_pages.rst for
2335 if (flags & FOLL_PIN) {
2336 ret = arch_make_page_accessible(page);
2338 unpin_user_page(page);
2342 SetPageReferenced(page);
2346 } while (ptep++, addr += PAGE_SIZE, addr != end);
2352 put_dev_pagemap(pgmap);
2359 * If we can't determine whether or not a pte is special, then fail immediately
2360 * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not
2363 * For a futex to be placed on a THP tail page, get_futex_key requires a
2364 * get_user_pages_fast_only implementation that can pin pages. Thus it's still
2365 * useful to have gup_huge_pmd even if we can't operate on ptes.
2367 static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end,
2368 unsigned int flags, struct page **pages, int *nr)
2372 #endif /* CONFIG_ARCH_HAS_PTE_SPECIAL */
2374 #if defined(CONFIG_ARCH_HAS_PTE_DEVMAP) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
2375 static int __gup_device_huge(unsigned long pfn, unsigned long addr,
2376 unsigned long end, unsigned int flags,
2377 struct page **pages, int *nr)
2380 struct dev_pagemap *pgmap = NULL;
2383 struct page *page = pfn_to_page(pfn);
2385 pgmap = get_dev_pagemap(pfn, pgmap);
2386 if (unlikely(!pgmap)) {
2387 undo_dev_pagemap(nr, nr_start, flags, pages);
2390 SetPageReferenced(page);
2392 if (unlikely(!try_grab_page(page, flags))) {
2393 undo_dev_pagemap(nr, nr_start, flags, pages);
2398 } while (addr += PAGE_SIZE, addr != end);
2400 put_dev_pagemap(pgmap);
2404 static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2405 unsigned long end, unsigned int flags,
2406 struct page **pages, int *nr)
2408 unsigned long fault_pfn;
2411 fault_pfn = pmd_pfn(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
2412 if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr))
2415 if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
2416 undo_dev_pagemap(nr, nr_start, flags, pages);
2422 static int __gup_device_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
2423 unsigned long end, unsigned int flags,
2424 struct page **pages, int *nr)
2426 unsigned long fault_pfn;
2429 fault_pfn = pud_pfn(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
2430 if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr))
2433 if (unlikely(pud_val(orig) != pud_val(*pudp))) {
2434 undo_dev_pagemap(nr, nr_start, flags, pages);
2440 static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2441 unsigned long end, unsigned int flags,
2442 struct page **pages, int *nr)
2448 static int __gup_device_huge_pud(pud_t pud, pud_t *pudp, unsigned long addr,
2449 unsigned long end, unsigned int flags,
2450 struct page **pages, int *nr)
2457 static int record_subpages(struct page *page, unsigned long addr,
2458 unsigned long end, struct page **pages)
2462 for (nr = 0; addr != end; addr += PAGE_SIZE)
2463 pages[nr++] = page++;
2468 #ifdef CONFIG_ARCH_HAS_HUGEPD
2469 static unsigned long hugepte_addr_end(unsigned long addr, unsigned long end,
2472 unsigned long __boundary = (addr + sz) & ~(sz-1);
2473 return (__boundary - 1 < end - 1) ? __boundary : end;
2476 static int gup_hugepte(pte_t *ptep, unsigned long sz, unsigned long addr,
2477 unsigned long end, unsigned int flags,
2478 struct page **pages, int *nr)
2480 unsigned long pte_end;
2481 struct page *head, *page;
2485 pte_end = (addr + sz) & ~(sz-1);
2489 pte = huge_ptep_get(ptep);
2491 if (!pte_access_permitted(pte, flags & FOLL_WRITE))
2494 /* hugepages are never "special" */
2495 VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
2497 head = pte_page(pte);
2498 page = head + ((addr & (sz-1)) >> PAGE_SHIFT);
2499 refs = record_subpages(page, addr, end, pages + *nr);
2501 head = try_grab_compound_head(head, refs, flags);
2505 if (unlikely(pte_val(pte) != pte_val(*ptep))) {
2506 put_compound_head(head, refs, flags);
2511 SetPageReferenced(head);
2515 static int gup_huge_pd(hugepd_t hugepd, unsigned long addr,
2516 unsigned int pdshift, unsigned long end, unsigned int flags,
2517 struct page **pages, int *nr)
2520 unsigned long sz = 1UL << hugepd_shift(hugepd);
2523 ptep = hugepte_offset(hugepd, addr, pdshift);
2525 next = hugepte_addr_end(addr, end, sz);
2526 if (!gup_hugepte(ptep, sz, addr, end, flags, pages, nr))
2528 } while (ptep++, addr = next, addr != end);
2533 static inline int gup_huge_pd(hugepd_t hugepd, unsigned long addr,
2534 unsigned int pdshift, unsigned long end, unsigned int flags,
2535 struct page **pages, int *nr)
2539 #endif /* CONFIG_ARCH_HAS_HUGEPD */
2541 static int gup_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2542 unsigned long end, unsigned int flags,
2543 struct page **pages, int *nr)
2545 struct page *head, *page;
2548 if (!pmd_access_permitted(orig, flags & FOLL_WRITE))
2551 if (pmd_devmap(orig)) {
2552 if (unlikely(flags & FOLL_LONGTERM))
2554 return __gup_device_huge_pmd(orig, pmdp, addr, end, flags,
2558 page = pmd_page(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
2559 refs = record_subpages(page, addr, end, pages + *nr);
2561 head = try_grab_compound_head(pmd_page(orig), refs, flags);
2565 if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
2566 put_compound_head(head, refs, flags);
2571 SetPageReferenced(head);
2575 static int gup_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
2576 unsigned long end, unsigned int flags,
2577 struct page **pages, int *nr)
2579 struct page *head, *page;
2582 if (!pud_access_permitted(orig, flags & FOLL_WRITE))
2585 if (pud_devmap(orig)) {
2586 if (unlikely(flags & FOLL_LONGTERM))
2588 return __gup_device_huge_pud(orig, pudp, addr, end, flags,
2592 page = pud_page(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
2593 refs = record_subpages(page, addr, end, pages + *nr);
2595 head = try_grab_compound_head(pud_page(orig), refs, flags);
2599 if (unlikely(pud_val(orig) != pud_val(*pudp))) {
2600 put_compound_head(head, refs, flags);
2605 SetPageReferenced(head);
2609 static int gup_huge_pgd(pgd_t orig, pgd_t *pgdp, unsigned long addr,
2610 unsigned long end, unsigned int flags,
2611 struct page **pages, int *nr)
2614 struct page *head, *page;
2616 if (!pgd_access_permitted(orig, flags & FOLL_WRITE))
2619 BUILD_BUG_ON(pgd_devmap(orig));
2621 page = pgd_page(orig) + ((addr & ~PGDIR_MASK) >> PAGE_SHIFT);
2622 refs = record_subpages(page, addr, end, pages + *nr);
2624 head = try_grab_compound_head(pgd_page(orig), refs, flags);
2628 if (unlikely(pgd_val(orig) != pgd_val(*pgdp))) {
2629 put_compound_head(head, refs, flags);
2634 SetPageReferenced(head);
2638 static int gup_pmd_range(pud_t *pudp, pud_t pud, unsigned long addr, unsigned long end,
2639 unsigned int flags, struct page **pages, int *nr)
2644 pmdp = pmd_offset_lockless(pudp, pud, addr);
2646 pmd_t pmd = READ_ONCE(*pmdp);
2648 next = pmd_addr_end(addr, end);
2649 if (!pmd_present(pmd))
2652 if (unlikely(pmd_trans_huge(pmd) || pmd_huge(pmd) ||
2655 * NUMA hinting faults need to be handled in the GUP
2656 * slowpath for accounting purposes and so that they
2657 * can be serialised against THP migration.
2659 if (pmd_protnone(pmd))
2662 if (!gup_huge_pmd(pmd, pmdp, addr, next, flags,
2666 } else if (unlikely(is_hugepd(__hugepd(pmd_val(pmd))))) {
2668 * architecture have different format for hugetlbfs
2669 * pmd format and THP pmd format
2671 if (!gup_huge_pd(__hugepd(pmd_val(pmd)), addr,
2672 PMD_SHIFT, next, flags, pages, nr))
2674 } else if (!gup_pte_range(pmd, addr, next, flags, pages, nr))
2676 } while (pmdp++, addr = next, addr != end);
2681 static int gup_pud_range(p4d_t *p4dp, p4d_t p4d, unsigned long addr, unsigned long end,
2682 unsigned int flags, struct page **pages, int *nr)
2687 pudp = pud_offset_lockless(p4dp, p4d, addr);
2689 pud_t pud = READ_ONCE(*pudp);
2691 next = pud_addr_end(addr, end);
2692 if (unlikely(!pud_present(pud)))
2694 if (unlikely(pud_huge(pud))) {
2695 if (!gup_huge_pud(pud, pudp, addr, next, flags,
2698 } else if (unlikely(is_hugepd(__hugepd(pud_val(pud))))) {
2699 if (!gup_huge_pd(__hugepd(pud_val(pud)), addr,
2700 PUD_SHIFT, next, flags, pages, nr))
2702 } else if (!gup_pmd_range(pudp, pud, addr, next, flags, pages, nr))
2704 } while (pudp++, addr = next, addr != end);
2709 static int gup_p4d_range(pgd_t *pgdp, pgd_t pgd, unsigned long addr, unsigned long end,
2710 unsigned int flags, struct page **pages, int *nr)
2715 p4dp = p4d_offset_lockless(pgdp, pgd, addr);
2717 p4d_t p4d = READ_ONCE(*p4dp);
2719 next = p4d_addr_end(addr, end);
2722 BUILD_BUG_ON(p4d_huge(p4d));
2723 if (unlikely(is_hugepd(__hugepd(p4d_val(p4d))))) {
2724 if (!gup_huge_pd(__hugepd(p4d_val(p4d)), addr,
2725 P4D_SHIFT, next, flags, pages, nr))
2727 } else if (!gup_pud_range(p4dp, p4d, addr, next, flags, pages, nr))
2729 } while (p4dp++, addr = next, addr != end);
2734 static void gup_pgd_range(unsigned long addr, unsigned long end,
2735 unsigned int flags, struct page **pages, int *nr)
2740 pgdp = pgd_offset(current->mm, addr);
2742 pgd_t pgd = READ_ONCE(*pgdp);
2744 next = pgd_addr_end(addr, end);
2747 if (unlikely(pgd_huge(pgd))) {
2748 if (!gup_huge_pgd(pgd, pgdp, addr, next, flags,
2751 } else if (unlikely(is_hugepd(__hugepd(pgd_val(pgd))))) {
2752 if (!gup_huge_pd(__hugepd(pgd_val(pgd)), addr,
2753 PGDIR_SHIFT, next, flags, pages, nr))
2755 } else if (!gup_p4d_range(pgdp, pgd, addr, next, flags, pages, nr))
2757 } while (pgdp++, addr = next, addr != end);
2760 static inline void gup_pgd_range(unsigned long addr, unsigned long end,
2761 unsigned int flags, struct page **pages, int *nr)
2764 #endif /* CONFIG_HAVE_FAST_GUP */
2766 #ifndef gup_fast_permitted
2768 * Check if it's allowed to use get_user_pages_fast_only() for the range, or
2769 * we need to fall back to the slow version:
2771 static bool gup_fast_permitted(unsigned long start, unsigned long end)
2777 static int __gup_longterm_unlocked(unsigned long start, int nr_pages,
2778 unsigned int gup_flags, struct page **pages)
2783 * FIXME: FOLL_LONGTERM does not work with
2784 * get_user_pages_unlocked() (see comments in that function)
2786 if (gup_flags & FOLL_LONGTERM) {
2787 mmap_read_lock(current->mm);
2788 ret = __gup_longterm_locked(current->mm,
2790 pages, NULL, gup_flags);
2791 mmap_read_unlock(current->mm);
2793 ret = get_user_pages_unlocked(start, nr_pages,
2800 static unsigned long lockless_pages_from_mm(unsigned long start,
2802 unsigned int gup_flags,
2803 struct page **pages)
2805 unsigned long flags;
2809 if (!IS_ENABLED(CONFIG_HAVE_FAST_GUP) ||
2810 !gup_fast_permitted(start, end))
2813 if (gup_flags & FOLL_PIN) {
2814 seq = raw_read_seqcount(¤t->mm->write_protect_seq);
2820 * Disable interrupts. The nested form is used, in order to allow full,
2821 * general purpose use of this routine.
2823 * With interrupts disabled, we block page table pages from being freed
2824 * from under us. See struct mmu_table_batch comments in
2825 * include/asm-generic/tlb.h for more details.
2827 * We do not adopt an rcu_read_lock() here as we also want to block IPIs
2828 * that come from THPs splitting.
2830 local_irq_save(flags);
2831 gup_pgd_range(start, end, gup_flags, pages, &nr_pinned);
2832 local_irq_restore(flags);
2835 * When pinning pages for DMA there could be a concurrent write protect
2836 * from fork() via copy_page_range(), in this case always fail fast GUP.
2838 if (gup_flags & FOLL_PIN) {
2839 if (read_seqcount_retry(¤t->mm->write_protect_seq, seq)) {
2840 unpin_user_pages(pages, nr_pinned);
2847 static int internal_get_user_pages_fast(unsigned long start,
2848 unsigned long nr_pages,
2849 unsigned int gup_flags,
2850 struct page **pages)
2852 unsigned long len, end;
2853 unsigned long nr_pinned;
2856 if (WARN_ON_ONCE(gup_flags & ~(FOLL_WRITE | FOLL_LONGTERM |
2857 FOLL_FORCE | FOLL_PIN | FOLL_GET |
2858 FOLL_FAST_ONLY | FOLL_NOFAULT)))
2861 if (gup_flags & FOLL_PIN)
2862 mm_set_has_pinned_flag(¤t->mm->flags);
2864 if (!(gup_flags & FOLL_FAST_ONLY))
2865 might_lock_read(¤t->mm->mmap_lock);
2867 start = untagged_addr(start) & PAGE_MASK;
2868 len = nr_pages << PAGE_SHIFT;
2869 if (check_add_overflow(start, len, &end))
2871 if (unlikely(!access_ok((void __user *)start, len)))
2874 nr_pinned = lockless_pages_from_mm(start, end, gup_flags, pages);
2875 if (nr_pinned == nr_pages || gup_flags & FOLL_FAST_ONLY)
2878 /* Slow path: try to get the remaining pages with get_user_pages */
2879 start += nr_pinned << PAGE_SHIFT;
2881 ret = __gup_longterm_unlocked(start, nr_pages - nr_pinned, gup_flags,
2885 * The caller has to unpin the pages we already pinned so
2886 * returning -errno is not an option
2892 return ret + nr_pinned;
2896 * get_user_pages_fast_only() - pin user pages in memory
2897 * @start: starting user address
2898 * @nr_pages: number of pages from start to pin
2899 * @gup_flags: flags modifying pin behaviour
2900 * @pages: array that receives pointers to the pages pinned.
2901 * Should be at least nr_pages long.
2903 * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to
2905 * Note a difference with get_user_pages_fast: this always returns the
2906 * number of pages pinned, 0 if no pages were pinned.
2908 * If the architecture does not support this function, simply return with no
2911 * Careful, careful! COW breaking can go either way, so a non-write
2912 * access can get ambiguous page results. If you call this function without
2913 * 'write' set, you'd better be sure that you're ok with that ambiguity.
2915 int get_user_pages_fast_only(unsigned long start, int nr_pages,
2916 unsigned int gup_flags, struct page **pages)
2920 * Internally (within mm/gup.c), gup fast variants must set FOLL_GET,
2921 * because gup fast is always a "pin with a +1 page refcount" request.
2923 * FOLL_FAST_ONLY is required in order to match the API description of
2924 * this routine: no fall back to regular ("slow") GUP.
2926 gup_flags |= FOLL_GET | FOLL_FAST_ONLY;
2928 nr_pinned = internal_get_user_pages_fast(start, nr_pages, gup_flags,
2932 * As specified in the API description above, this routine is not
2933 * allowed to return negative values. However, the common core
2934 * routine internal_get_user_pages_fast() *can* return -errno.
2935 * Therefore, correct for that here:
2942 EXPORT_SYMBOL_GPL(get_user_pages_fast_only);
2945 * get_user_pages_fast() - pin user pages in memory
2946 * @start: starting user address
2947 * @nr_pages: number of pages from start to pin
2948 * @gup_flags: flags modifying pin behaviour
2949 * @pages: array that receives pointers to the pages pinned.
2950 * Should be at least nr_pages long.
2952 * Attempt to pin user pages in memory without taking mm->mmap_lock.
2953 * If not successful, it will fall back to taking the lock and
2954 * calling get_user_pages().
2956 * Returns number of pages pinned. This may be fewer than the number requested.
2957 * If nr_pages is 0 or negative, returns 0. If no pages were pinned, returns
2960 int get_user_pages_fast(unsigned long start, int nr_pages,
2961 unsigned int gup_flags, struct page **pages)
2963 if (!is_valid_gup_flags(gup_flags))
2967 * The caller may or may not have explicitly set FOLL_GET; either way is
2968 * OK. However, internally (within mm/gup.c), gup fast variants must set
2969 * FOLL_GET, because gup fast is always a "pin with a +1 page refcount"
2972 gup_flags |= FOLL_GET;
2973 return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages);
2975 EXPORT_SYMBOL_GPL(get_user_pages_fast);
2978 * pin_user_pages_fast() - pin user pages in memory without taking locks
2980 * @start: starting user address
2981 * @nr_pages: number of pages from start to pin
2982 * @gup_flags: flags modifying pin behaviour
2983 * @pages: array that receives pointers to the pages pinned.
2984 * Should be at least nr_pages long.
2986 * Nearly the same as get_user_pages_fast(), except that FOLL_PIN is set. See
2987 * get_user_pages_fast() for documentation on the function arguments, because
2988 * the arguments here are identical.
2990 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
2991 * see Documentation/core-api/pin_user_pages.rst for further details.
2993 int pin_user_pages_fast(unsigned long start, int nr_pages,
2994 unsigned int gup_flags, struct page **pages)
2996 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
2997 if (WARN_ON_ONCE(gup_flags & FOLL_GET))
3000 gup_flags |= FOLL_PIN;
3001 return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages);
3003 EXPORT_SYMBOL_GPL(pin_user_pages_fast);
3006 * This is the FOLL_PIN equivalent of get_user_pages_fast_only(). Behavior
3007 * is the same, except that this one sets FOLL_PIN instead of FOLL_GET.
3009 * The API rules are the same, too: no negative values may be returned.
3011 int pin_user_pages_fast_only(unsigned long start, int nr_pages,
3012 unsigned int gup_flags, struct page **pages)
3017 * FOLL_GET and FOLL_PIN are mutually exclusive. Note that the API
3018 * rules require returning 0, rather than -errno:
3020 if (WARN_ON_ONCE(gup_flags & FOLL_GET))
3023 * FOLL_FAST_ONLY is required in order to match the API description of
3024 * this routine: no fall back to regular ("slow") GUP.
3026 gup_flags |= (FOLL_PIN | FOLL_FAST_ONLY);
3027 nr_pinned = internal_get_user_pages_fast(start, nr_pages, gup_flags,
3030 * This routine is not allowed to return negative values. However,
3031 * internal_get_user_pages_fast() *can* return -errno. Therefore,
3032 * correct for that here:
3039 EXPORT_SYMBOL_GPL(pin_user_pages_fast_only);
3042 * pin_user_pages_remote() - pin pages of a remote process
3044 * @mm: mm_struct of target mm
3045 * @start: starting user address
3046 * @nr_pages: number of pages from start to pin
3047 * @gup_flags: flags modifying lookup behaviour
3048 * @pages: array that receives pointers to the pages pinned.
3049 * Should be at least nr_pages long. Or NULL, if caller
3050 * only intends to ensure the pages are faulted in.
3051 * @vmas: array of pointers to vmas corresponding to each page.
3052 * Or NULL if the caller does not require them.
3053 * @locked: pointer to lock flag indicating whether lock is held and
3054 * subsequently whether VM_FAULT_RETRY functionality can be
3055 * utilised. Lock must initially be held.
3057 * Nearly the same as get_user_pages_remote(), except that FOLL_PIN is set. See
3058 * get_user_pages_remote() for documentation on the function arguments, because
3059 * the arguments here are identical.
3061 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
3062 * see Documentation/core-api/pin_user_pages.rst for details.
3064 long pin_user_pages_remote(struct mm_struct *mm,
3065 unsigned long start, unsigned long nr_pages,
3066 unsigned int gup_flags, struct page **pages,
3067 struct vm_area_struct **vmas, int *locked)
3069 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
3070 if (WARN_ON_ONCE(gup_flags & FOLL_GET))
3073 gup_flags |= FOLL_PIN;
3074 return __get_user_pages_remote(mm, start, nr_pages, gup_flags,
3075 pages, vmas, locked);
3077 EXPORT_SYMBOL(pin_user_pages_remote);
3080 * pin_user_pages() - pin user pages in memory for use by other devices
3082 * @start: starting user address
3083 * @nr_pages: number of pages from start to pin
3084 * @gup_flags: flags modifying lookup behaviour
3085 * @pages: array that receives pointers to the pages pinned.
3086 * Should be at least nr_pages long. Or NULL, if caller
3087 * only intends to ensure the pages are faulted in.
3088 * @vmas: array of pointers to vmas corresponding to each page.
3089 * Or NULL if the caller does not require them.
3091 * Nearly the same as get_user_pages(), except that FOLL_TOUCH is not set, and
3094 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
3095 * see Documentation/core-api/pin_user_pages.rst for details.
3097 long pin_user_pages(unsigned long start, unsigned long nr_pages,
3098 unsigned int gup_flags, struct page **pages,
3099 struct vm_area_struct **vmas)
3101 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
3102 if (WARN_ON_ONCE(gup_flags & FOLL_GET))
3105 gup_flags |= FOLL_PIN;
3106 return __gup_longterm_locked(current->mm, start, nr_pages,
3107 pages, vmas, gup_flags);
3109 EXPORT_SYMBOL(pin_user_pages);
3112 * pin_user_pages_unlocked() is the FOLL_PIN variant of
3113 * get_user_pages_unlocked(). Behavior is the same, except that this one sets
3114 * FOLL_PIN and rejects FOLL_GET.
3116 long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
3117 struct page **pages, unsigned int gup_flags)
3119 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
3120 if (WARN_ON_ONCE(gup_flags & FOLL_GET))
3123 gup_flags |= FOLL_PIN;
3124 return get_user_pages_unlocked(start, nr_pages, pages, gup_flags);
3126 EXPORT_SYMBOL(pin_user_pages_unlocked);
3129 * pin_user_pages_locked() is the FOLL_PIN variant of get_user_pages_locked().
3130 * Behavior is the same, except that this one sets FOLL_PIN and rejects
3133 long pin_user_pages_locked(unsigned long start, unsigned long nr_pages,
3134 unsigned int gup_flags, struct page **pages,
3138 * FIXME: Current FOLL_LONGTERM behavior is incompatible with
3139 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
3140 * vmas. As there are no users of this flag in this call we simply
3141 * disallow this option for now.
3143 if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
3146 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
3147 if (WARN_ON_ONCE(gup_flags & FOLL_GET))
3150 gup_flags |= FOLL_PIN;
3151 return __get_user_pages_locked(current->mm, start, nr_pages,
3152 pages, NULL, locked,
3153 gup_flags | FOLL_TOUCH);
3155 EXPORT_SYMBOL(pin_user_pages_locked);