1 // SPDX-License-Identifier: GPL-2.0-only
5 * Copyright (C) 1994-1999 Linus Torvalds
9 * This file handles the generic file mmap semantics used by
10 * most "normal" filesystems (but you don't /have/ to use this:
11 * the NFS filesystem used to do this differently, for example)
13 #include <linux/export.h>
14 #include <linux/compiler.h>
15 #include <linux/dax.h>
17 #include <linux/sched/signal.h>
18 #include <linux/uaccess.h>
19 #include <linux/capability.h>
20 #include <linux/kernel_stat.h>
21 #include <linux/gfp.h>
23 #include <linux/swap.h>
24 #include <linux/swapops.h>
25 #include <linux/syscalls.h>
26 #include <linux/mman.h>
27 #include <linux/pagemap.h>
28 #include <linux/file.h>
29 #include <linux/uio.h>
30 #include <linux/error-injection.h>
31 #include <linux/hash.h>
32 #include <linux/writeback.h>
33 #include <linux/backing-dev.h>
34 #include <linux/pagevec.h>
35 #include <linux/security.h>
36 #include <linux/cpuset.h>
37 #include <linux/hugetlb.h>
38 #include <linux/memcontrol.h>
39 #include <linux/shmem_fs.h>
40 #include <linux/rmap.h>
41 #include <linux/delayacct.h>
42 #include <linux/psi.h>
43 #include <linux/ramfs.h>
44 #include <linux/page_idle.h>
45 #include <linux/migrate.h>
46 #include <linux/pipe_fs_i.h>
47 #include <linux/splice.h>
48 #include <asm/pgalloc.h>
49 #include <asm/tlbflush.h>
52 #define CREATE_TRACE_POINTS
53 #include <trace/events/filemap.h>
56 * FIXME: remove all knowledge of the buffer layer from the core VM
58 #include <linux/buffer_head.h> /* for try_to_free_buffers */
65 * Shared mappings implemented 30.11.1994. It's not fully working yet,
68 * Shared mappings now work. 15.8.1995 Bruno.
70 * finished 'unifying' the page and buffer cache and SMP-threaded the
71 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
73 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
79 * ->i_mmap_rwsem (truncate_pagecache)
80 * ->private_lock (__free_pte->block_dirty_folio)
81 * ->swap_lock (exclusive_swap_page, others)
85 * ->invalidate_lock (acquired by fs in truncate path)
86 * ->i_mmap_rwsem (truncate->unmap_mapping_range)
90 * ->page_table_lock or pte_lock (various, mainly in memory.c)
91 * ->i_pages lock (arch-dependent flush_dcache_mmap_lock)
94 * ->invalidate_lock (filemap_fault)
95 * ->lock_page (filemap_fault, access_process_vm)
97 * ->i_rwsem (generic_perform_write)
98 * ->mmap_lock (fault_in_readable->do_page_fault)
101 * sb_lock (fs/fs-writeback.c)
102 * ->i_pages lock (__sync_single_inode)
105 * ->anon_vma.lock (vma_merge)
108 * ->page_table_lock or pte_lock (anon_vma_prepare and various)
110 * ->page_table_lock or pte_lock
111 * ->swap_lock (try_to_unmap_one)
112 * ->private_lock (try_to_unmap_one)
113 * ->i_pages lock (try_to_unmap_one)
114 * ->lruvec->lru_lock (follow_page->mark_page_accessed)
115 * ->lruvec->lru_lock (check_pte_range->isolate_lru_page)
116 * ->private_lock (page_remove_rmap->set_page_dirty)
117 * ->i_pages lock (page_remove_rmap->set_page_dirty)
118 * bdi.wb->list_lock (page_remove_rmap->set_page_dirty)
119 * ->inode->i_lock (page_remove_rmap->set_page_dirty)
120 * ->memcg->move_lock (page_remove_rmap->folio_memcg_lock)
121 * bdi.wb->list_lock (zap_pte_range->set_page_dirty)
122 * ->inode->i_lock (zap_pte_range->set_page_dirty)
123 * ->private_lock (zap_pte_range->block_dirty_folio)
126 static void page_cache_delete(struct address_space *mapping,
127 struct folio *folio, void *shadow)
129 XA_STATE(xas, &mapping->i_pages, folio->index);
132 mapping_set_update(&xas, mapping);
134 xas_set_order(&xas, folio->index, folio_order(folio));
135 nr = folio_nr_pages(folio);
137 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
139 xas_store(&xas, shadow);
140 xas_init_marks(&xas);
142 folio->mapping = NULL;
143 /* Leave page->index set: truncation lookup relies upon it */
144 mapping->nrpages -= nr;
147 static void filemap_unaccount_folio(struct address_space *mapping,
152 VM_BUG_ON_FOLIO(folio_mapped(folio), folio);
153 if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(folio_mapped(folio))) {
154 pr_alert("BUG: Bad page cache in process %s pfn:%05lx\n",
155 current->comm, folio_pfn(folio));
156 dump_page(&folio->page, "still mapped when deleted");
158 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
160 if (mapping_exiting(mapping) && !folio_test_large(folio)) {
161 int mapcount = page_mapcount(&folio->page);
163 if (folio_ref_count(folio) >= mapcount + 2) {
165 * All vmas have already been torn down, so it's
166 * a good bet that actually the page is unmapped
167 * and we'd rather not leak it: if we're wrong,
168 * another bad page check should catch it later.
170 page_mapcount_reset(&folio->page);
171 folio_ref_sub(folio, mapcount);
176 /* hugetlb folios do not participate in page cache accounting. */
177 if (folio_test_hugetlb(folio))
180 nr = folio_nr_pages(folio);
182 __lruvec_stat_mod_folio(folio, NR_FILE_PAGES, -nr);
183 if (folio_test_swapbacked(folio)) {
184 __lruvec_stat_mod_folio(folio, NR_SHMEM, -nr);
185 if (folio_test_pmd_mappable(folio))
186 __lruvec_stat_mod_folio(folio, NR_SHMEM_THPS, -nr);
187 } else if (folio_test_pmd_mappable(folio)) {
188 __lruvec_stat_mod_folio(folio, NR_FILE_THPS, -nr);
189 filemap_nr_thps_dec(mapping);
193 * At this point folio must be either written or cleaned by
194 * truncate. Dirty folio here signals a bug and loss of
195 * unwritten data - on ordinary filesystems.
197 * But it's harmless on in-memory filesystems like tmpfs; and can
198 * occur when a driver which did get_user_pages() sets page dirty
199 * before putting it, while the inode is being finally evicted.
201 * Below fixes dirty accounting after removing the folio entirely
202 * but leaves the dirty flag set: it has no effect for truncated
203 * folio and anyway will be cleared before returning folio to
206 if (WARN_ON_ONCE(folio_test_dirty(folio) &&
207 mapping_can_writeback(mapping)))
208 folio_account_cleaned(folio, inode_to_wb(mapping->host));
212 * Delete a page from the page cache and free it. Caller has to make
213 * sure the page is locked and that nobody else uses it - or that usage
214 * is safe. The caller must hold the i_pages lock.
216 void __filemap_remove_folio(struct folio *folio, void *shadow)
218 struct address_space *mapping = folio->mapping;
220 trace_mm_filemap_delete_from_page_cache(folio);
221 filemap_unaccount_folio(mapping, folio);
222 page_cache_delete(mapping, folio, shadow);
225 void filemap_free_folio(struct address_space *mapping, struct folio *folio)
227 void (*free_folio)(struct folio *);
230 free_folio = mapping->a_ops->free_folio;
234 if (folio_test_large(folio))
235 refs = folio_nr_pages(folio);
236 folio_put_refs(folio, refs);
240 * filemap_remove_folio - Remove folio from page cache.
243 * This must be called only on folios that are locked and have been
244 * verified to be in the page cache. It will never put the folio into
245 * the free list because the caller has a reference on the page.
247 void filemap_remove_folio(struct folio *folio)
249 struct address_space *mapping = folio->mapping;
251 BUG_ON(!folio_test_locked(folio));
252 spin_lock(&mapping->host->i_lock);
253 xa_lock_irq(&mapping->i_pages);
254 __filemap_remove_folio(folio, NULL);
255 xa_unlock_irq(&mapping->i_pages);
256 if (mapping_shrinkable(mapping))
257 inode_add_lru(mapping->host);
258 spin_unlock(&mapping->host->i_lock);
260 filemap_free_folio(mapping, folio);
264 * page_cache_delete_batch - delete several folios from page cache
265 * @mapping: the mapping to which folios belong
266 * @fbatch: batch of folios to delete
268 * The function walks over mapping->i_pages and removes folios passed in
269 * @fbatch from the mapping. The function expects @fbatch to be sorted
270 * by page index and is optimised for it to be dense.
271 * It tolerates holes in @fbatch (mapping entries at those indices are not
274 * The function expects the i_pages lock to be held.
276 static void page_cache_delete_batch(struct address_space *mapping,
277 struct folio_batch *fbatch)
279 XA_STATE(xas, &mapping->i_pages, fbatch->folios[0]->index);
280 long total_pages = 0;
284 mapping_set_update(&xas, mapping);
285 xas_for_each(&xas, folio, ULONG_MAX) {
286 if (i >= folio_batch_count(fbatch))
289 /* A swap/dax/shadow entry got inserted? Skip it. */
290 if (xa_is_value(folio))
293 * A page got inserted in our range? Skip it. We have our
294 * pages locked so they are protected from being removed.
295 * If we see a page whose index is higher than ours, it
296 * means our page has been removed, which shouldn't be
297 * possible because we're holding the PageLock.
299 if (folio != fbatch->folios[i]) {
300 VM_BUG_ON_FOLIO(folio->index >
301 fbatch->folios[i]->index, folio);
305 WARN_ON_ONCE(!folio_test_locked(folio));
307 folio->mapping = NULL;
308 /* Leave folio->index set: truncation lookup relies on it */
311 xas_store(&xas, NULL);
312 total_pages += folio_nr_pages(folio);
314 mapping->nrpages -= total_pages;
317 void delete_from_page_cache_batch(struct address_space *mapping,
318 struct folio_batch *fbatch)
322 if (!folio_batch_count(fbatch))
325 spin_lock(&mapping->host->i_lock);
326 xa_lock_irq(&mapping->i_pages);
327 for (i = 0; i < folio_batch_count(fbatch); i++) {
328 struct folio *folio = fbatch->folios[i];
330 trace_mm_filemap_delete_from_page_cache(folio);
331 filemap_unaccount_folio(mapping, folio);
333 page_cache_delete_batch(mapping, fbatch);
334 xa_unlock_irq(&mapping->i_pages);
335 if (mapping_shrinkable(mapping))
336 inode_add_lru(mapping->host);
337 spin_unlock(&mapping->host->i_lock);
339 for (i = 0; i < folio_batch_count(fbatch); i++)
340 filemap_free_folio(mapping, fbatch->folios[i]);
343 int filemap_check_errors(struct address_space *mapping)
346 /* Check for outstanding write errors */
347 if (test_bit(AS_ENOSPC, &mapping->flags) &&
348 test_and_clear_bit(AS_ENOSPC, &mapping->flags))
350 if (test_bit(AS_EIO, &mapping->flags) &&
351 test_and_clear_bit(AS_EIO, &mapping->flags))
355 EXPORT_SYMBOL(filemap_check_errors);
357 static int filemap_check_and_keep_errors(struct address_space *mapping)
359 /* Check for outstanding write errors */
360 if (test_bit(AS_EIO, &mapping->flags))
362 if (test_bit(AS_ENOSPC, &mapping->flags))
368 * filemap_fdatawrite_wbc - start writeback on mapping dirty pages in range
369 * @mapping: address space structure to write
370 * @wbc: the writeback_control controlling the writeout
372 * Call writepages on the mapping using the provided wbc to control the
375 * Return: %0 on success, negative error code otherwise.
377 int filemap_fdatawrite_wbc(struct address_space *mapping,
378 struct writeback_control *wbc)
382 if (!mapping_can_writeback(mapping) ||
383 !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
386 wbc_attach_fdatawrite_inode(wbc, mapping->host);
387 ret = do_writepages(mapping, wbc);
388 wbc_detach_inode(wbc);
391 EXPORT_SYMBOL(filemap_fdatawrite_wbc);
394 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
395 * @mapping: address space structure to write
396 * @start: offset in bytes where the range starts
397 * @end: offset in bytes where the range ends (inclusive)
398 * @sync_mode: enable synchronous operation
400 * Start writeback against all of a mapping's dirty pages that lie
401 * within the byte offsets <start, end> inclusive.
403 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
404 * opposed to a regular memory cleansing writeback. The difference between
405 * these two operations is that if a dirty page/buffer is encountered, it must
406 * be waited upon, and not just skipped over.
408 * Return: %0 on success, negative error code otherwise.
410 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
411 loff_t end, int sync_mode)
413 struct writeback_control wbc = {
414 .sync_mode = sync_mode,
415 .nr_to_write = LONG_MAX,
416 .range_start = start,
420 return filemap_fdatawrite_wbc(mapping, &wbc);
423 static inline int __filemap_fdatawrite(struct address_space *mapping,
426 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
429 int filemap_fdatawrite(struct address_space *mapping)
431 return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
433 EXPORT_SYMBOL(filemap_fdatawrite);
435 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
438 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
440 EXPORT_SYMBOL(filemap_fdatawrite_range);
443 * filemap_flush - mostly a non-blocking flush
444 * @mapping: target address_space
446 * This is a mostly non-blocking flush. Not suitable for data-integrity
447 * purposes - I/O may not be started against all dirty pages.
449 * Return: %0 on success, negative error code otherwise.
451 int filemap_flush(struct address_space *mapping)
453 return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
455 EXPORT_SYMBOL(filemap_flush);
458 * filemap_range_has_page - check if a page exists in range.
459 * @mapping: address space within which to check
460 * @start_byte: offset in bytes where the range starts
461 * @end_byte: offset in bytes where the range ends (inclusive)
463 * Find at least one page in the range supplied, usually used to check if
464 * direct writing in this range will trigger a writeback.
466 * Return: %true if at least one page exists in the specified range,
469 bool filemap_range_has_page(struct address_space *mapping,
470 loff_t start_byte, loff_t end_byte)
473 XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT);
474 pgoff_t max = end_byte >> PAGE_SHIFT;
476 if (end_byte < start_byte)
481 folio = xas_find(&xas, max);
482 if (xas_retry(&xas, folio))
484 /* Shadow entries don't count */
485 if (xa_is_value(folio))
488 * We don't need to try to pin this page; we're about to
489 * release the RCU lock anyway. It is enough to know that
490 * there was a page here recently.
496 return folio != NULL;
498 EXPORT_SYMBOL(filemap_range_has_page);
500 static void __filemap_fdatawait_range(struct address_space *mapping,
501 loff_t start_byte, loff_t end_byte)
503 pgoff_t index = start_byte >> PAGE_SHIFT;
504 pgoff_t end = end_byte >> PAGE_SHIFT;
505 struct folio_batch fbatch;
508 folio_batch_init(&fbatch);
510 while (index <= end) {
513 nr_folios = filemap_get_folios_tag(mapping, &index, end,
514 PAGECACHE_TAG_WRITEBACK, &fbatch);
519 for (i = 0; i < nr_folios; i++) {
520 struct folio *folio = fbatch.folios[i];
522 folio_wait_writeback(folio);
523 folio_clear_error(folio);
525 folio_batch_release(&fbatch);
531 * filemap_fdatawait_range - wait for writeback to complete
532 * @mapping: address space structure to wait for
533 * @start_byte: offset in bytes where the range starts
534 * @end_byte: offset in bytes where the range ends (inclusive)
536 * Walk the list of under-writeback pages of the given address space
537 * in the given range and wait for all of them. Check error status of
538 * the address space and return it.
540 * Since the error status of the address space is cleared by this function,
541 * callers are responsible for checking the return value and handling and/or
542 * reporting the error.
544 * Return: error status of the address space.
546 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
549 __filemap_fdatawait_range(mapping, start_byte, end_byte);
550 return filemap_check_errors(mapping);
552 EXPORT_SYMBOL(filemap_fdatawait_range);
555 * filemap_fdatawait_range_keep_errors - wait for writeback to complete
556 * @mapping: address space structure to wait for
557 * @start_byte: offset in bytes where the range starts
558 * @end_byte: offset in bytes where the range ends (inclusive)
560 * Walk the list of under-writeback pages of the given address space in the
561 * given range and wait for all of them. Unlike filemap_fdatawait_range(),
562 * this function does not clear error status of the address space.
564 * Use this function if callers don't handle errors themselves. Expected
565 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
568 int filemap_fdatawait_range_keep_errors(struct address_space *mapping,
569 loff_t start_byte, loff_t end_byte)
571 __filemap_fdatawait_range(mapping, start_byte, end_byte);
572 return filemap_check_and_keep_errors(mapping);
574 EXPORT_SYMBOL(filemap_fdatawait_range_keep_errors);
577 * file_fdatawait_range - wait for writeback to complete
578 * @file: file pointing to address space structure to wait for
579 * @start_byte: offset in bytes where the range starts
580 * @end_byte: offset in bytes where the range ends (inclusive)
582 * Walk the list of under-writeback pages of the address space that file
583 * refers to, in the given range and wait for all of them. Check error
584 * status of the address space vs. the file->f_wb_err cursor and return it.
586 * Since the error status of the file is advanced by this function,
587 * callers are responsible for checking the return value and handling and/or
588 * reporting the error.
590 * Return: error status of the address space vs. the file->f_wb_err cursor.
592 int file_fdatawait_range(struct file *file, loff_t start_byte, loff_t end_byte)
594 struct address_space *mapping = file->f_mapping;
596 __filemap_fdatawait_range(mapping, start_byte, end_byte);
597 return file_check_and_advance_wb_err(file);
599 EXPORT_SYMBOL(file_fdatawait_range);
602 * filemap_fdatawait_keep_errors - wait for writeback without clearing errors
603 * @mapping: address space structure to wait for
605 * Walk the list of under-writeback pages of the given address space
606 * and wait for all of them. Unlike filemap_fdatawait(), this function
607 * does not clear error status of the address space.
609 * Use this function if callers don't handle errors themselves. Expected
610 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
613 * Return: error status of the address space.
615 int filemap_fdatawait_keep_errors(struct address_space *mapping)
617 __filemap_fdatawait_range(mapping, 0, LLONG_MAX);
618 return filemap_check_and_keep_errors(mapping);
620 EXPORT_SYMBOL(filemap_fdatawait_keep_errors);
622 /* Returns true if writeback might be needed or already in progress. */
623 static bool mapping_needs_writeback(struct address_space *mapping)
625 return mapping->nrpages;
628 bool filemap_range_has_writeback(struct address_space *mapping,
629 loff_t start_byte, loff_t end_byte)
631 XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT);
632 pgoff_t max = end_byte >> PAGE_SHIFT;
635 if (end_byte < start_byte)
639 xas_for_each(&xas, folio, max) {
640 if (xas_retry(&xas, folio))
642 if (xa_is_value(folio))
644 if (folio_test_dirty(folio) || folio_test_locked(folio) ||
645 folio_test_writeback(folio))
649 return folio != NULL;
651 EXPORT_SYMBOL_GPL(filemap_range_has_writeback);
654 * filemap_write_and_wait_range - write out & wait on a file range
655 * @mapping: the address_space for the pages
656 * @lstart: offset in bytes where the range starts
657 * @lend: offset in bytes where the range ends (inclusive)
659 * Write out and wait upon file offsets lstart->lend, inclusive.
661 * Note that @lend is inclusive (describes the last byte to be written) so
662 * that this function can be used to write to the very end-of-file (end = -1).
664 * Return: error status of the address space.
666 int filemap_write_and_wait_range(struct address_space *mapping,
667 loff_t lstart, loff_t lend)
674 if (mapping_needs_writeback(mapping)) {
675 err = __filemap_fdatawrite_range(mapping, lstart, lend,
678 * Even if the above returned error, the pages may be
679 * written partially (e.g. -ENOSPC), so we wait for it.
680 * But the -EIO is special case, it may indicate the worst
681 * thing (e.g. bug) happened, so we avoid waiting for it.
684 __filemap_fdatawait_range(mapping, lstart, lend);
686 err2 = filemap_check_errors(mapping);
691 EXPORT_SYMBOL(filemap_write_and_wait_range);
693 void __filemap_set_wb_err(struct address_space *mapping, int err)
695 errseq_t eseq = errseq_set(&mapping->wb_err, err);
697 trace_filemap_set_wb_err(mapping, eseq);
699 EXPORT_SYMBOL(__filemap_set_wb_err);
702 * file_check_and_advance_wb_err - report wb error (if any) that was previously
703 * and advance wb_err to current one
704 * @file: struct file on which the error is being reported
706 * When userland calls fsync (or something like nfsd does the equivalent), we
707 * want to report any writeback errors that occurred since the last fsync (or
708 * since the file was opened if there haven't been any).
710 * Grab the wb_err from the mapping. If it matches what we have in the file,
711 * then just quickly return 0. The file is all caught up.
713 * If it doesn't match, then take the mapping value, set the "seen" flag in
714 * it and try to swap it into place. If it works, or another task beat us
715 * to it with the new value, then update the f_wb_err and return the error
716 * portion. The error at this point must be reported via proper channels
717 * (a'la fsync, or NFS COMMIT operation, etc.).
719 * While we handle mapping->wb_err with atomic operations, the f_wb_err
720 * value is protected by the f_lock since we must ensure that it reflects
721 * the latest value swapped in for this file descriptor.
723 * Return: %0 on success, negative error code otherwise.
725 int file_check_and_advance_wb_err(struct file *file)
728 errseq_t old = READ_ONCE(file->f_wb_err);
729 struct address_space *mapping = file->f_mapping;
731 /* Locklessly handle the common case where nothing has changed */
732 if (errseq_check(&mapping->wb_err, old)) {
733 /* Something changed, must use slow path */
734 spin_lock(&file->f_lock);
735 old = file->f_wb_err;
736 err = errseq_check_and_advance(&mapping->wb_err,
738 trace_file_check_and_advance_wb_err(file, old);
739 spin_unlock(&file->f_lock);
743 * We're mostly using this function as a drop in replacement for
744 * filemap_check_errors. Clear AS_EIO/AS_ENOSPC to emulate the effect
745 * that the legacy code would have had on these flags.
747 clear_bit(AS_EIO, &mapping->flags);
748 clear_bit(AS_ENOSPC, &mapping->flags);
751 EXPORT_SYMBOL(file_check_and_advance_wb_err);
754 * file_write_and_wait_range - write out & wait on a file range
755 * @file: file pointing to address_space with pages
756 * @lstart: offset in bytes where the range starts
757 * @lend: offset in bytes where the range ends (inclusive)
759 * Write out and wait upon file offsets lstart->lend, inclusive.
761 * Note that @lend is inclusive (describes the last byte to be written) so
762 * that this function can be used to write to the very end-of-file (end = -1).
764 * After writing out and waiting on the data, we check and advance the
765 * f_wb_err cursor to the latest value, and return any errors detected there.
767 * Return: %0 on success, negative error code otherwise.
769 int file_write_and_wait_range(struct file *file, loff_t lstart, loff_t lend)
772 struct address_space *mapping = file->f_mapping;
777 if (mapping_needs_writeback(mapping)) {
778 err = __filemap_fdatawrite_range(mapping, lstart, lend,
780 /* See comment of filemap_write_and_wait() */
782 __filemap_fdatawait_range(mapping, lstart, lend);
784 err2 = file_check_and_advance_wb_err(file);
789 EXPORT_SYMBOL(file_write_and_wait_range);
792 * replace_page_cache_folio - replace a pagecache folio with a new one
793 * @old: folio to be replaced
794 * @new: folio to replace with
796 * This function replaces a folio in the pagecache with a new one. On
797 * success it acquires the pagecache reference for the new folio and
798 * drops it for the old folio. Both the old and new folios must be
799 * locked. This function does not add the new folio to the LRU, the
800 * caller must do that.
802 * The remove + add is atomic. This function cannot fail.
804 void replace_page_cache_folio(struct folio *old, struct folio *new)
806 struct address_space *mapping = old->mapping;
807 void (*free_folio)(struct folio *) = mapping->a_ops->free_folio;
808 pgoff_t offset = old->index;
809 XA_STATE(xas, &mapping->i_pages, offset);
811 VM_BUG_ON_FOLIO(!folio_test_locked(old), old);
812 VM_BUG_ON_FOLIO(!folio_test_locked(new), new);
813 VM_BUG_ON_FOLIO(new->mapping, new);
816 new->mapping = mapping;
819 mem_cgroup_replace_folio(old, new);
822 xas_store(&xas, new);
825 /* hugetlb pages do not participate in page cache accounting. */
826 if (!folio_test_hugetlb(old))
827 __lruvec_stat_sub_folio(old, NR_FILE_PAGES);
828 if (!folio_test_hugetlb(new))
829 __lruvec_stat_add_folio(new, NR_FILE_PAGES);
830 if (folio_test_swapbacked(old))
831 __lruvec_stat_sub_folio(old, NR_SHMEM);
832 if (folio_test_swapbacked(new))
833 __lruvec_stat_add_folio(new, NR_SHMEM);
834 xas_unlock_irq(&xas);
839 EXPORT_SYMBOL_GPL(replace_page_cache_folio);
841 noinline int __filemap_add_folio(struct address_space *mapping,
842 struct folio *folio, pgoff_t index, gfp_t gfp, void **shadowp)
844 XA_STATE(xas, &mapping->i_pages, index);
845 int huge = folio_test_hugetlb(folio);
846 bool charged = false;
849 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
850 VM_BUG_ON_FOLIO(folio_test_swapbacked(folio), folio);
851 mapping_set_update(&xas, mapping);
854 int error = mem_cgroup_charge(folio, NULL, gfp);
860 VM_BUG_ON_FOLIO(index & (folio_nr_pages(folio) - 1), folio);
861 xas_set_order(&xas, index, folio_order(folio));
862 nr = folio_nr_pages(folio);
864 gfp &= GFP_RECLAIM_MASK;
865 folio_ref_add(folio, nr);
866 folio->mapping = mapping;
867 folio->index = xas.xa_index;
870 unsigned int order = xa_get_order(xas.xa, xas.xa_index);
871 void *entry, *old = NULL;
873 if (order > folio_order(folio))
874 xas_split_alloc(&xas, xa_load(xas.xa, xas.xa_index),
877 xas_for_each_conflict(&xas, entry) {
879 if (!xa_is_value(entry)) {
880 xas_set_err(&xas, -EEXIST);
888 /* entry may have been split before we acquired lock */
889 order = xa_get_order(xas.xa, xas.xa_index);
890 if (order > folio_order(folio)) {
891 /* How to handle large swap entries? */
892 BUG_ON(shmem_mapping(mapping));
893 xas_split(&xas, old, order);
898 xas_store(&xas, folio);
902 mapping->nrpages += nr;
904 /* hugetlb pages do not participate in page cache accounting */
906 __lruvec_stat_mod_folio(folio, NR_FILE_PAGES, nr);
907 if (folio_test_pmd_mappable(folio))
908 __lruvec_stat_mod_folio(folio,
912 xas_unlock_irq(&xas);
913 } while (xas_nomem(&xas, gfp));
918 trace_mm_filemap_add_to_page_cache(folio);
922 mem_cgroup_uncharge(folio);
923 folio->mapping = NULL;
924 /* Leave page->index set: truncation relies upon it */
925 folio_put_refs(folio, nr);
926 return xas_error(&xas);
928 ALLOW_ERROR_INJECTION(__filemap_add_folio, ERRNO);
930 int filemap_add_folio(struct address_space *mapping, struct folio *folio,
931 pgoff_t index, gfp_t gfp)
936 __folio_set_locked(folio);
937 ret = __filemap_add_folio(mapping, folio, index, gfp, &shadow);
939 __folio_clear_locked(folio);
942 * The folio might have been evicted from cache only
943 * recently, in which case it should be activated like
944 * any other repeatedly accessed folio.
945 * The exception is folios getting rewritten; evicting other
946 * data from the working set, only to cache data that will
947 * get overwritten with something else, is a waste of memory.
949 WARN_ON_ONCE(folio_test_active(folio));
950 if (!(gfp & __GFP_WRITE) && shadow)
951 workingset_refault(folio, shadow);
952 folio_add_lru(folio);
956 EXPORT_SYMBOL_GPL(filemap_add_folio);
959 struct folio *filemap_alloc_folio(gfp_t gfp, unsigned int order)
964 if (cpuset_do_page_mem_spread()) {
965 unsigned int cpuset_mems_cookie;
967 cpuset_mems_cookie = read_mems_allowed_begin();
968 n = cpuset_mem_spread_node();
969 folio = __folio_alloc_node(gfp, order, n);
970 } while (!folio && read_mems_allowed_retry(cpuset_mems_cookie));
974 return folio_alloc(gfp, order);
976 EXPORT_SYMBOL(filemap_alloc_folio);
980 * filemap_invalidate_lock_two - lock invalidate_lock for two mappings
982 * Lock exclusively invalidate_lock of any passed mapping that is not NULL.
984 * @mapping1: the first mapping to lock
985 * @mapping2: the second mapping to lock
987 void filemap_invalidate_lock_two(struct address_space *mapping1,
988 struct address_space *mapping2)
990 if (mapping1 > mapping2)
991 swap(mapping1, mapping2);
993 down_write(&mapping1->invalidate_lock);
994 if (mapping2 && mapping1 != mapping2)
995 down_write_nested(&mapping2->invalidate_lock, 1);
997 EXPORT_SYMBOL(filemap_invalidate_lock_two);
1000 * filemap_invalidate_unlock_two - unlock invalidate_lock for two mappings
1002 * Unlock exclusive invalidate_lock of any passed mapping that is not NULL.
1004 * @mapping1: the first mapping to unlock
1005 * @mapping2: the second mapping to unlock
1007 void filemap_invalidate_unlock_two(struct address_space *mapping1,
1008 struct address_space *mapping2)
1011 up_write(&mapping1->invalidate_lock);
1012 if (mapping2 && mapping1 != mapping2)
1013 up_write(&mapping2->invalidate_lock);
1015 EXPORT_SYMBOL(filemap_invalidate_unlock_two);
1018 * In order to wait for pages to become available there must be
1019 * waitqueues associated with pages. By using a hash table of
1020 * waitqueues where the bucket discipline is to maintain all
1021 * waiters on the same queue and wake all when any of the pages
1022 * become available, and for the woken contexts to check to be
1023 * sure the appropriate page became available, this saves space
1024 * at a cost of "thundering herd" phenomena during rare hash
1027 #define PAGE_WAIT_TABLE_BITS 8
1028 #define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_TABLE_BITS)
1029 static wait_queue_head_t folio_wait_table[PAGE_WAIT_TABLE_SIZE] __cacheline_aligned;
1031 static wait_queue_head_t *folio_waitqueue(struct folio *folio)
1033 return &folio_wait_table[hash_ptr(folio, PAGE_WAIT_TABLE_BITS)];
1036 void __init pagecache_init(void)
1040 for (i = 0; i < PAGE_WAIT_TABLE_SIZE; i++)
1041 init_waitqueue_head(&folio_wait_table[i]);
1043 page_writeback_init();
1047 * The page wait code treats the "wait->flags" somewhat unusually, because
1048 * we have multiple different kinds of waits, not just the usual "exclusive"
1053 * (a) no special bits set:
1055 * We're just waiting for the bit to be released, and when a waker
1056 * calls the wakeup function, we set WQ_FLAG_WOKEN and wake it up,
1057 * and remove it from the wait queue.
1059 * Simple and straightforward.
1061 * (b) WQ_FLAG_EXCLUSIVE:
1063 * The waiter is waiting to get the lock, and only one waiter should
1064 * be woken up to avoid any thundering herd behavior. We'll set the
1065 * WQ_FLAG_WOKEN bit, wake it up, and remove it from the wait queue.
1067 * This is the traditional exclusive wait.
1069 * (c) WQ_FLAG_EXCLUSIVE | WQ_FLAG_CUSTOM:
1071 * The waiter is waiting to get the bit, and additionally wants the
1072 * lock to be transferred to it for fair lock behavior. If the lock
1073 * cannot be taken, we stop walking the wait queue without waking
1076 * This is the "fair lock handoff" case, and in addition to setting
1077 * WQ_FLAG_WOKEN, we set WQ_FLAG_DONE to let the waiter easily see
1078 * that it now has the lock.
1080 static int wake_page_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *arg)
1083 struct wait_page_key *key = arg;
1084 struct wait_page_queue *wait_page
1085 = container_of(wait, struct wait_page_queue, wait);
1087 if (!wake_page_match(wait_page, key))
1091 * If it's a lock handoff wait, we get the bit for it, and
1092 * stop walking (and do not wake it up) if we can't.
1094 flags = wait->flags;
1095 if (flags & WQ_FLAG_EXCLUSIVE) {
1096 if (test_bit(key->bit_nr, &key->folio->flags))
1098 if (flags & WQ_FLAG_CUSTOM) {
1099 if (test_and_set_bit(key->bit_nr, &key->folio->flags))
1101 flags |= WQ_FLAG_DONE;
1106 * We are holding the wait-queue lock, but the waiter that
1107 * is waiting for this will be checking the flags without
1110 * So update the flags atomically, and wake up the waiter
1111 * afterwards to avoid any races. This store-release pairs
1112 * with the load-acquire in folio_wait_bit_common().
1114 smp_store_release(&wait->flags, flags | WQ_FLAG_WOKEN);
1115 wake_up_state(wait->private, mode);
1118 * Ok, we have successfully done what we're waiting for,
1119 * and we can unconditionally remove the wait entry.
1121 * Note that this pairs with the "finish_wait()" in the
1122 * waiter, and has to be the absolute last thing we do.
1123 * After this list_del_init(&wait->entry) the wait entry
1124 * might be de-allocated and the process might even have
1127 list_del_init_careful(&wait->entry);
1128 return (flags & WQ_FLAG_EXCLUSIVE) != 0;
1131 static void folio_wake_bit(struct folio *folio, int bit_nr)
1133 wait_queue_head_t *q = folio_waitqueue(folio);
1134 struct wait_page_key key;
1135 unsigned long flags;
1138 key.bit_nr = bit_nr;
1141 spin_lock_irqsave(&q->lock, flags);
1142 __wake_up_locked_key(q, TASK_NORMAL, &key);
1145 * It's possible to miss clearing waiters here, when we woke our page
1146 * waiters, but the hashed waitqueue has waiters for other pages on it.
1147 * That's okay, it's a rare case. The next waker will clear it.
1149 * Note that, depending on the page pool (buddy, hugetlb, ZONE_DEVICE,
1150 * other), the flag may be cleared in the course of freeing the page;
1151 * but that is not required for correctness.
1153 if (!waitqueue_active(q) || !key.page_match)
1154 folio_clear_waiters(folio);
1156 spin_unlock_irqrestore(&q->lock, flags);
1160 * A choice of three behaviors for folio_wait_bit_common():
1163 EXCLUSIVE, /* Hold ref to page and take the bit when woken, like
1164 * __folio_lock() waiting on then setting PG_locked.
1166 SHARED, /* Hold ref to page and check the bit when woken, like
1167 * folio_wait_writeback() waiting on PG_writeback.
1169 DROP, /* Drop ref to page before wait, no check when woken,
1170 * like folio_put_wait_locked() on PG_locked.
1175 * Attempt to check (or get) the folio flag, and mark us done
1178 static inline bool folio_trylock_flag(struct folio *folio, int bit_nr,
1179 struct wait_queue_entry *wait)
1181 if (wait->flags & WQ_FLAG_EXCLUSIVE) {
1182 if (test_and_set_bit(bit_nr, &folio->flags))
1184 } else if (test_bit(bit_nr, &folio->flags))
1187 wait->flags |= WQ_FLAG_WOKEN | WQ_FLAG_DONE;
1191 /* How many times do we accept lock stealing from under a waiter? */
1192 int sysctl_page_lock_unfairness = 5;
1194 static inline int folio_wait_bit_common(struct folio *folio, int bit_nr,
1195 int state, enum behavior behavior)
1197 wait_queue_head_t *q = folio_waitqueue(folio);
1198 int unfairness = sysctl_page_lock_unfairness;
1199 struct wait_page_queue wait_page;
1200 wait_queue_entry_t *wait = &wait_page.wait;
1201 bool thrashing = false;
1202 unsigned long pflags;
1205 if (bit_nr == PG_locked &&
1206 !folio_test_uptodate(folio) && folio_test_workingset(folio)) {
1207 delayacct_thrashing_start(&in_thrashing);
1208 psi_memstall_enter(&pflags);
1213 wait->func = wake_page_function;
1214 wait_page.folio = folio;
1215 wait_page.bit_nr = bit_nr;
1219 if (behavior == EXCLUSIVE) {
1220 wait->flags = WQ_FLAG_EXCLUSIVE;
1221 if (--unfairness < 0)
1222 wait->flags |= WQ_FLAG_CUSTOM;
1226 * Do one last check whether we can get the
1227 * page bit synchronously.
1229 * Do the folio_set_waiters() marking before that
1230 * to let any waker we _just_ missed know they
1231 * need to wake us up (otherwise they'll never
1232 * even go to the slow case that looks at the
1233 * page queue), and add ourselves to the wait
1234 * queue if we need to sleep.
1236 * This part needs to be done under the queue
1237 * lock to avoid races.
1239 spin_lock_irq(&q->lock);
1240 folio_set_waiters(folio);
1241 if (!folio_trylock_flag(folio, bit_nr, wait))
1242 __add_wait_queue_entry_tail(q, wait);
1243 spin_unlock_irq(&q->lock);
1246 * From now on, all the logic will be based on
1247 * the WQ_FLAG_WOKEN and WQ_FLAG_DONE flag, to
1248 * see whether the page bit testing has already
1249 * been done by the wake function.
1251 * We can drop our reference to the folio.
1253 if (behavior == DROP)
1257 * Note that until the "finish_wait()", or until
1258 * we see the WQ_FLAG_WOKEN flag, we need to
1259 * be very careful with the 'wait->flags', because
1260 * we may race with a waker that sets them.
1265 set_current_state(state);
1267 /* Loop until we've been woken or interrupted */
1268 flags = smp_load_acquire(&wait->flags);
1269 if (!(flags & WQ_FLAG_WOKEN)) {
1270 if (signal_pending_state(state, current))
1277 /* If we were non-exclusive, we're done */
1278 if (behavior != EXCLUSIVE)
1281 /* If the waker got the lock for us, we're done */
1282 if (flags & WQ_FLAG_DONE)
1286 * Otherwise, if we're getting the lock, we need to
1287 * try to get it ourselves.
1289 * And if that fails, we'll have to retry this all.
1291 if (unlikely(test_and_set_bit(bit_nr, folio_flags(folio, 0))))
1294 wait->flags |= WQ_FLAG_DONE;
1299 * If a signal happened, this 'finish_wait()' may remove the last
1300 * waiter from the wait-queues, but the folio waiters bit will remain
1301 * set. That's ok. The next wakeup will take care of it, and trying
1302 * to do it here would be difficult and prone to races.
1304 finish_wait(q, wait);
1307 delayacct_thrashing_end(&in_thrashing);
1308 psi_memstall_leave(&pflags);
1312 * NOTE! The wait->flags weren't stable until we've done the
1313 * 'finish_wait()', and we could have exited the loop above due
1314 * to a signal, and had a wakeup event happen after the signal
1315 * test but before the 'finish_wait()'.
1317 * So only after the finish_wait() can we reliably determine
1318 * if we got woken up or not, so we can now figure out the final
1319 * return value based on that state without races.
1321 * Also note that WQ_FLAG_WOKEN is sufficient for a non-exclusive
1322 * waiter, but an exclusive one requires WQ_FLAG_DONE.
1324 if (behavior == EXCLUSIVE)
1325 return wait->flags & WQ_FLAG_DONE ? 0 : -EINTR;
1327 return wait->flags & WQ_FLAG_WOKEN ? 0 : -EINTR;
1330 #ifdef CONFIG_MIGRATION
1332 * migration_entry_wait_on_locked - Wait for a migration entry to be removed
1333 * @entry: migration swap entry.
1334 * @ptl: already locked ptl. This function will drop the lock.
1336 * Wait for a migration entry referencing the given page to be removed. This is
1337 * equivalent to put_and_wait_on_page_locked(page, TASK_UNINTERRUPTIBLE) except
1338 * this can be called without taking a reference on the page. Instead this
1339 * should be called while holding the ptl for the migration entry referencing
1342 * Returns after unlocking the ptl.
1344 * This follows the same logic as folio_wait_bit_common() so see the comments
1347 void migration_entry_wait_on_locked(swp_entry_t entry, spinlock_t *ptl)
1350 struct wait_page_queue wait_page;
1351 wait_queue_entry_t *wait = &wait_page.wait;
1352 bool thrashing = false;
1353 unsigned long pflags;
1355 wait_queue_head_t *q;
1356 struct folio *folio = page_folio(pfn_swap_entry_to_page(entry));
1358 q = folio_waitqueue(folio);
1359 if (!folio_test_uptodate(folio) && folio_test_workingset(folio)) {
1360 delayacct_thrashing_start(&in_thrashing);
1361 psi_memstall_enter(&pflags);
1366 wait->func = wake_page_function;
1367 wait_page.folio = folio;
1368 wait_page.bit_nr = PG_locked;
1371 spin_lock_irq(&q->lock);
1372 folio_set_waiters(folio);
1373 if (!folio_trylock_flag(folio, PG_locked, wait))
1374 __add_wait_queue_entry_tail(q, wait);
1375 spin_unlock_irq(&q->lock);
1378 * If a migration entry exists for the page the migration path must hold
1379 * a valid reference to the page, and it must take the ptl to remove the
1380 * migration entry. So the page is valid until the ptl is dropped.
1387 set_current_state(TASK_UNINTERRUPTIBLE);
1389 /* Loop until we've been woken or interrupted */
1390 flags = smp_load_acquire(&wait->flags);
1391 if (!(flags & WQ_FLAG_WOKEN)) {
1392 if (signal_pending_state(TASK_UNINTERRUPTIBLE, current))
1401 finish_wait(q, wait);
1404 delayacct_thrashing_end(&in_thrashing);
1405 psi_memstall_leave(&pflags);
1410 void folio_wait_bit(struct folio *folio, int bit_nr)
1412 folio_wait_bit_common(folio, bit_nr, TASK_UNINTERRUPTIBLE, SHARED);
1414 EXPORT_SYMBOL(folio_wait_bit);
1416 int folio_wait_bit_killable(struct folio *folio, int bit_nr)
1418 return folio_wait_bit_common(folio, bit_nr, TASK_KILLABLE, SHARED);
1420 EXPORT_SYMBOL(folio_wait_bit_killable);
1423 * folio_put_wait_locked - Drop a reference and wait for it to be unlocked
1424 * @folio: The folio to wait for.
1425 * @state: The sleep state (TASK_KILLABLE, TASK_UNINTERRUPTIBLE, etc).
1427 * The caller should hold a reference on @folio. They expect the page to
1428 * become unlocked relatively soon, but do not wish to hold up migration
1429 * (for example) by holding the reference while waiting for the folio to
1430 * come unlocked. After this function returns, the caller should not
1431 * dereference @folio.
1433 * Return: 0 if the folio was unlocked or -EINTR if interrupted by a signal.
1435 static int folio_put_wait_locked(struct folio *folio, int state)
1437 return folio_wait_bit_common(folio, PG_locked, state, DROP);
1441 * folio_add_wait_queue - Add an arbitrary waiter to a folio's wait queue
1442 * @folio: Folio defining the wait queue of interest
1443 * @waiter: Waiter to add to the queue
1445 * Add an arbitrary @waiter to the wait queue for the nominated @folio.
1447 void folio_add_wait_queue(struct folio *folio, wait_queue_entry_t *waiter)
1449 wait_queue_head_t *q = folio_waitqueue(folio);
1450 unsigned long flags;
1452 spin_lock_irqsave(&q->lock, flags);
1453 __add_wait_queue_entry_tail(q, waiter);
1454 folio_set_waiters(folio);
1455 spin_unlock_irqrestore(&q->lock, flags);
1457 EXPORT_SYMBOL_GPL(folio_add_wait_queue);
1460 * folio_unlock - Unlock a locked folio.
1461 * @folio: The folio.
1463 * Unlocks the folio and wakes up any thread sleeping on the page lock.
1465 * Context: May be called from interrupt or process context. May not be
1466 * called from NMI context.
1468 void folio_unlock(struct folio *folio)
1470 /* Bit 7 allows x86 to check the byte's sign bit */
1471 BUILD_BUG_ON(PG_waiters != 7);
1472 BUILD_BUG_ON(PG_locked > 7);
1473 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
1474 if (folio_xor_flags_has_waiters(folio, 1 << PG_locked))
1475 folio_wake_bit(folio, PG_locked);
1477 EXPORT_SYMBOL(folio_unlock);
1480 * folio_end_read - End read on a folio.
1481 * @folio: The folio.
1482 * @success: True if all reads completed successfully.
1484 * When all reads against a folio have completed, filesystems should
1485 * call this function to let the pagecache know that no more reads
1486 * are outstanding. This will unlock the folio and wake up any thread
1487 * sleeping on the lock. The folio will also be marked uptodate if all
1490 * Context: May be called from interrupt or process context. May not be
1491 * called from NMI context.
1493 void folio_end_read(struct folio *folio, bool success)
1495 unsigned long mask = 1 << PG_locked;
1497 /* Must be in bottom byte for x86 to work */
1498 BUILD_BUG_ON(PG_uptodate > 7);
1499 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
1500 VM_BUG_ON_FOLIO(folio_test_uptodate(folio), folio);
1502 if (likely(success))
1503 mask |= 1 << PG_uptodate;
1504 if (folio_xor_flags_has_waiters(folio, mask))
1505 folio_wake_bit(folio, PG_locked);
1507 EXPORT_SYMBOL(folio_end_read);
1510 * folio_end_private_2 - Clear PG_private_2 and wake any waiters.
1511 * @folio: The folio.
1513 * Clear the PG_private_2 bit on a folio and wake up any sleepers waiting for
1514 * it. The folio reference held for PG_private_2 being set is released.
1516 * This is, for example, used when a netfs folio is being written to a local
1517 * disk cache, thereby allowing writes to the cache for the same folio to be
1520 void folio_end_private_2(struct folio *folio)
1522 VM_BUG_ON_FOLIO(!folio_test_private_2(folio), folio);
1523 clear_bit_unlock(PG_private_2, folio_flags(folio, 0));
1524 folio_wake_bit(folio, PG_private_2);
1527 EXPORT_SYMBOL(folio_end_private_2);
1530 * folio_wait_private_2 - Wait for PG_private_2 to be cleared on a folio.
1531 * @folio: The folio to wait on.
1533 * Wait for PG_private_2 (aka PG_fscache) to be cleared on a folio.
1535 void folio_wait_private_2(struct folio *folio)
1537 while (folio_test_private_2(folio))
1538 folio_wait_bit(folio, PG_private_2);
1540 EXPORT_SYMBOL(folio_wait_private_2);
1543 * folio_wait_private_2_killable - Wait for PG_private_2 to be cleared on a folio.
1544 * @folio: The folio to wait on.
1546 * Wait for PG_private_2 (aka PG_fscache) to be cleared on a folio or until a
1547 * fatal signal is received by the calling task.
1550 * - 0 if successful.
1551 * - -EINTR if a fatal signal was encountered.
1553 int folio_wait_private_2_killable(struct folio *folio)
1557 while (folio_test_private_2(folio)) {
1558 ret = folio_wait_bit_killable(folio, PG_private_2);
1565 EXPORT_SYMBOL(folio_wait_private_2_killable);
1568 * folio_end_writeback - End writeback against a folio.
1569 * @folio: The folio.
1571 * The folio must actually be under writeback.
1573 * Context: May be called from process or interrupt context.
1575 void folio_end_writeback(struct folio *folio)
1577 VM_BUG_ON_FOLIO(!folio_test_writeback(folio), folio);
1580 * folio_test_clear_reclaim() could be used here but it is an
1581 * atomic operation and overkill in this particular case. Failing
1582 * to shuffle a folio marked for immediate reclaim is too mild
1583 * a gain to justify taking an atomic operation penalty at the
1584 * end of every folio writeback.
1586 if (folio_test_reclaim(folio)) {
1587 folio_clear_reclaim(folio);
1588 folio_rotate_reclaimable(folio);
1592 * Writeback does not hold a folio reference of its own, relying
1593 * on truncation to wait for the clearing of PG_writeback.
1594 * But here we must make sure that the folio is not freed and
1595 * reused before the folio_wake_bit().
1598 if (__folio_end_writeback(folio))
1599 folio_wake_bit(folio, PG_writeback);
1600 acct_reclaim_writeback(folio);
1603 EXPORT_SYMBOL(folio_end_writeback);
1606 * __folio_lock - Get a lock on the folio, assuming we need to sleep to get it.
1607 * @folio: The folio to lock
1609 void __folio_lock(struct folio *folio)
1611 folio_wait_bit_common(folio, PG_locked, TASK_UNINTERRUPTIBLE,
1614 EXPORT_SYMBOL(__folio_lock);
1616 int __folio_lock_killable(struct folio *folio)
1618 return folio_wait_bit_common(folio, PG_locked, TASK_KILLABLE,
1621 EXPORT_SYMBOL_GPL(__folio_lock_killable);
1623 static int __folio_lock_async(struct folio *folio, struct wait_page_queue *wait)
1625 struct wait_queue_head *q = folio_waitqueue(folio);
1628 wait->folio = folio;
1629 wait->bit_nr = PG_locked;
1631 spin_lock_irq(&q->lock);
1632 __add_wait_queue_entry_tail(q, &wait->wait);
1633 folio_set_waiters(folio);
1634 ret = !folio_trylock(folio);
1636 * If we were successful now, we know we're still on the
1637 * waitqueue as we're still under the lock. This means it's
1638 * safe to remove and return success, we know the callback
1639 * isn't going to trigger.
1642 __remove_wait_queue(q, &wait->wait);
1645 spin_unlock_irq(&q->lock);
1651 * 0 - folio is locked.
1652 * non-zero - folio is not locked.
1653 * mmap_lock or per-VMA lock has been released (mmap_read_unlock() or
1654 * vma_end_read()), unless flags had both FAULT_FLAG_ALLOW_RETRY and
1655 * FAULT_FLAG_RETRY_NOWAIT set, in which case the lock is still held.
1657 * If neither ALLOW_RETRY nor KILLABLE are set, will always return 0
1658 * with the folio locked and the mmap_lock/per-VMA lock is left unperturbed.
1660 vm_fault_t __folio_lock_or_retry(struct folio *folio, struct vm_fault *vmf)
1662 unsigned int flags = vmf->flags;
1664 if (fault_flag_allow_retry_first(flags)) {
1666 * CAUTION! In this case, mmap_lock/per-VMA lock is not
1667 * released even though returning VM_FAULT_RETRY.
1669 if (flags & FAULT_FLAG_RETRY_NOWAIT)
1670 return VM_FAULT_RETRY;
1672 release_fault_lock(vmf);
1673 if (flags & FAULT_FLAG_KILLABLE)
1674 folio_wait_locked_killable(folio);
1676 folio_wait_locked(folio);
1677 return VM_FAULT_RETRY;
1679 if (flags & FAULT_FLAG_KILLABLE) {
1682 ret = __folio_lock_killable(folio);
1684 release_fault_lock(vmf);
1685 return VM_FAULT_RETRY;
1688 __folio_lock(folio);
1695 * page_cache_next_miss() - Find the next gap in the page cache.
1696 * @mapping: Mapping.
1698 * @max_scan: Maximum range to search.
1700 * Search the range [index, min(index + max_scan - 1, ULONG_MAX)] for the
1701 * gap with the lowest index.
1703 * This function may be called under the rcu_read_lock. However, this will
1704 * not atomically search a snapshot of the cache at a single point in time.
1705 * For example, if a gap is created at index 5, then subsequently a gap is
1706 * created at index 10, page_cache_next_miss covering both indices may
1707 * return 10 if called under the rcu_read_lock.
1709 * Return: The index of the gap if found, otherwise an index outside the
1710 * range specified (in which case 'return - index >= max_scan' will be true).
1711 * In the rare case of index wrap-around, 0 will be returned.
1713 pgoff_t page_cache_next_miss(struct address_space *mapping,
1714 pgoff_t index, unsigned long max_scan)
1716 XA_STATE(xas, &mapping->i_pages, index);
1718 while (max_scan--) {
1719 void *entry = xas_next(&xas);
1720 if (!entry || xa_is_value(entry))
1722 if (xas.xa_index == 0)
1726 return xas.xa_index;
1728 EXPORT_SYMBOL(page_cache_next_miss);
1731 * page_cache_prev_miss() - Find the previous gap in the page cache.
1732 * @mapping: Mapping.
1734 * @max_scan: Maximum range to search.
1736 * Search the range [max(index - max_scan + 1, 0), index] for the
1737 * gap with the highest index.
1739 * This function may be called under the rcu_read_lock. However, this will
1740 * not atomically search a snapshot of the cache at a single point in time.
1741 * For example, if a gap is created at index 10, then subsequently a gap is
1742 * created at index 5, page_cache_prev_miss() covering both indices may
1743 * return 5 if called under the rcu_read_lock.
1745 * Return: The index of the gap if found, otherwise an index outside the
1746 * range specified (in which case 'index - return >= max_scan' will be true).
1747 * In the rare case of wrap-around, ULONG_MAX will be returned.
1749 pgoff_t page_cache_prev_miss(struct address_space *mapping,
1750 pgoff_t index, unsigned long max_scan)
1752 XA_STATE(xas, &mapping->i_pages, index);
1754 while (max_scan--) {
1755 void *entry = xas_prev(&xas);
1756 if (!entry || xa_is_value(entry))
1758 if (xas.xa_index == ULONG_MAX)
1762 return xas.xa_index;
1764 EXPORT_SYMBOL(page_cache_prev_miss);
1767 * Lockless page cache protocol:
1768 * On the lookup side:
1769 * 1. Load the folio from i_pages
1770 * 2. Increment the refcount if it's not zero
1771 * 3. If the folio is not found by xas_reload(), put the refcount and retry
1773 * On the removal side:
1774 * A. Freeze the page (by zeroing the refcount if nobody else has a reference)
1775 * B. Remove the page from i_pages
1776 * C. Return the page to the page allocator
1778 * This means that any page may have its reference count temporarily
1779 * increased by a speculative page cache (or fast GUP) lookup as it can
1780 * be allocated by another user before the RCU grace period expires.
1781 * Because the refcount temporarily acquired here may end up being the
1782 * last refcount on the page, any page allocation must be freeable by
1787 * filemap_get_entry - Get a page cache entry.
1788 * @mapping: the address_space to search
1789 * @index: The page cache index.
1791 * Looks up the page cache entry at @mapping & @index. If it is a folio,
1792 * it is returned with an increased refcount. If it is a shadow entry
1793 * of a previously evicted folio, or a swap entry from shmem/tmpfs,
1794 * it is returned without further action.
1796 * Return: The folio, swap or shadow entry, %NULL if nothing is found.
1798 void *filemap_get_entry(struct address_space *mapping, pgoff_t index)
1800 XA_STATE(xas, &mapping->i_pages, index);
1801 struct folio *folio;
1806 folio = xas_load(&xas);
1807 if (xas_retry(&xas, folio))
1810 * A shadow entry of a recently evicted page, or a swap entry from
1811 * shmem/tmpfs. Return it without attempting to raise page count.
1813 if (!folio || xa_is_value(folio))
1816 if (!folio_try_get_rcu(folio))
1819 if (unlikely(folio != xas_reload(&xas))) {
1830 * __filemap_get_folio - Find and get a reference to a folio.
1831 * @mapping: The address_space to search.
1832 * @index: The page index.
1833 * @fgp_flags: %FGP flags modify how the folio is returned.
1834 * @gfp: Memory allocation flags to use if %FGP_CREAT is specified.
1836 * Looks up the page cache entry at @mapping & @index.
1838 * If %FGP_LOCK or %FGP_CREAT are specified then the function may sleep even
1839 * if the %GFP flags specified for %FGP_CREAT are atomic.
1841 * If this function returns a folio, it is returned with an increased refcount.
1843 * Return: The found folio or an ERR_PTR() otherwise.
1845 struct folio *__filemap_get_folio(struct address_space *mapping, pgoff_t index,
1846 fgf_t fgp_flags, gfp_t gfp)
1848 struct folio *folio;
1851 folio = filemap_get_entry(mapping, index);
1852 if (xa_is_value(folio))
1857 if (fgp_flags & FGP_LOCK) {
1858 if (fgp_flags & FGP_NOWAIT) {
1859 if (!folio_trylock(folio)) {
1861 return ERR_PTR(-EAGAIN);
1867 /* Has the page been truncated? */
1868 if (unlikely(folio->mapping != mapping)) {
1869 folio_unlock(folio);
1873 VM_BUG_ON_FOLIO(!folio_contains(folio, index), folio);
1876 if (fgp_flags & FGP_ACCESSED)
1877 folio_mark_accessed(folio);
1878 else if (fgp_flags & FGP_WRITE) {
1879 /* Clear idle flag for buffer write */
1880 if (folio_test_idle(folio))
1881 folio_clear_idle(folio);
1884 if (fgp_flags & FGP_STABLE)
1885 folio_wait_stable(folio);
1887 if (!folio && (fgp_flags & FGP_CREAT)) {
1888 unsigned order = FGF_GET_ORDER(fgp_flags);
1891 if ((fgp_flags & FGP_WRITE) && mapping_can_writeback(mapping))
1893 if (fgp_flags & FGP_NOFS)
1895 if (fgp_flags & FGP_NOWAIT) {
1897 gfp |= GFP_NOWAIT | __GFP_NOWARN;
1899 if (WARN_ON_ONCE(!(fgp_flags & (FGP_LOCK | FGP_FOR_MMAP))))
1900 fgp_flags |= FGP_LOCK;
1902 if (!mapping_large_folio_support(mapping))
1904 if (order > MAX_PAGECACHE_ORDER)
1905 order = MAX_PAGECACHE_ORDER;
1906 /* If we're not aligned, allocate a smaller folio */
1907 if (index & ((1UL << order) - 1))
1908 order = __ffs(index);
1911 gfp_t alloc_gfp = gfp;
1917 alloc_gfp |= __GFP_NORETRY | __GFP_NOWARN;
1918 folio = filemap_alloc_folio(alloc_gfp, order);
1922 /* Init accessed so avoid atomic mark_page_accessed later */
1923 if (fgp_flags & FGP_ACCESSED)
1924 __folio_set_referenced(folio);
1926 err = filemap_add_folio(mapping, folio, index, gfp);
1931 } while (order-- > 0);
1936 return ERR_PTR(err);
1938 * filemap_add_folio locks the page, and for mmap
1939 * we expect an unlocked page.
1941 if (folio && (fgp_flags & FGP_FOR_MMAP))
1942 folio_unlock(folio);
1946 return ERR_PTR(-ENOENT);
1949 EXPORT_SYMBOL(__filemap_get_folio);
1951 static inline struct folio *find_get_entry(struct xa_state *xas, pgoff_t max,
1954 struct folio *folio;
1957 if (mark == XA_PRESENT)
1958 folio = xas_find(xas, max);
1960 folio = xas_find_marked(xas, max, mark);
1962 if (xas_retry(xas, folio))
1965 * A shadow entry of a recently evicted page, a swap
1966 * entry from shmem/tmpfs or a DAX entry. Return it
1967 * without attempting to raise page count.
1969 if (!folio || xa_is_value(folio))
1972 if (!folio_try_get_rcu(folio))
1975 if (unlikely(folio != xas_reload(xas))) {
1987 * find_get_entries - gang pagecache lookup
1988 * @mapping: The address_space to search
1989 * @start: The starting page cache index
1990 * @end: The final page index (inclusive).
1991 * @fbatch: Where the resulting entries are placed.
1992 * @indices: The cache indices corresponding to the entries in @entries
1994 * find_get_entries() will search for and return a batch of entries in
1995 * the mapping. The entries are placed in @fbatch. find_get_entries()
1996 * takes a reference on any actual folios it returns.
1998 * The entries have ascending indexes. The indices may not be consecutive
1999 * due to not-present entries or large folios.
2001 * Any shadow entries of evicted folios, or swap entries from
2002 * shmem/tmpfs, are included in the returned array.
2004 * Return: The number of entries which were found.
2006 unsigned find_get_entries(struct address_space *mapping, pgoff_t *start,
2007 pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices)
2009 XA_STATE(xas, &mapping->i_pages, *start);
2010 struct folio *folio;
2013 while ((folio = find_get_entry(&xas, end, XA_PRESENT)) != NULL) {
2014 indices[fbatch->nr] = xas.xa_index;
2015 if (!folio_batch_add(fbatch, folio))
2020 if (folio_batch_count(fbatch)) {
2021 unsigned long nr = 1;
2022 int idx = folio_batch_count(fbatch) - 1;
2024 folio = fbatch->folios[idx];
2025 if (!xa_is_value(folio))
2026 nr = folio_nr_pages(folio);
2027 *start = indices[idx] + nr;
2029 return folio_batch_count(fbatch);
2033 * find_lock_entries - Find a batch of pagecache entries.
2034 * @mapping: The address_space to search.
2035 * @start: The starting page cache index.
2036 * @end: The final page index (inclusive).
2037 * @fbatch: Where the resulting entries are placed.
2038 * @indices: The cache indices of the entries in @fbatch.
2040 * find_lock_entries() will return a batch of entries from @mapping.
2041 * Swap, shadow and DAX entries are included. Folios are returned
2042 * locked and with an incremented refcount. Folios which are locked
2043 * by somebody else or under writeback are skipped. Folios which are
2044 * partially outside the range are not returned.
2046 * The entries have ascending indexes. The indices may not be consecutive
2047 * due to not-present entries, large folios, folios which could not be
2048 * locked or folios under writeback.
2050 * Return: The number of entries which were found.
2052 unsigned find_lock_entries(struct address_space *mapping, pgoff_t *start,
2053 pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices)
2055 XA_STATE(xas, &mapping->i_pages, *start);
2056 struct folio *folio;
2059 while ((folio = find_get_entry(&xas, end, XA_PRESENT))) {
2060 if (!xa_is_value(folio)) {
2061 if (folio->index < *start)
2063 if (folio_next_index(folio) - 1 > end)
2065 if (!folio_trylock(folio))
2067 if (folio->mapping != mapping ||
2068 folio_test_writeback(folio))
2070 VM_BUG_ON_FOLIO(!folio_contains(folio, xas.xa_index),
2073 indices[fbatch->nr] = xas.xa_index;
2074 if (!folio_batch_add(fbatch, folio))
2078 folio_unlock(folio);
2084 if (folio_batch_count(fbatch)) {
2085 unsigned long nr = 1;
2086 int idx = folio_batch_count(fbatch) - 1;
2088 folio = fbatch->folios[idx];
2089 if (!xa_is_value(folio))
2090 nr = folio_nr_pages(folio);
2091 *start = indices[idx] + nr;
2093 return folio_batch_count(fbatch);
2097 * filemap_get_folios - Get a batch of folios
2098 * @mapping: The address_space to search
2099 * @start: The starting page index
2100 * @end: The final page index (inclusive)
2101 * @fbatch: The batch to fill.
2103 * Search for and return a batch of folios in the mapping starting at
2104 * index @start and up to index @end (inclusive). The folios are returned
2105 * in @fbatch with an elevated reference count.
2107 * Return: The number of folios which were found.
2108 * We also update @start to index the next folio for the traversal.
2110 unsigned filemap_get_folios(struct address_space *mapping, pgoff_t *start,
2111 pgoff_t end, struct folio_batch *fbatch)
2113 return filemap_get_folios_tag(mapping, start, end, XA_PRESENT, fbatch);
2115 EXPORT_SYMBOL(filemap_get_folios);
2118 * filemap_get_folios_contig - Get a batch of contiguous folios
2119 * @mapping: The address_space to search
2120 * @start: The starting page index
2121 * @end: The final page index (inclusive)
2122 * @fbatch: The batch to fill
2124 * filemap_get_folios_contig() works exactly like filemap_get_folios(),
2125 * except the returned folios are guaranteed to be contiguous. This may
2126 * not return all contiguous folios if the batch gets filled up.
2128 * Return: The number of folios found.
2129 * Also update @start to be positioned for traversal of the next folio.
2132 unsigned filemap_get_folios_contig(struct address_space *mapping,
2133 pgoff_t *start, pgoff_t end, struct folio_batch *fbatch)
2135 XA_STATE(xas, &mapping->i_pages, *start);
2137 struct folio *folio;
2141 for (folio = xas_load(&xas); folio && xas.xa_index <= end;
2142 folio = xas_next(&xas)) {
2143 if (xas_retry(&xas, folio))
2146 * If the entry has been swapped out, we can stop looking.
2147 * No current caller is looking for DAX entries.
2149 if (xa_is_value(folio))
2152 if (!folio_try_get_rcu(folio))
2155 if (unlikely(folio != xas_reload(&xas)))
2158 if (!folio_batch_add(fbatch, folio)) {
2159 nr = folio_nr_pages(folio);
2160 *start = folio->index + nr;
2172 nr = folio_batch_count(fbatch);
2175 folio = fbatch->folios[nr - 1];
2176 *start = folio_next_index(folio);
2180 return folio_batch_count(fbatch);
2182 EXPORT_SYMBOL(filemap_get_folios_contig);
2185 * filemap_get_folios_tag - Get a batch of folios matching @tag
2186 * @mapping: The address_space to search
2187 * @start: The starting page index
2188 * @end: The final page index (inclusive)
2189 * @tag: The tag index
2190 * @fbatch: The batch to fill
2192 * The first folio may start before @start; if it does, it will contain
2193 * @start. The final folio may extend beyond @end; if it does, it will
2194 * contain @end. The folios have ascending indices. There may be gaps
2195 * between the folios if there are indices which have no folio in the
2196 * page cache. If folios are added to or removed from the page cache
2197 * while this is running, they may or may not be found by this call.
2198 * Only returns folios that are tagged with @tag.
2200 * Return: The number of folios found.
2201 * Also update @start to index the next folio for traversal.
2203 unsigned filemap_get_folios_tag(struct address_space *mapping, pgoff_t *start,
2204 pgoff_t end, xa_mark_t tag, struct folio_batch *fbatch)
2206 XA_STATE(xas, &mapping->i_pages, *start);
2207 struct folio *folio;
2210 while ((folio = find_get_entry(&xas, end, tag)) != NULL) {
2212 * Shadow entries should never be tagged, but this iteration
2213 * is lockless so there is a window for page reclaim to evict
2214 * a page we saw tagged. Skip over it.
2216 if (xa_is_value(folio))
2218 if (!folio_batch_add(fbatch, folio)) {
2219 unsigned long nr = folio_nr_pages(folio);
2220 *start = folio->index + nr;
2225 * We come here when there is no page beyond @end. We take care to not
2226 * overflow the index @start as it confuses some of the callers. This
2227 * breaks the iteration when there is a page at index -1 but that is
2228 * already broke anyway.
2230 if (end == (pgoff_t)-1)
2231 *start = (pgoff_t)-1;
2237 return folio_batch_count(fbatch);
2239 EXPORT_SYMBOL(filemap_get_folios_tag);
2242 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
2243 * a _large_ part of the i/o request. Imagine the worst scenario:
2245 * ---R__________________________________________B__________
2246 * ^ reading here ^ bad block(assume 4k)
2248 * read(R) => miss => readahead(R...B) => media error => frustrating retries
2249 * => failing the whole request => read(R) => read(R+1) =>
2250 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
2251 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
2252 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
2254 * It is going insane. Fix it by quickly scaling down the readahead size.
2256 static void shrink_readahead_size_eio(struct file_ra_state *ra)
2262 * filemap_get_read_batch - Get a batch of folios for read
2264 * Get a batch of folios which represent a contiguous range of bytes in
2265 * the file. No exceptional entries will be returned. If @index is in
2266 * the middle of a folio, the entire folio will be returned. The last
2267 * folio in the batch may have the readahead flag set or the uptodate flag
2268 * clear so that the caller can take the appropriate action.
2270 static void filemap_get_read_batch(struct address_space *mapping,
2271 pgoff_t index, pgoff_t max, struct folio_batch *fbatch)
2273 XA_STATE(xas, &mapping->i_pages, index);
2274 struct folio *folio;
2277 for (folio = xas_load(&xas); folio; folio = xas_next(&xas)) {
2278 if (xas_retry(&xas, folio))
2280 if (xas.xa_index > max || xa_is_value(folio))
2282 if (xa_is_sibling(folio))
2284 if (!folio_try_get_rcu(folio))
2287 if (unlikely(folio != xas_reload(&xas)))
2290 if (!folio_batch_add(fbatch, folio))
2292 if (!folio_test_uptodate(folio))
2294 if (folio_test_readahead(folio))
2296 xas_advance(&xas, folio_next_index(folio) - 1);
2306 static int filemap_read_folio(struct file *file, filler_t filler,
2307 struct folio *folio)
2309 bool workingset = folio_test_workingset(folio);
2310 unsigned long pflags;
2314 * A previous I/O error may have been due to temporary failures,
2315 * eg. multipath errors. PG_error will be set again if read_folio
2318 folio_clear_error(folio);
2320 /* Start the actual read. The read will unlock the page. */
2321 if (unlikely(workingset))
2322 psi_memstall_enter(&pflags);
2323 error = filler(file, folio);
2324 if (unlikely(workingset))
2325 psi_memstall_leave(&pflags);
2329 error = folio_wait_locked_killable(folio);
2332 if (folio_test_uptodate(folio))
2335 shrink_readahead_size_eio(&file->f_ra);
2339 static bool filemap_range_uptodate(struct address_space *mapping,
2340 loff_t pos, size_t count, struct folio *folio,
2343 if (folio_test_uptodate(folio))
2345 /* pipes can't handle partially uptodate pages */
2348 if (!mapping->a_ops->is_partially_uptodate)
2350 if (mapping->host->i_blkbits >= folio_shift(folio))
2353 if (folio_pos(folio) > pos) {
2354 count -= folio_pos(folio) - pos;
2357 pos -= folio_pos(folio);
2360 return mapping->a_ops->is_partially_uptodate(folio, pos, count);
2363 static int filemap_update_page(struct kiocb *iocb,
2364 struct address_space *mapping, size_t count,
2365 struct folio *folio, bool need_uptodate)
2369 if (iocb->ki_flags & IOCB_NOWAIT) {
2370 if (!filemap_invalidate_trylock_shared(mapping))
2373 filemap_invalidate_lock_shared(mapping);
2376 if (!folio_trylock(folio)) {
2378 if (iocb->ki_flags & (IOCB_NOWAIT | IOCB_NOIO))
2379 goto unlock_mapping;
2380 if (!(iocb->ki_flags & IOCB_WAITQ)) {
2381 filemap_invalidate_unlock_shared(mapping);
2383 * This is where we usually end up waiting for a
2384 * previously submitted readahead to finish.
2386 folio_put_wait_locked(folio, TASK_KILLABLE);
2387 return AOP_TRUNCATED_PAGE;
2389 error = __folio_lock_async(folio, iocb->ki_waitq);
2391 goto unlock_mapping;
2394 error = AOP_TRUNCATED_PAGE;
2395 if (!folio->mapping)
2399 if (filemap_range_uptodate(mapping, iocb->ki_pos, count, folio,
2404 if (iocb->ki_flags & (IOCB_NOIO | IOCB_NOWAIT | IOCB_WAITQ))
2407 error = filemap_read_folio(iocb->ki_filp, mapping->a_ops->read_folio,
2409 goto unlock_mapping;
2411 folio_unlock(folio);
2413 filemap_invalidate_unlock_shared(mapping);
2414 if (error == AOP_TRUNCATED_PAGE)
2419 static int filemap_create_folio(struct file *file,
2420 struct address_space *mapping, pgoff_t index,
2421 struct folio_batch *fbatch)
2423 struct folio *folio;
2426 folio = filemap_alloc_folio(mapping_gfp_mask(mapping), 0);
2431 * Protect against truncate / hole punch. Grabbing invalidate_lock
2432 * here assures we cannot instantiate and bring uptodate new
2433 * pagecache folios after evicting page cache during truncate
2434 * and before actually freeing blocks. Note that we could
2435 * release invalidate_lock after inserting the folio into
2436 * the page cache as the locked folio would then be enough to
2437 * synchronize with hole punching. But there are code paths
2438 * such as filemap_update_page() filling in partially uptodate
2439 * pages or ->readahead() that need to hold invalidate_lock
2440 * while mapping blocks for IO so let's hold the lock here as
2441 * well to keep locking rules simple.
2443 filemap_invalidate_lock_shared(mapping);
2444 error = filemap_add_folio(mapping, folio, index,
2445 mapping_gfp_constraint(mapping, GFP_KERNEL));
2446 if (error == -EEXIST)
2447 error = AOP_TRUNCATED_PAGE;
2451 error = filemap_read_folio(file, mapping->a_ops->read_folio, folio);
2455 filemap_invalidate_unlock_shared(mapping);
2456 folio_batch_add(fbatch, folio);
2459 filemap_invalidate_unlock_shared(mapping);
2464 static int filemap_readahead(struct kiocb *iocb, struct file *file,
2465 struct address_space *mapping, struct folio *folio,
2468 DEFINE_READAHEAD(ractl, file, &file->f_ra, mapping, folio->index);
2470 if (iocb->ki_flags & IOCB_NOIO)
2472 page_cache_async_ra(&ractl, folio, last_index - folio->index);
2476 static int filemap_get_pages(struct kiocb *iocb, size_t count,
2477 struct folio_batch *fbatch, bool need_uptodate)
2479 struct file *filp = iocb->ki_filp;
2480 struct address_space *mapping = filp->f_mapping;
2481 struct file_ra_state *ra = &filp->f_ra;
2482 pgoff_t index = iocb->ki_pos >> PAGE_SHIFT;
2484 struct folio *folio;
2487 /* "last_index" is the index of the page beyond the end of the read */
2488 last_index = DIV_ROUND_UP(iocb->ki_pos + count, PAGE_SIZE);
2490 if (fatal_signal_pending(current))
2493 filemap_get_read_batch(mapping, index, last_index - 1, fbatch);
2494 if (!folio_batch_count(fbatch)) {
2495 if (iocb->ki_flags & IOCB_NOIO)
2497 page_cache_sync_readahead(mapping, ra, filp, index,
2498 last_index - index);
2499 filemap_get_read_batch(mapping, index, last_index - 1, fbatch);
2501 if (!folio_batch_count(fbatch)) {
2502 if (iocb->ki_flags & (IOCB_NOWAIT | IOCB_WAITQ))
2504 err = filemap_create_folio(filp, mapping,
2505 iocb->ki_pos >> PAGE_SHIFT, fbatch);
2506 if (err == AOP_TRUNCATED_PAGE)
2511 folio = fbatch->folios[folio_batch_count(fbatch) - 1];
2512 if (folio_test_readahead(folio)) {
2513 err = filemap_readahead(iocb, filp, mapping, folio, last_index);
2517 if (!folio_test_uptodate(folio)) {
2518 if ((iocb->ki_flags & IOCB_WAITQ) &&
2519 folio_batch_count(fbatch) > 1)
2520 iocb->ki_flags |= IOCB_NOWAIT;
2521 err = filemap_update_page(iocb, mapping, count, folio,
2531 if (likely(--fbatch->nr))
2533 if (err == AOP_TRUNCATED_PAGE)
2538 static inline bool pos_same_folio(loff_t pos1, loff_t pos2, struct folio *folio)
2540 unsigned int shift = folio_shift(folio);
2542 return (pos1 >> shift == pos2 >> shift);
2546 * filemap_read - Read data from the page cache.
2547 * @iocb: The iocb to read.
2548 * @iter: Destination for the data.
2549 * @already_read: Number of bytes already read by the caller.
2551 * Copies data from the page cache. If the data is not currently present,
2552 * uses the readahead and read_folio address_space operations to fetch it.
2554 * Return: Total number of bytes copied, including those already read by
2555 * the caller. If an error happens before any bytes are copied, returns
2556 * a negative error number.
2558 ssize_t filemap_read(struct kiocb *iocb, struct iov_iter *iter,
2559 ssize_t already_read)
2561 struct file *filp = iocb->ki_filp;
2562 struct file_ra_state *ra = &filp->f_ra;
2563 struct address_space *mapping = filp->f_mapping;
2564 struct inode *inode = mapping->host;
2565 struct folio_batch fbatch;
2567 bool writably_mapped;
2568 loff_t isize, end_offset;
2569 loff_t last_pos = ra->prev_pos;
2571 if (unlikely(iocb->ki_pos >= inode->i_sb->s_maxbytes))
2573 if (unlikely(!iov_iter_count(iter)))
2576 iov_iter_truncate(iter, inode->i_sb->s_maxbytes);
2577 folio_batch_init(&fbatch);
2583 * If we've already successfully copied some data, then we
2584 * can no longer safely return -EIOCBQUEUED. Hence mark
2585 * an async read NOWAIT at that point.
2587 if ((iocb->ki_flags & IOCB_WAITQ) && already_read)
2588 iocb->ki_flags |= IOCB_NOWAIT;
2590 if (unlikely(iocb->ki_pos >= i_size_read(inode)))
2593 error = filemap_get_pages(iocb, iter->count, &fbatch, false);
2598 * i_size must be checked after we know the pages are Uptodate.
2600 * Checking i_size after the check allows us to calculate
2601 * the correct value for "nr", which means the zero-filled
2602 * part of the page is not copied back to userspace (unless
2603 * another truncate extends the file - this is desired though).
2605 isize = i_size_read(inode);
2606 if (unlikely(iocb->ki_pos >= isize))
2608 end_offset = min_t(loff_t, isize, iocb->ki_pos + iter->count);
2611 * Pairs with a barrier in
2612 * block_write_end()->mark_buffer_dirty() or other page
2613 * dirtying routines like iomap_write_end() to ensure
2614 * changes to page contents are visible before we see
2615 * increased inode size.
2620 * Once we start copying data, we don't want to be touching any
2621 * cachelines that might be contended:
2623 writably_mapped = mapping_writably_mapped(mapping);
2626 * When a read accesses the same folio several times, only
2627 * mark it as accessed the first time.
2629 if (!pos_same_folio(iocb->ki_pos, last_pos - 1,
2631 folio_mark_accessed(fbatch.folios[0]);
2633 for (i = 0; i < folio_batch_count(&fbatch); i++) {
2634 struct folio *folio = fbatch.folios[i];
2635 size_t fsize = folio_size(folio);
2636 size_t offset = iocb->ki_pos & (fsize - 1);
2637 size_t bytes = min_t(loff_t, end_offset - iocb->ki_pos,
2641 if (end_offset < folio_pos(folio))
2644 folio_mark_accessed(folio);
2646 * If users can be writing to this folio using arbitrary
2647 * virtual addresses, take care of potential aliasing
2648 * before reading the folio on the kernel side.
2650 if (writably_mapped)
2651 flush_dcache_folio(folio);
2653 copied = copy_folio_to_iter(folio, offset, bytes, iter);
2655 already_read += copied;
2656 iocb->ki_pos += copied;
2657 last_pos = iocb->ki_pos;
2659 if (copied < bytes) {
2665 for (i = 0; i < folio_batch_count(&fbatch); i++)
2666 folio_put(fbatch.folios[i]);
2667 folio_batch_init(&fbatch);
2668 } while (iov_iter_count(iter) && iocb->ki_pos < isize && !error);
2670 file_accessed(filp);
2671 ra->prev_pos = last_pos;
2672 return already_read ? already_read : error;
2674 EXPORT_SYMBOL_GPL(filemap_read);
2676 int kiocb_write_and_wait(struct kiocb *iocb, size_t count)
2678 struct address_space *mapping = iocb->ki_filp->f_mapping;
2679 loff_t pos = iocb->ki_pos;
2680 loff_t end = pos + count - 1;
2682 if (iocb->ki_flags & IOCB_NOWAIT) {
2683 if (filemap_range_needs_writeback(mapping, pos, end))
2688 return filemap_write_and_wait_range(mapping, pos, end);
2691 int kiocb_invalidate_pages(struct kiocb *iocb, size_t count)
2693 struct address_space *mapping = iocb->ki_filp->f_mapping;
2694 loff_t pos = iocb->ki_pos;
2695 loff_t end = pos + count - 1;
2698 if (iocb->ki_flags & IOCB_NOWAIT) {
2699 /* we could block if there are any pages in the range */
2700 if (filemap_range_has_page(mapping, pos, end))
2703 ret = filemap_write_and_wait_range(mapping, pos, end);
2709 * After a write we want buffered reads to be sure to go to disk to get
2710 * the new data. We invalidate clean cached page from the region we're
2711 * about to write. We do this *before* the write so that we can return
2712 * without clobbering -EIOCBQUEUED from ->direct_IO().
2714 return invalidate_inode_pages2_range(mapping, pos >> PAGE_SHIFT,
2719 * generic_file_read_iter - generic filesystem read routine
2720 * @iocb: kernel I/O control block
2721 * @iter: destination for the data read
2723 * This is the "read_iter()" routine for all filesystems
2724 * that can use the page cache directly.
2726 * The IOCB_NOWAIT flag in iocb->ki_flags indicates that -EAGAIN shall
2727 * be returned when no data can be read without waiting for I/O requests
2728 * to complete; it doesn't prevent readahead.
2730 * The IOCB_NOIO flag in iocb->ki_flags indicates that no new I/O
2731 * requests shall be made for the read or for readahead. When no data
2732 * can be read, -EAGAIN shall be returned. When readahead would be
2733 * triggered, a partial, possibly empty read shall be returned.
2736 * * number of bytes copied, even for partial reads
2737 * * negative error code (or 0 if IOCB_NOIO) if nothing was read
2740 generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
2742 size_t count = iov_iter_count(iter);
2746 return 0; /* skip atime */
2748 if (iocb->ki_flags & IOCB_DIRECT) {
2749 struct file *file = iocb->ki_filp;
2750 struct address_space *mapping = file->f_mapping;
2751 struct inode *inode = mapping->host;
2753 retval = kiocb_write_and_wait(iocb, count);
2756 file_accessed(file);
2758 retval = mapping->a_ops->direct_IO(iocb, iter);
2760 iocb->ki_pos += retval;
2763 if (retval != -EIOCBQUEUED)
2764 iov_iter_revert(iter, count - iov_iter_count(iter));
2767 * Btrfs can have a short DIO read if we encounter
2768 * compressed extents, so if there was an error, or if
2769 * we've already read everything we wanted to, or if
2770 * there was a short read because we hit EOF, go ahead
2771 * and return. Otherwise fallthrough to buffered io for
2772 * the rest of the read. Buffered reads will not work for
2773 * DAX files, so don't bother trying.
2775 if (retval < 0 || !count || IS_DAX(inode))
2777 if (iocb->ki_pos >= i_size_read(inode))
2781 return filemap_read(iocb, iter, retval);
2783 EXPORT_SYMBOL(generic_file_read_iter);
2786 * Splice subpages from a folio into a pipe.
2788 size_t splice_folio_into_pipe(struct pipe_inode_info *pipe,
2789 struct folio *folio, loff_t fpos, size_t size)
2792 size_t spliced = 0, offset = offset_in_folio(folio, fpos);
2794 page = folio_page(folio, offset / PAGE_SIZE);
2795 size = min(size, folio_size(folio) - offset);
2796 offset %= PAGE_SIZE;
2798 while (spliced < size &&
2799 !pipe_full(pipe->head, pipe->tail, pipe->max_usage)) {
2800 struct pipe_buffer *buf = pipe_head_buf(pipe);
2801 size_t part = min_t(size_t, PAGE_SIZE - offset, size - spliced);
2803 *buf = (struct pipe_buffer) {
2804 .ops = &page_cache_pipe_buf_ops,
2820 * filemap_splice_read - Splice data from a file's pagecache into a pipe
2821 * @in: The file to read from
2822 * @ppos: Pointer to the file position to read from
2823 * @pipe: The pipe to splice into
2824 * @len: The amount to splice
2825 * @flags: The SPLICE_F_* flags
2827 * This function gets folios from a file's pagecache and splices them into the
2828 * pipe. Readahead will be called as necessary to fill more folios. This may
2829 * be used for blockdevs also.
2831 * Return: On success, the number of bytes read will be returned and *@ppos
2832 * will be updated if appropriate; 0 will be returned if there is no more data
2833 * to be read; -EAGAIN will be returned if the pipe had no space, and some
2834 * other negative error code will be returned on error. A short read may occur
2835 * if the pipe has insufficient space, we reach the end of the data or we hit a
2838 ssize_t filemap_splice_read(struct file *in, loff_t *ppos,
2839 struct pipe_inode_info *pipe,
2840 size_t len, unsigned int flags)
2842 struct folio_batch fbatch;
2844 size_t total_spliced = 0, used, npages;
2845 loff_t isize, end_offset;
2846 bool writably_mapped;
2849 if (unlikely(*ppos >= in->f_mapping->host->i_sb->s_maxbytes))
2852 init_sync_kiocb(&iocb, in);
2853 iocb.ki_pos = *ppos;
2855 /* Work out how much data we can actually add into the pipe */
2856 used = pipe_occupancy(pipe->head, pipe->tail);
2857 npages = max_t(ssize_t, pipe->max_usage - used, 0);
2858 len = min_t(size_t, len, npages * PAGE_SIZE);
2860 folio_batch_init(&fbatch);
2865 if (*ppos >= i_size_read(in->f_mapping->host))
2868 iocb.ki_pos = *ppos;
2869 error = filemap_get_pages(&iocb, len, &fbatch, true);
2874 * i_size must be checked after we know the pages are Uptodate.
2876 * Checking i_size after the check allows us to calculate
2877 * the correct value for "nr", which means the zero-filled
2878 * part of the page is not copied back to userspace (unless
2879 * another truncate extends the file - this is desired though).
2881 isize = i_size_read(in->f_mapping->host);
2882 if (unlikely(*ppos >= isize))
2884 end_offset = min_t(loff_t, isize, *ppos + len);
2887 * Once we start copying data, we don't want to be touching any
2888 * cachelines that might be contended:
2890 writably_mapped = mapping_writably_mapped(in->f_mapping);
2892 for (i = 0; i < folio_batch_count(&fbatch); i++) {
2893 struct folio *folio = fbatch.folios[i];
2896 if (folio_pos(folio) >= end_offset)
2898 folio_mark_accessed(folio);
2901 * If users can be writing to this folio using arbitrary
2902 * virtual addresses, take care of potential aliasing
2903 * before reading the folio on the kernel side.
2905 if (writably_mapped)
2906 flush_dcache_folio(folio);
2908 n = min_t(loff_t, len, isize - *ppos);
2909 n = splice_folio_into_pipe(pipe, folio, *ppos, n);
2915 in->f_ra.prev_pos = *ppos;
2916 if (pipe_full(pipe->head, pipe->tail, pipe->max_usage))
2920 folio_batch_release(&fbatch);
2924 folio_batch_release(&fbatch);
2927 return total_spliced ? total_spliced : error;
2929 EXPORT_SYMBOL(filemap_splice_read);
2931 static inline loff_t folio_seek_hole_data(struct xa_state *xas,
2932 struct address_space *mapping, struct folio *folio,
2933 loff_t start, loff_t end, bool seek_data)
2935 const struct address_space_operations *ops = mapping->a_ops;
2936 size_t offset, bsz = i_blocksize(mapping->host);
2938 if (xa_is_value(folio) || folio_test_uptodate(folio))
2939 return seek_data ? start : end;
2940 if (!ops->is_partially_uptodate)
2941 return seek_data ? end : start;
2946 if (unlikely(folio->mapping != mapping))
2949 offset = offset_in_folio(folio, start) & ~(bsz - 1);
2952 if (ops->is_partially_uptodate(folio, offset, bsz) ==
2955 start = (start + bsz) & ~(bsz - 1);
2957 } while (offset < folio_size(folio));
2959 folio_unlock(folio);
2964 static inline size_t seek_folio_size(struct xa_state *xas, struct folio *folio)
2966 if (xa_is_value(folio))
2967 return PAGE_SIZE << xa_get_order(xas->xa, xas->xa_index);
2968 return folio_size(folio);
2972 * mapping_seek_hole_data - Seek for SEEK_DATA / SEEK_HOLE in the page cache.
2973 * @mapping: Address space to search.
2974 * @start: First byte to consider.
2975 * @end: Limit of search (exclusive).
2976 * @whence: Either SEEK_HOLE or SEEK_DATA.
2978 * If the page cache knows which blocks contain holes and which blocks
2979 * contain data, your filesystem can use this function to implement
2980 * SEEK_HOLE and SEEK_DATA. This is useful for filesystems which are
2981 * entirely memory-based such as tmpfs, and filesystems which support
2982 * unwritten extents.
2984 * Return: The requested offset on success, or -ENXIO if @whence specifies
2985 * SEEK_DATA and there is no data after @start. There is an implicit hole
2986 * after @end - 1, so SEEK_HOLE returns @end if all the bytes between @start
2987 * and @end contain data.
2989 loff_t mapping_seek_hole_data(struct address_space *mapping, loff_t start,
2990 loff_t end, int whence)
2992 XA_STATE(xas, &mapping->i_pages, start >> PAGE_SHIFT);
2993 pgoff_t max = (end - 1) >> PAGE_SHIFT;
2994 bool seek_data = (whence == SEEK_DATA);
2995 struct folio *folio;
3001 while ((folio = find_get_entry(&xas, max, XA_PRESENT))) {
3002 loff_t pos = (u64)xas.xa_index << PAGE_SHIFT;
3011 seek_size = seek_folio_size(&xas, folio);
3012 pos = round_up((u64)pos + 1, seek_size);
3013 start = folio_seek_hole_data(&xas, mapping, folio, start, pos,
3019 if (seek_size > PAGE_SIZE)
3020 xas_set(&xas, pos >> PAGE_SHIFT);
3021 if (!xa_is_value(folio))
3028 if (folio && !xa_is_value(folio))
3036 #define MMAP_LOTSAMISS (100)
3038 * lock_folio_maybe_drop_mmap - lock the page, possibly dropping the mmap_lock
3039 * @vmf - the vm_fault for this fault.
3040 * @folio - the folio to lock.
3041 * @fpin - the pointer to the file we may pin (or is already pinned).
3043 * This works similar to lock_folio_or_retry in that it can drop the
3044 * mmap_lock. It differs in that it actually returns the folio locked
3045 * if it returns 1 and 0 if it couldn't lock the folio. If we did have
3046 * to drop the mmap_lock then fpin will point to the pinned file and
3047 * needs to be fput()'ed at a later point.
3049 static int lock_folio_maybe_drop_mmap(struct vm_fault *vmf, struct folio *folio,
3052 if (folio_trylock(folio))
3056 * NOTE! This will make us return with VM_FAULT_RETRY, but with
3057 * the fault lock still held. That's how FAULT_FLAG_RETRY_NOWAIT
3058 * is supposed to work. We have way too many special cases..
3060 if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT)
3063 *fpin = maybe_unlock_mmap_for_io(vmf, *fpin);
3064 if (vmf->flags & FAULT_FLAG_KILLABLE) {
3065 if (__folio_lock_killable(folio)) {
3067 * We didn't have the right flags to drop the
3068 * fault lock, but all fault_handlers only check
3069 * for fatal signals if we return VM_FAULT_RETRY,
3070 * so we need to drop the fault lock here and
3071 * return 0 if we don't have a fpin.
3074 release_fault_lock(vmf);
3078 __folio_lock(folio);
3084 * Synchronous readahead happens when we don't even find a page in the page
3085 * cache at all. We don't want to perform IO under the mmap sem, so if we have
3086 * to drop the mmap sem we return the file that was pinned in order for us to do
3087 * that. If we didn't pin a file then we return NULL. The file that is
3088 * returned needs to be fput()'ed when we're done with it.
3090 static struct file *do_sync_mmap_readahead(struct vm_fault *vmf)
3092 struct file *file = vmf->vma->vm_file;
3093 struct file_ra_state *ra = &file->f_ra;
3094 struct address_space *mapping = file->f_mapping;
3095 DEFINE_READAHEAD(ractl, file, ra, mapping, vmf->pgoff);
3096 struct file *fpin = NULL;
3097 unsigned long vm_flags = vmf->vma->vm_flags;
3098 unsigned int mmap_miss;
3100 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3101 /* Use the readahead code, even if readahead is disabled */
3102 if (vm_flags & VM_HUGEPAGE) {
3103 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3104 ractl._index &= ~((unsigned long)HPAGE_PMD_NR - 1);
3105 ra->size = HPAGE_PMD_NR;
3107 * Fetch two PMD folios, so we get the chance to actually
3108 * readahead, unless we've been told not to.
3110 if (!(vm_flags & VM_RAND_READ))
3112 ra->async_size = HPAGE_PMD_NR;
3113 page_cache_ra_order(&ractl, ra, HPAGE_PMD_ORDER);
3118 /* If we don't want any read-ahead, don't bother */
3119 if (vm_flags & VM_RAND_READ)
3124 if (vm_flags & VM_SEQ_READ) {
3125 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3126 page_cache_sync_ra(&ractl, ra->ra_pages);
3130 /* Avoid banging the cache line if not needed */
3131 mmap_miss = READ_ONCE(ra->mmap_miss);
3132 if (mmap_miss < MMAP_LOTSAMISS * 10)
3133 WRITE_ONCE(ra->mmap_miss, ++mmap_miss);
3136 * Do we miss much more than hit in this file? If so,
3137 * stop bothering with read-ahead. It will only hurt.
3139 if (mmap_miss > MMAP_LOTSAMISS)
3145 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3146 ra->start = max_t(long, 0, vmf->pgoff - ra->ra_pages / 2);
3147 ra->size = ra->ra_pages;
3148 ra->async_size = ra->ra_pages / 4;
3149 ractl._index = ra->start;
3150 page_cache_ra_order(&ractl, ra, 0);
3155 * Asynchronous readahead happens when we find the page and PG_readahead,
3156 * so we want to possibly extend the readahead further. We return the file that
3157 * was pinned if we have to drop the mmap_lock in order to do IO.
3159 static struct file *do_async_mmap_readahead(struct vm_fault *vmf,
3160 struct folio *folio)
3162 struct file *file = vmf->vma->vm_file;
3163 struct file_ra_state *ra = &file->f_ra;
3164 DEFINE_READAHEAD(ractl, file, ra, file->f_mapping, vmf->pgoff);
3165 struct file *fpin = NULL;
3166 unsigned int mmap_miss;
3168 /* If we don't want any read-ahead, don't bother */
3169 if (vmf->vma->vm_flags & VM_RAND_READ || !ra->ra_pages)
3172 mmap_miss = READ_ONCE(ra->mmap_miss);
3174 WRITE_ONCE(ra->mmap_miss, --mmap_miss);
3176 if (folio_test_readahead(folio)) {
3177 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3178 page_cache_async_ra(&ractl, folio, ra->ra_pages);
3184 * filemap_fault - read in file data for page fault handling
3185 * @vmf: struct vm_fault containing details of the fault
3187 * filemap_fault() is invoked via the vma operations vector for a
3188 * mapped memory region to read in file data during a page fault.
3190 * The goto's are kind of ugly, but this streamlines the normal case of having
3191 * it in the page cache, and handles the special cases reasonably without
3192 * having a lot of duplicated code.
3194 * vma->vm_mm->mmap_lock must be held on entry.
3196 * If our return value has VM_FAULT_RETRY set, it's because the mmap_lock
3197 * may be dropped before doing I/O or by lock_folio_maybe_drop_mmap().
3199 * If our return value does not have VM_FAULT_RETRY set, the mmap_lock
3200 * has not been released.
3202 * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
3204 * Return: bitwise-OR of %VM_FAULT_ codes.
3206 vm_fault_t filemap_fault(struct vm_fault *vmf)
3209 struct file *file = vmf->vma->vm_file;
3210 struct file *fpin = NULL;
3211 struct address_space *mapping = file->f_mapping;
3212 struct inode *inode = mapping->host;
3213 pgoff_t max_idx, index = vmf->pgoff;
3214 struct folio *folio;
3216 bool mapping_locked = false;
3218 max_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3219 if (unlikely(index >= max_idx))
3220 return VM_FAULT_SIGBUS;
3223 * Do we have something in the page cache already?
3225 folio = filemap_get_folio(mapping, index);
3226 if (likely(!IS_ERR(folio))) {
3228 * We found the page, so try async readahead before waiting for
3231 if (!(vmf->flags & FAULT_FLAG_TRIED))
3232 fpin = do_async_mmap_readahead(vmf, folio);
3233 if (unlikely(!folio_test_uptodate(folio))) {
3234 filemap_invalidate_lock_shared(mapping);
3235 mapping_locked = true;
3238 /* No page in the page cache at all */
3239 count_vm_event(PGMAJFAULT);
3240 count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT);
3241 ret = VM_FAULT_MAJOR;
3242 fpin = do_sync_mmap_readahead(vmf);
3245 * See comment in filemap_create_folio() why we need
3248 if (!mapping_locked) {
3249 filemap_invalidate_lock_shared(mapping);
3250 mapping_locked = true;
3252 folio = __filemap_get_folio(mapping, index,
3253 FGP_CREAT|FGP_FOR_MMAP,
3255 if (IS_ERR(folio)) {
3258 filemap_invalidate_unlock_shared(mapping);
3259 return VM_FAULT_OOM;
3263 if (!lock_folio_maybe_drop_mmap(vmf, folio, &fpin))
3266 /* Did it get truncated? */
3267 if (unlikely(folio->mapping != mapping)) {
3268 folio_unlock(folio);
3272 VM_BUG_ON_FOLIO(!folio_contains(folio, index), folio);
3275 * We have a locked folio in the page cache, now we need to check
3276 * that it's up-to-date. If not, it is going to be due to an error,
3277 * or because readahead was otherwise unable to retrieve it.
3279 if (unlikely(!folio_test_uptodate(folio))) {
3281 * If the invalidate lock is not held, the folio was in cache
3282 * and uptodate and now it is not. Strange but possible since we
3283 * didn't hold the page lock all the time. Let's drop
3284 * everything, get the invalidate lock and try again.
3286 if (!mapping_locked) {
3287 folio_unlock(folio);
3293 * OK, the folio is really not uptodate. This can be because the
3294 * VMA has the VM_RAND_READ flag set, or because an error
3295 * arose. Let's read it in directly.
3297 goto page_not_uptodate;
3301 * We've made it this far and we had to drop our mmap_lock, now is the
3302 * time to return to the upper layer and have it re-find the vma and
3306 folio_unlock(folio);
3310 filemap_invalidate_unlock_shared(mapping);
3313 * Found the page and have a reference on it.
3314 * We must recheck i_size under page lock.
3316 max_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3317 if (unlikely(index >= max_idx)) {
3318 folio_unlock(folio);
3320 return VM_FAULT_SIGBUS;
3323 vmf->page = folio_file_page(folio, index);
3324 return ret | VM_FAULT_LOCKED;
3328 * Umm, take care of errors if the page isn't up-to-date.
3329 * Try to re-read it _once_. We do this synchronously,
3330 * because there really aren't any performance issues here
3331 * and we need to check for errors.
3333 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3334 error = filemap_read_folio(file, mapping->a_ops->read_folio, folio);
3339 if (!error || error == AOP_TRUNCATED_PAGE)
3341 filemap_invalidate_unlock_shared(mapping);
3343 return VM_FAULT_SIGBUS;
3347 * We dropped the mmap_lock, we need to return to the fault handler to
3348 * re-find the vma and come back and find our hopefully still populated
3354 filemap_invalidate_unlock_shared(mapping);
3357 return ret | VM_FAULT_RETRY;
3359 EXPORT_SYMBOL(filemap_fault);
3361 static bool filemap_map_pmd(struct vm_fault *vmf, struct folio *folio,
3364 struct mm_struct *mm = vmf->vma->vm_mm;
3366 /* Huge page is mapped? No need to proceed. */
3367 if (pmd_trans_huge(*vmf->pmd)) {
3368 folio_unlock(folio);
3373 if (pmd_none(*vmf->pmd) && folio_test_pmd_mappable(folio)) {
3374 struct page *page = folio_file_page(folio, start);
3375 vm_fault_t ret = do_set_pmd(vmf, page);
3377 /* The page is mapped successfully, reference consumed. */
3378 folio_unlock(folio);
3383 if (pmd_none(*vmf->pmd) && vmf->prealloc_pte)
3384 pmd_install(mm, vmf->pmd, &vmf->prealloc_pte);
3389 static struct folio *next_uptodate_folio(struct xa_state *xas,
3390 struct address_space *mapping, pgoff_t end_pgoff)
3392 struct folio *folio = xas_next_entry(xas, end_pgoff);
3393 unsigned long max_idx;
3398 if (xas_retry(xas, folio))
3400 if (xa_is_value(folio))
3402 if (folio_test_locked(folio))
3404 if (!folio_try_get_rcu(folio))
3406 /* Has the page moved or been split? */
3407 if (unlikely(folio != xas_reload(xas)))
3409 if (!folio_test_uptodate(folio) || folio_test_readahead(folio))
3411 if (!folio_trylock(folio))
3413 if (folio->mapping != mapping)
3415 if (!folio_test_uptodate(folio))
3417 max_idx = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
3418 if (xas->xa_index >= max_idx)
3422 folio_unlock(folio);
3425 } while ((folio = xas_next_entry(xas, end_pgoff)) != NULL);
3431 * Map page range [start_page, start_page + nr_pages) of folio.
3432 * start_page is gotten from start by folio_page(folio, start)
3434 static vm_fault_t filemap_map_folio_range(struct vm_fault *vmf,
3435 struct folio *folio, unsigned long start,
3436 unsigned long addr, unsigned int nr_pages,
3437 unsigned int *mmap_miss)
3440 struct page *page = folio_page(folio, start);
3441 unsigned int count = 0;
3442 pte_t *old_ptep = vmf->pte;
3445 if (PageHWPoison(page + count))
3451 * NOTE: If there're PTE markers, we'll leave them to be
3452 * handled in the specific fault path, and it'll prohibit the
3453 * fault-around logic.
3455 if (!pte_none(ptep_get(&vmf->pte[count])))
3462 set_pte_range(vmf, folio, page, count, addr);
3463 folio_ref_add(folio, count);
3464 if (in_range(vmf->address, addr, count * PAGE_SIZE))
3465 ret = VM_FAULT_NOPAGE;
3471 addr += count * PAGE_SIZE;
3473 } while (--nr_pages > 0);
3476 set_pte_range(vmf, folio, page, count, addr);
3477 folio_ref_add(folio, count);
3478 if (in_range(vmf->address, addr, count * PAGE_SIZE))
3479 ret = VM_FAULT_NOPAGE;
3482 vmf->pte = old_ptep;
3487 static vm_fault_t filemap_map_order0_folio(struct vm_fault *vmf,
3488 struct folio *folio, unsigned long addr,
3489 unsigned int *mmap_miss)
3492 struct page *page = &folio->page;
3494 if (PageHWPoison(page))
3500 * NOTE: If there're PTE markers, we'll leave them to be
3501 * handled in the specific fault path, and it'll prohibit
3502 * the fault-around logic.
3504 if (!pte_none(ptep_get(vmf->pte)))
3507 if (vmf->address == addr)
3508 ret = VM_FAULT_NOPAGE;
3510 set_pte_range(vmf, folio, page, 1, addr);
3511 folio_ref_inc(folio);
3516 vm_fault_t filemap_map_pages(struct vm_fault *vmf,
3517 pgoff_t start_pgoff, pgoff_t end_pgoff)
3519 struct vm_area_struct *vma = vmf->vma;
3520 struct file *file = vma->vm_file;
3521 struct address_space *mapping = file->f_mapping;
3522 pgoff_t last_pgoff = start_pgoff;
3524 XA_STATE(xas, &mapping->i_pages, start_pgoff);
3525 struct folio *folio;
3527 unsigned int nr_pages = 0, mmap_miss = 0, mmap_miss_saved;
3530 folio = next_uptodate_folio(&xas, mapping, end_pgoff);
3534 if (filemap_map_pmd(vmf, folio, start_pgoff)) {
3535 ret = VM_FAULT_NOPAGE;
3539 addr = vma->vm_start + ((start_pgoff - vma->vm_pgoff) << PAGE_SHIFT);
3540 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, addr, &vmf->ptl);
3542 folio_unlock(folio);
3549 addr += (xas.xa_index - last_pgoff) << PAGE_SHIFT;
3550 vmf->pte += xas.xa_index - last_pgoff;
3551 last_pgoff = xas.xa_index;
3552 end = folio_next_index(folio) - 1;
3553 nr_pages = min(end, end_pgoff) - xas.xa_index + 1;
3555 if (!folio_test_large(folio))
3556 ret |= filemap_map_order0_folio(vmf,
3557 folio, addr, &mmap_miss);
3559 ret |= filemap_map_folio_range(vmf, folio,
3560 xas.xa_index - folio->index, addr,
3561 nr_pages, &mmap_miss);
3563 folio_unlock(folio);
3565 } while ((folio = next_uptodate_folio(&xas, mapping, end_pgoff)) != NULL);
3566 pte_unmap_unlock(vmf->pte, vmf->ptl);
3570 mmap_miss_saved = READ_ONCE(file->f_ra.mmap_miss);
3571 if (mmap_miss >= mmap_miss_saved)
3572 WRITE_ONCE(file->f_ra.mmap_miss, 0);
3574 WRITE_ONCE(file->f_ra.mmap_miss, mmap_miss_saved - mmap_miss);
3578 EXPORT_SYMBOL(filemap_map_pages);
3580 vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
3582 struct address_space *mapping = vmf->vma->vm_file->f_mapping;
3583 struct folio *folio = page_folio(vmf->page);
3584 vm_fault_t ret = VM_FAULT_LOCKED;
3586 sb_start_pagefault(mapping->host->i_sb);
3587 file_update_time(vmf->vma->vm_file);
3589 if (folio->mapping != mapping) {
3590 folio_unlock(folio);
3591 ret = VM_FAULT_NOPAGE;
3595 * We mark the folio dirty already here so that when freeze is in
3596 * progress, we are guaranteed that writeback during freezing will
3597 * see the dirty folio and writeprotect it again.
3599 folio_mark_dirty(folio);
3600 folio_wait_stable(folio);
3602 sb_end_pagefault(mapping->host->i_sb);
3606 const struct vm_operations_struct generic_file_vm_ops = {
3607 .fault = filemap_fault,
3608 .map_pages = filemap_map_pages,
3609 .page_mkwrite = filemap_page_mkwrite,
3612 /* This is used for a general mmap of a disk file */
3614 int generic_file_mmap(struct file *file, struct vm_area_struct *vma)
3616 struct address_space *mapping = file->f_mapping;
3618 if (!mapping->a_ops->read_folio)
3620 file_accessed(file);
3621 vma->vm_ops = &generic_file_vm_ops;
3626 * This is for filesystems which do not implement ->writepage.
3628 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
3630 if (vma_is_shared_maywrite(vma))
3632 return generic_file_mmap(file, vma);
3635 vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
3637 return VM_FAULT_SIGBUS;
3639 int generic_file_mmap(struct file *file, struct vm_area_struct *vma)
3643 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
3647 #endif /* CONFIG_MMU */
3649 EXPORT_SYMBOL(filemap_page_mkwrite);
3650 EXPORT_SYMBOL(generic_file_mmap);
3651 EXPORT_SYMBOL(generic_file_readonly_mmap);
3653 static struct folio *do_read_cache_folio(struct address_space *mapping,
3654 pgoff_t index, filler_t filler, struct file *file, gfp_t gfp)
3656 struct folio *folio;
3660 filler = mapping->a_ops->read_folio;
3662 folio = filemap_get_folio(mapping, index);
3663 if (IS_ERR(folio)) {
3664 folio = filemap_alloc_folio(gfp, 0);
3666 return ERR_PTR(-ENOMEM);
3667 err = filemap_add_folio(mapping, folio, index, gfp);
3668 if (unlikely(err)) {
3672 /* Presumably ENOMEM for xarray node */
3673 return ERR_PTR(err);
3678 if (folio_test_uptodate(folio))
3681 if (!folio_trylock(folio)) {
3682 folio_put_wait_locked(folio, TASK_UNINTERRUPTIBLE);
3686 /* Folio was truncated from mapping */
3687 if (!folio->mapping) {
3688 folio_unlock(folio);
3693 /* Someone else locked and filled the page in a very small window */
3694 if (folio_test_uptodate(folio)) {
3695 folio_unlock(folio);
3700 err = filemap_read_folio(file, filler, folio);
3703 if (err == AOP_TRUNCATED_PAGE)
3705 return ERR_PTR(err);
3709 folio_mark_accessed(folio);
3714 * read_cache_folio - Read into page cache, fill it if needed.
3715 * @mapping: The address_space to read from.
3716 * @index: The index to read.
3717 * @filler: Function to perform the read, or NULL to use aops->read_folio().
3718 * @file: Passed to filler function, may be NULL if not required.
3720 * Read one page into the page cache. If it succeeds, the folio returned
3721 * will contain @index, but it may not be the first page of the folio.
3723 * If the filler function returns an error, it will be returned to the
3726 * Context: May sleep. Expects mapping->invalidate_lock to be held.
3727 * Return: An uptodate folio on success, ERR_PTR() on failure.
3729 struct folio *read_cache_folio(struct address_space *mapping, pgoff_t index,
3730 filler_t filler, struct file *file)
3732 return do_read_cache_folio(mapping, index, filler, file,
3733 mapping_gfp_mask(mapping));
3735 EXPORT_SYMBOL(read_cache_folio);
3738 * mapping_read_folio_gfp - Read into page cache, using specified allocation flags.
3739 * @mapping: The address_space for the folio.
3740 * @index: The index that the allocated folio will contain.
3741 * @gfp: The page allocator flags to use if allocating.
3743 * This is the same as "read_cache_folio(mapping, index, NULL, NULL)", but with
3744 * any new memory allocations done using the specified allocation flags.
3746 * The most likely error from this function is EIO, but ENOMEM is
3747 * possible and so is EINTR. If ->read_folio returns another error,
3748 * that will be returned to the caller.
3750 * The function expects mapping->invalidate_lock to be already held.
3752 * Return: Uptodate folio on success, ERR_PTR() on failure.
3754 struct folio *mapping_read_folio_gfp(struct address_space *mapping,
3755 pgoff_t index, gfp_t gfp)
3757 return do_read_cache_folio(mapping, index, NULL, NULL, gfp);
3759 EXPORT_SYMBOL(mapping_read_folio_gfp);
3761 static struct page *do_read_cache_page(struct address_space *mapping,
3762 pgoff_t index, filler_t *filler, struct file *file, gfp_t gfp)
3764 struct folio *folio;
3766 folio = do_read_cache_folio(mapping, index, filler, file, gfp);
3768 return &folio->page;
3769 return folio_file_page(folio, index);
3772 struct page *read_cache_page(struct address_space *mapping,
3773 pgoff_t index, filler_t *filler, struct file *file)
3775 return do_read_cache_page(mapping, index, filler, file,
3776 mapping_gfp_mask(mapping));
3778 EXPORT_SYMBOL(read_cache_page);
3781 * read_cache_page_gfp - read into page cache, using specified page allocation flags.
3782 * @mapping: the page's address_space
3783 * @index: the page index
3784 * @gfp: the page allocator flags to use if allocating
3786 * This is the same as "read_mapping_page(mapping, index, NULL)", but with
3787 * any new page allocations done using the specified allocation flags.
3789 * If the page does not get brought uptodate, return -EIO.
3791 * The function expects mapping->invalidate_lock to be already held.
3793 * Return: up to date page on success, ERR_PTR() on failure.
3795 struct page *read_cache_page_gfp(struct address_space *mapping,
3799 return do_read_cache_page(mapping, index, NULL, NULL, gfp);
3801 EXPORT_SYMBOL(read_cache_page_gfp);
3804 * Warn about a page cache invalidation failure during a direct I/O write.
3806 static void dio_warn_stale_pagecache(struct file *filp)
3808 static DEFINE_RATELIMIT_STATE(_rs, 86400 * HZ, DEFAULT_RATELIMIT_BURST);
3812 errseq_set(&filp->f_mapping->wb_err, -EIO);
3813 if (__ratelimit(&_rs)) {
3814 path = file_path(filp, pathname, sizeof(pathname));
3817 pr_crit("Page cache invalidation failure on direct I/O. Possible data corruption due to collision with buffered I/O!\n");
3818 pr_crit("File: %s PID: %d Comm: %.20s\n", path, current->pid,
3823 void kiocb_invalidate_post_direct_write(struct kiocb *iocb, size_t count)
3825 struct address_space *mapping = iocb->ki_filp->f_mapping;
3827 if (mapping->nrpages &&
3828 invalidate_inode_pages2_range(mapping,
3829 iocb->ki_pos >> PAGE_SHIFT,
3830 (iocb->ki_pos + count - 1) >> PAGE_SHIFT))
3831 dio_warn_stale_pagecache(iocb->ki_filp);
3835 generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from)
3837 struct address_space *mapping = iocb->ki_filp->f_mapping;
3838 size_t write_len = iov_iter_count(from);
3842 * If a page can not be invalidated, return 0 to fall back
3843 * to buffered write.
3845 written = kiocb_invalidate_pages(iocb, write_len);
3847 if (written == -EBUSY)
3852 written = mapping->a_ops->direct_IO(iocb, from);
3855 * Finally, try again to invalidate clean pages which might have been
3856 * cached by non-direct readahead, or faulted in by get_user_pages()
3857 * if the source of the write was an mmap'ed region of the file
3858 * we're writing. Either one is a pretty crazy thing to do,
3859 * so we don't support it 100%. If this invalidation
3860 * fails, tough, the write still worked...
3862 * Most of the time we do not need this since dio_complete() will do
3863 * the invalidation for us. However there are some file systems that
3864 * do not end up with dio_complete() being called, so let's not break
3865 * them by removing it completely.
3867 * Noticeable example is a blkdev_direct_IO().
3869 * Skip invalidation for async writes or if mapping has no pages.
3872 struct inode *inode = mapping->host;
3873 loff_t pos = iocb->ki_pos;
3875 kiocb_invalidate_post_direct_write(iocb, written);
3877 write_len -= written;
3878 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
3879 i_size_write(inode, pos);
3880 mark_inode_dirty(inode);
3884 if (written != -EIOCBQUEUED)
3885 iov_iter_revert(from, write_len - iov_iter_count(from));
3888 EXPORT_SYMBOL(generic_file_direct_write);
3890 ssize_t generic_perform_write(struct kiocb *iocb, struct iov_iter *i)
3892 struct file *file = iocb->ki_filp;
3893 loff_t pos = iocb->ki_pos;
3894 struct address_space *mapping = file->f_mapping;
3895 const struct address_space_operations *a_ops = mapping->a_ops;
3897 ssize_t written = 0;
3901 unsigned long offset; /* Offset into pagecache page */
3902 unsigned long bytes; /* Bytes to write to page */
3903 size_t copied; /* Bytes copied from user */
3904 void *fsdata = NULL;
3906 offset = (pos & (PAGE_SIZE - 1));
3907 bytes = min_t(unsigned long, PAGE_SIZE - offset,
3912 * Bring in the user page that we will copy from _first_.
3913 * Otherwise there's a nasty deadlock on copying from the
3914 * same page as we're writing to, without it being marked
3917 if (unlikely(fault_in_iov_iter_readable(i, bytes) == bytes)) {
3922 if (fatal_signal_pending(current)) {
3927 status = a_ops->write_begin(file, mapping, pos, bytes,
3929 if (unlikely(status < 0))
3932 if (mapping_writably_mapped(mapping))
3933 flush_dcache_page(page);
3935 copied = copy_page_from_iter_atomic(page, offset, bytes, i);
3936 flush_dcache_page(page);
3938 status = a_ops->write_end(file, mapping, pos, bytes, copied,
3940 if (unlikely(status != copied)) {
3941 iov_iter_revert(i, copied - max(status, 0L));
3942 if (unlikely(status < 0))
3947 if (unlikely(status == 0)) {
3949 * A short copy made ->write_end() reject the
3950 * thing entirely. Might be memory poisoning
3951 * halfway through, might be a race with munmap,
3952 * might be severe memory pressure.
3961 balance_dirty_pages_ratelimited(mapping);
3962 } while (iov_iter_count(i));
3966 iocb->ki_pos += written;
3969 EXPORT_SYMBOL(generic_perform_write);
3972 * __generic_file_write_iter - write data to a file
3973 * @iocb: IO state structure (file, offset, etc.)
3974 * @from: iov_iter with data to write
3976 * This function does all the work needed for actually writing data to a
3977 * file. It does all basic checks, removes SUID from the file, updates
3978 * modification times and calls proper subroutines depending on whether we
3979 * do direct IO or a standard buffered write.
3981 * It expects i_rwsem to be grabbed unless we work on a block device or similar
3982 * object which does not need locking at all.
3984 * This function does *not* take care of syncing data in case of O_SYNC write.
3985 * A caller has to handle it. This is mainly due to the fact that we want to
3986 * avoid syncing under i_rwsem.
3989 * * number of bytes written, even for truncated writes
3990 * * negative error code if no data has been written at all
3992 ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
3994 struct file *file = iocb->ki_filp;
3995 struct address_space *mapping = file->f_mapping;
3996 struct inode *inode = mapping->host;
3999 ret = file_remove_privs(file);
4003 ret = file_update_time(file);
4007 if (iocb->ki_flags & IOCB_DIRECT) {
4008 ret = generic_file_direct_write(iocb, from);
4010 * If the write stopped short of completing, fall back to
4011 * buffered writes. Some filesystems do this for writes to
4012 * holes, for example. For DAX files, a buffered write will
4013 * not succeed (even if it did, DAX does not handle dirty
4014 * page-cache pages correctly).
4016 if (ret < 0 || !iov_iter_count(from) || IS_DAX(inode))
4018 return direct_write_fallback(iocb, from, ret,
4019 generic_perform_write(iocb, from));
4022 return generic_perform_write(iocb, from);
4024 EXPORT_SYMBOL(__generic_file_write_iter);
4027 * generic_file_write_iter - write data to a file
4028 * @iocb: IO state structure
4029 * @from: iov_iter with data to write
4031 * This is a wrapper around __generic_file_write_iter() to be used by most
4032 * filesystems. It takes care of syncing the file in case of O_SYNC file
4033 * and acquires i_rwsem as needed.
4035 * * negative error code if no data has been written at all of
4036 * vfs_fsync_range() failed for a synchronous write
4037 * * number of bytes written, even for truncated writes
4039 ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
4041 struct file *file = iocb->ki_filp;
4042 struct inode *inode = file->f_mapping->host;
4046 ret = generic_write_checks(iocb, from);
4048 ret = __generic_file_write_iter(iocb, from);
4049 inode_unlock(inode);
4052 ret = generic_write_sync(iocb, ret);
4055 EXPORT_SYMBOL(generic_file_write_iter);
4058 * filemap_release_folio() - Release fs-specific metadata on a folio.
4059 * @folio: The folio which the kernel is trying to free.
4060 * @gfp: Memory allocation flags (and I/O mode).
4062 * The address_space is trying to release any data attached to a folio
4063 * (presumably at folio->private).
4065 * This will also be called if the private_2 flag is set on a page,
4066 * indicating that the folio has other metadata associated with it.
4068 * The @gfp argument specifies whether I/O may be performed to release
4069 * this page (__GFP_IO), and whether the call may block
4070 * (__GFP_RECLAIM & __GFP_FS).
4072 * Return: %true if the release was successful, otherwise %false.
4074 bool filemap_release_folio(struct folio *folio, gfp_t gfp)
4076 struct address_space * const mapping = folio->mapping;
4078 BUG_ON(!folio_test_locked(folio));
4079 if (!folio_needs_release(folio))
4081 if (folio_test_writeback(folio))
4084 if (mapping && mapping->a_ops->release_folio)
4085 return mapping->a_ops->release_folio(folio, gfp);
4086 return try_to_free_buffers(folio);
4088 EXPORT_SYMBOL(filemap_release_folio);
4090 #ifdef CONFIG_CACHESTAT_SYSCALL
4092 * filemap_cachestat() - compute the page cache statistics of a mapping
4093 * @mapping: The mapping to compute the statistics for.
4094 * @first_index: The starting page cache index.
4095 * @last_index: The final page index (inclusive).
4096 * @cs: the cachestat struct to write the result to.
4098 * This will query the page cache statistics of a mapping in the
4099 * page range of [first_index, last_index] (inclusive). The statistics
4100 * queried include: number of dirty pages, number of pages marked for
4101 * writeback, and the number of (recently) evicted pages.
4103 static void filemap_cachestat(struct address_space *mapping,
4104 pgoff_t first_index, pgoff_t last_index, struct cachestat *cs)
4106 XA_STATE(xas, &mapping->i_pages, first_index);
4107 struct folio *folio;
4110 xas_for_each(&xas, folio, last_index) {
4111 unsigned long nr_pages;
4112 pgoff_t folio_first_index, folio_last_index;
4114 if (xas_retry(&xas, folio))
4117 if (xa_is_value(folio)) {
4118 /* page is evicted */
4119 void *shadow = (void *)folio;
4120 bool workingset; /* not used */
4121 int order = xa_get_order(xas.xa, xas.xa_index);
4123 nr_pages = 1 << order;
4124 folio_first_index = round_down(xas.xa_index, 1 << order);
4125 folio_last_index = folio_first_index + nr_pages - 1;
4127 /* Folios might straddle the range boundaries, only count covered pages */
4128 if (folio_first_index < first_index)
4129 nr_pages -= first_index - folio_first_index;
4131 if (folio_last_index > last_index)
4132 nr_pages -= folio_last_index - last_index;
4134 cs->nr_evicted += nr_pages;
4136 #ifdef CONFIG_SWAP /* implies CONFIG_MMU */
4137 if (shmem_mapping(mapping)) {
4138 /* shmem file - in swap cache */
4139 swp_entry_t swp = radix_to_swp_entry(folio);
4141 shadow = get_shadow_from_swap_cache(swp);
4144 if (workingset_test_recent(shadow, true, &workingset))
4145 cs->nr_recently_evicted += nr_pages;
4150 nr_pages = folio_nr_pages(folio);
4151 folio_first_index = folio_pgoff(folio);
4152 folio_last_index = folio_first_index + nr_pages - 1;
4154 /* Folios might straddle the range boundaries, only count covered pages */
4155 if (folio_first_index < first_index)
4156 nr_pages -= first_index - folio_first_index;
4158 if (folio_last_index > last_index)
4159 nr_pages -= folio_last_index - last_index;
4161 /* page is in cache */
4162 cs->nr_cache += nr_pages;
4164 if (folio_test_dirty(folio))
4165 cs->nr_dirty += nr_pages;
4167 if (folio_test_writeback(folio))
4168 cs->nr_writeback += nr_pages;
4171 if (need_resched()) {
4180 * The cachestat(2) system call.
4182 * cachestat() returns the page cache statistics of a file in the
4183 * bytes range specified by `off` and `len`: number of cached pages,
4184 * number of dirty pages, number of pages marked for writeback,
4185 * number of evicted pages, and number of recently evicted pages.
4187 * An evicted page is a page that is previously in the page cache
4188 * but has been evicted since. A page is recently evicted if its last
4189 * eviction was recent enough that its reentry to the cache would
4190 * indicate that it is actively being used by the system, and that
4191 * there is memory pressure on the system.
4193 * `off` and `len` must be non-negative integers. If `len` > 0,
4194 * the queried range is [`off`, `off` + `len`]. If `len` == 0,
4195 * we will query in the range from `off` to the end of the file.
4197 * The `flags` argument is unused for now, but is included for future
4198 * extensibility. User should pass 0 (i.e no flag specified).
4200 * Currently, hugetlbfs is not supported.
4202 * Because the status of a page can change after cachestat() checks it
4203 * but before it returns to the application, the returned values may
4204 * contain stale information.
4208 * -EFAULT - cstat or cstat_range points to an illegal address
4209 * -EINVAL - invalid flags
4210 * -EBADF - invalid file descriptor
4211 * -EOPNOTSUPP - file descriptor is of a hugetlbfs file
4213 SYSCALL_DEFINE4(cachestat, unsigned int, fd,
4214 struct cachestat_range __user *, cstat_range,
4215 struct cachestat __user *, cstat, unsigned int, flags)
4217 struct fd f = fdget(fd);
4218 struct address_space *mapping;
4219 struct cachestat_range csr;
4220 struct cachestat cs;
4221 pgoff_t first_index, last_index;
4226 if (copy_from_user(&csr, cstat_range,
4227 sizeof(struct cachestat_range))) {
4232 /* hugetlbfs is not supported */
4233 if (is_file_hugepages(f.file)) {
4243 first_index = csr.off >> PAGE_SHIFT;
4245 csr.len == 0 ? ULONG_MAX : (csr.off + csr.len - 1) >> PAGE_SHIFT;
4246 memset(&cs, 0, sizeof(struct cachestat));
4247 mapping = f.file->f_mapping;
4248 filemap_cachestat(mapping, first_index, last_index, &cs);
4251 if (copy_to_user(cstat, &cs, sizeof(struct cachestat)))
4256 #endif /* CONFIG_CACHESTAT_SYSCALL */